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Abstract

This thesis deals with sound absorption optimization in rectangular acoustic black holes
(ABH). Specifically, for the ABH in air realized as an anechoic termination to rectangu-
lar waveguides consisting of thin rectangular ribs embedded within the duct. By tuning
the geometric parameters of ABHs, we aim to maximize sound absorption while keeping
the parameters within the limits of practically feasible 3D printing with the current state
of development. The equations of motion of compressible fluids are briefly reviewed, and
their acoustical limit is discussed. It is shown how they can be transformed in the Riccati
type of equation for the specific purpose of ABH. This quasi-onedimensional description is
advantageous for employment in optimization.

In this work, we optimize the profile function of the ABH, which controls the height of
the ribs. Due to the complicated relations within the system, a derivative-free optimization
is needed. Hence, we have chosen the Covariance Matrix Adaptation Evolution Strategy.
Two scenarios are studied in this work: a rectangular ABH with narrow slits filled with air
and a combination of ABH with a porous material. The first scenario is useful for employ-
ment in extreme conditions (e.g., high temperature, humidity) or conditions with increased
hygiene standards (healthcare industry). The latter aims to increase sound absorption in
the frequency range where the porous materials do not operate ideally.

Keywords: sound absorption, acoustic black hole, porous materials, evolution strategy
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Abstrakt

Tato práce se zabývá optimalizací absorpce zvuku v obdélníkových akustických černých
dírách (ABH). Konkrétně pro ABH ve vzduchu realizovanou jako anechoické zakončení obdél-
níkových vlnovodů tvořených tenkými obdélníkovými žebry vloženými do kanálu. Laděním
geometrických parametrů ABH se snažíme maximalizovat absorpci zvuku a zároveň udržet
parametry v mezích prakticky proveditelného 3D tisku při současném stavu vývoje. Stručně
se seznámíme s pohybovými rovnicemi stlačitelných tekutin a diskutujeme jejich akustické
limity. Je ukázáno, jak je lze transformovat do rovnic Riccatiho typu pro konkrétní účely
ABH. Tento kvazi-jednorozměrný popis je výhodný pro využití při optimalizaci.

V této práci optimalizujeme profilovou funkci ABH, která řídí výšku žeber. Vzhledem ke
komplikovaným vztahům uvnitř systému je nutná bezderivační optimalizace. Proto jsme zvo-
lili evoluční strategii s adaptací kovarianční matice. V této práci se zabýváme dvěma případy
využití ABH: obdélníkovou ABH s úzkými štěrbinami vyplněnými vzduchem a kombinací
ABH s porézním materiálem. První případ je vhodný pro použití v extrémních podmínkách
(např. vysoká teplota, vlhkost) nebo v podmínkách se zvýšenými hygienickými standardy
(zdravotnictví). Druhý případ má za cíl zvýšit absorpci zvuku ve frekvenčním pásmu, kde
porézní materiály nepůsobí ideálně.

Klíčová slova: absorpce zvuku, akustická černá díra, porézní materiál, evoluční strategie
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Chapter 1

Introduction

The negative impact of noise, particularly at low frequencies, has become a growing
concern due to its harmful effects on health. Prolonged exposure to environmental noise is
classified among the top environmental risks to health in Europe. Even though the levels
of noise can be too low to cause biological damage to the ear, it can lead to non-auditory
health effects such as annoyance, chronic sleep disturbance or ischaemic heart disease [1].
Therefore, there is a need for efficient structures able to suppress low-frequency sound.

So far, a widely used solution for noise and vibration control is use of porous materials, as
they are able to dissipate vibro-acoustic energy through thermal and viscous losses. However,
we are not able to use them in conditions with increased hygiene standards (healthcare
industry), in extreme conditions (e.g., high temperatures, humidity), or due to their bulkiness
and excess weight. Therefore, a need for other noise-reducing treatments emerged.

One of the possible solutions to this problem are passive devices suppressing the unwanted
sound or vibration called acoustic black holes (ABHs). The ABHs can serve either as traps
for flexural elastic waves in solid materials (also known as vibrational black holes) or for
acoustic waves in air (sometimes called sonic black holes). However, the main principle
remains the same [2]. Examples of both types are depicted in Figure 1.1. In this thesis, we
will focus only on ABH for acoustic waves in fluids.

Figure 1.1: Examples of ABHs (from [2]). (a), (b), (c), (d), (e), (f) are vibrational black
holes, (c) is a sonic black hole.

1



CHAPTER 1. INTRODUCTION

Figure 1.2: A three-dimensional render of a rectangular ABH.

The concept of a wave retarding structure was firstly proposed by Mironov and Pislyakov
[3]. The underlying principle is that in this structure, the wave speed is reduced to zero;
thus, the wave never reaches the end of the structure in a finite time. As a consequence, there
is no reflection, and the wave remains simply trapped in the ABH. Hence, the nomenclature
“black hole” based on astrophysics.

However, in the real world, the assumptions made for this theoretical model behaviour
cannot be fulfilled. Thus, the black hole effect is not practically feasible, as was documented
experimentally [4–7]. Therefore, for the sonic black holes, various authors avoid the term
“black hole” and prefer other namings, such as “sound-absorbing structure” [8] or “metama-
terial graded absorber” [9].

The ABHs studied in referred works have an axial symmetry and thus, can serve as
termination for ducts with a circular cross-section. Throughout this work, we consider ABHs
constructed as rectangular anechoic termination in air-filled waveguides with varying wall
impedance. made with a collection of ribs of increasing heights. A cut of a three-dimensional
render of considered rectangular ABH is depicted in Figure 1.2. In this thesis, two methods
of rectangular ABHs usage are studied. Firstly, as absorbing structures in conditions where
porous materials cannot be used. Secondly, as a way of improving the sound absorption in
a frequency range where the porous material is not efficient enough.

In practice, the mechanism of losses in this structure is not due to the black hole effect.
As the incoming wave propagates through the ABH, its group velocity is slowed down, and in
turn, the wavelength is shortened, see Figure 1.3. This results in an increase of the acoustic
energy density, which increases the effect of otherwise weak dissipation mechanisms, such as
thermoviscous losses on the walls of ribs.

Our goal is to optimize the geometry of rectangular ABH in order to achieve better sound
absorption. The quantitative description of the wave propagation in ABHs is based on the

2
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Figure 1.3: The wavelength tending to zero.

generalized Webster equation (see e.g. [10]). Since the generalized Webster equation for
ABHs has a very limited amount of analytical solutions, some authors solved this problem by
employing the finite element method (FEM) to solve the linearized Navier–Stokes equations
(LNSE), which correctly captures thermoviscous losses [8, 11], while the authors of the
papers [12, 13] used a one-dimensional model equation employing the transfer matrix method
(TMM). However, none of these methods are suitable for use in optimization. The FEM
because it is too computationally demanding. The TMM because it is complicated to express
smooth geometry with it. It also does not provide us a governing equation and because a
huge amount of matrices is needed for description of the ABH system, it is not possible to
interpret the wave behaviour inside the system even in limit cases. It is well-known that
a whole class of wave equations for acoustic pressure with spatial inhomogeneity can be
transformed into the Riccati equation (see e.g. [9, 14]), which is a non-linear, first-order
differential equation.

The thesis is organized as follows. In chapter 2, the underlying principles and governing
equations are derived. The methods of optimization used for achieving the goal of this thesis
are introduced in chapter 3. In chapter 4 on ABH with rigid wall termination, it is shown
how the optimization works and in chapter 5 the sound absorption in ABH with use of a
porous material is studied. The achieved results of this thesis are summarized in chapter 6.

3



CHAPTER 1. INTRODUCTION

4



Chapter 2

Theory

This chapter is focused on the governing equations. First, a wave equation for acoustic
pressure is derived in section 2.1, and from its solution restrictions for rectangular waveguide
are obtained in section 2.2. In section 2.3, a generalized Webster equation for rectangular
waveguides with varying both cross-section and wall impedance is derived. In section 2.4,
the ABH geometry is introduced and in section 2.5, the black hole effect is shown. From
the generalized Webster equation, a Riccati equation for reflection coefficient is derived in
section 2.6. Finally, the porous material is employed in the ABH model in section 2.8 by a
porous material inserted at the closed end of the ABH.

2.1 Wave equation for acoustic pressure

The wave equation for acoustic pressure can be derived based on a system of three
equations describing fluid dynamics. First of them is Euler’s equation for an ideal fluid

ρ

[
∂v

∂t
+ (v ·∇)v

]
= −∇p , (2.1)

where the left side is density ρ times acceleration Dv/Dt 1, and the right side is a nega-
tive pressure gradient −∇p, meaning that the acceleration takes place in the direction of
decreasing pressure.

The second of them is the equation for the conservation of mass in a fluid, also known
as the continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0 , (2.2)

which expresses that the time rate of change of mass ∂ρ/∂t is equal to the net mass flux.
For the purposes of basic orientation, we would not consider the complete energy equation

(see [10]) and instead focus only on state equation in thermally non-conducting and inviscid
gas

p

p0
=

(
ρ

ρ0

)γ

, (2.3)

1Here we abbreviate the operator ∂/∂t+ v ·∇ as D/Dt, so ∂v/∂t+ (v ·∇)v = Dv/Dt.

5



CHAPTER 2. THEORY

where p, p0, ρ, ρ0, γ are pressure, ambient pressure, fluid density, ambient fluid density and
adiabatic exponent, respectively.

These introduced variables v, ρ and p are a sum of values in ambient state v0, ρ0, p0 (in
absence of perturbations) and the acoustic disturbances v′, ρ′, p′:

v(x, t) = v0(x) + v′(x, t) , (2.4)
ρ(x, t) = ρ0 + ρ′(x, t) , (2.5)
p(x, t) = p0 + p′(x, t) . (2.6)

We substitute these expressions into the set of equations considering only stagnant fluid
(i.e., v0 = 0):

(ρ0 + ρ′)

[
∂v′

∂t
+ (v′ ·∇)v′

]
= −∇(p0 + p) , (2.7)

∂(ρ0 + ρ′)

∂t
+∇ · [(ρ0 + ρ′)v′] = 0 , (2.8)

p0 + p′

p0
=

(
ρ0 + ρ′

ρ0

)γ

. (2.9)

In acoustics, the perturbances to an equilibrium state are very small (|ρ′/ρ0| ≪ 1,
|p′/p0| ≪ 1), therefore the non-linear terms can be neglected, and the linear approxima-
tion (also called the acoustic approximation) can be used.

The linearized set of equations takes the following form

ρ0
∂v′

∂t
= −∇p′ , (2.10)

∂ρ′

∂t
+ ρ0∇ · v′ = 0 , (2.11)

p′ = c20ρ
′ , (2.12)

where c0 is the adiabatic sound speed.
To derive the wave equation, we substitute the acoustic density ρ′ = p′/c20 from the

linearized state equation (2.12) into the linearized continuity equation (2.11) in order to
obtain:

1

c20

∂p′

∂t
= −ρ0∇ · v′ , (2.13)

which is differentiated w.r.t. time:

1

c20

∂2p′

∂t2
= −ρ0∇ ·

∂v′

∂t
. (2.14)

We substitute ∂v′/∂t from Euler’s linearized equation, and this step finally yields the wave
equation for acoustic pressure:

∇2p′ =
1

c20

∂2p′

∂t2
. (2.15)

6



2.2. WAVE PROPAGATION IN A RECTANGULAR WAVEGUIDE

2.2 Wave propagation in a rectangular waveguide

The general solution of eq. (2.15) for wave propagation in a rectangular waveguide
(shown in Figure 2.1) with rigid walls is obtained after employing the method of separation
of variables (see [10]):

p′ =

∞∑
m=0

∞∑
n=0

p′mn , (2.16)

p′mn = Amn cos
(mπx

a

)
cos

(nπy
b

)
exp(jωt− jkmnz) , (2.17)

where ω = 2πf is the angular frequency and(mπ

a

)2
+
(nπ

b

)2
+ k2mn =

( ω

c0

)2
. (2.18)

The equation (2.18) can be expressed in terms of the wave number kmn:

kmn =

√( ω

c0

)2
−
(mπ

a

)2
−
(nπ

b

)2
. (2.19)

If kmn ∈ C, the wave is evanescent. In order for the specific mode m,n to propagate, the
condition kmn ∈ R must apply, i.e.

ω2

c20
−
(mπ

a

)2
−
(nπ

b

)2
≥ 0 , (2.20)

or

ω ≥ c0

√(mπ

a

)2
+
(nπ

b

)2
. (2.21)

This means that the lowest frequency, from which the specific mode m,n is able to
propagate, is

ωmn = c0

√(mπ

a

)2
+
(nπ

b

)2
, (2.22)

or

fmn =
c0
2π

√(mπ

a

)2
+
(nπ

b

)2
. (2.23)

The mathematical model governing our rectangular ABH only describes the behaviour
of quasi-plane waves. Thus it will be useful to derive the conditions under which the quasi-
plane wave approximation can be used, i.e., how is defined the lowest frequency, where the
first non-planar mode starts propagating through the waveguide.

If a ≥ b, the first non-planar mode is m = 1, n = 0, it holds that

f1,0 ≡ fcut =
c0
2π

√(π
a

)2
=

c0
2a

. (2.24)

In order to use the quasi-plane wave approximation, we have to accommodate these
restrictions: firstly, the frequency f of travelling wave should be lower than the cut-off fre-
quency fcut and secondly, b ≤ a, where a, b are the waveguide height and width, respectively.

7



CHAPTER 2. THEORY

0

x

y

z

b

a

Figure 2.1: Rectangular waveguide

2.3 Rectangular waveguides with varying cross-section

While in the previous section, a rectangular waveguide with a constant cross-section was
considered, in this section, a more general case will be derived. Now we consider a rectangular
waveguide with a slowly varying cross-section S = S(x) = 2a(x)b (see Figure 2.2). Moreover,
we do not assume perfectly rigid walls. Instead, an admittance function Yw = Yw(x) is
prescribed on the walls’ surface.

The Webster equation is derived from the continuity equation, Euler’s momentum equa-
tion and the state equation. In this case, the general continuity equation (2.8) can be reduced
to quasi one-dimensional form given by [3]:

1

ρ0

∂ρ′(x, t)

∂t
+

v′x(x, t)

S(x)

dS(x)

dx
+

∂v′x(x, t)

∂x
+

2b

S
v′y(x, t) = 0 , (2.25)

where ρ0, ρ′(x, t), S(x) = 2a(x)b, v′x(x, t), v′y(x, t) are ambient density, the acoustic density,
the cross-section, the component of the acoustic velocity in the x-axis direction and in the
y-axis direction, respectively.

The component of the acoustic velocity in the y-axis direction v′y(x, t) can be written as

v′y(x, t) = Yw(x)p
′(x, t) . (2.26)

We substitute the equation (2.26) and the state equation p′(x, t) = c20ρ
′(x, t) differentiated

w.r.t. time into eq. (2.25) in order to get

1

ρ0c20

∂p′(x, t)

∂t
+ v′x(x, t)

1

S(x)

dS(x)

dx
+

∂v′x(x, t)

∂x
+

2b

S
Yw(x)p

′(x, t) = 0 . (2.27)

This equation is then differentiated w.r.t. time and using the one-dimensional Euler’s
momentum equation

∂v′x(x, t)

∂t
= − 1

ρ0

∂p′(x, t)

∂x
, (2.28)
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Figure 2.2: Schematic picture for the derivation of the generalized Webster equation.

the acoustic velocity v′x(x, t) is eliminated:

1

ρ0c20

∂2p′(x, t)

∂t2
− 1

ρ0

1

S(x)

dS(x)

dx

∂p′(x, t)

∂x
− 1

ρ0

∂2p′(x, t)

∂x2
+

2b

S
Yw(x)

∂p′(x, t)

∂t
= 0 . (2.29)

Since we consider the time-harmonic dependency of an acoustic field, the acoustic pres-
sure is given by p′(x, t) = Re[P (x) exp(jωt)] and thus, we can write the eq. (2.29) as

d2P (x)

dx2
+

1

S(x)

dS(x)

dx

dP (x)

dx
+

(
k20 −

jωρ02b

S(x)
Yw(x)

)
P (x) = 0 , (2.30)

where k0 = ω/c0 is the wavenumber and j =
√
−1 is the imaginary unit. Substituting the

inner cross-section S(x) = 2a(x)b, we finally get the generalized Webster equation

d2P

dx2
+

1

a

da

dx

dP

dx
+

(
k20 −

jωρ0
a

Yw

)
P = 0 . (2.31)

2.4 ABH configuration

Now we have the generalized Webster equation (2.31) governing the acoustic pressure in
a waveguide with varying cross-section and wall admittance. To obtain the mathematical
model describing the wave propagation in ABH, we only need to specify the wall admittance
function; the governing equation (2.31) remains the same.

The considered rectangular ABH is of the length L and height 2A and thus, the cut-off
frequency of the ABH is fcut = c0/(4A). The cross-section of ABH is 2A×B, where B ≤ 2A
is supposed. The ABH geometry is depicted in Figure 2.3.
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The ABH consists of rigid ribs with varying heights, separated by narrow slits. The
heights of the ribs are given by function ℓ(x) = A− a(x), where a(x) is the profile function.
The spatial period of ribs is defined as

W =
L

Ns
, (2.32)

where L, and Ns are the length of ABH and number of slits, respectively. The width of a
slit is described as w = ξW , where ξ ∈ (0, 1) is the rib-width to slit ratio, and the rib width
as (1− ξ)W .

The varying wall admittance Yw = Yw(x, ω) is derived from the plane wave solution to
the linearized Navier-Stokes equations (LNSE) in narrow slits. It reads

Yw(x, ω) =
jξ

ρscs
tan

(
ω

cs
ℓ

)
, (2.33)

where cs = cs(ω,w), ρs = ρs(ω,w), are the effective sound speed and effective unperturbed
material density in air-filled slits. Their values are given by Stinson’s model [15] of thermo-
viscous losses in the narrow slit geometry.

L

xx = 0 x = L

`(x)

a(x)
2A

rigid wall

R(x = 0) = 1 R(x = L) =?

p′i

p′r

Yw(x, ω)

w

W

Figure 2.3: Profile diagram of the considered ABH
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2.5 The Black hole effect

The idea of ABH was introduced by Mironov and Pislyakov [3]. The assumption was that
due to the reduction of acoustic speed, the wave would never reach the end of the structure
in finite time and thus, no wave would be reflected.

The black hole effect can be derived from the generalized Webster equation (2.31). To
show it on a specific example, we consider a rectangular ABH with a quadratic profile
function given by

a(x) = (−1)n A

Ln
xn , (2.34)

where n = 2 and a wall admittance approximation

Yw(x, ω) =
jk0
ρ0c0

(A− a) (2.35)

neglecting the influence of ribs thicknesses (i.e., considers infinitesimally narrow ribs) [12],
the following equation is obtained:

d2P

dx2
+

2

x

dP

dx
+

k20L
2

x2
P = 0 . (2.36)

A general solution for eq. (2.36) is given by

P (x) = C+ exp[α+ lnx] + C− exp[α− lnx] , (2.37)

where C+, C− ∈ R are constants and

α± =
1

2

[
−1±

√
1− (2k0L)2

]
. (2.38)

The local wavenumber k(x) of a wave propagating towards the closed end is

k(x) =
1

2x

√
(2k0L)2 − 1 , (2.39)

see [12], and therefore, the group velocity of a wavepacket entering the ABH at x = L is

cg =

(
∂k

∂ω

)−1

= x
c20

2L2ω

√
(2k0L)2 − 1 . (2.40)

As the wavepacket approaches the closed end (as x → 0), the group velocity tends to zero,
and the time T needed for the wavepacket to reach the closed end of ABH tends to infinity,
T →∞. This means following, the wave that entered the ABH would never reach the closed
end leading to zero-reflection termination.

11
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2.6 From generalized Webster equation to Riccati equation

As we are mainly concerned with reflection and absorption inside the ABH, it is useful
to employ an equation written directly in terms of reflection coefficient R. Moreover, it is
known that a whole class of wave equations for acoustic pressure with spatial inhomogeneity
can be transformed into the Riccati equation (see e.g. [9, 14]), which is a first-order ordinary
differential equation with one boundary condition.

The first step of the transform is done by replacing acoustic pressure with acoustic
impedance Z = Z(x, ω) through relations derived from the linearized Euler’s equation 2

Z(x, ω) =
P (x, ω)

Vx(x, ω)
=

jωρ0P (x, ω)
dP (x,ω)

dx

(2.41)

dP (x, ω)

dx
=

jωρ0P (x, ω)

Z(x, ω)
. (2.42)

After substitution, we get the Riccati equation for acoustic impedance

dZ

dx
= jωρ0 +

1

a

da

dx
Z −

(
jω

ρ0c20
+

Yw
a

)
Z2 . (2.43)

Note that for acoustic impedance Z, it holds Z = 0 on a pressure-release surface and
Z =∞ on a rigid wall, i.e., the boundary condition of the differential equation at the closed
end of ABH would be Z = ∞. Therefore, it is more convenient to have a model of ABH
written in terms of reflection coefficient R = R(x, ω), which is easier to interpret and imagine,
rather than in terms of acoustic impedance Z = Z(x, ω). For the reflection coefficient R, it
holds R = 0 on a pressure-release surface and R = 1 on a rigid wall.

The reflection coefficient R and the acoustic impedance Z are related as follows

Z = ρ0c0
1 +R

1−R
, (2.44)

dZ(x)

dx
=

2ρ0c0
(1−R)2

dR

dx
. (2.45)

We substitute the relations (2.44), (2.45) into equation (2.43) and, after some algebraic
manipulation, we obtain

dR

dx
= −

(
1

2a

da

dx
+

ρ0c0Yw
2a

)
R2 −

(
j2k0 +

ρ0c0Yw
a

)
R+

(
1

2a

da

dx
− ρ0c0Yw

2a

)
. (2.46)

The solution of the eq. (2.46) must be obtained by a numerical method, preferably with
an adaptive step, e.g., Runge–Kutta–Fehlberg method (RK45).

2Since we consider the time-harmonic dependency of an acoustic field, similarly as the acoustic pressure
is given by p′(x, t) = Re[P (x) exp(jωt)], we can write the component of the acoustic velocity in the x-axis
direction as v′x(x, t) = Re[Vx(x) exp(jωt)].
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2.7 The thermoviscous losses in the bulk of the ABH

However, this model equation (2.46) alone is not accurate (see Figure 2.4) because the
thermoviscous losses in the bulk of the ABH are neglected. Thus, this model underestimates
the damping properties of ABH. One way of solving this problem could be ad hoc to consider
a complex sound speed c = c0(1 + µj), as it was suggested by Mironov [3]. However, this
approach does not capture the underlying physics as it has been shown in [8]. As can be
seen from Figure 2.4, in this case, it highly overestimates the damping.

Similarly, as for the thermoviscous losses in the slits between the ribs, the thermoviscous
losses in the bulk of the ABH can be calculated employing Stinson’s model [15]. Therefore,
in eq. (2.43) the ambient fluid density ρ0 and sound speed c0 will be replaced by effective
fluid density ρc and effective sound speed cc. Note, that ρc, cc ∈ C. The eq. (2.43) will then
take the form

dZ

dx
= jωρc +

1

a

da

dx
Z −

(
jω

ρcc2c
+

Yw
a

)
Z2 . (2.47)

After substituting eq. (2.44), eq. (2.45), and performing some algebraic manipulation,
we obtain the Riccati equation for reflection coefficient with thermoviscous losses in the bulk
of the ABH:

dR

dx
=

(
− 1

2a

da

dx
− ρ0c0Yw

2a
− jω

2cc

ρ20c
2
0 − ρ2cc

2
c

ρ0c0ρccc

)
R2

−
(
+j2k0 +

ρ0c0Yw
a

+
jω

cc

ρ20c
2
0 + ρ2cc

2
c

ρ0c0ρccc

)
R

+

(
+

1

2a

da

dx
− ρ0c0Yw

2a
− jω

2cc

ρ20c
2
0 − ρ2cc

2
c

ρ0c0ρccc

)
.

(2.48)

It can be seen in Figure 2.4 that the results of governing equation (2.48) are an approx-
imation close enough to use them further, e.g., for profile optimization. In this work, the
FEM simulations used for validation are conducted in Comsol Multiphysics 5.5 (both for
LNSE simulations and pressure wave equation with effective media given by Stinson and for
porous materials, by JCAL).

2.8 Rectangular ABH with use of a porous material

The absorption of ABH can be further improved by inserting a porous material. A
porous material is composed of a solid skeleton containing pores filled with a fluid, air in our
case. Since the typical pore size is smaller than the characteristic wavelength of the sound
waves, the processes occurring at the micro-scale can be described at the macro-scale as an
effective medium by the Johnson-Champoux-Allard-Lafarge (JCAL) model by two effective
parameters, effective density ρp and bulk modulus Kp (see [16] for state-of-the-art summary).

According to the JCAL Model, the porous material is characterized by six parameters,
namely the flow resistivity, σ, porosity, ϕ, tortuosity, α∞, viscous and thermal characteristic
lengths, Λ and Λ′ respectively, and the static thermal permeability, κ′0. From these six
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Figure 2.4: Comparison of models for reflection coefficient. Parameters of used ABH: A =
0.05 m, L = 0.20 m, W = 2 mm, ξ = 0.5, fcut = 1715 Hz, linear profile. The black
line ( ) depicts the reflection coefficient spectra |R| calculated employing LNSE in Comsol
Multiphysics 5.5. The magenta line ( ) depicts the result of equation (2.46) with no losses
in the bulk of ABH. The orange line ( ) is for equation (2.46) with losses according to
Mironov [3] considering the complex sound speed c = c0(1 + 0.05j). The blue line ( )
depicts the result of equation (2.47) with losses in the bulk of ABH employing Stinson’s
effective parameters [15].

parameters, we obtain the aforementioned effective density ρp and bulk modulus Kp as

ρp(ω) = ρ0
α∞
ϕ

[
1− jG1(ω)

√
1 + jG2(ω)

]
, (2.49)

Kp(ω) =
K0

ϕ

1

γ − (γ − 1)
[
1− jG′

1(ω)
√

1 + jG′
2(ω)

]−1 , (2.50)

where γ is the adiabatic exponent, K0 = γP0 is the adiabatic bulk modulus and the functions
G1(ω), G2(ω), G

′
1(ω), G

′
2(ω) are given by

G1(ω) =
σϕ

α∞ρ0ω
, G2(ω) =

4α2
∞ρ0ηω

σ2ϕ2Λ2
, (2.51)

G′
1(ω) =

ϕη

ρ0Prk′0ω
, G′

2(ω) =
4Prρ0k

′2
0 ω

ηϕ2Λ′2
. (2.52)

For the following sections, it is convenient to define the effective wavenumber kp and the
characteristic acoustic impedance Zp:

kp =
ω

cp
= ω

√
ρp
Kp

, (2.53)

Zp =
√
ρpKp , (2.54)
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where cp is the effective sound speed in the porous material.
If we want to combine the effects of the ABH and porous material, there are multiple

possible ways of implementation. For the purposes of this work, two ways of inserting the
porous material were chosen: at the closed end of ABH (between the last pair of lamellas
and the rigid wall, see subsection 2.8.1) and in the slits (see subsection 2.8.2).

2.8.1 Termination by a porous material

LLp

porosity model:
σ, φ, α∞, Λ, Λ′, k′0

effective parameters:
ρp,Kp, kp, Zp ∈ C

rigid wall

POROUS
MATERIAL

Rp(ω) = R(x = 0) R(x = L) =?

xx = 0 x = L

`(x)

a(x)
2A

p′i

p′r

Yw(x, ω)

w

W

Figure 2.5: Profile diagram of the considered ABH terminated by a porous material

This chosen configuration, i.e., insertion of porous material at the closed end of ABH (as
depicted in Figure 2.5), is very convenient for two reasons. Firstly, there is an advantage in
terms of the practical feasibility: the porous material can be modelled as an effective medium
almost without any condition affecting the geometry of the ABH, namely the width of slits.
Secondly, the governing equation (2.48) remains the same; only the boundary condition
R(x = 0) = 1 is replaced by reflection coefficient Rp, which is, for a given material, only
frequency dependent.

Assuming only longitudinal plane waves p′(x, t) = P (x) exp(jωt), the porous layer at the
closed end of ABH can be modelled by the total transfer matrix (TMM, see [16])

Tp =

[
T11 T12

T21 T22

]
=

[
cos (kpLp) jZp sin (kpLp)

j 1
Zp

sin (kpLp) cos (kpLp)

]
. (2.55)

The reflection coefficient for rigidly backed porous material is then

Rp =
T11 − T21Z0

T11 + T21Z0
, (2.56)

where Rp(ω) ∈ C.
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2.8.2 Porous material in slits

L

xx = 0 x = L

`por(x)

a(x)

`air(x)

2A

rigid wall

R(x = 0) = 1 R(x = L) =?

p′i

p′r

Yw(x, ω)

w

Figure 2.6: Profile diagram of the considered ABH employing slits filled with porous material
(depicted in yellow).

Another possibility is to insert the porous material in the slits. In this case, we need to
impose a condition for a minimum width of the slit, which needs to be sufficiently larger
than the pore size to use the macro-scale model. For configuration depicted in Figure 2.6,
the governing equation (2.48) remains the same together with the boundary condition R(x =
0) = 1. The only difference is the wall admittance function Yw.

The slit partially filled by a porous material can be modelled by a total transfer matrix
Tslit which is equal to the matrix product of two elements

Tslit = TairTpor , (2.57)

where Tair, Tpor are the transfer matrices for the air and porous layer in the slit, respectively.
Then, with the use of eq. (2.44) and eq. (2.56), after some algebraic manipulation, we

finally obtain the wall admittance as

Yw =
Zair cos(kairℓair) sin(kporℓpor)− Zpor cos(kporℓpor) sin(kairℓair)

jZairZpor cos(kairℓair) cos(kporℓpor) + j sin(kairℓair) sin(kporℓpor)
, (2.58)

where ℓair = ℓair(x), ℓpor = ℓpor(x) are depicted in Figure 2.6; kair, kpor, Zair, Zpor are the
effective wavenumber for air given by Stinson’s model [15] and for porous material given by
JCAL Model [16], characteristic acoustic impedance for air and porous material, respectively.
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Chapter 3

Methods

Firstly, in section 3.1, the main goal of optimization is described, and how it can be
viewed in terms of setting the criterion for optimization. The wide range of possibilities for
the subject of optimization is presented in section 3.2 together with our choice. Finally, the
optimization algorithm itself is explained in section 3.3.

3.1 Goal of optimization

Our goal is to optimize the sound absorption in rectangular acoustic black holes, namely
to minimize the reflection coefficient at the open end of ABH, i.e., R(x = L), see Figure 2.3,
2.5. A possible alternative is to maximize the absorption coefficient of the rigidly-backed
system at the open end of ABH, given by relation α = 1− |R|2, i.e., maximize α(x = L).

Because both the reflection and absorption coefficients are frequency dependent, i.e.,
R(x = L) = R(x = L, ω) and α(x = L) = α(x = L, ω), we decided to minimize the surface
area under the reflection coefficient curve, see Figure 3.1a, or alternatively, maximize the
surface area under the absorption coefficient curve, see Figure 3.1b. Note that in order to
maintain the minimization framework, instead of maximizing sound absorption α, from now
on, negative absorption −α = R2 − 1 will be minimized.
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Figure 3.1: (a) Reflection coefficient spectrum of ABH, (b) absorption coefficient of ABH
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Figure 3.2: A graph for comparison of reflection coefficient, square root of reflection coeffi-
cient and weighted reflection coefficient

Eventually, the reflection coefficient R can be weighted, e.g. by a logistic function, and
thus, desired frequency band can be emphasized, see Figure 3.2. A general logistic function
is given by

σ(x) =
a

1 + e−b(x−x0)
, (3.1)

where a, b, x0 are the supremum, the slope and the inflection point of the function, respec-
tively. This way, optimization of low-pass, high-pass or band-pass filters could be targeted.

There is a difference between optimizing the reflection and absorption coefficient, such
that the square root R2 in absorption coefficient suppresses the influence of lower values of
reflection, which occur more at the higher frequencies, as can be seen in Figure 3.2. Because
our goal is mainly to improve the behaviour at lower frequencies, the mentioned difference
can be viewed as an advantage of the cost function written in terms of absorption coefficient
α. It offers us weighting-like properties with the benefit of being able to interpret the result
of weighting the reflection coefficient R.
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Figure 3.3: Possible parameters for optimization

3.2 Subject of optimization

The resulting coefficient, either reflection or absorption, is influenced by many parame-
ters. However, not all of them are suitable to be the subject of optimization, therefore, it is
essential to give an explanation of our choices.

A huge impact on the properties of ABH has the length L and height 2A. Since the ABH
is usually only a part of a device, these two parameters will be from now on considered as
given parameters in order to fit in some geometry requirements. Note that it will be useful
to work with a normalised ABH with length 1 and height 2A/L. One of the reasons is the
used profile function parametrisation, which will be discussed later in this section. This
parametrisation is an advantage: the result of optimization could be applied to designing a
device with different lengths L and heights 2A as long as the ratio A/L is kept.

The sound absorption is also affected by the width of the slit and rib. The optimization
of these parameters can be implemented in many ways. It could be conveniently done by
changing the spatial period W or the rib-width to slit ratio ratio ξ. Due to the practical
feasibility, some requirements could be made, mainly on the minimum possible width of
the slit. Potentially, as a subject of future work, both the spatial period W and the rib-
width to slit ratio ratio ξ do not have to be constant; both can be a function of x. This
approach could possibly better accommodate the differences between the absorption at lower
and higher frequencies.

So far, the behaviour of ABHs with power-law profiles has been investigated. Though,
optimizing the ribs-height function ℓ(x) offers the most possibilities (or eventually its com-
plement, the profile function, a = A − ℓ). In order to do that, it is useful to describe the
ribs height function ℓ as a parametric curve and use the parameters as an input of the
optimization.
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Figure 3.4: General Bézier curves

As was shown in section 2.5, the profile of ABH has to be a continuous, smooth, slowly
varying curve. Due to these requirements, higher degree polynomial functions are unsuitable
for this purpose, as they can change quite wildly even for small changes of coefficients of
individual terms. For modelling smooth and continuous curves, a parameterization known
as a Bézier curve is widely used.

In general, a Bézier curve of n-th order is defined for a set of n + 1 control points P0,
P1, P2, ..., Pn by

C(u) =

n∑
i=0

PiBi,n(u) , (3.2)

where u ∈ [0, 1] and Bi,n(u) is a Bernstein polynomial (sometimes called a Bézier basis
function) given by

Bi,n(u) =

(
n

i

)
ui(1− u)n−i , (3.3)

where
(
n
i

)
is a binomial coefficient. The endpoints P0 and Pn are a part of the Bézier curve

C(u), other control points lie on the curve only in specific cases. The line segments P0P1,
P1P2, ..., Pn−1Pn form together the so-called control polygon, see Figure 3.4.

The first caveat is that any change to a control point will influence the entire curve, hence
it is not possible to make changes only on a local scope. The second one is the domain of
the Bézier curve has to be [0, 1]. Fortunately, this is not a problem in our case, since the
domain of the ABH profile, after the aforementioned normalization, is already in [0, 1].

However, this approach to the parametric curve offers two main advantages. From the
fact that a second-order Bézier curve is a segment of a parabola and thus a segment of
a parabola can be described by the Bézier curve, it follows that the quadratic ribs-height
function mentioned in related papers (such as [8]) can be used as a benchmark solution or an
initial guess for the optimization. The second advantage is that any n-th order Bézier curve
with control points P0,..., Pn is also a (n + 1)-th Bézier curve with control points P′

0,...,
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Figure 3.5: A Bézier curve adapted to the geometry of ABH

P′
n+1. They are related by

P′
i =

i

n+ 1
Pi−1 +

(
1− i

n+ 1

)
Pi , i = 0, ..., n+ 1 , (3.4)

where i denotes the i-th control point Pi. This means a sub-optimal solution can be further
optimized with more degrees of freedom.

For the purposes of describing the ribs-height function ℓ and its further use in optimiza-
tion, some restrictions need to be adopted. In Figure 3.5, an example of a Bézier curve
adapted to the geometry of ABH can be seen. Firstly, let the points Pi = (xi, yi) be equidis-
tantly distributed along the x-axis and only the y-coordinate be variable. Secondly, let the
endpoint Pn be fixed as Pn = (1, 0) because otherwise, it may cause unwanted impedance
mismatch at the entry of ABH. Therefore, from now on, this point Pn will not be considered
as a control point and thus will not be a subject of optimization.

Furthermore, in order to prevent the denominator, i.e., the profile function a, in governing
equations Eq. 2.48 from being zero, which may cause unpredicted behaviour in the code, the
following condition must always hold ℓ < A/L. Therefore the y-coordinate of the endpoint
P0 should be always in [0, A/L). Because of computer precision, it is useful to specify a
coefficient ℓmax ∈ (0, 1) defining the maximum height of rib as ℓmaxA/L.

However, this restriction is not enough, as it controls only the endpoint P0. It should
also be guaranteed by the optimization algorithm that any of the ribs will not exceed the
maximum height ℓmaxA/L. There are two ways of controlling this condition: by evaluating
the Bézier curve at finitely many points along the whole curve, which is computationally
more demanding than defining a maximum value ℓmaxA/L for the control points. The
second option can be ensured by the optimization algorithm itself by specifying boundaries
for the subject of optimization.
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Figure 3.6: Examples of a (a) 3rd order, (b) 5th order, (c) 7th order, (d) 9th order Bézier
curve variability, adapted to the geometry of ABH.

The optimal number of Bézier control points for our purposes is not known. It follows
from our preliminary numerical experiments that a Bézier curve of less than the 3rd order
does not offer enough variability. On the contrary, more than the 9th order can lead to so
quickly varying profiles that the final real design would not correspond to the theoretical
model. The examples of the Bézier curve variability can be seen in Figure 3.6.

3.3 Optimization algorithm

The problem with the optimization is that there is no clear relationship between the
reflection coefficient curve and the subject of optimization itself, the ribs height function ℓ.
It is only known that the lower frequency waves tend to travel to the closed end of ABH. The
higher the frequency is, the closer to the open end the wave is absorbed, see [8]. Therefore
it was decided to employ a derivative-free optimization.

This could be solved by an optimization algorithm called Evolution Strategies (ES),
inspired by the theory of evolution in nature, mutation and selection [17]. The current
state-of-the-art method is a particular type of ES, a Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES), which is specifically designed for nonlinear non-convex black-box
optimization [18].
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Figure 3.7: Illustration of CMA-ES process for a two-dimensional problem (from [19]). The
black dots show the population, and the orange dashed line depicts the distribution of the
population. The optimization landscape is depicted with solid lines of equal values, and the
brightest spot signifies the global optimum. Within a few generations, the population is
concentrated in the global optimum.

In CMA-ES, the parameters meant to be set by the user are the population size λ, initial
solution m (the initial guess, i.e., in our case, the Bézier control points), the initial standard
deviation σ (the step-size) and, eventually, the termination criteria. Note that the optimal
solution should be in the initial solution hypercube given by m± 3σ(1, ..., 1)⊤ [18] and that
population size λ should be set accordingly to our goal. While a smaller population size leads
to faster convergence and more local search behaviour, the larger λ offers a faster adaptation
of the covariance matrix and more global search behaviour.

The search space dimension n is given by the number of Bézier control points to be
optimized and possibly some additional parameters. An example of the CMA-ES in the
two-dimensional search space is depicted in Figure 3.7.

After initialization, the CMA-ES is run in loops, called generations, until one of the
termination criteria is met. In each generation, four main parts take place, as represented in
pseudocode Algorithm 1. Firstly, a new population of λ samples is produced and evaluated.
Then, the population is sorted according to the values of cost function fi, and the mean m
is updated as a weighted average of µ selected points with the lowest values of cost function.
Next, based on the cumulative step-size adaptation, the step-size σ is updated. Finally, the
covariance matrix is adapted to increase the likelihood of successful steps.
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Algorithm 1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
1: set the population size λ and generation g = 0

2: initialization:
3: m(0) distribution mean (initial guess)
4: σ(0) initial step-size
5: C(0) = I covariance matrix
6: p

(0)
σ = 0, p(0)

c = 0 evolution paths
7: while termination criterion not met do
8: sample new population and evaluate the offsprings:
9: for i in {1, ..., λ} do

10: x
(g+1)
i ∼m(g) + σ(g)N (0,C(g))

11: fi = cost_function(xi)

12: selection and recombination:
13: x

(g+1)
1:λ ← sort_solutions(); f(x1) ≤ ... ≤ f(xλ)

14: m(g+1) ← update_mean(x1:λ)

15: step size control:
16: p

(g+1)
σ ← update_ps(p(g)

σ , m(g+1) −m(g), σ(g), C(g))
17: σ(g+1) ← update_sigma(σ(g), p

(g+1)
σ )

18: covariance matrix adaptation:
19: p

(g+1)
c ← update_pc(p(g)

c , m(g+1) −m(g), σ(g))
20: C(g+1) ← update_cov(C(g), p

(g+1)
c , (x

(g+1)
1:λ −m(g))/σ(g))

21: g ← g + 1

22: return x1 or m

The theoretical model of ABH, i.e., the governing equations and the parametrization of
the ribs-height function ℓ, is written in Python using libraries NumPy [20] and SciPy [21].
The optimization algorithm for the purpose of optimizing sound absorption in rectangular
ABHs was implemented using the open-source Python library for CMA Evolution Strategy
[22].
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Chapter 4

Optimization of ABH with rigid wall
termination

The main purpose of this chapter is to show how the optimization works. Firstly, in sec-
tion 4.1 the benchmarks will be introduced together with its properties. Then in section 4.3
and section 4.4, the different runs and settings of optimization will be described, and the
results will be compared in section 4.5. Note, that we aim for practical feasibility and thus,
throughout the whole chapter, only geometries that can be nowadays easily 3D printed are
considered.

Throughout this text, we consider the following values of material quantities (air in our
case): adiabatic sound speed c0 = 343 m s−1, air density ρ0 = 1.2 kgm−3, dynamic viscosity
µ = 1.83×10−5 Pa s, adiabatic exponent γ = 1.4, specific heat capacity at constant pressure
cp = 1004 J kg−1K−1, thermal conductivity κ = 2.59 Wm−1K−1 and the Prandtl number
Pr = 0.71. The adiabatic bulk modulus is given as K0 = γP0, where P0 = ρ0c

2
0/γ is the

static pressure.

4.1 Benchmarks and initial solutions

It is crucial to clarify the difference between the terms benchmark and initial solution.
An ABH benchmark is defined by its ribs-height functions ℓ, its height-length ratio A/L, its
spatial period of ribs W , and its rib-width to slit ratio ξ, see Figure 3.3. From now on, the
reflection and absorption coefficient spectra of the benchmarks and optimized solutions will
be compared. On the other hand, an initial solution is defined only by the Bézier control
points, since those are the only parameters to be optimized.

Two specific benchmarks have been chosen. The chosen benchmarks are ABHs with a
linear and quadratic ribs-height function ℓ, see Figure 4.1. The reason for this decision is that
these two ribs-height functions are the current state-of-the-art [2], although almost entirely
only for ABHs with circular cross-sections.

For the definition of initial ribs-height functions ℓ, we will use the quadratic profile
function a given by

a =
A

L

[
a0 + (1− a0)x

2
]
, (4.1)
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Figure 4.1: Benchmarks. Illustration of (a) ribs-height function ℓ and (b) reflection coefficient
spectrum |R|. The red line depicts the linear initial solution, the blue line depicts the
quadratic initial solution. Figure (b) depicts the reflection coefficient spectra |R| that we are
trying to outperform in the optimization.

where A, L, a0 are the half-height of ABH, the length of ABH, and the value used to control
the profile of ABH at x = 0, respectively. After substituting the transformation a = A/L− ℓ
and a0 = 1− ℓ0, we obtain

ℓ =
A

L
ℓ0 (1− xn) (4.2)

where n = 1 for the linear ribs-height function and n = 2 for the quadratic ribs-height
function. In order to ensure the convergence of governing equations and avoiding division
by zero, as was mentioned in section 3.2, the maximum height of ribs was set as ℓ0 = 0.994.

The benchmark parameters A, L, W and ξ will be chosen in order to guarantee the
practical feasibility of 3D printing of the device, which is our aim. For the specification of
parameters defining the ABH benchmark other than the ribs-height function ℓ, it is needed
to discuss the aimed frequency band which is connected to the human auditory spectrum.
The human audible range is said to be from 20 to 20 000 Hz [23]. Therefore, the lower
boundary of the aimed frequency band is about 20 Hz.

The upper boundary of the aimed frequency band is defined by the cut-off frequency
fcut = c0/(4A). Above this frequency, the quasi-plane wave approximation is not valid and
thus, it is not possible to use the governing equation (2.48), as was described in section 2.2.

Because our aim is the practical feasibility of the device, the ABH height 2A and length
L are limited by the maximum print area size of a 3D printer, which is, in our case, 25 x 21
x 21 cm [24]. In order to have enough room for manipulation, it was decided to set the ABH
half-height and length as A = 0.03 m, L = 0.2 m, respectively.

Similarly, for the spatial period of ribs W . As can be seen from the Figure 4.2, with
decreasing W , the solution can always be improved. The ideal solution could be achieved
with infinitely thin ribs, which is possible only in numerical simulations, not in real-world
applications.
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Figure 4.2: Reflection coefficient spectra |R| for a (a) linear, (b) quadratic ABH with W =
{1, 2, 3, 4, 5} mm and fixed ξ = 0.5, A0 = 0.03 m, L = 0.2 m.
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Figure 4.3: Reflection coefficient spectra |R| for a (a) linear, (b) quadratic ABH with ξ =
{0.1, 0.2, 0.3, 0.4, 0.5} and fixed W = 4 mm, A = 0.03 m, L = 0.2 m.

The minimum possible rib width w is usually 1-2 mm. It depends on the application (e.g.
on the level of stress in the material) and on the 3D printer nozzle diameter. The maximum
of the rib width w is bounded by

w ≪ λmin =
c0
fcut

= 4A , (4.3)

so the sequence of the ribs behaves as a continuous wall from the point of view of the shortest
wave propagating in the structure, as was justified in section 2.3. Our decision is to set the
ribs’ width as w = 2 mm and the spatial period of ribs as W = 4 mm.

The influence of the aspect ratio ξ can be seen in Figure 4.3. For simplicity, equally wide
ribs and gaps will be considered, i.e. ξ = 0.5.

To conclude, our choice of parameters for the benchmarks are A = 0.03 m, L = 0.2 m,
W = 4 mm and ξ = 0.5. This choice of parameters is quite illustrative, taking into account
the aforementioned properties and the practical feasibility of the device. The optimization
will be started with two different initial solutions. The first of them is the linear ribs-height
function ℓ with ℓ0 = 0.994 and Bézier control points (0.14909, 0.074545), the second of them
is the quadratic ribs-height function ℓ with ℓ0 = 0.9905 and Bézier control points (0.148575,
0.1492875).
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Figure 4.4: Optimization progress with 3 control points: (a) ribs-height function ℓ, (b)
reflection coefficient R

4.2 Cost function

The cost function for the optimization of ABH with rigid termination is proposed in the
form of the minimization of the surface area under the reflection coefficient spectra as∫ fcut

0
|R(f)|df . (4.4)

However, the reflection coefficient spectrum is numerically evaluated using eq. (2.48) at
finitely many frequencies fi. The number of frequencies N defines how fine and smooth the
reflection coefficient will be; it is a parameter to be set in dependency on both the accuracy
we want to achieve and the computational time we are able to invest. The definite integral
(4.4) is approximated by the trapezoidal rule.

4.3 ABH optimization with linear initial solution

The first chosen initial solution ribs-height function ℓ is a linear function given by eq.
(4.2) with ℓ0 = 0.994 and Bézier control points (0.14909, 0.07455), see Figure 4.1a. The
reflection coefficient is evaluated for frequencies f ∈ {f1, ..., fN}, where N = 500 is the
number of evaluated frequencies, f1 = 1 Hz and fN = fcut = 2858 Hz for the given geometry
A = 0.03 m.

4.3.1 Run 1 with 3 control points

The first run with three initial solution control points (0.14909, 0.09940, 0.04970), λ = 64
and σ = 0.01, repeatedly ended up in local optimum with control points (0.14909, 0.14909,
0.14909), i.e., the upper boundaries lmaxA/L · (1,1,1). The best offsprings for the first 14
generations of ribs-height function evolution can be seen in Figure 4.4a and, in corresponding
colours, the evolution of reflection coefficient in Figure 4.4b. After generation 14, the speed
of evolution slowed down and ended after generation 35.
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4.3.2 Run 2 with 4 control points

We assume the ABH could perform better in terms of the reflection coefficient than in
the previous run. As the first run of evolution converged to a local optimum on the boundary
of the given interval, it was decided not to use this result and instead increase the number of
control points by one. The initial solution for the second run is again the linear ribs-height
function, given by four control points (0.14909, 0.111825, 0.07455, 0.037275).

The evolution ended after 36 generations; the best solution (0.14909, 0.14909, 0.14906,
0.11099) was achieved in generation 31, see Figure 4.5. Although the reflection coefficient
curve of the best solution is very similar to the optimal result in subsection 4.3.1, one
additional control point provided enough flexibility, and thus, the control points have not
converged to the maximum value. Note that it was not due to a too early convergence, but
because the achieved best solution is more favorable in terms of cost function than all four
control points on their maximum value.
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Figure 4.5: Optimization progress with 4 control points: (a) ribs-height function ℓ, (b)
reflection coefficient R

4.3.3 Run 3 with 5 control points

As the optimization with 4 control points was successful, and for further improvement
more degrees of freedom are needed, the Bézier curve order of the best solution from sub-
section 4.3.2 will be elevated by one to get the initial solution (0.14909, 0.14909, 0.14907,
0.13383, 0.08879) for this run. In order to ensure slightly more local search than in the
previous section, the step-size is reduced to σ = 0.005.

During the first 11 generations, the Bézier curve is only oscillating around the initial
solution and the result was only getting worse, see Figure 4.6.

After generation 12, the reflection coefficient curve slowly began to improve. The best
result was achieved in generation 38 with control points (0.14909, 0.14909, 0.14909, 0.14907,
0.02857).
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Figure 4.6: Optimization progress with 5 control points for generations 0-10: (a) ribs-height
function ℓ, (b) reflection coefficient R
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Figure 4.7: Optimization progress with 5 control points for generations 12-38: (a) ribs-height
function ℓ, (b) reflection coefficient R

4.3.4 Run 4 with 6 control points

The degree of the Bézier curve describing best ribs-height function ℓ was again elevated
to get the initial solution (0.14909, 0.14909, 0.14909, 0.14908, 0.1089, 0.02381) for a new
run, the step-size remained the same σ = 0.005. It was found that in this situation with
this setting the solution cannot be improved. For the first 35 generations, the reflection
coefficient was much worse than the initial guess and for the next 9 generations, the solution
just oscillated around the initial guess. The optimum (0.14909, 0.14909, 0.14907, 0.14897,
0.10545, 0.02874) was achieved in generation 44. However, it is only insignificantly better
than the initial guess, therefore it was decided the result of this run will not be used further.

4.3.5 Run 5 with 7 control points

Since the last run did not lead to any improvement, the initial solution from subsec-
tion 4.3.4 will be reused with one more control point. The initial guess for this run is
then (0.14909, 0.14909, 0.14909, 0.14908, 0.13186, 0.08459, 0.02041), the population size λ
remains the same and the step-size is reduced to σ = 0.002.
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Figure 4.8: Optimization progress with 6 control points: (a) ribs-height function ℓ, (b)
reflection coefficient R

In order to target the lower frequencies, it was decided to use the weighting of the cost
function (4.4). The weights were chosen as

weights = 0.5 +
0.5

1 + e0.03·({f}−600)
, (4.5)

where {f} are the numerical values of frequencies for which the reflection coefficient R is
evaluated. The weights and their influence on the reflection coefficient curve can be seen in
Figure 4.9.

The reflection coefficient began to improve after generation 21 of this run and the op-
timal solution (0.14909, 0.14909, 0.14905, 0.14895, 0.14907, 0.04900, 0.04766) was reached
in generation 45. This result ensures a smaller surface under the reflection coefficient curve
than the result in subsection 4.3.3 with only five control points.
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Figure 4.9: Influence of weighting on the reflection coefficient curve

31



CHAPTER 4. OPTIMIZATION OF ABH WITH RIGID WALL TERMINATION

0 0.25 0.5 0.75 1
0

1

2

A

L

A

L

x/−

`/
−

initial solution
generation 45

21

26

31

36

41

ge
n
er
at
io
n

(a)

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

f/ Hz

|R
|

initial solution
generation 45

21

26

31

36

41

g
en
er
at
io
n

(b)

Figure 4.10: Optimization progress with 7 control points: (a) ribs-height function ℓ, (b)
reflection coefficient R
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Figure 4.11: Optimization progress with 8 control points: (a) ribs-height function ℓ, (b)
reflection coefficient R

4.3.6 Run 6 with 8 control points

As the result of the previous run with seven control points was an improvement, its
optimum will be used after degree elevation as an initial solution for this run. The weighting
of the reflection coefficient is the same as in the previous run, given by eq. (4.5).

The first offspring better than the initial solution appeared in generation 32 and in
generation 57 the evolution resulted in optimum (0.14909, 0.14909, 0.14909, 0.14905, 0.14897,
0.11292, 0.04382, 0.04179). Even though the evolution was running for 59 generations, the
result is not distinctly different to the initial solution.

4.3.7 Conclusion of the optimization progress

As the further optimization did not lead to significantly better results, the optimal result
from subsection 4.3.6 can be taken as the optimal solution for this setting. In the Figure 4.12
can be seen the overview of the optimization progress without the results of run 1 and run
4, which were not used.
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Figure 4.12: Optimization progress (a) ribs-height function ℓ, (b) reflection coefficient R,
from initial solution with linear ribs-height function ℓ (denoted as run 0) and parameters
A = 0.03 m, L = 0.2 m, W = 4 mm, ξ = 0.5.

4.4 ABH optimization with quadratic initial solution

The second chosen initial solution ribs-height function ℓ is a quadratic function given
by eq. (4.2) with ℓ0 = 0.9905 and Bézier control points (0.14858, 0.14929), see Figure 4.1b.
From the results of section 4.3, we can possibly expect that the quadratic ribs-height function
may ensure faster convergence. The reflection coefficient is evaluated for the same number
of frequencies as in section 4.3

4.4.1 The process of optimization

In optimization with 3 control points, the result converged to the given boundaries (sim-
ilarly as in subsection 4.3.1), and thus was not used in the next run.

With 4 control points and initial solution given as (0.14858, 0.14893, 0.12429, 0.07464),
there is a noteworthy quick improvement from generation 1 to generation 21, see Figure 4.13.
Then the progress is slowed down and the best reflection coefficient curves between genera-
tions become similar to each other. The best result (0.14909, 0.14909, 0.14909, 0.10956) is
achieved in generation 34.

This best result was reused and extended by one control point to get the initial solution
(0.14909, 0.14909, 0.14909, 0.13328, 0.08765). Since generation 14, the evolution began to
improve and in generation 36 the best result was achieved. Although the overall reflection
coefficient curve performs better than the initial guess, note, that in fact, it does not get
better in the frequency range (1, 500) Hz.

Because of this problem, the result of optimization with 5 control points was not taken
into account, and the evolution was restarted with 6 control points, which resulted in an
almost identical reflection coefficient curve. Hence, the next evolution will be restarted with
the same initial solution together with 7 control points.

With 7 control points, the best result (0.14909, 0.14909, 0.14909, 0.14900, 0.14593,
0.04170, 0.03560) was achieved in generation 43. Again, the reflection coefficient does not
get better until cca 500 Hz, but at least it does not get significantly worse (see Figure 4.14).
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Figure 4.13: Optimization progress with 4 control points: (a) ribs-height function ℓ, (b)
reflection coefficient R
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Figure 4.14: Optimization progress with 7 control points: (a) ribs-height function ℓ, (b)
reflection coefficient R

In restart with 8 control points, a result of the last evolution was used as the initial
solution. For comparison, the result of this evolution was compared to the result of evolu-
tion with the weighted cost function emphasizing the lower frequencies, given by eq. (4.5).
Because the evolution with the weighted cost function is better in terms of the reflection
coefficient spectrum in the frequency band (1, 950) Hz, its result will be taken into account
and used for the next restart.

4.4.2 Conclusion of the optimization progress

The restart with 9 control points did not lead to any significant improvement, moreover,
it would not be wise to continue with elevating the degree of the Bézier curve and proceed
further with evolution in order to get better results. Therefore, the result of optimization
with 8 control points will be considered as the overall best solution of this whole optimization
with the quadratic initial solution. The overview of the optimization progress can be seen
in Figure 4.15, the optimum reached in this sequence is (0.14909, 0.14909, 0.14909, 0.14900,
0.14816, 0.11296, 0.04702, 0.03975).
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Figure 4.15: Optimization progress (a) ribs-height function ℓ, (b) reflection coefficient R,
from initial solution with quadratic ribs-height function ℓ (denoted as run 0) and parameters
A = 0.03 m, L = 0.2 m, W = 4 · 10−3 m, ξ = 0.5.

4.5 Comparison of the results

Firstly, we can conclude from the results, that three control points for the ribs-height
function ℓ given by the Bézier curve do not provide enough degrees of freedom, as they
repeatedly resulted in a bounded optimum.

The most important fact is, that in both described cases of evolution, even though the
Bézier control points themselves slightly differ, the resulting ribs-height functions ℓ and the
reflection coefficient curves are identical, as can be seen in Figure 4.16. This means, that
the optimization was set properly.

However, contrary to the hypothesis, the speed of convergence to the optimum is not so
different if the linear or quadratic initial solution is used.
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tion, where the red, blue, dotted red, dotted blue line signify linear initial solution, quadratic
initial solution, the result of optimization with linear initial solution and result of optimiza-
tion with quadratic initial solution, respectively. Top: ribs-height function ℓ, bottom: reflec-
tion coefficient spectra R
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Chapter 5

Optimization of ABH with use of a
porous material

Throughout this chapter, the improvement of sound absorption in ABH with use of a
porous material is studied. The benchmark for optimization is introduced in section 5.1.
In section 5.2 and section 5.3 the optimization process is described with emphasis on used
cost functions. Finally, in section 5.4, the results of optimization with two different ways of
porous material insertion are compared.

5.1 Benchmarks

In this chapter, our goal is to improve the sound absorption of the porous material using
the ABH. Hence, we decided for one of the usual uses of porous materials as a benchmark,
namely for the waveguide termination in the length of a quarter-wavelength resonance at
the Biot’s frequency [25]

fBiot =
σϕ

2πρ0α∞
, (5.1)

where σ, ϕ, ρ0, α∞ are the flow resistivity, porosity, the density of the saturating fluid
and tortuosity, respectively. This frequency represents the transition frequency between two
regimes of thermoviscous losses, particularly the viscous and inertial regime. Since the porous
material in the inertial regime can efficiently absorb the sound, we will focus on the viscous
regime. Therefore, our goal is to improve the sound absorption of the porous material in the
frequency region below Biot’s frequency.

The parameters of chosen porous material are following: flow resistivity σ = 5678
Pa sm−2, porosity ϕ = 0.99, tortuosity α∞ = 1, static viscous permeability κ0 = 3.1877 ×
10−9 m2, static thermal permeability κ′0 = 4.5866 × 10−9 m2, thermal and viscous char-
acteristic lengths Λ′ = 244 µm and Λ = 147 µm, respectively. Thus, the Biot’s frequency
of chosen material is fBiot = 752 Hz and the corresponding length of a quarter wavelength
resonator at the Biot’s frequency is Lp = 0.114 m. The absorption of this particular porous
material at length Lp = 0.114 m is depicted in Figure 5.1.
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Figure 5.1: Absorption coefficient of the given benchmark.

5.2 ABH terminated by a porous material

In this case, we consider porous termination at a length corresponding to the quarter-
wavelength resonance at the Biot’s frequency, i.e., Lp = 0.114 m and the impedance matching
is done by ABH of length L = 0.15 m and half-height A = 0.03 m. Other parameters used
for the optimization with this configuration are W = 4 mm and ξ = 0.5.

Note, that due to the pore size and the assumptions for using the macro-scale model,
the area exposed to the incident wave should be at least 5 mm high. The initial solution,
quadratic ribs-height function ℓ with ℓ0 = 0.9165, is given by control points (0.18330, 0.18887,
0.12777). The ribs-height function ℓ and absorption coefficient of the initial solution can be
seen in Figure 5.2.
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Figure 5.2: Absorption coefficient for the ABH terminated by a porous material, optimal
results given by cost functions #3, #4, #5
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#n cost function interpretation

#1 −
∫ fcut

0
α(f)df

maximization of absorption coefficient, mi-
nus in order to maintain the minimization
framework

#2
∫ fcut

0
[αbenchmark(f)− α(f)] df comparison with the benchmark

#3
∫ fBiot

0
[αbenchmark(f)− α(f)] df

comparison with the benchmark in the vis-
cous regime only

#4 cost function #2 + cost function #3 cost function #2, #3 combined

#5
∫ fcut

0
[αreference(f)− α(f)] df

comparison with the reference (depicted Fig-
ure 5.3), given as the benchmark absorption
coefficient in the viscous regime and a sig-
moid function in the inertial regime

Table 5.1: Table of cost functions for the optimization of ABH with use of a porous material.

For the optimization of ABH terminated by a porous material, five cost functions were
proposed, see Table 5.1. The meaning of the simplest cost function #1 is the maximization
of absorption coefficient. In order to maintain the minimization framework, instead, the
negative absorption is minimized.

However, cost function #1 does not take into account the absorption coefficient of the
benchmark, which we are trying to outperform. Hence, a second cost function, cost function
#2 was proposed in the form of minimizing the difference between the benchmark and the
offsprings. In fact, the optimization with cost function #1 and #2 for ABH terminated by
a porous material resulted in the same ribs-height function ℓ. A hypothesis was, that the
cost function #2 does not emphasize the viscous regime enough; therefore cost function #3
was proposed as minimization of the difference between offsprings and the benchmark only
in the viscous regime (i.e., only in the frequency range below the Biot’s frequency).

In fact, the results of cost function #1 and #2 for ABH terminated by a porous material
were the same. Even though the result of cost function #3 in the viscous regime is better
than the result of the previous two cost function, due to the performance in the inertial
regime, this result is much worse than the benchmark.

This problem was solved by a cost function #4, proposed in the form of a sum of cost
functions #2 and #3. As seen in Figure 5.2, the optimized result outperforms the benchmark
in the viscous regime and the performance in the inertial regime is comparable with the
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Figure 5.3: The grey solid line signifies the absorption coefficient curve of the given bench-
mark, the blue dashed line is for the sigmoid function and the red dashed line depicts the
adapted reference, which is the combination of the absorption coefficient curve (in the fre-
quency range [1, fcut] Hz) and the sigmoid function (in the frequency range [fBiot, fcut] Hz).

benchmark. Since our aim is not to outperform the porous material in the inertial regime,
rather it is sufficient to reach, e.g. 90 % of absorption, a new reference was defined. Then, the
cost function #5 is defined as minimizing the difference between the new reference (which
can be seen in Figure 5.3) and the offsprings. The new reference consists in the viscous
regime of benchmark absorption coefficient and in the inertial regime of a sigmoid function
depicted in Figure 5.3. Surprisingly, the result of optimization using the cost function #5
was the same as the results of cost function #1 and #2.

The achieved optimal results for cost functions can be seen in Table 5.2. The opti-
mizations with cost functions #1, #2 and #5 resulted in the same solutions. The optimal
solution for this configuration will be considered the result of optimization with the use of
cost function #4. For the optimal geometry see Figure 5.4.

Figure 5.4: Optimal geometry for the considered rectangular ABH terminated by a porous
material (marked in blue).
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5.3. ABH WITH SLITS FILLED BY POROUS MATERIAL

cost function #n result

#1 (0.05796, 0.12699, 0.00000, 0.03789, 0.02197)

#2 (0.05799, 0.12708, 0.00000, 0.03801, 0.02198)

#3 (0.09969, 0.18998, 0.02504, 0.13499, 0.15811)

#4 (0.07012, 0.14838, 0.00000, 0.04942, 0.03582)

#5 (0.05792, 0.12690, 0.00000, 0.03775, 0.02189)

Table 5.2: Table of achieved optimal control points for different cost functions for ABH
terminated by a porous material.

5.3 ABH with slits filled by porous material

For this configuration, ABH with slits filled with porous material and rigid wall termina-
tion, the length of ABH is L = 0.15 m and the half-height is A = 0.03 m. As was mentioned
in section 5.2, the area exposed to the incident wave should be for the used porous mate-
rial at least 5 mm wide. Hence, the width of slit w was set as w = 5 mm. The width of
slits remains the same (2 mm) and thus, the spatial period of ribs is W = 7 mm and the
rib-width to slit ratio is ξ = 5/7. The initial solution, quadratic ribs-height function ℓ with
ℓ0 = 0.9905, is given by control points (0.14858, 0.14905, 0.09953). The ribs-height function
ℓ and absorption coefficient of the initial solution can be seen in Figure 5.5.

Although in the case of ABH terminated by a porous material the performance of men-
tioned cost functions differed, for this configuration, the results were almost identical. The
final result (depicted in Figure 5.6) was obtained with the use of cost function #3. Note,
that none of the optimal solutions used the partial filling of slits with porous material. In
all optimal cases, whole slits were filled by the porous material.
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Figure 5.5: The initial solution for ABH with slits filled with porous material, (a) the ribs-
height function ℓ and the height of porous material filling, (b) the absorption coefficient of
the initial solution.
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Figure 5.6: Optimal geometry for the considered rectangular ABH terminated by a perfectly
rigid wall, with slits filled by a porous material (marked in blue).

5.4 Results

In this chapter, two possible ways of employing the porous material within the ABH were
studied. We have focused on absorption in the viscous regime of the porous material, trying
to beat the chosen benchmark: the waveguide termination by the porous material with a
thickness corresponding to a quarter wavelength resonator at the Biot’s frequency.

In the case of ABH terminated by a porous material, leaving the ABH profile at x = 0
wide open is clearly advantageous, as there is a large area of porous material exposed to
the incident wave with a rather moderate concentration of the wave energy due to the ABH
shape. By utilizing the optimized design depicted in Figure 5.4, it is possible to achieve
α > 0.9 approximately 100 Hz earlier than the benchmark, see Figure 5.7. Even though
the benchmark was outperformed, the improvement in sound absorption is not significant
enough to outweigh the increase in overall length.

The optimal shape for ABH with slits filled by porous material is depicted in Fig. 5.6 and
the corresponding absorption coefficient α in Figure 5.7. From 140 Hz, which corresponds to
≈ fBiot/5, α > 0.7 is already achieved. In Figure 5.8 the estimation of losses in different parts
of ABH and for different frequencies is depicted. It is evident that the lower the frequency is,
the closer to the closed end of the ABH is the sound energy of an incoming wave dissipated.
As already noted in [8] for a similar case, the wave energy at higher frequencies does not
even reach the closed end.
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Figure 5.7: Comparison of optimization results of ABH with the use of a porous material.
The black, blue and red lines depict the benchmark, the optimal solution for ABH terminated
by a porous material and the optimal solution for ABH with slits filled by the porous material.
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Figure 5.8: Estimation of power losses in slits filled with porous material at different fre-
quencies. The depicted quantity is −2|i|Im(k), where |i| and k denote the magnitude of the
acoustic intensity vector and the complex wavenumber, respectively.
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Chapter 6

Conclusions

In this thesis, the possibilities of optimizing the ABH geometry were investigated. The
goal of this optimization was to maximize the absorption of incoming acoustic waves. Al-
though there are numerous parameters that could be optimized since the ABH is usually a
termination of a more complex device, most of the parameters are constrained in order to
fit in geometry requirements and due to practical feasibility for 3D printing with the cur-
rent state of development. Hence, it was decided to use the height of ribs as the subject of
optimization because it is easy to control, optimize and fulfil practical requirements.

So far, the behaviour of ABHs with power-law profiles has been investigated. Our choice
of the subject of optimization extends the possible geometries of ABHs. Thus, an appropriate
parametrization of the ribs-height function ℓ was needed. The profile of ABH has to be a
continuous, smooth, slowly varying curve. We have chosen a widely used parameterization for
modelling smooth and continuous curves, known as the Bézier curve. One of the advantages
of Bézier curves lies in the fact, that we can start the optimization with a lower amount
of Bézier control points and restart the optimization with an increasing number of control
points until convergence.

A suitable optimization algorithm had to be found because the relationship between
the ribs-height function ℓ a and the reflection coefficient spectra is complicated. It is only
known that the lower frequency waves tend to travel to the closed end of ABH. The higher
the frequency of the wave is, the closer to the open end of ABH the sound energy of an
incoming wave is dissipated [8]. Therefore, we decided to use a derivative-free optimization,
namely the optimization algorithm Covariance Matrix Adaptation Evolution Strategy. The
optimization algorithm for the purpose of optimizing sound absorption in rectangular ABHs
was implemented using the open-source Python library for CMA Evolution Strategy [22].
The governing equations and the Bézier curve parametrization of the ribs-height function ℓ
were implemented in Python using libraries NumPy [20] and SciPy [21].

Firstly, a rigidly backed ABH was studied. ABHs mostly serve as an anechoic waveg-
uide termination. As this concept does not employ a porous material, they can be used
in extreme conditions (high temperatures, humidity, etc.) or in conditions with increased
hygiene standards (healthcare industry). The reached optimal ribs-height function ℓ differs
from those studied in previous works [2] and offers efficient sound absorption.

Secondly, since the use use of ABHs can significantly improve sound absorption in a
frequency range below the Biot’s frequency of the porous material, two possible ways of
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employing the porous material within the ABH were studied. We have focused on absorption
in the viscous regime of the porous material, trying to beat the chosen benchmark: the
waveguide termination by the porous material with a thickness corresponding to a quarter
wavelength resonator at the Biot’s frequency. The benchmark was outperformed in the
case of ABH terminated by a porous material. However, the overall improvement in sound
absorption is not significant enough to outweigh the increase in overall length. Fortunately,
the optimal solution for ABH with slits filled with porous material was more successful.
We have extended the frequency range of efficient absorption. Specifically, the absorption
α > 0.7 is achieved already for the frequency corresponding to ≈ fBiot/5. The results are
depicted in Figure 6.1.

In the future, even if we do not account for the possibility of further 3D printing evolution,
other parameters than the ribs-height function ℓ could be optimized. Within the limits of
practical feasibility, we suggest optimizing the spatial period of ribs W or possibly the rib-
width to slit ratio ξ as a function of the location in the ABH, i.e., W = W (x) and ξ = ξ(x).
In addition, more types of porous materials (foams, felts, straws etc.) can be considered for
optimization.
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Figure 6.1: Absorption coefficient of optimized solutions. The orange line depicts the optimal
solution for the ABH terminated by a rigid wall. The black, blue and red lines depict the
benchmark, the optimal solution for ABH terminated by a porous material and the optimal
solution for ABH with slits filled by the porous material. Depicted frequency range is from
0 Hz to frequency corresponding to ≈ fcut/2 of the ABH.
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Appendix A

List of Abbreviations

ABH Acoustic Black Hole

CMA-ES Covariance Matrix Adaptation Evolution Strategy

FEM Finite Element Method

JCAL Johnson-Champoux-Allard-Lafarge

LNSE Linearized Navier-Stokes Equations
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Appendix B

Contents of attached CD

The organization of files on CD attached to this thesis can be seen below. The zip
archive source_code.zip consists of three python files. File evolution.py contains one
main function, which controls the evolution and where the initial conditions for evolution
can be set. In cost_function.py, the cost function for evolution is implemented together
with other functions made for saving and displaying the results during the evolution. Lastly,
in abh_functions.py, the governing equations for ABHs and porous materials are imple-
mented.

CD

bc_thesis_furmaane.pdf

source_code.zip

evolution.py

cost_function.py

abh_functions.py
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