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Introduction

This thesis is devoted to the study of a half-line Dirac operator Dα subjected to the rel-
ativistic Robin-type boundary conditions at zero perturbed by a (generally non-self-adjoint)
matrix-valued potential. This particular operator was recently studied in [9] from a different
point of view. The author set estimates for non-embedded eigenvalues of Dα perturbed by a
matrix-valued potential (not necessarily self-adjoint)

In general, the study of half-line Dirac operators is important since they represent the radial
part of the 3D spherically symmetrical Dirac equation [44, 39].

Our research is a continuation of a study of the fundamental properties of Schrödinger and
Dirac operators. It is well known that the spectrum of a Laplacian defined over the Euclidean
space is stable under „small„ perturbations whenever the dimension of the space is three or
more. If the perturbation is a real-valued function, the „smallness„ can be quantified through
the famous Hardy inequality. For complex-valued potentials, the problem is much more del-
icate and more technical tools must be used [22]. The key tool available in both self-adjoint
and non-self-adjoint settings is the famous Birman-Schwinger principle, which has recently be-
come very popular; see [10, 25, 19, 11, 22, 37, 23, 7]. This property is usually refered to as
the so-called subcriticality of the Laplacian in dimensions three or more. On the other hand, in
dimensions one and two the Laplacian is so-called critial - every negative perturbation gives an
eigenvalue under the threshold of the essential spectrum. However, in dimension one there is
a Hardy inequality if one considers a half-line instead [29, G. H. Hardy 1920]. The half-line
Schrödinger operators and their spectral properties were studied quite recently, let us mention
[24] where the author established a sharp bound on eigenvalues of half-line Schrödinger opera-
tors subjected to the Dirichlet boundary condition with complex-valued potentials. This result
was further extended by Enblom [18]. Nevertheless, none of the mentioned papers contained
the explicit condition of the spectral stability. In 2022 Krejčiřík, Laptev and Štampach [37]
studied discrete non-self-adjoint Schrödinger operators on a half-line and proved their spectral
stability. Furthermore, the authors then compared their result with its continuous analogue [37,
Remark 21] and established a sufficient condition for the stability of the spectrum of a half-line
Laplacian subjected to Robin-type boundary conditions at zero with a general complex-valued
potential.

In recent years there has been growing attention towards spectral properties of Dirac oper-
ators [11, 20, 14, 17, 41, 9, 11, 10]. However, the fundamental question regarding the stability
of its spectrum remained unaswered for a long period of time. There were several partial re-
sults [21, 11, 20, 9] but the final solution has been found by D’Ancona, Fanelli, Krejčiřík and
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Schiavone in 2022 [13]. The authors proved that the spectrum of a Dirac operator defined over
the Euclidean space is stable under small perturbations if the dimension is greater than two and
conjectured that it is not possible in dimension two. Regarding dimension one, this was already
studied in [11, 12] and partially answered; see [12, Theorem 2.2]. However, the criticality of
the Dirac operator in dimension two is still open.

Our goal in this thesis is to find a stability theorem for the half-line Dirac operator corre-
sponding to the results [37, Remark 21] and [13] made for half-line Laplacian and the Dirac
operator in dimensions three or more, respectively.

The thesis is structured as follows. In the first chapter we give a review of mathematical
tools used later in the chapters that follow. Second chapter is devoted to the brief historical
background and development of the problem of spectral stability and we present the motivation
of our study. In the third chapter we introduce and properly define the studied model Dα. Its
analysis and main results of the thesis follow.
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Chapter 1

Mathematical background

This chapter is devoted to an overview of mathematical tools used in the later chapters and
to the unification of notation and nomenclature. Most of the following content is related to
functional analysis and the theory of differential equations. The results presented in this chapter
are the summary of the following list of literature [36, 43, 5, 34, 15, 8, 36, 16, 28] to which we
refer for more details on the contet presented. Throughout the whole chapter, H will denote a
separable complex Hilbert space. Furthermore, in the whole thesis the complex conjugation of
a complex number will be denoted by a star, i.e. (x + iy)∗ := x − iy for x, y ∈ R.

1.1 Sobolev spaces
Sobolev spaces were introduced in the 1930s by Sergei Sobolev, and they provide a natural

framework for the study of differential operators on Lp spaces. Differential operators are typ-
ically unbounded operators, and therefore it is necessary to specify the domain on which they
act. Sobolev spaces, sometimes also referred to as energetic spaces, are the building blocks
when constructing the extensions of such operators.

Definition 1.1.1 (Multi-index)
Let n ∈ N, α1, · · · , αn ∈ N0. Then by a multi-index we understand n-tuple α := (α1, · · · , αn).
Furthermore, we define the size of the multi-index α as |α| := α1 + · · · + αn.

Using the multi-index we define the following notation for partial derivatives as

Dα :=
∂|α|

∂xα1
1 · · · ∂xαn

n
.

Definition 1.1.2 (Weak derivative)
Let Ω ⊂ Rn be an open connected set, α ∈ Nn

0 a multi-index and let ψ ∈ L1
loc(Ω). We say that

ξ ∈ L1
loc(Ω) is the weak derivative of ψ if for all φ ∈ C∞0 (Ω) the following holds∫

Ω

ξ(x)φ(x)dx := (−1)|α|
∫

Ω

ψ(x)Dαφ(x)dx.
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The set C∞0 (Ω) is called space of test functions and is defined as

C∞0 (Ω) := {ψ ∈ C∞(Ω) | suppψ ⊂ Ω is compact}.

In addition, if ψ ∈ Ck(Ω) then for |α| ≤ k weak and classical derivative merge - from the
Divergence theorem. To simplify the notation, we will denote the weak derivative of ψ ∈ L1

loc(Ω)
of order α ∈ Nn

0 as Dαψ. In cases when it is not clear which one is being considered, it will be
emphasized.

Definition 1.1.3 (Sobolev spaces)
Let Ω ⊂ Rn be an open connected set, p ∈ [1,∞] and k ∈ N0. Then by the Sobolev space Wk,p(Ω)
we understand set of functions ψ ∈ Lp(Ω) such that for all |α| ≤ k their weak derivatives Dαψ
lies in the space Lp(Ω), that is,

Wk,p(Ω) := {ψ ∈ Lp(Ω) | ∀|α| ≤ k : Dαψ ∈ Lp(Ω)},

equipped with the following norm

‖ψ‖
p
k,p = ‖ψ‖

p
Wk,p(Ω) :=

∑
|α|≤k

‖Dαψ‖
p
Lp(Ω), for p ∈ [1,∞) ,

‖ψ‖k,∞ = ‖ψ‖
p
Wk,∞(Ω) := max

|α|≤k
‖ψ‖L∞(Ω), for p = ∞.

In the trivial case, for k = 0 we indetify W0,p(Ω) = Lp(Ω).

Theorem 1.1.1 ([43, Lemma 5.2])
Let Ω ⊂ Rn be an open connected set.

i) For all p ∈ [1,∞] and k ∈ N0 the Sobolev space Wk,p(Ω) is a Banach space.

ii) For p = 2 and all k ∈ N is Wk,2(Ω) a Hilbert space with the inner product defined for
ψ, φ ∈ Wk,2(Ω) as

(ψ, φ)k :=
∑
|α|≤k

∫
Ω

Dαψ∗(x)Dαφ(x)dx.

Theorem 1.1.2 (Meyers-Serrin [43])
Let Ω ⊂ Rn be an open set, p ∈ [1,∞], k ∈ N0.
Then Wk,p(Ω) = C∞(Ω) with respect to the norm ‖·‖k,p.

Inspired by the previous theorem 1.1.2 we define the notation Wk,p
0 (Ω) := C∞0 (Ω) with re-

spect to the norm ‖·‖k,p.

Theorem 1.1.3 ([36])
For every n ∈ N holds W1,2

0 (Rn) = W1,2(Rn).

12



1.2 Operator theory
We will be mostly interested in unbounded operators. Manipulation with unbounded opera-

tors has certain specifics, therefore, let us make a brief summary of the theory of general linear
operators on Hilbert spaces. For more details on this content see [34, 5, 34, 15, 16].

Under Hilbert space we will understand a complex vector spaceH which is complete with
respect to the norm ‖·‖ induced by the inner product (·, ·) on H . The latter will be assumed
to be antilinear in its first argument. As we have already outlined, we will deal with closed
unbounded operators and such operators necesarilly can not be defined everywhere onH from
the closed graph theorem [5]. By a linear operator we will call a two-tuple (H, dom(H)) where
dom(H) is subspace of H called (operator) domain of H and H : dom(H) → H is a linear
map. Further in the text, we will omit the adjective „linear„. If not specified otherwise; we will
always understand „linear operator„ under the word „operator„.

Since for linear maps concepts of boundedness and continuity are merging, we have a dis-
continuous map once the operator we consider is unbounded. To assert a broad set of char-
acteristics and control it, we propose a less stringent requirement than continuity. The suitable
concept which can substitute continuity in a certain way is closedness. We will define it through
the concept of a graph of a linear map. Although it would be possible to define the closedness
itself, we will take advantage of the concept of a graph later.

Definition 1.2.1 (Graph of linear map)
Let X,Y be normed vector spaces, and H be a linear mapping from X to Y. Then by a graph of
the linear mapping H we understand the set

G(H) := {(x,Hx) ∈ X × Y | x ∈ dom(H)}

Furthermore, we define a norm on G(H) as ‖(x, y)‖2G := ‖x‖2X + ‖y‖2Y .

Proposition 1.2.1
Let G ⊂ X × Y then G is a graph of a linear map if and only if

∀ (x, y) ∈ G : x = 0⇒ y = 0.

Definition 1.2.2 (Closed map)
We say that H, an operator on a space H is closed if G(H) is a closed set with respect to the
graph norm.

The alternative, much more practical, definition of a closed map is that for every sequence
(ψn)∞n=0 ⊂ dom(H) holds the following(

lim
n→∞

ψn = ψ ∈ H ∧ lim
n→∞

Hψn = φ ∈ H
)
⇒ (ψ ∈ dom(H) ∧ Hψ = φ) .

Compare the property above with the continuity, which can be on a general metric space stated
as

∀(ψn)∞n=0 ⊂ dom(H) : ψn → ψ⇒ Hψn → Hψ.
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Clearly, closedness is a more general concept in the sense that every bounded operator is closed.
The belonging of (ψn)∞n=0 to the domain dom(H) is only formal here. Since every bounded oper-
ator can be extended to the whole space [5] we will further consider them as defined everywhere.

Definition 1.2.3 (Closable map and its closure)
With the same assumptions and notation as in the definition 1.2.1 we say that H is a closable
map if G(H) is a graph.
If H is a closable map we define its closure H as G(H) := G(H).

Alternatively, it is possible to reformulate the definition 1.2.3 as follows.

∀(ψn)∞n=0 ⊂ dom(H) : (ψn → 0 ∧ ‖Hψn − Hψm‖ → 0)⇒ Hψn → 0.

From now on, all maps will be considered closed if not specified otherwise.
Another concept which must be treated carefully when dealing with unbounded operators is

an adjoint operator and self-adjointness. For a given bounded operator A the adjoint operator is
characterized as an operator B such that (ψ, Aφ) = (Bψ, φ) for all ψ, φ ∈ H . Thus, self-adjoint
and symmetric operators become one. For general, possibly unbounded operators, it is much
more delicate, the operator domain has to be taken into account, and these two concepts have to
be properly distinguished.

Definition 1.2.4 (Adjoint operator)
Let H be a densely defined, not necessary closed operator on H . Then its adjoint operator H∗

is defined as follows

dom(H∗) := {ψ ∈ H | ∃η ∈ H : ∀φ ∈ dom(H) : (ψ,Hφ) = (η, φ)}
H∗ψ := η.

Definition 1.2.5 (Symmetric operator)
Let H be a densely defined but not necessarily closed operator onH . We say that H is symmetric
if H ⊂ H∗. In other words, for all φ, ψ ∈ dom(H) we have (φ,Hψ) = (Hφ, ψ).

Definition 1.2.6 (Self-adjoint and normal operator)
Let H be a densely defined, not necessarily bounded operator onH . We say that H is

i) self-adjoint if H = H∗.

ii) normal if H∗H = HH∗.

Definition 1.2.7 (Weak convergence)
Let (ψn) ⊂ H , ψ ∈ H be a sequence and a point in a Hilbert spaceH . We say that ψn converge
weakly to ψ, denoted ψn

w
−→ ψ, if (ψn, φ)→ (ψ, φ), for all φ ∈ H .

Definition 1.2.8 (Resolvent set and resolvent)
Let H be a densely defined closed operator, and λ ∈ C a complex number. We say that λ is from
the resolvent set of the operator H (λ ∈ ρ(H)), if H − λI is a bijection of dom(H) onH .
In other words,

ρ(H) := {λ ∈ C | ker(H − λI) = {0} ∧ Ran(H − λI) = H}.

By a resolvent of H we understand a parametric operator Rλ := (H − λI)−1, for all λ ∈ ρ(H).
14



Definition 1.2.9 (Spectrum and its classification)
Let H be a closed operator on a Hilbert space H . Then the spectrum is the complement of a
resolvent set to C, i.e. σ(H) := C\ρ(H). Furher, we introduce classification of its spectrum
σ(H) as follows:

i) Point spectrum σp(H) := {λ ∈ σ(H)| ker(λ − I) , {0}}.

ii) Continuous spectrum σc(H) := {λ ∈ σ(H)| ker(H − λI) = {0} ∧ Ran(H − λI) = H}.

iii) Residual spectrum σr(H) := {λ ∈ σ(H)| ker(H − λI) = {0} ∧ Ran(H − λI) , H}.

Nevertheless, for normal operators only point and continuous spectrum is relevant since
the residual part of it is empty. To show this, let us state and prove a short serie of technical
propositions.

Proposition 1.2.2
Let H be a densely defined closed operator onH . Then ker(H∗) = Ran(H)⊥.

Proof. Let ψ ∈ ker(H∗) be an arbitrary vector from the kernel. Then for all φ ∈ dom(H) we
have

0 = (H∗ψ, φ) = (ψ,Hφ) ,

and therefore ψ ∈ Ran(H)⊥. �

Proposition 1.2.3
Let H be a densely defined closed operator onH . If H is normal, then
λ ∈ σp(H)⇔ λ∗ ∈ σp(H∗).

Proof. λ ∈ σp(H)⇔ there is a non-zero ψ ∈ dom(H) : (H − λI)ψ = 0.
Then for all λ ∈ σp(H) we have

0 = ((H − λI)ψ, (H − λI)ψ) = ((H∗ − λ∗I)ψ, (H∗ − λ∗I)ψ) .

�

Theorem 1.2.1
Let H be a densely defined closed operator on H . If H is normal then σr(H) = ∅, i.e. its
residual spectrum is empty.

Proof. Let us consider λ ∈ σc(H) ∪ σr(H) then according to the proposition 1.2.2 it is possible
to decomposeH as a direct sum

H = ker(H∗ − λ∗I) ⊕ Ran(H − λI).

However, since λ ∈ σp(H)⇔ λ∗ ∈ σp(H∗), ker(H∗ − λ∗I) = {0}. Therefore Ran(H − λI) = H

and so λ ∈ σc(H). �
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Thus, for normal operators, only point and continuous part of the spectrum are relevant
(possibly non-empty). For normal operators, the spectrum can be characterized as

σ(H) = {λ ∈ C | ∃ (ψn)∞n=0 ⊂ dom(H), ‖ψn‖ = 1 : ‖(H − λ)ψn‖
n→∞
−−−→ 0}. (1.1)

This follows from the Weyl’s criterion [5, Důsledek 7.3.6]. However, there is another possible
classification of the spectrum, which can sometimes be more natural to express certain proper-
ties.

Definition 1.2.10 (Essential and discrete spectrum)
Let H be a densely defined closed operator on H . Then the essential spectrum of H is a set
σess(H) ⊂ C defined as

σess(H) := {λ ∈ C | ∃ non-compact (ψn)∞n=0 ⊂ dom(H), ‖ψn‖ = 1 : (H − λI)ψn → 0}.

By the discrete spectrum of H we mean σdisc(H) := σ(H)\σess(H).

It can be easily seen that σc(H) ⊂ σess(H) and so σdisc(H) ⊂ σp(H). The exact relation
between these two classifications is a subject of the following theorem.

Theorem 1.2.2 ([36])
Let H be a self-adjoint operator onH , then

σdisc(H) = {λ ∈ σp | ν(λ,H) < ∞∧ λ is isolated},

where ν(λ,H) is the multiplicity of λ as an eigenvalue of H.

Theorem 1.2.3
Let H be a self-adjoint operator onH . Then

σess(H) := {λ ∈ C | ∃ (ψn)∞n=0 ⊂ dom(H), ‖ψn‖ = 1, ψn
w
−→ 0 : (H − λI)ψn → 0}.

Proof. We will prove the equality of these two sets as two inclusions.

i) Let λ ∈ σess, then there is (ψn)∞n=0 , ‖ψn‖ = 1 : (H − λI) → 0. This means that there is
a weakly convergent subsequence

(
ψnk

)∞
n=0 ⊂ (ψn)∞n=0 such that ψnk

w
−→ ψ ∈ H and δ > 0

such that for all j, k ∈ N0 : ‖ψn j − ψnk‖ > δ.

Let us define the sequence φk :=
ψnk+1−ψnk
‖ψnk+1−ψnk ‖

, for all k ∈ N0. Then ‖φk‖ = 1, φk
w
−→ 0 and

(H − λI) φk → 0.

ii) Let λ ∈ {λ ∈ C | ∃ (ψn)∞n=0 ⊂ dom(H), ‖ψn‖ = 1, ψn
w
−→ 0 : (H − λI)ψn → 0}. We show

that (ψn)∞n=0 is non-compact due to a contradiction.

Let us assume that (ψn)∞n=0 is compact; then there would be
(
ψnk

)∞
n=0 ⊂ (ψn)∞n=0, ψnk → ψ ∈

H a convergent subsequence with ‖ψ‖ = 1 however, at the same time ψ = 0 since weak
and strong limits must merge in case they exist.

�
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The main reason we introduced the concept of the essential spectrum is the associated well-
known theorem, which gives its stability. Before that, let us introduce the concept of (relatively)
compact operators.

Definition 1.2.11 (Compact operator)
Let X,Y be Banach spaces. We say H ∈ B(X,Y) is a compact operator if the image of a
bounded set is pre-compact, i.e. its closure is compact.

Definition 1.2.12 (Relatively compact operator)
Let V,H be densely defined and the latter also closed operatorsH . We say that V is a relatively
compact operator with respect to H if VRλ(H) is a compact operator for some λ ∈ ρ(H).

However, for a given operator H it can be challenging to properly introduce a perturbed op-
erator H+V for some perturbation V since, as we outlined above, when dealing with unbounded
operators, the domains have to be taken into account. In general, there is no universal recipe
defining the perturbed operator to be self-adjoint, for example. Nevertheless, there are many
tools available if the perturbation satisfies certain additional properties, for instance pseudo-
Friedrichs extension, KLMN-theorem, or Kato-Rellich theorem. We will mention the latter one
here.

Definition 1.2.13 (Relative boundedness)
Let H and V be densely defined operators onH such that dom(H) ⊂ dom(V). We say that V is
H-bounded with H-bound a > 0 if there is b ≥ 0 such that

‖Vψ‖ ≤ a‖Hψ‖ + b‖ψ‖,

for all ψ ∈ dom(H).

Theorem 1.2.4 (Kato-Rellich [5, 7.3.14])
Let H and V be self-adjoint and symmetric operators on H , respectively. If V is H-bounded
with H-bound smaller than 1 then H + V is a self-adjoint operator on dom(H). Moreover, if H
is bounded from below, then so is H + V.

Theorem 1.2.5 (Stability of the essential spectrum [5, § 10.4])
Let H be a self-adjoint operator on H and V be a relatively compact operator with respect to
H. Then σess(H + V) = σess(H).

1.2.1 Dirichlet Laplacian
One of the most significant differential operators is Laplacian and its different variants. It is

so especially because of its application in non-relativistic quantum mechanics, where it plays a
role of a "kinetic part" of the Hamiltonian of a collection of particles in space.

In the following we will properly introduce the Dirichlet Laplacian, i.e., self-adjoint ex-
tension of the formal differential operator H̃ := −∆ on the domain dom(H̃) := C∞0 (Ω) for an
open connected set Ω ⊂ Rn with piece-wise smooth boundary. Before we move on to the ac-
tual definition we will introduce the Friedrich’s extension. A tool which allows us to construct
self-adjoint extensions of a symmetric operator satisfying certain properties through its associ-
ated sesquilinear form. Before that, let us extend the concept of closedness for forms. In the
following, all sesquilinear forms will be considered to be symmetric.
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Definition 1.2.14 (h-convergence)
Let h be a sesquilinear form on a space H bounded from below. We say that a sequence

(ψn)∞n=0 ⊂ dom(h) is h-convergent, in symbol ψn
h
−→ ψ, if

ψn
n→∞
−−−→ ψ ∧ h(ψn − ψm)

n,m→∞
−−−−−→ 0,

where we denote h(ψ) := h(ψ, ψ).

Definition 1.2.15 (Closed form)
Let h be a sesquilinear form on a spaceH bounded from below. We say that h is a closed form
if for every sequence (ψn)∞n=0 ⊂ dom(h)

ψn
h
−→ ψ⇒

(
ψ ∈ dom(h) ∧ h(ψn − ψ)

n→∞
−−−→ 0

)
.

Definition 1.2.16 (Closable form [34, Chapter VI, Theorem 1.17])
Let h be a sesquilinear form on a spaceH bounded from below. We say that h is closable if for
every sequence (ψn)∞n=0 ⊂ dom(h)

ψn
n→∞
−−−→ 0⇒ h(ψn)

n→∞
−−−→ 0.

When this condition is satisfied, h has the closure (the smallest closed extension) h defined in
the following way. The domain dom(h) is the set of all ψ ∈ H such that there exists a sequence

(ψn)∞n=0 ⊂ dom(h), ψn
h
−→ ψ, and

h(ψ, φ) = lim
n→∞

h(ψn, φn),

for any (φn)∞n=0 ⊂ dom(h), φn
h
−→ φ.

Theorem 1.2.6 ([34, Chapter VI, Theorem 1.27])
Let h be a sesquilinear form on a space H such that h is densely defined and bounded from
below. Then h is a closable map.

Theorem 1.2.7 ([34, Chapter VI, Theorem 2.1])
Let h be a sesquilinear form on a space H such that h is densely defined and bounded from
below. Then there is a unique operator H on a spaceH such that it is bounded from below and
satisfies

i) dom(H) ⊂ dom(h).

ii) for all ψ ∈ dom(H), φ ∈ dom(h) holds h(φ, ψ) = (φ,Hψ).

Definition 1.2.17 (Friedrich’s extension)
Let H̃ be an operator on H such that H̃ is densely defined and bounded from below. Let us
put h̃(φ, ψ) := (φ,Hψ) for all φ, ψ ∈ dom(H), that is, dom(h) = dom(H). Then according to
the theorem 1.2.6 there is h := h̃, a closure of h̃ and according to the theorem 1.2.7 there is a
unique operator H such that h is its induced sesquilinear form. Operator H is called Friedrich’s
extension of the given operator H̃.
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Example 1.2.1 (Definition of a Dirichlet Laplacian)
Let us consider a Hilbert spaceH := L2(Ω). We will start with a formal differential expression
defined above H̃ = −∆ with its initial domain dom(H̃) = C∞0 (Ω). Using Friedrich’s extension
we will construct a self-adjoint extension of H̃ that corresponds to a Dirichlet boundary condi-
tion, i.e. ψ(x) = 0 on ∂Ω.

For all φ, ψ ∈ dom(H̃) holds

(φ, H̃ψ) = −

∫
Ω

φ∗(x)∆ψ(x)dx = −

∫
Ω

[
∇ (φ∗(x)∇ψ(x)) − ∇φ∗(x)∇ψ(x)

]
dx =

= −

∫
∂Ω

φ∗(x)
∂ψ(x)
∂n

dS +

∫
Ω

∇φ∗(x)∇ψ(x)dx = (∇φ,∇ψ) .

At first, we construct the induced sesquilinear form of H̃

h̃ := (φ, H̃ψ) = (∇φ,∇ψ) ,

dom(h̃) := dom(H̃).

Proposition 1.2.4
Form h̃ is closable.

Proof. h̃ is closable⇔ ∀(ψn)∞n=0 ⊂ dom(h̃) : ‖ψn‖ → 0 ∧ ‖∇ψn − ∇ψm‖ → 0⇒ h̃[ψn]→ 0

Let (ψn)∞n=0 ⊂ dom(h̃) be an arbitrary sequence from the domain.

Then (∇ψn)∞n=0 ⊂ L2(Ω,Cn) := { f : Ω → Cn |
∫

Ω
| f |2 < ∞} is cauchy and therefore there is

f ∈ L2(Ω,Cn) such that ∇ψn → f in L2(Ω,Cn). Then for all φ ∈ C∞0 (Ω,Cn) we have

(φ, f ) = lim
n→∞

∫
Ω

φ∗(x)∇ψn(x)dx = lim
n→∞

∫
∂Ω

φ∗(x)ψn(x)dS − lim
n→∞

∫
Ω

div φ∗(x)ψn(x)dx =

= (− div φ, 0) = (φ, 0) .

Since C∞0 (Ω,Cn) is dense in L2(Ω,Cn) it is clear that f = 0. �

Let us denote h := h̃ the closure of h̃ with its domain dom(h) = C∞0 (Ω)
‖·‖h

= W1,2
0 (Ω).

Proposition 1.2.5
For all φ, ψ ∈ W1,2

0 (Ω) holds, h(φ, ψ) = (∇φ,∇ψ), where ∇ is a weak gradient.

Proof. Let ψ ∈ W1,2
0 (Ω) be an arbitrary one. Then there is (ψn)∞n=0 ⊂ C∞0 (Ω), f ∈ L2(Ω,Cn) such

that

lim
n→∞

ψn = ψ ∈ W1,2
0 (Ω), lim

n→∞
∇ψn = f ∈ L2(Ω,Cn).

Then for all φ ∈ C∞0 (Ω,Cn) we have

(φ, f ) = lim
n→∞

∫
Ω

φ∗(x)∇ψn(x)dx = lim
n→∞

∫
∂Ω

φ∗(x)ψn(x)dS − lim
n→∞

∫
Ω

div φ∗(x)ψn(x)dx =

= (− div φ, ψ) .
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For all i ∈ {1, · · · , n} we then have∫
Ω

φ∗i (x) fi(x)dx = −

∫
Ω

∂φ∗i (x)
∂xi

ψ(x)dx.

From the definition 1.1.2 is then f the weak gradient of the limit ψ, that is, f (x) = ∇ψ(x). From
this we already can see that for all φ, ψ ∈ W1,2

0 (Ω) : h(φ, ψ) = (∇φ,∇ψ) where ∇ is a weak
gradient. �

What remains to specify is the self-adjoint operator H and its induced sesquilinear form h.
According to the Theorem 1.2.7 such an operator exists since h is densely defined, closed, and
bounded from below. H is self-adjoint because h is a symmetric form.

Proposition 1.2.6
The self-adjoint operator H acts on its operator domain as a weak Laplacian i.e. Hψ = −∆ψ.

Proof. We already know that H exists. Let us consider ψ ∈ dom(H) then for all φ ∈ C∞0 (Ω) we
have ∫

Ω

φ∗(x)Hψ(x)dx = h(φ, ψ) =

∫
Ω

∇φ∗(x)∇ψ(x)dx = −

∫
Ω

φ∗(x)∆ψ(x)dx =

=

∫
Ω

φ∗(x)(−∆)ψ(x)dx

According to the definition 1.1.2 H acts as a negatively taken weak Laplacian, i.e.

Hψ = −∆ψ, in the weak sense

dom(H) = {ψ ∈ W1,2
0 (Ω) | ∆ψ ∈ L2(Ω)}.

�

Remark 1.2.1
For sufficiently „nice„ Ω ⊂ Rn (for instance, bounded Ω with the boundary ∂Ω ∈ C2) holds

{ψ ∈ W1,2
0 (Ω) | ∆ψ ∈ L2(Ω)} = W1,2

0 (Ω) ∩W2,2(Ω).

Furthermore, for Ω := Rn holds W1,2
0 (Ω) = W1,2(Ω), for all n ∈ N. See [36] for the proof.

Lemma 1.2.1 ([36])
For all n ≥ 2 holds W1,2

0 (Rn\{0}) = W1,2
0 (Rn).

Theorem 1.2.8 (Hardy inequality)
Let n ≥ 3. Then, for every ψ ∈ W1,2(Rn) the following holds∫

Rn
|∇ψ(x)|2 dx ≥

(n − 2)2

4

∫
Rn

|ψ(x)|2

|x|2
dx.
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Proof. Let a ∈ R be a not yet specified real number. Then for every ψ ∈ C∞0 (Rn\{0}) we have∫
Rn

∣∣∣∣∣∇ψ(x) − a
x
|x|2

ψ(x)
∣∣∣∣∣2 dx =

∫
Rn
|∇ψ(x)|2 dx + a2

∫
Rn

|ψ(x)|2

|x|2
dx

− 2a
∫
Rn

x
|x|2

Re(ψ∗(x)∇ψ(x)) dx

=

∫
Rn
|∇ψ(x)|2 + a2

∫
Rn

|ψ(x)|2

|x|2
dx − a

∫
Rn

x
|x|2
∇|ψ(x)|2 dx

=

∫
Rn
|∇ψ(x)|2 + a2

∫
Rn

|ψ(x)|2

|x|2
dx + a

∫
Rn

div
x
|x|2
|ψ(x)|2 dx

=

∫
Rn
|∇ψ(x)|2 +

[
a2 + a (n − 2)

] ∫
Rn

|ψ(x)|2

|x|2
dx ≥ 0.

With the notation p(a) := −a2 − a(n − 2) we have for all a ∈ R and all ψ ∈ C∞0 (Rn\{0})∫
Rn
|∇ψ(x)|2 dx ≥ p(a)

∫
Rn

|ψ(x)|2

|x|2
dx, (1.2)

where for a0 := −n−2
2 the inequality (1.2) is optimal with p(a0) =

(n−2)2

4 .
Now, let us consider an arbitrary function ψ ∈ W1,2(Rn), then according to theorems 1.1.2,

1.1.3 and lemma 1.2.1, there is a sequence (ψn)∞n=0 ⊂ C∞0 (Rn\{0}) such that ψn → ψ in W1,2(Rn)
and therefore also in L2(Rn). The latter means that there is a subsequence

(
ψnk

)∞
k=0 ⊂ (ψn)∞n=0

such that ψnk → ψ almost everywhere in Rn. Then, from Fatou-Lebesgue theorem we have∫
Rn

|ψ(x)|2

|x|2
dx =

∫
Rn

lim
k→∞

|ψnk(x)|2

|x|2
dx =

∫
Rn

lim inf
k→∞

|ψnk(x)|2

|x|2
dx ≤ lim inf

k→∞

∫
Rn

|ψnk(x)|2

|x|2
dx

≤ lim inf
k→∞

4
(n − 2)2

∫
Rn
|∇ψnk(x)|2 dx ≤

4
(n − 2)2

∫
Rn
|∇ψ(x)|2 dx.

In the proof we used the following identity∫
Rn

x
|x|2
∇|ψ(x)|2 dx = −

∫
Rn

div
x
|x|2
|ψ(x)|2 dx +

∫
Rn

div
(

x
|x|2
|ψ(x)|2

)
dx

and omitted the last term from the divergence theorem:∫
Rn

div
(

x
|x|2
|ψ(x)|2

)
dx = lim

r→+∞

∫
∂B(0,r)

m · x
|x|2
|ψ(x)|2 dS

= lim
r→+∞

−
1
r

∫
∂B(0,r)

|ψ(x)|2 dS

= lim
r→+∞

−rn−2
∫

Ω

|ψ(r,Θ)|2 dΘ = 0,

where m is a unit vector poiting in the direction of −x, that is, m · x = −|x| = −r. The limit
follows from the fact that ψ ∈ C∞0 (Rn\{0}) and therefore has compact support. Moreover, since
zero is excluded from its domain, the compactness of the support ensures that ψ is null also on
a certain neighbourhood of the origin in Rn and so the integrals are finite. �
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Remark 1.2.2 (Optimality of the Hardy inequality, [36])
The Hardy inequality is

i) never achieved:
for all ψ ∈ W1,2(Rn)\{0} :

∫
Rn |∇ψ(x)|2 dx > (n−2)2

4

∫
Rn
|ψ(x)|2

|x|2 dx.

ii) sharp:

there is a sequence (ψn)∞k=0 ⊂ W1,2(Rn) such that lim
k→∞

∫
Rn |∇ψk(x)|2 dx∫
Rn
|ψk (x)|2

|x|2
dx

=
(n−2)2

4 .

Definition 1.2.18 ((Sub)critical operator)
We say that H, an operator on L2(Ω) bounded from below, is subcritical if there is a Hardy
inequality, that is, if there exists ρ : Ω→ [0,+∞) ∈ L1

loc(Ω) such that for all ψ ∈ dom(h) holds

h(ψ) − E1‖ψ‖
2 ≥

∫
Ω

ρ(x)|ψ(x)|2dx,

where h is the associated sesquilinear form and E1 := inf σ(H).
We say that H is a critical operator if it is not subcritical.

Theorem 1.2.9 (Spectrum of Dirichlet Laplacian)
For all n ∈ N holds σ(−∆R

n

D ) = [0,+∞).

Proof. We will take advantage of the characterization of the spectrum by (1.1). We will con-
struct approximate eigenfunctions using the plane waves eiλx, the formal solution of the eigen-
problem (

−∆ + |λ|2
)
ψ = 0.

At first, we construct a support function that ensures the convergence.
Let φ ∈ C∞0 (Rn) be a test function such that ‖φ‖ = 1. Then we define a sequence (φk)∞k=0 as

φk(x) := φ
( x
k

)
k−

n
k , (1.3)

for all k ∈ N. For this sequence holds the following

• ‖φk‖
2 = 1

kn

∫
Rn

∣∣∣∣φ (
x
k

)∣∣∣∣2 dx =
∫
Rn |φ(y)|2dy = 1,

• ‖∇φk‖
2 = 1

kn
1
k2

∫
Rn

∣∣∣∣φ (
x
k

)∣∣∣∣2 dx = 1
k2 ‖∇φ‖

2,

• ‖∆φk‖
2 = 1

k4 ‖∆φ‖
2.

For a given λ ∈ Rn we define the approximate function ψk(x) as

ψk(x) := φk(x)eiλx ∈ dom(−∆R
n

D ).

It is clear that the norm is being preserved, i.e. ‖ψk‖
2 = ‖φk‖

2 = 1 and by a straightforward
calculation we have for all k ∈ N

∆ψk(x) =
[
∆φk(x) + 2iλ∇φ(x) − |λ|2

]
eiλx
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and therefore ∥∥∥∥(−∆ − |λ|2
)
ψk

∥∥∥∥ ≤ ‖∆φk‖ + 2|λ| ‖∇φk‖
k→∞
−−−→ 0.

�

Theorem 1.2.10 (Rellich, [40])
For all n ∈ N holds σp(−∆R

n

D ) = ∅

Combining the two last theorems, we conclude that for all n ∈ N we have

σ(−∆R
n

D ) = σc(−∆R
n

D ) = σess(−∆R
n

D ) = [0,+∞). (1.4)

1.3 The Birman-Schwinger principle
The last section of this chapter is devoted to the famous Birman-Schwinger principle and the

proper definition of the perturbed operator H + V with a given self-adjoint operator H. One of
the most advantegeous aspects of Birman-Schwinger principle is its applicability to both self-
adjoint and non-self-adjoint perturbations. Therefore, the Birman-Schwinger principle will be
the cornerstone of the future investigation of the stability of the studied model.

Most of the results in this section are due to the work of Hansmann and Krejčiřík [28] to
which we refer for a more detailed study of the present material. Before we step to the Birman-
Schwinger principle itself, let us introduce several technical concepts.

For a given perturbation V , we define B :=
√
|V |U∗ and A :=

√
|V |, where U is an operator

which maps |V | onto V , that is, V = U |V |. Such an operator is called a polar decomposition of
V and always exists. Its properties are summarized below.

Definition 1.3.1 (Partial isometry)
We say that a bounded operator U is a partial isometry if there is a closed subspace V = V ⊂ H
such that

i) ‖Ux‖ = ‖x‖, for all x ∈ V,

ii) Ux = 0, for all x ∈ V⊥.

Now, we will construct one. Let H be a densely defined closed operator onH . Consider the
symmetric form h(ψ, φ) := (Hψ,Hφ). Obviously h is densely defined and non-negative. In the
spirit of the Theorem 1.2.7 we denote by Th its associated operator. Since

(Hψ,Hφ) = (ψ,Thφ)

for all ψ ∈ dom(Th) and φ ∈ dom(h) = dom(H), it follows that Th ⊂ H∗H. However, since
H∗H is clearly symmetric and Th is self-adjoint, we must have Th = H∗H. Further, let us denote
G = H

1
2 . Then we have

(Hψ,Hφ) = (Gψ,Gφ) , and ‖Hψ‖ = ‖Gψ‖, (1.5)

for ψ, φ ∈ dom(H) = dom(G). This follows from the representation theorem proved by Kato, to
which we refer for more details.
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Theorem 1.3.1 (Representation theorem, [34, Chapter VI, Theorem 2.23])
Let h be a dendesly defined closed symmetric form, h ≥ 0, and let H = Th be the associated
self-adjoint operator by the Theorem 1.2.7. Then we have dom(H

1
2 ) = dom(h) and

h(ψ, φ) =
(
H

1
2ψ,H

1
2φ

)
,

for all ψ, φ ∈ dom(h).

From 1.5 we can see that the assignment Gψ → Hψ defines an isometric mapping U of
Ran(G) onto Ran(H) as Hψ = UGψ. By continuity U can be extended to an isometric operator
on Ran(G) onto Ran(H) and by setting Uψ := 0 for ψ ∈ Ran(G)⊥ = ker(G) we can extend U to
the whole spaceH which acts like

H = U
√

H∗H and dom(H) = dom(
√

H∗H).

Such U is called the polar decomposition of H.

Definition 1.3.2 (Birman-Schwinger operator)
Let H be a self-adjoint operator on H and A : dom(A) ⊂ H → H̃ , B : dom(B) ⊂ H → H̃
linear maps satisfying

i) dom(|H|
1
2 ) ⊂ dom(A) ∩ dom(B)

ii) For some (and therefore for all) b > 0 are A(|H| + b)−
1
2 , B(|H| + b)−

1
2 bounded operators.

Then we define the Birman-Schwinger operator for every z ∈ ρ(Dα) as

K(z) :=
(
AG−

1
2
) (

G (H − z)−1
) (

BG−
1
2
)∗
,

with G := |H| + 1.

Theorem 1.3.2 (Hansmann, Krejcirik [28, Theorem 5])
Let K(z) be the Birman-Schwinger operator corresponding to the self-adjoint operator H and let
−1 < σ(K(z0)) for some z0 ∈ ρ(Dα). Then there is a unique closed extension HV of H̃V := H + V
such that dom(HV) ⊂ dom(|H|

1
2 ) and the following representation formula holds true

(φ,HVψ) := (G
1
2φ, (HG−1 + [BG−

1
2 ]∗AG−

1
2 )G

1
2ψ),

for φ ∈ dom(|H|) and ψ ∈ dom(HV).

The extension HV is obtained via the pseudo-Friedrichs extension [34, Chapter VI, Thm.
3.11]. Finally we are now ready to announce the Birman-Schwinger principle as we will need
it it the following chapter.

24



Theorem 1.3.3 (Birman-Schwinger principle)
Let K(z) be the Birman-Schwinger operator corresponding to the self-adjoint operator H and
let the following condition be satisfied:

∃c < 1 such that sup
z∈ρ(H0)

‖K(z)‖ ≤ c.

Then the following holds:

i) σ(H) = σ(HV)

ii)
[
σp(HV) ∪ σr(HV)

]
⊂ σp(H) and σc(H) ⊂ σc(HV)

In particular, if σ(H) = σc(H), then σ(HV) = σc(HV) = σc(H).

For the proof, we refer to [28, Theorem 3]. In the paper, the authors provide even finer ver-
sion of the Birman-Schwinger principle regarding localization of the spectrum of the perturbed
operator HV . In its other versions, it can also be used for an investigation of the other parts of
the spectrum, i.e. continuous and residual one. For our purposes, this theorem is enough.
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Chapter 2

Stability of the spectrum

In this chapter we would like to introduce the reader to the study of spectral stability, its
historical background, and its development. At first we start with a brief physical motivation and
then deliver an overview of the results made for Schrödinger operators in this branch. Finally,
we motivate study of our model by a concise discussion of relativistic quantum mechanics and
its mathematical description.The content of this chapter is inspired by [5, 36, 1, 42, 26, 44, 33,
38].

2.1 Stability of Schrödinger operators
According to classical physics, electrons in atoms would have collapsed into the nucleus in

a matter of nanoseconds [33, 36] which is in direct contradiction to our experience. This phe-
nomenon is known as the problem of the stability of matter. Let us demonstrate the (in)stability
on a Hydrogen atom. For more details, see [33, 38, 36].

Classical physics
From the point of view of the classical physics, atoms are described via so-called Bohr’s

planetary model - a point-wise charged center of mass orbited by electrons on eliptical paths.
Specifically for the Hydrogen atom the Hamiltonian of the system is

H(p, x) =
p2

2m
−

e2

|x|
,

where (p, x) are the coordinates in the phase space R3 × R3 corresponding to the system. The
instability here means the unboundedness of the Hamiltonian from below, i.e.

inf
R3×R3

H(p, x) = −∞. (2.1)

As the electron orbits the nucleus it loses its kinetic energy by radiation and will eventually fall
into the nucleus, which corresponds to the negative infinite energy (2.1). In other words - there
is no long-term stable orbit.
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Quantum physics
On the other hand, while we turn to the (non-relativistic) quantum-mechanical description

via the correspondence principle, the Hamiltonian (as an operator on the Hilbert phase space
H = L2(R3) reads

H = −
~2

2m
∆R

n

D −
e2

|x|
.

In this setting, there is no reachable physical interpretation in terms of particles orbiting certain
area. However, we know how to quantify the stability through the energy in the same way as
we did in the classical setting. The infimum of the energy is E1, the lowest eigenvalue of the
Hamiltonian H [38]:

E1 := inf
ψ∈dom(H)

(ψ,Hψ)
‖ψ‖2

,

which is finite. Indeed, for every ψ ∈ dom(H) :=
{
φ ∈ dom

(
−∆R

n

D

)
|

∥∥∥∥ 1
|x|φ

∥∥∥∥ < ∞
}
, ‖ψ‖ = 1 and

r > 0 we have

(ψ,Hψ) = −
~2

2m

∫
R3
|∇ψ(x)| dx − e2

∫
B(0,r)

|ψ(x)|2

|x|
dx − e2

∫
R3\B(0,r)

|ψ(x)|2

|x|
dx (2.2)

≥ −
~2

2m

∫
R3
|∇ψ(x)| dx − e2r

∫
B(0,r)

|ψ(x)|2

|x|2
dx −

e2

r

∫
R3\B(0,r)

|ψ(x)|2

|x|2
dx (2.3)

≥ −
~2

2m

∫
R3
|∇ψ(x)| dx − e2r

∫
R3

|ψ(x)|2

|x|2
dx −

e2

r

∫
R3
|ψ(x)|2 dx (2.4)

≥

(
~2

2m
− 4e2r

) ∫
R3
|∇ψ(x)| dx −

e2

r

∫
R3
|ψ(x)| dx. (2.5)

For the special choice r := ~2

8me2 we obtain the inequality

(ψ,Hψ) ≥ −
8me2

~2 , for all ψ ∈ dom(H). (2.6)

Where in (2.4) we estimated the middle term by the Hardy inequality. It is remarkable that
the estimate (2.6) is very close to the real value of E1 = −me2

2~2 calculated in terms of special
functions [26]. However, the Hardy inequality is a much more powerful tool and can be used to
prove the spectral stability of the Laplacian in dimensions n ≥ 3.
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2.1.1 Stability of Rn for n ≥ 3

Throughout this section, we will work over the Euclidean spaces and so for n ≥ 3 we will
denoteH := L2(Rn) the Hilbert space and Hn := −∆R

n

D will be the Dirichlet Laplacian onH .

Consider V : Rn → (−∞, 0] ∈ L1
loc(R

n), a real-valued multiplication operator on H , a
potential physically speaking. Furthermore, we assume that V is relatively compact with respect
to Hn that is Hn-bounded with Hn-bound smaller than 1. Then, since V is real-valued and
therefore symmetric, Hn + V is self-adjoint on dom(Hn) from Kato-Rellich - theorem 1.2.4.
Due to the relative compactness, we have according to theorem 1.2.5 stability of the essential
spectrum

σess(Hn + V) = σess(Hn) = σ(Hn) = [0,+∞). (2.7)

In addition, in the sense of forms, we have the following inequality

(φ, (Hn + V) φ) = (φ,Hnφ) + (φ,Vφ)

≥ (φ,
(n − 2)2

4|x|2
φ) + (φ,Vφ)

=

(
φ,

[
(n − 2)2

4|x|2
+ V

]
φ

)
!
≥ 0,

for all φ ∈ dom(Hn). Thus, we conclude that if 0 ≥ V ≥ − (n−2)2

4|x|2 then Hn + V ≥ 0 and therefore
σ(Hn + V) ⊂ [0,+∞). Together with the fact (2.7) we have the stability of the spectrum of the
perturbed operator

σ(Hn + V) = σess(Hn + V) = σ(Hn) = [0,+∞).

This particular result can be summarized in the following theorem.

Theorem 2.1.1
Let n ≥ 3 and V : Rn → (−∞, 0] ∈ L1

loc(R
n) a real-valued multiplication operator such that

V (Hn − λ)−1 is a compact operator for some λ ∈ ρ(Hn) and it is Hn-bounded with Hn-bound
smaller than 1. Then σ(Hn + V) = σess(Hn + V) = σ(Hn) = [0,+∞) whenever 0 ≥ V ≥ − (n−2)2

4|x|2 .

Roughly speaking, we have V : Rn → R „small enough„ then σ(Hn + V) = σ(Hn). This
gives rise to the natural question whether this result could be generalized to complex-valued
potentials. Multiplication operator associated with V : Rn → C is no longer possible to compare
with the Hardy potenial − (n−2)2

4|x|2 . It is obvious that another much more subtle tool has to be used.
As we already outlined in the previous chapter, the proper tool here is the Birman-Schwinger
principle. It was proven by Rupert L. Frank in 2011 that there is a uniform condition for, in
general complex valued, potential V such that the spectrum of the perturbed operator Hn + V is
preserved whenever the condition is met.

Theorem 2.1.2 (R.L. Frank, [23])
Let n ≥ 3, then there is cn > 0 such that

σp(Hn + V) ∩ ρ(Hn) = ∅,

whenever ‖V‖Ln/2(Rn) < cn.
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In other words, the perturbed operator Hn + V has no eigenvalue in C\[0,+∞). The proof
is based on the Birman-Schwinger principle and the explicit knowledge of the corresponding
resolvent kernel.

Another result reached with different methods was achieved by Fanelli, Krejčiřík and Vega
in 2018. Their approach was based on extending the method of multipliers developed for self-
adjoint operators in [3].

Theorem 2.1.3 (Fanelli, Krejčiřík, Vega, [22])
Let n ≥ 3, then σp(Hn + V) = ∅ whenever

∃b <
n − 2

5n − 8
: b2

∫
Rn
|∇ψ|2 ≥

∫
Rn
|x|2|V |2|ψ|2.

So far we have been discussing the spectral stability of Hn in dimensions three or more. One
may ask whether there are analogous results in the low dimensions and if it is possible to extend
the Hardy inequality for the low dimensions. This is the subject of the following section.

2.1.2 Instability of Rn for low dimensions
The existence of a Hardy inequality for Hn in low dimensions is equivalent to the subritical-

ity of Hn. Let us first answer this question.

Theorem 2.1.4 (Subcriticality of Hn)
The operator Hn acting onH is subcritical if and only if n ≥ 3.

Proof. The implication ⇐ is already proven by the Hardy inequality 1.2.8. What remains is
to prove the other one. We shall proceed so in contradiction. We will show that for every
ρ ∈ L1

loc(R
n)\{0}, ρ ≥ 0 holds

inf
ψ∈W1,2(Rn)\{0}

(∫
Rn
|∇ψ(x)|2 dx −

∫
Rn
ρ(x)|ψ(x)|2 dx

)
︸                                           ︷︷                                           ︸

Q(ψ)

< 0.

Formally, by taking ψ(x) = 1 we have Q(1) = −
∫
Rn ρ(x) dx < 0. Even though we cannot

consider constant function, we can aproximate it. We will construct a sequence
(ψn)∞n=1 ⊂ W1,2(Rn) such that

• ψn(x)
n→∞
−−−→ 1, for all x ∈ Rn,

• ‖∇ψ(x)‖
n→∞
−−−→ 0.

We set

ψ(x) =


1, if n > r,
ln(n2)−ln(r)

ln(n2)−ln(n)
, if n < r < n2,

0 otherwise,

for all n ∈ N,

where r := |x|. It is clear that the point-wise limit of (ψn)∞n=1 is 1 (as a constant function). Let us
now verify the other necessary properties.
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n = 1:

• ψn ∈ W1,2(R): For all n ∈ N we have

‖ψn‖
2 =

∫ n

−n
1 dx + 2

∫ n2

n

ln2( n2

x )

ln2(n)
dx ≤ 2n2 < ∞,

where we estimated ln2( n2
x )

ln2(n)
≤ 1 for all n < x < n2.

• ‖ψ′‖
n→∞
−−−→ 0: For all n ∈ N we have

‖ψ′‖2 =
2

ln2(n)

∫ n2

n

1
x2 dx =

2
ln2(n)

(
1
n2 −

1
n

)
n→∞
−−−→ 0.

n = 2:

• ψn ∈ W1,2(R2): For all n ∈ N we have

‖ψn‖
2 =

∫
B(0,n)

1 dxdy +

∫
n<r<n2

ln2(n2

r )

ln2(n)
dxdy ≤ πn4,

where we estimated ln2( n2
r )

ln2(n)
≤ 1 for all n < r < n2 the same as we did above in the case

n = 1.

• ‖∇ψ‖
n→∞
−−−→ 0: For all n ∈ N we have

‖∇ψ‖2 =
1

ln2(n)

∫
n<r<n2

1
r2 dx =

2π
ln2(n)

∫ n2

n

1
r

dx =
2π

ln(n)
n→∞
−−−→ 0.

�

The theorem 2.1.4 finally closes the question of how it is with an analogue of the Hardy
inequality in the lower dimensions; there is none. Nevertheless, as we will show further, this
obstactle can be overcome by considering the half-space instead. That is, a half-line for dimen-
sion one and a half-plane for dimension two.

Theorem 2.1.5 (Half-line Hardy inequality)
For all ψ ∈ W1,2

0 (R+) holds ∫
R+

|ψ(x)|2dx ≥
1
4

∫
R+

|ψ(x)|2

x2 dx.
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Proof. Analogically as in the proof of the Hardy inequality for n ≥ 3 (1.2.8), for all ψ ∈
W1,2

0 (R+) and α ∈ R we have∫
R+

∣∣∣∣∣ψ(x)′ − a
ψ(x)

x

∣∣∣∣∣2 dx =

∫
R+

|ψ(x)′|2 dx − 2a
∫
R+

ψ(x)′
ψ∗(x)

x
dx + a2

∫
R+

|ψ(x)|2

x2 dx (2.8)

=

∫
R+

|ψ(x)′|2 dx − a
∫
R+

(
|ψ(x)|2

)′
x

dx + a2
∫
R+

|ψ(x)|2

x2 dx (2.9)

=

∫
R+

|ψ(x)′|2 dx + a
∫
R+

|ψ(x)|2

x2 dx + a2
∫
R+

|ψ(x)|2

x2 dx (2.10)

=

∫
R+

|ψ(x)′|2 dx +
[
a + a2

] ∫
R+

|ψ(x)|2

x2 dx ≥ 0. (2.11)

If we denote p(a) := −a − a2, the coeffient which stands in front of
∫
R+

|ψ(x)|2

|x|2 dx and find its
maximum that is achieved for a := −1

2 we arrive with the claimed statement. �

Remark 2.1.1
In (2.10) we omit the second part of the integration by parts from the trace theorem [43].

From the historical point of view, the half-line Hardy inequality was the original one proven
by G.H. Hardy in 1920 [29] from which the higher-dimensional ones (for n ≥ 3) can be derived
by integration in spherical coordinates. However, it can be also used to prove the half-plane
Hardy inequality, as we will see in the following.

Theorem 2.1.6 (Half-plane Hardy inequality)
For all ψ ∈ W1,2(R) ⊗W1,2

0 (R+) holds∫
R×R+

|∇ψ(x, y)|2 dxdy ≥
1
4

∫
R×R+

|ψ(x, y)|2

y2 dxdy.

Proof. For a given function φ ∈ W1,2(R) ⊗W1,2
0 (R+) we have∫

R×R+

|∇ψ(x, y)|2 dxdy =

∫
R×R+

(∣∣∣∣∣∂ψ(x, y)
∂x

∣∣∣∣∣2 +

∣∣∣∣∣∂ψ(x, y)
∂y

∣∣∣∣∣2) dxdy ≥
1
4

∫
R×R+

|ψ(x, y)|2

y2 dxdy,

where we used the half-line Hardy inequality and criticality of the Laplacian on the whole
line. �

Having the Hardy inequality for half-spaces and being inspired by the construction of the
Theorem 2.1.1 in dimensions n ≥ 3 we can easily extend the idea for the half-line, resp. half-
plane as follows.

Theorem 2.1.7
Let V : R+ → (−∞, 0] ∈ L1

loc(R+) be a real valued multiplication operator such that V(H1−λ)−1

is a compact operator for some λ ∈ ρ(H1) and it is H1-bounded with H1-bound smaller than 1.
Then σ(H1 + V) = σess(H1 + V) = σ(H1) = [0,+∞) whenever 0 ≥ V ≥ − 1

4x2 .
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Theorem 2.1.8
Let V : R × R+ → (−∞, 0] ∈ L1

loc(R × R+) be a real-valued multiplication operator such that
V(H2 − λ)−1 is a compact operator for some λ ∈ ρ(H2) and it is H2-bounded with H2-bound
smaller than 1. Then σ(H2 + V) = σess(H2 + V) = σ(H2) = [0,+∞) whenever 0 ≥ V ≥ − 1

4y2 .

Of course, as in the case of higher dimensions, the natural question is if there is also a sta-
bility for general complex-valued potentials. It was proven by Krejčiřík, Laptev and Štampach
in 2022 that the answer for the half-line is yes and it is summarized in the following theorem.

Theorem 2.1.9 (Krejčiřík, Laptev, Štampach [37])
Given by α ∈ R let Hα be a Laplacian on L2(R+) subjected to the Robin boundary condition
ψ′(0) = αψ(0) and V : R+ → C complex valued potential.
Then σ(Hα + V) = σc(Hα + V) = σ(Hα) = [0,+∞) whenever

∫ ∞
0
|V(x)|

[
1 +

(
α−1 + x2

)]
dx < 1.

We remark that the Theorem 2.1.9 extends the Theorem 2.1.7 not only by complex-valued
potentials but also allows general Robin boundary condition.

2.2 Relativistic quantum mechanics
Recently, the study of the mathematical aspects of the relativistic quantum mechanics is en-

joying great popularity worldwide; see for example [11, 20, 14, 17, 41, 9, 11, 10]. In relativistic
quantum mechanics the system is described by a Dirac operator instead of the Schödinger op-
erator in non-relativistic setting [44]. Many results made in a non-relativistic setting opens a
question whether there is a correspondence when one moves to the relativistic mode and the
non-trivial matrix structure of the Dirac operators brings new challenges in mathematics in
general.

Let us properly introduce the n-dimensional Dirac operator. Given by n ∈ N and m > 0 the
Dirac operator in Rn reads

Dn,m := −i
n∑

k=1

∂k ⊗ αk + m ⊗ α0,

dom(Dn,m) := W1,2(Rn,CN).

Whereby N := 2d
n
2 e and αi ∈ C

N,N are elements of the Clifford algebra satisfying the anti-
commutation relations

{αi, α j} = 2δi jI, for i, j ∈ {0, . . . , n}.

It can be shown thatDn,m is self-adjoint on W1,2(Rn,CN) [44].
The very intuitive question in our context is whether there is an analogy between Laplacian

and Dirac operators in regard to stability of their spectra. It was proven by Krejřiřík, D’Ancona,
Fanelli and Schiavone in 2022 that in dimensions n ≥ 3 there is a correspondence.

Theorem 2.2.1 (Krejčiřík, D’Ancona, Fanelli, Schiavone, [13])
Let n ≥ 3 then there are positive constants ε and γ such that if

‖(|x|
1
2−ε + |x|)2V‖∞ < γ,

then σ(Dn,m + V) = σ(Dn,m) = (−∞,−m] ∪ [m,+∞).
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The authors proved that the spectrum of a Dirac operator defined over the Euclidean space
is stable under small perturbations if the dimension is greater than two and conjectured that it
is not possible in dimensions two and one. The question of how is it with the stability for the
half-line is subject of this thesis and is answered in the next, last chapter. Our goal is to find a
stability theorem for half-line the Dirac operator corresponding with the result [37, Remark 21]
made for a half-line Laplacian.
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Chapter 3

ModelDα

From now on we shall consider Hilbert space H := L2(R+,C
2). The standard norm and

inner product on H will be denoted as ‖·‖ and (·, ·), respectively. The latter will be assumed to
be antilinear in its first argument.

Given by real parameters α ∈ (0, π2 ) and m ≥ 0 we consider a Dirac operator acting onH as

Dα := −i
d
dx
⊗ σ2 + m ⊗ σ3,

with its operator domain

dom(Dα) :=
{(
φ1

φ2

)
∈ W1,2(R+,C

2) | φ1(0) cot(α) = φ2(0)
}
,

where

σ1 :=
(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
are Pauli matrices. We remark that α := π

4 corresponds to the so-called infinity-mass boundary
condition introduced in [4], sometimes also referred to as the MIT boundary condition [2].

Half-line Dirac operators with various boundary conditions have already been studied from
several aspects (see [27, 35, 20]). Especially, we refer to [9] where perturbed Dirac operators
with the same boundary conditions were studied but from a different point of view. The author
set estimates for non-embedded eigenvalues ofDα perturbed by a matrix-valued (not necessarily
self-adjoint) potential.

Self-adjointness
Regarding the Birman-Schwinger principle, we draw primarly from the work of Hansmann

and Krejčiřík [28], whose results are stated for self-adjoint operators. We show that, indeed for
all α ∈ (0, π2 ) the operator Dα is self-adjoint. As we discussed above in the first chapter, the
corresponding adjoint operator is by the definition

dom(D∗α) =

{(
ψ1

ψ2

)
∈ L2(R+,C

2) | ∃
(
η1

η2

)
: ∀

(
φ1

φ2

)
∈ dom(Dα) : (η, φ) = (ψ,Dαφ)

}
,

D∗αψ : = η.

34



Without loss of generality, we will prove self-adjointness only for the case m = 0 since the term
m ⊗ σ3 can be viewed as a bounded self-adjoint perturbation. Let us denote (·, ·)2 the standard
inner product on C2 being antilinear in its first argument. We will show that Dα ⊂ D

∗
α and

dom(D∗α) ⊂ dom(Dα). Let us start with the first. For all ψ, φ ∈ dom(Dα) we have

(ψ,Dαφ) =
(
ψ,−iσ2φ

′) =

∫
R+

(ψ(x),Dαφ(x))2 dx

=

∫
R+

(
−ψ∗1(x)φ′2 + ψ∗2(x)φ1(x)

)
dx

=
[
−ψ∗1φ2 + ψ∗2φ1(x)

]∞
0 +

∫
R+

(
−ψ∗2

′(x)φ1(x) + ψ∗1
′φ2(x)

)
dx

= ψ∗1(0)φ2(0) − ψ∗2(0)φ1(0) +
(
−iσ2ψ

′, φ
)

=
[
ψ1(0) cot(α) − ψ2(0)

]∗ φ1(0) +
(
−iσ2ψ

′, φ
)

= (Dαψ, φ) .

On the other hand, let ψ ∈ dom(D∗α) be an arbitrary function from the domain of the adjoint.
This means that there is η ∈ L2(R+,C

2) such that for all φ ∈ dom(Dα) we have (η, φ) = (ψ,Dαφ),
i.e. ∫

R+

(
η∗1(x)φ1(x) + η∗2φ2(x)

)
dx =

∫
R+

(
−ψ∗1(x)φ′2(x) + ψ∗2φ

′
1(x)

)
dx. (3.1)

Since (3.1) holds for all φ ∈ dom(Dα) it holds for the special choice φ1 = 0, resp. φ2 = 0. This
implies that ∫

R+

η∗1(x)φ1(x)dx =

∫
R+

ψ∗2(x)φ′1(x)dx,∫
R+

η∗2(x)φ2(x)dx =

∫
R+

−ψ∗1(x)φ′2(x)dx,

for all φ1, φ2 ∈ W1,2
0 (R+,C

2) and therefore for all φ1, φ2 ∈ C∞0 (R+,C
2). From the definition 1.1.2

is then η = −iσ2ψ
′ in the weak sense, and hence ψ ∈ W1,2(R+,C

2). Integrating by parts, one
finds out that ψ1(0) cot(α) = ψ2(0) and thus ψ ∈ dom(Dα). Moreover, it can be shown [46] that
the spectrum of the „free„ Dirac operatorsDα is

σ(Dα) = σc(Dα) = (−∞,−m] ∪ [m,+∞).

3.1 Resolvent (Dα − z)−1

Since the Birman-Schwinger operator is constructed from the resolvent of the unperturbed
operator, explicit knowledge of the resolvent (Dα − z)−1 will be absolutely essential. We now
derive the resolvent by the method of images from the whole-line resolvent.
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Whole-line resolvent
Let us consider the whole-line Dirac operatorD defined as

D := −i
d
dx
⊗ σ2 + m ⊗ σ3,

dom(D) := W1,2(R,C2).

Observing that

(D− z) (D + z) φ =
(
−∆RD − z2 + m2

)
φ, (3.2)

for all φ ∈ dom
(
(−∆RD − z2 + m2) ⊗ 1

)
= W2,2(R,C2) we can write for all values of the resolvent

parameter z ∈ ρ(D) = (−∞,−m] ∪ [m,+∞) (see [44])

(D− z)−1 φ = (D + z)
(
−∆RD − z2 + m2

)−1
φ

=

∫
R

(D + z)G(x, y; z2 − m2)φ(y)dy

=:
∫
R

R(x, y; z)φ(y)dy,

where [28]G(x, y; z) = i exp(i
√

z |x−y|)
2
√

z and
√

z is chosen such that Im(z) > 0. By a straight-forward
calculation we have the whole-line Dirac resolvent kernel in the form

R(x, y; z) =
1
2

(
ζ(z) sgn(x − y)

−sgn(x − y) ζ−1(z)

)
exp(ik(z)|x − y|), (3.3)

with k(z) :=
√

z2 − m2 and ζ(z) := z+m
k(z) .

Half-line resolvent
We now derive the half-line Dirac resolvent using the knowledge of the resolvent of the

Dirac operator on the whole line by embedding L2(R+,C
2) into L2(R,C2) as follows.

Let φ ∈ L2(R+,C
2) be a function on the half-line and A := diag(µ1, µ2) ∈ C2,2 be a diagonal

matrix. For every such φ we define φA(x) := φ(|x|)Θ(x) +Aφ(|x|)Θ(−x) ∈ L2(R,C2).
For all φ ∈ L2(R+,C) we then have(

(D− z)−1 φA
)

(x) =

∫
R

R(x, y; z)φA(y)dy =

∫ ∞

0
(R(x, y; z) + R(x,−y; z)A) φ(y)dy =

(
ξ1(x)
ξ2(x)

)
.

For every such φ we demand the boundary condition of the image to be met:

ξ1(0) cot(α) !
= ξ2(0).

This gives us the following equation.∫ ∞

0
[ (R11(0, y; z) + µ1R11(0,−y; z)) cot(α) − R21(0, y; z) − µ1R21(0,−y; z)] φ1(y)dy

=

∫ ∞

0
[R22(0, y; z) + µ2R22(0,−y; z) − (R12(0, y; z) + µ2R12(0,−y; z)) cot(α)] φ2(y)dy.
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Since this equation has to be satisfied for every φ ∈ L2(R+,C
2), for the special choice φ1 = 0,

resp. φ2 = 0 it breaks down into two independent conditions

(R11(0, y; z) + µ1R11(0,−y; z)) cot(α) = R21(0, y; z) + µ1R21(0,−y; z),
(R12(0, y; z) + µ2R12(0,−y; z)) cot(α) = R22(0, y; z) + µ2R22(0,−y; z),

for all y ∈ R+. From the expression 3.3 we obtain a unique solution for µ1, µ2 and the matrix A
reads

A =

(
1 0
0 −1

)
1 − iζ(z) cot(α)
1 + iζ(z) cot(α)

= σ3
1 − iζ(z) cot(α)
1 + iζ(z) cot(α)

.

The resolvent kernel of the resolvent (Dα − z)−1 is then given as

Rα(x, y; z) = R(x, y; z) + R(x,−y; z)A,

for all x, y ∈ R+. By a straightforward calculation one finds out that the resolvent kernel has the
following structure

Rα(x, y; z) = Rα(x, y; z)Θ(x − y) + RT
α(y, x; z)Θ(y − x).

For x < y, the matrix Rα(x, y; z) component-wise read

[Rα(x, y; z)]11 =
iζ(z)

1 + iζ(z) cot(α)
exp(ik(z)x)

[
cos(k(z)y) + ζ(z) sin(k(z)y)

]
,

[Rα(x, y; z)]12 =
iζ(z)

1 + iζ(z) cot(α)
exp(ik(z)x)

[
cot(α) cos(k(z)y) − ζ(z)−1 sin(k(z)y)

]
,

[Rα(x, y; z)]21 =
−1

1 + iζ(z) cot(α)
exp(ik(z)x)

[
cos(k(z)y) + ζ(z) sin(k(z)y)

]
,

[Rα(x, y; z)]22 =
−1

1 + iζ(z) cot(α)
exp(ik(z)x)

[
cot(α) cos(k(z)y) − ζ(z)−1 sin(k(z)y)

]
,

where W(z) := 1 + iζ(z) cot(α). We remind that the square root is chosen such that Im[k(z)] > 0.
However, it is not difficult to see that there is an additional inner structure of Rα(x, y; z). Let us
for all α ∈

(
0, π2

)
define the functions ψα(x; z), φα(y; z) as follows

ψα(x; z) := exp(ik(z)x)
(
iζ(z)
−1

)
,

φα(y; z) :=
(

cos(k(z)y) + ζ(z) cot(α) sin(k(z)y)
ζ(z)−1 sin(k(z)y) + cot(α) cos(k(z)y)

)
,

Using this notation, it is easy to verify that the resolvent kernel can be compactly expressed in
the following formula

Rα(x, y; z) =
1

W(z)

[
ψα(x; z)

(
φ∗α(y; z), ·

)
2 Θ(x − y) + φα(x; z)

(
ψ∗α(y; z), ·

)
2 Θ(y − x)

]
. (3.4)
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3.2 Resolvent analysis
Throughout this section, we keep the notation for the inner product on C2 as (·, ·)2, and as

customary, the euclidean norm on C2 is denoted by |·|2. The main goal of this section is to prove
the following lemma.

Lemma 3.2.1
Let α ∈ (0, π2 ) be a real parameter. Then

sup
z∈ρ(Dα)

‖Rα(x, y; z)‖2
L(C2) = 1 + (q + 2m min(x, y))2,

where q = max(cot(α), cot(α)−1).

The norm of the resolvent kernel Rα(x, y; z) as an operator C2 → C2 reads

‖Rα(x, y; z)‖L(C2) =
1
|W(z)|

[
|ψα(x; z)|2|φα(y; z)|2Θ(x − y) + |ψα(y; z)|2|φα(x; z)|2Θ(y − x)

]
.

Without loss of generality, we will futher consider only the case x > y. In addition, to
simplify further expressions, let us introduce the following notation.

η1 :=
1
4

(
|1 − iζ(z) cot(α)|2 + |cot(α) + i

1
ζ(z)
|2
)
,

η2 :=
1
4

(
|1 + iζ(z) cot(α)|2 + |cot(α) − i

1
ζ(z)
|2
)
,

η3 :=
1
2

(
1 − cot2(α)|ζ(z)|2

)
,

η4 :=
1
2

(2 Re[ζ(z)] cot(α)) .

One then finds the C2-norm of ψα and φα by a straightforward calculation as

|ψα(x; z)|22 = exp(−2 Im[k(z)]x)
(
|ζ(z)|2 + 1

)
,

|φα(y; z)|22 = η1(z) exp(−2 Im[k(z)]y) + η2(z) exp(2 Im[k(z)]y)

+

(
1 −

1
|ζ(z)|2

)
(η3(z) cos(2 Re[k(z)]y) + η4(z) sin(2 Re[k(z)]y)) .

Since the sums, products, and compositions of holomorphic functions are holomorphic, it is
obvious that the resolvent kernel Rα(x, y; z) is a holomorphic function of the spectral parameter
z. Therefore, the supremum of its modulus can not be achieved in the resolvent set. This fact
follows from the maximum modulus principle.

Theorem 3.2.1 (Maximum modulus principle, [6, Corollary 5.10])
Let Ω ⊂ C be an open connected set, f holomorphic function on Ω. If | f | attains a maximum in
Ω, then f is constant.
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On the other hand, the supremum itself has to exist. Therefore, either the supremum lies in
the complex infinity or it is achieved somewhere in the spectrum. Now we show that the latter
is true.

At first, we show that ‖Rα(x, y; z)‖L(C2) can be uniformly bounded as z → ∞. By an estima-
tion of the exponential functions one can see that

‖Rα(x, y; z)‖2
L(C2)Θ(x − y) =

1
|W |
|ψα(x; z)|22|φα(y; z)|22Θ(x − y)

≤
|ζ(z)|2 + 1
|W |

[
η1(z) + η2(z) +

(
1 −

1
|ζ(z)|2

)
(cos(2 Re[k(z)]y)η3(z) + sin(2 Re[k(z)]y)η4(z))

]
=: γ(y; z),

for all z ∈ ρ(Dα). Although the complex limit at infinity of the norm does not exist, it does exist
for the function γ; lim

z→∞
γ(y; z) = 2.

This follows from the fact lim
z→∞

ζ(z) = lim
z→∞

√
z+m
z−m = 1. Then for every ε > 0 there is M > 0

such that for every z ∈ C; |z| > M we have

‖Rα(x, y; z)‖2
L(C2)Θ(x − y) ≤ γ(y; z) < 2 + ε. (3.5)

Now, we investigate the behavior of the restriction ‖Rα(x, y; z)‖2
L(C2) to the spectrum. That is

z := u ∈ σ(Dα) = (−∞,−m] ∪ [m,+∞). The coefficients k(u) and ζ(u) are now purely real, and
the restriction of ‖Rα(x, y; z)‖2

L(C2) reads

‖Rα(x, y; u)‖2
L(C2)Θ(x − y) =

2u2

u2 − m2 + cos(2k(u)y)
u − m − cot2(α)(u + m)
u − m + cot2(α)(u + m)

2mu
u2 − m2

+ sin(2k(u)y)
cot(α)4m
√

u2 − m2

1
u − m + cot2(α)(u + m)

=: χ(u, y).

We show that the function χ(u, y) has no local extremes for u ∈ σ(Dα). Indeed, the partial
derivation of χ(u, y) with respect to u;

∂χ

∂u
(u, y) = ξ1(u) + ξ2(u) cos(2k(u)y) + ξ3(u) cos(2k(u)y)y (3.6)

+ ξ4(u) sin(2k(u)y) + ξ5(u) sin(2k(u)y)y = 0, (3.7)

can be viewed as the linear combination of linearly independent functions in variable y for
every fixed u ∈ σ(Dα). Therefore, the only possible solution of equation (3.6) is ξi = 0 for
every i ∈ {1, . . . , 5}. By calculation of ξ1 one finds that this can be satisfied only for u = 0;

ξ1(u) =
4mu

u2 − m2 = 0⇔ u = 0 < (−∞,−m] ∪ [m,+∞).
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The supremum of χ(u, y) (in variable u) is then the maximum of the limits at the „bound-
aries„. These are

lim
u→±∞

χ(u, y) = 2,

lim
u→−m

χ(u, y) = 1 + (cot(α) + 2my)2 ,

lim
u→m

χ(u, y) = 1 +
(
cot(α)−1 + 2my

)2
.

Thus, we conclude that

sup
z∈ρ(Dα)

‖Rα(x, y; u)‖2
L(C2) = 1 + (q + 2m min(x, y))2,

with q := max(cot(α), cot(α)−1).

3.3 Stability Theorem
Consider a generic potential V : R+ → C

2,2 ∈ L1(R+,C
2,2) ∩ L∞(R+,C

2,2). We denote its L1

norm as

‖V‖1 :=
∫
R+

‖V(x)‖L(C2) dx.

Since V is an essentially bounded funtion, the corresponding multiplication operator, denoted
by the same symbol is bounded and therefore everywhere defined. Therefore, the perturbed
operatorDα + V is closed on dom(Dα).

Birman-Schwinger operator
In our concerte setting, speaking in the notation of the theorem 1.3.3, we have H = H̃ =

L2(R+,C
2) and V is a multiplication operator generated by a matrix-valued function introduced

above. For V we consider the polar decomposition V = U |V |, where |V | :=
√

V∗V and U is a
partial isometry. We put A :=

√
|V |, B :=

√
|V |U∗. The corresponding multiplication operators

are denoted by the same symbol; A and B, respectively. Since V is bounded, the square root is
bounded as well and the assumptions of the definition 1.3.2 are met.

Note that the operator K(z) from the definition 1.3.2 is defined as a bounded extension of
the "formal" Birman-Schwinger operator A(H0 − z)−1B∗ acting on dom(B∗). Since in our setting
B∗ is defined everywhere on H , Kz is A(H0 − z)−1B∗. This operator acts as an integral operator
onH with its integral kernel

Kα(x, y; z) = |V(x)|
1
2Rα(x, y; z)U |V(y)|

1
2 .

40



Since it is not possible to express the norm of the operator Kα(z) explicitly, we will estimate
the norm of Kα(z) by its Hilbert-Schmidt norm ‖Kα(z)‖HS defined as follows.

|(φ,Kα(z)ψ)| ≤
∫ ∞

0

∫ ∞

0
|(φ(x),Kα(x, y; z)ψ(y))2| dxdy

≤

∫ ∞

0

∫ ∞

0
|φ(x)| |ψ(y)| ‖Kα(x, y; z)‖L(C2) dxdy

≤

(∫ ∞

0
|φ(x)|2dx

) 1
2
(∫ ∞

0
|ψ(y)|2dy

) 1
2
(∫ ∞

0

∫ ∞

0
‖Kα(x, y; z)‖2

L(C2)dxdy
) 1

2

=: ‖φ‖ ‖ψ‖ ‖Kα(z)‖HS ,

for every φ ∈ H , ψ ∈ C∞0 (R+,C
2). The penultimate inequality was obtained by the Schwarz-

Cauchy inequality in both x and y variables. For the supremum of ‖Kα(z)‖ we have

sup
z∈ρ(Dα)

‖Kα(z)‖2 ≤ sup
z∈ρ(Dα)

‖Kα(z)‖2HS = sup
z∈ρ(Dα)

∫ ∞

0

∫ ∞

0
‖Kα(x, y; z)‖2

L(C2)dxdy (3.8)

≤ sup
z∈ρ(Dα)

∫ ∞

0

∫ ∞

0
‖V(x)‖L(C2) ‖V(y)‖L(C2) ‖Rα(x, y; z)‖2

L(C2)dxdy (3.9)

=

∫ ∞

0

∫ ∞

0
‖V(x)‖L(C2) ‖V(y)‖L(C2)(1 + (q + 2m min(x, y))2)dxdy (3.10)

≤ ‖V‖21 +

(∫ ∞

0
‖V(x)‖L(C2) (q + 2mx) dx

)2

, (3.11)

where we estimated the minimum as min(x, y) ≤ x and min(x, y) ≤ y, for all x, y ∈ R+ to express
the integrals explicitly. Using the Birman-Schwinger principle 1.3.3 this can be summarized in
the following theorem.

Theorem 3.3.1
Let V : R+ → C2,2 be an essentially bounded matrix-valued potential.
Then σ(Dα + V) = σc(Dα + V) = σ(Dα) whenever the following condition holds;

‖V‖21 +

(∫ ∞

0
‖V(x)‖ (q + 2mx) dx

)2

< 1, (3.12)

where q = max(cot(α), cot(α)−1).

3.4 Open problem
What remains an open problem with respect to the result is its optimality.

Let us briefly summarize the result that we have just proven. For a given potenial V we
denote

C(V) :=
∫ ∞

0

∫ ∞

0
‖V(x)‖ ‖V(y)‖(1 + (q + 2m min(x, y))2)dxdy.
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Our result then means that whenever C(V) < 1 we have σ(Dα + V) = σc(Dα + V) = σ(Dα).
The interesting question now is how much did we „waste„ by estimating the operator norm of
K(z) by its Hilbert-Schmidt norm in (3.8). In other words, whether the condition C(V) < 1 is
optimal. To be more precise, what we understand under optimality here is if there is a potential
V such that C(V) > 1 and σp(Dα + V) , ∅.

In [11] Cuenin, Laptev and Tretter were dealing with localization of the non-embedded
eigenvalues of a Dirac operator D defined on the whole line perturbed by an L1 potential V .
The authors have proven that if ‖V‖1 < 1 then all non-embedded eigenvalues lie in the union of
two disks, i.e.

σdisc(D + V) ⊂ B(−x0, r0) ∪ B(x0, r0),

where the radius r0 :=
√
‖V‖41−2‖V‖21+2

4(1−‖V‖21)
− 1

2 and the point x0 :=
√
‖V‖41−2‖V‖21+2

4(1−‖V‖21)
+ 1

2 are determined

by the L1 norm of V . Furthermore, the authors managed to prove the sharpness of their result
in the sense that there is a Vsharp, such that ‖Vsharp‖1 < 1 and λ ∈ σdisc(D + Vsharp) such that
λ ∈ ∂B(−x0, r0) ∪ ∂B(x0, r0). The sharpening potential Vsharp was chosen as a family of delta
potentials - point interactions - given formally in the form

Vsharp := iκδ(x)
(
eiτ 0
0 e−iτ

)
,

for κ > 0 and −π ≤ τ ≤ π.

Motivated by this approach, we suggest looking for a critical potential which would prove
the optimality as we stated above in the form of a delta potential as well. We propose to
bounce the point interactions from the boundary x = 0 since for such potentials is the opti-
mality achieved for the Schrödinger operator on a half-line [24].

Let us consider a family of formal delta potentials generated by a formal expression

V := δ(x − a) ⊗ A,

for a > 0 and A ∈ C2,2. Formally speaking, the perturbed operator H̃Aα reads

H̃Aα φ = (Dα + δ(x − a) ⊗A) φ. (3.13)

One of the possible ways to properly define the above operator is through the boundary con-
dition [30]. The idea is to exclude the point of the interaction out of the domain and introduce
an appropriate following boundary condition.

The motivation comes from the requirement for the integrability of the image H̃Aα . Indeed,
in the distributional sense, H̃Aα acts as

H̃Aα φ = mσ3φ − iσ2φ
′ +

Aφ(a+) +Aφ(a−)
2

= mσ3φ − iσ2{φ
′} − iσ2

(
φ(a+) − φ(a−)

)
+
Aφ(a+) +Aφ(a−)

2
!
= mσ3φ − iσ2{φ

′},
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for all φ ∈ dom(Dα). In order to assign to the image H̃Aα φ a meaningful role as an element of
L2(R+,C

2) we employ the following boundary condition.

(A − 2iσ2) φ(a+) = − (A + 2iσ2) φ(a−), (3.14)

where we denote φ(a±) := lim
x→a±

φ(x). In this way, the integrability of the image H̃Aα φ is ensured.

The proper definition of the point interaction H̃Aα reads

H̃Aα φ := Dαφ (3.15)

dom(H̃Aα ) :=
{(
φ1

φ2

)
∈ W1,2(R+\{a},C2) | φ1(0) cot(α) = φ2(0) ∧ (3.14)

}
. (3.16)

It was shown by Hughes [32, 31] and then generalized by Tušek and Heriban [45, 30] that
such delta potential perturbing the Dirac operator D defined on the whole real-line can be
approximated by L1 potentials as a limit ε → 0 (in the norm-resolvent sense) of the following
family of operators

DAε := D + hε(x) ⊗ A. (3.17)

Whereby hε(x) := 1
ε
h
(

x
ε

)
,
∫
R

h(x)dx = 1 and the matrix Amust satisfy certain technical assump-
tions, see [45, 30] for details. However, for the initial setting (3.17) the norm-resolvent limit of
DAε is

DAφ := Dφ (3.18)

dom(DA) :=
{(
φ1

φ2

)
∈ W1,2(R\{a},C2) | φ(a+) = Λφ(a−)

}
, (3.19)

where Λ = B exp(A) and B ∈ C2,2 is only a multiplicative factor. However, it is not clear
what should be the „norm„ of such a perturbation. We propose to compare the formal boundary
condition (3.14) with norm resolvent boundary condition (3.19). The associated formal point
interaction corresponding to (3.19) is then W := δ(x − a) ⊗D, where D is given by the equation

Λ = − (D − 2iσ2)−1 (D + 2iσ2) .

That is, D = −2iσ2 (1 − Λ) (1 + Λ)−1. In the context of this correspondence, it seems meaning-
ful to assign ‖W‖L1 := ‖D‖.

As a continuation of our work we suggest to investigating the possibility of extension of
the results of Tušek and Heriban [45, 30] to the half-line setting of ours. In the positive case,
consider the following realization of the operator (3.15)

HAα φ := Dαφ

dom(HAα ) :=
{(
φ1

φ2

)
∈ W1,2(R+\{a},C2) | φ1(0) cot(α) = φ2(0) ∧ φ(a+) = Λφ(a−)

}
,

analyze the spectral properties of HAα . If we were able to find for all δ ∈ R+ a particular matrix
A such that ‖D‖ = 1 + δ and σdisc(HAα ) , ∅ we know that there is a L1 potential with the same
properties and therefore the stability theorem 3.3.1 is optimal.
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Conclusion

In this master’s thesis we considered a one-parametric half-line Dirac operator

Dα := −i
d
dx
⊗ σ2 + m ⊗ σ3, (3.20)

dom(Dα) :=
{(
φ1

φ2

)
∈ W1,2(R+,C

2) | φ1(0) cot(α) = φ2(0)
}
, (3.21)

previously studied in [9]. Motivated by the result of Krejčiřík, Štampach and Laptev [37, Re-
mark 21] we were interested in the existence of a spectral stability of Dα. In other words, we
were interested whether there is a uniform condition for a given multiplication operator V such
that whenever the condition is met one has σ(Dα + V) = σ(Dα).

We showed that Dα defined on the domain (3.21) is self-adjoint and derived an explicit
formula of its resolvent (Dα − z)−1 in closed form and analyzed it. We found the supremum of
its norm as an operator from C2 to C2 over the resolvent set of Dα. This particular result was
summarized in the lemma 3.2.1 which was essential in the proof of the stability theorem 3.3.1.
The subject of this theorem is a sufficient condition for a given essentially bounded L1 matrix-
valued potential perturbing the studied model Dα ensuring the stability of the spectrum of the
perturbed operator. In general, our approach was based on two elements: the Birman-Schwinger
principle and explicit knowledge of the resolvent (Dα − z)−1.

It is worth mentioning that our condition (3.12) is explicit and easy to verify. Moreover, let
us also point out that the condition is linearly dependent on the mass of the particle, that is, the
more mass the particle has, the weaker the potential has to be to ensure stability, which is fairly
counterintuitive from the classical point of view.

In the very last section, we disscused the optimality of the obtained results. It was shown
[45, 30] that for the Dirac operator on the whole-line, delta-potentials can be approximated by L1

potentials in the norm resolvent sense. We suggested to investigating a possibility of extension
of this result to the half-line setting of ours and find a proper counter example when the stability
condition (3.12) is broken in the form of a delta-potential. Unfortunately, we did not manage to
answer the question of the optimality yet. We also expect that the essencial boundedness is not
necessary and the theorem 3.3.1 could be extended for a general L1 potentials.
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[28] M. Hansmann and D. Krejčiřík, The abstract Birman-Schwinger principle and spectral
stability, Journal d’Analyse Mathématique 148 (2022), 361–398.

[29] G. H. Hardy, Note on a theorem of Hilbert, Math. Zeit. 6 (1920), 314–317.

[30] L. Heriban and M. Tušek, Non-self-adjoint relativistic point interaction in one dimension,
Journal of Mathematical Analysis and Applications 516 (2022), no. 2, 126536.

[31] R. J. Hughes, Relativistic point interactions: Approximation by smooth potentials, Reports
on Mathematical Physics 39 (1997), 425–432.

[32] , Finite Rank Perturbations of the Dirac Operator, Journal of Mathematical Anal-
ysis and Applications 238 (1999), 67–81.

46



[33] J. H. Jeans, The mathematical theory of electricity and magnetism, Cambridge University
Press, 1915, third edition.

[34] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1976.

[35] E. Korotyaev and D. Mokeev, Dubrovin equation for periodic Dirac operator on the half-
line, Applicable Analysis 101 (2022), no. 1, 337–365.
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[37] D. Krejčiřík, A. Laptev, and F. Štampach, Spectral enclosures and stability for non-self-
adjoint discrete Schroedinger operators on the half-line, Bulletin of the London Mathe-
matical Society 54 (2022), 2379–2403.

[38] E. H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics, CUP, 2009.

[39] P. A. Rejtö, On reducing subspaces for one-electron Dirac operators, Isr. J. Math. 9
(1971), 111–143.

[40] F. Rellich, Über das asymptotische Verhalten der Lösungen von δu+λu = 0 in unendlichen
Gebieten, Jber. dtsch. MatVer 53 (1943), 57–65.

[41] A. M. Savchuk and A. A. Shkalikov, The Dirac operator with complex-valued summable
potential, Math. Notes 96 (2014), 777–810.

[42] L. Skála, Úvod do kvantové mechaniky, Karolinum, Praha, 2012.

[43] L. Tartar, An Introdcution to Sobolev spaces and Interpolation Spaces, Springer, Berlin,
2007.

[44] B. Thaller, The Dirac Equation, Springer, 1992.

[45] M. Tušek, Approximation of one-dimensional relativistic point interactions by regular
potenials revised, Lett. Math. Phys. 110 (2020), 2585–2601.

[46] J. Weidmann, Lineare Operatoren in Hilberträumen, vol. Teil II, B. G. Teubner, 2003.

47


