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Introduction

Nanotechnology and nanomaterials have been an important part of science and in-
dustrial research for several decades. The wide range of applications of nanoparticles
includes, among others, the production of electronics and superconductors, imaging
technology, cleaning agents, or the development of drugs with very efficient transport
properties [1].

One of the important areas of study is the optical properties of the nanoparticles.
Many studies have revealed interesting phenomena significantly differing from the
known in the same bulk materials [2, 3]. To be able to describe these properties
better theoretically, we need to know the exact electronic structure of the particles.
Yet due to their size, this problem is difficult to solve. On the one hand, a classical
description may overlook some interesting physical effects; on the other hand, a fully
quantum description is infeasible given the complexity of the problem. It is therefore
obvious that several approximations have to be made. One possible way is using the
so-called quantum hydrodynamic formalism (QHD), where the nanoparticle consists
of a solid ionic core with uniformly distributed charge and an electron shell [4]. For
small particles, however, this model turns out to be insufficient.

In this work, we have chosen to solve the problem as a multi-electron system in the
potential given by the ionic core. To get a good idea of the resulting wave functions,
we first solve the one-electron problem. To do this, we review the general solution
of the spherically symmetric potential in the first chapter. Next, we look at the so-
lution of the hydrogen atom with a point-like nucleus. We will then extend our idea
of the final functions with an interesting solution of the so-called soft-core Coulomb
potential, representing a finite nucleus. In the third chapter, we show a detailed
revision of the multi-electron problem resulting in the Hartree-Fock equations. We
then introduce a modern approach to solving these equations using matrix calcu-
lus and we perform the calculations for multiple cases with a diameter within one
nanometer.

Although the referred procedures are general and can be applied to different types
of nanoparticles, we have limited ourselves to gold nanoparticles where each atom
contributes one electron to the total electron shell. To simplify our analysis and
calculations, we will also use Hartree atomic units throughout the whole text.
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Chapter 1

Schrödinger Equation for
Spherically Symmetric Potentials

The goal of this thesis is to determine the shape of the electron density function of
a spherical nanoparticle. Although the complexity of the system does not allow us
to have a precise quantum mechanical description, thanks to spherical symmetry for
the one-electron problem, at least an exact angular dependence can be obtained. In
this chapter, we derive a set of three equations describing any spherically symmetric
potential. We then determine possible values of the angular momentum operators
and find a general solution to the angular part of the equations.

1.1 Separation of the Schrödinger Equation

The general form of the time-independent Schrödinger equation for a problem in
three dimensions is

𝐻̂𝜓(r) = 𝐸𝜓(r), (1.1)

with the Hamiltonian

𝐻̂ = −1
2Δ + 𝑉 (r). (1.2)

To take advantage of the symmetry of the system, we transform the Schrödinger
equation into spherical coordinates, using the following transformation:

𝑥 = 𝑟 sin 𝜃 cos𝜑, (1.3)
𝑦 = 𝑟 sin 𝜃 sin𝜑, (1.4)
𝑧 = 𝑟 cos 𝜃, (1.5)

where 𝑟 ∈ ⟨0,+∞), 𝜃 ∈ ⟨0, 𝜋⟩ and 𝜑 ∈ ⟨0, 2𝜋). The Laplace operator is given by the
expression

Δ = 1
𝑟

𝜕2

𝜕𝑟2 𝑟 + 1
𝑟2 sin 𝜃

𝜕

𝜕𝜃

(︃
sin 𝜃 𝜕

𝜕𝜃

)︃
+ 1
𝑟2 sin2 𝜃

𝜕2

𝜕𝜑2 (1.6)

11



12 Chapter 1. Schrödinger Equation for Spherically Symmetric Potentials

and we assume a central potential, i.e. 𝑉 depends solely on 𝑟. To proceed, we use
the angular momentum operator 𝐿̂ whose 𝑗-th component is defined as

𝐿̂𝑗 = 𝜖𝑗𝑘𝑙𝑋̂𝑘𝑃𝑙 = −𝑖𝜖𝑗𝑘𝑙𝑥𝑘
𝜕

𝜕𝑥𝑙

. (1.7)

Rewritten in spherical coordinates

𝐿̂1 = 𝑖

(︃
sin𝜑 𝜕

𝜕𝜃
+ cot 𝜃 cos𝜑 𝜕

𝜕𝜑

)︃
, (1.8)

𝐿̂2 = 𝑖

(︃
− cos𝜑 𝜕

𝜕𝜃
+ cot 𝜃 sin𝜑 𝜕

𝜕𝜑

)︃
, (1.9)

𝐿̂3 = −𝑖 𝜕
𝜕𝜑
. (1.10)

From here we have

𝐿̂
2 = −

(︃
1

sin 𝜃
𝜕

𝜕𝜃

(︃
sin 𝜃 𝜕

𝜕𝜃

)︃
+ 1

sin2 𝜃

𝜕2

𝜕𝜑2

)︃
, (1.11)

which exactly corresponds to the angular part of the Laplacian multiplied by the
factor −𝑟2. Thus, we can write

𝐻̂ = − 1
2𝑟

𝜕2

𝜕𝑟2 𝑟 + 𝐿̂
2

2𝑟2 + 𝑉 (𝑟). (1.12)

Very importantly, the operator 𝐿̂
2 commutes with all the components 𝐿̂𝑗 and with

the Hamiltonian 𝐻̂, since it depends only on the angles 𝜃, 𝜑 and the angular part
of 𝐻̂ is the operator 𝐿̂

2 itself. But that means, that any 𝐿̂𝑗 also commutes with
𝐻̂. Taken together, we see that {𝐻̂, 𝐿̂2

, 𝐿̂𝑗} forms a set of compatible observables.
This property ensures, that these three operators have the same eigenfunctions. For
simplicity, we choose 𝐿̂3 for 𝐿̂𝑗. This brings us to the following set of equations for
𝜓(r):

𝐻̂𝜓(r) = 𝐸𝜓(r), (1.13)

𝐿̂
2
𝜓(r) = 𝜆𝜓(r), (1.14)

𝐿̂3𝜓(r) = 𝑚𝜓(r). (1.15)

Finally, let us substitute for the operators 𝐻̂, 𝐿̂
2 and 𝐿̂3 and consider the eigenfunc-

tion in the separated form 𝜓(r) = 𝑅(𝑟)𝑓(𝜃)𝑔(𝜑):(︃
− 1

2𝑟
𝜕2

𝜕𝑟2 𝑟 + 𝜆

2𝑟2 + 𝑉 (𝑟)
)︃
𝑅(𝑟) = 𝐸𝑅(𝑟), (1.16)

−
(︃

1
sin 𝜃

𝜕

𝜕𝜃

(︃
sin 𝜃 𝜕

𝜕𝜃

)︃
+ 1

sin2 𝜃

𝜕2

𝜕𝜑2

)︃
𝑓(𝜃)𝑔(𝜑) = 𝜆𝑓(𝜃)𝑔(𝜑), (1.17)

−𝑖 𝜕
𝜕𝜑
𝑔(𝜑) = 𝑚𝑔(𝜑). (1.18)

We see, that we managed to simplify our initial problem by separating the Schrödin-
ger equation into the radial and the angular part.
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1.2 Angular Momentum Eigenvalues

We would like to find the possible eigenvalues of operators 𝐿̂
2 and 𝐿̂3. Let us start

by defining yet another set of useful operators, the so-called ladder operators:

𝐿̂+ = 𝐿̂1 + 𝑖𝐿̂2, (1.19)
𝐿̂− = 𝐿̂1 − 𝑖𝐿̂2. (1.20)

It is easy to show, that they satisfy the following commutation relations:

[𝐿̂3, 𝐿̂+] = 𝐿̂+, (1.21)
[𝐿̂3, 𝐿̂−] = −𝐿̂−. (1.22)

Using these and the equation 1.15, we get

𝐿̂3(𝐿̂+𝜓) = 𝐿̂+(𝐿̂3𝜓) + 𝐿̂+𝜓 = (𝑚+ 1)𝐿̂+𝜓, (1.23)
𝐿̂3(𝐿̂−𝜓) = 𝐿̂−(𝐿̂3𝜓)− 𝐿̂−𝜓 = (𝑚− 1)𝐿̂−𝜓. (1.24)

We see, that using 𝐿̂+(𝐿̂−) creates another eigenfunction of 𝐿̂3 with the eigenvalue
increased (decreased) by one. Hence the name ladder operators. But this does not
go on forever. Since the components of 𝐿̂ are hermitian, i.e. 𝐿̂†

𝑗 = 𝐿̂𝑗,

⟨𝜓|(𝐿̂2
− 𝐿̂2

3)𝜓⟩ = ⟨𝜓|(𝐿̂2
1 + 𝐿̂2

2)𝜓⟩ = ||𝐿̂1𝜓||2 + ||𝐿̂2𝜓||2 ≥ 0, (1.25)

⟨𝜓|(𝐿̂2
− 𝐿̂2

3)𝜓⟩ = (𝜆−𝑚2)||𝜓||2 (1.26)

and we see that 𝑚 ∈
⟨
−
√
𝜆,
√
𝜆
⟩
. This means, that there are eigenstates 𝜓𝑚𝑎𝑥, 𝜓𝑚𝑖𝑛

with corresponding eigenvalues 𝑚𝑚𝑎𝑥, 𝑚𝑚𝑖𝑛, such that

𝐿̂+𝜓𝑚𝑎𝑥 = 0, (1.27)
𝐿̂−𝜓𝑚𝑖𝑛 = 0. (1.28)

Next, we use another two important identities satisfied by the ladder operators:

𝐿̂−𝐿̂+ = 𝐿̂2
1 + 𝐿̂2

2 + [𝐿̂1, 𝐿̂2] = 𝐿̂
2
− 𝐿̂2

3 − 𝐿̂3, (1.29)

𝐿̂+𝐿̂− = 𝐿̂2
1 + 𝐿̂2

2 − [𝐿̂1, 𝐿̂2] = 𝐿̂
2
− 𝐿̂2

3 + 𝐿̂3. (1.30)

Joining relations 1.27, 1.29 allows us to write

(𝐿̂2
− 𝐿̂2

3 − 𝐿̂3)𝜓𝑚𝑎𝑥 = 0, (1.31)

which leads to the relation

𝐿̂
2
𝜓𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥(𝑚𝑚𝑎𝑥 + 1)𝜓𝑚𝑎𝑥. (1.32)

Similarly for 𝑚𝑚𝑖𝑛 we get

𝐿̂
2
𝜓𝑚𝑖𝑛 = 𝑚𝑚𝑖𝑛(𝑚𝑚𝑖𝑛 − 1)𝜓𝑚𝑖𝑛. (1.33)
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If we now apply the operator 𝐿̂− on equation 1.32 and use the fact, that it commutes
with 𝐿̂

2, we see that the relation is independent of 𝑚 and holds for any eigenfunction
𝜓. This also means, that

𝑚𝑚𝑎𝑥(𝑚𝑚𝑎𝑥 + 1) = 𝑚𝑚𝑖𝑛(𝑚𝑚𝑖𝑛 − 1), (1.34)

which is true for 𝑚𝑚𝑖𝑛 = −𝑚𝑚𝑎𝑥 and 𝑚𝑚𝑖𝑛 = 𝑚𝑚𝑎𝑥 + 1, but only the former is
a valid solution, since 𝑚𝑚𝑎𝑥 ≥ 𝑚𝑚𝑖𝑛. This together with the fact, that 𝑚𝑚𝑎𝑥 and
𝑚𝑚𝑖𝑛 must be separated by an interval of integer length implies, that 𝑚𝑚𝑎𝑥 must be
from the set {0, 1

2 , 1,
3
2 , ...}. Finally, we rename 𝑚𝑚𝑎𝑥 to 𝑙 and we conclude, that the

spectral values of 𝐿̂
2 and 𝐿̂3 must be of the form

𝜆 = 𝑙(𝑙 + 1), 𝑙 ∈
{︂

0, 1
2 , 1,

3
2 , ...

}︂
, (1.35)

𝑚 ∈ {−𝑙,−𝑙 + 1, ..., 𝑙 − 1, 𝑙}. (1.36)

This result is valid for a general angular momentum 𝐽 and is completely given by its
defining property [𝐽𝑗, 𝐽𝑘] = 𝑖𝜖𝑗𝑘𝑙𝐽𝑙. However, in the following section, we show that
there is an additional constraint on the eigenvalues of the orbital angular momentum
𝐿̂

2.

1.3 Spherical Harmonics

Since the equations 1.17 and 1.18 for the angular part do not depend on the potential,
they can be solved in general and their solution is the same for any central potential.
Denoting their common eigenfunction 𝑌 𝑚

𝑙 (𝜃, 𝜑) = 𝐹𝑚
𝑙 (𝜃)𝐺𝑚(𝜑), we get

−
(︃

1
sin 𝜃

𝜕

𝜕𝜃

(︃
sin 𝜃 𝜕

𝜕𝜃

)︃
+ 1

sin2 𝜃

𝜕2

𝜕𝜑2

)︃
𝐹𝑚

𝑙 (𝜃)𝐺𝑚(𝜑) = 𝑙(𝑙 + 1)𝐹𝑚
𝑙 (𝜃)𝐺𝑚(𝜑), (1.37)

−𝑖 𝜕
𝜕𝜑
𝐺𝑚(𝜑) = 𝑚𝐺𝑚(𝜑). (1.38)

The second equation can be solved immediately using the separation of variables
yielding the solution

𝐺𝑚(𝜑) = 𝑒𝑖𝑚𝜑. (1.39)

In order to make this a valid solution, we require the periodic boundary condition

lim
𝜑→2𝜋

𝐺𝑚(𝜑) = 𝐺𝑚(0) (1.40)

to hold. This can be only satisfied if 𝑚 is an integer. But that is only true, if the
values of 𝑙 are integers. So the possible eigenvalues for the operator 𝐿̂

2 are

𝜆 = 𝑙(𝑙 + 1), 𝑙 ∈ {0, 1, 2, ...}. (1.41)

We substitute for 𝐺𝑚(𝜑) in 1.37 to arrive at an equation for 𝐹𝑚
𝑙 (𝜃):

−
(︃

1
sin 𝜃

𝑑

𝑑𝜃

(︃
sin 𝜃 𝑑

𝑑𝜃

)︃
− 𝑚2

sin2 𝜃

)︃
𝐹𝑚

𝑙 (𝜃) = 𝑙(𝑙 + 1)𝐹𝑚
𝑙 (𝜃). (1.42)
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Now we use the following transformation:

𝑡 = cos 𝜃, (1.43)
𝑃𝑚

𝑙 (𝑡) = 𝐹𝑚
𝑙 (𝜃). (1.44)

Using the fact that

sin 𝜃 =
√

1− 𝑡2, (1.45)
𝑑

𝑑𝜃
= −
√

1− 𝑡2 𝑑
𝑑𝑡
, (1.46)

we obtain (︃
(1− 𝑡2) 𝑑

2

𝑑𝑡2
− 2𝑡 𝑑

𝑑𝑡
+ 𝑙(𝑙 + 1)− 𝑚2

1− 𝑡2

)︃
𝑃𝑚

𝑙 (𝑡) = 0. (1.47)

Let’s first solve this equation for 𝑚 = 0. We assume, that the solution can be found
in the form of a series:

𝑃 0
𝑙 (𝑡) =

+∞∑︁
𝑞=0

𝑐𝑞𝑡
𝑞. (1.48)

Substituting into 1.47 leads to the equation
+∞∑︁
𝑞=0

𝑐𝑞

[︁
𝑞(𝑞 − 1)𝑡𝑞−2 +

(︁
𝑙(𝑙 + 1)− 𝑞(𝑞 + 1)

)︁
𝑡𝑞
]︁

= 0. (1.49)

In order to make a series equal to zero for any 𝑡, one must ensure that all coefficients
of the series are zero. In our case, this condition gives us a recurrence relation for
𝑐𝑞:

𝑐𝑞+2 = 𝑞(𝑞 + 1)− 𝑙(𝑙 + 1)
(𝑞 + 2)(𝑞 + 1) 𝑐𝑞. (1.50)

From here, we can see multiple things. First, we can write our solution as

𝑃 0
𝑙 (𝑡) =

+∞∑︁
𝑘=0

𝑐2𝑘𝑡
2𝑘 +

+∞∑︁
𝑘=0

𝑐2𝑘+1𝑡
2𝑘+1 (1.51)

and it can be characterized only by the coefficients 𝑐0 and 𝑐1 and the relation 1.50.
Secondly, we see that one of these series terminates after 𝑙 terms, since 𝑐𝑙+2 = 0.
Moreover, it can be shown (similarly as in [5]) that the other series must have a finite
number of terms as well in order for the solution to be normalizable. But that can be
achieved only by setting the first coefficient to zero. So we end up with polynomials
containing either only odd or only even powers of 𝑡. These solutions are called the
Legendre polynomials and can be rewritten in the following useful form:

𝑃𝑙(𝑡) = 𝑃 0
𝑙 (𝑡) = 𝑑𝑙

𝑑𝑡𝑙
(𝑡2 − 1)𝑙. (1.52)

Indeed, using the fact, that

(𝑡2 − 1)𝑙 =
𝑙∑︁

𝑘=0
(−1)𝑙−𝑘 𝑙!

𝑘!(𝑙 − 𝑘)!𝑡
2𝑘,

𝑑𝑙

𝑑𝑡𝑙
𝑡2𝑘 = (2𝑘)!

(2𝑘 − 𝑙)!𝑡
2𝑘−𝑙, (1.53)
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we can write

𝑃 0
𝑙 (𝑡) =

𝑙∑︁
𝑘=0

𝑎2𝑘−𝑙𝑡
2𝑘−𝑙 =

𝑙∑︁
𝑘=0

(−1)𝑙−𝑘 𝑙!(2𝑘)!
𝑘!(𝑙 − 𝑘)!(2𝑘 − 𝑙)!𝑡

2𝑘−𝑙. (1.54)

The coefficients 𝑎2𝑘−𝑙 satisfy

𝑎2𝑘−𝑙+2 = (−1)𝑙−𝑘−1 𝑙!(2𝑘 + 2)!
(𝑘 + 1)!(𝑙 − 𝑘 − 1)!(2𝑘 + 2− 𝑙)! =

= − (𝑙 − 𝑘)(2𝑘 + 2)(2𝑘 + 1)
(𝑘 + 1)(2𝑘 + 2− 𝑙)(2𝑘 + 1− 𝑙)𝑎2𝑘−𝑙 = (2𝑘 − 2𝑙)(2𝑘 + 1)

(2𝑘 − 𝑙 + 2)(2𝑘 − 𝑙 + 1)𝑎2𝑘−𝑙,

(1.55)

which is exactly the relation 1.50 for 𝑞 = 2𝑘 − 𝑙.

To solve 1.47 for 𝑚 ̸= 0 we suppose the solution of the form

𝑃𝑚
𝑙 (𝑡) = (1− 𝑡2)𝑚

2 𝑄𝑚
𝑙 (𝑡). (1.56)

Plugging this into 1.47 gives us(︃
(1− 𝑡2) 𝑑

2

𝑑𝑡2
− 2(𝑚+ 1)𝑡 𝑑

𝑑𝑡
+ 𝑙(𝑙 + 1)−𝑚(𝑚+ 1)

)︃
𝑄𝑚

𝑙 (𝑡) = 0. (1.57)

If we now differentiate this equation, we get(︃
(1− 𝑡2) 𝑑

2

𝑑𝑡2
− 2(𝑚+ 2)𝑡 𝑑

𝑑𝑡
+ 𝑙(𝑙 + 1)− (𝑚+ 1)(𝑚+ 2)

)︃
𝑑

𝑑𝑡
𝑄𝑚

𝑙 (𝑡) = 0. (1.58)

By simple comparison, we see that

𝑄𝑚+1
𝑙 (𝑡) = 𝑑

𝑑𝑡
𝑄𝑚

𝑙 (𝑡). (1.59)

Together with the fact that the equation 1.57 yields

𝑄0
𝑙 (𝑡) = 𝑃 0

𝑙 (𝑡), (1.60)

we can conclude, that 𝑃𝑚
𝑙 , the so-called associated Legendre functions, are of the

form

𝑃𝑚
𝑙 (𝑡) = (1− 𝑡2)𝑚

2
𝑑𝑚

𝑑𝑡𝑚
𝑃 0

𝑙 (𝑡) = (1− 𝑡2)𝑚
2
𝑑𝑙+𝑚

𝑑𝑡𝑙+𝑚
(𝑡2 − 1)𝑙. (1.61)

Finally, we can write the solution of the angular part of the Schrödinger equation
in the following compact form:

𝑌 𝑚
𝑙 (𝜃, 𝜑) = 𝑃𝑚

𝑙 (cos 𝜃)𝑒𝑖𝑚𝜑. (1.62)

These functions are called spherical harmonics.
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1.4 Normalization of the Wave Function

In quantum mechanics, the wave function expresses the probability amplitude of
finding a particle at a certain point. Therefore, it is necessary to normalize this
function so that we get a correctly defined probability density distribution. Written
mathematically, we require the fulfilment of the relation∫︁

R3
|𝜓(r)|2𝑑r = 1. (1.63)

In spherical coordinates:∫︁ +∞

0
𝑟2|𝑅(𝑟)|2𝑑𝑟

∫︁ 2𝜋

0

∫︁ 𝜋

0
|𝑌 𝑚

𝑙 (𝜃, 𝜑)|2 sin 𝜃𝑑𝜃𝑑𝜑 = 1. (1.64)

As we saw in the first section, the function 𝑅(𝑟) depends on the specific form of
the potential, so we limit ourselves to normalizing the angular part only. For the
spherical harmonics, we have the following:∫︁ 2𝜋

0

∫︁ 𝜋

0
|𝑌 𝑚

𝑙 (𝜃, 𝜑)|2 sin 𝜃𝑑𝜃𝑑𝜑 =
∫︁ 2𝜋

0
𝑑𝜑
∫︁ 𝜋

0
𝑃𝑚

𝑙 (cos 𝜃)𝑃𝑚
𝑙 (cos 𝜃) sin 𝜃𝑑𝜃 =

= 2𝜋
∫︁ 1

−1
𝑃𝑚

𝑙 (𝑡)𝑃𝑚
𝑙 (𝑡)𝑑𝑡. (1.65)

From 1.61 we have

𝑁𝑚
𝑙 =

∫︁ 1

−1
𝑃𝑚

𝑙 (𝑡)𝑃𝑚
𝑙 (𝑡)𝑑𝑡 =

∫︁ 1

−1
(1− 𝑡2)𝑚 𝑑𝑙+𝑚

𝑑𝑡𝑙+𝑚
(𝑡2 − 1)𝑙 𝑑

𝑙+𝑚

𝑑𝑡𝑙+𝑚
(𝑡2 − 1)𝑙𝑑𝑡. (1.66)

Now we use the integration by parts (𝑙 + 𝑚) times and expand the relation using
the Leibniz rule:

𝑁𝑚
𝑙 = (−1)𝑙+𝑚

∫︁ 1

−1
(𝑡2 − 1)𝑙 𝑑

𝑙+𝑚

𝑑𝑡𝑙+𝑚

(︃
(1− 𝑡2)𝑚 𝑑𝑙+𝑚

𝑑𝑡𝑙+𝑚
(𝑡2 − 1)𝑙

)︃
𝑑𝑡 =

= (−1)𝑙+𝑚
∫︁ 1

−1
(𝑡2 − 1)𝑙

𝑙+𝑚∑︁
𝑠=0

(︃
𝑙 +𝑚

𝑠

)︃
𝑑𝑠

𝑑𝑡𝑠
(1− 𝑡2)𝑚 𝑑2𝑙+2𝑚−𝑠

𝑑𝑡2𝑙+2𝑚−𝑠
(𝑡2 − 1)𝑙𝑑𝑡. (1.67)

In order to get a non-zero number in the sum, two conditions must hold:

𝑠 ≤ 2𝑚,
2𝑙 + 2𝑚− 𝑠 ≤ 2𝑙. (1.68)

This is only true for 𝑠 = 2𝑚. Therefore, 𝑁𝑚
𝑙 simplifies to

𝑁𝑚
𝑙 = (−1)𝑙+𝑚

(︃
𝑙 +𝑚

2𝑚

)︃∫︁ 1

−1
(𝑡2 − 1)𝑙 𝑑

2𝑚

𝑑𝑡2𝑚
(1− 𝑡2)𝑚 𝑑2𝑙

𝑑𝑡2𝑙
(𝑡2 − 1)𝑙𝑑𝑡 =

= (−1)𝑙+𝑚

(︃
𝑙 +𝑚

2𝑚

)︃∫︁ 1

−1
(𝑡2 − 1)𝑙(−1)𝑚(2𝑚)!(2𝑙)!𝑑𝑡 =

= (−1)𝑙(2𝑙)! (𝑙 +𝑚)!
(𝑙 −𝑚)!

∫︁ 1

−1
(𝑡2 − 1)𝑙𝑑𝑡. (1.69)
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The last integral can be evaluated using the change of variable 𝑡 = cos 𝜃:∫︁ 1

−1
(𝑡2 − 1)𝑙𝑑𝑡 = (−1)𝑙

∫︁ 𝜋

0
(sin 𝜃)2𝑙+1𝑑𝜃 = (−1)𝑙2𝑙

∫︁ 𝜋

0
(sin 𝜃)2𝑙−1 cos2 𝜃𝑑𝜃 =

= 2𝑙
(︂

(−1)𝑙
∫︁ 𝜋

0
(sin 𝜃)2𝑙−1𝑑𝜃 − (−1)𝑙

∫︁ 𝜋

0
(sin 𝜃)2𝑙+1𝑑𝜃

)︂
=

= −2𝑙
(︂∫︁ 1

−1
(𝑡2 − 1)𝑙−1𝑑𝑡+

∫︁ 1

−1
(𝑡2 − 1)𝑙𝑑𝑡

)︂
(1.70)

where we used integration by parts in the second equality. From this we have∫︁ 1

−1
(𝑡2 − 1)𝑙𝑑𝑡 = − 2𝑙

2𝑙 + 1

∫︁ 1

−1
(𝑡2 − 1)𝑙−1𝑑𝑡 = (−1)𝑙 2𝑙

2𝑙 + 1
2(𝑙 − 1)
2𝑙 − 1 ...

2
3

∫︁ 1

−1
𝑑𝑡 =

= (−1)𝑙 2𝑙𝑙!
(2𝑙 + 1)!!2 = (−1)𝑙 22𝑙+1(𝑙!)2

(2𝑙 + 1)! . (1.71)

Together with 1.69 we obtain the square of the norm of 𝑃𝑚
𝑙 :

𝑁𝑚
𝑙 = 22𝑙+1(𝑙!)2

2𝑙 + 1
(𝑙 +𝑚)!
(𝑙 −𝑚)! (1.72)

We can now use this and the relation 1.65 to redefine 𝑌 𝑚
𝑙 as the normalized spherical

harmonics:

𝑌 𝑚
𝑙 (𝜃, 𝜑) = 1

2𝑙𝑙!

⎯⎸⎸⎷2𝑙 + 1
4𝜋

(𝑙 −𝑚)!
(𝑙 +𝑚)!𝑃

𝑚
𝑙 (cos 𝜃)𝑒𝑖𝑚𝜑. (1.73)

Note, that the normalizing factor can differ in the literature since some authors
include parts of the factor in the definition of 𝑃𝑚

𝑙 . Therefore it is always necessary
to determine the exact form of the Legendre polynomials together with the functions
𝑌 𝑚

𝑙 (𝜃, 𝜑). Sometimes there is also a non-zero phase factor included in the definition,
coming from the fact, that the normalization process can only determine the square
of the norm.



Chapter 2

Nanoparticle Potential

2.1 Derivation of the Potential

For a given charge density distribution 𝑛𝐼(r), we can calculate the electric potential
𝑉 (r) using the following formula:

𝑉 (r) = −
∫︁
R3

𝑛𝐼(r′)
|r′ − r|

𝑑r′. (2.1)

Let us now have a spherical nanoparticle with a radius 𝑅 centred at the origin and
let’s assume, that its positive charge is uniformly distributed over the whole particle.
Then for 𝑛𝐼 we have

𝑛𝐼(r′) =

⎧⎨⎩𝑛𝐼 |r′| ≤ 𝑅

0 |r′| > 𝑅.
(2.2)

Thanks to spherical symmetry we know, that the potential will depend only on
the distance 𝑟 = |r| and not on the polar and azimuthal angles 𝜃, 𝜑. Without loss
of generality, we can therefore orient the coordinate system so that the 𝑧 axis is
aligned with the position vector r. Then for the distance of the vectors r′, r in
spherical coordinates we have

|r′ − r| =
√
𝑟′2 + 𝑟2 − 2𝑟′𝑟 cos 𝜃′, (2.3)

where 𝑟′, 𝑟 are the lengths of the vectors r′, r, respectively. Now we can write

𝑉 (𝑟) = −
∫︁ 2𝜋

0
𝑑𝜑′

∫︁ 𝜋

0

∫︁ 𝑅

0

𝑛𝐼𝑟
′2

√
𝑟′2 + 𝑟2 − 2𝑟′𝑟 cos 𝜃′

𝑑𝑟′ sin 𝜃′𝑑𝜃′ =

= −2𝜋𝑛𝐼

𝑟

∫︁ 𝑅

0
𝑟′
∫︁ (𝑟′+𝑟)2

(𝑟′−𝑟)2

1
2
√
𝑡
𝑑𝑡𝑑𝑟′ = −2𝜋𝑛𝐼

𝑟

∫︁ 𝑅

0
𝑟′(𝑟′ + 𝑟 − |𝑟′ − 𝑟|)𝑑𝑟′, (2.4)

where in the second equality we use the substitution 𝑡 = 𝑟′2 + 𝑟2 − 2𝑟′𝑟 cos 𝜃. Now
we have to distinguish two cases: 𝑟 ≤ 𝑅 and 𝑟 > 𝑅. For the first one we get

𝑉 (𝑟) = −2𝜋𝑛𝐼

𝑟

(︁ ∫︁ 𝑟

0
2𝑟′2𝑑𝑟′ +

∫︁ 𝑅

𝑟
2𝑟′𝑟𝑑𝑟′

)︁
= −2𝜋𝑛𝐼

3 (3𝑅2 − 𝑟2). (2.5)

19
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And for the second case,

𝑉 (𝑟) = −2𝜋𝑛𝐼

𝑟

∫︁ 𝑅

0
2𝑟′2𝑑𝑟′ = −4

3𝜋𝑅
3𝑛𝐼

𝑟
. (2.6)

Now we just use the fact, that the total charge of the particle 𝑄 = 4
3𝜋𝑅

3𝑛𝐼 and we
arrive at

𝑉 (𝑟) =

⎧⎨⎩
𝑄

2𝑅3 𝑟
2 − 3𝑄

2𝑅
𝑟 ≤ 𝑅

−𝑄
𝑟

𝑟 > 𝑅.
(2.7)

Let us add two more notes on the general form of the potential. We see, that it
is parameterized by the total charge 𝑄 and the radius of the nanoparticle 𝑅. The
charge is given by

𝑄 = 𝑁𝜈, (2.8)
where 𝑁 is the number of atoms and 𝜈 is the number of electrons per atom, which are
considered not bound to the nucleus. Secondly, since we assume, that the atoms of
the particle are arranged in a crystal lattice, constants 𝑁 and 𝑅 are not independent,
but related by the expression

𝑅 = 𝑟𝑠𝑁
1/3, (2.9)

where 𝑟𝑠 is the so-called Wigner-Seitz radius. This means that for a given material,
the potential can be described by only one parameter, usually the radius 𝑅. Putting
it all together, we get the final form of the potential

𝑉 (𝑟) =

⎧⎨⎩
𝜈
𝑟3

𝑠

𝑟2−3𝑅2

2 𝑟 ≤ 𝑅

− 𝜈
𝑟3

𝑠

𝑅3

𝑟
𝑟 > 𝑅.

(2.10)

The particular shape of this potential for a gold nanoparticle is depicted in figure
2.1.

Figure 2.1: Potential 𝑉 given by 2.10 for a gold nanoparticle with the parameters 𝑅 =
9.45 Bohr (0.5 nm), 𝑟𝑠 = 3.01 Bohr and 𝜈 = 1 (𝑄 = 30.945). The dotted line shows the
boundary of the nanoparticle.
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2.2 Hydrogen Atom Solution

For a particle with a radius of the order of one nanometer, we have the number of
electrons 𝑁𝑒 ∼ 101 − 103. Not only each electron changes the potential for other
electrons, but they also interact with each other. This means that the system is very
complex and obviously cannot be solved exactly analytically. Therefore, we have to
use some simplifications and numerical methods to get a specific solution.

To gain a first insight into our problem, we will consider a particle consisting of only
one point-like atom with 𝜈 = 1. This is equivalent to the well-known equation for
the hydrogen atom. The corresponding potential is

𝑉 (𝑟) = −1
𝑟

(2.11)

and by inserting into 1.16 we obtain the radial equation we need to solve:(︃
− 1

2𝑟
𝑑2

𝑑𝑟2 𝑟 + 𝑙(𝑙 + 1)
2𝑟2 − 1

𝑟

)︃
𝑅(𝑟) = 𝐸𝑅(𝑟). (2.12)

The last two terms on the left-hand side form together the so-called effective potential

𝑉𝑒𝑓𝑓 = 𝑙(𝑙 + 1)
2𝑟2 − 1

𝑟
. (2.13)

Figure 2.2: Effective potential of the hydrogen atom for the first three angular quantum
numbers 𝑙.

You can see from figure 2.2 that all the bound states, which is what we are interested
in, must have negative energies. We simplify 2.12 by substituting

𝑢(𝑟) = 𝑟𝑅(𝑟) (2.14)
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and multiplying by −2:(︃
𝑑2

𝑑𝑟2 −
𝑙(𝑙 + 1)
𝑟2 + 2

𝑟
+ 2𝐸

)︃
𝑢(𝑟) = 0. (2.15)

In addition, to obtain a physically relevant solution we impose the following bound-
ary conditions:

𝑢(0) = 0,
𝑢(+∞) = 0. (2.16)

The next step is to look at the solution in the limit of large 𝑟. There, both terms
of the effective potential are dominated by the energy term and we get a simple
second-order linear differential equation(︃

𝑑2

𝑑𝑟2 + 2𝐸
)︃
𝑢(𝑟) ≈ 0 (2.17)

with two fundamental solutions

𝑢(𝑟) ≈ 𝑒
√

−2𝐸𝑟, 𝑢(𝑟) ≈ 𝑒−
√

−2𝐸𝑟. (2.18)

Thanks to the boundary condition, only the second solution is valid. This allows us
to write

𝑢(𝑟) = 𝑣(𝑟)𝑒−
√

−2𝐸𝑟. (2.19)

After substituting into 2.15 we arrive at an equation for 𝑣(𝑟):(︃
𝑑2

𝑑𝑟2 − 2
√
−2𝐸 𝑑

𝑑𝑟
− 𝑙(𝑙 + 1)

𝑟2 + 2
𝑟

)︃
𝑣(𝑟) = 0. (2.20)

Since each term contains either a division by 𝑟 or a derivative with respect to 𝑟, it
is again advantageous to assume a power series solution

𝑣(𝑟) = 𝑟𝑠
+∞∑︁
𝑞=0

𝑐𝑞𝑟
𝑞 =

+∞∑︁
𝑞=0

𝑐𝑞𝑟
𝑠+𝑞, 𝑐0 ̸= 0. (2.21)

This gives us an algebraic equation for the coefficients 𝑐𝑞:
+∞∑︁
𝑞=0

𝑐𝑞

(︂(︁
(𝑠+ 𝑞)(𝑠+ 𝑞 − 1)− 𝑙(𝑙 + 1)

)︁
𝑟𝑠+𝑞−2 + 2

(︁
1−
√
−2𝐸(𝑠+ 𝑞)

)︁
𝑟𝑠+𝑞−1

)︂
= 0.

(2.22)

The only way a power series can equal zero for all 𝑟 is if the coefficients in front of
every power are zero. For these purposes, let us denote

𝐴𝑞 = (𝑠+ 𝑞)(𝑠+ 𝑞 − 1)− 𝑙(𝑙 + 1), (2.23)
𝐵𝑞 = 2

(︁
1−
√
−2𝐸(𝑠+ 𝑞)

)︁
. (2.24)

This leads to the following set of equations:

𝑐0𝐴0 = 0, (2.25)
𝑐𝑞𝐴𝑞 + 𝑐𝑞−1𝐵𝑞−1 = 0, 𝑞 > 0. (2.26)
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Due to the condition 𝑐0 = 0, the first relation gives us

𝑠(𝑠− 1)− 𝑙(𝑙 + 1) = 0, (2.27)

which yields two solutions for 𝑠:

𝑠 = −𝑙, 𝑠 = 𝑙 + 1. (2.28)

To determine the correct expression, we need to return to the boundary condition
at the origin. We know that 𝑢(0) = 0, which means that also 𝑣(0) = 0. This gives
us

+∞∑︁
𝑞=0

𝑐𝑞𝑟
𝑠+𝑞
⃒⃒⃒
𝑟=0

= 0, (2.29)

which can be satisfied only for 𝑠 > 0 and hence 𝑠 = 𝑙 + 1. Using this fact together
with the set 2.26 we obtain a recurrence relation for the coefficients 𝑐𝑞:

𝑐𝑞 =
2
(︁√
−2𝐸(𝑙 + 𝑞)− 1

)︁
(𝑙 + 𝑞 + 1)(𝑙 + 𝑞)− 𝑙(𝑙 + 1)𝑐𝑞−1 =

2
(︁√
−2𝐸(𝑙 + 𝑞)− 1

)︁
𝑞(𝑞 + 2𝑙 + 1) 𝑐𝑞−1. (2.30)

One should now determine, whether the series is finite or infinite, i.e. what is the
asymptotic behaviour of the eigenfunctions. In [5] it is nicely shown that only a finite
series gives a physically valid solution of the Schrödinger equation. This means that
there is a number 𝑘 > 0 such that 𝑐𝑘 = 0. Our recurrence relation 2.30 gives us for
such 𝑘 an important equation for possible energy values:

√
−2𝐸(𝑙 + 𝑘)− 1 = 0 (2.31)

with the solution parameterized by the numbers 𝑘 and 𝑙

𝐸𝑘𝑙 = − 1
2(𝑘 + 𝑙)2 . (2.32)

Let us turn our attention to the wave functions. We start by plugging the prescription
for possible energy levels into 2.30. The recurrence relation for the coefficients 𝑐𝑞 then
reads

𝑐𝑞 = 2
𝑞+𝑙
𝑘+𝑙
− 1

𝑞(𝑞 + 2𝑙 + 1)𝑐𝑞−1 = − 2
𝑘 + 𝑙

𝑘 − 𝑞
𝑞(2𝑙 + 𝑞 + 1)𝑐𝑞−1. (2.33)

It is not difficult to see that by repeating this formula 𝑞-times we get the following
explicit prescription for the coefficient 𝑐𝑞 expressed in terms of 𝑐0:

𝑐𝑞 =
(︂
− 2
𝑘 + 𝑙

)︂𝑞 (𝑘 − 1)!(2𝑙 + 1)!
(𝑘 − 𝑞 − 1)!𝑞!(2𝑙 + 𝑞 + 1)!𝑐0. (2.34)

Using this result together with the relations 2.14, 2.19 and 2.21 we arrive at the

𝑅𝑘𝑙(𝑟) = 𝑁𝑟𝑙𝑒− 𝑟
𝑘+𝑙

𝑘−1∑︁
𝑞=0

(︂
− 2
𝑘 + 𝑙

)︂𝑞 (𝑘 − 1)!(2𝑙 + 1)!
(𝑘 − 𝑞 − 1)!𝑞!(2𝑙 + 𝑞 + 1)!𝑟

𝑞, (2.35)

where we included the coefficient 𝑐0 in the normalization factor 𝑁 .
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Before we determine the normalization, we rewrite our result in a more compact
way. For this, we will use the so-called generalized (associated) Laguerre polynomials
𝐿𝑚

𝑛 . We define them as follows:

𝐿𝑚
𝑛 (𝑥) = 𝑒𝑥𝑥−𝑚

𝑛!
𝑑𝑛

𝑑𝑥𝑛
(𝑒−𝑥𝑥𝑛+𝑚) = 𝑥−𝑚

𝑛!

(︃
𝑑

𝑑𝑥
− 1

)︃𝑛

𝑥𝑛+𝑚. (2.36)

The term with the derivative can be written in the form of a series as(︃
𝑑

𝑑𝑥
− 1

)︃𝑛

=
𝑛∑︁

𝑞=0

(︃
𝑛

𝑞

)︃
(−1)𝑞 𝑑

𝑛−𝑞

𝑑𝑥𝑛−𝑞
. (2.37)

This allows us to write

𝐿𝑚
𝑛 (𝑥) = 𝑥−𝑚

𝑛!

𝑛∑︁
𝑞=0

(︃
𝑛

𝑞

)︃
(−1)𝑞 (𝑛+𝑚)!

(𝑚+ 𝑞)!𝑥
𝑚+𝑞 =

𝑛∑︁
𝑞=0

(𝑛+𝑚)!
(𝑛− 𝑞)!𝑞!(𝑚+ 𝑞)!(−𝑥)𝑞. (2.38)

If we now choose 𝑛 = 𝑘 − 1, 𝑚 = 2𝑙 + 1 and substitute 𝑥 = 2𝑟
𝑘+𝑙

, we get

𝐿2𝑙+1
𝑘−1

(︂ 2𝑟
𝑘 + 𝑙

)︂
=

𝑘−1∑︁
𝑞=0

(︂
− 2
𝑘 + 𝑙

)︂𝑞 (2𝑙 + 𝑘)!
(𝑘 − 𝑞 − 1)!𝑞!(2𝑙 + 𝑞 + 1)!𝑟

𝑞 =

=
(︃

2𝑙 + 𝑘

2𝑙 + 1

)︃
𝑘−1∑︁
𝑞=0

(︂
− 2
𝑘 + 𝑙

)︂𝑞 (𝑘 − 1)!(2𝑙 + 1)!
(𝑘 − 𝑞 − 1)!𝑞!(2𝑙 + 𝑞 + 1)!𝑟

𝑞. (2.39)

We see that the sum is exactly equal to the one we had in 2.35 and so we can write

𝑅𝑘𝑙(𝑟) = 𝑁𝑘𝑙𝑟
𝑙𝑒− 𝑟

𝑘+𝑙𝐿2𝑙+1
𝑘−1

(︁
2𝑟

𝑘+𝑙

)︁
, (2.40)

where we included the binomial coefficient in the normalization factor 𝑁𝑘𝑙.

The last step in deriving the radial function is to determine 𝑁𝑘𝑙. Since we already
normalized the angular part of our wave function, we only need to satisfy the identity∫︁ +∞

0
𝑟2|𝑅𝑘𝑙(𝑟)|2𝑑𝑟 = 1. (2.41)

For our solution we have
1
|𝑁𝑘𝑙|2

=
∫︁ +∞

0
𝑟2𝑙+2𝑒− 2𝑟

𝑘+𝑙

[︁
𝐿2𝑙+1

𝑘−1

(︁
2𝑟

𝑘+𝑙

)︁]︁2
𝑑𝑟 =

=
(︃
𝑘 + 𝑙

2

)︃2𝑙+3 ∫︁ +∞

0
𝑥2𝑙+2𝑒−𝑥

(︁
𝐿2𝑙+1

𝑘−1 (𝑥)
)︁2
𝑑𝑥 =

=
(︃
𝑘 + 𝑙

2

)︃2𝑙+3 ∫︁ +∞

0
𝑥𝑚+1𝑒−𝑥

(︁
𝐿𝑚

𝑛 (𝑥)
)︁2
𝑑𝑥
⃒⃒⃒
𝑛=𝑘−1
𝑚=2𝑙+1

(2.42)

To evaluate the last integral we will use a useful formula called the generating func-
tion for the generalized Laguerre polynomials:

𝑔(𝑥, 𝑢) =
+∞∑︁
𝑛=0

𝐿𝑚
𝑛 (𝑥)𝑢𝑛 = 𝑒− 𝑢𝑥

1−𝑢

(1− 𝑢)𝑚+1 . (2.43)
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Sometimes, it is this expression which is used as a defining relation for the Laguerre
polynomials. To see that it is equivalent to 2.39 we recommend the work of Rainville
[6]. We first rewrite the following integral in the language of 𝐿𝑚

𝑛 :∫︁ +∞

0
𝑥𝑚+1𝑒−𝑥𝑔(𝑥, 𝑢)𝑔(𝑥, 𝑣)𝑑𝑥 =

∫︁ +∞

0
𝑥𝑚+1𝑒−𝑥

+∞∑︁
𝑠=0

𝐿𝑚
𝑠 (𝑥)𝑢𝑠

+∞∑︁
𝑡=0

𝐿𝑚
𝑡 (𝑥)𝑣𝑡𝑑𝑥 =

=
+∞∑︁
𝑠=0

+∞∑︁
𝑡=0

∫︁ +∞

0
𝑥𝑚+1𝑒−𝑥𝐿𝑚

𝑠 (𝑥)𝐿𝑚
𝑡 (𝑥)𝑑𝑥 𝑢𝑠𝑣𝑡. (2.44)

On the other hand from 2.43 we have∫︁ +∞

0
𝑥𝑚+1𝑒−𝑥𝑔(𝑥, 𝑢)𝑔(𝑥, 𝑣)𝑑𝑥 =

= 1
(1− 𝑢)𝑚+1(1− 𝑣)𝑚+1

∫︁ +∞

0
𝑥𝑚+1 exp

[︂
− 𝑥

(︂
1 + 𝑢

1− 𝑢 + 𝑣

1− 𝑣

)︂ ]︂
=

= 1
(1− 𝑢)𝑚+1(1− 𝑣)𝑚+1

(𝑚+ 1)!(1− 𝑢)𝑚+2(1− 𝑣)𝑚+2

(1− 𝑢𝑣)𝑚+2 =

=
+∞∑︁

𝑠

(𝑚+ 1)!(1− 𝑢− 𝑣 + 𝑢𝑣)
(︁

𝑚+1+𝑠
𝑠

)︁
(𝑢𝑣)𝑠, (2.45)

where we used the identities∫︁ +∞

0
𝑥𝑛𝑒−𝛼𝑥𝑑𝑥 = 𝑛!

𝛼𝑛+1 , (2.46)

1 + 𝑢

1− 𝑢 + 𝑣

1− 𝑣 = 1− 𝑢𝑣
(1− 𝑢)(1− 𝑣) , (2.47)

(1 + 𝑥)−𝑛 =
+∞∑︁

𝑖

(︁
𝑛+𝑖−1

𝑖

)︁
(−𝑥)𝑖. (2.48)

We see that we can retrieve the required integral by comparing the coefficients of
the series at the term (𝑢𝑣)𝑛:∫︁ +∞

0
𝑥𝑚+1𝑒−𝑥

(︁
𝐿𝑚

𝑛 (𝑥)
)︁2
𝑑𝑥 = (𝑚+ 1)!

[︁(︁
𝑛+𝑚+1

𝑛

)︁
+
(︁

𝑛+𝑚
𝑛−1

)︁]︁
=

= (𝑚+ 1)!
(︃

(𝑛+𝑚+ 1)!
𝑛!(𝑚+ 1)! + (𝑛+𝑚)!

(𝑛− 1)!(𝑚+ 1)!

)︃
=

= (𝑛+𝑚)!
𝑛! (2𝑛+𝑚+ 1). (2.49)

Together with 2.42 we get the normalization factor

𝑁𝑘𝑙 = 2𝑙+1

(𝑘 + 𝑙)𝑙+2

⎯⎸⎸⎷ (𝑘 − 1)!
(𝑘 + 2𝑙)! . (2.50)

Now we have everything to write the complete prescription for the radial part of the
wave function of our first-degree approximation - the hydrogen atom:

𝑅𝑘𝑙(𝑟) = 2𝑙+1

(𝑘 + 𝑙)𝑙+2

⎯⎸⎸⎷ (𝑘 − 1)!
(𝑘 + 2𝑙)!𝑟

𝑙𝑒− 𝑟
𝑘+𝑙𝐿2𝑙+1

𝑘−1

(︁
2𝑟

𝑘+𝑙

)︁
. (2.51)
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Again, it is important to remember that the hydrogen atom eigenfunctions should
always be stated together with the particular prescription for the Laguerre poly-
nomials since there are unfortunately many different definitions in the scientific
literature. Instead of the number 𝑘, it is also a common practice to use the so-called
principal quantum number 𝑛, which we define as 𝑛 = 𝑘 + 𝑙. Using this notation we
get

𝑅𝑛𝑙(𝑟) = 2𝑙+1

𝑛𝑙+2

⎯⎸⎸⎷(𝑛− 𝑙 − 1)!
(𝑛+ 𝑙)! 𝑟𝑙𝑒− 𝑟

𝑛𝐿2𝑙+1
𝑛−𝑙−1

(︁
2𝑟
𝑛

)︁
(2.52)

with the energy levels

𝐸𝑛 = − 1
2𝑛2 . (2.53)

In the case of our nanoparticle, we would like to use the approximation of a point
nucleus, but carrying a general charge 𝑄. This is reflected by the change of the
potential 𝑉 to

𝑉 (𝑟) = −𝑄
𝑟
, (2.54)

where 𝑄 is given by

𝑄 = 𝜈
(︂
𝑅

𝑟𝑠

)︂3
. (2.55)

This slight variation changes the problem just a little and the entire solution deriva-
tion process demonstrated in this section can be repeated without any significant
changes. In particular, after denoting

𝑟 = 𝑄𝑟, (2.56)

𝐸̃ = 𝐸

𝑄2 (2.57)

we retrieve an equation of the same shape as 2.15. The resulting radial wave functions
are

𝑅𝑛𝑙(𝑟) = 2𝑙+1

𝑛𝑙+2𝑄
𝑙+ 3

2

⎯⎸⎸⎷(𝑛− 𝑙 − 1)!
(𝑛+ 𝑙)! 𝑟𝑙𝑒− 𝑄

𝑛
𝑟𝐿2𝑙+1

𝑛−𝑙−1

(︁
2𝑄
𝑛
𝑟
)︁

(2.58)

with the corresponding energies

𝐸𝑛 = − 𝑄
2

2𝑛2 . (2.59)

Knowing the radial wave functions enables us to determine both the radial proba-
bility density distribution 𝑃𝑛𝑙 and the radial electron density distribution 𝑛𝑛𝑙. The
probability distribution is given by the relation

𝑃𝑛𝑙𝑚(𝑟, 𝜃, 𝜑) = 𝑟2 sin 𝜃|𝑅𝑛𝑙(𝑟)|2|𝑌 𝑚
𝑙 (𝜃, 𝜑)|2. (2.60)
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We see that 𝑃𝑛𝑙𝑚 does not depend on the angle 𝜑 since the functions 𝑌 𝑚
𝑙 appear

only as modules. To get the radial distribution we integrate over the angles 𝜃, 𝜑.
Thanks to the normalization of the angular part the probability simplifies to

𝑃𝑛𝑙(𝑟) = 𝑟2|𝑅𝑛𝑙(𝑟)|2. (2.61)

This relation describes how much negative charge is in an infinitesimal shell of radius
𝑟 and as we see it no longer depends on the quantum number 𝑚. The electron density
can be in general obtained as the module of the wave function, i.e.

𝑛𝑛𝑙𝑚(r) = |𝜓𝑛𝑙𝑚(r)|2 (2.62)

For spherically symmetric wave functions (𝑙 = 0) is 𝑛𝑛𝑙𝑚 constant for all angles 𝜃,
𝜑 and it is equal to the probability distribution divided by the area of the shell of
radius 𝑟, that is

𝑛𝑛𝑙(𝑟) = 𝑃𝑛𝑙(𝑟)
4𝜋𝑟2 . (2.63)

We can also use this relation to define the mean radial electron density for electron
wave functions depending on the angle (𝑙 > 0):

𝑛̄𝑛𝑙(𝑟) = 𝑃𝑛𝑙(𝑟)
4𝜋𝑟2 = 1

4𝜋 |𝑅𝑛𝑙(𝑟)|2. (2.64)

The radial probability distribution and electron density functions of the first three
electrons are shown in figures 2.3, 2.4, respectively.
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Figure 2.3: Radial probability density functions 𝑃𝑛𝑙 of the first three electrons for the
parameters 𝑅 = 9.45 Bohr, 𝑟𝑠 = 3.01 Bohr and 𝜈 = 1.
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Figure 2.4: Radial electron density functions 𝑛̄𝑛𝑙 of the first three electrons for the
parameters 𝑅 = 9.45 Bohr, 𝑟𝑠 = 3.01 Bohr and 𝜈 = 1.

2.3 Soft-Core Coulomb Potential Solution

The first step in improving our view of the electron wave functions described in the
previous section is to consider a finite-size nucleus. One can try to solve this task
using the perturbation theory. Here we look for a solution for the potential

𝑉 (𝑟) = 𝑉0(𝑟) + 𝑉𝑃 (𝑟), (2.65)

where

𝑉0(𝑟) = −𝜈𝑅
3

𝑟3
𝑠𝑟

(2.66)

and

𝑉𝑃 (𝑟) =

⎧⎨⎩
𝜈
𝑟3

𝑠

𝑟3−3𝑅2𝑟+2𝑅3

2𝑟
𝑟 ≤ 𝑅

0 𝑟 > 𝑅.
(2.67)

The calculation is pretty straightforward and shows, that the ground state energy
increases compared to the point-like nucleus case. Nevertheless, this approximation
is only valid for very small nuclei. Another possibility, which works for arbitrary large
nuclei, is to approximate the nanoparticle potential 𝑉 (2.10) with the so-called soft
core Coulomb potential. In its general form it can be written as

𝑉 (𝑟) = − 𝑎√
𝑏2 + 𝑟2

, 𝑎, 𝑏 ≥ 0. (2.68)

There are several reasonable ways how to choose the coefficients 𝑎, 𝑏 so that 𝑉 fits
our potential well. One of the constants can be fixed by satisfying the boundary
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condition of 𝑉 at the origin:

𝑉 (0) = −3𝜈𝑅2

2𝑟3
𝑠

. (2.69)

Since the second boundary condition

lim
𝑟→+∞

𝑉 (𝑟) = 0 (2.70)

is automatically true for all constants 𝑎, 𝑏, we require a stronger constraint:

𝑉 (𝑟) ∼
𝑟→+∞

−𝜈𝑅
3

𝑟3
𝑠𝑟
. (2.71)

These conditions give us the set of equations

𝑎

𝑏
= 3𝜈𝑅2

2𝑟3
𝑠

, (2.72)

𝑎

𝑟
= 𝜈𝑅3

𝑟3
𝑠𝑟

(2.73)

with the solution

𝑎 = 𝜈
(︂
𝑅

𝑟𝑠

)︂3
, 𝑏 = 2

3𝑅 (2.74)

and we come to the form of the potential 𝑉 parameterized solely by the nucleus
radius 𝑅:

𝑉 (𝑟) = − 3𝜈√
4𝑅2 + 9𝑟2

(︂
𝑅

𝑟𝑠

)︂3
. (2.75)

Figure 2.5: Comparison of the two potentials 𝑉 (2.10) and 𝑉 (2.75) for the parameters
𝑅 = 9.45 Bohr, 𝑟𝑠 = 3.01 Bohr and 𝜈 = 1.
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We compare this with the precise potential 𝑉 for our nanoparticle in figure 2.5. For
simplicity, however, the following calculations will be performed with the general
form of 𝑉 . The goal is to find the ground state of an electron in this potential. To do
this we will use the approach proposed by Li [7], which shows an analytical solution
of this problem. From 1.16 we have the Schrödinger equation for the radial function
𝑅 (︃

−1
2
𝑑2

𝑑𝑟2 −
1
𝑟

𝑑

𝑑𝑟
− 𝑎√

𝑏2 + 𝑟2

)︃
𝑅(𝑟) = 𝐸𝑅(𝑟). (2.76)

Since the hydrogen atom ground state radial function, given by the formula 2.52 for
𝑛 = 1, 𝑙 = 0 is of the form

𝑅10(𝑟) = 2𝑒−𝑟, (2.77)

it is sensible to use the ansatz

𝑅(𝑟) = 𝑒𝑢(𝑟). (2.78)

This yields the equation

𝑑2𝑢

𝑑𝑟2 +
(︃
𝑑𝑢

𝑑𝑟

)︃
+ 2
𝑟

𝑑𝑢

𝑑𝑟
+ 2𝑎√

𝑏2 + 𝑟2
+ 2𝐸 = 0. (2.79)

The next step is to change the independent variable so that there are no terms with
the square root. This can be achieved by applying the substitution

𝜌 =
√
𝑏2 + 𝑟2, (2.80)

𝑣(𝜌) = 𝑢(𝑟), (2.81)

where 𝜌 ∈ ⟨𝑏,+∞). Using this we get the derivatives

𝑑𝑢

𝑑𝑟
=
√︃

1− 𝑏2

𝜌2
𝑑𝑣

𝑑𝜌
, (2.82)

𝑑2𝑢

𝑑𝑟2 =
(︃

1− 𝑏2

𝜌2

)︃
𝑑2𝑣

𝑑𝜌2 + 𝑏2

𝜌2
𝑑𝑣

𝑑𝜌
(2.83)

and therefore the equation 2.79 simplifies to(︃
1− 𝑏2

𝜌2

)︃
𝑑2𝑣

𝑑𝜌2 +
(︃

1− 𝑏2

𝜌2

)︃(︃
𝑑𝑣

𝑑𝜌

)︃2

+
(︃
𝑏2

𝜌3 + 2
𝜌

)︃
𝑑𝑣

𝑑𝜌
+ 2𝑎

𝜌
+ 2𝐸 = 0. (2.84)

The order of this differential equation can be easily reduced by considering

𝑤(𝜌) = 𝑑𝑣

𝑑𝜌
(𝜌). (2.85)

To simplify this even more we use another change of variables:

𝑧 = 1− 𝑏

𝜌
, (2.86)

ℎ(𝑧) = 𝑤(𝜌) (2.87)
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with 𝑧 ∈ ⟨0, 1). This gives the derivative

𝑑𝑤

𝑑𝜌
= (1− 𝑧)2

𝑏

𝑑ℎ

𝑑𝑧
(2.88)

and allows us to write

𝑓0(𝑧)
𝑑ℎ

𝑑𝑧
(𝑧) + 𝑓1(𝑧)ℎ2(𝑧) + 𝑓2(𝑧)ℎ(𝑧) + 𝑓3(𝑧) = 𝐸, (2.89)

where

𝑓0(𝑧) = 𝑧(𝑧 − 1)2(𝑧 − 2)
𝑏

, (2.90)

𝑓1(𝑧) = 𝑧(𝑧 − 2)
2 , (2.91)

𝑓2(𝑧) = 2(𝑧 − 1) + (𝑧 − 1)3

2𝑏 , (2.92)

𝑓3(𝑧) = 𝑎(𝑧 − 1)
𝑏

. (2.93)

Now we assume

lim
𝑧→0,1

𝑓0(𝑧)
𝑑ℎ

𝑑𝑧
(𝑧) = 0. (2.94)

This assumption is understandable since it is true if we start with the Hydrogen
atom ground state 2.77, and together with equation 2.89 provides the boundary
conditions for ℎ(𝑧):

𝑓2(0)ℎ(0) + 𝑓3(0) = 𝐸, (2.95)

𝑓1(1)ℎ2(1) = 𝐸. (2.96)

We continue by expanding ℎ(𝑧) into a Taylor series at 𝑧 = 0:

ℎ(𝑧) =
+∞∑︁
𝑘=0

ℎ𝑘𝑧
𝑘, ℎ𝑘 = ℎ(𝑘)(0)

𝑘! . (2.97)

Hence, we can write

𝑓1(1)
(︃+∞∑︁

𝑘=0
ℎ𝑘

)︃2

= 𝐸. (2.98)

ℎ0 is already given by the boundary condition 2.95. To find the remaining coefficients
we take the 𝑘-th derivative of equation 2.89, set 𝑧 = 0 and solve for ℎ𝑘. The resulting
relations read

ℎ0 = 𝐸 − 𝑓30

𝑓20
, (2.99)

ℎ𝑘 = − 1
𝑘𝑓01 + 𝑓20

⎛⎝ 𝑘−1∑︁
𝑙=0

𝑓1(𝑘−𝑙)

𝑙∑︁
𝑚=0

ℎ𝑙−𝑚ℎ𝑚+

+
𝑘−1∑︁
𝑙=0

𝑓2(𝑘−𝑙)ℎ𝑙 +
𝑘−1∑︁
𝑙=1

𝑙𝑓0(𝑘−𝑙+1)ℎ𝑙 + 𝑓3𝑘

⎞⎠, 𝑘 ≥ 1,
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where we denoted

𝑓𝑖𝑗 = 𝑓
(𝑗)
𝑖 (0)
𝑗! (2.100)

for all 𝑖 ∈ {0, . . . , 3}. Substituting for ℎ𝑘 in 2.98 gives us an algebraic equation
for the ground state energy 𝐸. However, the solution cannot be obtained directly,
since the equation consists of terms of arbitrary large powers of 𝐸. The correct way
is to solve 2.98 for finitely many terms and then find a convergent sequence while
increasing the number of ℎ𝑘 included. Such a sequence is guaranteed to exist and to
be unique.

Figure 2.6: Convergence of the hydrogen atom ground state energy (𝑎 = 1, 𝑏 = 0)
computed from 2.98 using only the first 𝐿 + 1 coefficients ℎ𝑘.

To simplify our calculations and properly perform the limit 𝑏 → 0, we normalize
the coefficients 𝑓𝑖𝑗. This is achieved simply by multiplying them by the factor 2𝑏.
Using the fact that the functions 𝑓𝑖 are polynomials, hence there are finitely many
nontrivial derivatives, we can write the nontrivial normalized coefficients 𝐹𝑖𝑗 = 2𝑏𝑓𝑖𝑗

in the following matrix:

F =

⎛⎜⎜⎜⎝
0 −4 10 −8 2
0 −2𝑏 𝑏 0 0
−3 5 −3 1 0
−2𝑎 2𝑎 0 0 0

⎞⎟⎟⎟⎠ (2.101)

The set of equations for ℎ𝑘 then changes to

ℎ0 = 2𝑏𝐸 − 𝐹30

𝐹20
, (2.102)

ℎ𝑘 = − 1
𝑘𝐹01 + 𝐹20

⎛⎝ 𝑘−1∑︁
𝑙=0

𝐹1(𝑘−𝑙)

𝑙∑︁
𝑚=0

ℎ𝑙−𝑚ℎ𝑚+

+
𝑘−1∑︁
𝑙=0

𝐹2(𝑘−𝑙)ℎ𝑙 +
𝑘−1∑︁
𝑙=1

𝑙𝐹0(𝑘−𝑙+1)ℎ𝑙 + 𝐹3𝑘

⎞⎠, 𝑘 ≥ 1.
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(a) (b)

Figure 2.7: Dependence of the ground state energy on the size of the nanoparticle radius
for a constant charge (𝑎 = 30.945).

We see that if 𝑏 = 0, all coefficients are independent of 𝐸 and therefore the limiting
procedure is simplified to a plain limit. Figure 2.6 shows how quickly 𝐸 approaches
the value of the hydrogen atom ground state energy for increasing number of ℎ𝑘.
Figures 2.7a, 2.7b and 2.8 then depict the behaviour of 𝐸 depending on the param-
eter 𝑏 (radius 𝑅). Using this procedure, we obtain the ground state energy value of
−4.414 Hartree for the case of our gold nanoparticle.

Figure 2.8: Dependence of the ground state energy on the nanoparticle radius for a
charge depending on 𝑅. Parameters 𝑎 and 𝑏 are given by 2.74 (𝑟𝑠 = 3.01 Bohr, 𝜈 = 1).

Next, we would like to find the corresponding shape of the radial wave function
𝑅. This simply means going back over all substitutions and changes of variables
we used in the previous process of solving the ground state energy. From the now
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known values of ℎ𝑘 we get the function ℎ and hence from 2.85-2.87 we can write

𝑣(𝜌) =
∫︁ 1− 𝑏

𝜌

𝜌0

𝑏

(1− 𝑧)2ℎ(𝑧)𝑑𝑧 = 𝑏
∞∑︁

𝑘=0
ℎ𝑘

∫︁ 1− 𝑏
𝜌

𝜌0

𝑧𝑘

(1− 𝑧)2𝑑𝑧 =

= 𝑏
∞∑︁

𝑘=0
ℎ𝑘

∫︁ − 𝑏
𝜌

𝑡0

(𝑡+ 1)𝑘

𝑡2
𝑑𝑡 =

= 𝑏
∞∑︁

𝑘=0
ℎ𝑘

(︃∫︁ − 𝑏
𝜌

𝑡0

1
𝑡2
𝑑𝑡+

∫︁ − 𝑏
𝜌

𝑡0

𝑘

𝑡
𝑑𝑡+

∫︁ − 𝑏
𝜌

𝑡0

𝑘−2∑︁
𝑙=0

(︁
𝑘

𝑙+2

)︁
𝑡𝑙𝑑𝑡

)︃
=

=
∞∑︁

𝑘=0
ℎ𝑘𝜌− 𝑏

∞∑︁
𝑘=1

𝑘ℎ𝑘 ln 𝜌+ 𝑏
∞∑︁

𝑘=2
ℎ𝑘

𝑘−1∑︁
𝑙=1

1
𝑙

(︁
𝑘

𝑙+1

)︁ (︁
− 𝑏

𝜌

)︁𝑙
=

= 𝛼𝜌+ 𝛽 ln 𝜌+𝐺
(︁
− 𝑏

𝜌

)︁
, (2.103)

where we omitted the constant term, since it will be determined by the normaliza-
tion, and we denoted

𝛼 =
∞∑︁

𝑘=0
ℎ𝑘, (2.104)

𝛽 = −𝑏
∞∑︁

𝑘=1
𝑘ℎ𝑘, (2.105)

𝐺(𝑥) = 𝑏
∞∑︁

𝑘=2
ℎ𝑘

𝑘−1∑︁
𝑙=1

1
𝑙

(︁
𝑘

𝑙+1

)︁
𝑥𝑙. (2.106)

To find the constants 𝛼, 𝛽 we look at the derivatives of 𝑣 for 𝜌→ +∞. It’s not hard
to see that

𝑑𝑣

𝑑𝜌
= 𝛼 + 𝛽

𝜌
+𝒪

(︃
1
𝜌2

)︃
, (2.107)

𝑑2𝑣

𝑑𝜌2 = 𝒪
(︃

1
𝜌2

)︃
(2.108)

Inserting these into 2.84 and comparing terms of the same order of 𝜌 than yields

𝛼 = −
√
−2𝐸, 𝛽 = 𝑎√

−2𝐸
− 1. (2.109)

Now, using the change of variables 2.80, 2.81 and the ansatz 𝑅(𝑟) = 𝑒𝑢(𝑟) we started
with we arrive at the total form of the radial wave function:

𝑅(𝑟) = 𝑁
(︁
𝑏2 + 𝑟2

)︁𝛽
2 𝑒

𝛼
√

𝑏2+𝑟2 + 𝐺

(︁
− 𝑏√

𝑏2+𝑟2

)︁
. (2.110)

Here, 𝑁 is again the normalization factor which is to be calculated numerically. One
can easily check that in the limit 𝑏 → 0 𝑅 takes the shape of the hydrogen atom
ground state function 𝑅10, as 𝛽 equals zero. Finally, we substitute for 𝑎, 𝑏 to find
the desired form of 𝑅 approximating our nanoparticle ground state wave function:

𝑅(𝑟) = 𝑁
(︁
4𝑅2 + 9𝑟2

)︁ 𝜈
2

√
−2𝐸 ( 𝑅

𝑟𝑠
)3

− 1
2 𝑒

−
√

− 2
9 𝐸(4𝑅2+9𝑟2) + 𝐺

(︁
− 2𝑅√

4𝑅2+9𝑟2

)︁
. (2.111)
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Figure 2.9: Potential 𝑉 for fixed parameter 𝑎 = 1 and two different values of 𝑏.
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Figure 2.10: Comparison of the ground state radial probability density function for the
point-like nucleus hydrogen atom (𝑏 = 0) and the finite nucleus particle (𝑏 = 0.9) for the
same charge (𝑎 = 1).

Radial probability density 𝑃10 and radial electron density 𝑛10 for two different values
of 𝑏 are depicted in figures 2.10 and 2.11, respectively. It shows how the densities
change when one considers a finite nucleus. In the article [7] it was shown that for
large parameters 𝑎, 𝑏 approximate formulae for the energy can be derived. Moreover,
it is also possible to use this approach for higher excited states. To do that, one only
changes the initial ansatz to the corresponding shape of the hydrogen excited state.



36 Chapter 2. Nanoparticle Potential

0 1 2 3 4 5
r (Bohr)

0.00

0.01

0.02

0.03

0.04

n 1
0

b = 0 Bohr
b = 0.9 Bohr

Figure 2.11: Comparison of the ground state radial electron density function for the
point-like nucleus hydrogen atom (𝑏 = 0) and the finite nucleus particle (𝑏 = 0.9) for the
same charge (𝑎 = 1).



Chapter 3

Many-Electron Systems

So far we considered a single electron moving in the nanoparticle’s potential 𝑉 .
However, to obtain the resulting electron density, a multi-electron system must be
described. That would mean solving a 3N-dimensional Hamiltonian which contains
the interactions of all particles not only with the nucleus but also with each other.
This is not possible in practice. Therefore several approximations must be made.

3.1 Non-Interacting Electrons

The easiest, but not very accurate way of solving the many-electron problem is to
consider the motion of 𝑁 non-interacting electrons in the potential 𝑉 . This approach
no longer needs any additional computations and the solution can be fully deter-
mined from the previous one-electron wave functions. Namely, the solution of the
Schrödinger equation with the Hamiltonian of the form

𝐻̂(r1, . . . , r𝑁) =
𝑁∑︁

𝑖=1

(︁
− Δr𝑖

2 + 𝑉 (r𝑖)
)︁

(3.1)

can be assumed in a separate form

Ψ(r1, . . . , r𝑁) = 𝜓1(r1)𝜓2(r2) . . . 𝜓𝑁(r𝑁) (3.2)

and thus leads to a set of 𝑁 identical one-electron equations. Furthermore, we use
the fact that electrons have a spin (with two possible values, either up or down),
and must fulfil the so-called Pauli exclusion principle. This will provide us with a
prescription for how to choose individual wave functions and thereby retrieve the
resulting electron distribution that minimizes the total eigenenergy. That is obtained
by a simple sum of the respective one-electron eigenenergies.

Since our primary goal is to determine the overall charge distribution of the nanopar-
ticle, let us now show how to determine the electron density 𝑛𝑒 of a many-particle
system. Let’s start by calculating the multi-electron probability:

𝑃 (r1, . . . , r𝑁) = |Ψ(r1, . . . , r𝑁)|2 = |𝜓1(r1)|2 . . . |𝜓𝑁(r𝑁)|2. (3.3)

37
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The probability distribution of a single electron is the marginal probability function,
that is

𝑃𝑖(r𝑖) =
∫︁
R3(𝑁−1)

𝑃 (r1, . . . , r𝑁)𝑑r1 . . . 𝑑r𝑖−1𝑑r𝑖+1 . . . 𝑑r𝑁 =

= |𝜓𝑖(r𝑖)|2
𝑁∏︁
𝑗=1
𝑗 ̸=𝑖

∫︁
R3
|𝜓𝑗(r𝑗)|2𝑑r𝑗 = |𝜓𝑖(r𝑖)|2, (3.4)

where in the last equality we used the fact that every one-electron wave function is
normalized. The total electron density function is then a simple sum of the single-
electron densities:

𝑛𝑒(r) =
𝑁∑︁

𝑖=1
𝑛𝑖(r) =

𝑁∑︁
𝑖=1

𝑃𝑖(r) =
𝑁∑︁

𝑖=1
|𝜓𝑖(r)|2. (3.5)

Even though this model can help us to understand the basic features of our problem
and to create a primitive view of the final electron density distribution, it is not
sufficiently accurate and therefore needs to be improved. To do so, we need to
include the electron-electron interactions in our calculations. This can be done in
general by adding an extra potential 𝑉𝑒𝑒 to the total Hamiltonian:

𝐻̂ = 𝑇 + 𝑉 + 𝑉𝑒𝑒. (3.6)

Usually, 𝑉𝑒𝑒 is chosen to represent all the two-electron Coulomb interactions, i.e.

𝑉𝑒𝑒(r1, . . . , r𝑁) =
𝑁∑︁

𝑖,𝑗=1
𝑖<𝑗

𝑉2(r𝑖, r𝑗) =
𝑁∑︁

𝑖,𝑗=1
𝑖<𝑗

1
|r𝑖 − r𝑗|

(3.7)

with r𝑖 being the position of the 𝑖-th electron. In the following sections, we will learn
concretely how this extended Hamiltonian can be solved.

3.2 Hartree Approximation

First way how to approach the many-interacting-electron problem is to presume that
the eigenfunction Ψ(r1, . . . , r𝑁) of the Hamiltonian 𝐻̂ can be expressed as a product
of one-electron functions 𝜓𝑖(r𝑖), that is

Ψ(r1, . . . , r𝑁) = 𝜓1(r1)𝜓2(r2) . . . 𝜓𝑁(r𝑁). (3.8)

The total Hamiltonian described as acting on all the one-electron functions 𝜓𝑖 has
then the form

𝐻̂(r1, . . . , r𝑁) =
𝑁∑︁

𝑖=1
𝐻̂1(r𝑖) +

𝑁∑︁
𝑖,𝑗=1
𝑖<𝑗

𝑉2(r𝑖, r𝑗) =

=
𝑁∑︁

𝑖=1

⎛⎝− Δr𝑖

2 + 𝑉 (r𝑖) +
𝑁∑︁

𝑗=2
𝑖<𝑗

1
|r𝑖 − r𝑗|

⎞⎠, (3.9)



3.2. Hartree Approximation 39

where 𝐻̂1 is the one-electron Hamiltonian, 𝑉2 is the two-electron interaction potential
and 𝑉 is the nanoparticle potential 2.10 for 𝑟 = |r𝑖|.

We would now like to find the ground state energy of our system. Let’s assume
we have a Hamiltonian operator 𝐻̂ with the eigenvalues 𝐸𝑖 and the corresponding
normalized eigenstates 𝑢𝑖 which form a complete set. Next, let Ψ be an arbitrary
normalized wave function. Using the completeness of the eigenstates we can write

Ψ(r1, . . . , r𝑁) =
∑︁

𝑖

𝛼𝑖𝑢𝑖(r1, . . . , r𝑁). (3.10)

The expectation value of the Hamiltonian is then

⟨Ψ|𝐻̂Ψ⟩ =
∑︁
𝑖,𝑗

𝛼*
𝑖𝛼𝑗⟨𝑢𝑖|𝐻̂𝑢𝑗⟩ =

∑︁
𝑖,𝑗

𝛼*
𝑖𝛼𝑗𝐸𝑗𝛿𝑖𝑗 =

∑︁
𝑖

|𝛼𝑖|2𝐸𝑖. (3.11)

Since

⟨Ψ|Ψ⟩ =
∑︁
𝑖,𝑗

𝛼*
𝑖𝛼𝑗⟨𝑢𝑖|𝑢𝑗⟩ =

∑︁
𝑖,𝑗

𝛼*
𝑖𝛼𝑗𝛿𝑖𝑗 =

∑︁
𝑖

|𝛼𝑖|2 = 1, (3.12)

holds due to the normalization of 𝜓, expression 3.11 can be further expanded as

⟨Ψ|𝐻̂Ψ⟩ = 𝐸0 +
∑︁

𝑖

|𝛼𝑖|2(𝐸𝑖 − 𝐸0), (3.13)

where 𝐸0 denotes the ground state energy. We see that for any eigenstate Ψ, the
expectation value of the Hamiltonian 𝐻̂ is always greater than or equal to 𝐸0.
Finding 𝐸0 is thus equivalent to finding such Ψ that minimizes ⟨Ψ|𝐻̂Ψ⟩ while keeping
Ψ normalized. According to the variational principle, the desired function must then
satisfy the equation

𝛿

[︃
⟨Ψ|𝐻̂Ψ⟩ −

𝑁∑︁
𝑖=1

𝜖𝑖

(︁
⟨𝜓𝑖|𝜓𝑖⟩ − 1

)︁]︃
= 0, (3.14)

where the second term expresses the normalization constraint of all one-electron
wave functions. Clearly, the Lagrange multipliers 𝜖𝑖 have the dimension of energy.
Applying the variation on the individual terms gives us

𝛿⟨Ψ|𝐻̂Ψ⟩ = ⟨𝛿Ψ|𝐻̂Ψ⟩+ ⟨𝐻̂Ψ|𝛿Ψ⟩ =
= ⟨𝛿Ψ|𝐻̂Ψ⟩+ ⟨𝛿Ψ|𝐻̂Ψ⟩* = 2 Re

(︁
⟨𝛿Ψ|𝐻̂Ψ⟩

)︁
(3.15)

and

𝛿⟨𝜓𝑖|𝜓𝑖⟩ = ⟨𝛿𝜓𝑖|𝜓𝑖⟩+ ⟨𝜓𝑖|𝛿𝜓𝑖⟩ =
= ⟨𝛿𝜓𝑖|𝜓𝑖⟩+ ⟨𝛿𝜓𝑖|𝜓𝑖⟩* = 2 Re

(︁
⟨𝛿𝜓𝑖|𝜓𝑖⟩

)︁
, (3.16)

where we used the fact that 𝐻̂ is hermitian. In order to see how to write the expec-
tation value of the total Hamiltonian in the language of 𝜓𝑖 we explicitly break down
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the scalar product ⟨Ψ|𝐻̂Ψ⟩:

⟨Ψ|𝐻̂Ψ⟩ =
∫︁
R3𝑁

Ψ*(r1 . . . r𝑁)𝐻̂Ψ(r1 . . . r𝑁)𝑑r1 . . . 𝑑r𝑁 =

=
𝑁∑︁

𝑖=1

∫︁
R3𝑁

𝜓*
1(r1) . . . 𝜓*

𝑁(r𝑁)𝐻̂𝜓1(r1) . . . 𝜓𝑁(r𝑁)𝑑r1 . . . 𝑑r𝑁 =

=
𝑁∑︁

𝑖=1

∫︁
R6
𝜓*

𝑖 (r𝑖)
(︃
−Δr𝑖

2 + 𝑉 (r𝑖)
)︃
𝜓𝑖(r𝑖)𝑑r𝑖 +

+
𝑁∑︁

𝑖,𝑗=1
𝑖<𝑗

∫︁
R6
𝜓*

𝑖 (r𝑖)𝜓*
𝑗 (r𝑗)𝑉2(r𝑖, r𝑗)𝜓𝑖(r𝑖)𝜓𝑗(r𝑗)𝑑r𝑖𝑑r𝑗 =

=
𝑁∑︁

𝑖=1
⟨𝜓𝑖|𝐻̂1𝜓𝑖⟩+

𝑁∑︁
𝑖,𝑗=1
𝑖<𝑗

⟨𝜓𝑖|⟨𝜓𝑗|𝑉2𝜓𝑗⟩𝜓𝑖⟩. (3.17)

This relation allows us to rewrite the expression 3.15 using the variations 𝛿𝜓𝑖:

𝛿⟨Ψ|𝐻̂Ψ⟩ = 2 Re
⎛⎝ 𝑁∑︁

𝑖=1
⟨𝛿𝜓𝑖|𝐻̂1𝜓𝑖⟩+ 2

𝑁∑︁
𝑖,𝑗=1
𝑖<𝑗

⟨𝛿𝜓𝑖|⟨𝜓𝑗|𝑉2𝜓𝑗⟩𝜓𝑖⟩.

⎞⎠ =

= 2 Re
⎛⎝ 𝑁∑︁

𝑖=1
⟨𝛿𝜓𝑖|𝐻̂1𝜓𝑖⟩+

𝑁∑︁
𝑖,𝑗=1
𝑖 ̸=𝑗

⟨𝛿𝜓𝑖|⟨𝜓𝑗|𝑉2𝜓𝑗⟩𝜓𝑖⟩.

⎞⎠ (3.18)

The factor of 2 in the first equation was obtained by using the Leibniz rule for
variations and interchanging the indices 𝑖 ↔ 𝑗 in the second term. Due to the
symmetry of the interaction, it was replaced in the second equation by including
terms with the indices 𝑖 > 𝑗 in the sum, as well. Putting everything together then
yields

𝑁∑︁
𝑖=1

Re
⎛⎝⟨𝛿𝜓𝑖|𝐻̂1𝜓𝑖 +

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

⟨𝜓𝑗|𝑉2𝜓𝑗⟩𝜓𝑖 − 𝜖𝑖𝜓𝑖⟩

⎞⎠ = 0. (3.19)

Since every variation 𝛿𝜓𝑖 (and for the complex conjugate part the variations 𝛿𝜓*
𝑖 ) can

be arbitrary, we arrive at a set of 𝑁 equations for the one-electron wave functions
𝜓𝑖:

𝐻̂1𝜓𝑖 +
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

⟨𝜓𝑗|𝑉2𝜓𝑗⟩𝜓𝑖 − 𝜖𝑖𝜓𝑖 = 0 (3.20)

or explicitly

𝜖𝑖𝜓𝑖(r𝑖) =

=
(︂
− Δr𝑖

2 + 𝑉 (r𝑖)
)︂
𝜓𝑖(r𝑖) +

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

∫︁
R3
𝜓*

𝑗 (r)𝑉2(r𝑖, r)𝜓𝑗(r)𝜓𝑖(r𝑖)𝑑r, (3.21)
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where the unknowns are not only the functions 𝜓𝑖, but also the Lagrange multipliers
𝜖𝑖. These equations are called the Hartree equations and usually, they are solved
iteratively in the following way:

1. Calculate the interaction term from an initial guess of the functions 𝜓𝑖 (typi-
cally the non-interacting electron solution).

2. Solve the remaining 𝑁 differential equation for all 𝜓𝑖 and 𝜖𝑖 as an eigenvalue
problem.

3. Repeat steps 1 and 2 until the difference between two consecutive solutions is
zero.

We can conclude that we have converted our N-dimensional problem to an iterative
solution of N Schrödinger equations with total Hamiltonians

𝐻̂(1) = 𝐻̂1 + 𝑉𝐶 (3.22)

where

𝑉𝐶(r𝑖) =
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∫︁
R3
𝜓*

𝑗 (r)𝑉2(r𝑖, r)𝜓𝑗(r)𝑑r (3.23)

expresses the Coulomb mean field created by all the other electrons and is computed
from the wave functions from the previous iteration.

The last thing we will mention in this section is the calculation of the total electron
density 𝑛𝑒. Since we started with the wave function in the product form

Ψ(r1, . . . , r𝑁) = 𝜓1(r1)𝜓2(r2) . . . 𝜓𝑁(r𝑁), (3.24)

we arrive at the same relation as we had in the case of non-interacting electrons, i.e.

𝑛𝑒(r) =
𝑁∑︁

𝑖=1
|𝜓𝑖(r)|2. (3.25)

3.3 Hartree-Fock Approximation

The Hartree approximation is good to show the wave function decomposition and
the variational principle, but does not take into account the very nature of the
electrons - they are fermions. To fix this, we need to impose another condition on
the wave function, namely, it must be antisymmetric under the exchange of any two
particles:

Ψ(r1, . . . , r𝑖, . . . , r𝑗, . . . , r𝑁) = −Ψ(r1, . . . , r𝑗, . . . , r𝑖, . . . , r𝑁), (3.26)
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In practice, this is usually solved by extending our previous factorization 3.8 with all
permutations of the positions r𝑖, including the sign of the permutation. This model
can be easily rewritten using the so-called Slater determinant:

Ψ(r1, . . . , r𝑁) = 1√
𝑁 !

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝜓1(r1) 𝜓2(r1) . . . 𝜓𝑁(r1)
𝜓1(r2) 𝜓2(r2) . . . 𝜓𝑁(r2)

... ... ...
𝜓1(r𝑁) 𝜓2(r𝑁) . . . 𝜓𝑁(r𝑁)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ , (3.27)

where the factor 1√
𝑁 ! is necessary due to normalization. The rest of the derivation

process is identical to the procedure in the previous section. Therefore, we again need
to determine the expectation values of the Hamiltonian. For easier manipulation,
we start by rewriting Ψ using the permutation operator 𝑃𝜋:

Ψ(r1, . . . , r𝑁) = 1√
𝑁 !

∑︁
𝜋∈𝑆𝑁

sgn 𝜋𝑃𝜋(𝜓1 . . . 𝜓𝑁), (3.28)

where 𝑆𝑁 is the set of all permutations over 𝑁 , sgn 𝜋 is the sign of the permutation
and 𝑃𝜋 is defined as follows:

𝑃𝜋(𝜓1 . . . 𝜓𝑁) = 𝜓1(r𝜋(1)) . . . 𝜓𝑁(r𝜋(𝑁)). (3.29)

The non-interaction Hamiltonian expectation value is then

⟨Ψ|𝐻̂1Ψ⟩ =

= 1
𝑁 !

∑︁
𝜋,𝜋′∈𝑆𝑁

sgn(𝜋 ∘ 𝜋′)
∫︁
R3𝑁

𝑃𝜋(𝜓*
1 . . . 𝜓

*
𝑁)𝐻̂1𝑃𝜋′(𝜓1 . . . 𝜓𝑁)𝑑r1 . . . 𝑑r𝑁 =

= 1
𝑁 !

∑︁
𝜋,𝜋′∈𝑆𝑁

sgn𝜎𝑃𝜋

∫︁
R3𝑁

𝜓*
1(r1) . . . 𝜓*

𝑁(r𝑁)𝐻̂1𝑃𝜎(𝜓1 . . . 𝜓𝑁)𝑑r1 . . . 𝑑r𝑁 =

=
∑︁

𝜎∈𝑆𝑁

sgn𝜎
∫︁
R3𝑁

𝜓*
1(r1) . . . 𝜓*

𝑁(r𝑁)𝐻̂1𝑃𝜎(𝜓1 . . . 𝜓𝑁)𝑑r1 . . . 𝑑r𝑁 =

=
∑︁

𝜎∈𝑆𝑁

sgn𝜎
∫︁
R3
𝜓*

𝑖 (r𝑖)𝐻̂1𝜓𝑖(r𝜎(𝑖))𝛿1
𝜎(1) . . . 𝛿

𝑖−1
𝜎(𝑖−1)𝛿

𝑖+1
𝜎(𝑖+1) . . . 𝛿

𝑁
𝜎(𝑁)𝑑r𝑖 =

=
∫︁
R3
𝜓*

𝑖 (r𝑖)𝐻̂1𝜓𝑖(r𝑖)𝑑r𝑖 = ⟨𝜓𝑖|𝐻̂1𝜓𝑖⟩, (3.30)
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where 𝜎 = 𝜋 ∘ 𝜋′. Similarly for the interaction term

⟨Ψ|𝑉2Ψ⟩ =

= 1
𝑁 !

∑︁
𝜋,𝜋′∈𝑆𝑁

sgn(𝜋 ∘ 𝜋′)
∫︁
R3𝑁

𝑃𝜋(𝜓*
1 . . . 𝜓

*
𝑁)𝑉2𝑃𝜋′(𝜓1 . . . 𝜓𝑁)𝑑r1 . . . 𝑑r𝑁 =

= 1
𝑁 !

∑︁
𝜋,𝜋′∈𝑆𝑁

sgn𝜎𝑃𝜋

∫︁
R3𝑁

𝜓*
1(r1) . . . 𝜓*

𝑁(r𝑁)𝑉2𝑃𝜎(𝜓1 . . . 𝜓𝑁)𝑑r1 . . . 𝑑r𝑁 =

=
∑︁

𝜎∈𝑆𝑁

sgn𝜎
∫︁
R3𝑁

𝜓*
1(r1) . . . 𝜓*

𝑁(r𝑁)𝑉2𝑃𝜎(𝜓1 . . . 𝜓𝑁)𝑑r1 . . . 𝑑r𝑁 =

=
∑︁

𝜎∈𝑆𝑁

sgn𝜎
∫︁
R6
𝜓*

𝑖 (r𝑖)𝜓*
𝑗 (r𝑗)𝑉2(r𝑖, r𝑗)𝜓𝑖(r𝜎(𝑖))𝜓𝑗(r𝜎(𝑗))𝑑r𝑖𝑑r𝑗 ·

· 𝛿1
𝜎(1) . . . 𝛿

𝑖−1
𝜎(𝑖−1)𝛿

𝑖+1
𝜎(𝑖+1) . . . 𝛿

𝑗−1
𝜎(𝑗−1)𝛿

𝑗+1
𝜎(𝑗+1) . . . 𝛿

𝑁
𝜎(𝑁) =

=
∫︁
R6
𝜓*

𝑖 (r𝑖)𝜓*
𝑗 (r𝑗)𝑉2(r𝑖, r𝑗)𝜓𝑖(r𝑖)𝜓𝑗(r𝑗)𝑑r𝑖𝑑r𝑗 −

−
∫︁
R6
𝜓*

𝑖 (r𝑖)𝜓*
𝑗 (r𝑗)𝑉2(r𝑖, r𝑗)𝜓𝑖(r𝑗)𝜓𝑗(r𝑖)𝑑r𝑖𝑑r𝑗. (3.31)

By applying the variational principle we arrive at the Hartree-Fock equations:

𝜖𝑖𝜓𝑖(r𝑖) =
(︂
− Δr𝑖

2 +𝑉 (r𝑖)
)︂
𝜓𝑖(r𝑖) +

+
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∫︁
R3
𝜓*

𝑗 (r)𝑉2(r𝑖, r)𝜓𝑗(r)𝜓𝑖(r𝑖)𝑑r−

−
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∫︁
R3
𝜓*

𝑗 (r)𝑉2(r𝑖, r)𝜓𝑗(r𝑖)𝜓𝑖(r)𝑑r. (3.32)

We see that, in contrast to the Hartree equations, there is an additional potential

𝑉𝑒𝑥(r𝑖)𝜓𝑖(r𝑖) = −
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∫︁
R3
𝜓*

𝑗 (r)𝑉2(r𝑖, r)𝜓𝑗(r𝑖)𝜓𝑖(r)𝑑r. (3.33)

𝑉𝑒𝑥 is the so-called exchange potential and it decreases the energy of the electron-
electron mean field. Again, these equations are usually solved iteratively in the same
manner as in the previous section. The only change is the corresponding total one-
particle Hamiltonians which take the form

𝐻̂(1) = 𝐻̂1 + 𝑉𝐶 + 𝑉𝑒𝑥. (3.34)

So far, we have only considered the antisymmetry of the wave functions with respect
to position interchange. For a more precise description, however, the electron spin
must also be included in the considerations. In the case of a single electron, the
Hamiltonian was independent of spin and it was sufficient to describe the particle
only with the position vector. Nevertheless, by adding more electrons and interac-
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tions between them, spin acquires a crucial role. Therefore, the one-electron wave
function should be of the form:

𝜓𝑖(𝑥𝑖) = 𝜓𝑖(r𝑖, 𝑠𝑖), (3.35)

where 𝑠𝑖 takes on values of ±1
2 (or equivalently ↑ and ↓) expressing the spin basis

states. Again, the fully antisymmetric function can be obtained using the Slater
determinant

Ψ(𝑥1, . . . , 𝑥𝑁) = 1√
𝑁 !

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝜓1(𝑥1) 𝜓2(𝑥1) . . . 𝜓𝑁(𝑥1)
𝜓1(𝑥2) 𝜓2(𝑥2) . . . 𝜓𝑁(𝑥2)

... ... ...
𝜓1(𝑥𝑁) 𝜓2(𝑥𝑁) . . . 𝜓𝑁(𝑥𝑁)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ . (3.36)

To proceed with the variational principle we need to extend our definition of the
scalar product for functions with spin. Having the functions normalized, we can
write

⟨𝑓 |𝑔⟩ =
∑︁

𝑠

∫︁
R3
𝑓 *(r, 𝑠)𝑔(r, 𝑠) (3.37)

All steps of deriving the Hartree-Fock equations can therefore be repeated with only
a single interchange: ∫︁

R3
𝑑r ←→

∑︁
𝑠

∫︁
R3
𝑑r, (3.38)

The spin Hartree-Fock equations have then the form

𝜖𝑖𝜓𝑖(r𝑖, 𝑠𝑖) =
(︂
−Δr𝑖

2 + 𝑉 (r𝑖)
)︂
𝜓𝑖(r𝑖, 𝑠𝑖) +

+
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∑︁
𝑠

∫︁
R3
𝜓*

𝑗 (r, 𝑠)𝑉2(r𝑖, r)𝜓𝑗(r, 𝑠)𝜓𝑖(r𝑖, 𝑠𝑖)𝑑r−

−
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∑︁
𝑠

∫︁
R3
𝜓*

𝑗 (r, 𝑠)𝑉2(r𝑖, r)𝜓𝑗(r𝑖, 𝑠𝑖)𝜓𝑖(r, 𝑠)𝑑r. (3.39)

It is important to note that the functions 𝜓𝑖 are again orthonormal, but this time
with respect to the extended definition of the scalar product, i.e.

⟨𝜓𝑖|𝜓𝑗⟩ =
∑︁

𝑠

∫︁
R3
𝜓*

𝑖 (r, 𝑠)𝜓𝑗(r, 𝑠)𝑑r = 𝛿𝑖𝑗. (3.40)

In order to simplify the resulting equations into a form suitable for practical calcu-
lations, let us now assume the one-electron wave functions in the separated form

𝜓𝑖(r, 𝑠) = 𝜙𝑖(r)𝜎𝑖(𝑠). (3.41)

Although the spin functions 𝜎𝑖 can in general represent any direction of the spin,
we will further assume that the electron is either in the spin up state (𝑠 = 1

2) or
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the spin down state (𝑠 = −1
2). This in particular means, that if an electron is in the

spin up state, its corresponding spin function 𝜎𝑖 will be defined as

𝜎𝑖(𝑠) =

⎧⎨⎩1 𝑠 = 1
2

0 𝑠 = −1
2

(3.42)

and similarly, if it’s in the spin down state

𝜎𝑖(𝑠) =

⎧⎨⎩0 𝑠 = 1
2

1 𝑠 = −1
2 .

(3.43)

Plugging the decomposition 3.41 with 𝜎𝑖 defined as above into the Hartree-Fock
equations 3.39 gives

𝜖𝑖𝜙𝑖(r𝑖)𝜎𝑖(𝑠𝑖) =
(︂
−Δr𝑖

2 + 𝑉 (r𝑖)
)︂
𝜙𝑖(r𝑖)𝜎𝑖(𝑠𝑖) +

+
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∫︁
R3
𝜙*

𝑗(r)𝑉2(r𝑖, r)𝜙𝑗(r)𝜙𝑖(r𝑖)𝑑r𝜎𝑖(𝑠𝑖)−

−
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∑︁
𝑠

𝜎*
𝑗 (𝑠)𝜎𝑗(𝑠𝑖)𝜎𝑖(𝑠)

∫︁
R3
𝜙*

𝑗(r)𝑉2(r𝑖, r)𝜙𝑗(r𝑖)𝜙𝑖(r)𝑑r, (3.44)

which in our case of only spin up or spin down simplifies to

𝜖𝑖𝜙𝑖(r𝑖) =
(︂
− Δr𝑖

2 +𝑉 (r𝑖)
)︂
𝜙𝑖(r𝑖) +

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

∫︁
R3
𝜙*

𝑗(r)𝑉2(r𝑖, r)𝜙𝑗(r)𝜙𝑖(r𝑖)𝑑r−

−
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝛿𝜎𝑗𝜎𝑖

∫︁
R3
𝜙*

𝑗(r)𝑉2(r𝑖, r)𝜙𝑗(r𝑖)𝜙𝑖(r)𝑑r, (3.45)

where

𝛿𝜎𝑖𝜎𝑗
=

⎧⎨⎩1 𝜎𝑖 = 𝜎𝑗

0 otherwise.
(3.46)

This means that the exchange term is non-trivial only for electrons which are in the
same spin state.

It is important to note that the magnitudes of energies 𝜖𝑖 express the energy required
to tear a given electron out of the system. Since these energies change after each
extraction, we cannot get the total energy of the system by simply summing 𝜖𝑖

over all the electrons. Instead, we can obtain it as the expected value of the total
Hamiltonian:

⟨Ψ|𝐻̂Ψ⟩ =
𝑁∑︁

𝑖=1

(︂
⟨𝜓𝑖|𝐻̂1𝜓𝑖⟩+

𝑁∑︁
𝑖,𝑗=1
𝑗>𝑖

⟨𝜓𝑖|⟨𝜓𝑗|𝑉2𝜓𝑗⟩𝜓𝑖⟩ −
𝑁∑︁

𝑖,𝑗=1
𝑗>𝑖

⟨𝜓𝑗|⟨𝜓𝑖|𝑉2𝜓𝑗⟩𝜓𝑖⟩
)︂

=

=
𝑁∑︁

𝑖=1

⟨
𝜓𝑖

⃒⃒⃒
𝐻̂1 + 1

2
(︁
𝑉𝐶 + 𝑉𝑒𝑥

)︁
𝜓𝑖

⟩
=

𝑁∑︁
𝑖=1

(︂
⟨𝜓𝑖|𝐻̂1𝜓𝑖⟩+ 1

2⟨𝜓𝑖|(𝑉𝐶 + 𝑉𝑒𝑥)𝜓𝑖⟩
)︂
.

(3.47)
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Finally, let us determine the total electron density 𝑛𝑒. Again, this can be calculated
as the sum of one-electron densities given by the marginal probabilities 𝑛𝑖, that is

𝑛𝑒(r) =
𝑁∑︁

𝑖=1

∫︁
R3(𝑁−1)

𝑃 (r1, . . . , r𝑁)𝑑r1 . . . 𝑑r𝑖−1𝑑r𝑖+1 . . . 𝑑r𝑁

⃒⃒⃒
r𝑖=r

. (3.48)

Here

𝑃 (r1, . . . , r𝑁) =
∑︁

𝑠

|Ψ(𝑥1, . . . , 𝑥𝑁)|2. (3.49)

Using the definition of Ψ and the normalization of every 𝜓𝑖 we get the total density
as

𝑛𝑒(r) =
𝑁∑︁

𝑖=1

∫︁
R3(𝑁−1)

∑︁
𝑠

1
𝑁 !

∑︁
𝜋,𝜋′∈𝑆𝑁

sgn(𝜋 ∘ 𝜋′)𝜓*
1(𝑥𝜋(1)) . . . 𝜓*

𝑁(𝑥𝜋(𝑁))·

· 𝜓1(𝑥𝜋′(1)) . . . 𝜓𝑁(𝑥𝜋′(𝑁))𝑑r1 . . . 𝑑r𝑖−1𝑑r𝑖+1 . . . 𝑑r𝑁

⃒⃒⃒
r𝑖=r

=

=
𝑁∑︁

𝑖=1

∑︁
𝑠

|𝜓𝑖(r, 𝑠)|2 =
𝑁∑︁

𝑖=1
|𝜙𝑖(r)|2, (3.50)

where we used the fact that after the integration and summing over the spins, only
terms where 𝜋 = 𝜋′ are non-zero (see 3.40) and summing over the permutation gives
𝑁 ! identical terms. We see that the result is the same as for the non-interacting elec-
trons and the Hartree approximation (except the spin part which could be included
in those approximations in the same manner as in the Hartree-Fock theory).



Chapter 4

Numerical Solution - Matrix
Method

As mentioned earlier, there are no exact analytical solutions for such complex sys-
tems as our nanoparticle. Fortunately, over the years, a number of numerical methods
have been developed that are used to solve these types of problems and whose results
correspond very well to experiments. To find the nanoparticle ground state energy
and the corresponding wave functions we decided to use the so-called Matrix method
recently introduced by Gomez et. al in [8]. This method is based on the Hartree-Fock
equations where both the differential and the integral parts are expressed by some
matrices.

4.1 One-Electron System

To introduce the matrix method and to show its possible precision we start with the
hydrogen atom which was already solved analytically in 2.2. We know that thanks
to the spherical symmetry of this system the wave function can be decomposed into
its angular and radial parts:

𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜑) = 𝑅𝑛𝑙(𝑟)𝑌 𝑚
𝑙 (𝜃, 𝜑). (4.1)

Here, we are concerned with solving the radial part. The corresponding Schrödinger
equation is then (︃

−1
2
𝑑2

𝑑𝑟2 + 𝑙(𝑙 + 1)
2𝑟2 − 1

𝑟

)︃
𝑢𝑛𝑙(𝑟) = 𝐸𝑛𝑙𝑢𝑛𝑙(𝑟), (4.2)

where

𝑢𝑛𝑙(𝑟) = 𝑟𝑅𝑛𝑙(𝑟). (4.3)

To solve this equation numerically we need to approximate the derivative with finite
differences. Using the centre-point difference expression for the first derivative

𝑑𝑓

𝑑𝑟
(𝑟) ≈

𝑓(𝑟 + Δ𝑟
2 )− 𝑓(𝑟 − Δ𝑟

2 )
Δ𝑟 (4.4)

47
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we can write the second derivative as

𝑑2𝑓

𝑑𝑟2 (𝑟) ≈ 𝑓(𝑟 + Δ𝑟)− 2𝑓(𝑟) + 𝑓(𝑟 −Δ𝑟)
(Δ𝑟)2 . (4.5)

Next, we add another approximation. We will consider that there is a maximal
𝑟 = 𝑟𝑚 after which the wave function is effectively zero. This assumption makes sense
given the fact that for a wave function to be normalizable, it must rapidly decay to
zero from a certain point towards infinity. In our case, we already know the analytical
form of the functions, so determining the appropriate 𝑟𝑚 is straightforward. However,
in an unknown problem, some prior ideas about the shape of the solution must be
used. The difference Δ𝑟 is then given by

Δ𝑟 = 𝑟𝑚

𝑀
, (4.6)

where 𝑀 is another user parameter determining the accuracy of the solution. If we
now denote 𝑟𝑖 = 𝑖Δ𝑟, 𝑖 ∈ {1, 2, . . . ,𝑀}, and express the wave function as a vector
of its values at the points 𝑟𝑖, i. e.

u𝑛𝑙 ≡

⎛⎜⎜⎜⎜⎝
𝑢𝑛𝑙(𝑟1)
𝑢𝑛𝑙(𝑟2)

...
𝑢𝑛𝑙(𝑟𝑚)

⎞⎟⎟⎟⎟⎠ , (4.7)

we can rewrite the kinetic term of 4.2 using 4.5 in the following matrix form:

−1
2
𝑑2𝑢𝑛𝑙

𝑑𝑟2 ≡ Tu𝑛𝑙 = 1
2(Δ𝑟)2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
... ... ... . . . ...
0 0 0 . . . 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑛𝑙(𝑟1)
𝑢𝑛𝑙(𝑟2)
𝑢𝑛𝑙(𝑟3)

...
𝑢𝑛𝑙(𝑟𝑚)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.8)

Since the potential term of the Hamiltonian expresses just multiplication by the
potential, the matrix form corresponding to the effective potential

𝑉𝑒𝑓𝑓 = 𝑙(𝑙 + 1)
2𝑟2 − 1

𝑟
(4.9)

is simply

𝑉𝑒𝑓𝑓𝑢𝑛𝑙 ≡ Vu𝑛𝑙 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑉𝑒𝑓𝑓 (𝑟1) 0 0 . . . 0
0 𝑉𝑒𝑓𝑓 (𝑟2) 0 . . . 0
0 0 𝑉𝑒𝑓𝑓 (𝑟3) . . . 0
... ... ... . . . ...
0 0 0 . . . 𝑉𝑒𝑓𝑓 (𝑟𝑚)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑛𝑙(𝑟1)
𝑢𝑛𝑙(𝑟2)
𝑢𝑛𝑙(𝑟3)

...
𝑢𝑛𝑙(𝑟𝑚)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

(4.10)
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We see that we transformed the original Schrödinger equation 4.2 in a matrix eigen-
value problem

Hu𝑛𝑙 = 𝐸u𝑛𝑙, (4.11)

where

H = 1
2(Δ𝑟)2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
... ... ... . . . ...
0 0 0 . . . 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠+

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑉𝑒𝑓𝑓 (𝑟1) 0 0 . . . 0
0 𝑉𝑒𝑓𝑓 (𝑟2) 0 . . . 0
0 0 𝑉𝑒𝑓𝑓 (𝑟3) . . . 0
... ... ... . . . ...
0 0 0 . . . 𝑉𝑒𝑓𝑓 (𝑟𝑚)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

(4.12)

It is important to mention that since we started directly from the Schrodinger equa-
tion, this way we get the whole spectrum of the hydrogen atom, not just the ground
state. Tables 4.1 and 4.2 show the accuracy of the matrix method compared to the
exact solution and the dependence of the energy values on the parameters Δ𝑟 and
𝑟𝑚.

n = 1 n = 2 n = 3 n = 4
Δ𝑟 = 0.2 -0.49510 -0.12469 -0.05549 -0.03119
Δ𝑟 = 0.1 -0.49876 -0.12492 -0.05554 -0.03120
Δ𝑟 = 0.05 -0.49969 -0.12498 -0.05555 -0.03120
Exact -0.50000 -0.12500 -0.05556 -0.03125

Table 4.1: First four energy levels of the hydrogen atom computed for various values of
Δ𝑟 with a fixed parameter 𝑟𝑚 = 50 Bohr compared to the exact solution.

n = 1 n = 2 n = 3 n = 4
𝑟𝑚 = 25 -0.49510 -0.12469 -0.05459 -0.01386
𝑟𝑚 = 50 -0.49510 -0.12469 -0.05549 -0.03119
𝑟𝑚 = 100 -0.49510 -0.12469 -0.05549 -0.03123
Exact -0.50000 -0.12500 -0.05556 -0.03125

Table 4.2: First four energy levels of the hydrogen atom computed for various values of
𝑟𝑚 with a fixed parameter Δ𝑟 = 0.2 Bohr compared to the exact solution.

We see that to get some useful accuracy for higher energy levels we need to increase
the parameter 𝑟𝑚. This makes sense given that the corresponding electrons have the
peak of the probability density further away from the nucleus. On the other hand,
we see that beyond a certain value, there is no purpose in further increasing 𝑟𝑚
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and to achieve better accuracy the step Δ𝑟 needs to be reduced. It is also good to
mention that higher energy levels are more precise for larger 𝑙. How well this method
approximates the wave functions (and thus the probability density distributions) is
shown in 4.1.
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0

Exact solution
Matrix method

Figure 4.1: Comparison of the ground state radial probability density function of the
hydrogen atom for the exact solution and the matrix method approximation with Δ𝑟 = 0.2
Bohr and 𝑟𝑚 = 20 Bohr.

Let us now turn our attention to other potentials. The whole procedure remains
the same except for the change of the effective potential 𝑉𝑒𝑓𝑓 . We start with the
soft-core Coulomb potential:

𝑉𝑒𝑓𝑓 = 𝑙(𝑙 + 1)
2𝑟2 − 𝑎√

𝑏2 + 𝑟2
, (4.13)

where

𝑎 = 𝜈
(︂
𝑅

𝑟𝑠

)︂3
, 𝑏 = 2

3𝑅. (4.14)

In section 2.3 (specifically in figure 2.10) we saw that increasing the size of the
nucleus (reflected in parameter b) flattens and stretches the wave functions. We
will use this to estimate the adequate value of 𝑟𝑚. Furthermore, it should be noted
that in this case, the energies may already depend on both the principal quantum
number 𝑛 and the angular momentum quantum number 𝑙. In this case, we will
number the energies as follows: For each number 𝑙 = 0, 1, . . . we will create an
increasing sequence of energies, which we will number using 𝑛 = 𝑙 + 1, 𝑙 + 2, . . .
For a point nucleus, this method corresponds to the previous meaning of numbers
𝑛 and 𝑙. However, the number 𝑛 can no longer be used to compare energies overall.
Therefore, energies and corresponding wave functions were computed for different
values of 𝑛 and 𝑙, as shown in the table 4.3. From there we can see that the lowest
four energy levels are 𝐸10, 𝐸21, 𝐸20 and 𝐸32. We can also check that the ground
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n = 1 n = 2 n = 3 n = 4
𝑙 = 0 -4.41774 -3.84237 -3.35454 -2.94095
𝑙 = 1 -4.11002 -3.58112 -3.13283
𝑙 = 2 -3.81930 -3.33420
𝑙 = 3 -3.54523

Table 4.3: Energy levels of the soft-core Coulomb potential for the first four quantum
numbers 𝑛 and all the corresponding quantum numbers 𝑙 (nanoparticle parameters 𝑅 =
9.45 Bohr, 𝑟𝑠 = 3.01 Bohr and computation parameters Δ𝑟 = 0.05 Bohr, 𝑟𝑚 = 50 Bohr).

state energy matches well with the value computed in section 2.3 (𝐸10 = −4.414
Hartree). The corresponding probability density functions are depicted in figure 4.2.
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Figure 4.2: Radial probability density functions of the ground state and the first three
excited states of the soft-core Coulomb potential (nanoparticle parameters 𝑅 = 9.45 Bohr,
𝑟𝑠 = 3.01 Bohr and computation parameters Δ𝑟 = 0.05 Bohr, 𝑟𝑚 = 50 Bohr).

The last case we will discuss in this section is our nanoparticle potential

𝑉 (𝑟) =

⎧⎨⎩
𝜈
𝑟3

𝑠

𝑟2−3𝑅2

2 𝑟 ≤ 𝑅

− 𝜈
𝑟3

𝑠

𝑅3

𝑟
𝑟 > 𝑅.

. (4.15)

Thanks to its similarity to the soft-core potential, we can use the insight gained
in the previous calculation and compute the energies and wave functions for the
same parameters Δ𝑟, 𝑟𝑚. Again, table 4.4 shows the energies for various quantum
numbers 𝑛 and 𝑙.
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n = 1 n = 2 n = 3 n = 4
𝑙 = 0 -4.62474 -4.24182 -3.85896 -3.47654
𝑙 = 1 -4.43326 -4.05033 -3.66754
𝑙 = 2 -4.24176 -3.85884
𝑙 = 3 -4.05027

Table 4.4: Energy levels of the nanoparticle potential for the first four quantum numbers
𝑛 and all the corresponding quantum numbers 𝑙 (nanoparticle parameters 𝑅 = 9.45 Bohr,
𝑟𝑠 = 3.01 Bohr and computation parameters Δ𝑟 = 0.05 Bohr, 𝑟𝑚 = 50 Bohr).

We see that the energy sequence starts the same way as for the soft-core Coulomb
potential, i.e. 𝐸10, 𝐸21, 𝐸20 and 𝐸32, but at first sight there appears to be a degen-
eracy of the energy states considering the computation precision. Namely

𝐸𝑛𝑙 ≈ 𝐸𝑛−1,𝑙−2. (4.16)

Further analysis would be needed to confirm or refute this relation. Corresponding
probability density functions of the first four energies are shown in figure 4.3.
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Figure 4.3: Radial probability density functions of the ground state and the first three
excited states of the nanoparticle potential (nanoparticle parameters 𝑅 = 9.45 Bohr,
𝑟𝑠 = 3.01 Bohr and computation parameters Δ𝑟 = 0.05 Bohr, 𝑟𝑚 = 50 Bohr).

4.2 Non-Interacting Electrons

In order to describe a nanoparticle as a neutral object made up of 𝑁𝑖 positively
charged ions and 𝑁𝑒 = 𝜈𝑁𝑖 negatively charged electrons, we need to add another
constraint to our particle, specifically its radius 𝑅. We require the particle to have
only such size that corresponds to an integer charge 𝑄. The gold particle (𝑟𝑠 = 3.01
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Bohr, 𝜈 = 1), which we have considered so far, has for the radius 𝑅 = 9.45 Bohr (0.5
nm) a charge 𝑄 = 30.945. Therefore, we now start by choosing the closest integer
charge and then we calculate the corresponding radius of the particle. For 𝑄 = 31
we get 𝑅 = 9.46 Bohr (0.5004 nm).

Next, we would like to use the theory of non-interacting electrons described in section
3.1 expanded by spin. This can be easily done in the same way as shown in the
Hartree-Fock approximation. In particular, we assume that the single-electron wave
functions depend on the spin 𝑠 and that they can be decomposed in the positional
and spin functions:

𝜓𝑖(r, 𝑠) = 𝜙𝑖(r)𝜎𝑖(𝑠), (4.17)

where 𝜎𝑖 represents the electron being in either the spin state up or the spin state
down. The total electron density function 𝑛𝑒 is then

𝑛𝑒(r) =
𝑁∑︁
𝑖

|𝜙𝑖(r)|2. (4.18)

Furthermore, thanks to the spherical symmetry of the non-interaction system we can
express the positional functions 𝜙𝑖 in spherical coordinates as a product of radial
and angular functions:

𝜙𝑛𝑙𝑚𝑠(𝑟, 𝜃, 𝜑) = 𝑅𝑛𝑙(𝑟)𝑌 𝑚
𝑙 (𝜃, 𝜑). (4.19)

Here, we renumbered the wave functions using the quantum numbers 𝑛, 𝑙,𝑚 intro-
duced in the sections devoted to the single-electron solution and the spin quantum
number 𝑠. The sought electron density function has then the form

𝑛𝑒(𝑟, 𝜃) =
∑︁

𝑛,𝑙,𝑚,𝑠

|𝑅𝑛𝑙(𝑟)|2|𝑌 𝑚
𝑙 (𝜃, 𝜑)|2 =

∑︁
𝑛,𝑙,𝑚,𝑠

1
𝑟2 |𝑢𝑛𝑙(𝑟)|2|𝑌 𝑚

𝑙 (𝜃, 𝜑)|2 =

=
∑︁

𝑛,𝑙,𝑚,𝑠

𝑛𝑛𝑙𝑚(𝑟, 𝜃), (4.20)

where 𝑛𝑛𝑙𝑚 are the one-electron density functions which can be calculated using
the procedure described in the previous section. In general, 𝑛𝑒 depends on 𝑟 and
𝜃 (dependence on 𝜑 disappears due to the module of 𝑌 𝑚

𝑙 ). If we want a density
function depending solely on the coordinate 𝑟, we can either calculate 𝑛𝑒 for specific
angles 𝜃, 𝜑 or we can average 𝑛𝑒 over these angles, that is first integrate with respect
to sin 𝜃𝑑𝜃𝑑𝜑 and then divide by the solid angle 4𝜋. The later approach defines the
mean radial electron density function 𝑛̄𝑒. The resulting relation for 𝑛̄𝑒 is then

𝑛̄𝑒(𝑟) = 1
4𝜋

∫︁ 2𝜋

0

∫︁ 𝜋

0

∑︁
𝑛,𝑙,𝑚,𝑠

𝑛𝑛𝑙𝑚(𝑟, 𝜃) sin 𝜃𝑑𝜃𝑑𝜑 = 1
4𝜋

∑︁
𝑛,𝑙,𝑚,𝑠

|𝑅𝑛𝑙(𝑟)|2 =

=
∑︁

𝑛,𝑙,𝑚,𝑠

𝑛̄𝑛𝑙(𝑟), (4.21)

where we used the normalization of the spherical harmonics and the relation 2.64. For
electron configurations where every energy shell is filled, 𝑛𝑒(𝑟, 𝜃) does not depend
on the angle 𝜃 and is equal to 𝑛̄𝑒(𝑟). To determine the total probability density
distribution 𝑃𝑒 we average all the one-electron probabilities over the number of
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electrons 𝑁 . This allows us to relate the probability distribution and the electron
density:

𝑃𝑒(𝑟, 𝜃, 𝜑) = 1
𝑁

∑︁
𝑛,𝑙,𝑚,𝑠

𝑃𝑛𝑙𝑚(𝑟, 𝜃, 𝜑) = 1
𝑁

∑︁
𝑛,𝑙,𝑚,𝑠

𝑟2 sin 𝜃|𝑅𝑛𝑙(𝑟)|2|𝑌 𝑚
𝑙 (𝜃, 𝜑)|2 =

= 4𝜋
𝑁
𝑟2 sin 𝜃 𝑛𝑒(𝑟, 𝜃). (4.22)

Integrating over the angles gives us the radial probability distribution, this time
related to the mean electron density:

𝑃𝑒(𝑟) = 4𝜋
𝑁
𝑟2 𝑛̄𝑒(𝑟). (4.23)

Inspired by the hydrogen atom we can now define a new parameter 𝑅𝑒 as the distance
at which 𝑃𝑒 is maximal, i.e.

𝑅𝑒 = arg max
𝑟

𝑃𝑒(𝑟). (4.24)

We will call this parameter the effective electron radius of the nanoparticle.

In order to calculate the electron density function of our nanoparticle with the charge
𝑄 = 31, we need to determine the arrangement of energy levels that the electrons
will gradually fill. To do that, we first calculate the necessary number of energy
sequences for individual quantum numbers 𝑙. From them, we create a final sequence
of energy levels, which we will fill in as follows: Each level will be occupied by 2𝑙+ 1
pairs of electrons with opposite spins. The last level is filled with the remaining
electrons. The energy sequence together with the maximal number of electrons that
can be in a certain energy state is given by table 4.5. We see that we need six

𝐸10 𝐸21 𝐸20 𝐸32 𝐸31 𝐸43
energy -4.63052 -4.43903 -4.24759 -4.24754 -4.05611 -4.05604
𝑁𝑚𝑎𝑥 2 6 2 10 6 14

Table 4.5: First six energy levels of the nanoparticle potential (𝑄 = 31, 𝑟𝑠 = 3.01
Bohr) and corresponding maximal numbers of electrons at these levels for computation
parameters Δ𝑟 = 0.05 Bohr, 𝑟𝑚 = 50 Bohr.

different energy levels and the last one will be occupied by only five electrons. The
total ground state energy is given by simply summing over all one-electron energies,
i.e.

𝐸 =
∑︁

𝑛,𝑙,𝑚,𝑠

𝐸𝑛𝑙 =̇− 131.48 Hartree. (4.25)

Figure 4.4 shows the one-electron probability densities 𝑛𝑛𝑙. We can see that there is
a large overlap of the individual functions. It is therefore obvious that the resulting
density will be very inaccurate. However, the obtained functions will be useful as an
initial guess for the Hartree-Fock method. The total radial probability distribution
is depicted in figure 4.5.
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Figure 4.4: First six one-electron radial probability density functions of the gold nanopar-
ticle (𝑄 = 31, 𝑟𝑠 = 3.01 Bohr) computed using Δ𝑟 = 0.05 Bohr, 𝑟𝑚 = 50 Bohr.
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Figure 4.5: Radial probability density function of the non-interacting-electron model of
the gold nanoparticle (𝑄 = 31, 𝑟𝑠 = 3.01 Bohr). The grey dotted line shows the boundary
of the particle.

The effective electron radius is approximately 4.30 Bohr, which is less than half
of the nanoparticle radius 𝑅. By considering the interaction between electrons, the
resulting probability density can be expected to flatten and stretch. Figures 4.6, 4.7
show the mean radial density 𝑛̄𝑒 and a comparison of the total electron density for
different values of 𝜃.
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Figure 4.6: Mean radial electron density function of the non-interacting-electron model of
the gold nanoparticle (𝑄 = 31, 𝑟𝑠 = 3.01 Bohr). The grey dotted line shows the boundary
of the particle.
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Figure 4.7: Comparison of the total electron density of the gold nanoparticle (𝑄 = 31,
𝑟𝑠 = 3.01 Bohr) at four different values of 𝜃. The grey dotted line shows the boundary of
the particle.

4.3 Hartree-Fock Approximation

As we have seen in the previous section, the non-interacting electron model cannot
well describe the total electron density because of the large overlap of the individual
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electrons. To fix this issue, we need to include the electron-electron interaction in our
numerical calculations. For this, we will need to further simplify our task. First, we
will use the Hartree-Fock approximation described in the chapter 3.3. Next, although
we lose the spherical symmetry due to the interaction between electrons, we will
continue to use the decomposition of the wave functions into the radial and angular
parts. Since we want to solve the Hartree-Fock equations only in radial coordinates,
it will be necessary to express the potentials 𝑉𝐶 and 𝑉𝑒𝑥 in a suitable form. Finally,
we convert these again into a matrix form using the finite step approximation.

We begin by expressing the two-particle Coulomb potential in spherical coordinates
using the so-called generating function of Legendre polynomials:

𝑉2(r1, r2) = 1
|r1 − r2|

= 1√︁
𝑟2

1 + 𝑟2
2 − 2𝑟1𝑟2 cos𝜗

=
+∞∑︁
𝑙=0

1
2𝑙𝑙!𝑃𝑙(cos𝜗) 𝑟

𝑙
<

𝑟𝑙+1
>

, (4.26)

where 𝑟𝑖 = |r𝑖|, 𝜗 is the angle between r1 and r2, 𝑟< = min(𝑟1, 𝑟2) and 𝑟> =
max(𝑟1, 𝑟2). Note that the factor 1

2𝑙𝑙! is present due to our definition of the Legen-
dre polynomials (1.52) and is usually absent in the formula. Next, we rewrite the
polynomials 𝑃𝑙 with the help of the addition theorem of spherical harmonics ([9]):

𝑃𝑙(cos𝜗) = 2𝑙𝑙! 4𝜋
2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

𝑌 𝑚
𝑙

*(𝜃1, 𝜑1)𝑌 𝑚
𝑙 (𝜃2, 𝜑2), (4.27)

where 𝜃𝑖, 𝜑𝑖 are the angles of r𝑖 in their common spherical coordinates. Together, 𝑉2
can be expressed as

𝑉2(r1, r2) =
+∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

4𝜋
2𝑙 + 1𝑌

𝑚
𝑙

*(𝜃1, 𝜑1)𝑌 𝑚
𝑙 (𝜃2, 𝜑2)

𝑟𝑙
<

𝑟𝑙+1
>

. (4.28)

Since the Coulomb mean field term and the exchange term of the Hartree-Fock
equations contain integration of spherical harmonics multiplied by this potential,
we will use another useful relation for the functions 𝑌 𝑚

𝑙 , namely

∫︁ 2𝜋

0

∫︁ 𝜋

0
𝑌 𝑚1

𝑙1
*(𝜃, 𝜑)𝑌 𝑚2

𝑙2 (𝜃, 𝜑)𝑌 𝑚3
𝑙3 (𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑 =

= (−1)𝑚1

√︃
(2𝑙1 + 1)(2𝑙2 + 1)(2𝑙3 + 1)

4𝜋

(︃
𝑙1 𝑙2 𝑙3
0 0 0

)︃(︃
𝑙1 𝑙2 𝑙3
−𝑚1 𝑚2 𝑚3

)︃
,

(4.29)
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where
(︃
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

)︃
denotes the Wigner 3-j symbol. This allows us to write

𝑉𝐶(r𝑖) =
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∫︁
R3
𝜙*

𝑗(r)𝑉2(r𝑖, r)𝜙𝑗(r)𝑑r =

=
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

+∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

4𝜋
2𝑙 + 1𝑌

𝑚
𝑙

*(𝜃𝑖, 𝜑𝑖)
∫︁ +∞

0

𝑟𝑙
<

𝑟𝑙+1
>

|𝑅𝑛𝑗 𝑙𝑗 (𝑟)|2𝑟2𝑑𝑟 ·

·
∫︁ 2𝜋

0

∫︁ 𝜋

0
𝑌 𝑚

𝑙 (𝜃, 𝜑)|𝑌 𝑚𝑗

𝑙𝑗
(𝜃, 𝜑)|2 sin 𝜃𝑑𝜃𝑑𝜑 =

=
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

+∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

(−1)𝑚𝑗

√︃
4𝜋

2𝑙 + 1(2𝑙𝑗 + 1)
∫︁ +∞

0

𝑟𝑙
<

𝑟𝑙+1
>

|𝑅𝑛𝑗 𝑙𝑗 (𝑟)|2𝑟2𝑑𝑟 ·

· 𝑌 𝑚
𝑙

*(𝜃𝑖, 𝜑𝑖)
(︃
𝑙𝑗 𝑙 𝑙𝑗
0 0 0

)︃(︃
𝑙𝑗 𝑙 𝑙𝑗
−𝑚𝑗 𝑚 𝑚𝑗

)︃
, (4.30)

where 𝑟< = min(𝑟, 𝑟𝑖) and 𝑟> = max(𝑟, 𝑟𝑖). There are several simplification we are
going to carry out. First, we again use the substitution

𝑢𝑛𝑙(𝑟) = 𝑟𝑅𝑛𝑙(𝑟). (4.31)

Next we use the fact that the Wigner 3-j symbol
(︃
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

)︃
is non-zero only if

𝑑+ 𝑒+ 𝑓 = 0. (4.32)

In our case, this means that the only non-zero term in the sum over 𝑚 will be for
𝑚 = 0. Finally, we would like the potential 𝑉𝐶 to be independent of the angles 𝜃𝑖,
𝜑𝑖, as our goal is to obtain an equation for the radial part of the wave functions
only. This can be achieved by integrating over the angles and then dividing by the
total solid angle 4𝜋. Since∫︁ 2𝜋

0

∫︁ 𝜋

0
𝑌 𝑚

𝑙 (𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑 =
√

4𝜋𝛿𝑚0𝛿𝑙0, (4.33)

we see that only terms with 𝑙 = 0 contribute to the result. Using the relation(︃
𝑙𝑗 0 𝑙𝑗
−𝑚𝑗 0 𝑚𝑗

)︃
= (−1)𝑙𝑗−𝑚𝑗

1√︁
2𝑙𝑗 + 1

(4.34)

we conclude that

𝑉𝐶(r𝑖) ≈ 𝑉𝐶(𝑟𝑖) =
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

∫︁ +∞

0
|𝑢𝑛𝑗 𝑙𝑗 (𝑟)|2

1
𝑟>

𝑑𝑟 =

=
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

(︂∫︁ 𝑟𝑖

0
|𝑢𝑛𝑗 𝑙𝑗 (𝑟)|2

1
𝑟𝑖

𝑑𝑟 +
∫︁ +∞

𝑟𝑖

|𝑢𝑛𝑗 𝑙𝑗 (𝑟)|2
1
𝑟
𝑑𝑟
)︂
. (4.35)
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Using certain rules for the Wigner 3-j symbols, it can be shown that averaging over
the quantum number 𝑚𝑗 ∈ {−𝑙𝑗,−𝑙𝑗 + 1, . . . , 𝑙𝑗} leads to the same result. This is an
important finding. In our case, summing over 𝑚𝑗 is represented by a part of the sum
over 𝑗. Since the missing term for 𝑗 = 𝑖 is up to the sign identical in both 𝑉𝐶 and
𝑉𝑒𝑥, its addition to these potentials does not change the Hartree-Fock equations. In
such a case, we see that the result 4.35 is exact for configurations with fully filled
orbitals. This is in agreement with the fact that such electron configurations are
spherically symmetric and therefore cannot depend on the angles 𝜃𝑖, 𝜑𝑖.

In a similar way, we derive an analogical expression for the exchange term:

𝑉𝑒𝑥(r𝑖)𝜙𝑖(r𝑖) = 𝑉𝑒𝑥(r𝑖)𝑅𝑛𝑖𝑙𝑖(𝑟𝑖)𝑌 𝑚𝑖
𝑙𝑖

(𝜃𝑖, 𝜑𝑖) =

= −
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝛿𝜎𝑗𝜎𝑖

∫︁
R3
𝜙*

𝑗(r)𝑉2(r𝑖, r)𝜙𝑖(r)𝜙𝑗(r𝑖)𝑑r =

= −
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝛿𝜎𝑗𝜎𝑖

+∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

4𝜋
2𝑙 + 1𝑌

𝑚
𝑙

*(𝜃𝑖, 𝜑𝑖)
∫︁ +∞

0

𝑟𝑙
<

𝑟𝑙+1
>

𝑅*
𝑛𝑗 𝑙𝑗

(𝑟)𝑅𝑛𝑖𝑙𝑖(𝑟)𝑟2𝑑𝑟 ·

·
∫︁ 2𝜋

0

∫︁ 𝜋

0
𝑌

𝑚𝑗

𝑙𝑗

*(𝜃, 𝜑)𝑌 𝑚
𝑙 (𝜃, 𝜑)𝑌 𝑚𝑖

𝑙𝑖
(𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑𝑅𝑛𝑗 𝑙𝑗 (𝑟𝑖)𝑌 𝑚𝑗

𝑙𝑗
(𝜃𝑖, 𝜑𝑖) =

= −
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝛿𝜎𝑗𝜎𝑖

+∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

√︃
4𝜋(2𝑙𝑗 + 1)(2𝑙𝑖 + 1)

2𝑙 + 1

∫︁ +∞

0

𝑟𝑙
<

𝑟𝑙+1
>

𝑅*
𝑛𝑗 𝑙𝑗

(𝑟)𝑅𝑛𝑖𝑙𝑖(𝑟)𝑟2𝑑𝑟 ·

· 𝑅𝑛𝑗 𝑙𝑗 (𝑟𝑖)𝑌 𝑚
𝑙

*(𝜃𝑖, 𝜑𝑖)𝑌 𝑚𝑗

𝑙𝑗
(𝜃𝑖, 𝜑𝑖)(−1)𝑚𝑗

(︃
𝑙𝑗 𝑙 𝑙𝑖
0 0 0

)︃(︃
𝑙𝑗 𝑙 𝑙𝑖
−𝑚𝑗 𝑚 𝑚𝑖

)︃
.

(4.36)

In fact, we do not need to sum over 𝑙 to infinity. Thanks to the triangular inequalities
for the Wigner 3-j symbols, there is a maximal number 𝑙𝑚 for which the symbols
are defined. This maximal value is given as

𝑙𝑚 = 𝑙𝑖 + 𝑙𝑗. (4.37)

In order to eliminate the dependence on angles 𝜃𝑖, 𝜑𝑖, this time we must first multiply
the equation by the function 𝑌 𝑚𝑖

𝑙𝑖
* and only then integrate. Using relations 4.29, 4.31

and 4.32, we arrive at the following approximate form of the exchange potential:

𝑉𝑒𝑥(r𝑖)𝜙𝑖(r𝑖) ≈ 𝑉𝑒𝑥(𝑟𝑖)𝑢𝑛𝑖𝑙𝑖(𝑟𝑖) =

= −
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝛿𝜎𝑗𝜎𝑖

𝑙𝑚∑︁
𝑙=0

𝑢𝑛𝑗 𝑙𝑗 (𝑟𝑖)
∫︁ +∞

0

𝑟𝑙
<

𝑟𝑙+1
>

𝑢*
𝑛𝑗 𝑙𝑗

(𝑟)𝑢𝑛𝑖𝑙𝑖(𝑟)𝑑𝑟 ·

· (2𝑙𝑗 + 1)(2𝑙𝑖 + 1)
(︃
𝑙𝑗 𝑙 𝑙𝑖
0 0 0

)︃2 (︃
𝑙𝑗 𝑙 𝑙𝑖
−𝑚𝑗 𝑚𝑗 −𝑚𝑖 𝑚𝑖

)︃2

. (4.38)

As in the case of the potential 𝑉𝐶 , we can further simplify this expression for electron
configurations with fully filled orbitals by partially summing over 𝑗 expressing the
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summation over all quantum numbers 𝑚𝑗 ∈ {−𝑙𝑗,−𝑙𝑗 +1, . . . , 𝑙𝑗}. Using the relation

𝑙𝑗∑︁
𝑚𝑗=−𝑙𝑗

(︃
𝑙𝑗 𝑙 𝑙𝑖
−𝑚𝑗 𝑚𝑗 −𝑚𝑖 𝑚𝑖

)︃2

= 1
(2𝑙𝑖 + 1) (4.39)

and the fact that

(2𝑙𝑗 + 1) =
𝑙𝑗∑︁

𝑚𝑗=−𝑙𝑗

1 (4.40)

we get the final form of the exchange operator defined as

𝑉𝑒𝑥(𝑟𝑖)𝑢𝑛𝑖𝑙𝑖(𝑟𝑖) = −
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝛿𝜎𝑖𝜎𝑗

𝑙𝑚∑︁
𝑙=0

(︃
𝑙𝑗 𝑙 𝑙𝑖
0 0 0

)︃2

𝑢𝑛𝑗 𝑙𝑗 (𝑟𝑖)
∫︁ +∞

0

𝑟𝑙
<

𝑟𝑙+1
>

𝑢*
𝑛𝑗 𝑙𝑗

(𝑟)𝑢𝑛𝑖𝑙𝑖(𝑟)𝑑𝑟.

(4.41)

In this case, if we use the notation where we add the term for 𝑗 = 𝑖 to both 𝑉𝐶 and
𝑉𝑒𝑥, the condition on the spin functions simplifies to a factor of 1/2.

The question now is, how can we represent the potentials 𝑉𝐶 and 𝑉𝑒𝑥 in a matrix
form suitable for our numerical calculations? We start by considering 𝑟𝑖 ∈ ⟨0, 𝑟𝑚⟩,
where again 𝑟𝑚 = 𝑀Δ𝑟 is the point from which we consider the wave function to
be zero, and by rewriting the integral in 4.35 using the transition:

𝑟𝑖 −→ 𝑘Δ𝑟, 𝑘 ∈ {1, 2, . . . ,𝑀},
∫︁ 𝑘Δ𝑟

0
𝑓(𝑟)𝑑𝑟 −→

𝑘∑︁
𝑞=1

𝑓(𝑞Δ𝑟)Δ𝑟. (4.42)

This leads to

𝑉𝐶(𝑘Δ𝑟) =
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

(︃∫︁ 𝑘Δ𝑟

0
|𝑢𝑛𝑗 𝑙𝑗 (𝑟)|2

1
𝑘Δ𝑟𝑑𝑟 +

∫︁ +∞

𝑘Δ𝑟
|𝑢𝑛𝑗 𝑙𝑗 (𝑟)|2

1
𝑟
𝑑𝑟

)︃
≈

≈
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

⎛⎝ 𝑘∑︁
𝑞=1
|𝑢𝑛𝑗 𝑙𝑗 (𝑞Δ𝑟)|2

1
𝑘

+
𝑀∑︁

𝑞=𝑘+1
|𝑢𝑛𝑗 𝑙𝑗 (𝑞Δ𝑟)|2

1
𝑞

⎞⎠ , (4.43)

If we denote this approximation 𝑉𝐶 , we can define the corresponding matrix operator
as follows:

V𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑉𝐶(Δ𝑟) 0 0 . . . 0
0 𝑉𝐶(2Δ𝑟) 0 . . . 0
0 0 𝑉𝐶(3Δ𝑟) . . . 0
... ... ... . . . ...
0 0 0 . . . 𝑉𝐶(𝑀Δ𝑟)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.44)
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Similarly, for the exchange, we can write

𝑉𝑒𝑥(𝑘Δ𝑟)𝑢𝑛𝑖𝑙𝑖(𝑘Δ𝑟) ≈

≈ −
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝛿𝜎𝑖𝜎𝑗

𝑙𝑚∑︁
𝑙=0

(︃
𝑙𝑗 𝑙 𝑙𝑖
0 0 0

)︃2

𝑢𝑛𝑗 𝑙𝑗 (𝑘Δ𝑟)
⎛⎝ 𝑘∑︁

𝑞=1

𝑞𝑙

𝑘𝑙+1𝑢
*
𝑛𝑗 𝑙𝑗

(𝑞Δ𝑟)𝑢𝑛𝑖𝑙𝑖(𝑞Δ𝑟) +

+
𝑀∑︁

𝑞=𝑘+1

𝑘𝑙

𝑞𝑙+1𝑢
*
𝑛𝑗 𝑙𝑗

(𝑞Δ𝑟)𝑢𝑛𝑖𝑙𝑖(𝑞Δ𝑟)
⎞⎠. (4.45)

The resulting matrix operator is this time defined as

V𝑒𝑥 = −
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝛿𝜎𝑖𝜎𝑗

𝑙𝑚∑︁
𝑙=0

(︃
𝑙𝑗 𝑙 𝑙𝑖
0 0 0

)︃2

V𝑗𝑙
𝑒𝑥, (4.46)

where the matrices V𝑗𝑙
𝑒𝑥 are of the form

⎛⎜⎜⎜⎜⎝
𝑢𝑛𝑗 𝑙𝑗

(Δ𝑟)𝑢*
𝑛𝑗 𝑙𝑗

(Δ𝑟) 𝑢𝑛𝑗 𝑙𝑗
(Δ𝑟) 1

2𝑙+1 𝑢*
𝑛𝑗 𝑙𝑗

(2Δ𝑟) . . . 𝑢𝑛𝑗 𝑙𝑗 (Δ𝑟) 1
𝑀 𝑙+1 𝑢*

𝑛𝑗 𝑙𝑗
(𝑀Δ𝑟)

𝑢𝑛𝑗 𝑙𝑗
(2Δ𝑟) 1

2𝑙+1 𝑢*
𝑛𝑗 𝑙𝑗

(Δ𝑟) 𝑢𝑛𝑗 𝑙𝑗
(2Δ𝑟) 1

2 𝑢*
𝑛𝑗 𝑙𝑗

(2Δ𝑟) . . . 𝑢𝑛𝑗 𝑙𝑗
(2Δ𝑟) 2𝑙

𝑀 𝑙+1 𝑢*
𝑛𝑗 𝑙𝑗

(𝑀Δ𝑟)
...

...
. . .

...
𝑢𝑛𝑗 𝑙𝑗

(𝑀Δ𝑟) 1
𝑀 𝑙+1 𝑢*

𝑛𝑗 𝑙𝑗
(Δ𝑟) 𝑢𝑛𝑗 𝑙𝑗

(𝑀Δ𝑟) 2𝑙

𝑀 𝑙+1 𝑢*
𝑛𝑗 𝑙𝑗

(2Δ𝑟) . . . 𝑢𝑛𝑗 𝑙𝑗
(𝑀Δ𝑟) 1

𝑀 𝑢*
𝑛𝑗 𝑙𝑗

(𝑀Δ𝑟)

⎞⎟⎟⎟⎟⎠ .
(4.47)

With this, we managed to convert our task to a set of the following matrix eigenvalue
problems for all the one-electron radial wave functions:

H𝑖u𝑛𝑖𝑙𝑖 = 𝜖𝑖u𝑛𝑖𝑙𝑖 , (4.48)

where

H𝑖 = T𝑖 + V𝑖 + V𝐶 + V𝑒𝑥 (4.49)

with T𝑖 and V𝑖 defined as in 4.8 and 4.10. Although we have N equations, there is
no need to solve all of them. This is because the equations do not depend on the
quantum numbers 𝑚 and 𝑠. Therefore, for each wave function with quantum number
𝑙 there are 4𝑙 + 2 identical equations.

In the following text, we will solve the set of equations 4.49 for different nanoparticle
sizes (and therefore different 𝑁). In order to achieve the best accuracy, we will
perform the calculations only for full electron shells. We start with the simplest
case of two electrons with opposite spins. In this case, the exchange term is zero,
so we only need to calculate 𝑉𝐶 in every iteration. This also allows us to work
only with the probability functions as 𝑉𝐶 depends solely on the module of the wave
functions. Figure 4.8 shows that in this case to achieve good accuracy, it is sufficient
to perform ten iterations. We see from figure 4.9a that the resulting probability
distribution stretches and flattens compared to the non-interacting electron model.
Also, the parameter 𝑅𝑒, expressing the distance from the origin where it is most
likely to find the electron, shifted towards the particle boundary given by 𝑅.
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Figure 4.8: Convergence of the energy 𝜖 for 𝑁 = 2. The grey line shows the last values
of 𝜖.
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Figure 4.9: Comparison of the total probability densities 𝑃𝑒 (a) and the electron densities
𝑛𝑒 (b) of the two computational models for 𝑁 = 2. The grey dotted line shows the
boundary of the particle.

To better describe the final result, we introduce the electron spill-out 𝑆𝑂. It is
defined as the proportion of the electron charge outside of the radius 𝑅, i.e.

𝑆𝑂 =
∫︁ ∞

𝑅
𝑃𝑒(𝑟). (4.50)

For the two-electron case we have 𝑆𝑂 = 35.1%. Lastly, figure 4.9b shows the com-
parison of the total electron density for the non-interacting electron and the Hartree-
Fock models.
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Figure 4.10: Convergence of the energies 𝜖10 and 𝜖21 for 𝑁 = 8. The grey lines show the
last values of 𝜖10 and 𝜖21.

Next, we investigate the second case with fully filled orbitals. Since the energy
levels follow the sequence 4.5, this time we will need to solve 4.49 for two radial
wave functions 𝑅10 and 𝑅21 having eight electrons in total. The convergence of
the energies 𝜖𝑛𝑙 is depicted in figure 4.10 and we see that ten iterations are again
sufficient. The shift of the corresponding probability densities can be seen in figures
4.11a, 4.11b. Clearly, it is of the same nature as in the two-electron case. Again,
we also compare the total radial probability distributions and electron densities for
both models, as shown in figures 4.12a, 4.12b. In addition, figure 4.13 displays the
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Figure 4.11: Comparison of the probability distributions 𝑃10 (a) and 𝑃21 (b) of the two
computational models for 𝑁 = 8. The grey dotted line shows the boundary of the particle.

final charge density distribution 𝑛 given as

𝑛(𝑟) = 𝑛𝐼(𝑟)− 𝑛𝑒(𝑟), (4.51)
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Figure 4.12: Comparison of the total probability distribution 𝑃𝑒 (a) and electron density
𝑛𝑒 (b) of the two computational models for 𝑁 = 8. The grey dotted line shows the
boundary of the particle.

where

𝑛𝐼(𝑟) =

⎧⎨⎩
𝑄
𝑉

𝑟 ≤ 𝑅

0 𝑟 > 𝑅
(4.52)

is the positive charge density created by the gold ions. We see that there are oscil-
lations between the positive and the negative charge inside of the particle which is
in disagreement with the classical concept.
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Figure 4.13: Total charge density distribution for 𝑁 = 8. The grey dotted line shows the
boundary of the particle.

As stated earlier, for our potential there appears to be a degeneracy of energy levels
(see 4.16). Therefore, it is not obvious in what order the electrons will fill these
levels. For this reason, we will compute both variants. First we consider the wave
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functions 𝑅10, 𝑅21 and 𝑅20 (𝑁 = 10). Then we examine the case with 𝑅10, 𝑅21
and 𝑅32 (𝑁 = 18). Combining these leads to the last system with 𝑁 = 20. For
all three problems, we show the final one-electron probability distributions (4.14a,
4.15a, 4.16a), total probability density functions (4.14b, 4.15b, 4.16b) and the total
electron densities compared to the ion charge distributions (4.14c, 4.15c, 4.16c).
Table 4.6 then gives a summary of the parameters 𝑅, 𝑅𝑒, 𝑆𝑂, the one-electron
energies 𝜖𝑛𝑙 and the total energy 𝐸 for all the discussed cases 𝑁 ∈ {2, 8, 10, 18, 20}.

𝑅 𝑅𝑒 𝑆𝑂(%) 𝜖10 𝜖21 𝜖20 𝜖32 𝐸
𝑁 = 2 3.79 2.80 35.1 -0.225 -0.720
𝑁 = 8 6.02 4.55 21.8 -0.321 -0.297 -6.981
𝑁 = 10 6.48 4.70 28.8 -0.448 -0.362 -0.103 -9.864
𝑁 = 18 7.89 6.20 19.5 -0.367 -0.378 -0.266 -25.969
𝑁 = 20 8.17 6.50 18.7 -0.779 -0.385 -0.143 -0.278 -31.124

Table 4.6: Parameters and energies of first five gold nanoparticles with fully filled orbitals.
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Figure 4.14: Probability distributions 𝑃𝑛𝑙 (a), total radial probability distribution 𝑃𝑒 (b)
and the comparison of the total radial electron density 𝑛𝑒 and the radial ion density 𝑛𝐼

for 𝑁 = 10. The grey dotted lines show the boundary of the particle.
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Figure 4.15: Probability distributions 𝑃𝑛𝑙 (a), total radial probability distribution 𝑃𝑒 (b)
and the comparison of the total radial electron density 𝑛𝑒 and the radial ion density 𝑛𝐼

for 𝑁 = 18. The grey dotted lines show the boundary of the particle.
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Figure 4.16: Probability distributions 𝑃𝑛𝑙 (a), total radial probability distribution 𝑃𝑒 (b)
and the comparison of the total radial electron density 𝑛𝑒 and the radial ion density 𝑛𝐼

for 𝑁 = 20. The grey dotted lines show the boundary of the particle.



Conclusion

The aim of this thesis was to obtain a comprehensive understanding of the shape and
properties of the charge density distribution of nanoparticles modelled as a sphere
with an evenly distributed positive charge and a corresponding number of electrons.
The first idea was obtained from the known solutions of the hydrogen atom. Since in
our case the size of the ionic core cannot be neglected, it was necessary to extend this
view with a finite nuclei model, which is provided by the so-called soft-core Coulomb
potential. The radial wave functions, and hence the corresponding electron densities,
flatten and broaden compared to those of hydrogen. The Hartree-Fock approxima-
tion, specifically the numerical matrix method introduced in Chapter 4, was then
used to solve the multi-electron system with electron-electron interactions. The ini-
tial functions were chosen to be those calculated by the same computational method
for the nanoparticle potential with non-interacting electrons (although some better
guesses are used for more complex problems to achieve better convergence). From
figures 4.12b, 4.14c, 4.15c and 4.16c, it can be seen that for all cases considered with
𝑁 > 2, there is an oscillation of the electron density inside the particle and a sharp
decrease outside the particle. This behaviour is contrary to classical ideas and to the
conclusions predicted by quantum hydrodynamics [4]. Nevertheless, they correspond
well to the results for nanolayers [10]. The electron spill-out is considerably big for
small particles and generally decreases with increasing particle radius, even though
this is not always the rule (cf. the cases 𝑁 = 8 and 𝑁 = 10 in 4.6). In all cases
studied, the most likely location of an electron was inside the particle between 0.7𝑅
and 0.8𝑅.

A possible continuation of research in this area is to extend the procedure to particles
with dimensions above 1 nm. However, this requires higher computational power,
further approximations or other computational methods. On the other hand, one
could get more precise solutions by removing some of the approximations using the
perturbation calculus. Furthermore, the results can be used to improve the shape of
the potential in QHD, which could be sufficient for larger particles.
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