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Title:

Graded Lie theory

Author: Rudolf Šmolka
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Introduction

The aim of the following text is to generalize some key concepts of Lie theory — such as Lie groups and
their actions, associated Lie algebras, left-invariant and fundamental vector fields, principal bundles
and horizontal connections — to the setting of Z-graded manifolds as they were introduced in [10].

Extensive work has already been done on this topic in the world of Z2-graded manifolds, else
known as supermanifolds ([5], [1], [4], [9]). Note that in this text, the word “graded” will be reserved
to mean Z-graded. While supermanifolds and graded manifolds, as defined in [10], differ in several
ways — for one, supermanifolds admit only anticommuting graded variables — they share one crucial
commonality: the sections of their structure sheaf, called graded functions, are not fully determined by
their values at the points of the underlying topological space. However, this is a common occurrence
in another branch of mathematics: algebraic geometry. As a result, many techniques from algebraic
geometry have been adopted for use in supermanifold and graded manifold theory. It is also the
case that even if most techniques and result from supermanifold theory are not directly applicable to
graded manifolds, they can often be suitably modified or serve as an inspiration. Indeed, much of this
text was inspired by the book [2] or the article [9].

Let us lay forward the structure of this text. We begin by recalling some fundamental category
theory, the basic concepts of which are a necessary prerequisite for our investigation of graded Lie
theory. Notably we will state and prove the Yoneda lemma that will be used extensively in the next
chapter. The main resource for these introductory passages and indeed any category theory in this
work is the book [8] and we will also mostly follow the notation therein.

Next, we examine what we choose to call “group objects” which generalize the concept of a
group to a very broad class of categories — those that admit finite products and contain a terminal
object. Then we shift our focus to group objects in functor categories whose objects are functors and
whose morphisms are natural transformations, and show that they can be reduced to a collection of
“ordinary” groups and their homomorphisms. We use the Yoneda lemma to apply what we learned
to a broader range of categories. The use of Yoneda lemma in the treatment of supermanifolds is
abundant and appears e.g. in [2] under the name of a “functor of points” approach.

In the second chapter we give a concise review of graded manifolds as presented in [10] after which
we put forth a definition of a graded Lie group as a group object in the category of graded manifolds.
In Z2-graded setting this approach is used in [2] but appears already e.g. in [1]. We give a concrete
example of a graded Lie group: the graded general linear group, which will accompany us throughout
the rest of this text.

In the third chapter we briefly recall vector fields on graded manifolds [10] and examine in detail
the notion of left-invariant vector fields on graded Lie groups and fundamental vector fields on graded
manifolds acted upon by graded Lie groups. We also examine the correspondence of graded left-
invariant vector fields and the tangent space at the unit of the graded Lie group. In the fourth and
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final chapter we define a graded principal G-bundle for any graded Lie group G and construct a concrete
example: the graded frame bundle, which is acted upon by the graded general linear group. Finally
we examine, to some extent, vertical and horizontal distributions on graded principal bundles, define
the form of connection and the exterior covariant derivative, and hence also the form of curvature,
and illustrate them on the trivial bundle.
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Chapter 1

Categorical Foundations

1.1 Prerequisites from Category Theory

Our intention here is not to give a self-sufficient introduction to category theory. An interested reader
will find that and much more in the excellent book [8] or in other similar manuscript. However, we
find it prudent to give a quick overview of some of the basic concepts which will be used extensively
throughout this text.

The definition of a category is a very fundamental one and to be done properly it requires some
preliminary set-theoretical discussion. Clearly, this is not a place for that; for our purposes a category
C is a collection1 of objects and arrows (also called morphisms) between these objects. To express
that a is an object in C we write a ∈ C. For two objects a, b ∈ C we denote as C(a, b) the collection
of all arrows from a to b. To express that f is an arrow from a to b, we write f ∈ C(a, b) or more
commonly f : a→ b. If C(a, b) is a set for any two objects a, b ∈ C we say that C is locally small.

For C to be a category we require, in addition, the ability to compose arrows: for any f : a→ b
and g : b → c in C there must exist an arrow g ◦ f : a → c and this rule of composition must be
associative. Finally, for any a ∈ C there must exist an arrow 1a : a → a such that for any objects
b, c ∈ C and any arrows f : b → a and g : a → c there is 1a ◦ f = f and g ◦ 1a = g. We say that
an arrow f : a → b in C is an isomorphism if there exists an arrow g : b → a such that f ◦ g = 1b
and g ◦ f = 1a. For any category C one obtains a so-called opposite category Cop by reversing all the
arrows in C.

Definition 1.1 (Terminal Object). Let C be a category and consider t ∈ C. We say that t is a
terminal object in C if for any c ∈ C there exists exactly one arrow from c to t. A terminal object,
if it exists, is unique up to a unique isomorphism.

As an illustration, a terminal object in the category of sets is any one-point set and the terminal
object in the category of vector spaces is the zero vector space {0}. We also need the notion of a
product.

Definition 1.2 (Product of Objects). Let C be a category and consider two objects a, b ∈ C. We say
that an object a × b ∈ C together with two arrows p1 : a × b → a and p2 : a × b → b is a product

1Notice we avoid using the word “set”. A reason for that is simple: consider, for example, the category of sets. Often
it is denoted as Set, its objects are sets and its arrows are ordinary maps between sets. It is a well-known fact that the
collection of all sets is itself not a set.
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of a and b if it satisfies that for any object c ∈ C and any two arrows f : c → a and g : c → b there
exists a unique arrow (f, g) : c→ a× b such that p1 ◦ (f, g) = f and p2 ◦ (f, g) = g. This may be best
visualized with a commutative diagram:

a

c a× b

b

(f,g)

f

g

p1

p2

. (1.1)

The arrows p1 and p2 are then called the projections on the first and on the second object, respec-
tively. Note that products need not exist, but if they do, they are unique up to a unique isomorphism.
Products of three or more objects are defined analogously. It can be show inductively [8] that if a
product exists for any two objects, then it exists for any n objects for any n ∈ N. Such categories are
said to admit (contain, have) finite products.

As an illustration, consider that products in the category of sets are simply Cartesian products.
Let us also introduce the following notation: consider four objects a, a′, b, b′ ∈ C such that the products
a × a′ and b × b′ exist. Consequently, for any two arrows f : a → b and g : a′ → b′ there is a unique
arrow, denoted as f × g, fitting into the commutative diagram

a b

a× a′ b× b′

b b′

f

f×g

p1

p2

p1

p2

g

. (1.2)

Of course, we have f × g = (f ◦ p1, g ◦ p2) where p1 and p2 are the projections from a× a′.

Lemma 1.3. Let C be a category with finite products and consider f : a → b, g : b → c, f ′ : a′ → b′

and g′ : b′ → c′ in C. Then

(g ◦ f)× (g′ ◦ f ′) = (g × g′) ◦ (f × f ′). (1.3)

Proof. (g ◦ f) × (g′ ◦ f ′) is defined as the unique morphism fitting as the dashed arrow into the
commutative diagram

a c

a× a′ c× c′

a′ c′

g◦f

g′◦f ′

, (1.4)
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where the unlabeled full arrows are the canonical product projections. Now consider

a b c

a× a′ b× b′ c× c′

a′ b′ c′

f g

f×f ′ g×g′

f ′ g′

, (1.5)

which clearly commutes. Consequently (g × g′) ◦ (f × f ′) fits into (1.4), thus

(g × g′) ◦ (f × f ′) = (g ◦ f)× (g′ ◦ f ′). (1.6)

Note that in particular there is (f × 1) ◦ (1× g) = f × g = (1× g) ◦ (f × 1) for any two arrows f, g. ■

The last two fundamental concepts we need are those of functors and natural transformations. If
C and D are two categories, then a functor F from C to D, written as F : C → D, assigns to every
object a ∈ C and object Fa ∈ D and to every arrow f ∈ C(a, b) and arrow Ff ∈ D(Fa, Fb) so that
F1 = 1 and F (f ◦ g) = Ff ◦Fg for any composable arrows f and g. Given two functors F,G : C → D
we define a natural transformation of F and G, written as η : F → G, as a collection of arrows
{ηa}a∈C , where ηa ∈ D(Fa,Ga) which satisfies the so-called naturality condition: for any a, b ∈ C and
any f ∈ C(a, b) the diagram

Fa Ga

Fb Gb

ηa

Ff Gf

ηb

(1.7)

must commute. For any two categories C,D we denote as DC the category whose objects are functors
from C to D and whose arrows are their natural transformations. A category of this type is called a
functor category.

1.2 Yoneda’s Lemma

In this subchapter we state and prove the famous Yoneda’s lemma and we include it due to the
paramount importance Yoneda’s lemma plays in subchapter 1.5. The contents have been largely
taken from [8] with minor changes. Let Set denote the category of sets, i.e. the category whose
objects are sets and whose arrows are maps between sets. Consider some locally small category C and
let us define two functors E,N : SetC × C → Set.

• The functor E is called the evaluation functor and is defined on objects as

E(H,x) := Hx, (1.8)

hence the name, and for any natural transformation α : H → K and f ∈ C(x, y) the arrow
E(α, f) is defined as the arrow Hx→ Ky arising from the commutative diagram

Hx Kx

Hy Ky.

Hf

αx

Kf

αy

(1.9)
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• The functor N is defined on objects as

N(H,x) = Nat(C(x, ·), H), (1.10)

the set of all natural transformations between C(x, ·) and H. For any arrow (α : H → K, f :
x → y) we have a set map N(α, f) : Nat(C(x, ·), H) → Nat(C(y, ·),K) given, for every η ∈
Nat(C(x, ·), H) and every z ∈ C as

(N(α, f)η)z := αz ◦ ηz ◦ f∗z , (1.11)

where f∗z is the pre-composition with arrow f , or in other words, f∗z = C(f, z), though it may
be better to view f∗ as a natural transformation f∗ : C(y, ·) → C(x, ·). Then we have the direct
formula

N(α, f)η := α ◦ η ◦ f∗, (1.12)

which immediately implies naturality. That N(α, f)η is natural can also be seen by drawing
explicitly the commutative diagram

C(y, z) C(x, z) Hz Kz

C(y, z′) C(x, z′) Hz′ Kz′

f∗

h∗

ηz

h∗

αz

Hh Kh

f∗ ηz′ αz′

(1.13)

for any h : z → z′ in C.

We may now state the famous lemma:

Theorem 1.4 (Yoneda’s Lemma). Let C be a locally small category and E,N the functors defined
above. Then the assignment y : N → E where for every (H,x) ∈ SetC × C the map of sets

y(H,x) : Nat(C(x, ·), H) → Hx, (1.14)

is given by
y(H,x)(η) := ηx(1x), (1.15)

defines a natural isomorphism y : N → E.

Proof. Let us first verify that the assignment (1.14) is a bijection for every (H,x) and then investigate
naturality. Consider some element e ∈ Hx. Then every natural transformation η ∈ Nat(C(x, ·), H)
such that ηx(1x) = e must comply with the commutativity of

C(x, x) Hx

C(x, x′) Hx′

ηx

f∗ Hf

ηx′

(1.16)

for any f : x→ x′ and so for any f ∈ C(x, x′) there must hold

ηx′f = (ηx′ ◦ f∗) 1x = (Hf ◦ ηx) 1x = (Hf) e. (1.17)

Thus, given e ∈ Hx we may define η by (1.17). Such η is indeed natural, since for any h : x′ → x′′

there is
(Hh ◦ ηx′) f = (H(h ◦ f) ◦ ηx) 1x = ηx′′(h ◦ f) = (ηx′′ ◦ h∗) f. (1.18)
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The assignment e 7→ η is obviously a two-sided inverse to y(H,x). Now for the naturality of y itself.
Let us show naturality in H and in x, the result will then follow from Lemma 1.5.

Naturality in H. Consider some α : H → H ′. We need to show that

N(H,x) E(H,x)

N(H ′, x) E(H ′, x)

y(H,x)

N(α,1x) E(α,1x)

y(H′,x)

(1.19)

commutes. Unpacking the definitions, we find(
y(H′,x) ◦N(α, 1x)

)
η = y(H′,x) (α ◦ η ◦ 1∗x) = y(H′,x) (α ◦ η) = (αx ◦ ηx) 1x, (1.20)

and the other way around:(
E(α, 1x) ◦ y(H,x)

)
η = αx(y(H,x)η) = (αx ◦ ηx) 1x, (1.21)

for every η : C(x, ·) → H.

Naturality in x. Consider some f : x→ x′. We need to show that

N(H,x) E(H,x)

N(H,x′) E(H,x′),

y(H,x)

N(1H ,f) E(1H ,f)

y(H,x′)

(1.22)

commutes. Once again unpacking the definitions gives us, for any η : C(x, ·) → H,(
y(H,x′) ◦N(1H , f)

)
η = y(H,x′) (1H ◦ η ◦ f∗) = (η ◦ f∗)x′ 1x′ = ηx′f. (1.23)

and the other way around(
E(1H , f) ◦ y(H,x)

)
η = E(1H , f) (ηx1x) = (Hf ◦ ηx) 1x = ηx′f, (1.24)

where we used (1.17) in the last equality. ■

Lemma 1.5. Let A,B,C be categories and F,G : A × B → C be two functors. Then η : F → G is a
natural transformation if and only if for each a ∈ A the diagram

F (a, b) G(a, b)

F (a, b′) G(a, b′)

η(a,b)

F (1a,h) G(1a,h)

η(a,b′)

(1.25)

commutes for every h : b→ b′and for each b ∈ B the diagram

F (a, b) G(a, b)

F (a′, b) G(a′, b)

η(a,b)

F (k,1b) G(k,1b)

η(a′,b)

(1.26)

commutes for every K : a→ a′. In other words, η is natural if and only if it is natural in a and in b.
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Proof. The only if direction is obvious, so let η be natural in a and in b. Consider some arbitrary
k : a→ a′, h : b→ b′ and draw the commutative diagram

F (a, b) G(a, b)

F (a′, b) G(a′, b)

F (a′, b′) G(a′, b′).

η(a,b)

F (k,1b) G(k,1b)

η(a′,b)

F (1a′ ,h) F (1a′ ,h)

η(a′,b′)

(1.27)

The result then follows from functorality of F and G. ■

Corollary 1.6. The Yoneda functor Y : Cop → SetC given for every f ∈ C(y, x) by

Y x := C(x, ·), (1.28)

Y f := f∗, (1.29)

is fully faithful.

Proof. Consider a natural transformation η : C(x, ·) → C(y, ·). By Yoneda’s lemma, it is fully and
uniquely determined by f := ηx1x ∈ C(y, x) through (1.17), that is, for any h ∈ C(x, z) we have

ηzh = C(y, h)f = h ◦ f = f∗h, (1.30)

which means that η = f∗. ■

Remark 1.7. From the proof of Corollary 1.6 we see that Yoneda’s lemma (Theorem 1.4) for the
particular choice H = C(y, ·) gives the set bijection as

f 7→ f∗, C(y, x) → Nat(C(x, ·),C(y, ·)). (1.31)

Throughout this text we will need to work with functors C(·, x) instead of C(x, ·). We feel this
should pose no difficulty, but let us formalize it anyway.

Lemma 1.8. Let C be a locally small category. Then for any x ∈ C, the functors

Cop(x, ·),C(·, x) : Cop → Set (1.32)

are naturally isomorphic.

Proof. Let use use op for the required natural transformation. Obviously, for any y ∈ C we want to
define opy : C(y, x) → Cop(x, y) by

opyf := fop. (1.33)

This is clearly a bijection by definition of the opposite category, but is it natural? Consider some
h : z → y. We need to show that

C(y, x) Cop(x, y)

C(z, x) Cop(x, z),

h∗

opy

(hop)∗

opz

(1.34)
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commutes. But this is simple, as for any f ∈ C(y, x) we have

opzh
∗f = opz(fh) = (fh)op = hopfop = (hop)∗f

op = (hop)∗opyf. (1.35)

■

For any functor H : C → Set and any x ∈ C we therefore have the canonical bijection

Nat(Cop(·, x), H) ∼= Nat(C(x, ·), H) (1.36)

given by α 7→ α◦op, which can be viewed as a natural isomorphism of functors N ′, N : SetC×C → Set,
where N is introduced in (1.10) and N ′(H,x) := N(H,x) ◦ op. Therefore we have the dual versions
of Yoneda’s lemma and the Yoneda functor:

Corollary 1.9 (Dual Statements). For any functor H : Cop → Set and x ∈ C, the assignment
η 7→ ηx1x defines a bijection

Nat(C(·, x), H) ∼= Hx, (1.37)

natural in both H and x. Consequently, the Yoneda functor Y : C → SetC
op

given for any f : x → y
by

Y x := C(·, x),
Y f := f∗, (1.38)

is fully faithful. In particular, for any x, y ∈ C the function Y : C(x, y) → Nat(C(·, x),C(·, y)), f 7→ f∗
is bijective.

1.3 Group Object Definitions

In this subchapter we give the definitions instrumental for the rest of this text: that of a group object,
taken from [8, III.6.], and that of an action of a group object.

Definition 1.10 (Monoid Object). Let C be a category with finite products and a terminal object t.
Then a monoid object in C is a triple (c, µ, η) where c ∈ C, µ : c × c → c and η : t → c, such that
the following diagrams commute:

(c× c)× c c× c

c

c× (c× c) c× c

α

µ×1

µ

1×µ

µ

, (1.39)

called the associativity diagram and

c c× c c

c

(η,1)

1
µ

(1,η)

1
. (1.40)
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called the unit diagram. Above, α is the canonical associativity isomorphism (also call the “associa-
tor”) arising from the fact that both (c× c)× c and c× (c× c) are the triple products of c. Also η is
considered as a morphism η : c→ c defined as the composite arrow

c t c,
η

(1.41)

where the unmarked arrow is the unique one to the terminal object. Note that here and for the
rest of the text, if the context permits no confusion, we use the same symbol to denote the arrow
from the terminal object and the arrow “filtering through” the terminal object. We shall call µ the
multiplication arrow and η the unit arrow for obvious reasons. Note that for the special choice
C = Set, the definition coincides with the classical definition of a monoid.

Definition 1.11 (Group Object). Let m ∈ C be a monoid object with multiplication arrow µ and
unit arrow η. We say that (m,µ, η, ι) is a group object in C, if ι : m → m is arrow such that the
following diagram commutes:

m m×m m

m

(ι,1)

η
µ

(1,ι)

η
. (1.42)

Such ι is called the inversion arrow.

We can define an analogue of group action for any monoid object.

Definition 1.12 (Group Object Action). Let C be a category with finite products and a terminal
object t, let (g, µ, η, ι) be a group object in C and consider some c ∈ C. We say that an arrow
θ : g × c→ c is a left action of the group object g on c, if the following diagrams commute:

c g × c

c

(η,1)

1 θ
, (1.43)

(g × g)× c g × c

c

g × (g × c) g × c

α

µ×1

θ

1×θ

θ

, (1.44)

where α is once more the canonical associativity isomorphism. Right action would be defined similarly.
Note especially that the multiplication arrow µ : g × g → g is automatically both a left and a right
action of g on g. Along with every left action θ of g on c, we may consider the associated shear
morphism Σ : g × c→ c× c defined as the composite arrow

g × c g × (c× c) (g × c)× c c× c,
1×(1,1) α θ×1

(1.45)

or more concisely as Σ = (θ, p2). Based on the properties of the shear morphism we say that the
action θ is free if Σ is a monomorphism, transitive if Σ is an epimorphism and regular if Σ is an
isomorphism.
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Proposition 1.13. In the category of sets the definitions of a free and transitive action agree with
the usual ones.

Proof. Consider a left group action θ : G × X → X for some group G and some set X. As long as
we stay in the category Set we will use the notation θ(g, x) =: g · x for any g ∈ G and x ∈ X. The
shear map τθ is now defined as τθ(g, x) = (g · x, x) and it is injective ⇐⇒ whenever (g · x, x) equals
(h · x, x) we necessarily have g = h, which is the usual definition of a free action.

The shear map is surjective ⇐⇒ for every (y, x) ∈ X ×X there exists g ∈ G such that g · y = x,
which is the usual definition of a transitive action. ■

Definition 1.14. Let (g, µ, η, ι) be a group object in a category C with a terminal object t and let
θ : g → c be a left action of g on some c ∈ C.

i.) For every λ : t→ g let θλ : c→ c be the arrow defined by the the diagram

c g × c

c

(λ,1)

θλ
θ
. (1.46)

ii.) For every ω : t→ c define the arrow θω : g → c, called orbit arrow of ω, by the diagram

g g × c

c

(1,ω)

θω
θ
. (1.47)

Remark 1.15. As discussed, the group object multiplication arrow µ is always both a left and a right
action. We will denote the arrow µλ from (1.46) as Lλ and Rλ when µ is considered as a left and a
right action, respectively.

All the facts about actions in this section are stated for a left action. However, with intuitive
modifications they are also valid for a right action. For a general group object g we may also generalize
the notion of conjugation in the form of a conjugation arrow κ : g × g → g defined as

κ := µ ◦ (µ, ι ◦ p1). (1.48)

Later on we will find that for any locally small category this arrow is a left action of g on itself.

Definition 1.16 (Equivariant Arrows). Letm be a monoid object in a category C and let θ : m×c→ c
and θ′ : m × c′ → c′ be two left actions of m. We say that an arrow φ : c → c′ is equivariant if the
following diagram commutes:

m× c m× c′

c c′

1×φ

θ θ′

φ

. (1.49)

11



1.4 Group Objects in Functor Categories

Yoneda’s lemma, or the dual thereof (Corollary 1.9) gives us a fully faithful functor Y : C → SetC
op

for
any locally small category C. This functor is sometimes also called the Yoneda embedding and gives
a natural and unique (up to an isomorphism) correspondence between objects of C and representable
contravariant functors from C to Set. Following [8, III.6.], we shall examine how monoid and group
objects behave under the Yoneda embedding, but first let us state some general observations for group
objects F in SetB for a general category B.

Product of two functors F,G : B → Set is given simply by

(F ×G)a := Fa×Ga, and (F ×G)h := Fh×Gh, (1.50)

for any arrow h ∈ B(a, b) and the projections p1 and p2 are defined like so: for any a ∈ B, p1,a is
the (Cartesian product) projection p1,a : Fa × Ga → Fa and for p2 similarly. That (1.50) defines a
functor and that the projections are natural transformations is clear, so let us check whether (1.50)
indeed defines the product in SetB. Consider H,F,G ∈ SetBand natural transformations N : H → F
and M : H → G. Then for every a ∈ B there is a unique arrow (Na,Ma) fitting into the diagram

Fa

Ha Fa×Ga

Ga

Na

Ma

p1,a

p2,a

. (1.51)

We need only show naturality, i.e. that the assignment a 7→ (Na,Ma) defines the component maps of a
natural transformation (N,M). But this follows from naturality of M and N since for every f : a→ b
in B we have

(Ff ×Gf) ◦ (Na,Ma) = (Ff ◦Na, Gf ◦Ma) = (Nb ◦Hf,Mb ◦Hf) = (Nb,Mb) ◦Hf. (1.52)

Consequently, SetB has all finite products. Note that the products used in the definition of F ×G
were products in Set, that is ordinary Cartesian products, and so it was not necessary for the category
B to admit products. Let us also point out that for any two natural transformations N,M there is

(N ×M)a = Na ×Ma and (N,M)a = (Na,Ma), (1.53)

for any a ∈ B. Next observe that the functor T : B → Set which assigns to every object b ∈ B the
one point set ∗ and to every arrow h : a → b the identity arrow 1 : ∗ → ∗, is the terminal object in
SetB. Indeed, as ∗ is the terminal object in Set, any component map Nb of a natural transformation
N : F → T is necessarily the terminal arrow Fb→ ∗. As this indeed defines a natural transformation,
the result follows.

A monoid object in SetB is therefore a functor F : B → Set together with natural transformations
µ : F × F → F and η : T → F satisfying the relevant commutative diagrams (1.39) and (1.40). A
group object is a monoid object F with additional natural transformation ι : F → F satisfying the
appropriate version of (1.42).

One has another characterization of group objects in SetB stated as an exercise in [8]:
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Theorem 1.17. Let B be a category. Then F is a group object in SetB if and only if Fa is a group (a
group object in Set) for every a ∈ B and Fh is a group homomorphism for every h : a→ b. Moreover,
the correspondence is (F, µ, η, ι) ↔ (Fa, µa, ηa, ιa) for every a ∈ B.

Proof. Let (F, µ, η, ι) be a group object in SetB. Then (Fa, µa, ηa, ιa) is a group. Indeed, this can be
seen by applying the “evaluation at a” functor eva : F 7→ Fa and (N : F → G) 7→ (Na : Fa → Ga)
to the multiplication, unit and inversion diagrams for F . That Fh is a group homomorphism follows
from naturality of µ : F × F → F . Indeed, for every h ∈ C(a, b) we have

Fa× Fa Fa

Fb× Fb Fb

µa

Fh×Fh Fh

µb

. (1.54)

Conversely, let Fa be a group for every a ∈ B with some multiplication arrow µa, unit arrow ηa and
inversion arrow ιa. That these form components of natural transformations µ, η and ι follows from
Fh being group homomorphisms (consider the required diagrams). Hence, (F, µ, η, ι) is a group object
as all components of the natural transformations µ, η, ι satisfy the multiplication, unit and inversion
diagrams and thus so do the natural transformations themselves. ■

There is an immediate corollary:

Corollary 1.18. Let B be a category and let (G,µ, η, ι) be a group object in SetB. Then

i.) The arrows η and ι are the unique natural transformations satisfying (1.40) and (1.42), respec-
tively.

ii.) The inversion arrow ι is a natural isomorphism satisfying ι ◦ ι = 1.

iii.) For any natural transformation α : T → H there holds

η = µ(α, ια) = µ(ια, α). (1.55)

Proof. Ad i). If η′ : T → G is another arrow satisfying the monoid unit diagram, then for any a ∈ B,
both ηa and η′a are units in the (ordinary) group Ga and hence η′a = ηa. The uniqueness of ι is shown
the same way.

Ad ii). By Theorem 1.17, ιa s the inversion arrow in the group Ga for any a ∈ B and thus
(ι ◦ ι)a = ιa ◦ ιa = 1. Since this holds for every component map of ι, we have ι ◦ ι = 1.

Ad iii). Again, for every a ∈ B there is ηa = µa(αa, ιaαa), as this is merely the restatement of the
fact that x · x−1 = 1 in an ordinary group Ga where x := αa ∈ Ga. By definition of compositions
of natural transformations together with (1.53) we also have µa(αa, ιaαa) = (µ(α, ια))a , and the
statement follows. ■

Let us now consider some left action θ of a group object (G,µ, η, ι) in SetB on some H ∈ SetB.
Note that naturality of θ is equivalent to

Ga×Ha Ha

Gb×Hb Hb

θa

Gf×Hf Hf

θb

(1.56)

commuting for every f : a→ b. Consequently, we have the following Proposition:
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Proposition 1.19. Let B be a category, G,H ∈ SetB where G is a group object. Then θ is a left
action of G on H if and only if θa : Ga×Ha→ Ha is a collection of left actions such that the diagram
(1.56) commutes for every f : a→ b.

Corollary 1.20. Let B be a category and (G,µ, η, ι) a group object in SetB. Then

i.) Let θ : G ×H → H be some left action. Then for every α : T → G the natural transformation
θα : H → H defined in (1.46) is a natural isomorphism which satisfies

θα,a(x) = θa(αa, x), (1.57)

for every a ∈ B and x ∈ Ha. Furthermore,

θ−1α = θια, θη = 1, and θαθβ = θµ(α,β), (1.58)

for any α, β : T → G.

ii.) The conjugation arrow, that is the natural transformation κ : G × G → G defined as in (1.48),
is a left action of G on itself.

Proof. Ad i). From the previous lemma we know that θa is an ordinary left group action of Ga on
Ha, from which follows (1.57) under the usual identification of αa : ∗ → Ga with the point αa(∗) ∈ G.
The relations (1.58) contain only natural transformations and so can be verified component-wise with
the help of (1.57), (1.55), the above proposition and Theorem 1.17.

Ad ii). From the definition of κ we see that for every a ∈ B, κa is indeed the map

κa(x, y) = xyx−1, (1.59)

for every x, y in the group Ga. In other words, κa is the ordinary conjugation map, which we know
is a left action of Ga on itself. Furthermore, for every a, b ∈ B and every f : a → b the diagram
(1.56) commutes due to Gf being a group homomorphism and the statement follows from Proposition
1.19. ■

Definition 1.21 (Natural Subgroup). Let F,G : B → Set be two group objects in SetB. Then F is
called a natural subgroup of G if there exists a natural transformation I : F → G such that for
every a ∈ B, Ia is an injective group homomorphism.

That Ia is a group homomorphism for every a ∈ C corresponds to the commutativity of

F × F F

G×G G

µF

I×I I

µG

(1.60)

Remark 1.22. Specifically for B = Cop for some locally small C, F = C(·, c) and G = C(·, d) a natural
transformation I : F → G is given uniquely as h∗ for some h : c → d. Injectivity of Ia then amounts
to the fact that for any f, g : a → c, h ◦ f = h ◦ g implies f = g. In other words, h∗,a is injective for
every a if and only if h is a monic arrow in C.

Lemma 1.23. Let F,G : B → Set be two functors such that (G,µ, η, ι) is a group object, and let
I : F → G be a natural transformation such that Ia : Fa → Ga is injective and Ia(Fa) is a subgroup
of Ga. Then there is a canonical group object structure on F such that F becomes a natural subgroup
of G.
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Proof. The injectivity of Ia together with im Ia being a subgroup in Ga of course means that for every
a ∈ B there is an induced group structure on Fa such that

Fa× Fa Fa

Ga×Ga Ga

Ia×Ia

µFa

Ia

µa

(1.61)

commutes, where µFa denotes the induced group multiplication on Fa. Similarly, Ia ◦ ηFa = ηa and
Ia ◦ ιa = ιFa ◦ Ia. We only need to show that for every h : a → b the map Fh : Fa → Fb is a group
homomorphism. Consider

Ga×Ga Ga

Fa× Fa Fa

Gb×Gb Gb

Fb× Fb Fb

µa

Gh×Gh

Gh

Ia×
Ia

µFa

Fh×Fh

Ia

µb

µFb

Ib×
Ib

Fh

I b

, (1.62)

where all the sides commute, except for the one facing us. Consequently,

Ib ◦ Fh ◦ µFa = Ib ◦ µFb ◦ Fh× Fh, (1.63)

and from injectivity of Ib it follows that Fh ◦ µFa = µFb ◦ Fh × Fh, or in other words, that Fh is a
group homomorphism. ■

1.5 Representable Functors

In this subchapter let C be a locally small category with finite products and a terminal object. For
two representable functors F = C(·, c), G = C(·, d) we have the canonical natural isomorphism

I : C(·, c)× C(·, d) ∼= C(·, c× d), (1.64)

given by C(a, c) × C(a, d) → C(a, c × d), (f, g) 7→ (f, g) for every a ∈ C, where the first (f, g) is an
ordered pair of arrows, and the second is the arrow defined in (1.1). Note that I is natural, as for any
h : b → a we have (f, g)h = (fh, gh) and Ia is an isomorphism for every a due to the properties of
product in C. To restate, we have

Y c× Y d ∼= Y (c× d), (1.65)

whence the projections are the images of the projection arrows in C by the Yoneda functor. We
say that the Yoneda functor preserves products. Furthermore, under this identification there is
f∗ × g∗ = (f × g)∗ and (f∗, g∗) = (f, g)∗ for all possible arrows in C.

If t is terminal in C then Yoneda embedding of t is terminal in SetC
op

as is stated in the following
lemma:

Lemma 1.24. The functor T := C(·, t) ≡ Y t is the terminal object in SetC
op
.
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Proof. Since t is terminal in C, the set C(c, t) is a one-point set for every c ∈ C. For any functor
F ∈ SetC

op
and any c ∈ C there is thus exactly one map Nc : Fc → Tc and so N : F → T defined

by these maps is the unique natural transformation form F to T . Note that naturality of N follows
immediately from the fact that Tc is terminal in Set for every c ∈ C. ■

Now comes the first truly interesting part of this subchapter; an observation that allows us to work
with the Yoneda-embedded group object instead of the original. Taken from [8, III.6. Proposition 1].

Theorem 1.25. Let C be a locally small category with finite products and a terminal object. Then
c is a group (monoid) object in C if and only if C(·, c) ≡ Y c is a group (monoid) object in SetC

op
.

Moreover, the correspondence of multiplication, unit and inversion arrows is (µ, η, ι) ↔ (µ∗, η∗, ι∗) ≡
(Y µ, Y η, Y ι).

Proof. The proof is an application of the fully faithful Yoneda functor Y on the diagrams (1.39),
(1.40) and (1.42) while using the isomorphism (1.64) and the fact that C(·, t) is the terminal object in
SetC

op
. ■

This theorem has several immediate corollaries:

Corollary 1.26 (Group Object Facts). Let (g, µ, η, ι) be a group object in C. Then

i.) The arrows η and ι are the unique arrows satisfying (1.40) and (1.42), respectively.

ii.) The inversion arrow ι is an isomorphism satisfying ι ◦ ι = 1.

iii.) For any arrow α : t→ g there holds

η = µ(α, ια) = µ(ια, α). (1.66)

Proof. The proof consists of considering the group object C(·, q) in SetC
op

and Corollary 1.18 in the
light of the above theorem and then using the fact that the Yoneda embedding is a fully faithful
functor. For example, if η, η′ are both unit arrows of the group object g, then η∗ and η

′
∗ are both unit

arrows of the object C(·, g) and by Corollary 1.18 there is η∗ = η′∗. Since the Yoneda functor is fully
faithful, it follows that η = η′.

The remaining claims are shown similarly. ■

Corollary 1.27. An arrow θ is a left action of g on c in C if and only if θ∗ ≡ Y θ is a left action of
C(·, g) on C(·, c) in SetC

op
.

Corollary 1.28 (Action Facts). Let (g, µ, η, ι) be a group object in a locally small category C. Then

i.) Let θ : g → c be a left action of g on some object c ∈ C. Then for every α : t → g, the arrow
θα : c→ c defined in (1.46) is an isomorphism which satisfies

θ−1α = θια, θη = 1 and θαθβ = θµ(α,β), (1.67)

for any α, β : t→ g.

ii.) The conjugation arrow κ : g × g → g from (1.48) is a left action of g on itself.
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Proof. Ad i). That θη = 1 follows straight from the definition. Consider some α : t→ g. By applying
the Yoneda functor Y on the defining diagram of θα, we find that (θα)∗ = (θ∗)α∗ . One need only look
at Corollary 1.20 to see that(

θµ(α,β)
)
∗ = (θ∗)µ∗(α∗,β∗) = (θ∗)α∗ ◦ (θ∗)β∗ = (θα ◦ θβ)∗ , (1.68)

And by faithfulness of the Yoneda functor, θµ(α,β) = θαθβ. From this and (1.66) it immediately follows
that θα is an isomorphism with θια as its inverse.

Ad ii). Noting that the Yoneda functor preserves products, see the beginning of this subchapter,
we may apply the Yoneda functor on the conjugation arrow κ and find that κ∗ is the conjugation
arrow for the group object Y g ≡ C(·, g). The result now follows from Corollary 1.27. ■

Corollary 1.29. Let (g, µ, η, ι) be a group object in C and let c ∈ C be such that C(·, c) is a natural
subgroup of C(·, g) by means of a natural transformation j∗ : C(·, c) → C(·, g). Then there exists a
unique group object structure (µc, ηc, ιc) on c such that

c× c c

g × g g

j×j

µc

j

µ

(1.69)

commutes. In addition, the unit and inversion arrows satisfy ηc ◦ j = η and ιc ◦ j = ι.

Proof. Combine Theorem 1.25 with Lemma 1.23. ■
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Chapter 2

Graded Lie Groups

2.1 Graded Manifolds Recalled

Here we face something of a conundrum. On the one hand we wish this text to be as self-contained
as possible, and as such we would like to include the necessary elements from the theory of graded
manifolds as presented in [10]. On the other hand, if this was to be done properly, the size of this work
would grow beyond acceptable. Therefore we resort to a compromise: below we give a brief overview
of the necessary concepts and invite the interested reader to consult [10] for proper introduction to
Z-graded manifolds as we use them here.

First a note about nomenclature: by the word “graded” we exclusively mean Z-graded. Also note
that when the context permits no confusion we will often omit the word “graded” entirely, since not
doing so would result in its unbearable abundance.

By a graded vector space V we mean a sequence of vector spaces {Vk}k∈Z. In this text we
work with real vector spaces only. We define the graded dimension of V as the sequence gdimV :=
(dimVk)k∈Z and the total dimension of V as tdimV :=

∑
k∈Z dimVk. We say that a graded vector

space is finite-dimensional if its total dimension is finite. We say that v is an element of V , written
as v ∈ V , if there exists k ∈ Z such that v ∈ Vk. We say that this k is the degree of v, written as
|v| := k. Consider two graded vector spaces V,W . We say that ϕ is a graded linear map of degree
k from V to W if ϕ = (ϕj)j∈Z is a sequence of linear maps ϕj : Vj →Wj+k. We write ϕ : V →W and
|ϕ| := k. For any v ∈ V we write simply ϕ(v) instead of ϕ|v|(v). Graded vector spaces together with
graded linear maps of degree zero form a category gVec. We say that V is a subspace of W if Vk is a
subspace of Wk for every k ∈ Z.

By a graded algebra of degree ℓ we mean a graded vector space A ∈ gVec equipped with a bilinear
map (·, ·) : A × A → A, by which we mean a sequence of bilinear maps (·, ·)i,j : Ai × Aj → Ai+j+ℓ.
For any a, b ∈ A we write simply a · b or ab in place of (a, b)|a|,|b|. We say that A is associative if
(ab)c = a(bc) for any a, b, c ∈ A. We say that an algebra A of degree zero is unital if there exists an
element 1 ∈ A such that 1 · a = a = a · 1 for any a ∈ A. Clearly such 1 must have degree 0. We say
that A is graded commutative if

ab = (−1)|a||b|ba. (2.1)

Graded commutative, associative and unital algebras form a category gcAs where morphisms are
graded linear maps ϕ of degree zero such that ϕ(ab) = ϕ(a)ϕ(b) and ϕ(1) = 1. A subspace V of A is
called an ideal if av, va ∈ V for any v ∈ V and a ∈ A. We say that A ∈ gcAs is local if it contains a
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unique maximal ideal.

Let M be a topological space. We denote the set of all open subsets of M as Op(M), and for any
x ∈ M we denote the set of all open neighborhoods of x as Opx(M). We may make Op(M) into a
category by saying that for any U, V ∈ Op(M) there is an arrow from V to U if V ⊆ U . We say that
a functor S : Op(M)op → gVec is a presheaf on M valued in gVec. In particular, for any V ⊆ U
open sets in M there is a morphism ρUV ∈ gVec(S (U),S (V )) called the restriction from U to V .
For a vector x ∈ S (U) we usually write x|V instead of ρUV (x). We say that a presheaf S is a sheaf if
for any U ∈ Op(M), any open cover {Uα}α∈I of U and any collection {xα}α∈I of xα ∈ S (Uα) of the
same degree, such that xα|Uα∩Uβ

= xβ|Uα∩Uβ
for every α, β ∈ I, there exists a unique x ∈ S (U) such

that x|Uα = xα for every α ∈ I. Similarly, we define presheaves and sheaves valued in gcAs.

Let S be a presheaf on M . Then for any U ∈ Op(M) we have a restricted presheaf S |U on U
defined simply as S |U (W ) := S (W ) for any W ∈ Op(U), with restrictions inherited from S . Let
N be another topological space and ϕ : M → N a continuous map. Then we define the so-called
pushforward presheaf ϕ∗S on N by (ϕ∗S )(U) := S (ϕ−1(U)) for any U ∈ Op(N) and restrictions
inherited from S . It is not difficult to see that if S is a sheaf, then its restriction and pushforward
are also sheaves.

Next, we need to define the so-called graded domains, which will be to graded manifolds as open
subsets of Rn are to smooth manifolds. Let (nj)j∈Z be a finite sequence of non-zero integers, that is,∑

j∈Z nj =: n <∞. To simplify notation, we will write simply (nj)j∈Z =: (nj). For any U ∈ Op(Rn0)
we define a graded commutative, associative and unital algebra C∞(nj)

(U) ∈ gcAs. This algebra is

constructed rigorously in [10] using the symmetric tensor algebra over finite-dimensional graded vector

spaces, but here let us introduce the elements of
(
C∞(nj)

(U)
)
k
as formal power-series of the shape

f :=
∑
p∈Nm

k

fp ξ
p1
1 · · · ξpmm , (2.2)

where m := n− n0 and

• (ξ1, . . . ξm) are the so-called graded variables (or graded coordinates), each of which is assigned
a non-zero degree |ξµ| ∈ Z such that #{µ : |ξµ| = k} = nk for every k ∈ Z\{0}. These variables
commute or anticommute according to the rule

ξµξν = (−1)|ξµ||ξν | ξνξµ. (2.3)

• The sum ranges over all multiindices p ≡ (p1, . . . , pm) ∈ Nmk where

Nmk = {q ∈ (N0)
m :

m∑
µ=1

qµ|ξµ| = k and qµ ∈ {0, 1} whenever |ξµ| is odd }. (2.4)

• For every p ∈ Nmk , fp is an ordinary smooth function on U .

We will also write ξp := ξp11 · · · ξpmm . We make C∞(nj)
(U) into a graded algebra by instituting a multi-

plication rule (f, g) 7→ f · g ∈ C∞(nj)
(U)|f |+|g| by ∑

r∈Nm
|f |

fr ξ
r

 ·

 ∑
q∈Nm

|g|

gq ξ
q

 :=

 ∑
p∈Nm

|f |+|g|

(f · g)p ξ
p

 , (2.5)
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where for any p ∈ Nm|f |+|g| there is

(f · g)p =
∑

r∈Nm
|f |

r≤p

ϵr,p fr gp−r, (2.6)

where r ≤ p if and only if rµ ≤ pµ for every µ ∈ {1, . . . ,m} and ϵr,p ∈ {−1, 1} is the sign obtained by
rearranging ξrξp−r into ξp according to the rule (2.3). Note that the sum in (2.6) is finite for every
p ∈ Nm|fg| and so the multiplication is well-defined. Also note that if f, g are polynomials, i.e. fr and
gq are non-zero only for finitely many r ∈ Nm|f | and q ∈ Nm|g|, then the multiplication rule reduces to
the intuitive multiplication of polynomials with graded-commutative variables.

Notice that the algebra of smooth functions on U , denoted as C∞n0
(U), is a subalgebra of (C∞(nj)

(U))0.

Indeed, one need only consider the graded functions f ∈ C∞(nj)
(U) of degree zero such that fp = 0 for

all p ∈ Nm0 , p > 0. In [10] it is shown that C∞(nj)
(U) is in fact a graded commutative, associative and

unital algebra, where the unit element is the constant function 1 ∈ C∞n0
(U) ⊆ (C∞(nj)

(U))0. For any

V ∈ Op(U) we may define a restriction ρUV : C∞(nj)
(U) → C∞(nj)

(V ) by

ρUV

 ∑
p∈Nm

|f |

fp ξ
p

 :=
∑

p∈Nm
|f |

(fp)|V ξp. (2.7)

The assignment U 7→ C∞(nj)
(U) along with these restrictions defines a sheaf C∞(nj)

on Rn0 valued in

gcAs. For any U ∈ Op(Rn0) we define the graded domain U (nj) as the pair (U,C∞(nj)
|U ).

Now, we may move to the definition of a graded manifold. Consider a Hausdorff, second-countable
topological space M together with a sheaf C∞M on M valued in gcAs. We say that M := (M,C∞M) is a
graded manifold if there exists a finite sequence of non-negative integers (nj) such that there exists
an open cover {Uα}α∈I of M such that for every α there exists a homeomorphism φ

α
: Uα → Ûα for

some Ûα ∈ Op(Rn0) and a sheaf isomorphism,

φ∗α : C∞(nj)

∣∣∣
Ûα

→ φ
α,∗

(
C∞M|Uα

)
. (2.8)

Recall that sheaf morphisms are merely natural transformations. The collection {Uα, φα}α∈I where
φα := (φ

α
, φ∗α) is called a graded atlas for M, or simply just an atlas for M. We will also refer to

open sets from some atlas as coordinate patches. We call gdimM := (nj) the graded dimension
of M and tdimM :=

∑
k∈Z nk the total dimension of M. Note that a graded domain is clearly

a special case of a graded manifold. We call elements of C∞M(U), for any U ∈ Op(M), the graded
functions on M.

If M = (M,C∞M) is a graded manifold, then for any x ∈M we have a stalk of C∞M at x defined as

C∞M,x =

 ⊔
U∈Opx(M)

C∞M(U)

 / ∼, (2.9)

where for any U, V ∈ Op(M) and any f ∈ C∞M(U), g ∈ C∞M(V ) there is f ∼ g if and only if there
is some W ∈ Op(U ∩ V ) such that f |W = g|W . The elements of C∞M,x are therefore classes of
equivalence [f ]x represented by some f ∈ C∞M(U). The stalks C∞M,x inherit the structure of a graded
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commutative, associative and unital algebra. In addition, every stalk of a graded manifold is a local
algebra, possessing a unique maximal ideal.

Let M = (M,C∞M) and N = (N,C∞N ) be two graded manifolds, then any morphism of graded
manifolds, also called a graded smooth map, is a pair ϕ = (ϕ, ϕ∗) where ϕ :M → N is a continuous
map and ϕ∗ : C∞N → ϕ∗C

∞
M is a sheaf morphism which is required to satisfy the following condition:

for any x ∈ M consider the induced algebra morphism ϕ∗x : C∞N ,ϕ(x) → C∞M,x defined on germs as

ϕ∗x([f ]ϕ(x)) := [ϕ∗Uf ]x, for any f ∈ C∞N (U) and U ∈ Opϕ(x)(N). We require that ϕ∗x(Jϕ(x)) ⊆ Jx, where
Jϕ(x) is the unique maximal ideal of the stalk C∞N ,ϕ(x) and Jx is the unique maximal ideal of the stalk

C∞M,x. Graded manifolds and graded smooth maps form the category of graded manifolds gMan∞. A
graded smooth map ϕ = (ϕ, ϕ∗) is an isomorphism if and only if ϕ is a homeomorphism and ϕ∗ is a
natural isomorphism. Isomorphism in gMan∞ is also called a graded diffeomorphism.

Note that, if it is clear from the context, we often denote the component graded algebra morphisms
ϕ∗U : C∞N (U) → C∞M(ϕ−1(U)) simply as ϕ∗, without the explicit mention of the open set U . We call
ϕ the underlying smooth map and ϕ∗ the pullback. For any graded manifold M, the underlying
topological space M can be canonically assigned the structure of a smooth manifold such that if
ϕ : M → N is a graded smooth map, then ϕ :M → N is indeed a smooth map, justifying the name.
Moreover, if {Uα, ϕα} is an atlas for a graded manifold M, then {Uα, ϕα} is an (ordinary) atlas for the
smooth manifold M . Any graded function f ∈ C∞M(U) can be canonically assigned a smooth function
f ∈ C∞M(U) called the body of f . At the graded domain level, where f is of the shape (2.2), this
corresponds to the assignment f 7→ f0. In particular, the body of any non-zero degree graded function
is necessarily the zero function (of degree |f |). We can also define, for any f ∈ C∞M(U) and any x ∈ U
the value of f at x as f(x) := f(x).

Consider a graded manifold M of graded dimension (nj) with a graded atlas {Uα, φα}. For any
α we have the standard i-th coordinate function xi ∈ C∞n0

(Ûα) and the so-called graded coordinates

ξµ ∈ C∞(nj)
(Ûα). We will refer to the graded functions φ∗xi and φ∗ξµ simply as the coordinates on

Uα. We will often abuse notation and denote them as xi and ξµ as well.

2.2 The Body Functor and the Insertion Functor

Throughout the rest of this text we will often encounter certain simple limit objects in the category of
graded manifolds gMan∞, the simplest of which is perhaps the product of two graded manifolds. It is
therefore useful to have a formalized relation of these limit objects to those in the category of smooth
manifolds Man∞, so that we will immediately know e.g. that the underlying manifold of the product of
graded manifolds M×N is the smooth manifold M ×N . We begin with a general category-theoretic
observation about limits and adjoint functors. The uninterested reader may skip to the last paragraph
where we provide a summary of this short subchapter.

Proposition 2.1. Let C,D be categories and let F : C → D, G : D → C be functors where F is a left
adjoint of G. Next, let L : J → D be a functor from some category J to D, such that there exists a
limit for L in D, described by the limit object lim

←−
L and a universal cone λ.

Then G( lim
←−

L) and Gλ form a limit for GL in C.

Proof. For a general adjunction D(F (·), ·) ∼= C(·, G(·)) let us denote by a bar the bijection (̄·) :
D(Fc, d) → C(c,Gd) for every c ∈ C and d ∈ D and also its inverse.
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That Gλ is a cone is obvious; we need to show its universality. Consider some c ∈ C and an
arbitrary cone α : c→ GL. From the naturality of the adjunction we find that

αj = GLh ◦ αi = Lh ◦ αi, (2.10)

for every h : i → j in J. Consequently, α := {αi}i∈J is a cone from Fc to L and so there exists a
unique v : Fc→ lim

←−
L such that αi = λi ◦ v for every i ∈ J. We can apply (·) to find that

αi = λi ◦ v = Gλi ◦ v. (2.11)

In other words, v fits into the commutative diagram

c

G lim
←−

L

GL i GL j,

v̄
αi αj

Gλi Gλj

GLh

(2.12)

for every i, j ∈ J. Furthermore, if f : c→ G lim
←−

L is another arrow fitting into the above diagram, we

find that λj ◦ f = Gλj ◦ f = αj and by universality of λ we have f = v which implies f = v. The
arrow v is thus unique, hence Gλ is a limiting cone. ■

Let us apply the above observation to the category of graded manifolds. We know from [10] that
the assignment M 7→M and ϕ 7→ ϕ for every ϕ ∈ gMan∞(M,N ) defines a functor

B : gMan∞ → Man∞ (2.13)

called the body functor. On the other hand, each ordinary smooth manifold can be regarded as a
trivially graded smooth manifold, and every smooth map ϕ : M → N can be promoted to a graded
smooth map between trivially graded M and N . We may formalize this assignment as the insertion
functor I : Man∞ → gMan∞.

Note that we usually write BM asM and IM asM as well, but for the purposes of this subchapter
we shall attempt to adhere to the more rigorous notation which distinguishes between ordinary smooth
manifolds and trivially graded smooth manifolds.

Next, for every M ∈ gMan∞ we have the graded smooth map iM ∈ gMan∞(IBM,M) defined as
iM = idM and i∗Mf = f . By [10, Proposition 3.26], we know that for every ϕ ∈ gMan∞(M,N ) the
diagram

IBM M

IBN N

IBϕ

iM

ϕ

iN

(2.14)

commutes. Note that IBϕ is usually denoted simply as ϕ. In other words, i is a natural transformation
i : IB → 1, where 1 denotes the identity functor on gMan∞. Furthermore, from the definition of I and
B it immediately follows that BI = 1 is the identity functor on Man∞.

Proposition 2.2. Using notation from above, there exists an adjunction

gMan∞(IM,N ) ∼= Man∞(M,BN ), (2.15)

the counit of which is i : IB → 1 and the unit of which is the identity natural transformation.
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Proof. As we have BI = 1 the potential unit of the adjunction, under slightly headache-inducing
notation, is u := ididMan∞ : idMan∞ → idMan∞ ≡ BI. To show we indeed have an adjunction, we must
show that the unit and counit satisfy the so-called triangle identities, which in our case translate to
the commutativity of the following two diagrams:

I IBI

I,

I(u)

1
i(I)

B BIB

B,

u(B)

1
B(i) (2.16)

But with the use of the fact that BI = 1 it is easy to see that for any smooth manifold M both
I(u)M = IuM and i(I)M = iIM are identity maps on IM . Similarly, for any graded manifold M,
both u(B)M and B(i)M are identity maps on BM. Thus the commutativity of diagrams (2.16) is
obvious. ■

Notably the body functor has a left adjoint, yielding the following corollary.

Corollary 2.3. Let L : J → gMan∞ be a functor from some category J, such that there exists a limit
for L in gMan∞ given as a limit graded manifold L together with a universal cone λ : L → L.

Then BL together with the cone Bλ := {Bλj}j∈J : BL → L are a limit for L in Man∞.

In particular, whenever we have a commutative diagram in the category gMan∞ featuring products,
fiber products, or other limit objects, we may apply to it the body functor and obtain the corresponding
diagram1 in the category Man∞. Therefore we may be certain that if we make a definition using
a commutative diagram, the underlying manifolds satisfy the corresponding diagram as well. For
example, it is immediately apparent that the underlying manifold of a graded Lie group (Definition
2.12) is an ordinary Lie group.

2.3 Graded Lie Algebras, Graded Matrices

Definition 2.4 (Graded Lie algebra). A graded Lie algebra (of degree zero) is a graded vector space
V ∈ gVec equipped with a graded bilinear map [·, ·] : V × V → V of degree zero satisfying

1. For all x, y ∈ V ,

[x, y] + (−1)|x||y| [y, x] = 0 . . . graded antisymmetry. (2.17)

2. For all x, y, z ∈ V ,

[x, [y, z]] = [[x, y], z] + (−1)|x||y| [y, [x, z]] . . . graded Jacobi identity. (2.18)

If A and B are two graded Lie algebras, then a graded vector space morphism ϕ : A → B, i.e. a
graded linear map of degree zero, is called a Lie algebra morphism if

ϕ [x, y] = [ϕx, ϕ y], (2.19)

for all x, y ∈ A.
1Where the objects are the underlying smooth manifolds and the arrows are the underlying smooth functions.
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Remark 2.5. If A is a graded associative algebra, then A can be made into a Lie algebra by defining
the Lie bracket as the graded commutator:

[x, y] := xy − (−1)|x||y| yx. (2.20)

Note that similarly as in the classical case, if A is graded commutative, the graded commutator is
always zero.

Example 2.6. Consider some V ∈ gVec. In accordance with the above remark, any subalgebra of the
graded linear space of maps from V to itself, such as Lin(V ), can be made into a Lie algebra through
the introduction of the graded commutator. More generally, consider some A ∈ gcAs and some graded
A-module V . Then Der(A, V ), the graded linear space of derivations from A to V , is closed under the
graded commutator and so forms a graded Lie algebra.

We begin by introducing the notion of a matrix of a graded A-linear map: consider A ∈ gcAs and
V,W some freely and finitely generated A-modules2 [10, Subsection 1.4]. In addition, suppose that
A-modules have a well-defined graded rank.

Let φ : V → W be an A-linear map, and fix some generators {vi}mi=1, {wj}nj=1 of V and W ,
respectively. Thus, any x ∈ V and y ∈W can be decomposed as

x = vix
i = (−1)|vi||x

i| xivi and y = wjy
j = (−1)|y

j ||wj | yjwj , (2.21)

for some unique xi, yj ∈ A, where |xi| = |x| − |vi| and |yj | = |y| − |wj | for every i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}. Note that in (2.21) we a priori choose to write the coefficients of the A-linear
combination after the generators. Similarly, for every i ∈ {1, . . . ,m} we have

φ(vi) = wj φ
j
i, (2.22)

for unique φji ∈ A of degree |φji| = |φ|+ |vi| − |wj |. In other words, we have φji = (φ(vi))
j . Finally,

we see that for a general x = vix
i ∈ V there is φ(x) = φ(vi)x

i = wjφ
j
ix
iand consequently

(φ(x))j = φji x
i. (2.23)

We may thus call φji the matrix of φ in the bases (vi) and (wj) and find that the coordinates of

φ(x) in the basis wj are simply given by acting on coordinates xi via the matrix φji.

One might ask if this definition is somehow compatible with matrix multiplication. Namely, take
some third freely and finitely generated A-module U with generators {uk}ℓk=1 and ψ : U → V an
A-linear map. Then for any x ∈ U, x = xk uk, we have

(φ ◦ ψ (x))j = φji (ψ(x))
i = φji ψ

i
kx

k = (φ ◦ ψ)jk x
k, (2.24)

and we immediately obtain that the matrix of a composite A-linear map is indeed obtained through
the matrix multiplication. We note that, just as in classical linear algebra, once we fix a total basis
for V and for W , every degree n A-linear graded map uniquely determines a degree n matrix, and
vice-versa.

Let us look closer upon the matrix φji for the special case A = R. In this case, V and W are
only finite-dimensional graded vector spaces and the generators vi and wj are their bases. As R is a

trivially graded space, the elements φji can be non-zero only when i and j satisfy

|wj | − |vi| = |φ|. (2.25)

2For some overview of freely and finitely generated modules see also section 3.1.1.
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Let us therefore relabel the bases as {v(k)i }mk
k∈Z,i=1 := {vi}mi=1 and {w(k)

j }nk
k∈Z,j=1 := {vi}nj=1, where

mk := dimVk and nk := dimWk and |v(k)i | = k = |w(k)
j |. In particular, {v(k)i }mk

i=1 forms a basis for Vk

and {w(k)
j }nk

j=1 forms a basis for Wk. Consequently, the n ×m matrix φji is (possibly) non-zero only
in nk+|φ|×mk blocks corresponding to the matrices of the constituting linear maps φk : Vk →Wk+|φ|,
which comes as no surprise.

Example 2.7. Let A = R and V = W = R(nj) for n−1 = 1, n0 = 2, n1 = 1 and nj = 0 otherwise.

Also the basis of R(nj) we shall use will be the graded standard basis, that is, (e
(−1)
1 , e

(0)
1 , e

(0)
2 , e

(1)
1 ).

Any matrix φji (matrix of any graded linear map φ : R(nj) → R(nj) in the standard basis) then
takes one of the following forms, based upon its degree:

• Degree −2 matrices: 
0 0 0 φ1

4

0 0 0 0
0 0 0 0
0 0 0 0

 , (2.26)

corresponding to linear maps Rn1 → Rn−1 .

• Degree -1 matrices: 
0 φ1

2 φ1
3 0

0 0 0 φ2
4

0 0 0 φ3
4

0 0 0 0

 , (2.27)

corresponding to pairs of linear maps Rn1 → Rn0 and Rn0 → Rn−1 .

• Degree 0 matrices: 
φ1

1 0 0 0
0 φ2

2 φ2
3 0

0 φ3
2 φ3

3 0
0 0 0 φ4

4

 , (2.28)

corresponding to triples of linear maps Rn1 → Rn1 , Rn0 → Rn0 and Rn−1 → Rn−1 .

• Degree 1 matrices: 
0 0 0 0
φ2

1 0 0 0
φ3

1 0 0 0
0 φ4

2 φ4
3 0

 , (2.29)

corresponding to pairs of linear maps Rn0 → Rn1 and Rn−1 → Rn0 .

• Degree 2 matrices: 
0 0 0 0
0 0 0 0
0 0 0 0
φ4

1 0 0 0

 , (2.30)

corresponding to linear maps Rn−1 → Rn1 .

Other-degree matrices are necessarily zero.
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Remark 2.8. Generally e
(k)
i will denote the i-th standard basis vector of the space (R(nj))k ≡ Rnk .

For any R(nj), the (total) standard basis is ordered by degree and then as a classical standard basis,

i.e. e
(k)
i < e

(ℓ)
j if k < ℓ or k = ℓ ∧ i < j. The entire standard basis will then be denoted as usual by

(e1, . . . , en) ≡ (e
(a1)
1 , e

(a1)
2 , . . . , e(a1)na1

, e
(a2)
1 , . . . , . . . , e(aℓ)naℓ

), (2.31)

where {a1, . . . , aℓ} = {j ∈ Z |nj ̸= 0} and ai < ai+1 for all i ∈ {1, . . . , ℓ− 1}.
Definition 2.9 (Real Graded Matrices). We shall henceforth denote the graded linear space of ma-
trices of linear maps R(mj) → R(nj) in the standard basis as R(nj)×(mj). We call it the space of
(nj)× (mj) matrices. Its graded dimension gdimR(nj)×(mj) =: (qj) is given by

qj :=
∑
k∈Z

mknk+j , (2.32)

for every j ∈ Z. We thus have R(nj)×(mj) ∼= R(qj). Note that the total dimension of R(nj)×(mj) is

tdimR(nj)×(mj) =
∑
j

∑
k

mknk+j =
∑
k

mk

∑
j

nk+j =
∑
k

mkn = mn. (2.33)

The total basis of R(nj)×(mj) can be taken to be the matrices ∆i
j ∈ Rn×m, defined by

(∆i
j)
k
ℓ = δiℓδ

k
j , (2.34)

i.e. ∆i
j is the matrix with (i, j)-th entry equal to 1 and every other entry equal to zero. Furthermore,

the degree of ∆i
j can be inferred from its indices via the relation (2.25) as

|∆i
j | = |ei| − |fj |, (2.35)

where ei is the i-the vector of the total standard basis of R(mj) (the source space) and fj is the j-th
vector of the total standard basis of R(nj) (the target space).

Remark 2.10. Since the sequences of integers (nj) we work with are finite, we will sometimes write
them out completely like so:

(nj) = (. . . , 0, n−1, n0, n1, 0, . . . ). (2.36)

Let us put forward an agreement that, unless otherwise specified, we will always explicitly write out
an odd number of entries with the middle one being the zeroth entry n0. Also, under this notation,
all non-zero entries will be explicitly written and so all entries hidden under “. . . ” will be zero.

Example 2.11. As we have seen for the case (nj) = (. . . , 0, 1, 2, 1, 0, . . . ) in Example 2.7, the graded
dimension of R(nj)×(nj) was

gdimR(nj)×(nj) = (. . . , 0, 1, 4, 6, 4, 1, 0, . . . ). (2.37)

2.4 Graded Lie Groups

With all the foundations laid, the definition of a graded Lie group is quite straightforward.

Definition 2.12 (Graded Lie Group). We say that a group object (G, µ, η, ι) ∈ gMan∞ is a graded
Lie group.

As already stated below Corollary 2.3, (G,µ, η, ι) is an ordinary Lie group for any graded Lie group
(G, µ, η, ι). The main body of this chapter is be devoted to several illustrative examples of graded Lie
groups, the first of which is a generalization of the general linear group.
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2.4.1 Graded General Linear Group

For the purposes of this section, let (nj)j∈Z be some fixed sequence of non-negative integers with∑
j nj < ∞. In this subchapter we give the first, and the most important, example of a graded

Lie group — the graded general linear group GL((nj)j∈Z,R). We begin by constructing the graded
manifold M(nj) of (nj)× (nj) matrices, which we will endow with the structure of a monoid object in
gMan∞ through the virtue of a multiplication arrow and a unit arrow. We then restrict M(nj) to an
open set of invertible (in a sense) matrices, define the inversion arrow and thus construct the graded
Lie group GL((nj),R).

Definition 2.13. We define the so-called manifold of (nj)× (nj) matrices, as the graded domain
M(nj) corresponding to the linear space R(nj)×(nj) of graded (nj)× (nj) matrices, that is

M(nj) := gR(nj)×(nj) ≡ (Rq0)(q−j) , (2.38)

where for every j ∈ Z, qj :=
∑

k∈Z nknk+j . Indeed, (qj) is the graded dimension of the linear space of

(nj)× (nj) matrices, see Definition 2.9. In particular, the underlying topological space of M(nj) is the
vector space

Rq0 = R
∑

k∈Z n
2
k ∼=

⊕
k∈Z

Rn
2
k , (2.39)

which we will think of as the direct sum of the spaces of all square nk × nk-matrices.

Let us relabel the standard coordinates on this space to better suit our needs. In keeping with
Remark 2.8, let (e1, . . . , en) be the standard total basis of R(nj). Let us introduce an embedding
diag :

⊕
k∈ZRn

2
k → Rn2

given by

diag : (M1, . . . ,Mℓ) 7→ diag(M1, . . . ,Mℓ), (2.40)

where ℓ = #{j |nj ̸= 0}. In other words, we simply take the ℓ matrices in ⊕k∈ZRn
2
k and embed them

as the blocks of a block-diagonal matrix in Rn2
. Note that the image of this embedding is exactly the

space (R(nj)×(nj))0, i.e. the space of degree-zero matrices, see e.g (2.28). For every i, j ∈ {1, . . . , n} such
that |ei| = |ej | then define the coordinate xij on ⊕kRn

2
k as the (i, j)-th coordinate of the embedding,

that is
xij(M1, . . . ,Mℓ) := (diag(M1, . . . ,Mℓ))

i
j . (2.41)

It is easy to see that this is in fact only the relabeling of the standard coordinate functions on ⊕kRn
2
k .

To specify the graded coordinates on M(nj), we need to fix a total basis of
(
R(nj)×(nj)
∗

)∗
. For this,

we choose the dual basis to matrices ∆i
j from (2.34) for all i, j ∈ {1, . . . , n} such that |ei| ≠ |ej |. As

the graded matrices ∆i
j and the standard coordinates xij are indexed by complementary subsets of

{1, . . . , n}2, we will use xij for i, j ∈ {1, . . . , n} to denote all our coordinates, both degree-zero and
graded.

To sum up, on M(nj) we have n2 coordinates {xij}ni,j=1 with degrees

|xij | = |ej | − |ei|, (2.42)

where ek is the k-th standard basis vector of R(nj). The degree-zero coordinates in particular are
defined by (2.41). We think of the coordinates xij as true coordinates on the graded matrices.
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Remark 2.14. If the context permits no confusion, we will denote the degree of the j-th standard
basis vector of R(nj) as

|ej | =: |j|. (2.43)

To make the graded manifold M(nj) into a monoid in gMan∞ we need to specify the multiplication
arrow µ : M(nj) ×M(nj) → M(nj) and the unit arrow η : ∗ → M(nj).

• Multiplication arrow. We know that M(nj) ×M(nj) ∼= (Rq0 × Rq0)(2nj) so essentially we have 2
copies of the coordinates xij , denoted as aij and b

i
j where

p∗1 x
i
j = aij , and p∗2 x

i
j = bij . (2.44)

Also note that for |xij | = 0 we have aij = xij ◦ p1 and bij = xij ◦ p2, where p1 and p2 are the

classical projections from the Cartesian product ⊕kRn
2
k ×⊕kRn

2
k → ⊕kRn

2
k .

We first define µ : ⊕kRn
2
k × ⊕kRn

2
k → ⊕kRn

2
k as the expected component-wise matrix multipli-

cation:
µ ((M1, . . . ,Mℓ), (N1, . . . , Nℓ)) := (M1 ·N1, . . . ,Mℓ ·Nℓ), (2.45)

or equivalently using the diag embedding as

µ ((M1, . . . ,Mℓ), (N1, . . . , Nℓ)) = diag−1 (diag(M1, . . . ,Mℓ) · diag(N1, . . . , Nℓ)) . (2.46)

Next, we need to specify the pullback µ∗. By [10, Theorem 3.13] it is enough to define pullbacks
of coordinate functions. Since the graded coordinates do not generally commute, there are two
intuitive ways to do this. For reasons that arise when dealing with coordinate transformations
that we will encounter in the construction of the graded fiber bundle in Chapter 4, we choose to
set

µ∗xij = bkja
i
k. (2.47)

We need to show that this is a valid definition. First, for every i, j, k there is (here assume no
Einstein summation):

|bkjaik| = |bkj |+ |aik| = |j| − |k|+ |k| − |i| = |j| − |i| = |xij |, (2.48)

so the Einstein sum in (2.47) is justified. Next, consider the case when |i| = |j|, wherein

xij ◦ µ ((M1, . . . ,Mℓ), (N1, . . . , Nℓ)) = [diag(M1, . . . ,Mℓ) · diag(N1, . . . , Nℓ)]
i
j (2.49)

=
n∑
k=1

[diag(M1, . . . ,Mℓ)]
i
k [diag(N1, . . . , Nℓ)]

k
j (2.50)

=
∑

k:|k|=|i|

[diag(M1, . . . ,Mℓ)]
i
k [diag(N1, . . . , Nℓ)]

k
j (2.51)

= aikb
k
j ((M1, . . . ,Mℓ), (N1, . . . , Nℓ)) . (2.52)

Consequently, for |xij | = 0 we have xij ◦ µ =
∑

k:|k|=|i| a
i
kb
k
j =

∑
k:|k|=|i| b

k
ja
i
k. Note that in

this case we have the decomposition

bkja
i
k =

∑
k:|k|=|i|

bkja
i
k︸ ︷︷ ︸

smooth function

+
∑

k:|k|̸=|i|

bkja
i
k︸ ︷︷ ︸

purely graded

, (2.53)
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hence for any |xij | = 0 we see that

µ∗xij = xij ◦ µ+
∑

k:|k|̸=|i|

bkja
i
k︸ ︷︷ ︸

purely graded

, (2.54)

which means that µ is well defined.

• Unit arrow. This is simple, as any arrow η : ∗ → M(nj) is fully determined by η, i.e. by specifying

a point of the underlying topological space of M(nj). Furthermore, this element must be the unit
element of the underlying Lie group, so

η(∗) := (1, . . . , 1) ∈
⊕
k

Rn
2
k , (2.55)

that is, the ℓ-tuple of identity matrices. Equivalently, η(∗) := diag−1(1n×n) using the diag
embedding from (2.40).

Proposition 2.15 (M(nj) is a monoid). The graded manifold of (nj) × (nj) matrices M(nj) together
with µ and η defined above is a monoid object in gMan∞.

Proof. We need to verify the commutativity of

(M(nj) ×M(nj))×M(nj) M(nj) ×M(nj)

M(nj)

M(nj) × (M(nj) ×M(nj)) M(nj) ×M(nj)

µ×1

µ

1×µ

µ

, (2.56)

and

M(nj) M(nj) ×M(nj) M(nj)

M(nj)

(η,1)

1
µ

(1,η)

1
. (2.57)

At the level of the underlying smooth maps, this is easily seen to be true from the relevant definitions
(2.45) and (2.55). Let us verify it for the pullbacks. First, on the triple product M(nj)×M(nj)×M(nj)

we have 3 copies of the original coordinates xij , whom we denote as uij , v
i
j and wij . In other words,

uij = p∗1 x
i
j , vij = p∗2 x

i
j , wij = p∗3 x

i
j . (2.58)

Consequently, we have

(µ× 1)∗aij = vkju
i
k, (µ× 1)∗bij = wij , (2.59)

(1× µ)∗aij = uij , (1× µ)∗bij = wkjv
i
k . (2.60)

Therefore,
(µ× 1)∗µ∗xij = (µ× 1)∗bkja

i
k = wkjv

ℓ
ku

i
ℓ, (2.61)
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and
(1× µ)∗µ∗xij = (1× µ)∗bkja

i
k = wℓjv

k
ℓu
i
k, (2.62)

which is the same. We have just shown the commutativity of the multiplication diagram (2.56).

Now for the unit diagram: let us first discuss pullback by the unit arrow. As C∞∗ (∗) = R contains
no graded coordinates, necessarily η∗xij = 0 whenever |xij | ≠ 0 and for coordinates of degree zero

there is η∗xij = xij ◦ η. Since

xij ◦ η(∗) = xij(1, . . . , 1) = [diag(1, . . . , 1)]ij = δij , (2.63)

we find that η∗xij = δij is the Kronecker delta, by which we mean

δij =

{
1 of degree 0, when i = j,

0 of degree |j| − |i|, when i ̸= j.
(2.64)

Consequently, we have

(η, 1)∗aij = δij , (η, 1)∗bij = xij , (2.65)

(1, η)∗aij = xij , (1, η)∗bij = δij , (2.66)

and so
(η, 1)∗µ∗xij = (η, 1)∗bkja

i
k = xkjδ

i
k = xij , (2.67)

while also
(1, η)∗µ∗xij = (1, η)∗bkja

i
k = δkjx

i
k = xij , (2.68)

which shows the commutativity of the unit diagram (2.57). Recall that as η we denote both the
arrow from the terminal object η : ∗ → M(nj) and the arrow “filtered through” the terminal object
M(nj) → ∗ η→ M(nj). Indeed, either way we obtain η∗xij = δij . ■

Next we define the graded Lie group GL((nj),R) by introducing the inversion arrow on the
graded manifold

GL((nj),R) := M(nj)
∣∣∣
G
, (2.69)

where G is the open set

G = {(M1, . . . ,Mℓ) | det (diag(M1, . . . ,Mℓ)) ̸= 0}, (2.70)

i.e. the set on which all component matrices (the blocks under the diag embedding) are invertible.
We need the inversion arrow ι : GL((nj),R) → GL((nj),R) to preserve the commutativity of the
appropriate version of diagram (1.42). For it to commute on the level of underlying smooth maps, it
is both necessary and sufficient to set

ι (M1, . . . ,Mℓ) = (M−11 , . . . ,M−1ℓ ), (2.71)

or equivalently as
diag ◦ ι (M1, . . . ,Mℓ) = (diag(M1, . . . ,Mℓ))

−1 , (2.72)

using the diag embedding. Now for the pullbacks: we have

(ι, 1)∗aij = ι∗xij , (ι, 1)∗bij = xij , (2.73)

(1, ι)∗aij = xij , (1, ι)∗bij = ι∗xij , (2.74)
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Thus, from the appropriate diagrams we see that ι is the inversion arrow if and only if

xkj ι
∗(xik) = δij , and ι∗(xkj)x

i
k = δij . (2.75)

Let us put forward some motivation before we define ι. We (privately) think of xij as the co-
ordinates on the “complete graded matrix”, i.e. a matrix n × n which would be the element of
⊕R(nj)×(nj) ∼= Rn×n and whose entries would have different degrees; the (i, j)-th entry of this matrix
would have degree |i| − |j| = −|xij |. Let Q ∈ Rn×n. Then Q decomposes as QD + QN where QD is
the block-diagonal degree-zero part of Q and QN is the remaining non-degree zero part. Assume the
block-diagonal degree-zero part QD to be invertible so we can write

Q = QD
(
1 +Q−1D QN

)
. (2.76)

Note that (
1 +Q−1D QN

)−1
=
∞∑
n=0

(−1)n(Q−1D QN )
n, (2.77)

if the infinite sum on the right-hand side is well-defined (this is only a motivation, after all). In such
case, we would have(

Q−1
)i
j
=
[(
1 +Q−1D QN

)−1
Q−1D

]i
j

=

( ∞∑
n=0

(−1)n(Q−1D QN )
i
k1(Q

−1
D QN )

k1
k2
· · · (Q−1D QN )

kn
ℓ

)
(Q−1D )ℓj . (2.78)

Let us now extend some notation, so that we can use Einstein summation without too much confusion.
Whenever |i| ≠ |j|, we define xij ◦ ι =: 0 of degree |j| − |i| and also denote

ξij =

{
xij , whenever |i| ≠ |j|,
0, of degree 0, whenever |i| = |j|.

(2.79)

With this notation at hand, we may (still privately) think of (Q−1D )ij as x
i
j ◦ ι (the coordinates of the

inverted diagonal blocks) and of (QN )
i
j as ξij (the coordinates on the ”graded part” of Q). Armed

with this intuition, we define

Θi
j := (xik ◦ ι) ξkj , (2.80)

T ij := δij +
∞∑
n=1

(−1)nΘk1
jΘ

k2
k1
· · ·Θkn

kn−1
Θi

kn , (2.81)

ι∗xij := T ik (x
k
j ◦ ι), (2.82)

where we are clearly motivated by (2.78). Note however, that the Θ’s are in the opposite order than
would follow from the motivation, which is necessary due to our definition of the multiplication arrow
(2.47). We need to verify that the definition of T ij makes sense. First notice that Θi

j is a homogeneous

polynomial in graded variables of pedigree3 1. Consequently for every n ∈ N, Θk1
jΘ

k2
k1
· · ·Θi

kn
is a

homogeneous pedigree n polynomial. Hence, T ij is a formal power series

T ij =
∑

p∈Nn
|j|−|i|

(T ij )p ξ
p, (2.83)

3Polynomial degree, or a p-degree.
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where for every p ∈ Nn|j|−|i|, p ̸= 0 there is

(T ij )p = (−1)ω(p)
(
Θk1

jΘ
k2
k1
· · ·Θi

kω(p)

)
p
, (2.84)

which is clearly well-defined. For the case p = 0 we simply have (T ij )0 = δij . Note that for |xij | = 0,
we find

ι∗(xij) = xij ◦ ι+ (
∞∑
n=1

(−1)nΘk1
kΘ

k2
k1
· · ·Θi

kn ) (x
k
j ◦ ι)︸ ︷︷ ︸

purely graded

, (2.85)

which makes ι∗ a well-defined pullback.

Proposition 2.16 (GL((nj),R) is a Lie group). The graded manifold GL((nj),R) together with the
multiplication arrow µ, unit arrow η and inversion arrow ι defined above is a graded Lie group.

Proof. All that remains4 is to show the relations in (2.75). To validate the first, we write

xkjι
∗(xik) = xkjT

i
ℓ (x

ℓ
k ◦ ι) =

∑
k:|k|=|j|

T iℓ (x
ℓ
k ◦ ι)xkj +

∑
k:|k|̸=|j|

xkjT
i
ℓ (x

ℓ
k ◦ ι)

= T iℓ δ
ℓ
j + ξkj (x

ℓ
k ◦ ι)T iℓ = T ij +Θℓ

jT
i
ℓ

= δij +

( ∞∑
n=1

(−1)nΘk1
jΘ

k2
k1
· · ·Θi

kn

)
+Θi

j +Θℓ
j

( ∞∑
n=1

(−1)nΘk1
ℓΘ

k2
k1
· · ·Θi

kn

)

= δij +

( ∞∑
n=1

(−1)nΘk1
jΘ

k1
jΘ

k2
k1
· · ·Θi

kn

)
−

( ∞∑
n=1

(−1)nΘk1
jΘ

k2
k1
· · ·Θi

kn

)
= δij . (2.86)

In order to validate the second, let us state a relation stemming from (2.76), which reads

xij =
∑

k:|k|=|i|

xik

(
δkj +Θk

j

)
. (2.87)

This holds, as for |i| = |j| we have (xkℓ ◦ ι)ξℓj = 0 for any k such that |k| = |i|, yielding∑
k:|k|=|i|

xikδ
k
j = xij (2.88)

while for |i| ≠ |j| necessarily δkj = 0 for any k, |k| = |i|, giving us∑
k:|k|=|i|

xik(x
k
ℓ ◦ ι)ξℓj = δiℓξ

ℓ
j = ξij = xij . (2.89)

Now observe that

T kj
(
δik +Θi

k

)
= T ij +Θi

j +

( ∞∑
n=1

(−1)nΘk1
j · · ·Θ

k
kn

)
Θi

k

= δij +

∞∑
n=1

(−1)nΘk1
j · · ·Θ

i
kn +

∞∑
n=1

(−1)n+1Θk1
j · · ·Θ

i
kn

= δij , (2.90)

4Round the decay of that colossal Wreck, boundless and bare. . .
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and so

ι∗(xkj)x
i
k = T kℓ (x

ℓ
j ◦ ι)

∑
r:|r|=|i|

xir (δ
r
k +Θr

k) =
∑

r:|r|=|i|

(xℓj ◦ ι)xirδrℓ

=
∑

r:|r|=|i|

(xrj ◦ ι)xir = δij (2.91)

which together with (2.90) implies the commutativity of the defining diagram for the inversion arrow
(1.42) and hence show that GL((nj),R) is a graded Lie group. ■

As we noted already in Definition 1.12, a group object multiplication arrow is always automatically
both a left and a right action. Let us now consider µ as a left action of GL((nj),R) on itself. Arrows
from the terminal object ∗ ∈ gMan∞ correspond uniquely to points of the underlying topological space
×kGL(nk,R) and are thus usually denoted by the same letter. One may therefore take some M ∈
×kGL(nk,R) and consider the “multiplication from the left” arrow µM : GL((nj),R) → GL((nj),R)
which is is the graded diffeomorphism defined in (1.46) as

LM := µ ◦ (M, 1), (2.92)

see also Remark 1.15. Note that for |i| ≠ |j| we have M∗xij = 0 and for |i| = |j| there is

M∗xij = xij(M) = (diagM)ij . (2.93)

Consequently one has

L∗M xij = (M, 1)∗µ∗ xij = (M, 1)∗
(
bkja

i
k

)
=

∑
k:|k|=|i|

(diagM)ik x
k
j . (2.94)

Just as the classical Lie group GL(n,R) acts on the linear space Rn from the left by matrix multipli-
cation A · x = Ax, so will the graded domain GL((nj),R) act on

(Rn0)(n−j) =: gR(nj), (2.95)

which is the graded domain associated to the graded vector space R(nj). Assuming our matrix intuition
is still valid, we would like the left action

θ : GL((nj),R)× gR(nj) → gR(nj), (2.96)

see Definition 1.12, to satisfy
θ∗yi = yjxij , (2.97)

where yj are the coordinates on gR(nj) of degree |yj | = −|j|. To be more precise, yj form the dual basis
to the standard coordinates on R(nj). Since for any i, j ∈ {1, . . . , n} we have (no Einstein summation)

|yjxij | = −|j|+ |j| − |i| = −|i| = |yi|, (2.98)

the relation (2.97) makes sense degree-wise. If we consider some i such that |i| = 0, we can decompose
θ∗yi as

θ∗yi = yjxij =
∑

j:|j|=|i|

yjxij︸ ︷︷ ︸
ordinary function

+
∑

j:|j|̸=|i|

yjxij︸ ︷︷ ︸
purely graded

. (2.99)
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Clearly we need the “ordinary function” part, or the body, of θ∗yi to equal yi ◦ θ. Recall that the
underlying smooth manifold of GL((nj),R) is the set

U = {(Mk)k∈Z | det(Mk) ̸= 0 for every k ∈ Z such that nk ̸= 0} ⊂ ×k∈ZRn
2
k . (2.100)

Note that this expression for U is the same as in (2.70) though it is expressed slightly differently.
We define the underlying smooth map θ as multiplication from the left by the zeroth component of
(Mk)k∈Z, i.e.

θ ((Mk)k∈Z, v) =M0 · v, (2.101)

for any (Mk)k∈Z ∈ U and v ∈ Rn0 . For any degree zero coordinate yi we now have

yi ◦ θ =
∑
j:|j|=0

yjxij , (2.102)

giving, for any |i| = 0,

θ∗yi = yi ◦ θ +
∑

j:|j|̸=|i|

yjxij , (2.103)

where the second term is purely graded, which makes θ a well-defined morphism of graded domains.
Of course, we need to verify that we have truly defined a left graded Lie group action.

Proposition 2.17. The arrow θ defined above is a left Lie group action of GL((nj),R) on the graded
domain gR(nj).

Proof. The proof consists of validating the commutativity of the appropriate version of diagrams (1.43)
and (1.44). At the level of the underlying smooth maps, this is again clear. At the level of pullbacks
we have, for diagram (1.43),

(η, 1)∗θ∗yi = (η, 1)∗
(
yjxij

)
= yjδij = yi. (2.104)

For diagram (1.44) label the coordinates on GL((nj),R)×GL((nj),R)× gR(nj) as aij , b
i
j , y

i with the
obvious meaning. Then

(µ× 1)∗xij = bkja
i
k, (µ× 1)∗yi = yi,

(1× θ)∗xij = aij , (1× θ)∗yi = ykbik, (2.105)

which gives us

(µ× 1)∗θ∗yi = (µ× 1)∗yjxij = yjbkja
i
k and

(1× θ)∗θ∗yi = (1× θ)∗ykxik = ykbℓka
i
ℓ, (2.106)

as desired. ■

Some observations:

• Whenever (nj) has only one non-zero component, the graded Lie group GL((nj),R) reduces
to the ordinary Lie group GL(n,R). However, the action θ reduces to the ordinary left action
of GL(n,R) on Rn only if the non-zero entry of the sequence (nj) is the zeroth one, i.e. n0.
Otherwise it becomes a left action of GL(n,R), seen as trivially graded, on the domain gR(nj) =
{∗}(n−j).
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• For a general (nj), the underlying map θ becomes an (ordinary) left action of×k∈ZGL(nk,R)
on Rn0 . However, by construction θ only depends on the “zeroth” matrix, i.e. θ((Mk)k∈Z, v) =
θ(M0, v) and thus “ignores” a large part of the underlying Lie group.

• In the non-graded case, one can just as easily define a right action of GL(n,R) on Rn by a matrix
multiplication from the right, that is

v ·M := vM, (2.107)

where v is now taken as a row vector. Note that in the graded setting the straightforward gener-
alization of this would be to set θ∗yi := yixij with sum over i. But simple degree-counting argu-
ment tells us that this is not possible. One would have to define the right action of GL((nj),R)
on the graded domain gR(n−j) corresponding to the dual linear space

(
R(nj)

)∗ ∼= R(n−j), i.e.

θ : gR(n−j) ×GL((nj),R) → gR(n−j). (2.108)

Standard coordinates on the domain gR(n−j) are yj with degrees |yj | = |j| corresponding to the
standard basis of R(nj). The pullback by the right action θ would then be

θ∗yj := yi x
i
j , (2.109)

and the underlying smooth map would simply be multiplication of a (row) vector by the zeroth
matrix from the right.

• For every point ×kGL(nk,R) we have the isomorphism

θM : gR(nj) → gR(nj) (2.110)

defined in (1.46) by θM = θ ◦ (M, 1). As in (2.93), there is M∗xij = xij(M) = (diagM)ij and so
the graded diffeomorphism θM is given by

θMv =M0 v = θ(M,v), (2.111)

for every v ∈ Rn0and

θ∗My
i = (M, 1)∗θ∗yi = (M, 1)∗

(
yjxij

)
=

∑
j:|j|=|i|

(diagM)ij y
j . (2.112)

2.4.2 Other Examples

Example 2.18 (Graded Vector Space). This example shows that similarly to the non-graded case, a
graded vector space — or rather the corresponding graded domain — can be considered as a graded
Lie group. Let (nj) be some finite sequence of non-zero integers and consider the graded domain gR(nj)

with coordinates (x1, . . . , xn) corresponding to the dual of the standard basis for R(nj). In particular,
under the notation of Remark 2.14, we have |xj | = −|j|.

The multiplication arrow µ will be “inherited” from the addition in R(nj), that is, the underlying
smooth map is defined as

µ(x, y) := x+ y, (2.113)

for any x, y ∈ Rn0 , and the pullback is defined as

µ∗xi = ai + bi, (2.114)
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where ai, bi denote the corresponding copies of coordinates xi on the product gR(nj)×gR(nj) ∼= gR(2nj).
For any xi of degree zero we clearly have µ∗xi = xi ◦ µ which makes µ a well-defined graded smooth
map. The unit arrow will of course be the zero-vector 0 ∈ Rn0 , and the inversion arrow is given by
ι(x) = −x for any x ∈ Rn0 and ι∗xi = −xi.

Example 2.19 (Two-Point Group). In the classical setting finite Lie groups have no interesting
smooth structure — they are merely a finite disjoint union of trivial singleton manifolds. In the graded
setting, however, one can consider the graded domain {∗}(nj) for any finite sequence of integers (nj)
where n0 = 0. The algebra of graded functions for such a domain consists of formal power series

f =
∑

p∈Nn
|f |

λp ξ
p, (2.115)

where λp are real numbers and {ξν}nν=1 are the graded coordinates on {∗}(nj). This opens up a
possibility of non-trivial graded Lie groups whose underlying manifolds are finite groups.

In this example we find the most general shape of a graded Lie group G of graded dimension
(nj) = (. . . , 0, 0, 0, 1, 0 . . . ) whose underlying Lie group is G = Z2. We denote the points of the
underlying group as {•, ◦} with the group multiplication rules

•2 = •, •◦ = ◦, ◦• = ◦ and ◦2 = •. (2.116)

In the usual additive notation • corresponds to the unit element 0 and ◦ corresponds to 1. Due to the
fact that ξ2 = 0, the algebra of graded functions on the domain {∗}(nj) is very simple:(

C∞(nj)
(∗)
)
0
= R,

(
C∞(nj)

(∗)
)
1
= R ξ, (2.117)

and (C∞(nj)
(∗))k = 0 for all k ∈ Z \ {0, 1}. Every global graded function f on G is fully determined by

its restrictions to {•} and to {◦}. On the other hand, as {•} and {◦} are disjoint subsets of G, every
pair of graded functions f1 ∈ C∞G (•) and f2 ∈ C∞G (◦) glues together unique a global function f that
restricts to f1 on {•} and to f2 on {◦}.

Consider any morphism µ : G × G → G, such that µ is the Z2 group multiplication (2.116). The
pullback µ∗ : C∞G → µ∗C

∞
G×G is then fully and uniquely determined by 8 numbers k1, k2, . . . , k8 ∈ R in

the following way:

(µ∗•ξ)|(•,•) = k1 η + k2 θ, (µ∗•ξ)|(◦,◦) = k3 η + k4 θ,

(µ∗◦ξ)|(•,◦) = k5 η + k6 θ, (µ∗◦ξ)|(◦,•) = k7 η + k8 θ, (2.118)

where η, θ are the graded coordinates on the product domain {∗}(nj) × {∗}(nj) ∼= {∗}(2nj). In order
for µ to be the product arrow, it must satisfy the following conditions.

The unit condition. The unit arrow for G must be the unit element of G i.e. •, hence the
requirement µ(1, •) = 1 = µ(•, 1) leads to

ξ = (1, •)∗ (µ∗•ξ)|(•,•) = (1, •)∗(k1 η + k2 θ) = k1 ξ, (2.119)

ξ = (1, •)∗ (µ∗◦ξ)|(◦,•) = (1, •)∗(k7 η + k8 θ) = k7 ξ, (2.120)

ξ = (•, 1)∗ (µ∗•ξ)|(•,•) = (•, 1)∗(k1 η + k2 θ) = k2 ξ, (2.121)

ξ = (•, 1)∗ (µ∗◦ξ)|(•,◦) = (•, 1)∗(k5 η + k6 θ) = k6 ξ, (2.122)
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which dictates that k1 = k2 = k6 = k7 = 1. Let us relabel the remaining coefficients as k3 =: a,
k4 =: b, k5 =: c and k8 =: d. The multiplication is thus forbidden to take any form other than

(µ∗•ξ)|(•,•) = η + θ, (µ∗•ξ)|(◦,◦) = a η + b θ,

(µ∗◦ξ)|(•,◦) = c η + θ, (µ∗◦ξ)|(◦,•) = η + d θ, (2.123)

for some a, b, c, d ∈ R.
The inversion condition. As for any other group object, we must specify the inversion arrow

ι : G → G. The underlying map is already given as the inversion in Z2, which is the identity map.
Any graded smooth function ι : G → G with the identity as its underlying smooth map is fully and
uniquely determined by 2 numbers r, s ∈ R, where

ι∗• ξ = r ξ, and ι∗◦ ξ = s ξ. (2.124)

The relation between the multiplication arrow and the inversion arrow is given in (1.42) and in this
case translates to the following 4 conditions:

0 = (ι, 1)∗ (µ∗•ξ)|(•,•) = (ι, 1)∗(η + θ) = rξ + ξ, (2.125)

0 = (ι, 1)∗ (µ∗•ξ)|(◦,◦) = (ι, 1)∗(aη + bθ) = asξ + bξ (2.126)

0 = (1, ι)∗ (µ∗•ξ)|(•,•) = (1, ι)∗(η + θ) = ξ + rξ, (2.127)

0 = (1, ι)∗ (µ∗•ξ)|(◦,◦) = (1, ι)∗(aη + bθ) = aξ + bsξ. (2.128)

It follows that r needs to equal −1. We also know, from Corollary 1.26, that if the inversion arrow
exists then it is unique. This gives us another limitation on µ, namely that (a, b) ̸= (0, 0), otherwise
s could take any value in R. In fact, neither a nor b can be zero: suppose, for instance, that b = 0.
Then a = 0 by (2.128) which is in contradiction with the above. Hence from (2.126) and (2.128) we
infer the relations

−a
b
= s = − b

a
. (2.129)

The associativity condition. Requirement µ (1 × µ) = µ (µ × 1) leads to 8 conditions on the
parameters a, b, c, d, most of which turn out to be redundant. In fact, it is enough to state one of them.
If we denote the graded coordinates on the triple product domain {∗}(nj)×{∗}(nj)×{∗}(nj) ∼= {∗}(3nj)

as α, β, γ, then requiring(
(1× µ)∗(◦,•) (µ

∗
◦ξ)|(◦,•)

)∣∣∣
(◦,◦,◦)

=
(
(1× µ)∗(◦,•) (η + dθ)

)∣∣∣
(◦,◦,◦)

= α+ d (aβ + bγ) (2.130)

to equal(
(µ× 1)∗(•,◦) (µ

∗
◦ξ)|(•,◦)

)∣∣∣
(◦,◦,◦)

=
(
(µ× 1)∗(•,◦) (cη + θ)

)∣∣∣
(◦,◦,◦)

= c (aα+ bβ) + γ, (2.131)

yields three conditions: ac = 1, bd = 1and ad = bc, where the last condition in fact follows from the
first two and (2.129). As stated, all other bounds imposed by associativity turn out to be redundant.

We conclude that the choice of a graded Lie group structure on the graded manifold G corresponds
uniquely to the choice of a sign and a non-zero real number, i.e. an element (ϵ, a) ∈ {−1, 1}×R \ {0}.
The inversion arrow is then given as

ι∗• ξ = −ξ, and ι∗◦ ξ = ϵ ξ, (2.132)
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and the multiplication arrow as

(µ∗•ξ)|(•,•) = η + θ, (µ∗•ξ)|(◦,◦) = a η − ϵa θ,

(µ∗◦ξ)|(•,◦) =
1

a
η + θ, (µ∗◦ξ)|(◦,•) = η − ϵ

a
θ. (2.133)
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Chapter 3

Associated Lie Algebra

3.1 Vector Fields on Graded Manifolds

3.1.1 Brief Overview of Graded Vector Fields

As with subchapter 2.1, this overview is not intended as a rigorous mathematical introduction but
merely as a summary of the relevant concepts from [10].

Consider a graded manifold M and U ∈ Op(M). We say that a graded linear map X : C∞M(U) →
C∞M(U) is a graded vector field if it satisfies the graded analogue of the Leibniz rule:

X(fg) = X(f)g + (−1)|X||f |fX(g), (3.1)

for any f, g ∈ C∞M(U). We denote the graded linear space of all graded vector fields on U as XM(U).
Note that graded vector fields are closed under the graded commutator

[X,Y ] := X ◦ Y − (−1)|X||Y |Y ◦X. (3.2)

For any V ∈ Op(U) one may define the restriction X|V ∈ XM(V ), though this is non-trivial and
requires the use of partition of unity [10, Subsection 3.5]. With these restrictions, the assignment
XM : U 7→ XM(U) becomes a sheaf on M valued in gVec.

The sheaf XM has additional structure that is of interest. One may multiply a vector field
X ∈ XM(U) by a graded function h ∈ C∞M(U) to obtain a vector field h · X ∈ XM(U) of degree
|h ·X| = |h|+ |X|, where

(h ·X)f := h(Xf), (3.3)

for any f ∈ C∞M(U). In other words, XM(U) is a C∞M(U)-module. This module structure is compatible
with restrictions, i.e. (h ·X)|V = h|V ·X|V and so we say that XM is a sheaf of C∞M-modules, see
[10, Subsection 2.4]. Consider some sheaf S on M valued in gVec which is a sheaf of C∞M-modules.
We say that the n-tuple (s1, . . . , sn), for some n ∈ N and si ∈ S (M) forms a frame for S if for every
U ∈ Op(M), any f ∈ S (U) can be decomposed as

f = f i · si|U , (3.4)

for some unique f i ∈ C∞M(U). Note that the graded functions f i must be of degree |f i| = |f | − |si|.
We say that S is freely and finitely generated if there exists a frame for S . We say it is locally
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freely and finitely generated if every point x ∈ M has a neighborhood U ∈ Opx(M) such that
S |U is freely and finitely generated.

The sheaf of vector fields XM is itself locally freely and finitely generated. Indeed, let (nj) :=
gdimM and n := dimM. Consider some graded domain U (nj) where we have the coordinate vector
fields { ∂

∂xi
}n0
i=1 and { ∂

∂ξµ
}n−n0
µ=1 which act as

∂

∂xi
xj = δji ,

∂

∂xi
ξµ = 0,

∂

∂ξµ
xi = 0,

∂

∂ξµ
ξν = δµν , (3.5)

on the coordinates and “extend naturally” to all graded functions on U (nj). For more details, see [10,
Subsection 4.2]. Any vector field X on the graded domain U (nj) is then given as

X = X(xi)
∂

∂xi
+X(ξµ)

∂

∂ξµ
, (3.6)

i.e. ( ∂
∂x1

, . . . , ∂
∂xn0 ,

∂
∂ξ1
, . . . , ∂

∂ξn−n0
) forms a frame for X(nj)|U , which is the sheaf of vector fields on

U (nj). Given that M is locally isomorphic to graded domains, XM is locally freely and finitely
generated.

For any graded manifold M and any point x ∈M we also have TxM ∈ gVec, called the tangent
space at x, defined as the space of all graded linear maps v : C∞M,x → R which satisfy another analogue
of the Leibniz rule:

v ([f ]x[g]x) = v([f ]x)g(x) + (−1)|v||f |f(x)v([g]x), (3.7)

for any [f ]x, [g]x ∈ C∞M,x. Recall that f(x) ≡ f(x). Here, R is considered as a graded linear space
(R)0 = R and (R)k = 0 for any k ̸= 0. The elements of TxM are called tangent vectors as x. For
any vector field X ∈ XM(U) and any point x ∈ U we have the tangent vector X|x, which we call the
value of X at x and which is defined as X|x[f ]x := [Xf ]x for some representative f ∈ C∞M(U) of [f ]x.
That such a representative can always be found is another consequence of the partition of unity.

A major distinction between graded vector fields and ordinary vector fields is that the values of
X ∈ XM(U) at every point x ∈ U do not determine X itself. A prototypical example is the so-called
Euler vector field E ∈ XM(M) defined as Ef := |f |f for any f ∈ C∞M(M), which is valued as zero at
every point of M .

Consider two graded manifolds M,N , a graded smooth map ϕ : M → N and a pair of global
vector fields X ∈ XM(M) and Y ∈ XN (N). We say that X and Y are ϕ-related, written as X ∼ϕ Y ,
if

C∞N (N) C∞M(M)

C∞N (N) C∞M(M)

ϕ∗

Y X

ϕ∗

(3.8)

commutes, i.e. if X ◦ϕ∗ = ϕ∗ ◦Y . Recall [10, Example 4.25.] that on M×N we have the global vector
fields X ⊗ 1 and 1⊗ Y defined uniquely by the relations X ⊗ 1 ∼p1 X, X ⊗ 1 ∼p2 0 and 1⊗ Y ∼p1 0,
1⊗ Y ∼p2 Y , respectively, where p1, p2 are the canonical product projections.

Locally, let {xi} be coordinates on U ∈ Op(M) and {ya} be coordinates on V ∈ Op(N), with
X|U = Xi ∂

∂xi
and Y |V = Y a ∂

∂ya . By construction of the product, {p∗1(xi)
∣∣
U×V , p

∗
2(y

a)|U×V } are local
coordinates for M×N on the open set U×V ∈ Op(M×N). The pullbacks by projections are usually
omitted and we write simply {xi, ya}, which yields the local decompositions

(X ⊗ 1)|U×V = p∗1(X
i)
∣∣
U×V

∂

∂xi
, and (1⊗ Y )|U×V = p∗2(Y

a)|U×V
∂

∂ya
. (3.9)

40



If ϕ is a graded diffeomorphism we write ϕ∗X := (ϕ−1)∗ ◦X ◦ ϕ∗ and we call ϕ∗X the pushforward
of the vector field X by the graded diffeomorphism ϕ. Note that ϕ∗X = Y is the same as X ∼ϕ Y .

3.1.2 Some Observations about Vector Fields

Let us follow up by several observations about vector fields on graded manifolds which we will find
useful later in this text. The next proposition is somewhat technical, but gives a useful tool for
verifying when two vector fields are ϕ-related.

Proposition 3.1. Let M,N be two graded manifolds, ϕ : M → N a graded smooth map and let X
be a global vector field on M and Y be a global vector field on N .

Let {Vα}α∈I be an open cover by coordinate patches on N . Then X ∼ϕ Y if and only if for every
α ∈ I, (

X|ϕ−1(Vα)
◦ ϕ∗Vα

)
ya =

(
ϕ∗Vα ◦ Y |Vα

)
ya, (3.10)

for every coordinate graded function ya on Vα.

Proof. The “only if” part follows from the extension lemma: let X ∼ϕ Y and consider some α ∈ I and
W ∈ Op(Vα) such thatW ⊆ Vα. Let ŷ

a ∈ C∞N (N) be some extension of ya fromW , i.e. ŷa|W = ya|W .
Then

(ϕ∗N ◦ Y ) ŷa = (X ◦ ϕ∗N ) ŷa. (3.11)

We may also shuffle the restrictions to find

((ϕ∗
N
◦ Y )ŷa )|ϕ−1(W ) = ϕ∗W (Y ŷa)|W = ϕ∗W Y |W ŷa|W = ϕ∗W Y |W ya|W = ϕ∗W (Y |Vα y

a )|W
=
(
(ϕ∗Vα ◦ Y |Vα)y

a
)∣∣
ϕ−1(W )

(3.12)

and

((X ◦ ϕ∗N )ŷa)|ϕ−1(W ) = X|ϕ−1(W )

(
(ϕ∗N ŷ

a)|ϕ−1(W )

)
= X|ϕ−1(W ) (ϕ

∗
W ŷa|W ) = X|ϕ−1(W ) (ϕ

∗
W ya|W )

= X|ϕ−1(W ) (ϕ
∗
Vαy

a )|ϕ−1(W ) =
(
(X|ϕ−1(Vα)

◦ ϕ∗Vα)y
a
)∣∣∣
ϕ−1(W )

. (3.13)

We see that (3.12) equals (3.13) for every W ∈ Op(Vα) such that W ⊆ Vα. Since such sets form an
open cover for Vα and hence the sets ϕ−1(W ) form an open cover of ϕ−1(Vα), we obtain the equality
(3.10).

Conversely, assume that (3.10) holds for every α and every a and consider some f ∈ C∞N (N). We
need to show that (X ◦ ϕ∗N )f = (ϕ∗N ◦ Y )f . Since {ϕ−1(Vα)}α∈I is an open cover for M , it is enough
to show that ((X ◦ ϕ∗N )f)|ϕ−1(Vα)

= ((ϕ∗N ◦ Y )f)|ϕ−1(Vα)
for every α ∈ I. Similarly as above, we have

((X ◦ ϕ∗N )f)|ϕ−1(Vα)
=
(
X|ϕ−1(Vα)

◦ ϕ∗Vα
)
(f |Vα), (3.14)

and
((ϕ∗N ◦ Y )f)|ϕ−1(Vα)

=
(
ϕ∗Vα ◦ Y |Vα

)
(f |Vα) (3.15)

We will start by showing that (
ϕ∗Vα ◦ Y |Vα

)
h =

(
X|ϕ−1(Vα)

◦ ϕ∗Vα
)
h, (3.16)
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for any h ∈ C∞N (Vα) which is a polynomial in variables ya. Let us do this by induction on the pedigree
of h. For pedigree zero polynomials (i.e. real numbers) this is doubtlessly true, so assume (3.16) holds
for all pedigree n − 1 polynomials, and let h be a pedigree n monomial, that is h = pya for some ya

and a pedigree n− 1 monomial p. We see that(
ϕ∗Vα ◦ Y |Vα

)
(pya) = ϕ∗Vα

(
(Y |Vα p)y

a + (−1)|Y ||p| p Y |Vα y
a
)

(3.17)

=
(
ϕ∗Vα Y |Vα p

)
ϕ∗Vαy

a + (−1)|Y ||p|
(
ϕ∗Vαp

) (
ϕ∗Vα Y |Vα y

a
)

(3.18)

=
(
X|ϕ−1(Vα)

ϕ∗Vαp
)
ϕ∗Vαy

a + (−1)|X||p|
(
ϕ∗Vαp

) (
X|ϕ−1(Vα)

ϕ∗Vαy
a
)

(3.19)

= X|ϕ−1(Vα)

(
(ϕ∗Vαp) (ϕ

∗
Vαy

a)
)

(3.20)

=
(
X|ϕ−1(Vα)

◦ ϕ∗Vα
)
(pya) (3.21)

Where in the third equality we used the induction hypothesis, the statement assumption (3.10), the
fact that |X| = |Y | which is dictated by the statement assumption and also that |ya| = |ϕ∗Vαy

a|. We
have just verified the validity of (3.16) for all monomials of pedigree n and all polynomials of pedigree
n− 1, hence due to linearity it holds for all polynomials of pedigree n, as was to be shown.

The goal now is to use the graded Hadamard’s Lemma [10, Lemma 3.4.]. Recall that for any
m ∈ ϕ−1(Vα) we have the ideal Jm of all functions vanishing at m, that is

Jm := {g ∈ C∞M(ϕ−1(Vα)) | g(m) = 0}. (3.22)

Also recall that if a graded function g ∈ C∞M(ϕ−1(Vα)) is in (Jm)
q for every q ∈ N and every m ∈

ϕ−1(Vα), it is necessarily zero [10, Proposition 3.5.].

Let us therefore relabel the coordinates {ya} on Vα as {ya} =: {yj , Y µ}, where {yj} are the degree
zero coordinates and {Y µ} are the purely graded coordinates, and consider some m ∈ ϕ−1(Vα). By
the graded Hadamard’s lemma we can write f |Vα for every q ∈ N as

f |Vα = T +R, (3.23)

where T is a polynomial of pedigree q in variables {yj−yj(ϕ(m)), Y µ} and R ∈ (Jϕ(m))
q+1. Here Jϕ(m)

denotes the ideal of graded functions in C∞N (Vα) vanishing at ϕ(m). Evidently, T can be regarded as
a pedigree q polynomial in variables ya and by the above discussion we have(

ϕ∗Vα ◦ Y |Vα
)
T =

(
X|ϕ−1(Vα)

◦ ϕ∗Vα
)
T. (3.24)

Since ϕ∗Vα is a graded algebra morphism such that ϕ∗Vαg = g ◦ ϕ, we have

ϕ∗Vα

(
(Jϕ(m))

q
)
⊆ (Jm)

q, (3.25)

for any m ∈ ϕ−1(Vα) and q ∈ N. On the other hand, as X and Y are vector fields, we have

X|ϕ−1(Vα)

(
(Jm)

q+1
)
⊆ (Jm)

q and Y |Vα
(
(Jϕ(m))

q+1
)
⊆ (Jϕ(m))

q, (3.26)

for any m and q. All of this together means that(
ϕ∗Vα ◦ Y |Vα − X|ϕ−1(Vα)

◦ ϕ∗Vα
)
f |Vα ∈ (Jm)

q (3.27)
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for any m ∈ ϕ−1(Vα) and any q ∈ N and as such must it be zero. Therefore, due to (3.14) & (3.15)
there is

((X ◦ ϕ∗N )f)|ϕ−1(Vα)
= ((ϕ∗N ◦ Y )f)|ϕ−1(Vα)

, (3.28)

and since {ϕ−1(Vα)}α∈I forms an open cover for M and f ∈ C∞N (N) was arbitrary, X is ϕ-related to
Y . ■

Lemma 3.2. Let X be a global vector field on a graded manifold N and let ϕ : M′ → M be a graded
smooth function. Then

1′ ⊗X ∼(ϕ×1) 1⊗X, (3.29)

where 1′ ⊗X denotes the vector field 1⊗X on the graded manifold M′ ×N .

Proof. The idea is to use Proposition 3.1, hence suppose we have a coordinate patch U on M with
coordinates {xi}tdimMi=1 and a coordinate patch V on N with coordinates {ya}tdimNa=1 . This gives us a
coordinate patch U × V on M×N with coordinates {(p∗1,Uxi)|U×V } ∪ {(p∗2,V ya)|U×V } where p1 and
p2 are the canonical projections. Now observe that(
1′ ⊗X

)∣∣
ϕ−1(U)×V ◦ (ϕ× 1)∗U×V ◦ ϱU×NU×V ◦ p∗1,U =

(
1′ ⊗X

)∣∣
ϕ−1(U)×V ◦ ϱϕ

−1(U)×N
ϕ−1(U)×V ◦ (ϕ× 1)∗U×N ◦ p∗1,U

= ϱ
ϕ−1(U)×N
ϕ−1(U)×V ◦

(
1′ ⊗X

)∣∣
ϕ−1(U)×N ◦ p∗

1,ϕ−1(U)
◦ ϕ∗U = 0. (3.30)

Indeed, let us show that for everyW ∈ Op(M ′) there is (1′ ⊗X)|W×N p∗1,W = 0. Let f ∈ C∞M′(W ) and

let S ∈ Op(W ) be such that S ⊆ W . Consider an extension f̄ of f from S to M ′, that is, f̄ |S = fS .
Then, due to naturality of p∗1, we have

ϱM
′×N

S×N p∗1,M ′ f̄ = p∗1,S f̄
∣∣
S
= p∗1,S f |S = ϱW×NS×N p∗1,W f. (3.31)

Consequently, for any R ∈ Op(N) such that R ⊆ N we have(
p∗1,M ′ f̄

)∣∣
S×R =

(
p∗1,W f

)∣∣
S×R , (3.32)

i.e. p∗1,M ′ f̄ is an extension of p∗1,W f from S ×R to M ′ ×N and thus there is(
1′ ⊗X

)∣∣
S×R

(
p∗1,W f

)∣∣
S×R =

(
1′ ⊗X

)∣∣
S×R

(
p∗1,M ′ f̄

)∣∣
S×R =

(
1′ ⊗X ◦ p∗1,M ′ f̄

)∣∣
S×R = 0. (3.33)

As sets of the type S ×R cover W ×N , we have shown the claim (1′ ⊗X)|W×N p∗1,W = 0 and hence

also the relation (3.30). In much the same way we would show that (1⊗X)|U×V ϱU×NU×V p∗1,U = 0.
Therefore,(

1′ ⊗X
)∣∣
ϕ−1(U)×V (ϕ× 1)∗U×V

(
p∗1,Ux

i
)∣∣
U×V = 0 = (ϕ× 1)∗U×V (1⊗X)|U×V

(
p∗1,Ux

i
)∣∣
U×V . (3.34)

Similarly one would find that(
1′ ⊗X

)∣∣
ϕ−1(U)×V (ϕ× 1)∗U×V

(
p∗2,V y

a
)∣∣
U×V =

(
p∗2,VX

i
V

)∣∣
U×V

= (ϕ× 1)∗U×V (1⊗X)|U×V
(
p∗2,V y

a
)∣∣
U×V , (3.35)

and so one may indeed use Proposition 3.1 to show that 1′ ⊗X ∼(ϕ×1) 1⊗X. ■
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Remark 3.3. In particular, if one chooses in the above proposition as the graded manifold M′ the
terminal object ∗, one obtains that for any graded manifold M there is X ∼(x,1) 1⊗X for any x ∈M .

The next lemma states that if one deals with sheaves of C∞M-modules, the concepts of a frame for
the sheaf and a frame for the “global” module are the same.

Lemma 3.4. Consider some graded manifold M, let S be a sheaf of C∞M-modules and consider (fi)
n
i=1

an n-tuple of global sections fi ∈ S (M). Then (f1, . . . , fn) form a frame for S (M) if and only if
they form a frame for S .

Proof. The only if direction is trivial. Let (f1, . . . , fn) form a frame for S (M) and consider some
U ∈ Op(M) and s ∈ S (U). We may take an open cover {Wα}α∈I of U composed of sets that satisfy
Wα ⊆ U . We may then construct [10, Proposition 5.5], for every α, a global section sα ∈ S (M)
such that sα|Wα = s|Wα . By assumption we have the unique decomposition sα = φjαfj for some

φjα ∈ C∞M(M) and hence
s|Wα

= φjα
∣∣
Wα

f j
∣∣
Wα

. (3.36)

Now let {λα}α∈I , λα ∈ C∞M(U) be a partition of unity [10, Proposition 3.40] subordinate to {Wα}α∈I .
For any j we may form the graded functions φj ∈ C∞M(U) as

φj :=
∑
α∈I

λα · φjα
∣∣
Wα

. (3.37)

If we consider some x ∈ U and its neighborhood Ux ∈ Opx(U) that intersects with only finitely many
supports of λα, say those with indices {α1, . . . , αℓ}, we find that

(
φj fj |U

)∣∣
Ux

= φj
∣∣
Ux
fj |Ux

=

(
ℓ∑
i=1

λαi · φjαi

∣∣
Wαi

)∣∣∣∣∣
Ux

fj |Ux
=

(
ℓ∑
i=1

λαi ·
(
φjαi

∣∣
Wαi

fj |Wαi

))∣∣∣∣∣
Ux

=

(
ℓ∑
i=1

λαi · s|Wα

)∣∣∣∣∣
Ux

= s|Ux
(3.38)

hence φjfj |U = s. To show uniqueness, let s = ψjfj |U for some other graded functions ψj , consider
some V ∈ Op(U) such that V ⊆ U and let λ ∈ C∞M(M) be a smooth bump function on V supported
in U , i.e. λ|V = 1. We may extend φj and ψj from V to M by ψ̃j := λ · ψj and φ̃j := λ · φj , where
e.g. λ · ψj is defined by its restriction to V as (λψj)|V and its restriction to M \ V as zero. We see
that (

φ̃j fj
)∣∣
V
= s|V =

(
ψ̃j fj

)∣∣∣
V
, and

(
φ̃j fj

)∣∣
M\V = s|M\V =

(
ψ̃j fj

)∣∣∣
M\V

, (3.39)

thus φ̃j fj = ψ̃j fj and hence φ̃j = ψ̃j for every j. But this implies that φj |V = φ̃j |V = ψ̃j |V = ψj |V
and as we may cover U with sets like V , the uniqueness is proven. ■

3.2 Left-Invariant Vector Fields

Let us begin by stating three equivalent definitions of left-invariant vector fields in the classical setting.
For the rest of this section, we will study the relation of these notions in the graded setting, where at
least some of them show to be non-equivalent. We base our definition of left-invariant vector fields on
the one for supermanifolds in [2], though we try to provide a more thorough discussion.
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Proposition 3.5 (Equivalent Classical Definitions). Let G be an ordinary Lie group with multipli-
cation map µ : G × G → G and let X ∈ X (G) be a global vector field. Then the following are
equivalent:

1. Lg,∗X = X for every g ∈ G.

2. 1⊗X ∼µ X.

3. X = (1, e)∗ ◦ (1⊗X) ◦ µ∗.

Proof. (1. =⇒ 2.). We assume that for all g, h ∈ G and any f ∈ C∞(G),

[(Lg,∗X)f ](gh) = (Xf)(gh). (3.40)

Observe that the right-hand side can be written for our purposes as

(Xf)(gh) = ((Xf) ◦ µ)(g, h) = [(µ∗ ◦X)f ](g, h). (3.41)

We would like the left hand side of (3.40) to equal (1⊗X)◦µ∗ acting on f at the point (g, h). For this,
let us move to some coordinate neighborhoods U ∈ Opg(G) with coordinates {xi} and V ∈ Oph(G)
with coordinates {yi}. This yields

[((1⊗X) ◦ µ∗)f ](g, h) = [(1⊗X)(f ◦ µ)](g, h) = Xi(h)
∂

∂yi

∣∣∣∣
(g,h)

f ◦ µ

= Xi(h)
d

dt

∣∣∣∣
t=0

(f ◦ µ)(g, h+ tei) (3.42)

where ei is the i-the standard basis vector on Rn. On the other hand we find that

[(Lg,∗X)f ](gh) = ([(Lg,∗X)f ] ◦ Lg)(h) = (X(f ◦ Lg))(h) = Xi(h)
∂

∂yi

∣∣∣∣
h

f ◦ Lg

= Xi(h)
d

dt

∣∣∣∣
t=0

(f ◦ Lg)(h+ tei) = Xi(h)
d

dt

∣∣∣∣
t=0

(f ◦ µ)(g, h+ tei), (3.43)

hence for every f ∈ C∞(G) and every g, h ∈ G there holds

[(Lg,∗X)f ](gh) = [((1⊗X) ◦ µ∗)f ](g, h), (3.44)

which together with (3.41) proves the implication.

(2. =⇒ 3.). This implication stems from the identity (1, e)∗◦µ∗ = 1 and so holds for every (graded)
smooth manifold.

(3. =⇒ 1.). For any g ∈ G and f ∈ C∞(G) we have

X|g f = (Xf)(g) = (((1, e)∗ ◦ 1⊗X ◦ µ∗) f) (g) = ((1⊗X ◦ µ∗)f) (g, e)

= Xi(e)
d

dt

∣∣∣∣
t=0

(f ◦ µ)(g, e+ tei) = Xi(e) ·
(
∂

∂xi
(f ◦ Lg)

)
(e) = X|e (f ◦ Lg)

= ((TeLg) X|e)f, (3.45)

hence Lg,∗X = X. ■
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Any of these equivalent definitions of left-invariant vector fields in the classical setting may in
principle be used to define the generalization of left-invariant vector fields in the graded setting. It
turns out that the second and the third notion coincide even in the graded setting, while the first is
only implied by the latter two.

Definition 3.6 (Left-Invariant Vector Fields). Let (G, µ, e, ι) be a graded Lie group and X a global
vector field on G. We say that X is left-invariant, if

1⊗X ∼µ X. (3.46)

The space of all left-invariant vector fields on G will be denoted as X L
G . On the other hand, if X

satisfies
Lg,∗X = X, (3.47)

for all g ∈ G, we say that X is left-translation invariant.

Similarly, X is right-invariant if X ⊗ 1 ∼µ X and the space of all right-invariant vector fields on G
is denoted as X R

G . We will explicitly investigate only left-invariant vector fields.

Proposition 3.7. The graded commutator of two left-invariant vector fields is a left-invariant vector
field. Consequently, X L

G forms a Lie subalgebra of XG(G).

Proof. Let X,Y be two left-invariant vector fields on G. We assume that 1⊗X ∼µ X and 1⊗Y ∼µ Y ,
hence also [1 ⊗X, 1 ⊗ Y ] ∼µ [X,Y ], this follows immediately by writing out the relevant definitions.
We only need to show that

[1⊗X, 1⊗ Y ] = 1⊗ [X,Y ]. (3.48)

This is best verified locally in coordinates. Let U, V ∈ Op(G) be two coordinate patches, and let {xi}
and {yi} be the coordinates on U and V , respectively. Then clearly

[1⊗X, 1⊗ Y ]|U×V x
i = 0 = (1⊗ [X,Y ])|U×V x

i (3.49)

and

[1⊗X, 1⊗ Y ]|U×V y
i = (1⊗X)|U×V

(
p∗2,V Y

i
)∣∣
U×V − (−1)|X||Y | (1⊗ Y )|U×V

(
p∗2,VX

i
)∣∣
U×V

= p∗2,V

(
XY i − (−1)|X||Y |Y Xi

)
= p∗2,V [X,Y ]i = (1⊗ [X,Y ])|U×V y

i, (3.50)

as was to be shown. ■

Proposition 3.8 (Left-Invariance Implies Left-Translation Invariance). Let (G, µ, e, ι) be a graded Lie
group and let X ∈ XG(G) be a left-invariant vector field on G. Then

Lg,∗X = X, (3.51)

for every g ∈ G. The converse is in general not true.

Proof. Recall that Lg = µ ◦ (g, 1) for any g ∈ G. Writing out the definition of the pushforward vector
field Lg,∗X, we obtain

Lg,∗X = (L∗g)
−1 ◦X ◦ L∗g = L∗ιg ◦X ◦ L∗g = (ιg, 1)∗ ◦ µ∗ ◦X ◦ L∗g. (3.52)
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Using left-invariance of X and Lemma 3.2 (see also Remark 3.3) we can continue:

(ιg, 1)∗ ◦ µ∗ ◦X ◦ L∗g = (ιg, 1)∗ ◦ (1⊗X) ◦ µ∗ ◦ L∗g = X ◦ (ιg, 1)∗ ◦ µ∗ ◦ L∗g = X ◦ L∗ιg ◦ L∗g = X, (3.53)

as was to be proven.

Finally, that not all left-translation invariant vector fields are left-invariant can be seen in Example
3.9. ■

Example 3.9 (The Euler Vector Field on GL((nj),R)). Consider the Euler vector field E on the
Lie group GL((nj),R) defined as Ef = |f |f for any graded function f . In the usual coordinates it is
expressed as

E = |xij |xij
∂

∂xij
≡

n∑
i,j=1

(|j| − |i|)xij
∂

∂xij
. (3.54)

We will show that E is left-translation invariant. The relation (3.51) is an equality of two vec-
tor fields and it is therefore enough to examine how they act on coordinate functions. Take some
M ∈ ×kGL(nk,R) yielding the arrow LM , see (2.92), and observe that

(LM,∗E)xij = (L∗ιM ◦ E ◦ L∗M )xij = (L∗ιM ◦ E)

 ∑
k:|k|=|i|

diag(M)ikx
k
j


= L∗ιM

 ∑
k:|k|=|i|

(|j| − |k|) diag(M)ikx
k
j

 =
∑

ℓ:|ℓ|=|k|

∑
k:|k|=|i|

(|j| − |k|) diag(M)ikdiag(ιM)kℓx
ℓ
j

=
∑

ℓ:|ℓ|=|i|

(|j| − |ℓ|)δiℓxℓj = (|j| − |i|)xij = E xij , (3.55)

where we used the fact that diag(ιM) = (diag(M))−1 which follows from the definition of the inversion
arrow on GL((nj),R).

Let us show that E is not left-invariant: on the one hand we have

(µ∗ ◦ E)xij = (|j| − |i|)bkjaik, (3.56)

while on the other,

((1⊗ E) ◦ µ∗)xij = |buv|buv
∂

∂buv

(
bkja

i
k

)
= |buv| buv δkuδvj aik = (|j| − |k|)bkjaik. (3.57)

The difference is subtle, but profound; in fact (3.56) equals (3.57) for every i, j ∈ {1, . . . , n} if and
only if all basis vectors of R(nj) have the same degree. But we know this leads to GL((nj),R) being
trivially graded and hence E = 0.

We claimed that the graded versions of the properties 2. and 3. in Proposition 3.5 are equivalent.
The next theorem in fact states something a little stronger. However, it requires in its proof the
following lemma.

Lemma 3.10. Let X,Y ∈ XG(G) be two global vector fields on a graded Lie group (G, µ, e, ι) such
that X = (1, e)∗ ◦ 1⊗ Y ◦ µ∗. Then

1⊗X = (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ (1× µ)∗. (3.58)
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Proof. We know that the vector field 1 ⊗ X ∈ XG×G(G × G) is fully determined by the relations
1 ⊗ X ∼p1 0 and 1 ⊗ X ∼p2 X. The right-hand side of (3.58) is certainly a linear map of degree
|X|. Moreover, it is a global vector field on G × G. Indeed, the Leibniz rule can be directly verified
thanks to the fact that (1×µ)∗ is an algebra morphism, 1⊗ (1⊗Y ) is a vector field of degree |X| and
(1× (1, e))∗ ◦ (1× µ)∗ = (1× ((1, e)∗ ◦ µ∗)) = (1× 1)∗ = 1. One may therefore denote

Z := (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ (1× µ)∗ ∈ XG×G(G×G) (3.59)

and verify that Z ∼p1 0 and Z ∼p2 X. We find

Z ◦ p∗1 = (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ (1× µ)∗ ◦ p∗1 = (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ p∗1 = 0, (3.60)

where we used that 1 ⊗ (1 ⊗ Y ) ∼p1 0. Note that one needs to watch closely the meaning of p1;
while it always denotes the canonical projection on the first term, we abuse the notation in that we
do not specify the product manifold from which it projects. Case in point, the commutative diagram
implicitly used in (3.60) is

G × (G × G) G × G

G G

(1×µ)

p1 p1

1

. (3.61)

This notational abuse will be common. Similarly, we find that

Z ◦ p∗2 = (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ (1× µ)∗ ◦ p∗2 = (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ p∗2 ◦ µ∗

= (1× (1, e))∗ ◦ p∗2 ◦ 1⊗ Y ◦ µ∗ = p∗2 ◦ (1, e)∗ ◦ 1⊗ Y ◦ µ∗ = p∗2 ◦X, (3.62)

as was to be shown. ■

Theorem 3.11. Let X ∈ XG(G) be a global vector field on a graded Lie group (G, µ, e, ι). Then X is
left-invariant if and only if

X = (1, e)∗ ◦ 1⊗ Y ◦ µ∗, (3.63)

for some Y ∈ XG(G).

Proof. The direction “ =⇒ ” follows immediately from the identity µ ◦ (1, e) = 1 for Y = X. Let us
therefore focus on the direction “ ⇐= ”. It turns out that it is a consequence of associativity of µ.
From Lemma 3.10 we know that we can write

1⊗X = (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ (1× µ)∗. (3.64)

Composing this with µ∗ from the right yields

1⊗X ◦ µ∗ = (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ (1× µ)∗ ◦ µ∗ (3.65)

= (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ α∗ ◦ (µ× 1)∗ ◦ µ∗, (3.66)

where we used the associativity diagram (1.39) with the explicit mention of the canonical “associator”
isomorphism

α : G × (G × G) → (G × G)× G. (3.67)

Now we claim that
1⊗ (1⊗ Y ) ◦ α∗ = α∗ ◦ 1′ ⊗ Y, (3.68)

48



where 1′⊗Y ∈ C∞(G×G)×G((G×G)×G). Indeed, let us show that (α−1)∗ ◦1⊗ (1⊗Y )◦α∗ ◦p∗2 = p∗2 ◦Y .
One uses the commutative diagram

G × (G × G) G × G

(G × G)× G G

p2

α p2

p2

, (3.69)

to find that

(α−1)∗ ◦ 1⊗ (1⊗ Y ) ◦ α∗ ◦ p2∗ = (α−1)∗ ◦ 1⊗ (1⊗ Y ) ◦ p2∗ ◦ p∗2 = (α−1)∗ ◦ p2∗ ◦ (1⊗ Y ) ◦ p∗2
= (α−1)∗ ◦ p2∗ ◦ p∗2 ◦ Y = p2

∗ ◦ Y. (3.70)

Similarly one would show that (α−1)∗ ◦ 1 ⊗ (1 ⊗ Y ) ◦ α∗ ◦ p∗1 = 0 and hence our current claim (3.68)
is justified. Also note that α ◦ (1× (1, e)) = (1′, e), where 1′ is the identity morphism on G × G. With
these facts in mind, we can continue in (3.66):

1⊗X ◦ µ∗ = (1× (1, e))∗ ◦ 1⊗ (1⊗ Y ) ◦ α∗ ◦ (µ× 1)∗ ◦ µ∗ (3.71)

= (1× (1, e))∗ ◦ α∗ ◦ 1′ ⊗ Y ◦ (µ× 1)∗ ◦ µ∗ (3.72)

= (1′, e)∗ ◦ 1′ ⊗ Y ◦ (µ× 1)∗ ◦ µ∗ (3.73)

= (1′, e)∗ ◦ (µ× 1)∗ ◦ 1⊗ Y ◦ µ∗ (3.74)

= µ∗ ◦ (1, e)∗ ◦ 1⊗ Y ◦ µ∗ (3.75)

= µ∗ ◦X, (3.76)

where between (3.73) and (3.74) we used Lemma 3.2, between (3.74) and (3.75) we used the commu-
tative diagram

G × G (G × G)× G

G G × G

(1′,e)

µ µ×1
(1,e)

, (3.77)

and in the final equality we used the assumption (3.63). This concludes the proof.

Note that in particular X is left-invariant if and only if X = (1, e)∗ ◦ 1⊗X ◦ µ∗.
■

A very important property of left-invariant vector fields in the classical setting is that their value
at any one point determines their value at every other point. In the graded case, this statement does
not generally hold for left-translation invariant vector fields. Indeed, we see that the Euler vector field
on GL((nj),R) is valued as 0 ∈ TgG for any g ∈ G, but it is not the zero vector field. However, we
can show that left-translation invariant vector fields are uniquely determined by restrictions to any
open set and that left-invariant vector fields are fully determined by their value at the unit e ∈ G.

Proposition 3.12. Let X, Y be two left-translation invariant vector fields on a graded Lie group G
and consider any U ∈ Op(G). Then X|U = Y |U =⇒ X = Y .
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Proof. Consider some f ∈ C∞M(M). Then for any g ∈ G we have

(Xf)|Lg(U) =
(
((L∗ιg)G ◦X ◦ (L∗g)G)f

)∣∣
Lg(U)

= (L∗ιg)U
(
(X ◦ (L∗g)G)f

)∣∣
U

= (L∗ιg)U ◦ X|U )
(
(L∗g)Gf

)∣∣
U
= (L∗ιg)U ◦ Y |U )

(
(L∗g)Gf

)∣∣
U

= (Y f)|Lg(U) . (3.78)

The second equality follows simply from L∗g being a sheaf morphism, and thus commuting with re-
strictions. Notice that

(L∗ιg)U : C∞G (U) → C∞G ((Lιg)
−1(U)) ≡ C∞G (Lg(U)) (3.79)

Since {Lg(U)}g∈G form an open cover of G, the statement follows. ■

Proposition 3.13. Let (G, µ, e, ι) be a graded Lie group and let X,Y ∈ X L
G be two left-invariant

vector fields on G. Then X|e = Y |e =⇒ X = Y .

Proof. Consider some f ∈ C∞G (G) and 2 coordinate patches U, V ∈ Op(G) on G, such that e ∈ V .
Denote the degree-zero and purely graded coordinates on U as {xi} and {ξµ}and on V as {yi} and
{θµ}. We know that on U × V we have the coordinates {xi, yj , ξµ, θν}, with the precise relation given
in the beginning of Subchapter 3.1. Consequently,

(Xf)|U = (((1, e)∗ ◦ (1⊗X) ◦ µ∗) f)|U = (1, e)∗U×V (1⊗X)|U×V (µ∗f)|U×V . (3.80)

This may not seem like much, since we don’t know what µ∗f looks like for a general multiplication
map µ. As with any graded function in C∞G×G(U × V ) we can write (µ∗f)|U×V as a formal infinite
series. In particular, we can decompose it as

(µ∗f)|U×V = h0 + hµθ
µ +R, (3.81)

where h0 and hµ are graded functions on C∞G×G(U×V ) that do not contain any of the graded coordinates
{θµ} and R ∈ ⟨{θµ}⟩2, where ⟨{θµ}⟩ ⊆ C∞G×G(U × V ) is the ideal generated by the set {θµ}. Recall
that

(1, e)∗U×V x
i = xi, (1, e)∗U×V y

i = yi(e), (3.82)

(1, e)∗U×V ξ
µ = ξµ, (1, e)∗U×V θ

µ = 0, (3.83)

and that

(1⊗X)|U×V =
(
p∗2,V (X

i)
)∣∣
U×V

∂

∂yi
+
(
p∗2,V (X

µ)
)∣∣
U×V

∂

∂θµ
. (3.84)

It is apparent now that (1 × e)∗U×V (1⊗X)|U×V R = 0, which was indeed the motivation for the
decomposition (3.81). Let us now continue in (3.80):

(Xf)|U = (1, e)∗U×V (1⊗X)|U×V (h0 + hµθ
µ) (3.85)

= (1, e)∗U×V

((
p∗2,V (X

i)
)∣∣
U×V

∂

∂yi
h0 + hµ

(
p∗2,V (X

µ)
)∣∣
U×V

)
(3.86)

= Xi(e) (1, e)∗U×V
∂

∂yi
h0 +Xµ(e) (1, e)∗U×V hµ, (3.87)

where we used that
(1, e)∗U×V

(
p∗2,V h

)∣∣
U×V = h(e), (3.88)

for any U, V ∈ Op(G) such that e ∈ V and any h ∈ C∞G×G(U × V ). As the same procedure can be
followed for Y and f and U were arbitrary, the statement follows. ■
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Before we fully investigate the correspondence between left-invariant vector fields and the tangent
space at the unit, let us give an example on our model graded Lie group.

Example 3.14 (LIVFs on GL((nj),R)). Note that the tangent space of G := GL((nj),R) at any
point in G is isomorphic to the graded linear space R(nj)×(nj), see Definition 2.9. For any tangent
vector v ∈ TeG we shall construct a left-invariant vector field X such that Xe = v. Inspired by (3.87),
we define

X := vij (1, e)
∗ ◦ ∂

∂bij
◦ µ∗, (3.89)

where vij are real numbers such that v = vij
∂

∂xij
|e. Note that vij = 0 whenever |j| − |i| + |v| ≠ 0.

We see that X is a graded linear map of degree |X| = |v|. Let us verify the Leibniz rule: for any
f, g ∈ C∞G (G) we have

X(fg) = vij (1, e)
∗ ∂

∂bij
((µ∗f)(µ∗g)) (3.90)

= vij (1, e)
∗

(
∂µ∗f

∂bij
µ∗g + (−1)(|i|−|j|)|f | (µ∗f)

∂µ∗g

∂bij

)
(3.91)

= (Xf)g + (−1)|X||f |fXg, (3.92)

where we used that (1, e)∗ is a graded algebra morphism, (1, e)∗µ∗ = 1 and that |vij | is (possibly)
non-zero only for |i| − |j| = |X|. The graded linear map X satisfies the Leibniz rule, hence it is a
vector field; let us see what it looks like when decomposed in a coordinate frame. As for any global
vector field, we have X = Xi

j
∂

∂xij
where

Xi
j = Xxij = vkr(1, e)

∗ ∂

∂bkr
(bℓja

i
ℓ) = vkj (1, e)

∗aik = xikv
k
j . (3.93)

Take note that vij ∈ R for any i, j and so it commutes with every graded function. If we consult a

classical textbook such as [3] we see that Xi
j takes formally the exact same shape as in the classical

setting, which we take as a good sign regarding the validity of our definitions. Since xij(e) = δij we
find that indeed Xe = v. It remains to be shown that X is in fact left-invariant: on the one hand

(µ∗ ◦X)xij = µ∗Xi
j = bkℓ a

i
kv
ℓ
j , (3.94)

while on the other

((1⊗X) ◦ µ∗)xij = p∗2(X
k
ℓ )

∂

∂bkℓ
(bsja

i
s) = vrℓb

k
r δ

s
k δ

ℓ
j a

i
s = vrjb

s
ra
i
s. (3.95)

As (3.94) equals (3.95), we see that 1⊗X ∼µ X, as desired.

It may be prudent, or at least illustrative, to perform this construction on one concrete example
of GL((nj),R).

Example 3.15. Here, let1 (nj) = (. . . , 0, 0, 1, 1, 0, . . . ) and let us denote as G the resultant graded
Lie group GL((nj),R). We know that its graded dimension is gdimG = (. . . , 0, 1, 2, 1, 0, . . . ), the
underlying Lie group is

G = {(x, y) ∈ R⊕ R | x ̸= 0 ∧ y ̸= 0} (3.96)

1For the sequence notation see Remark 2.10.

51



with pointwise multiplication and inversion, and with the unit e = (1, 1) ∈ G. We have the global
coordinates xij for i, j ∈ {0, 1} whom we shall relabel as

x00 =: x, x11 = y, x10 =: ξ, and x01 =: η. (3.97)

In other words, x and y are the standard coordinates on R ⊕ R, ξ is the only graded coordinate of
degree −1 and η is the only graded coordinate of degree +1. Let us choose a total basis of the tangent
space TeG:

f 1
0 :=

∂

∂η

∣∣∣∣
e

, f 0
0 :=

∂

∂x

∣∣∣∣
e

, f 1
1 :=

∂

∂y

∣∣∣∣
e

, f 0
1 :=

∂

∂ξ

∣∣∣∣
e

. (3.98)

Clearly (f j
i )kℓ = δjℓδ

k
i and we may use the general formula (3.93) to find the corresponding left-

invariant vector fields:

(f 1
0 )L = xikδ

1
jδ
k
0

∂

∂xij
= xi0

∂

∂xi1
= x

∂

∂η
+ ξ

∂

∂y
, (3.99)

and similarly

(f 0
0 )L = xi0

∂

∂xi0
= x

∂

∂x
+ ξ

∂

∂ξ
, (3.100)

(f 1
1 )L = xi1

∂

∂xi1
= η

∂

∂η
+ y

∂

∂y
, (3.101)

(f 0
1 )L = xi1

∂

∂xi0
= η

∂

∂x
+ y

∂

∂ξ
. (3.102)

From Proposition 3.13, or indeed from the next theorem, we know that there are no other linearly
independent left-invariant vector fields on this particular graded Lie group.

The next theorem generalizes the construction of left-invariant vector fields from tangent vectors
at the unit to any graded manifold. This together with Proposition 3.13 yields a linear isomorphism
between the graded vector space of left-invariant vector fields on G and the tangent space at the unit
TeG.

Theorem 3.16 (Tangent Vectors at Unit & LIVFs). Let (G, µ, e, ι) be a graded Lie group. Then for
every v ∈ TeG there exists a left-invariant vector field vL such that (vL)e = v. In fact, this assignment
defines a canonical graded linear isomorphism

TeG ∼= X L
G . (3.103)

Proof. Consider some open coordinate neighborhood U of the unit e ∈ G with coordinates {xi}
together with some subset V ∈ Ope(U) such that V ⊆ U and let v ∈ TeG be a tangent vector at the
unit. We can write v uniquely as v = vi ∂

∂xi
|e and we can consider the vector field vi ∂

∂xi
∈ XG(U).

Using partition of unity, we can extend this vector field from V to G and in so doing produce a global
vector field Y ∈ XG(G) such that

Y |V = vi
∂

∂xi

∣∣∣∣
V

. (3.104)

It is now natural to define the vector field X ∈ XG(G) akin to Example 3.14 as

X := (1, e)∗ ◦ 1⊗ Y ◦ µ∗. (3.105)
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We immediately see that X is a linear map of degree |v| and the Leibniz identity can be verified
directly using the fact that pullbacks are algebra morphisms, 1⊗ Y is a vector field of degree |v| and
(1, e)∗ ◦ µ∗ = 1. Hence X is a vector field. That X is left-invariant follows from Theorem 3.11.

We still need to verify that Xe = v. Note that (e, e) is an element of µ−1(V ) which is an open
set in the product topology, hence there exist some Ue, Ve ∈ Ope(G) such that Ue × Ve ∈ µ−1(V ).
Without loss of generality we may assume that Ue, Ve ⊆ V . Now, we have

Xi
∣∣
Ue

= (1, e)∗Ue×Ve ◦ (1⊗ Y )|Ue×Ve ◦
(
µ∗V x

i
)∣∣
Ue×Ve (3.106)

Here we are going to get our hands dirty a little and study the graded smooth functions

hi :=
(
µ∗V x

i
)∣∣
Ue×Ve ∈ C∞G×G(Ue × Ve). (3.107)

We know that Ue × Ve is a coordinate patch in G × G with coordinates “inherited” from Ue and Ve,
both of which share the coordinates xi as they are subsets of U . We shall label these coordinates as

ai :=
(
p∗1,Ue

xi
)∣∣
Ue×Ve

, and bi :=
(
p∗2,Vex

i
)∣∣
Ue×Ve

. (3.108)

In this case we will need to distinguish between degree-zero and purely graded coordinates, so let us
also denote {xi}ni=1 =: {xK}n0

K=1 ∪ {ξµ}n∗
µ=1, {ai} =: {aK} ∪ {ηµ} and {bi} =: {bK} ∪ {θµ}, where

the coordinates denoted by Latin letters and indexed by capital letters have degree zero and the
coordinates denoted by Greek letters have a non-zero degree. Under this notation, we may write hi

as a formal power series

hi ≡
(
µ∗V x

i
)∣∣
Ue×Ve =

∑
(p,g)∈N2n∗

|h|

hip,q η
p θq, (3.109)

where hip,q ∈ C∞G×G(Ue × Ve) are ordinary smooth functions in coordinates aL and bK . With the
identity µ ◦ (e, 1) = 1 at hand, we find that

(e, 1)∗Ue×Ve
(
µ∗V x

i
)∣∣
Ue×Ve =

(
ϱVVe ◦ (e, 1)

∗
µ−1(V ) ◦ µ

∗
V

)
xi = xi

∣∣
Ve
, (3.110)

hence
xK = (e, 1)∗Ue×Ve

∑
(p,g)∈N2n∗

|h|

hKp,q η
p θq =

∑
(0,g)∈N2n∗

|h|

hK0,q(e, ·) ξq, (3.111)

which implies that hK0,0(e, ·) = xK and hK0,q(e, ·) = 0 for any q ̸= 0. Similarly, we have

ξµ = (e, 1)∗Ue×Ve

∑
(p,g)∈N2n∗

|h|

hµp,q η
p θq =

∑
(0,g)∈N2n∗

|h|

hµ0,q(e, ·) ξ
q, (3.112)

from which one gleans that hµ0,ν(e, ·) = δµν and hµ0,q(e, ·) = 0 for any q ̸= ν where we use the shorthand
multiindex ν ≡ (0, . . . , 0, 1, 0, . . . , 0) with the non-zero entry at position ν. Now, we write out (3.106)
in our current notation:

Xi
∣∣
Ue

= vK(1, e)∗Ue×Ve
∂

∂bK

∑
(p,g)∈N2n∗

|h|

hip,q η
p θq + vµ(1, e)∗Ue×Ve

∂

∂θµ

∑
(p,g)∈N2n∗

|h|

hip,q η
p θq (3.113)

= vK
∑

(p,0)∈N2n∗
|h|

∂hip,0
∂bK

(·, e) ξp + vµ
∑

(p,µ)∈N2n∗
|h|

(−1)|θµ||ξ
p| hip,µ(·, e) ξp, (3.114)
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which gives

Xi(e) = vK
∂hi0,0
∂bK

(e, e) + vµhi0,µ(e, e). (3.115)

In particular,

XL(e) = vK
∂hL0,0
∂bK

(e, e) = vK
∂hL0,0(e, ·)
∂xK

(e) = vK
∂xL

∂xK
(e) = vKδLK = vL, (3.116)

and similarly,
Xµ(e) = vνhµ0,ν(e, e) = vνδµν = vµ. (3.117)

This of course means nothing else than

X|e = Xi(e)
∂

∂xi

∣∣∣∣
e

= vi
∂

∂xi

∣∣∣∣
e

= v, (3.118)

which is what we wanted to show. By Proposition 3.13 the above construction did not depend on any
choices we made, only on the choice of v, so let us label vL := X. We now have a map TeG 7→ X L

G ,
v 7→ vL, whose two-sided inverse is the evaluation map at the unit X 7→ Xe and since the evaluation
map is linear, so is the assignment v 7→ vL. ■

Based on the above theorem, for any graded Lie group G we may canonically induce on its tangent
space at the unit TeG the structure of a graded Lie algebra of degree zero via

[v, w] := [vL, wL]e, (3.119)

whence the map v 7→ vL becomes a graded Lie algebra morphism. The Lie algebra TeG ∼= X L
G will

also be denoted as Lie (G) or simply as g.

Example 3.17 (gl((nj),R)). In Example 3.14 we have explicitly constructed the assignment v 7→ vL

for the graded general linear group, so let us have a look at the induced Lie algebra structure on its
tangent space at the unit. We know that any tangent vector v at the unit has the form v = vij

∂
∂xij

|e,

where vij can be regarded as elements of a degree |v| (nj)× (nj) matrix, see definition 2.9, which gives
a graded linear isomorphism

gl((nj),R) := Lie (GL((nj),R)) ∼= R(nj)×(nj). (3.120)

By definition, for any v, w ∈ gl((nj),R) we have [v, w] = [vL, wL]e. Expressing the left-invariant vector
fields with the use of (3.93) yields, after some forthright calculation,

[v, w]ij =
(
[vL, wL]xij

)
(e) = viℓw

ℓ
j − (−1)|v|·|w|wiℓv

ℓ
j = (v · w − (−1)|v|·|w|w · v)ij , (3.121)

where in the last expression we regard v and w as the elements of R(nj)×(nj). In conclusion, we see that
the induced Lie bracket on gl((nj),R) is none other than the commutator of graded matrices.

We would like to show that akin to the non-graded case, left-invariant vector fields on any graded
Lie group G generate the Lie algebra of all vector fields on G. For this we require the next proposition
which is due to the thesis supervisor.

Proposition 3.18. Consider a graded manifold M, let S , R be two locally freely and finitely gen-
erated sheaves of C∞M-modules, each of constant graded rank, and let Φ : S → R be their morphism.
Then Φ is an isomorphism if and only if it is fiberwise bijective.
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Proof. First note that without loss of generality we may assume both S and R to be freely and
finitely generated. Indeed, as both sheaves are assumed to be locally freely and finitely generated, we
may cover M by sets U ∈ Op(M) such that (s1, . . . , sℓ) is a frame for S |U and (r1, . . . , rℓ) is a frame
for R|U . Then Φ is bijective if and only if Φ|U : S |U → R|U is bijective for any U [10, Proposition
2.6] and similarly Φ is fiberwise bijective if and only if ΦU is fiberwise bijective for every U . Hence
assume S and R to be freely and finitely generated, and so without further loss of generality assume
that

S = C∞M ⊗ S, and R = C∞M ⊗R, (3.122)

for some finite-dimensional real graded vector spaces S,R ∈ gVec of the same graded dimension
(mk))k∈Z and that (s1, . . . , sℓ) and (r1, . . . , rℓ) are total bases for S and R, respectively. Recall that
for any finite-dimensional V ∈ gVec, C∞M ⊗ V is the sheaf of C∞M modules defined by the assignment
U 7→ C∞M(U)⊗RV . The sheaf morphism Φ is therefore fully and uniquely determined by the ℓ2 graded
functions φνµ where

Φ(sµ) = rν φ
ν
µ. (3.123)

Let the bases s := (si) and r := (ri) be ordered increasingly by their degree, that is, ordered so that
they can be partitioned (while preserving the order) into

(s1, . . . , sℓ) = ⊔k∈Z(s
(k)
1 , . . . , s(k)mk

), (3.124)

where for every k ∈ Z, (s(k)1 , . . . , s
(k)
mk) is a basis for Sk and similarly for r. For every x ∈ M the

induced linear fiber map Φx : S → K acts as

Φx(sµ) = rν φ
ν
µ(x). (3.125)

Now, consider some Ψ : C∞M⊗R→ C∞M⊗S, which is fully determined by graded functions ψνµ where
Ψ(rµ) = sν ψ

ν
µ. The fact that Ψ is the two-sided inverse of Φ is equivalent to the following two sets

of equations:
φνκψ

κ
µ = δνµ , and ψνκφ

κ
µ = δνµ , (3.126)

where δνµ is the graded Kronecker delta, i.e. if µ = ν then δνµ = 1 and else δνµ = 0 of degree
|sµ|− |sν |. Recall that with our ordering, |sµ| = |rµ| for every µ ∈ {1, . . . , ℓ}. We immediately see that
if Φ is bijective with Ψ as its two-sided inverse, then Ψx is the two-sided inverse of Φx for every x ∈M
and therefore Φ is fiberwise bijective. On the other hand, assume that Φx is a linear isomorphism for
every x. This is equivalent to saying that φ(x) ∈ Rm,m, where m := tdimS and φ(x)µν = φµν(x), is
an invertible (block-diagonal) matrix for every x ∈M . As the assignment x 7→ φ(x) is a smooth map
M → GL(m,R), its “inverse matrix map”

ψ : x 7→
(
φ(x)

)−1
(3.127)

is also smooth. We must show that there exist graded smooth functions ψµν ∈ C∞M(M) such that
ψµκφκ

ν = δµν and φµκψκ
ν = δµν . The construction of ψµν is done somewhat similarly to the

construction of the inversion arrow in the graded Lie group GL((nj),R) in Section 2.4.1. Let us keep
a similar notation as there and write

Θµ
ν := ψµκ(φ− φ)κν , and Tµν := δµν +

∞∑
n=1

(−1)nΘµ
λ1
Θλ1

λ2
· · ·Θλn−1

ν , (3.128)

and then define
ψµν := Tµκ ψ

κ
ν
. (3.129)
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Since Θµ
ν are by construction purely graded functions, one may use similar arguments as in Section

2.4.1 to conclude that Tµν is a well-defined graded function for every µ, ν. We also immediately see
that the body of the graded function on the right-hand side of (3.129) equals ψµ

ν
, which justifies the

notation in (3.127). Finally, we see that

ψµρφ
ρ
ν = Tµκ ψ

κ
ρ

(
φρ

ν
+ φρν − φρ

ν

)
= Tµν + TµκΘ

κ
ν = δµν , (3.130)

and also

φµρψ
ρ
ν = δµν + (φ− φ)µρψ

ρ
ν
+ φµρ

∞∑
n=1

(−1)nψρκ1
(φ− φ)κ1

λ1
· · ·ψλn−1

κn
(φ− φ)κn

αψ
α
ν

= δµν + (φ− φ)µρψ
ρ
ν
+ (φ− φ)µρ

∞∑
n=1

(−1)nψρκ1
(φ− φ)κ1

λ1
· · ·ψλn−1

κn
(φ− φ)κn

αψ
α
ν

+
∞∑
n=1

(−1)nδρκ1
(φ− φ)κ1

λ1
· · ·ψλn−1

κn
(φ− φ)κn

αψ
α
ν

= δµν +

∞∑
n=1

(−1)n+1(φ− φ)µκ1
ψκ1

λ1
· · · (φ− φ)λn−1

κn
ψκn

ν

+
∞∑
n=1

(−1)n(φ− φ)µκ1
ψκ1

λ1
· · · (φ− φ)λn−1

κn
ψκn

ν

= δµν , (3.131)

as desired. ■

Corollary 3.19 (LIVFs as a Frame). Let G be a graded Lie group, and let (v1, . . . , vn) be a basis for
the tangent space at the unit TeG. Then (vL1 , . . . , v

L
n ) forms a frame for XG.

Proof. First, note that (vL1 |g, . . . , vLn |g) is a basis for the tangent space TgG for any g ∈ G. Indeed, any
left-invariant vector field is in particular left-translation invariant, hence vL|g = (TeLg)v

L|e = (TeLg)v
for any v ∈ TeG. Since Lg is a graded diffeomorphism per Corollary 1.28, the tangent map is a linear
isomorphism and (v1, . . . , vn) is a basis for TeG, the conclusion follows.

Next, notice that the graded linear map v 7→ vL can be extended to a morphism of sheaves of
C∞G -modules Φ : C∞G ⊗TeG → XG sending any element fµvµ of C∞G (U)⊗ TeG to fµ(vLµ )|U in XG(U).
With the above paragraph in mind we conclude that Φ is fiberwise bijective and so an isomorphism
by Proposition 3.18. Hence (vL1 , . . . , v

L
n ) ≡ (Φ(v1), . . . ,Φ(vn)) is a frame for XG . ■

3.3 Fundamental Vector Fields

As with left-invariant vector fields, let us first give an equivalent definition of fundamental vector fields
on ordinary smooth manifolds which will be suitable for generalization to graded manifolds.

Proposition 3.20. Let θ :M ×G→M be a right action of a Lie group G on a smooth manifold M
and let Y be a global vector field on M . Then Y is a fundamental vector field if and only if 1⊗X ∼θ Y
for some left-invariant vector field X on G.
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Proof. What we suspect of course is that 1⊗X ∼θ Y not for some random X, but for the X such that
#X = Y , where # : X L

G → X (M) is the infinitesimal generator map. Let us write θ(p, g) := p · g for
any p ∈M and g ∈ G.

( =⇒ ). Assume that #X = Y for some X ∈ X L
G . This is the usual definition of a fundamental

vector field. In other words, for every p ∈ M we have Yp = (Teθ
p)Xe where θp ≡ θ(p, ·) is the orbit

map. Observe, that for any p ∈M and g ∈ G we have

Yp·g = (Teθ
p·g)Xe = (Te(θ

p ◦ Lg))Xe = (Tgθ
p ◦ TeLg)Xe = (Tgθ

p)Xg. (3.132)

Hence for any f ∈ C∞(M),

((θ∗ ◦ Y ) f) (p, g) = (Y f) (p · g) = Yp·gf = ((Tgθ
p)Xg) f = Xg(f ◦ θp) = d

dt

∣∣∣∣
0

f(p · getX) (3.133)

equals

((1⊗X ◦ θ∗) f) (p, g) = ((1⊗X)(f ◦ θ)) (p, g) = d

dt

∣∣∣∣
0

(f ◦ θ)(p, getX) = d

dt

∣∣∣∣
0

f(p · getX), (3.134)

where we use that hetX is the integral curve of X from h for any h ∈ G. The first implication is
thereby shown.

( ⇐= ). Conversely, assuming 1⊗X ∼θ Y for some X ∈ X L
G gives the equality

Yp·gf = ((θ∗ ◦ Y ) f) (p, g) = ((1⊗X ◦ θ∗) f) (p, g) = d

dt

∣∣∣∣
0

f(p · getX), (3.135)

for any f ∈ C∞(M) and all p ∈M , g ∈ G. For the special choice g = e we thus obtain

Ypf =
d

dt

∣∣∣∣
0

f(p · etX) = ((Teθ
p)Xe) f, (3.136)

as desired. ■

Definition 3.21 (Fundamental Vector Fields). Let θ : M × G → M be an action of a graded Lie
group G on a graded manifold M and let Y ∈ XM(M) be a global vector field on M. We say that Y
is fundamental if there exists a left-invariant vector field X ∈ X L

G on G such that

1⊗X ∼θ Y. (3.137)

We denote the graded vector space of all fundamental vector fields on M as X F
M. Using the same

argument as in the proof of Proposition 3.7 and the proposition itself, one finds that X F
M forms a Lie

subalgebra of XM(M).

Proposition 3.22 (Infinitesimal Generator). Let θ : M × G → M be an action of a graded Lie
group G on a graded manifold M. Then, for every left-invariant vector field X ∈ X L

G there exists
exactly one fundamental vector field #X ∈ X F

M such that 1 ⊗X ∼θ #X. Moreover, the assignment
# : X L

G → X F
M is a graded Lie algebra morphism.

Proof. The proof shares similarities with the proof of Theorem 3.16 and thus we beg to be more succinct
here. First, let us show uniqueness, that is, consider Y and Y ′ ∈ XM(M) such that 1⊗X ∼θ Y and
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1⊗X ∼θ Y
′ for some X ∈ X L

G . By use of the identity (1, e)∗θ∗ which comes from one of the defining
diagrams for a right action2 we obtain

Y = (1, e)∗ ◦ θ∗ ◦ Y = (1, e)∗ ◦ (1⊗X) ◦ θ∗ = (1, e)∗ ◦ θ∗ ◦ Y ′ = Y ′, (3.138)

which validates the notation #X. Now we need to find #X for arbitrary X ∈ X L
G and show that this

assignment is a graded Lie algebra morphism. Having a look at (3.138), the intuitive definition is

#X := (1, e)∗ ◦ (1⊗X) ◦ θ∗, (3.139)

for any X ∈ X L
G . From this we immediately see that #X is a graded linear map of degree |X| and

that the assignment # itself is a graded linear map of degree 0. One may directly verify the Leibniz
rule, by virtue of which #X ∈ XM(M). In much the same way3 as in the proof of Theorem 3.16 one
finds that

θ∗ ◦ (1, e)∗ ◦ 1⊗X ◦ θ∗ = (1′, e)∗ ◦ (θ × 1)∗ ◦ 1⊗X ◦ θ∗ (3.140)

= (1′, e)∗ ◦ 1′ ⊗X ◦ (θ × 1)∗ ◦ θ∗ (3.141)

= (1′, e)∗ ◦ 1′ ⊗X ◦ α∗ ◦ (1× µ)∗ ◦ θ∗ (3.142)

= (1× (1, e))∗ ◦ 1⊗ (1⊗X) ◦ (1× µ∗) ◦ θ∗ (3.143)

= 1⊗X ◦ θ∗, (3.144)

where α : (M× G) × G → M× (G × G) is the canonical associator, between (3.143) and (3.144) we
used Lemma 3.10 and between (3.141) and (3.142) we used the defining “associativity diagram” for a
right action, which reads

(M×G)× G M× G

G

M× (G × G) M×G

α

θ×1

θ

1×µ

θ
. (3.145)

We see that #X is indeed fundamental; all that is left is to see whether # preserves the commutator
and so is a Lie algebra morphism. For this we can take advantage of the already proven relation (3.48)
whence for any two X,Y ∈ X L

G we find that

1⊗ [X,Y ] = [1⊗X, 1⊗ Y ] ∼θ [#X,#Y ], (3.146)

hence [#X,#Y ] = #[X,Y ] as was to be shown. ■

Given the canonical isomorphism TeG ∼= X L
G from Theorem 3.16, we will often consider the

infinitesimal generator as a map # : TeG → X F
M.

2See (1.43) for the relevant diagram for a left action.
3Read (3.71) through (3.75) in the opposite direction.
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Chapter 4

Graded Principal Bundles

4.1 Definitions & Properties

We begin by a straightforward graded generalization of a fiber bundle. Then, similarly as in the
classical case, we will define principal bundles as a rather special case of a fiber bundle.

Definition 4.1 (Graded Fiber Bundle). Let B,F ,M be graded manifolds and let π : B → M be a
surjective submersion. We say that B is a graded fiber bundle over M with the typical fiber F if there
exists an open cover {Uα}α∈I of M such that for every α ∈ I there exists a graded diffeomorphism

ϕα : M|Uα
×F → B|π−1(Uα)

(4.1)

such that π|π−1(Uα) ◦ ϕα = p1 for every α. The diffeomorphisms ϕα are called local trivializations of
F .

Next, we need a notion of what it means that a graded Lie group acts along fibers. Consider a
right action θ of a graded Lie group G on a graded manifold P, together with a surjective submersion
π : P → M for some graded manifold M. We say that θ acts along fibers of π if

P × G P

P M

θ

p1 π

π

(4.2)

commutes. This clearly reduces to the familiar notion when all manifolds are trivially graded. Recall
now [10] that since π is a submersion, there exists a fiber product1 P ×M P together with arrows
p′1 and p′2 fitting into the commutative diagram

P ×M P P

P M

p′2

p′1 π

π

. (4.3)

This is a fiber product in the category gMan∞ and so is characterized by the familiar universal property:
for any graded manifold N and any two graded smooth maps f1, f2 : N → P such that π ◦ f1 = π ◦ f2

1See e.g. [8] for the general category-theoretic definition of a fiber product.
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there exists a unique smooth map f : N → P ×M P satisfying f1 = p′1 ◦ f and f2 = p′2 ◦ f . Therefore,
if θ acts along fibers of π then there is a unique graded smooth map Σ′ : P × G → P ×M P such that

P × G

P ×M P P

P M

Σ′
θ

p1

p′2

p′1 π

π

(4.4)

commutes. One also has the canonical arrow (p′1, p
′
2) : P ×M P → P × P. It has been shown [10]

that this arrow makes P ×M P into a closed embedded submanifold of P × P. Let us show that
(p′1, p

′
2) ◦ Σ′ = Σ, the shear morphism (1.45) associated to θ, which is given as

Σ = (p1, θ). (4.5)

Indeed, composed with the canonical product projections we find that

p1 ◦ (p′1, p′2) ◦ Σ′ = p1 = p1 ◦ Σ, (4.6)

and
p2 ◦ (p′1, p′2) ◦ Σ′ = θ = p2 ◦ Σ, (4.7)

which together means that
(p′1, p

′
2) ◦ Σ′ = Σ. (4.8)

To summarize, whenever θ acts along the fibers of π, we may uniquely factor the shear morphism
Σ through the fiber product P ×M P via Σ′. We are now ready to make the definition of a graded
principal bundle.

Definition 4.2 (Graded Principal Bundle). Let π : P → M be a surjective submersion of graded
manifolds and θ : P × G → P a right action of a graded Lie group G. We say that P is a principal
G-bundle over M if

1. θ acts along fibers of π.

2. The morphism Σ′ : P × G → P ×M P induced by the shear map Σ is a graded diffeomorphism.

3. There exists an open cover {Uα}α∈I of M such that for every α ∈ I there exists a graded
diffeomorphism

ϕα : M|Uα
× G → P|π−1(Uα)

, (4.9)

called a local trivialization of P over Uα, such that π|π−1(Uα)
◦ ϕα = p1 and which is equivariant

with respect to the right G-actions 1×µ and θ|π−1(Uα)
on M|Uα

×G and P|π−1(Uα)
, respectively.

Let us elaborate on the last point of this definition. Equivariant arrows are introduced in Definition
1.16 and the meaning of the action 1× µ of G on the graded manifold M|Uα

× G is self-explanatory.

Now, consider some point (p, g) ∈ θ−1(π−1(Uα)). We see that p ·g ∈ π−1(Uα) and as θ acts along fibers
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of π, thanks to point 1. of the definition, we know that p ∈ π−1(Uα). Hence θ
−1(π−1(Uα)) ⊆ π−1(Uα)

and we may restrict θ to the right action

θ|π−1(Uα)
: P|π−1(Uα)

× G → P|π−1(Uα)
. (4.10)

We of course want our definition to reduce to the usual one in the trivially graded case, but this
is apparently so: the first and second point amount to the action being free and transitive along
fibers and the third point is the familiar local triviality condition. Furthermore, any graded principal
G-bundle contains as its underlying smooth manifold an ordinary principal G-bundle:

Proposition 4.3. Let π : P → M be a graded principal G-bundle. Then π : P → M is an ordinary
principal G-bundle.

Proof. If θ acts along fibers, then applying the body functor (2.13) to the defining diagram (4.2) tells
us that θ : P × G → P also acts along fibers. Furthermore, from Corollary 2.3 we immediately see
that the underlying smooth manifold of P ×M P is P ×M P , that the shear morphism of θ is Σ and
the induced map from P ×G to P ×M P is Σ′ and as Σ′ is an isomorphism, Σ′ is a diffeomorphism.
What is more, ϕ

α
are the relevant equivariant local trivializations.

■

A logical first example when illustrating the definition of a principal bundle is the trivial one.
Before we give it, however, we need a lemma.

Lemma 4.4. Let M, N be two graded manifolds. Then M×N×N together with (p1, p2) and (p1, p3)
is the fiber product of p1 : M×N → M and p1 : M×N → M.

Proof. First we are asked to show that

M×N ×N M×N

M×N M

(p1,p3)

(p1,p2) p1

p1

(4.11)

commutes, but this is plain to see. Next we need to prove the universality property, i.e. that for any
graded manifold R and any two graded smooth maps (f, g) : R → M×N and (f ′, g′) : R → M×N
such that p1 ◦ (f, g) = p1 ◦ (f ′, g′) there exists a unique arrow h : R → M×N ×N that makes the
diagram

R

M×N ×N M×N

M×N M

(f,g)

(f ′,g′)

h

(p1,p3)

(p1,p2) p1

p1

(4.12)

commute. But since f = p1 ◦ (f, g) = p1 ◦ (f ′, g′) = f ′, this unique arrow is obviously h = (f, g′, g).
Hence the universality is proven and we see that indeed M×N ×N = (M×N )×M (M×N ). ■
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Example 4.5 (Trivial Principal Bundle). Consider some graded manifold M and let G be a graded
Lie group that acts on the product manifold P := M×G from the right by θ := 1×µ. we wish to show
that P is a graded principal G-bundle over M. The surjective submersion π will be the projection
p1 : M×G → M. That θ acts along fibers is evident, as both routes along the diagram (4.2) compose
to the projection on the first term in the three-fold product, that is p1 : M×G × G → M. The third
condition in the definition of a principal bundle is satisfied trivially. One only needs to verify that the
graded smooth map Σ′ : M × G → (M × G) ×M (M × G) induced by the shear morphism Σ is an
isomorphism.

Thanks to Lemma 4.4 we know that (M×G)×M (M×G) = M×G × G with p′1 = (p1, p2) and
p′2 = (p1, p3). The graded smooth map Σ′ is then the unique morphism fitting into the commutative
diagram

M×G × G

M× G × G M× G

M× G M

Σ′

1×µ

(p1,p2)

(p1,p3)

(p1,p2) p1

p1

. (4.13)

In the trivially graded case we would have Σ′(m, g, h) = (m, g, gh) and so the inverse map would be
Ξ : (m, g, h) 7→ (m, g, g−1h). In the general case let us therefore define Ξ : M×G × G → M× G × G
by

(p1, p2) ◦ Ξ := (p1, p2), and p3 ◦ Ξ := µ ◦ (ιp2, p3), (4.14)

and let us show that it is indeed the two-sided inverse of Σ′. From the definitions we immediately
have p1 ◦ Ξ ◦ Σ′ = p1 and p1 ◦ Σ′ ◦ Ξ = p1 and similarly for p2. Working a little with the definitions
and the properties of product we find that

p3 ◦ Ξ ◦ Σ′ = µ ◦ (ι, µ) ◦ (p2, p3) (4.15)

= µ ◦ (1× µ) ◦ (ι× 1× 1) ◦ ((1, 1)× 1) ◦ (p2, p3) (4.16)

= µ ◦ (µ× 1) ◦ ((ι, 1)× 1) ◦ (p2, p3) (4.17)

= µ ◦ (e× 1) ◦ (p2, p3) (4.18)

= µ ◦ (e, 1) ◦ p2 ◦ (p2, p3) (4.19)

= p3, (4.20)

where between (4.18) and (4.19) we used that (e × 1) = (e, 1) ◦ p2 : G × G → G × G. Indeed,
after-composition with the second projection yields the second projection and after-composition with
the first projection yields the arrow G × G → ∗ e→ G. In much the same way, we would find that
p3◦Σ′◦Ξ = p3, hence Σ

′◦Ξ = 1 and Ξ◦Σ′ = 1 which shows Σ′ to be an isomorphism and consequently
p1 : M×G → M to be a principal G-bundle.

One can define local sections of a fiber bundle in the intuitive way.

Definition 4.6 (Local Sections). Let π : B → M be a fiber bundle and consider some U ∈ Op(M).
By a local section of B over U we mean a graded smooth map σ : M|U → B|π−1(U) satisfying
π|π−1(U) ◦ σ = 1M|U . We denote the set of all sections of B over U as ΓB(U).
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4.2 Graded Frame Bundle

In this subchapter we construct what we believe to be a reasonable generalization of the frame bundle
to the graded setting. Let (nj)j∈Z be a finite sequence of integers and let M be a graded manifold
of graded dimension (n−j), notice the minus sign the reason for which will become apparent later.
Our nascent graded frame bundle P ≡ F (M) will be acted upon from the right by the graded
Lie group G ≡ GL((nj),R). Let us fix an atlas {Uα, φα}α∈I for the graded manifold M and let us
agree that whenever we discuss local coordinates on M, say {xi}ni=1, they will be labeled so that
|xj | = −|j| where |j| denotes the degree of the j-th standard basis vector of the graded vector space
R(nj), see Remark 2.14. We will also sometimes partition these coordinates according to their degrees
as {xi} =: ∪k∈Z{xj(k)}

nk
j=1 where |xj(k)| = −k and they are labeled so that

(x1(k1), x
2
(k1)

, . . . , x
nk1

(k1)
, . . . , x1(kN ), . . . , x

nkN

(kN )) = (x1, . . . , xn), (4.21)

where {k1, . . . , kN} := {j ∈ Z |nj ̸= 0} is ordered increasingly.

Let us begin by constructing the underlying smooth manifold P which we create as a principal
G-bundle over M for G = ×k∈ZGL(nk,R). Mirroring the construction of an ordinary non-graded
frame bundle, let us set

P :=
⊔
m∈M

⊔
k∈Z

B (TmM)k , (4.22)

where B(TmM)k is the set of all the bases of the (ordinary) vector space (TmM)k of degree k tangent
vectors at m. Note that only finitely many of B(TmM)k are non-empty. According to our custom we
write n :=

∑
j nj = tdim (M). The set P will be acted upon from the right by the group G via

(m, (bk)k∈Z) · (Ak)k∈Z := (m, (bk ·Ak)k∈Z), (4.23)

for any m ∈M and all b ≡ (bk)k∈Z ∈ ⊔k∈ZB(TmM)k where if bk = (v1, . . . , vnk
), then bk · Ak denotes

the basis
bk ·Ak = (viA

i
1, . . . , vj A

j
nk
). (4.24)

We define a surjective map π : P →M as

π(m, b) := m (4.25)

Clearly the action of G, which we will denote as θ, is free and transitive along the fibers of π. Next,
for every α ∈ I we construct a bijective map

ϕ
α
: Uα ×G→ P |π−1(Uα)

(4.26)

like so: let {xi}ni=1 be the coordinates on Uα. Then for every k ∈ Z we have the coordinate basis ∂

∂xj(k)

∣∣∣∣∣
m

nk

j=1

=: ∂|(α)m,k (4.27)

for the vector space (TmM)k. Let N := #{k |nk ̸= 0}. For every m ∈ Uα there is a bijection between
N -tuples of bases b ≡ (bk)k∈Z ∈ ⊔k∈ZB(TmM)k and N -tuples of invertible matrices A ≡ (Ak)k∈Z ∈ G
expressed as

bk ↔ ∂|(α)m,k ·Ak, (4.28)
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for every k ∈ Z. Keeping this in mind, we define the bijective map ϕ
α
as

ϕ
α
(m, (Ak)k∈Z) := (m, (∂|(α)m,k ·Ak)k∈Z). (4.29)

We immediately see that ϕ
α
is a G-equivariant map. Let us consider one more coordinate patch Uβ

with coordinates {yi}ni=1 from our atlas. For every m ∈ Uα ∩ Uβ =: Uαβ we have

ϕ−1
α

(m, (∂|(β)m,k)k∈Z) = (m, (Bk)k∈Z) (4.30)

for the N -tuple (Bk)k∈Z of matrices Bk ∈ GL(nk,R) such that(
∂|(α)m,k ·Bk

)
k∈Z

=
(
∂|(β)m,k

)
k∈Z

(4.31)

Here recall how tangent vectors transform under the change of coordinates [10], i.e.

∂

∂yi(k)

∣∣∣∣∣
m

=
∂xj(k)

∂yi(k)
(m)

∂

∂xj(k)

∣∣∣∣∣
m

= Jk(m)ji
∂

∂xj(k)

∣∣∣∣∣
m

, (4.32)

where in Jk(m) ∈ GL(nk,R) we recognize the block of the Jacobi matrix corresponding to the transfor-
mation between degree −k coordinates valued at m. Hence Bk = Jk(m) and the transition functions
ϕ
αβ

≡ ϕ−1
α

◦ ϕ
β
: Uαβ ×G→ Uαβ ×G are therefore given as

ϕ
αβ

(m, (Ak)k∈Z) = ϕ−1
α

(
m, (∂|(β)m,k)k∈Z · (Ak)k∈Z

)
= ϕ−1

α

(
m, (∂|(β)m,k)k∈Z

)
· (Ak)k∈Z

= (m, (Jk(m) ·Ak)k∈Z) . (4.33)

These are apparently smooth and hence P is a well-defined G-principal bundle over M .

We may now move on to the construction of the graded manifold P itself. For this we will
make use of the Gluing theorem [10, Proposition 3.33] and construct P by defining the transition
morphisms

Φαβ : φ
β
(Uαβ)

(n−j) × G → φ
α
(Uαβ)

(n−j) × G, (4.34)

for the graded Lie group G = GL((nj),R). The underlying smooth maps are given simply by the
composition of the local trivializations of P and local charts for M like so:

Φαβ = (φ
α
× 1) ◦ ϕ

αβ
◦ (φ−1

β
× 1), (4.35)

or expressed directly as Φαβ

(
φ
β
(m), (Ak)k∈Z

)
=
(
φ
α
(m), (Jk(m) ·Ak)k∈Z

)
. Denote the usual coor-

dinates on the source graded domain of (4.34) as {yi}ni=1∪{yjk}
n
j,k=1 and on the target graded domain

as {xi}ni=1 ∪ {xjk}
n
j,k=1 and define the pullbacks of the transition morphisms as

Φ∗αβ x
i := φ∗αβ x

i and Φ∗αβ x
j
k = yℓk

∂ φ∗αβ x
j

∂ yℓ
. (4.36)

First note that since xij and yij are the standard coordinates on the graded Lie group GL((nj),R),
their degree is |j|− |i|. The reason why we chose the graded dimension of M to be (n−j) is so that the
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degrees in (4.36) would agree. We still don’t know if Φ∗αβ are well defined pullbacks; on the coordinates

xi this is clear and on the coordinates xij we find that whenever |i| = |j|,

xij ◦ Φαβ (y, (Ak)k∈Z) = xij((Jk(φ
−1
β

(y)) ·Ak)k∈Z) = diag((Jk(φ
−1
β

(y)) ·Ak)k∈Z)ij

=
∂φ∗αβx

i

∂yℓ
(y) yℓj (Ak)k∈Z, (4.37)

for every y ∈ φ
β
(Uαβ) and (Ak)k∈Z ∈ G, here note that the last equality in (4.37) is ensured by the

ordering (4.21). Consequently, we have xij ◦ Φ = J iℓ y
ℓ
j = yℓj J

i
ℓ = yℓj J

i
ℓ where J iℓ is the graded

function
∂φ∗

αβx
i

∂yℓ
, which leads us to conclude that

Φ∗αβ y
i
j = yij ◦ Φαβ. (4.38)

For all |i| = |j|. This shows Φαβ to be a well defined morphism of graded domains. All that is left to
verify, so that we may use the Gluing theorem, is the cocycle condition. Consider therefore yet another
coordinate chart Uγ from our atlas and denote the coordinates on φ

γ
(Uγ)

(n−j)×G as {zi}∪{zjk} with

the usual meaning. Then for every m ∈ Uαβγ ,

Φαβ ◦ Φβγ
(
φ
γ
(m), Ak

)
= Φαβ

(
φ
β
(m), (J

(βγ)
k (m) ·Ak)k∈Z

)
(4.39)

=
(
φ
α
(m), (J

(αβ)
k (m) · J (βγ)

k (m) ·Ak)k∈Z
)

(4.40)

= Φαγ

(
φ
γ
(m), (Ak)k∈Z

)
, (4.41)

where (
J
(αβ)
k (m) · J (βγ)

k (m)
)i
j
=
∂xi(k)

∂yℓ(k)
(m)

∂yℓ(k)

∂zj(k)
(m) =

∂xi(k)

∂zj(k)
(m) = J

(αγ)
k (m), (4.42)

so for the underlying smooth maps the condition holds. As for the pullbacks, the equality Φ∗βγΦ
∗
αβx

i =

Φ∗αγx
i follows from the cocycle condition for the transition morphisms φαβ and

Φ∗βγΦ
∗
αβ x

i
j = Φ∗βγ

(
yℓj

∂ φ∗αβ x
i

∂ yℓ

)
= zkj

∂ φ∗βγ y
ℓ

∂zk
φ∗βγ

(
∂ φ∗αβ x

i

∂ yℓ

)
= zkj

∂ φ∗αγ x
i

∂zk
= Φ∗αγ x

i
j , (4.43)

which means that the cocycle condition holds, and so there is a unique (up to an isomorphism) graded
manifold structure on P ≡ F (M) described by a graded atlas {π−1(Uα),Φα} for

Φα : φ
α
(Uα)

(n−j) ×GL((nj),R) → F (M)|π−1(Uα)
, (4.44)

such that Φαβ become the transition morphisms.

We still need to make F (M) into a principal G-bundle. We introduced the transition morphisms
Φαβ and hence the local charts Φα as morphisms whose codomain spaces are graded domains specif-
ically so we could use the Gluing theorem from [10]. Now however it will be more advantageous to
work with local trivializations

ϕα : M|Uα
×GL((nj),R) → F (M)|π−1(Uα)

(4.45)
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which we obtain by simply composing Φα with the local charts φα of M like so:

ϕα := Φα ◦ (φα × 1). (4.46)

From these we obtain yet another transition morphisms

ϕαβ ≡ ϕ−1α ◦ ϕβ : M|Uαβ
× G → M|Uαβ

× G, (4.47)

As any morphism between two products of graded manifolds, ϕαβ can be written as ϕαβ = (fαβ, gαβ).
We claim that

ϕαβ = (p1, gαβ), (4.48)

where gαβ : M|Uαβ
× G → G is fully determined [10, Theorem 3.29] by

g
αβ

= p2 ◦ ϕαβ and g∗αβ x
i
j = ykj

∂xi

∂yk
, (4.49)

where {xi} are the coordinates on M|Uα
induced by φα which reside on the codomain of ϕαβ and {yi}

are the coordinates on M|Uβ
induced by φβ which reside on the domain of ϕαβ. The claim (4.48) is

clear on the level of the underlying morphisms due to (4.35), while on the level of pullbacks we have

ϕ∗αβ =
(
(φ−1α × 1) ◦ Φ−1α ◦ Φβ ◦ (φβ × 1)

)∗
= (φβ × 1)∗ ◦ Φ∗αβ ◦ (φ−1α × 1)∗, (4.50)

and the rest follows from (4.36). We see that in terms of ϕα and the respective transition morphisms
everything is much cleaner. We may now define the surjective submersion π : F (M) → M. We
already have the underlying smooth map π : P → M which is defined in (4.25), we only need the
pullback

π∗ : C∞M → π∗C
∞
P . (4.51)

For this we make use of the fact that morphisms between sheaves can be glued together [10, Proposition
2.6.]. Note that for every α we can write

C∞M|Uα
= (C∞M)|Uα

and π∗

(
C∞P|π−1(Uα)

)
= (π∗C

∞
P )|Uα

, (4.52)

hence we have a sheaf morphism π∗α : C∞M|Uα
→ (π∗C

∞
P )|Uα

given by

π∗α =
(
p1 ◦ ϕ−1α

)∗
. (4.53)

For any open set V ⊆ Uαβ we can write

(π∗α)V = (p1 ◦ ϕ−1α )∗ = (ϕ−1α )∗ ◦ p∗1 = (ϕ−1β )∗ ◦ ϕ∗αβ ◦ p∗1 = (ϕ−1β )∗ ◦ p∗1 =
(
π∗β
)
V
, (4.54)

where in the second-to-last equality we made use of (4.48). Consequently π∗α|Uαβ
= π∗β|Uαβ

and there
exists a unique sheaf morphism π∗ : C∞M → π∗C

∞
P such that π∗|Uα = π∗α. We set π := (π, π∗). The

underlying map π is surjective by construction, and locally we have π|π−1(Uα)
= p1 ◦ ϕ−1α , which is

a composition of a graded diffeomorphism ϕ−1α and a submersion p1, therefore π itself is a surjective
submersion. Also note that manifestly π|π−1(Uα) ◦ ϕα = p1.

The only piece of the puzzle left is to define the action θ of GL((nj),R) on the entire graded
manifold F (M). Aiming to use the same approach as for the definition of π, we notice that for every
α we may define the graded smooth map

θα : P|π−1(Uα)
× G → P|π−1(Uα)

(4.55)
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as the composite arrow

P|π−1(Uα)
× G M|Uα

× G × G M|Uα
× G P|π−1(Uα)

ϕ−1
α ×1 1×µ ϕα

. (4.56)

One can use the associativity and unit diagrams for µ to see that θα is a right G-action on P|π−1(Uα)

and from the fact that π : P → M is an ordinary principal G bundle we find that θα = θ|π−1(Uα).
Since θ is transitive along fibers, for every α we may consider θ∗α as a sheaf morphism

θ∗α : C∞P |π−1(Uα)
→ θ∗C

∞
P|π−1(Uα)×G

=
(
θ∗C

∞
P×G

)∣∣
π−1(Uα)

. (4.57)

As before, we need to verify that θ∗α|π−1(Uαβ) = θ∗β|π−1(Uαβ). When restricted to π−1(Uαβ), but without

explicitly writing the restrictions, we can compose θβ with the isomorphisms (ϕ−1α )∗ and (ϕα × 1)∗ to
form a pullback

(ϕα × 1)∗ ◦ θ∗β ◦ (ϕ−1α )∗ = (ϕβα × 1)∗ ◦ (1× µ)∗ ◦ ϕ∗αβ. (4.58)

Which, when applied on the global cordinates {xi}, {xij} on M|Uαβ
× G, gives

(ϕβα × 1)∗ ◦ (1× µ)∗ ◦ ϕ∗αβ xi = xi = (1× µ)∗xi, (4.59)

and

(ϕβα × 1)∗ ◦ (1× µ)∗ ◦ ϕ∗αβ xij = (ϕβα × 1)∗ ◦ (1× µ)∗
(
xkj

∂xi

∂yk

)
= (ϕβα × 1)∗

(
cℓjb

k
ℓ

∂xi

∂yk

)
= cℓja

s
ℓ

∂yk

∂xs
∂xi

∂yk
= bℓja

s
ℓδ
i
s = bℓja

i
ℓ = (1× µ)∗xij , (4.60)

where aij , b
i
j , c

i
j and x

i
j are merely convenient labels for the standard coordinates on G. As a result,

(ϕα × 1)∗ ◦ θ∗β ◦ (ϕ−1α )∗ = (1× µ)∗ = (ϕα × 1)∗ ◦ θ∗α ◦ (ϕ−1α )∗, (4.61)

hence θ∗β|π−1(Uαβ) = θ∗α|π−1(Uαβ) as desired, and there exists a graded smooth map θ : P ×G → G such

that θ∗V = θ∗α,V for every V ⊆ π−1(Uα). Note that here in (4.61) lies the reason why we chose to define
the multiplication µ on GL((nj),R) the way we did in (2.47).

Is this glued-together morphism θ a right action of G on P? Let us verify the commutativity of the
“associativity” diagram (1.44). On the level of the underlying smooth maps this is clear, as θ is a right
action of G on P . Thanks to the fact that θ acts along fibers, we have θ−1(π−1(Uα)) = π−1(Uα)× G
for every α and so we can use the fact that θα is an action to write

((θ × 1)∗ ◦ θ∗)|π−1(Uα)
= (θ × 1)∗|π−1(Uα)×G ◦ θ∗|π−1(Uα)

= (θα × 1)∗ ◦ θ∗α
= (1× µ)∗ ◦ θ∗α = ((1× µ)∗ ◦ θ∗)|π−1(Uα)

, (4.62)

which means that (1.44) commutes on the level of pullbacks as well. Commutativity of the “unit”
diagram (1.43) can be shown similarly. Clearly, this action θ was constructed so that the local
trivializations ϕα would be equivariant with respect to θ|π−1(Uα)

and 1× µ.

Before we conclude that π : F (M) → G is a principal GL((nj),R) bundle according to Definition
4.2, there are two more things left to verify: that θ acts along fibers and that the shear map Σ′ is an
isomorphism. Again, both of these properties will be verified locally. For any α, one has

(π ◦ θ)|π−1(Uα)×G = π|π−1(Uα)
◦ θ|π−1(Uα)×G = p1 ◦ ϕ−1α ◦ θα = p1 ◦ ϕ−1α ◦ ϕα ◦ (1× µ) ◦ (ϕ−1α × 1)

= p1 ◦ (1× µ) ◦ (ϕ−1α × 1) = p1 ◦ ϕ−1α ◦ p1 = π|π−1(Uα)
◦ p1 = (π ◦ p1)|π−1(Uα)×G , (4.63)
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which means that θ acts along fibers. The last remaining point requires slightly more attention if it
is to be treated properly. Let us denote

π−1(Uα) =: Vα, and Σ′(π−1(Uα)×G) =:Wα. (4.64)

We need the following lemma, which states that the fiber product behaves as expected when restricted
to sets Wα.

Lemma 4.7. Using the notation of this subchapter, the diagram

(P ×M P)|Wα
P|Vα

P|Vα M|Uα

p′2|Wα

p′1|Wα π|Vα
π|Vα

(4.65)

is a pullback square in gMan∞ for every α. In particular, there is a canonical isomorphism

(P ×M P)|Σ′(π−1(Uα)×G)
∼= P|π−1(Uα)

×M|Uα
P|π−1(Uα)

. (4.66)

Proof. Let us recall that P ×M P = {(p, q) ∈ P × P |π(p) = π(q)} and that the fiber product
projections p′

1
, p′

2
are merely classical projections on the first and second component, respectively.

Also the induced shear Σ′ is given simply as Σ′(p, g) = (p, p · g) for any p ∈ P and g ∈ G. Hence we
have

(p′
1
)−1(Vα) = (p′

2
)−1(Vα) =Wα = {(p, q) ∈ Vα × Vα |π(p) = π(q)}, (4.67)

so the restrictions of the morphisms in (4.65) make sense and also in the trivially graded case the
lemma clearly holds, i.e. (P ×M P )|Wα

∼= P |Vα ×M |Uα
P |Vα . The proof consists of showing the

universal fiber product property, so let N be a graded manifold together with two graded smooth
maps f1, f2 : N → P|Vα such that π|Vα ◦ f1 = π|Vα ◦ f2. One can consider the inclusion morphisms
ı : M|Uα → M and ı : P|Vα → P where ı is the usual set inclusion and the pullbacks are the
sheaf restrictions. By composing them with the arrows f1 and f2 we obtain ı ◦ f1, ı ◦ f2 : N → P
satisfying π ◦ ı ◦ f1 = π ◦ ı ◦ f2 and from the universal property of P ×M P there exists a unique arrow
f̃ : N → P ×M P fitting into the commutative diagram

N

(P ×M P)|Wα
P|Vα

P ×M P P

P|Vα M|Uα

P M

f2

f1

p′2|Wα

p′1|Wα

ı
π|Vα

ı

p′2

f̃

π
π|Vα

ı ı

π

p′1

. (4.68)

If we apply the body functor to this diagram while keeping in mind (P×MP )|Wα
∼= P |Vα×M |Uα

P |Vα , we
find that necessarily f̃(N) ⊆Wα. Consequently, there is a graded smooth map f : N → (P×MP)|Wα
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such that ı ◦ f = f̃ . Let h be another morphism such that p′1|Wα ◦ h = f1 and p′2|Wα ◦ h = f2, then
ı ◦ h fits in (4.65) in the place of f̃ and by uniqueness of f̃ we find that ı ◦ f = ı ◦ h. As the inclusion
morphism is a monomorphism in the category gMan∞, it follows that h = f which proves uniqueness.
The same argument shows that the introduction of f into (4.65) preserves the commutativity of the
diagram, hence the lemma is proven. ■

With the above lemma in hand, one can consider the unique graded smooth map

ψα : M|Uα
× G × G → (P ×M P)|Wα

(4.69)

fitting into the commutative diagram

M|Uα
× G × G M|Uα

× G

(P ×M P)|Wα
P|Vα

M|Uα
× G M|Uα

P|Vα M|Uα

(p1,p3)

(p1,p2)

ψα
p1

ϕ
α

p′2

π
ϕα

p1

1

π

p′1 , (4.70)

where we omitted the explicit writing of the restrictions of the morphisms. We see that ψα is an
isomorphism, since one may invert all full diagonally drawn arrows in (4.70) to obtain the definition
for ψ−1α . Let us now recall Example 4.5, the trivial principal bundle, and denote as Σ′µ : M|Uα×G×G →
M|Uα ×G ×G the induced shear morphism for the trivial G-bundle M|Uα ×G. We know Σ′µ to be an
isomorphism and we may combine the defining diagram (4.13) of Σ′µ with the diagram (4.70) to form

M|Uα
× G × G

M|Uα
× G × G M|Uα

× G

(P ×M P)|Wα
P|Vα

M|Uα
× G M|Uα

P|Vα M|Uα

Σ′
µ

1×µ

(p1,p2)

(p1,p3)

(p1,p2)

ψα
p1

ϕ
α

p′2

π
ϕα

p1

1

π

p′1

. (4.71)

Recall now the definition (4.56) of the “local” action θα = θ|Vα×G and note that (P × G)|Vα×G =
P|Vα×G. From the diagram (4.71) it then follows that both the composite morphism ψα◦Σ′µ◦(ϕ−1α ×1)
and the restriction of the shear morphism Σ′|π−1(Uα)×G fit as the dashed arrow in the commutative
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diagram

(P × G)|Vα×G

(P ×M P)|Wα
P|Vα

P|Vα M|Uα

θα

p1

p′2
p′1 π

π

. (4.72)

By universality of the fiber product therefore Σ′|π−1(Uα)×G = ψα ◦Σ′µ ◦ (ϕ−1α × 1) and as the latter is a
composition of graded diffeomorphisms, the former is a graded diffeomorphism as well. Consequently
Σ′ itself is a graded diffeomorphism, as can be seen e.g. from [10, Proposition 4.31]. We have verified
that the graded frame bundle π : F (M) → M is a principal GL((nj),R)-bundle.

Similarly as in the non-graded setting, local sections of the frame bundle F (M) correspond to
local frames for vector fields on M.

Proposition 4.8 (Hence the Name). Let U ∈ Op(M). Then there is a canonical one-to-one corre-
spondence between local sections of F (M) over U and global frames for the C∞M(U)-module XM(U).

Proof. Consider some σ ∈ ΓP(U). If U is a subset of one of the coordinate patches Uα, then we may
produce a frame {fi}ni=1 for XM|U like so:

fi :=
(
σ∗aki

) ∂

∂xk
, (4.73)

where {xi} and {aij} are the coordinates on P|π−1(U) induced by the chart Ψα as in (4.44). Note that
|fi| = |i|. To show that the sections fi form a frame, we may use the inversion arrow ι of the Lie group
GL((nj),R) to find

(
σ∗ι∗aij

)
fi =

(
σ∗ι∗aij

) (
σ∗aki

) ∂

∂xk
= σ∗

(
ι∗(aij)a

k
i

) ∂

∂xk
= δkj

∂

∂xk
=

∂

∂xj
, (4.74)

where we used (2.75). If U is not a subset of any Uα, we may construct a collection of local frames

{{f (α)i }ni=1}α∈I where {f (α)i }ni=1 is a frame for XM(U ∩ Uα) defined as in (4.73). Denote the familiar
coordinates on P|π−1(Uα) as {xi} ∪ {aij} and on P|π−1(Uβ) as {y

i} ∪ {bij}. Using the transition maps
of F (M) we find that

f
(α)
i

∣∣∣
U∩Uαβ

= σ∗(aki)
∂

∂xk
= σ∗

(
bsi
∂xk

∂ys

)
∂yℓ

∂xk
∂

∂yℓ
= σ∗(bsi)

∂xk

∂ys
∂yℓ

∂xk
∂

∂yℓ
= σ∗(bℓi)

∂

∂yℓ

= f
(β)
i

∣∣∣
U∩Uαβ

, (4.75)

where in the third equality we used that σ∗π∗ = 1. Therefore {f (α)i }α∈I glue together a vector
field fi ∈ XM(U) for every i. Moreover, {fi}ni=1 form a frame for XM(U) since their restrictions
{fi|Uα∩U}ni=1 form a frame for XM(U ∩ Uα) for every α.

On the other hand, let {fi}ni=1 be a frame for XM(U) ordered so that |fi| = |i|. This ordering
ensures that for everym ∈ U , the n-tuple (fi,m)

n
i=1 of linearly-independent tangent vectors fi,m ≡ (fi)m

in TmM can be partitioned into

(fi,m)
n
i=1 = ⊔k∈Z(f

(k)
i,m)

nk
i=1, (4.76)
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where (f
(k)
i,m)

nk
i=1 is a basis for (TmM)k. In this way, (fi,m)

n
i=1 can be regarded as an element of P . We

may therefore define a smooth function σ : U → π−1(U) by

σ(m) := (fi,m)
n
i=1. (4.77)

Furthermore, for every α there are unique graded functions γij,α ∈ C∞M(U ∩ Uα) such that fi|U∩Uα =

γki,α
∂
∂xk

, where {xj} are the coordinates on Uα. Consequently we may define a local pullback σ∗α :
C∞M|U∩Uα → (σ∗C

∞
P )|π−1(U∩Uα) by specifying the pullbacks of coordinate functions

σ∗αx
i = xi and σ∗α a

i
j := γij,α . (4.78)

Note that the pullbacks of xi are dictated to take this form by the requirement πσ = 1. If we denote
the local coordinates the same way as above, we find that

γij,α
∂

∂xi
= fj |U∩Uαβ

= γℓj,β
∂

∂yℓ
= γℓi,β

∂xi

∂yℓ
∂

∂xi
=⇒ γij,α = γℓj,β

∂xi

∂yℓ
(4.79)

and so

σ∗α|U∩Uαβ
(aij) = γij,α = γℓj,β

∂xi

∂yℓ
= σ∗β(b

ℓ
j

∂xi

∂yℓ
) = σ∗β

∣∣
U∩Uαβ

(aij), (4.80)

and we may glue σ∗ together from {σ∗α}α∈I . Clearly σ = (σ, σ∗) ∈ ΓP(U) and the described corre-
spondence σ ↔ {fi}ni=1 is bijective. ■

Example 4.9 (Fundamental Vector Fields). In Example 3.14 we learned the general shape of left-
invariant vector fields on G ≡ GL((nj),R) and in Proposition 3.22 we defined the infinitesimal gener-
ator for any graded Lie group action. Let us now examine the fundamental vector fields X F

P on the
newly minted graded frame bundle P ≡ F (M). Consider some v ∈ TeG. In the standard coordinates
it is written as vij

∂
∂xij

|e and the corresponding left-invariant vector field X ∈ X L
G is given by its

component functions
Xi

j = xikv
k
j . (4.81)

From the definition of #X ∈ X F
P , see (3.139), we may discern its local form: let Uα be one of the

coordinate patches for M whom we use throughout this subchapter. That is, π−1(Uα) is a coordinate
patch for F (M) with coordinates {xi}ni=1 ∪ {xij}ni,j=1 inherited from M|Uα and G, respectively. We
find that

(#X)|π−1(Uα)
xi = (1, e)∗(1⊗X)θ∗xi = (1, e)∗(1⊗X)xi = 0, (4.82)

and

(#X)|π−1(Uα)
xij = (1, e)∗(1⊗X)θ∗xij = (1, e)∗

(
bℓkv

k
u

∂

∂bℓu
bsja

i
s

)
= (1, e)∗

(
bskv

k
ja
i
s

)
= δskv

k
jx
i
s = vkjx

i
k,

hence the local shape of #X is

(#X)|π−1(Uα)
= vkjx

i
k

∂

∂xij
. (4.83)
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4.3 Principal Connection

Differential forms on any graded manifold M have been described in [11]. Let V ∈ gVec be a graded,
finite-dimensional real vector space. For any p ∈ N0 and any U ∈ Op(M) we define the space of
p-forms valued in V on U as

ΩpM(U, V ) := V ⊗R ΩpM(U). (4.84)

It follows that if {vµ}tdimV
µ=1 is a total basis of V , then any ω ∈ ΩpM(U, V ) can be uniquely written as

ω = vµ⊗ωµ for some ωµ ∈ ΩpM(U) of degree |ωµ| = |ω|−|vµ|. We will omit the tensor product sign and
simply write ω = vµω

µ. Any ω ∈ Ωp(U, V ) acts on the p-tuple of vector fields X1, . . . , Xp ∈ XM(U)
as

(vµ ω
µ)(X1, . . . , Xp) = vµ ω

µ(X1, . . . , Xp). (4.85)

From the properties of graded differential forms we find that

ω(fX1, . . . , Xp) = (−1)|f ||ω|f ω(X1, . . . , Xp), and (4.86)

ω(X1, . . . , Xj , Xj+1, . . . , Xp) = (−1)|Xj ||Xj+1| ω(X1, . . . , Xj+1, Xj , . . . , Xp), (4.87)

for any f ∈ C∞M(U). We may also expand some of the usual operations on differential forms to
ΩpM(U, V ). For their definition on ΩpM(U) refer to [11].

• The exterior derivative d : ΩpM(U, V ) → Ωp+1
M (U, V ) is a graded linear map of degree |d| = 0

defined by dω := (−1)|vµ| vµ(dω
µ).

• For any vector field X ∈ XM(U), the interior product iX : ΩpM(U, V ) → Ωp−1M (U, V ) is a
graded linear map of degree |iX | = |X| defined as iXω := (−1)(|X|−1)|vµ| vµ(iXω

µ).

• For any vector field X ∈ XM(U) the Lie derivative LX : ΩpM(U, V ) → ΩpM(U, V ) is a graded
linear map of degree |LX | = |X| defined as LXω = (−1)|X||vµ| vµ(LXωµ).

• If, in addition, V is equipped with a graded bilinear map V × V → V , (v, w) 7→ v · w of degree
zero, making it a graded algebra, we can extend the exterior product of differential forms to
a graded bilinear map

.
∧ : ΩpM(U, V )× ΩqM(U, V ) → Ωp+qM (U, V ) of degree |

.
∧ | = 0 by

ω
.
∧ τ := (−1)(p+|ω

µ|)|vν | vµ · vν ωµ ∧ τν , (4.88)

for any ω ∈ ΩpM(U, V ) and τ ∈ ΩqM(U, V ). Notice that every summand of the Einstein sum over
µ and ν carries with it a sign determined by the degree of τν and vµ. This is to ensure that if
V is a graded commutative algebra, then

ω
.
∧ τ = (−1)(p+|ω|)(q+|τ |) τ

.
∧ ω, (4.89)

which is the known commutativity relation for the exterior product of “ordinary” graded dif-
ferential forms in [11]. In particular, if V is a Lie algebra, see Definition 2.4, we denote the
resulting product as ω

.
∧ τ =: [ω ∧ τ ] and there holds

[ω ∧ τ ] = −(−1)(p+|ω|)(q+|τ |) [τ ∧ ω]. (4.90)

Example 4.10 (Maurer-Cartan Form). For any graded Lie group G and its associated Lie algebra g,
we may construct a canonical 1-form ωMC ∈ Ω1(G, g) by its action on the frame (vL1 , . . . , v

L
n ) where

(v1, . . . , vn) is some basis of g, see Corollary 3.19, by

ωMC(v
L
µ ) := vµ, (4.91)
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for any µ ∈ {1, . . . , n}. We call this 1-form the graded left Maurer-Cartan form. One may use explicit
formulas for the evaluation of the exterior product and exterior derivative of graded differential forms,
together with our definitions, to find that the graded Maurer-Cartan form satisfies the graded version
of the Maurer-Cartan equation

dωMC +
1

2
[ωMC ∧ ωMC] = 0. (4.92)

Consider now any graded manifold M and recall [10] that, similarly to the classical case, any
locally freely and finitely generated sheaf of C∞M-modules of constant rank corresponds uniquely (up
to an isomorphism) to a graded vector bundle over M.

We may define graded distributions the same way as in [9]:

Definition 4.11 (Graded Distribution). Let M be a graded manifold and let D be a subsheaf of XM
such that D(U) is a C∞M(U)-submodule of XM(U) for any U ∈ Op(M) of constant graded rank. We
say that D is a graded distribution on M if D = 0 or it satisfies the following condition: there
exists an integer ℓ ∈ {1, . . . , n} and a neighborhood U ∈ Opm(M) for any m ∈ M such that there is
a frame (f1, . . . , fn) for XM(U) where (f1, . . . , fℓ) is a frame for D(U).

Note: with the identification of a vector bundle with its sheaf of sections, this definition is equivalent
to D being a vector subbundle of XM. See [10, Section 5].

Definition 4.12 (Vertical Vector Fields). Let π : B → M be a graded fiber bundle and let V ∈ Op(B).

We say that X ∈ XB(V ) is vertical if X ◦ ρπ
−1(π(V ))
V ◦ π∗π(V ) = 0. We denote the set of vertical vector

fields over V as VerB(V ).

Lemma 4.13. Let π : B → M be a classical fiber bundle with a typical fiber F and let V be an open
set in B. Then for every p ∈ V there exists W ∈ Opp(V ) such that both W ⊆ V and π(W ) ⊆ π(V ).

Proof. Let U ∈ Op(M) be a trivializing open set with a local trivialization ϕ : U × F → π−1(U) such
that p ∈ π−1(U). The set (U × F )∩ϕ−1(V ) is an open neighborhood of ϕ−1(p), and by the definition
of the product topology there exist open sets R′ ⊆M and S′ ⊆ F such that

ϕ−1(p) ∈ R′ × S′ ⊆ (U × F ) ∩ ϕ−1(V ). (4.93)

As M and F are smooth manifolds, there exist open subsets R ⊆ R′ and S ⊆ S′ such that R ⊆ R′,
S ⊆ S′ and ϕ−1(p) ∈ R × S. Let us argue that the set W := ϕ(R × S) has the desired properties.
Apparently W is an open set such that p ∈W . Since ϕ is a diffeomorphism,

W ⊆ ϕ(R× S) ⊆ ϕ(R× S) ⊆ ϕ(R′ × S′) ⊆ V (4.94)

and also

π(W ) = π (ϕ(R× S)) = p1(R× S) = R ⊆ R′ = p1(R
′ × S′) = π

(
ϕ(R′ × S′)

)
⊆ π(V ). (4.95)

■

Proposition 4.14 (Vertical Distribution). The assignment U 7→ VerB(U) defines a graded distribution
on any graded fiber bundle π : B → M. Moreover, if F is the typical fiber of B with graded dimension
(fj) then the graded rank of VerB is (f−j).
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Proof. From the definition it is apparent that VerB(U) is a C∞B (U)-submodule of XB(U) for any
U ∈ Op(B). Let us show that VerB is a subsheaf of XB, namely that a restriction of a vertical
vector field is vertical and that a vector field glued from vertical vector fields is vertical. Consider
some X ∈ VerB(U), V ∈ Op(U), f ∈ C∞M(π(V )) and a point p ∈ V . By Lemma 4.13 there is an

open neighborhood W of p such that W ⊆ V and π(W ) ⊆ π(V ). Consequently there is an extension
f̃ ∈ C∞M(π(U)) of f from π(W ), i.e. f̃ |π(W ) = f |π(W ). But then((

π∗π(V )f
)∣∣∣
V

)∣∣∣
W

=
(
π∗π(W )

(
f |π(W )

))∣∣∣
W

=

(
π∗π(W ) f̃

∣∣∣
π(W )

)∣∣∣∣
W

=
((

π∗π(U)f̃
)∣∣∣
U

)∣∣∣
W
, (4.96)

and thus, by the definition of restrictions of vector fields,(
X|V

(
π∗π(V )f

)∣∣∣
V

)∣∣∣
W

=
(
X
(
π∗π(U)f̃

)∣∣∣
U

)∣∣∣
W

= 0. (4.97)

As W was a neighborhood of an arbitrary point and f was an arbitrary graded function, we conclude
that X|V ∈ VerB(V ). Similarly, consider some U ∈ Op(B) with its open cover {Uα} and let X ∈
XB(U) be such that X|Uα ∈ VerB(Uα) for every α. Then for any f ∈ C∞M(π(U)) we find(

X
(
π∗π(U)f

)∣∣∣
U

)∣∣∣
Uα

= X|Uα

(
π∗π(Uα)

f |π(Uα)

)∣∣∣
Uα

= 0, (4.98)

for any α, hence X ∈ VerB(U). We see that VerB is a sheaf of C∞B -submodules of XB.

Next we will show that every point p ∈ B has a neighborhood W ∈ Opp(B) such that VerB(W )
is freely generated by some f vector fields from a frame for XB(W ), where f = tdimF and F is the
typical fiber of B. Let us fix some p ∈ B and let U ∈ Op(M) be a trivializing open subset containing
π(p), which is also a coordinate patch on M with coordinates {xi}mi=1, where m := tdimM. We have
the local trivialization ϕ : M|U × F → B|π−1(U) satisfying π ◦ ϕ = p1. Also consider some coordinate

patch V on F with coordinates {yµ}fµ=1 such that p
2
(ϕ−1(p)) ∈ V . Hence W := ϕ(U × V ) ∈ Opp(B),

and we may restrict ϕ to a graded diffeomorphism ϕ|U×V : M|U × F|V → B|W , whom we shall
nevertheless still denote ϕ. We find that X ∈ XB(W ) is vertical if and only if X̂ := ϕ∗ ◦X ◦ (ϕ−1)∗ ∈
XM×F (U × V ) satisfies

X̂ ◦ ρU×FU×V ◦ p∗1,U = 0. (4.99)

As X̂ = X̂i ∂
∂xi

+ X̂µ ∂
∂yµ , we see that (4.99) holds if and only if X̂i = 0 for every i ∈ {1, . . . ,m}. Since

∂i := (ϕ−1)∗ ◦ ∂
∂xi

◦ ϕ∗ and ∂µ := (ϕ−1)∗ ◦ ∂
∂yµ ◦ ϕ∗ form a frame for XB(W ), we conclude that X is

vertical if and only if X = Xµ∂µ for some (freely chosen) Xµ ∈ C∞B (W ), and so {∂µ}fµ=1 is a frame
for VerB(W ). Thus we have shown that VerB is a graded distribution. ■

Proposition 4.15 (Frame for VerP). Let π : P → M be a principal G-bundle and let (t1, . . . , tℓ) be a
total basis of TeG. Then (#t1, . . . ,#tℓ) forms a frame for the vertical distribution VerP .

Proof. First we need to verify that #tµ ∈ XP(P ) is vertical for any µ. By definition of the infinitesimal
generator #, see Proposition 3.22, we have 1⊗ tLµ ∼θ #tµ and so we may write

θ∗ ◦#tµ ◦ π∗ = (1⊗ tLµ) ◦ θ∗ ◦ π∗ = (1⊗ tLµ) ◦ p∗1 ◦ π∗ = 0, (4.100)

where in the second equality we used that θ is assumed to act along the fibers of π, see diagram (4.2),
and in the last equality we used that 1⊗X ∼p1 0 for any vector field X. Since we have (1, e)∗ ◦θ∗ = 1,
it follows that #tµ ◦ π∗ = 0 ergo #tµ is vertical.
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Consider some local trivialization ϕ : M|U × G → P|π−1(U) and let us examine the pushforward
vector field (ϕ−1)∗(#tµ|π−1(U)). Note that

(#tµ)|π−1(U) = (1, e)∗π−1(U)×G ◦
(
1⊗ tLµ

)∣∣
π−1(U)×G ◦ θ∗π−1(U), (4.101)

which can be gleaned using similar arguments as those used in the proof of Theorem 3.16. Now denote
V := π−1(U) and observe that

(ϕ−1)∗ (#tµ|V ) = ϕ∗V ◦ (#tµ)|V ◦ (ϕ−1)∗U×G (4.102)

= ϕ∗V ◦ (1, e)∗V×G ◦
(
1⊗ tLµ

)∣∣
V×G ◦ θ∗V ◦ (ϕ−1)∗U×G (4.103)

= ϕ∗V ◦ (1, e)∗V×G ◦
(
1⊗ tLµ

)∣∣
V×G ◦ (ϕ−1 × 1)∗U×G×G ◦ (1× µ)∗U×G (4.104)

= ϕ∗V ◦ (1, e)∗V×G ◦ (ϕ−1 × 1)∗U×G×G ◦
(
1′ ⊗ tLµ

)∣∣
U×G×G ◦ (1× µ)∗U×G (4.105)

= (1′, e)∗U×G×G ◦
(
1′ ⊗ tLµ

)∣∣
U×G×G ◦ (1× µ)∗U×G (4.106)

=
(
1⊗ tLµ

)∣∣
U×G , (4.107)

where after (4.103) we used the equivariance of ϕ, after (4.104) we used Lemma 3.2, after (4.105)
we used Lemma 1.3 and after (4.106) we used Lemma 3.10. We may now consider the infinitesimal
generator as a morphism of sheaves of C∞P -modules # : C∞P ⊗ g → VerP , wherein

#(fµtµ) := fµ (#tµ)|V , (4.108)

for any fµtµ ∈ C∞P (V )⊗g. Since {tLµ |g}ℓµ=1 are linearly independent vectors for each g ∈ G, so too are

{(1 ⊗ tLµ)|(m,g)}ℓµ=1 linearly independent for each m ∈ M and g ∈ G. Indeed, one must merely recall

their shape in local coordinates. As a result, {#tµ|p}ℓµ=1 are also linearly independent at every p ∈ P
because

#tµ|p =
(
ϕ∗
(
1⊗ tLµ

))
|p =

(
Tϕ−1(p)ϕ

) (
1⊗ tLµ

)
|ϕ−1(p). (4.109)

This means that # is fiber-wise injective, and as C∞P ⊗ g and VerP have the same graded rank, the
result follows from Proposition 3.18. ■

Definition 4.16 (Horizontal Distribution). i.) Let π : B → M be a fiber bundle. We say that a
distribution D on B is horizontal if it satisfies XB = VerB ⊕ D . Every horizontal distribution is
also called an Ehresmann connection.

ii.) Let π : P → M be a principal G-bundle with the right action of G on P denoted as θ. If
U ∈ Op(M), then a vector field X ∈ XP(π

−1(U)) is called θ-invariant if X ⊗ 1 ∼θ X. We say
that a horizontal distribution D on P is a principal connection if there exists an open cover
{Uα}α∈I of M such that for every α there is a frame for D(π−1(Uα)) consisting of θ-invariant
vector fields. Just as in the classical case we may, for any principal connection D , define a form
of connection A ∈ Ω1

P(P, g) by

A|D = 0 and A(#tµ) = tµ, (4.110)

where (t1, . . . , tℓ) is some basis of the Lie algebra g.

Note that in writing X ⊗ 1 ∼θ X in the above definition we consider X as the global vector fields
on the graded manifold P|π−1(U), and the right action θ restricted to θ : P|π−1(U) × G → P|π−1(U).
As a side note we may point out that the Maurer-Cartan form ωMC from Example 4.10 is a form of
connection on the trivial principal G-bundle P = {∗} × G, where θ = µ taken as a right action with
the principal connection D = 0.
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Proposition 4.17. The definition of a principal connection in Definition 4.16 reduces to the standard
one in the trivially graded case.

Proof. It can be seen, using similar arguments as in the proof of Proposition 3.5, that in the trivially
graded case X ⊗ 1 ∼θ X if and only if for any g ∈ G there is θg,∗X = X hence our definition of
θ-invariant vector fields reduces to the usual one.

Consider now an ordinary principal G-bundle π : P →M with right the action of G on P denoted
as θ. By the standard definition of a principal connection D we mean that D is a smooth distribution
on P such that XM = VerP ⊕ D and θgDp = Dp·g for every g ∈ G and p ∈ P . If D is a principal
connection by the standard definition, then the horizontal lifts (fh1 , . . . , f

h
n ) of any any local frame

(f1, . . . , fn) for XM (U) form a θ-invariant frame for D(π−1(U)).

On the other hand, let D be a distribution on P which satisfies XP = VerP⊕D , and let U ∈ Op(M)
be an open set such that there exists a frame (X1, . . . , Xn) for D(π−1(U)) made up of θ-invariant vector
fields. Then for every p ∈ P , g ∈ G and v = viXi|p ∈ TpP we have

(Tpθg) v = vi (Tpθg)X|p = vi(θg,∗Xi)|p·g = viXi|p·g ∈ Dp·g, (4.111)

as desired. ■

Remark 4.18 (Horizontal and Vertical Projectors). It follows immediately from the definition that
for any fiber bundle B with a horizontal distribution D and for any V ∈ Op(B) we have a horizontal
projector i.e. a graded C∞B (V )-linear map of degree zero

Hor V : XB(V ) → D(V ) (4.112)

which assigns to any vector field its horizontal part — the part lying in D . It is easy to see that the
collection {Hor V }V ∈Op(B) behaves naturally with respect to restrictions and so comprise a morphism
of sheaves of C∞B -modules Hor : XB → D . In much the same way we have the vertical projector
which we shall denote as Ver : XB → VerB.

Proposition 4.19 (Horizontal Lift). Let π : B → M be a fiber bundle bundle with a horizontal
distribution D and consider some U ∈ Op(M). Then for any X ∈ XM(U) there exists a unique
horizontal vector field Xh ∈ D(π−1(U)) such that Xh ∼π X. We call Xh the horizontal lift of X.

Furthermore, if B is a principal G-bundle with the right action θ and D is a principal connection,
then every horizontal lift of a vector field is θ-invariant.

Proof. Consider some trivializing open cover {Uα}α∈I ofM with local trivializations ϕα : M|Uα ×G →
B|π−1(Uα). Let us first assume that U ⊆ Uα for some α ∈ I. In this case we have X ⊗ 1 ∼p1 X and
therefore

(ϕα,∗ (X ⊗ 1))◦π∗ = (ϕ−1α )∗ ◦X⊗1◦ϕ∗α ◦π∗ = (ϕ−1α )∗ ◦X⊗1◦p∗1 = (ϕ−1α )∗ ◦p∗1 ◦X = π∗ ◦X, (4.113)

i.e. ϕα,∗(X ⊗ 1) ∼π X. Denote Y := ϕα,∗(X ⊗ 1). As with all vector fields on B we can decompose it
into its vertical and horizontal parts Y = VerY +HorY , then

π∗ ◦X = Y ◦ π∗ = VerY ◦ π∗ +HorY ◦ π∗ = HorY ◦ π∗, (4.114)

which means that also HorY ∼π X. Hence let us choose

Xh := Hor ϕα,∗(X ⊗ 1) ∈ D(π−1(U)). (4.115)
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Now assume that U ∈ Op(M) was arbitrary. Then by the above construction we have, for every α,
the vector field Xh

α := Hor ϕα,∗(X|U∩Uα ⊗1) which is π-related to X|U∩Uα . Let us show that Xh
α agree

on overlaps: denote Vαβ := U ∩ Uαβ. Similarly as in (4.114), we see that(
ϕα,∗(X|Vαβ

⊗ 1)− ϕβ,∗(X|Vαβ
⊗ 1)

)
◦ π∗ = π∗ ◦ (X|Vαβ

−X|Vαβ
) = 0, (4.116)

which means that
ϕα,∗(X|Vαβ

⊗ 1)− ϕβ,∗(X|Vαβ
⊗ 1) ∈ VerB(π

−1(Vαβ)) (4.117)

and therefore Xh
α|π−1(Vαβ) = Xh

β |π−1(Vαβ). Consequently {Xh
α}α∈I glue together a horizontal vector

field Xh ∈ D(π−1(U)) such that Xh ∼π X. Indeed, for any f ∈ C∞M(U) there is(
(Xh ◦ π∗)f

)∣∣∣
U∩Uα

=
(
Xh|π−1(U∩Uα) ◦ π

∗
U∩Uα

)
f |U∩Uα

=
(
Xh
α ◦ π∗U∩Uα

)
f |U∩Uα

(4.118)

=
(
π∗U∩Uα

◦X|U∩Uα

)
f |U∩Uα

= ((π∗ ◦X)f)|U∩Uα
, (4.119)

for any α, hence Xh ◦ π∗ = π∗ ◦X.

As for uniqueness of Xh, let Y ∈ D(π−1(U)) be another vector field such that Y ∼π X. Then
(Xh − Y ) ◦ π∗ = π∗ ◦ (X −X) = 0, which means that Xh − Y ∈ VerB(π

−1(U)). But since Xh − Y is
a horizontal vector field, necessarily Xh − Y = 0.

Next, assume that π : B → M is a principal G-bundle. We need to show that Xh is θ-invariant.
Without loss of generality we may assume that for every α there is a frame for D(π−1(Uα)) consisting
of θ-invariant vector fields. Since Xh is θ-invariant if and only if Xh|π−1(U∩Uα) is θ-invariant for every
α, we may further assume that U ⊆ Uα for some α and also that U is a coordinate patch on M.
Denote the θ-invariant frame for D(π−1(U)) as (D1, . . . , Dn). We know that Xh = f jDj for some
f j ∈ C∞B (π−1(U)) and so we can write

θ∗ ◦Xh −
(
Xh ⊗ 1

)
◦ θ∗ = θ∗

(
f j
)
· (θ∗ ◦Dj)− p∗1

(
f j
)
· ((Dj ⊗ 1) ◦ θ∗)

=
(
θ∗
(
f j
)
− p∗1

(
f j
))

· (θ∗ ◦Dj). (4.120)

On the other hand, from the fact that Xh ∼π X we find

θ∗ ◦Xh ◦ π∗ = θ∗ ◦ π∗ ◦X = p∗1 ◦ π∗ ◦X = p∗1X
h ◦ π∗ = Xh ⊗ 1 ◦ p∗1 ◦ π∗

=
(
Xh ⊗ 1

)
◦ θ∗ ◦ π∗, (4.121)

which implies((
Xh ⊗ 1

)
◦ θ∗ − θ∗ ◦Xh

)
◦ π∗ =

(
θ∗
(
f j
)
− p∗1

(
f j
))

· (θ∗ ◦Dj ◦ π∗) = 0. (4.122)

We will show that for any gj ∈ C∞B×G(π
−1(U)×G) there is

gj · (θ∗ ◦Dj ◦ π∗) = 0 =⇒ ∀j, gj = 0. (4.123)

Since U is assumed to be a trivializing open set with with coordinates {xi} on M|U , we can consider a
frame { ∂

∂xi
}ni=1∪{#tµ}ℓµ=1 for XB(π

−1(U)). As such, for every j there is Dj = D i
j

∂
∂xi

+D µ
j #tµ. Since

{Di}ni=1∪{#tµ}ℓµ=1 also form a frame for XB(π
−1(U)) we may write, for any j, ∂

∂xj
= α k

j Dk+α
µ
j #tµ

for some unique α k
j , α

µ
j ∈ C∞P (π−1(U)). Put together these decompositions yield

Dj = D k
j

∂

∂xk
+D µ

j #tµ = D k
j α

i
k Di +

(
D k
j α

µ
k +D µ

j

)
#tµ (4.124)
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which in particular means that D k
j α

i
k = δ i

j for every i, j. By assumption there is, for every k,

0 = gj · (θ∗ ◦Dj ◦ π∗)xk = gj θ∗
(
D k
j

)
, (4.125)

which one may multiply by θ∗(α i
k ) from the right to obtain

0 = gj θ∗
(
D k
j α

i
k

)
= gj θ∗

(
δ i
j

)
= gi, (4.126)

for every i, as desired. It follows that Xh is θ-invariant, since (4.120) is now seen to be equal to
zero. ■

Let π : B → M be a fiber bundle with a horizontal connection D and let V be some finite-
dimensional graded vector space. For any U ∈ Op(P ) and any ω ∈ ΩpB(U, V ) we may define the
horizontal part of ω similarly as in the non-graded case via

(Horω) (X1, . . . , Xp) := ω (HorX1, . . . ,HorXp) , (4.127)

for any X1, . . . , Xp ∈ XP(U). We say that ω is horizontal if ω = Horω. The graded C∞B (U)-module
of all horizontal p-forms is denoted as ΩpB,hor(U, V ) ⊆ ΩpB(U, V ). From the fact that the horizontal
projection is a morphism of sheaves of C∞B -modules Hor : XB → D we can see that the assignment
ΩpB,hor : U 7→ ΩpB,hor(U, V ) is also a sheaf of C∞B -modules and a subsheaf of ΩpB. Furthermore, we may
consider the assignment ω 7→ Horω as a morphism of sheaves of C∞B -modules

Hor : ΩpP → ΩpB,hor, (4.128)

which we also call the horizontal projector. With it in hand, we may define the exterior covariant
derivative D : ΩpB(U, V ) → Ωp+1

B,hor(U, V ) by

D := Hor ◦ d. (4.129)

This leads to the following definition of the form of curvature.

Definition 4.20 (Form of Curvature). Let P be a graded principal G-bundle equipped with a principal
connection D and denote as A ∈ Ω1

P(P, g) the associated form of connection. We then say that

Ω := DA ∈ Ω2
P,hor(P, g) (4.130)

is the form of curvature associated to D . We say that the connection D is flat if Ω = 0.

Proposition 4.21. Let π : P → M be a principal G-bundle equipped with a principal connection D .
Then D is involutive if and only if it is flat.

Proof. Let A = tµA
µ be the form of connection on P. The proof is a straightforward application of

the Cartan relations [11, Theorem 2.8]. Consider some X,Y ∈ XP(P ), then

A ([HorX,HorY ]) = i[HorX,HorY ]A = −(−1)|X|(|Y |+1)iHorY LHorXA

= −(−1)|X|(|Y |+1)iHorY iHorXdA = −(−1)|X|(|Y |+1)iHorY dA (HorX, ·)
= −dA (HorX,HorY ) = −DA(X,Y ). (4.131)

The conclusion follows immediately. ■
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Example 4.22 (Connections on the Trivial Bundle). Consider the trivial principal G-bundle P =
M×G with π = p1 and θ = 1×µ. Let (tµ)

ℓ
µ=1 be a basis for TeG. The fundamental vector fields #tµ

are simply
#tµ = 1⊗ tLµ , (4.132)

for any µ. Note that since both left-invariant and right-invariant vector fields generate XG , we have

1⊗ tLµ =
(
1⊗ tRν

)
·Rνµ and 1⊗ tRµ =

(
1⊗ tLν

)
· Sνµ , (4.133)

for some graded functions Rνµ, S
ν
µ ∈ C∞P (P ) which satisfy

Sκ
νR

ν
µ = δκµ = Rκ

νS
ν
µ . (4.134)

Now, consider some principal connection D on P. Without loss of generality we may consider some
open cover {Uα}α∈I ofM by coordinate patches such that for every α there exists a frame for D(U×G)
made up of θ-invariant vector fields. Let U ∈ {Uα}α∈I be one such set and denote the θ-invariant
frame for D(U × G) as (D1, . . . , Dn). We can now consider four frames for D(U × G) made up of
either {Di} or ∂

∂xi
and {1⊗ tRµ } or {1⊗ tLµ}. In particular, we have

Di =
∂

∂xk
·Dk

i +
(
1⊗ tLµ

)
·Dµ

i, (4.135)

∂

∂xk
= Di · αik +

(
1⊗ tLµ

)
· αµk, (4.136)

for some unique functions Dk
i, D

µ
i, α

i
k, α

µ
k ∈ C∞P (U × G). Using these transformations twice in a

row we find that
Di

kα
k
j = δij and Dµ

kα
k
j = −αµj . (4.137)

Let now A ∈ Ω1(P, g) be the form of connection corresponding to D , that is, defined by A(Di) = 0
and A(1⊗ tLµ) = tµ. Locally on U we have A = tµA

µ where Aµ = Aµk dx
k+Aµν(#t)ν for some unique

graded functions Aµk, A
µ
ν ∈ C∞P (U ×G) and where (#t)µ denotes the dual section to #tµ ≡ 1⊗ tLµ .

From the definition of A we have
δµν = Aµ(1⊗ tLν ) = Aµν (4.138)

and

0 = Aµ(Di) = Aµ
(

∂

∂xk
Dk

i +
(
1⊗ tLν

)
Dν

i,

)
= AµkD

k
i +Dµ

i. (4.139)

We may multiply the last by αij from the right to obtain

0 = AµkD
k
iα
i
j +Dµ

iα
i
j = Aµj − αµj , (4.140)

through the use of (4.137). We see that for our particular choice of frames the local shape of a form
of connection associated to any horizontal distribution D on M×G is very simple:

Aµ = αµj dx
j + (#t)µ, (4.141)

where the graded functions αµj come from (4.136). But how does the fact that Di are θ-invariant

manifest on A? First note that also ∂
∂xk

and (1 ⊗ tRµ ) are θ-invariant. Indeed, recall that with our

79



(understandable) abuse of notation we actually have ∂
∂xk

≡ ∂
∂xk

⊗ 1 ∈ XP(U × G) which is (1 × µ)-

invariant due to Lemma 3.2, and 1 ⊗ tRµ is (1 × µ)-invariant since tRµ ⊗ 1 ∼µ tRµ by definition of
right-invariance. As a result,

(1× µ)∗ ◦ ∂

∂xk
= (1× µ)∗ ◦

(
Di · αik +

(
1⊗ tRν

)
·Rνµα

µ
k

)
= ((1× µ)∗ ◦Di) · (1× µ)∗

(
αik
)
+
(
(1× µ)∗ ◦ (1⊗ tRµ )

)
· (1× µ)∗

(
Rνµα

µ
k

)
(4.142)

is equal to

(
∂

∂xk
⊗ 1) ◦ (1× µ)∗ =

(
(Di ⊗ 1) · p∗1

(
αik
)
+
(
1⊗ tRν ⊗ 1

)
· p∗1

(
Rνµα

µ
k

))
◦ (1× µ)∗ (4.143)

= ((1× µ)∗ ◦Di) · p∗1
(
αik
)
+
(
(1× µ)∗ ◦ (1⊗ tRν )

)
· p∗1

(
Rνµα

µ
k

)
. (4.144)

Which implies in particular that

p∗1
(
RνµA

µ
k

)
= (1× µ)∗

(
RνµA

µ
k

)
, (4.145)

for any µ ∈ {1, . . . , ℓ} and k ∈ {1, . . . , n}, where we used that Aµk = αµk from (4.140).

On the other hand, let now A = tµA
µ be some 1-form on P valued in g and suppose that for any

coordinate patch U on M with coordinates {xi} the component 1-forms Aµ ∈ Ω1
P(U ×G) are of the

shape
Aµ = Aµk dx

k + (#t)µ, (4.146)

where Aµk satisfy the relation (4.145). We will show that D := kerA is a principal connection on P
by constructing a frame for D(U). For every k denote

Xk :=
∂

∂xk
−
(
1⊗ tLµ

)
·Aµk ≡

∂

∂xk
−
(
1⊗ tRµ

)
·RµνAνk. (4.147)

It is clear that (X1, . . . , Xn, 1⊗ tL1 , . . . , 1⊗ tLℓ ) is a frame for XP(U ×G) and we have

Aµ(Xk) = Aµk −Aµk = 0, (4.148)

which together with the fact that Aµ(1⊗ tLµ) = tµ means that {Xi} form a frame for D(U). Finally,
we find that

(1× µ)∗ ◦Xi = (1× µ)∗ ◦
(

∂

∂xk
−
(
1⊗ tRµ

)
·RµνAνk

)
=

(
∂

∂xk
⊗ 1

)
◦ (1× µ)∗ −

((
1⊗ tRµ ⊗ 1

)
◦ (1× µ)∗

)
· (1× µ)∗ (RµνA

ν
k)

=

(
∂

∂xk
⊗ 1

)
◦ (1× µ)∗ −

((
1⊗ tRµ ⊗ 1

)
◦ (1× µ)∗

)
· p∗1 (RµνAνk)

=

((
∂

∂xk
− (1⊗ tRµ ) ·RµνAνk

)
⊗ 1

)
◦ (1× µ)∗

= (Xi ⊗ 1) ◦ (1× µ)∗, (4.149)

where between the second and the third equality we used (4.145). We have shown that on the trivial
principal G-bundle P = M × G there is a one-to-one correspondence between principal connections
D and 1-forms A = tµA

µ ∈ Ω1
P(P, g) locally of the shape (4.146) which satisfy (4.145). Of course,

the most straightforward choice is A = tµ(#t)
µ corresponding in the terms of vector bundles to

D = p∗1(TM), see [10, Proposition 5.15]. In other words, the local frame for this particular D is
simply ( ∂

∂x1
, . . . , ∂

∂xn ). Apparently for this choice there is Ω = DA = 0, i.e. the connection is flat.
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Conclusion

In the first chapter of the text we managed to use the Yoneda embedding to learn something about
group objects and their actions in any locally small category with finite products and a terminal
object. The main results of this chapter are Corollary 1.26 and Corollary 1.28, which tell that us some
useful basic facts about classical groups and their actions generalize to a broad range of categories.
We may also mention Corollary 1.29 which may be potentially useful in connection with the notion of
a subgroup (object). In particular, it may possibly be used to verify when a graded manifold is a Lie
subgroup of some Lie group, if and when Lie subgroups are defined.

The main body of the second chapter was devoted to the construction of the graded general linear
group GL((nj),R). Using our knowledge of matrices of graded linear maps we found global coordinates
in which the multiplication arrow (2.47) could be defined in a very simple manner. We found that
GL((nj),R) reduces to the ordinary general linear group GL(n,R) whenever the sequence (nj) of
non-negative integers has no more than one non-zero entry. Otherwise the pullback of coordinates by
the multiplication arrow has a non-trivial purely graded part (2.53). We also found the explicit form
of the inversion arrow (2.71) and (2.82). In particular, the pullback of coordinates by the inversion
arrow is generally a rather non-trivial formal power series. We also investigated the canonical actions
of GL((nj),R) on itself and on the graded domain gR(nj).

We provided two other examples of graded Lie groups: the first was a simple example where we
defined a multiplication arrow on a graded domain using vector addition on the corresponding graded
vector space. In the second example we encountered a graded Lie group whose underlying manifold
was a discrete group. Specifically, we investigated all possible graded Lie group structures on a graded
manifold of graded dimension (. . . , 0, 0, 1, . . . ) whose underlying Lie group is the two-point group Z2,
(2.133). We believe this example nicely illustrates how the underlying Lie group manifests in the
structure of a graded Lie group.

In the third chapter, inspired by the definition of fundamental vector fields in [2], we found an
equivalent definition of left-invariant vector fields on a Lie group that did not involve any integral
curves or tangent vectors and we used it to define left-invariant vector fields on graded Lie groups.
The main body of this chapter was devoted to their examination, including examples on GL((nj),R)
for a general (nj) in Example 3.14 and for (nj) = (. . . , 0, 1, 1, . . . ) in Example 3.15. The main result
is probably the correspondence between tangent vectors at the unit and left-invariant vector fields
in Theorem 3.16. In Example 3.17 we used this correspondence to find that the Lie algebra of left-
invariant vector fields for GL((nj),R) is isomorphic to the Lie algebra of graded (nj)× (nj) matrices.
Similarly as for left-invariant vector fields, we found an alternative definition of fundamental vector
fields suitable for uplift to the graded setting and in Proposition 3.22 we found the graded infinitesimal
generator map.

In the fourth and last chapter we began by the definition of a graded principal bundle. This
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required to know what it means for a graded Lie group action to act “freely and transitively along
fibers”, which we found once more by choosing a classical definition which does not make use of points
of the smooth manifolds. A large portion of this chapter is taken up by the construction of the graded
frame bundle F(M), which is a graded principal GL((nj),R)-bundle over any graded manifold with
graded dimension (n−j). In Proposition 4.8 we learned that the name is justified even in the graded
setting as local sections of the graded frame bundle correspond to local frames for graded vector fields
on M.

We defined vertical vector fields for any fiber bundle similarly as in the ordinary setting and learned
that they form a distribution. In Proposition 4.15 we found that for any principal bundle, the vertical
distribution is generated by fundamental vector fields. In Definition 4.16 we defined a horizontal
distribution as any complement to the vertical distribution and in Proposition 4.19 we learned how to
perform horizontal lifts of vector fields. We introduced principal connections on principal bundles as
horizontal distribution locally generated by invariant vector fields and used the horizontal distribution
to define the form of connection, the exterior covariant derivative and the form of curvature. Finally,
we examined these objects in the case of a trivial principal bundle in Example 4.22.

Our study of graded Lie theory was not complete by far: for one, we lack the graded Lie group—Lie
algebra correspondence. We also do not have the graded Frobenius theorem and so we do not know
whether involutive distributions coincide with integral ones. We are also missing the definition of a
representation of a graded Lie group and in particular the definition of the adjoint representation.
Until that is remedied, our description of graded forms of curvature will likely be very limited. We
leave these questions for future investigation.
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