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Introduction

As computer networks continue to grow in size and complexity, the ability to ac-
curately identify the operating systems (OS) of devices connected to the network
is becoming increasingly important for effective network management and security.
Passive identification of OS based on visited hostnames is a promising approach for
achieving this goal, as it allows network administrators to identify the OS of devices
on their network without requiring any active scanning, probing, or physical access
to the device.

In recent years, machine learning algorithms have emerged as powerful tools for
analyzing complex datasets and making accurate predictions. The currently used
methods for the passive OS classification leverage mainly the user agents informa-
tion, time-to-live, or TCP window size information. However, the distinctiveness of
these methods is usually limited to the major OS families. The application of con-
temporary machine learning algorithms on the available network traffic data could
significantly improve the effectiveness of OS detection as we can retrieve a lot more
information from the network traffic, such as hostnames.

This thesis aims to explore the feasibility and effectiveness of using these machine
learning algorithms for passive OS identification based on visited hostnames, with
the goal of developing a practical and reliable method for identifying the OS of
devices on a network. We describe the methods of data preprocessing, including
data cleaning, data labeling, and feature selection, which are critical for producing
accurate and meaningful results. By conducting a thorough analysis of the data gen-
erated by this method and comparing the performance of different machine learning
algorithms, this thesis will contribute to the development of more effective network
management and security strategies, particularly in the context of passive OS iden-
tification based on visited hostnames.

The purpose of this work is to analyze the input data set and propose suitable
variables and methods for the detection of operating systems. The input data set is a
proxy–server logs collected during 24 hours from 9 companies’ networks. These data
will be analysed both quantitatively and qualitatively to assess the information it
contains. Next, a suitable method will be selected to determine the operating system
of the devices based on the sites visited.

The first chapter will describe the input data, its sources of origin, and the infor-
mation it contains. The second chapter will explore the methods of processing this
data in order to prepare their transfer to the next stage—the process of training
the classifier. The third chapter contains descriptions of the selected classifiers, their
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algorithms, and the parameters for their tuning. The last chapter will present the
results of experiments with the selected filtering parameters of the input file and
the classifier hyper–parameters, the ones that give the most accurate results will be
selected, and a discussion of the results will be held.
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Chapter 1

Data Collection

The first step in machine learning is to analyse the input data, as this affects the
whole model and each step individually. It is important to understand not only the
structure and content but also the sources of the information. Understanding the
source of information can show which parts of the dataset are reliable and available
in sufficient quantity. The input directly affects the choice of model used.

A machine learning life cycle is demonstrated in Figure 1.1. The process begins
with the preprocessing of the input data, which consists of error correction, feature
selection, a transformation of data formats and their representation, labeling the
dataset, balancing sizes of chosen classes, filtering training set elements, and other
processes that improve quality of the data and its ability to be successfully used for
training a machine–learned model. Some parts of the processing have been divided
into separate steps, as we will refer to these steps separately later in the thesis.

Figure 1.1: Machine learning life cycle

This chapter provides background information on the available data, its quantity,
and the quality of the information presented in it. It will also describe in detail the
source of information, its specificity, and the data that can be obtained from this
source.
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1.1 Network Monitoring

A computer network is a set of connections between computing devices(hosts) that
allows the transmission and sharing of information. A traditional computer network
includes personal computers, servers, and networking hardware. The purpose of a
network is to allow computers to communicate with each other and share resources
such as storage, computational power, software, sensors, and smart electronics.

The communication between devices can be described by the Open Systems In-
terconnection(OSI) model. The model partitions data flows into seven abstraction
layers of communication between computing systems: Physical, Data Link, Network,
Transport, Session, Presentation, and Application. Each layer of the OSI model han-
dles a specific job, data units(PDU), and communicates with the layers above and
below itself. In this work, we are explicitly talking only about Network layer and
layers above it.

When data is sent over the packet–based network it is broken up into packets. A
packet is a unit of data that is transmitted between devices on a network. Packets
are routed through a series of interconnected devices, such as routers and switchers,
before reaching their final destination. At their destination point packets are col-
lected and reassembled into the original data. The process of breaking down data
into packets is called packetisation. This process takes a portion of the user data
and prepends the header with control information. The control information typically
includes the source and destination addresses and error–checking data. User data is
the transferred content, such as text, images, or audio/video files.

A set of rules that specify how to format, send and receive data over a network is
called a protocol. Protocols enable different devices and software to communicate
with each other, regardless of their differences. Protocols exist for different types of
processes and functions on a network: routing, file transfer, error detection, encryp-
tion, etc. Some of the most commonly used protocols on the Internet are:

• IP: Internet Protocol responsible for routing data packets across networks;

• TCP: Transmission Control Protocol ensures reliable and ordered delivery of
data;

• UDP: User Datagram Protocol provides fast and connectionless delivery of
data;

• HTTP: Hypertext Transfer Protocol is used to access web pages and resources;

• HTTPS: HTTP Secure is an HTTP extension that uses encryption;

• DNS: Domain Name System translates domain names into IP addresses;

Different protocols operate at different layers of the OSI model and perform different
functions. Network data collection can be performed by different methods and tools,
depending on the type, format, and volume of data to be collected. Common methods
and tools for data collecting are:
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• Packet capture: This method collects all or some of the packets that pass
through a network interface or device. Packet capture can provide detailed
information about the content and behavior of network traffic, but it can also
consume a lot of resources and storage space. Packet capture tools include
tcpdump1

• Flow analysis: This method involves collecting and aggregating statistics about
network flows [20], which are sequences of packets that share common at-
tributes, such as source and destination addresses, ports, and protocols. Flow
analysis can provide an overview of network traffic patterns, volumes, and
trends, but it cannot provide the content of packets [9]. An example of the
flow protocol would be the NetFlow2, and tools such as nfdump3 or YAF4

• SNMP polling: This method involves querying network devices using the Sim-
ple Network Management Protocol [12], which is a standard protocol for man-
aging and monitoring network devices. SNMP polling can provide information
about the status, performance, and configuration of network devices, such as
routers, switchers, firewalls, and servers. SNMP tools include Cacti5

• Log analysis: This method involves collecting and analyzing log files generated
by network devices, applications, and services. log files can provide information
about the events, errors, and activities that occur on a network. The most
popular tool for this method is Splunk6.

In our case, we use the flow analysis method for capturing logs as a combination of
NetFlow logs and information captured from proxy servers. The captured dataset
includes information including passive DNS, timestamps, usernames, and server and
client IPs. Most of the pieces of information are almost useless for our purposes since
the information in them is filled in a minority of cases and only indirectly relates to
this topic. Our goal, among other things, is to develop a universal algorithm, which
will not be tied to firm–specific data, so we will also exclude data related to them,
such as usernames and server/client IPs.

A network flow is defined as a set of IP packets passing an observation point in the
network during a specified time interval. Packets are captured at the observation
point, which can be a separate device that does the probe function but can also be
collected at internal network elements, such as proxy servers. The device–exporter
then aggregates flow records and sends them to the collector. [9]

The flow is defined by its 5–tuple of data points extracted out of the IP header of a
packet:

• The source and destination IP addresses;
1https://www.tcpdump.org
2https://www.cisco.com/c/en/us/products/ios-nx-os-software/netflow-version-9/

index.html
3https://github.com/phaag/nfdump
4https://tools.netsa.cert.org/yaf/
5https://www.cacti.net/
6https://www.splunk.com/
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• The source and destination ports;

• The protocol

The following information from an IP packet can be added to the flow:

• IP version;

• Length of datagram header;

• Type of Service

• Total Length of the datagram including both header and the data measured
octets;

• Identification of the datagram;

• Flags;

• Fragment Offset;

• Time to Live;

• High-level protocol type;

• Header Checksum;

• Source Address;

• Destination Address;

• Options that provide network testing and debugging.

Proxy logs are produced by proxy servers. A proxy server is a server application
that acts as an intermediary between a client requesting a resource and the server
providing that resource. There are two types of proxy servers: anonymous proxy—
this server reveals its identity as a proxy server, but does not disclose the originating
IP address of the client; and transparent proxy—this server not only identifies itself
as a proxy server but with the support of HTTP header fields, the originating IP
address can be retrieved as well. [15]

A proxy server works by intercepting requests from users and forwarding them to
the destination server. It can also modify or filter the requests or responses based
on certain websites, cache web pages for faster loading, or anonymize users’ IP
addresses.

Proxy server logs contain the requests made by users and applications on a network.
The proxy server logs might be set differently and collect the different information
contained in their headers. For this work are relevant the following: date and time,
content type, user agent, an authenticated username of the client, target host IP
and destination port, target hostname (DNS), and proxy action.
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1.2 Dataset Description

Figure 1.2: Machine learning process flow. Input files

Flow monitoring is a method for monitoring traffic in high–speed networks focused
on the analysis of flows, rather than individual packets. Flow monitoring embraces
the complete chain of packet observation, flow export using protocols such as Net-
Flow and IPFIX, data collection, and data analysis.

The initial data export is transformed to the table in the format as in Table 1.1 con-
tains the information collected on proxy servers during 24 hours from 9 companies’
networks. The data export is represented by the table of 5 columns.

The first column called Company is an identifier of a company, as there are several
companies’ telemetry collected from it may be useful to distinguish them one from
another. That column is always filled due to the process of data collection.

The second column is called Device and this column contains unique device iden-
tifiers across all companies. This column is also always filled due to the process of
data collection.

The third column is a Hostname visited by the device. There are 4 possibilities
to fill the row: hostname, IP address, blank field, and random symbols caused by
encryption or errors. hostnames will be used as features in OS classification.

The fourth column is for User Agent that was used to connect to the hostname from
the previous column. User agents will be used for labeling devices according to their
operating system. This field also may be empty or filled with random characters due
to encryption or errors.

The last column Occurrences contains the number of unique 4–tuples from the
previous four columns.

1.2.1 Flows

For training the classifier we need data we can rely on. As will be shown below most
of the devices are not active enough from a human point of view: many of them have
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Company Device Hostname User Agent Occurrences

Company1 asset_id_1 www.google.com Mozilla/5.0 (Windows
NT 10.0; Win64; x64) 6

Company3 asset_id_2 10.226.111.4 com.apple.WebKit.Net-
working/16612.2.9.1.30 2

Company2 asset_id_3 some.webpage.com Mozilla/5.0 (Windows
NT 10.0; Win64; x64) 15

Company1 asset_id_4 other.site.io 58

Table 1.1: Example of an input file

Device Hostname(Raw IP) UA Flows
Filled rows 100% 76%(3%) 39% 100%
Filled flows 100% 90%(9%) 76% 100%
Unique values 207K 907K(73K) 34K

Table 1.2: Density of the input data

less than 10 flows during the period. However, there is no exact answer or the exact
number of how many flows are enough.

Aggregation of a number of flows by device identifier gives us an activity overview.
Each device has 1 to over 27 mln flows per day. There are some statistics:

Number of flows
mean 2.368722e+03
std 9.693423e+04
min 1.000000e+00
25 % 6.700000e+01
50 % 3.890000e+02
75 % 1.148000e+03
max 2.712943e+07

Table 1.3: Flows per device statistics

Combining the information from the picture and the table, we can say that deter-
mining the lower limit of the number of flows for each device will not be a simple
task: the higher this threshold, the more devices will be filtered out of the dataset.
The boundary between the exponential decrease in the number of devices for the
lowest values of the threshold, which changes to almost a plateau, can be seen as a
pointer to the desired threshold value.

1.2.2 Hostnames

Activity can be also measured by the number of visited hostnames. There are 907310
unique strings in the Hostname column. There are 73427(8 %) raw IP addresses
among them. An empty hostname was seen in 24, 49% of rows and 10% of flows.

18



Figure 1.3: Illustration of the number of flows per device in a log-scale

Number of hostnames
mean 65.771810
std 114.556249
min 1.000000
25 % 5.000000
50 % 29.000000
75 % 86.000000
max 12508.000000

Table 1.4: Unique hostnames per device statistics

Table 1.4 can bring closer matrix sparsity estimation after vectorisation of the list
of visited hostnames. Vectorisation assigns a vector to each device, where each coor-
dinate represents a particular hostname. The value of this coordinate is an indicator
of whether or not this hostname has been visited by this device in the case of binary
representation, or the number of times this hostname has been visited by the device
in the case of frequency vector representation. Therefore, based on the values in
Table 1.4 and the total number of unique hostnames in the dataset, it can be judged
that the matrix will be quite sparse.

Table 1.5 shows the popularity of hostnames, and indicates the popularity of the
individual hostnames, specifically how many unique devices visited each one. From
the statistic, we can tell that at least 75 % of the hostnames were visited only by
1 device. There are 120K hostnames visited by at least 2 devices, which is 13.3%

of all hostnames. Thus the length of the vector can be considerably shortened if all
hostnames that have been visited by only one device are weeded out of the list.

The popularity of a hostname can also be described by the number of flows. In the
second column of Table 1.5 is shown the similar statistics as in the first column, but
this time for the number of flows. It can be seen that the statistics are somewhat
similar and some correlation can be suspected.
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Number of devices Number of flows
mean 15.053481 5.421396e+02
std 379.080010 2.024849e+05
min 1.000000 1.000000
25 % 1.000000 1.000000
50 % 1.000000 1.000000
75 % 1.000000 2.0000
max 100035.0000000 1.854528e+08

Table 1.5: Hostname statistics

Figure 1.4: Log-scale illustration of the number of hostnames per device ordered
descending

Combining those columns by device identifier, we can examine the correlation be-
tween the number of devices and the number of flows. For computing the correlation
between the number of hostnames per device described in the first column in Ta-
ble 1.5 and the number of flows per device described in the second column three
coefficients are used and their values are as follows:

• Pearson: 0.10267

• Kendall: 0.659788

• Spearman: 0.701258

Pearson’s coefficient required to both variables be normally distributed, which is not
satisfied in that case.

Kendall coefficient ⌧ is more applicable in this case, as it measures the ordinal
association between two measured quantities. There is only one assumption and
it is satisfied: variables should be measured on an ordinal or continuous scale. The
coefficient modification adds the second condition: a monotonic relationship between
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two variables, which is not examined in this case. One of the benefits of this method is
its insensitivity to errors. The Kendall coefficient can be calculated by the following
formula:

⌧ =
Nc �Nd
1
2n(n� 1)

, (1.1)

where Nc is a number of concordant pairs; Nd is a number of discordant pairs, and
n is the number of observations.

The Spearman coefficient requires data to be at least ordinal and the scores on one
variable must be monotonically related to the other variable. Calculations based on
deviations and much more sensitive to errors and discrepancies in data.

⇢ = 1� cov(R(X), R(Y )))

⇢R(X)⇢R(Y )
, (1.2)

where cov(R(X), R(Y ))) is a covariance of the rank variables, and ⇢ is a standard
deviation of the rank variables.

Hostname Number of flows Flows, %
g.ceipmsn.com 185452847 37.7
NAN 49085551 9.98
weather.service.msn.com 11366343 2.31
istio-galley.platform.svc 9889967 2.01
212.23.17.73 3960073 0.81
www.msftconnecttest.com 3790441 0.77
cloud-ec-asn.amp.cisco.com 3628237 0.74
ctldl.windowsupdate.com 3224064 0.66
www.google.com 2732376 0.56
maglevserver.maglev-system.svc.cluster.local 2596825 0.53
www.ciscoconnectdna.com 2497382 0.51

Table 1.6: List of the most popular hostnames

Correlation coefficients indicate the presence of a strong correlation between these
values, which can be used to create a new parameter for popular hostname indication.
A list of the most popular hostnames that cover at least half a percent of the flows
or 15% of devices is given in Tables 1.6 and 1.7 respectively. The lists of the 30 most
popular hostnames by each parameter can be found in Appendix A.

1.2.3 User Agents

User agents are used for labeling the data. Their presence, variety, and popularity in
the data set have a great impact on the results of labeling and therefore classification.

There are 33854 unique user agents in the data set filled 21 mln rows which are
38.65% of the total number of rows. The number of flows that were made with
an unknown user agent is 373 mln (75.87%) among the total number of 491 mln
analyzed flows.
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Hostname Devices Devices, %
NAN 100035 48.17
ctldl.windowsupdate.com 81873 39.43
www.msftconnecttest.com 57682 27.78
x1.c.lencr.org 54370 26.18
www.google.com 41567 20.02
ocsp.digicert.com 39987 19.26
edgedl.me.gvt1.com 38866 18.72
update.googleapis.com 36903 17.77
config.edge.skype.com 35572 17.13
login.microsoftonline.com 33115 15.95
arc.msn.com 32798 15.79
18.185.217.177 31457 15.15
ocsp.pki.goog 31455 15.15
18.184.249.36 31449 15.14
18.194.154.159 31425 15.13

Table 1.7: The most popular hostnames by number of devices

Table 1.8 shows the number of unique user agents used by each device. This infor-
mation will help determine the algorithm for assigning labels to devices. For an even

Number of unique UAs Labeled UAs ratio
mean 5.163488 45.175510
std 6.069867 2739.860590
min 1.000000 0.000005
25 % 1.000000 0.146667
50 % 3.000000 0.542299
75 % 7.000000 1.831631
max 893.000000 643162.571429

Table 1.8: Unique UAs per device statistics

better understanding of the challenges of labeling, there is a second column in Table
1.8 that shows how much information for labeling we have. The ratio represents the
number of labeled user agents over user agents that we cannot label.

The most popular user agents are used by tens of thousands of devices and cover
tens of millions of flows. The following Table 1.9 contains the most popular user
agents according to the number of devices they used by and the percentage of flows
covered with this user agent.

For labeling, we use user agents parsed with a Python library—ua–parser [23]. We
chose the library from free and regularly updated libraries, the ua–parser was the
most popular among them.

The function Parse returns information about the device (Listing A.1, Appendix
A.3), OS, and user agent. Each user agent is labeled with the OS returned after the
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UA Devices Flows Devices, % Flows, % Ratio
SeaPort/3.0 52 142312769 0.03 28.93 964.33
NAN 173100 118683118 83.36 24.13 0.29
SeaPort/3.1 20 43139674 0.01 8.77 877.0
Go-http-client/1.1 6483 39419412 3.12 8.01 2.57
Mozilla/5.0 (Windows NT
10.0; Win64; x64) AppleWe-
bKit/537.36 (KHTML, like
Gecko) Chrome/105.0.0.0 Sa-
fari/537.36

31306 38570834 15.08 7.84 0.52

Mozilla/4.0 (compatible; ms-
office; MSOffice 16)

18410 11730887 8.87 2.38 0.27

Mozilla/5.0 (Windows NT
10.0; Win64; x64) AppleWe-
bKit/537.36 (KHTML, like
Gecko) Chrome/105.0.0.0 Sa-
fari/537.36 Edg/105.0.1343.42

38438 11376297 18.51 2.31 0.12

Microsoft BITS/7.8 56229 9525351 27.08 1.94 0.07
Microsoft-CryptoAPI/10.0 105087 8903851 50.61 1.81 0.04
Mozilla/4.0 (compatible; MSIE
6.0; DynGate)

10803 5045458 5.2 1.03 0.2

Table 1.9: User agents with the most flows

parsing by the ua–parser. Aggregating user agents by their label will give us results
shown in Table 1.10.

Label Number of UAs
Windows 5893
Android 5438
iOS 4238
Mac OS X 1552
Linux 1052
Ubuntu 365
Debian 157
Red Hat 44
Samsung 39
Chrome OS 16
Fedora 14
CentOS 11
Web0S 10
Tizen 9
FreeBSD 2
Hofer 2
Chromecast 2
NABO 1

Table 1.10: Distribution of user agent labels in given data set

There are 33854 unique user agents and each of them was labeled with ua–parser.
Therefore we got 19 unique labels including a label for an unknown user agent OS
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in the input data set. 15 thousand(44 %) user agents cannot be labeled.

Analysis of unknown user agents, possibilities of missing label assignment, and their
impact will be described in Section 2.2.

24



Chapter 2

Data preparation

Figure 2.1: Machine learning process flow. Preprocessing.

One of the biggest and most important parts of machine learning is data preparation,
which includes feature engineering and data cleaning. The cleaning process involves
identifying and correcting or removing errors and inconsistencies, which are very
common characteristics for real–world data, in raw data before it can be used in the
analysis.

The importance of data cleaning in machine learning cannot be overstated, as it can
significantly impact the accuracy and effectiveness of the models developed using
that data. Clean data helps to ensure that machine learning models are trained on
accurate and relevant data, and can help reduce bias in models.

Through feature engineering, we understand the process of transformation of the
input file into an object that can be passed to the next stage of the learning process—
classification. The process consists of filtering, labeling, and vectorization. All the
before–mentioned steps result in the set of vectors with labels, which form the input
of the classification stage.
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2.1 Data Cleaning

Errors or missing data in some parts of the dataset affect the classification results
much more than in other parts. The more valuable parts of the dataset provide the
necessary information without which a model cannot be built. For example, infor-
mation that is used for device labeling, which is necessary for supervised machine
learning. Devices that cannot be labeled can be removed from the dataset because
they cannot be used in any part of the process, i.e. they are useless.

The data cleaning process in our case will be slightly different from the classical
one, as it is not possible to correct and/or find errors or add missing information, so
data filtering methods will be proposed to obtain dataset which will later be used
to train the classifier.

Statistics of the dataset presented in Section 1.2 may suggest removing some parts
of the dataset or developing filters, conditions, and thresholds to filter other parts.
Here are some suggestions for filters that will be tested in the experiments sec-
tion, studying their effects on classification results and selecting the most successful
combinations.

The first parameter to analyze is the number of used user agents. If the list of
used user agents is empty for a device, rows with that device can be removed. The
minimum number of user agents required to label a device will be discussed in the
following section.

The second parameter to analyze is the activity of the device, as devices that have
occurred just once in the whole telemetry do not carry any useful information. The
following question is what number of occurrences is enough to mark the device as
active?

The activity of the device can also be measured by the number of visited hostnames.
The more hostnames the device has visited, the denser the feature vector is. A
combination of activity parameters will not be used in this thesis.

Filtering can be applied to cell content too. Specific parts of the cell content can be
removed, therefore, the number of cells with the same values increases, and more
devices can be united into clusters or simply marked as similar devices.

An example of such cells is the Hostname column. Each cell has the same format
of a hostname as a set of domains divided by dots. The importance of a specific
domain or their combination in classification task can be explored in different ways.

The UA column can also be analysed in the same way. A user agent is very important
for the process of the device’s labeling, but the presence of the value in this column
does not guarantee, that the device can be labeled. Some user agents may differ
slightly, but this may lead to different labels, although in reality, they should have
the same label. Machine learning can also be used to label unknown user agents,
leading to more labeled devices. As this task in itself is quite non–trivial, it will
not be solved within the scope of this work. In further parts of the thesis, some
experiments will be done and their results will be discussed.

26



2.2 Labeling

The process of labeling the data is the most ambiguous step in the whole task.
Data labeling is a process of assigning one or more predefined tags or labels to
data samples to enable supervised learning algorithms to learn from the data. The
labeled data is used to train machine learning models to recognize patterns and
make predictions on new, unseen data. The quality and accuracy of the labeled data
directly impact the performance of the machine–learning model. Therefore, data
labeling is a crucial and time–consuming task that requires careful consideration
of the labeling approach, and the quality control measures in place to ensure the
consistency and accuracy of the labels.

As we discussed in Subsection 1.2.3, 44.33% of user agents from the data set cannot
be labeled because they are not assigned to a specific OS. Moreover, the complexity
of the labeling problem is increased with the fact that the known user agent does
not guarantee the possibility of the device labeling. Most of the devices used user
agents with different labels. In this section, we will use this information to develop
a process for labeling devices.

Figure 2.2: Number of flows made with user agents of each label

Figure 2.3: Number of devices that used user agent with certain label
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First, let’s take a look at how many devices can possibly be labeled. There are
207 thousand unique devices with different amounts of information about used user
agents. As can be seen from Table 1.2, the least information we have about is
about user agents indeed. The availability of this information does not guarantee
the possibility of labeling the device, as was already mentioned in the previous
section.

Figure 2.2 shows the number of flows made by user agents with different labels. The
number of flows that were made without a captured user agent and the number of
flows with user agents with unknown labels are provided in Empty and Other bars
respectively. For better visibility of all labels, the number of flows is on a logarithmic
scale. In fact, the number of flows made with unknown user agents is twice as greater
as the number of flows with an empty user agent. The exact number of flows per
label can be found in Appendix B.1. Figure 2.3 demonstrates the same statistics as
Figure 2.2 but per device. The exact numbers can be found in Appendix B.2.

Second, let’s consider specific devices and look at the labeling options. 83.33% of
devices had a flow with an unfilled user agent header. Devices’ labels, that used
same–type known user agents and all used user agents had labels, are defined un-
ambiguously. There are only 5735 devices that met these criteria. The number of
devices and their labels are in Table 2.1.

Label Number of devices
Debian 1999
Linux 1892
Android 1283
CentOS 192
Red Hat 159
Mac OS X 113
Ubuntu 91
Fedora 6

Table 2.1: Labels of devices which used user agents with the same label

As will be seen below in Table 2.2 and Table 2.3, those devices cannot be passed to
the next stage for training the classifiers by themselves, because they do not represent
the data set as the distribution of labels, and their variation is very different from
the parameters of the whole data set. Those devices should be diluted with devices
with mixed labels of user agents or/and with devices with some unknown or empty
user agents.

To select the right ratio of known part and unknown part it is useful to know the
impact of the selected value on the data set. The most general criterion is the number
of devices that passed the threshold. Figure 2.4 demonstrates the number of devices
left after the filtering. As can be seen, there is a rapid drop at the beginning and an
almost linear decrease in the rest of the graph. The first threshold on the graph was
set to 2% of known user agents and this threshold filtered out more than half of the
devices.
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Figure 2.4: Relation between known user agents threshold and the number of devices
that can be labeled

In our diploma thesis, the threshold is set to 5% to collect the devices that provide
at least some information for their labeling. That threshold allows the labeling of
almost 85 thousand devices. To choose the label for a device case of using multiple
labels the final label was chosen by majority voting. The distribution of the labeled
devices in the data set is provided in Table 2.2.

As can be seen from the lists of used OS, some of them are more common than
others, and some of them are expected to have similar behavior. We decided to
remove user agents that have very rare labels, such as Tizen, Samsung, FreeBSD,
Hofer, Chromecast, and NABO. User agents which have the following labels: CestOS,
Debian, Fedora, Red Hat, Ubuntu, and Linux, will share the same label - Linux.

After the transformation histograms in Figures 2.2 and 2.3 will change as in Figure
2.5. Those figures also demonstrate, that in the case of iOS labeled user agents
a small portion of flows cover a greater portion of devices. The difference between
these two values can be important in the process of marking devices. Some methods,
such as majority voting, can significantly reduce the number of devices with a given
label. Presumably, attaching these labels should be done in a different way.

After applying the same transformation to devices’ labels as for user agents’ labels
described at the beginning of this section, the distribution of the labels was changed
as demonstrated in Table 2.3.

2.3 Vectorizers

Input data in machine learning usually comes in various forms such as text, images,
audio, and numerical values. In order to apply machine learning algorithms to this
data, it must be transformed into a numerical form that can be understood and pro-
cessed by the algorithms. This process is called vectorization or feature extraction.

In this work, we use hostnames as features. In machine learning, hostnames are
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Label Number of devices
Windows 60355
Linux 11890
Debian 4678
Android 4480
iOS 1757
Ubuntu 478
Red Hat 371
Mac OS X 371
CentOS 262
Chrome OS 13
Fedora 12
Web0S 8
Tizen 8
Samsung 3
FreeBSD 3
Hofer 2
Chromecast 1
NABO 1

Table 2.2: Number of labeled devices

Label Number of devices
Windows 60355
Linux 17691
Android 4480
iOS 1757
Mac OS X 371

Table 2.3: Devices’ labels distribution after transformations

typically represented as a string of characters, which are not directly usable by
machine learning algorithms. Therefore, they must be vectorized. Here are some
possible approaches to hostnames vectorization:

1. Bag–of–Words: hostnames are tokenized into individual words and a vector is
created where each element represents the presence or absence of a particular
word in the hostname. This approach can work well if the hostnames contain
meaningful words that can help identify patterns or characteristics of interest.

2. Semantic: words are represented as dense vectors of real numbers. This method
can capture more complex relationships between words and can be useful if
the hostname contains subtle variations or nuances that may not be captured
in the Bag–of–Words approach.

3. TF–IDF: This method represents each document as a weighted Bag–of–Words.
It assigns weights to each word based on its frequency in the document and
its frequency in the corpus.
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(a) Number of flows (b) Number of devices

Figure 2.5: The change after merging similar labels and deleting non–popular labels

4. Domain–Specific Features: is called when custom features are created based on
domain–specific knowledge or heuristics. This approach is particularly useful
when the hostnames have unique characteristics that are not well–captured
by more generic feature extraction methods. Those features could include the
length of the hostname, use of numbers or special characters, presence of cer-
tain keywords, top–level domain, and age of the domain.

The last approach is used mainly in the field of fraud detection for identifying
patterns and characteristics that are indicative of fraudulent activity. The others
can be potentially used in our case.

The main advantage of the Bag–of–Words method is it is simple to implement
and computationally efficient. Disadvantages of the method such as not taking into
count the order in the document and not capturing the meaning of the words can
lead to poor performance when dealing with complex language tasks, but are totally
irrelevant in our case.

TF–IDF method can help to identify words that are unique to a document and
therefore more important in describing its content. Considering the number of host-
names that are unique to the devices, there is a contradiction between the efficiency
of vectorisation and filtering. On the one hand, we argue that hostnames visited
by a single device are not representative and/or useful. On the other hand, this
vectorisation method needs these hostnames to be more effective. Thus, this type
of vectorisation lengthens feature vectors and shows better results with softer filters
on hostnames.

2.3.1 CountVectorizer

CountVectorizer is a feature extraction method in natural language processing that
converts a collection of text documents to a matrix of token counts. It is a bag–of–
words approach that creates a fixed-length vector representation of a text document,
where each element of a vector represents the frequency of a particular word in the
document.
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CountVectorizer works by first tokenizing the input text into individual words (to-
kens), then building a vocabulary of all the unique words that appear in the corpus
(i.e., the collection of documents). The vocabulary is then used to create a fixed–
length vector representation of each document. Each element of the vector corre-
sponds to a unique word in the vocabulary, and the value of the element represents
the frequency of that word in the document.

2.3.2 TF-IDF Vectoriser

Term Frequency–Inverse Document Frequency vectorizer is another feature extrac-
tion method similar to the CountVectorizer approach, but instead of simply counting
the frequency of each word in a document, it weights the importance of each word
based on how often it appears in the document and how often it appears in the
entire corpus.

TF–IDF vectorizer works by first tokenizing the input text into individual words
(tokens), then building a vocabulary of all the unique words that appear in the
corpus. For each document in the corpus, the vectorizer then calculates two values
for each word in the vocabulary:

1. Term Frequency (TF): The frequency of the word in the document, is calcu-
lated as the number of times the word appears in the document divided by
the total number of words in the document.

2. Inverse Document Frequency (IDF): The rarity of the word(i) in the corpus,
calculated as the logarithm of the total number of documents(n) in the corpus
divided by the number of documents(dfi) that contain the word.

idfi = log(
n

dfi
) (2.1)

The TF–IDF score as the name suggests is a multiplication of the TF matrix with
its IDF:

wij = tfij ⇥ idfi (2.2)

2.4 Related Works

The identification of passive devices in a network is essential for effective network
management, monitoring, and security. Various techniques have been proposed and
developed for the passive identification of devices in a network, ranging from simple
discovery methods to more sophisticated approaches using machine learning and
artificial intelligence. This chapter will provide an overview of the related works in
the field of passive device identification in a network.

This thesis is partly related to Ben Paterek’s master thesis [19], in which he proposed
a method for selecting indicative hostnames for operating system detection. In his
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work, 4 classes of operating systems were considered: Android, Links, Windows,
and Apple. The list of semi–manually selected hostnames is very short and efficient,
allowing detection based only on the presence of a hostname in the list of hosts
visited by the device in question. Detection of operating systems in this case has
different accuracy for each type of OS: from 78% for Linux up to 97% for Android.
Some parts of his algorithm are done manually, which we wanted to avoid in this
work and at the same time increase the accuracy of the detection.

When comparing the different approaches of passive identification of the operating
systems in [10], it was found that the highest accuracy was achieved using user agent
identification. This method is only applicable to the low portion of the traffic that
allows the identification of user agents. For the remaining volume, this method is not
applicable due to encryption or incompleteness of the information provided. More-
over, this method is considered unpromising as networks evolve towards encrypted
traffic where this information will not be available. On the contrary, detection based
on OS-specific domains combined with TCP/IP parameters is considered a promis-
ing method with high accuracy and coverage.

A similar approach is described in [11], where machine learning methods are used
instead of a ready-made list of domains, and detection is based on a specific com-
bination of TCP/IP packet parameters settings. In this paper, several models have
been tested, and not only their technical characteristics as time and memory require-
ments have been compared but also the results of the classifications. This approach
can identify OS in 93.4 % of the sessions with an accuracy of 85.8 %.

In [7] was found that the underlying TCP variant is an important feature for pre-
dicting the remote OS. Authors develop a sophisticated tool for OS fingerprinting
that first predicts the TCP flavor using passive traffic traces and then uses this
prediction as an input feature for another machine learning algorithm for predicting
the remote OS from passive measurements. This approach increased the accuracy
of the prediction from 84% to 94% on average across all validation scenarios.
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Chapter 3

Classifiers

There are many machine learning models, but not all are applicable to all types
of problems. Some of them perform markedly better in some tasks and quite the
opposite in others. The largest division of models occurs by the type of output given
to classifiers and regressors. For our purposes of determining the operating system
of a device between several variants, the classifier type is more appropriate, since
the expected output is a category rather than a number. Next, our model selection
can be bordered on supervised machine learning as our data is labeled.

Given the size of the dataset, which suggests a large number of parameters and
a large number of instances, some methods such as Support Vector Machines, K–
Nearest Neighbors K–means, and Neural Networks will not be time efficient. We
also assume that our classes will overlap a lot and there will not be such an obvious
separation between them.

The next big obstacle indicated in Figure 2.5 is a class imbalance, which is a problem
for most models.[2] We assume that the most appropriate models for these param-
eters are Decision Tree, Random Forest, and AdaBoost classifier. This chapter will
describe each of them in detail.

3.1 Decision Tree

3.1.1 Description

The Decision Tree (DT) classifier belongs to the family of supervised learning algo-
rithms. It has a hierarchical, tree structure, which consists of a root node, branches,
internal nodes, and leaf nodes. A DT is a classifier expressed as a recursive parti-
tion of the initial dataset. This algorithm can be used for solving regression and
classification problems. Here and further we will talk about classification versions of
algorithms only. Important terminology related to DT:

• Root node — a node without incoming edges;

• Decision node — a node with outgoing edges;

35



Figure 3.1: Schema of the decision tree classifier

• Terminal node or Leaf — a node without outgoing edges;

• Splitting — a process of making a decision node from the terminal node;

• Pruning — a process of removing decision nodes starting from the leaf node;

• Sub–Tree — a part of a tree, which is also a tree.

Instances are classified by navigating them from the root of the tree down to the
leaf under conditions in decision nodes. DT uses multiple algorithms to decide to
split a node into two or more sub-nodes. The creation of sub–nodes increases the
purity of the node with respect to the target variable. The DT splits the nodes on all
available variables and then selects the split which results in the most homogeneous
sub–nodes. There are some types of DTs based on splitting tactics [16]:

• ID3 (Iterative Dichotomiser 3)

• C4.5 (successor of ID3)

• CART (Classification and Regression Tree)

• CHAID (Chi–square automatic interaction detection)

• QUEST (The Quick, Unbiased, Efficient Statistical Tree)

The most common algorithm of these is the ID and we will look at its algorithm to
give an idea of their structure. Here are steps of the algorithm:

1. The original set S is the root node;

2. It iterates through every unused feature of the set S and calculates the entropy
H(S) and information gain IG(S) of that feature;

3. Select the feature with the smallest entropy (or the largest information gain)
value.

36



4. Split the set S by selected feature into subsets;

5. The algorithm continues to recurs on each subset, considering only features
never selected before until one of the conditions will match:

• There are no remaining features;
• There are no more instances;
• All instances belong to the same feature value.

All tactics have a similar algorithm and differ in steps 2 and 3 when a node split
occurs and a split parameter must be selected. At this point, different tactics use
different parameters to define the category of elements. CHAID works on the sta-
tistical significance of differences between the parent node and child nodes. CART
uses variance for calculating the homogeneity of a node. QUEST uses ANOVA and
contingency Chi–square test to select variables for splitting and is shown as signifi-
cantly faster than others. A comparison of tactics’ speeds and their algorithms can
be also found in [14].

3.1.2 Algorithm

Given training vectors xn 2 Rl, n = 1, ..., N and label vector y 2 RN , a decision tree
recursively partitions the feature space such that the samples with the same labels
or similar target values are grouped together.

Let the data at node m be represented by a subset Sm with sm samples, that are
considered to be divided into 2 subsets: S left

m (✓) and Sright
m (✓). For each candidate

split ✓ = (j, tm), where j is a feature and tm is a threshold, partition the data into
S left
m (✓) and Sright

m (✓) subsets will be done as follows [4]

S left
m (✓) = (x, y)|xj  tm,

Sright
m (✓) = Sm \ S left

m (✓).
(3.1)

The quality (G(Sm, ✓)) of a candidate split of node m is then computed using an
impurity function or loss function H (), the choice of which depends on the task
being solved (classification or regression)

G(Sm, ✓) =
s
left
m

sm
H(S left

m (✓)) +
s
right
m

sm
H(Sright

m (✓)). (3.2)

Select the parameters that minimize the impurity

✓
⇤
= argmin

✓
G(Sm, ✓) (3.3)

Then the splitting process recurses for subsets S left
m (✓

⇤
) and Sright

m (✓
⇤
) until one of

the conditions mentioned above will match. Those conditions in programming are
transformed into the following. Reaching the maximum allowable depth that re-
stricts expanding until all leaves are pure or until all leaves contain less than the
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minimum number of samples for splitting. Reaching the minimum number of samples
for splitting: sm < min_samples or sm = 1.

If a target is a classification outcome taking on values 0, 1, . . . , K � 1, for node m,
let

pmk =
1

sm

X

y2Sm

I(y = k) (3.4)

be the proportion of class k observations in node m. If m is a terminal node, the
predicted probability for this region is set to pmk.

The most common criteria for feature selection measures are Gini, Entropy, and Log
Loss. The least are both for the Shannon information gain. These will then be used
when running tests using the scikit–learn python library [21]:

Gini impurity:
H(Sm) =

X

k

pmk(1� pmk) (3.5)

Log Loss or Entropy:
H(Sm) = �

X

k

pmk log pmk (3.6)

The performance of the decision tree can be optimized by changing mentioned split-
ting rules or modifying the parameters of the training set. [17] One of those parame-
ters is a class weight that helps with imbalanced data sets. Weights of the classes can
be set manually or automatically adjusted inversely proportional to class frequencies
in the training set as

wk =
N

m ·
P

y I(y = k)
, (3.7)

where wk is an adjusted weight of the k-th class; N is a number of samples in the
training set; m is a number of classes. A number of features to consider when looking
for the best split can be restricted proportionally or to a specific value.

DT has a number of characteristics, which make it more flexible than other classi-
fiers. It can handle various data types, i.e. discrete, continuous values, and categor-
ical values. Additionally, it can also handle values with missing values, which can
be problematic for other classifiers. It’s also insensitive to underlying relationships
between attributes. The Boolean logic and visual representations of DTs make them
easier to understand and consume. The hierarchical nature of a DT also makes it
easy to see which features are most important, which can help to better understand
the input data.

On the other hand, DT can easily over-fit the data which can be solved with pruning.
Small changes in data can cause a large change in the structure of the DT causing
instability.

3.1.3 Parameters

To get a better idea of the parameters that can be used to modify the way the
classifier is trained, and thus influence the quality of the classification, a full list of
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parameters available in the scikit–learn python library [21] is provided below. At
the end of each explanation, in brackets, is the name of the parameter used in the
scikit–learn.

• The function for measuring the quality of a split. The most popular of them
are Gini impurity, Entropy, and Log Loss (criterion);

• The condition under which the growth of the tree stops. Nodes can be expanded
until all leaves are pure or until all leaves contain less than the allowed number
of samples for a split (max_depth);

• The minimum number of samples in a leaf for a split (min_samples_split);

• The minimum number of samples required to be at a leaf node
(min_samples_leaf);

• The minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf node (min_weight_fraction_leaf);

• The number of features to consider when looking for the best split
(max_features);

• Maximum number of leaf nodes (max_leaf_nodes);

• Minimum impurity decrease

ID =
Nt

N · (impurity � NtR
Nt·rightImpurity �

NtL
Nt·leftImpurity)

, (3.8)

where N is the total number of samples, Nt is the number of samples at the
current node, NtL is the number of samples in the left child, and NtR is a num-
ber of samples in the right child. Each number of samples refers to the weighted
sum if any was passed as a hyper–parameter (min_impurity_decrease);

• Weights associated with classes (class_weight).

• Minimal Cost–Complexity Pruning parameter ↵. Used for choosing the subtree
to be pruned as a subtree T with the largest cost complexity R↵(T ) that is
smaller than the given parameter. By default, no pruning is performed. The
complexity measure, R↵(T ) of a given tree T :

R↵(T ) = R(T ) + ↵|eT |, (3.9)

where |eT | is the number of terminal nodes in T and R(T ) is a total misclassi-
fication rate of the terminal nodes (ccp_alpha).
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3.2 Random Forest

3.2.1 Ensemble Methods

A single model may not perform well individually due to high variance or high bias.
However, when weak learners are aggregated, they can form strong learner, as their
combination reduces bias or variance, yielding better model performance.

While DTs are common supervised learning algorithms, they may have problems,
such as bias and overfitting. However, when multiple DTs form an ensemble in the
random forest algorithm, they predict more accurate results.

Ensemble learning methods are made up of a set of classifiers and their predictions
are aggregated to identify the most popular result. The most popular ensemble
methods are bagging, also known as bootstrap aggregation, and boosting. Those
methods combine a set of weak learners into strong learner to minimize training
errors.

Bagging is a method when a random sample of data in a training set is selected with
replacement, i.e. individual data points can be chosen more than once. After that
models are trained independently and the result will be in a form of the average
or majority of those predictions. This redistribution of weights helps the algorithm
identify the parameters that it needs to focus on to improve its performance. This
approach is commonly used to reduce variance within a noisy dataset.

In boosting, a random sample of data is selected, fitted with a model, and then
trained sequentially—that is, each model tries to compensate for the weaknesses of
its predecessor. With each iteration, the weak rules from each individual classifier
are combined to form one, strong prediction rule.

The main difference between those two methods is the way in which they are trained.
[18] In bagging weak learners are trained in parallel, in boosting they are learned
sequentially. Another difference between bagging and boosting is in how they are
used. For example, bagging methods are typically used on weak learners that ex-
hibit high variance and low bias, whereas boosting methods are leveraged when low
variance and high bias are observed. While bagging can be used to avoid overfit-
ting, boosting methods can be more prone to overfitting, which can be avoided by
removing confusing samples.[24]

3.2.2 Description

Random Forest(RF) is a supervised machine learning tree–based algorithm that is
widely used in classification and regression problems. In contrast to the original
publication [5], the scikit–learn [6] implementation combines DT classifiers (Section
3.1) by averaging their probabilistic prediction, instead of letting each classifier vote
for a single class.

Random forest algorithms have three main hyper–parameters, which need to be set
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before training. These include node size, the number of trees, and the number of
features sampled. As the random forest consists of DTs it inherits most of DT hyper–
parameters that will be mutual for all trees while training. The rest parameters of
the classifier describe the structure of the forest, such as the number of trees in the
forest.

While the forest construction there is a possibility to use different subsets of the
training set in each tree called bootstrap. Without the bootstrap, each tree will
use the whole train set for building each tree. Thereby there is the other hyper–
parameter that controls the possibility of using the same train sample for subsets
for different trees.

Furthermore, when splitting each node during the construction of a single tree, the
best split is found either from all input features or a random subset the size of which
can be set as an absolute or relative value.

The purpose of these two sources of randomness is to decrease the variance of the
forest estimator. Indeed, individual decision trees typically exhibit high variance
and tend to overfit. The injected randomness in forests yields decision trees with
somewhat decoupled prediction errors. By taking an average of those predictions,
some errors can cancel out. Random forests achieve a reduced variance by combining
diverse trees, sometimes at the cost of a slight increase in bias. In practice, the
variance reduction is often significant hence yielding an overall better model.

3.2.3 Algorithm

Given a training set X = {xi 2 RN for i = 1, . . . , l} with responses Y = {yi 2 R for
i = 1, . . . , l} bagging repeatedly B times selects a random sample with replacement
of the training set and fits trees to these samples:

For b = 1, . . . , B:

1. Choose a sample with replacement with k training examples;

2. Train the classification tree hi

After training, predictions for unseen samples x can be made by taking a majority
vote of predictions from all the individual trees on x:

H(x) = argmax
Y

BX

i=1

I(hi(x) = Y ), (3.10)

where H(x) is combination of classification model, hi is a single decision tree model,
Y is the output variable, and I() is the indicator function. For a given input variable,
each tree has a right to vote to select the best classification result. An example of
the Random Forest classifier is on Figure 3.2

The combination of bagging and the random selection of features to split allows the
RF to better tolerate noise. Classifiers can handle both continuous and categorical
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Figure 3.2: Schema of the random forest classifier

variables. The accuracy of RFs is not less than AdaBoost runs faster and does not
over-fit the data. [13]

3.2.4 Parameters

As the RF classifier is a combination of multiple DT classifiers, it inherits all of their
hyper–parameters but also has additional parameters for an ensemble setup. A more
detailed description of inherited parameters can be found in the previous section.

• Inherited parameters:

– The function to measure the quality of a split (criterion)
– The condition under which the growth of the tree stops (max_depth)
– The minimum number of samples in a leaf for a split

(min_samples_split)
– The minimum number of samples required to be at a leaf node

(min_samples_leaf)
– The minimum weighted fraction of the sum total of weights (of all the in-

put samples) required to be at a leaf node (min_weight_fraction_leaf)
– The number of features to consider when looking for the best split

(max_features)
– Maximum number of leaf nodes (max_leaf_nodes)
– Minimum impurity decrease (min_impurity_decrease)
– Weights associated with classes (class_weight)
– Minimal Cost-Complexity Pruning parameter (ccp_alpha).

• Parameters of the ensemble:

– The number of trees in the forest (n_estimators)
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– Possibility of bootstrapping samples. If it is turned off, the whole dataset
is used to build each tree (bootstrap)

– If the bootstrap is allowed, there is a possibility to use out-of-bag samples
to estimate the generalization score (oob_score)

– If the bootstrap is allowed, the number of samples to draw from the initial
dataset to train each base estimator can be chosen (max_samples).

3.3 Adaboost

3.3.1 Description

AdaBoost, which stands for “adaptative boosting algorithm,” is one of the most
popular boosting algorithms as it was one of the first of its kind.

The core principle of AdaBoost is to fit a sequence of weak learners on repeatedly
modified versions of the data. The results from all of them are then combined through
a weighted majority vote to produce the final prediction. The data modifications
at each boosting iteration consist of applying weights w1, w2, ...wN to each of the
training samples, which initially are set to be equal to 1/N .

At each stage of the algorithm, AdaBoost trains a new classifier using a data set in
which the weighting coefficients are adjusted according to the performance of the
previously trained classifier to give greater weight to the misclassified data points.
Finally, when the desired number of base classifiers have been trained, they are com-
bined to form a committee using coefficients that give different weights to different
base classifiers.

The final output of the AdaBoost algorithm is a weighted combination of the weak
classifiers that have been trained. The weights assigned to each classifier reflect its
performance on the training data, with more weight given to classifiers that perform
better.

One of the advantages of AdaBoost is that it can handle high-dimensional data
with many features. It is a flexible algorithm that can work with a variety of base
classifiers, including DTs, support vector machines, and neural networks. However,
AdaBoost can be sensitive to noisy data and outliers, which can negatively impact
the performance of the algorithm. AdaBoost can be computationally expensive,
especially when using a large number of weak classifiers, and requires a large amount
of training data to achieve good performance. The algorithm can be difficult to
interpret, as the final output is a weighted combination of multiple weak learners.

The AdaBoost classifier has several hyperparameters that can be tuned to improve
its performance on a given problem. Here are the main hyperparameters of the
AdaBoost classifier:

• Base estimator: an estimator from which the boosted ensemble is built;
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• Number of estimators to use in the ensemble. Increasing the number of esti-
mators can improve accuracy, but can also increase the risk of overfitting;

• Learning rate: weight applied to each classifier at each boosting iteration. A
higher learning rate increases the contribution of each classifier;

• Algorithm: SAMME or SAMME.R are two options for the algorithm, that will
be demonstrated further.[1]

3.3.2 Algorithm

SAMME is a Stagewise Additive Modeling using a Multi-class Exponential loss
function is a multiclass modification of the Adaboost algorithm that is fully described
in the paper by Ji Zhu [8]. SAMME.R is a variant of the SAMME as its output is
a real-valued number.

In AdaBoost each base classifier ym(x) is trained on a weights w
(m)
n depend on the

performance of the previous base classifier ym�1(x). Once all base classifiers have
been trained, they are combined into the final classifier YM(x).

The original algorithm for binary classification starts with the assumption that we
have an input vector of N elements corresponding binary target variables t1, . . . , tN
where tn 2 {�1, 1}, M classifiers, w(1)

n is an associated weighting parameter, so the
algorithm of the AdaBoost will be as follows[3]:

1. Initialize the data weighting coefficients wn by setting w
(1)
n = 1/N for n =

1, . . . , N

2. For m = 1, . . . ,M :

(a) Fit a classifier ym(x) to the training data by minimizing the weighted
error function

Jm =

NX

n=1

w
(m)
n I(ym(xn) 6= tn) (3.11)

where I(ym(xn) 6= tn) is an indicator function and equals 1 when
ym(xn) 6= tn and 0 otherwise.

(b) Evaluate the quantities

e
(m)

=

PN
n=1 w

(m)
n I(y

(m)
(xn) 6= tn)PN

n=1 w
(m)
n

(3.12)

and then use these to evaluate

↵
(m)

= log

⇢
1� e

(m)

e(m)

�
. (3.13)

(c) Update the data weighting coefficients

w
(m+1)
n = w

(m)
n exp{↵(m)

I(y
(m)

(xn) 6= tn)} (3.14)
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3. Make predictions using the final model, which is given by

Y
(M)

(x) = sign

 
MX

m=1

↵
(m)

y
(m)

(x)

!
. (3.15)

3.3.3 Multi-Class Modifications of the AdaBoost Algorithm

The SAMME algorithm for K classes

1. Initialize the data weighting coefficients wn by setting w
(1)
n = 1/N for n =

1, . . . , N

2. For m = 1, . . . ,M :

(a) Fit a classifier y
(m)

(x) to the training set using weights wn.
(b) Evaluate the quantities

e
(m)

=

PN
n=1 w

(m)
n I(y

(m)
(xn) 6= tn)PN

n=1 w
(m)
n

, (3.16)

where I(y
(m)

(xn) 6= tn) is an indicator function and equals 1 when
y
(m)

(xn) 6= tn and 0 otherwise. Then use these to evaluate

↵
(m)

= ln

⇢
1� e

(m)

e(m)

�
+ log(K � 1). (3.17)

(c) Update the data weighting coefficients

w
(m+1)
n = w

(m)
n exp{↵(m)

I(y
(m)

(xn) 6= tn)} (3.18)

3. Make predictions using the final model, which is given by

YM(x) = argmax
k

 
MX

m=1

↵
(m) · I(y(m)

(x) = k)

!
. (3.19)

The SAMME.R algorithm does not use ↵ in the algorithm as it gives all models an
equal weight of one. The main difference between SAMME and SAMME.R is that
SAMME is a returned value. The SAMME returns a discrete value: either 0 or 1.
SAMME.R returns probabilities that the sample belongs to a certain class.

1. Initialize the data weighting coefficients wn by setting w
(1)
n = 1/N for n =

1, . . . , N

2. For m = 1, . . . ,M :

(a) Fit a classifier y
(m)

(x) to the training set using weights wn.
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(b) Obtain the weighted class probability estimates

p
(m)
k (x) = Probw(c = k|x), k = 1, . . . , K. (3.20)

(c) Set

h
(m)
k (x) = (K � 1)

 
log p

(m)
k (x)� 1

K

KX

k0=1

log p
(m)
k0 (x)

!
, k = 1, . . . , K.

(3.21)
(d) Set

w
(m+1)
n = w

(m)
n exp

✓
�K � 1

K
y>
n logp(m)

(xn)

◆
, n = 1, . . . , N. (3.22)

3. Make predictions using the final model, which is given by

YM(x) = argmax
k

MX

m=1

h
(m)
k (x). (3.23)

3.3.4 Parameters

The list of parameters of the classifier, that can be adjusted:

• The base estimator from which the boosted ensemble is built (estimator);

• The maximum number of estimators at which boosting is terminated
(n_estimators);

• Weight applied to each classifier at each boosting iteration. A higher learning
rate increases the contribution of each classifier (learning_rate);

• The boosting algorithm (algorithm): SAMME or SAMME.R;

3.4 Evaluation Metrics

A confusion matrix is a table that is used to evaluate the performance of a supervised
machine–learning algorithm by comparing the predicted and actual values of the
target variable. In a multi–class classification problem, the confusion matrix is a
square N ⇥ N matrix, where N is a number of predicted classes. The rows and
columns of the confusion matrix correspond to the actual and predicted class labels,
respectively. Each element of the matrix represents the number of instances that
were predicted to belong to a particular class and their actual class. The actual
class labels forming the rows and the predicted class labels forming the columns

Here is an example of a 3⇥3 confusion matrix for a multi–class classification problem
with three classes. Unlike binary classification, there are no positive or negative
classes here in general, but each value can be calculated for each individual class.
We will demonstrate the calculations for the Class 1. The 4 important terms:
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Predicted Class 1 Predicted Class 2 Predicted Class 3
Actual Class 1 True Positive (TP1) False Negative (FN2) False Negative (FN3)
Actual Class 2 False Positive (FP4) True Negative (TN5) True Negative (TN6)
Actual Class 3 False Positive (FP7) True Negative (TN8) True Negative (TN9)

Table 3.1: Multi–class confusion matrix. Example for 3 classes

• True positive (TP): the number of instances that were correctly classified as
Class 1. (TP1)

• True negative (TN): the number of instances that were correctly classified as
not Class 1. (TN5)+(TN6)+(TN8)+(TN9)

• False positive (FP): the number of instances that the model predicts a sample
to be a member of Class 1, but in reality, the sample belongs to a different
class. (FP4)+(FP7)

• False negative (FN): the number of instances that a model fails to predict as a
member of Class 1, but the sample actually belongs to that class. (FN2)+(FN3)

A confusion matrix gives very simple, yet efficient performance measures for the
model. By analyzing the confusion matrix, we can calculate various performance
metrics such as precision, recall, and F1 score for each class separately. In multi–class
problems, the confusion matrix provides a more detailed and informative evaluation
of the performance of the machine learning model compared to a simple accuracy
score. It allows us to see with which class Class 1 was confused more often and to
adjust a model accordingly.

Here are some of the most common performance measures that can be used from
the confusion matrix. Accuracy gives the overall accuracy of the model considering
the exact class, meaning the fraction of the correct predictions.

Accuracy =
Number of correct predictions

Total number of samples
=

TP + TN

TP + TN + FP + FN
(3.24)

Precision tells what fraction of predictions as a positive class were actually positive.

Precision =
TP

TP + FP
(3.25)

Recall tells what fraction of all positive samples were correctly predicted as positive
by the classifier.

Recall =
TP

TP + FN
(3.26)

To combine precision and recall values into one score the f1–score is used.

f1 = 2⇥ Precision⇥ Recall

Precision+ Recall
=

2TP

2TP + FP + FN
(3.27)

In multi–class classification there are 2 types of f1–score: micro–average and macro–
average. The macro–average f1 is an average of the f1–scores of individual classes.
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The micro–average is calculated by considering the total TP, total FP, and total FN
of the model. It does not consider each class individually, it calculates the metrics
globally, so in our example, the micro–average f1–score will be calculated as a sum of
values on the main diagonal over two times the sum of values off the main diagonal.
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Chapter 4

Experiments

In previous sections, we explored the general information about given data and
the amount of information contained in it. We have also broken down the possible
variants of variables and their values, which can improve the classification results.
Among the variables were not only characteristics of the incoming dataset but also
hyperparameters of the classifiers and ways of vectorization. In this section, specific
values of the proposed parameters will be tested and the most successful variants
will be selected.

The chapter is divided into two parts: the first part is for finding the most effi-
cient filters for input data, and the second part uses the results of the first part
and aims to improve the achieved results by selecting the classifier and tuning its
hyper–parameters. The Scikit-learn library in Python [22] was chosen for the ex-
periments because it implements a wide range of machine–learning tools, including
the necessary machine–learning models and a grid search, which will help find the
desired combination of parameters.

4.1 Input Parameters Tuning

Figure 4.1: Machine learning process flow. Filtering
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To train the classifier, we want to use the dataset with the lowest number of errors,
with the best quality and most reliable information, reflecting the data for which
the trained classifier will be used. The dataset used for training the classifier has
to represent the chosen use case for the classifier, in our case, the operating system
detection. Which information is relevant for the selected use case is determined
by the evaluation metrics, e.g., accuracy or precision, as mentioned in Section 3.4.
For our use case, the prediction accuracy is the more important parameter, as the
classifier’s prediction on the operating system may be used further in the incident
response and misclassification may lead to wrong decisions. Hence, we prefer more
precise detection of the OS on fewer devices to less precise detection on many devices.

There are two parameters that can indicate the quantity of information for a given
device: the quality of records and their quantity. The quality of records was described
in the previous sections and cannot be improved by restoration. The quantity of
information about a given device could be measured in two ways: the number of flows
or the number of unique hostnames visited by the device, so the first 2 experiments
are devoted to investigating these parameters.

For the first and the second experiments, described in the following two subsections,
we will fix the values of the other filters and only change the value of the investigated
one, and monitor how it affects the results of the experiments. Thus the values of
the fixed parameters for the first experiment will be as follows:

• Rows with raw IPs were removed;

• Top–level domains were removed from the hostnames;

• Device was labeled if we were able to label at least 5 % of its flows, and the
label was chosen by the majority voting;

• Lists of visited hostnames were vectorized with TF–IDF:

– Hostnames were tokenized as a whole, without division into domains of
different levels;

– Minimal document frequency is set to 2, i.e. hostname must be visited
by at least 2 devices to be added as a feature in a feature vector;

• Vectors had a frequency representation;

• Classifier set to the default parameters except for class weights, which will be
balanced during the training of the classifier.

For the second experiment, we will fix the threshold on the number of flows at
its most successful value and investigate various values of the minimal document
frequency.
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4.1.1 Threshold on the Number of Flows

The filtering process implies a decrease in the number of devices which can lead
to proportion disturbance and therefore affect the quality of the learning process.
The confirmed negative effect of an unbalanced dataset [2] can be corrected by
inadvertent balancing during the filtering process. To check that this effect does not
occur a separate experiment was performed.

The experiment showed that the threshold reduces the number of devices while
maintaining the proportions of the labels. However, for some devices that reduction
could be more significant than for others due to an imbalanced data set. The exact
number of devices with a certain label can be seen in Table 4.1.

Threshold
1 2 10 50 100 150 200 300

Android 4381 4347 4269 3938 3535 3161 2755 1971
Linux 17684 17533 15435 11995 10310 9352 6827 4827
Mac OS X 362 362 321 240 201 177 158 126
Windows 60028 59989 58932 55835 53603 51297 49288 45412
iOS 1757 1755 1724 1539 1410 1296 1196 1035

Table 4.1: Distribution of labels depending on the minimum number of flows re-
quirement

The following Table 4.2 demonstrates the dependency of the accuracy on the required
minimum number of flows.

Threshold
1 2 10 50 100 150 200 300

Android Precision 0.94 0.96 0.95 0.96 0.92 0.95 0.93 0.95
Recall 0.89 0.9 0.88 0.9 0.89 0.88 0.88 0.93

Linux Precision 0.97 0.97 0.96 0.96 0.96 0.95 0.95 0.97
Recall 0.97 0.95 0.96 0.97 0.96 0.97 0.95 0.96

Mac OS X Precision 0.29 0.36 0.51 0.44 0.88 0.82 0.85 1
Recall 0.49 0.52 0.48 0.34 0.34 0.3 0.38 0.25

Windows Precision 1 0.99 1 0.99 1 1 0.99 1
Recall 1 1 1 1 1 1 1 1

iOS Precision 0.93 0.79 0.84 0.93 0.93 0.91 0.94 0.94
Recall 0.94 0.94 0.97 0.95 0.95 0.91 0.94 0.97

T 3m 3m 2m50s 2m19s 1m56s 1m46s 1m30s 1m3s
ND 84K 84K 80K 73K 69K 65K 60K 53K
LV 63.4K 63.8K 64K 63.8K 63.7K 63.5K 63.5K 63.3

Table 4.2: Accuracy of the RF classifier for the different thresholds for a number of
flows (T: training time, ND: number of labeled devices that met the threshold, LV:
number of hostnames in the training dataset).

As can be seen from the table, accuracy for all labels except for one does not change
much. Devices with Mac OS X labels show rapid growth in precision and recall
values with the raising threshold, which could be explained by a total parity of that
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Figure 4.2: Dependency of the RF classifier precision on the minimum number of
flows and

devices. With the growing threshold, devices with lower activity are filtered out, so
there are fewer devices about which we know the least information, therefore devices
with more uncertainty.

Figure 4.2 shows how precision and the number of devices change with the value
of the threshold. The Y–axis for each graph on the figure has a different meaning.
For the precision graph, the Y–axis means indeed the precision score. For the num-
ber of devices, Y–axis means the percentage of devices remaining after the applied
threshold.

As can be noticed in the figure the precision score has a significant improvement
between 50 and 100 required flows, but as for the number of devices, there is just
a little decrease. In further experiments, the value of 100 for this parameter will be
considered as optimal.

4.1.2 Threshold on the Number of Visited Hostnames

The other way to mark devices as active is by the number of visited hostnames.
General information about the number of hostnames per device in the data set is
in Table 1.4. In this section, we will evaluate the impact of that parameter on the
accuracy of the RF classifier.

The number of visited hosts is an intuitively understandable parameter, which, how-
ever, differs a lot across the given labels, because some of them belong to mobile
devices with very different usage styles. Therefore, we do not expect devices with
Android label to visit more unique hosts than devices with Linux label. Further-
more, if we look at the distribution of labels depending on a lower threshold for
unique labels demonstrated in Table 4.3, we can notice, that for large values of the
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threshold some labels are completely filtered out of the data set.

Threshold

1 2 10 20 50 100 150 200 300

Android 4381 4205 3542 2276 211 8 4 2 1

Linux 17684 15922 4696 693 133 44 22 9 3

Mac OS X 362 333 196 101 53 24 9 7 3

Windows 60028 59366 54563 47827 30650 16703 10342 7867 5049

iOS 1757 1753 508 260 34 1 0 0 0

Table 4.3: Distribution of labels depending on the requirement on the minimum
number of visited hostnames

The results of the experiments in Table 4.4 showed that this filter is not as efficient
as the previous one. There is some increase in accuracy after filtering out devices
that had visited one host, but the further increase of the threshold value leads to
a decrease in accuracy, a significant reduction of the total number of flows, and a
minor decrease in the vectors’ length.

Threshold
1 2 10 20 50 100

Android Precision 0.94 0.96 0.96 0.96 0.93 x
Recall 0.89 0.88 0.9 0.98 0.97 x

Linux Precision 0.97 0.96 0.93 0.93 1 x
Recall 0.97 0.97 0.94 0.73 0.59 x

Mac OS X Precision 0.29 0.4 0.73 1 0.6 x
Recall 0.49 0.49 0.39 0.24 0.3 x

Windows Precision 1 0.99 0.99 1 1 x
Recall 1 1 1 1 1 x

iOS Precision 0.93 0.96 0.84 0.87 1 x
Recall 0.94 0.94 0.83 0.74 0.64 x

T 3m 2m51s 1m20s 29s 7s x
ND 84K 81K 63.5K 51K 31K 16K
LV 63.4K 63.7K 63.5K 62.8K 60K 56K

Table 4.4: Accuracy of the RF classifier for the different thresholds for a number
of visited hostnames (T: training time, ND: number of labeled devices that met the
threshold, LV: number of hostnames in the training dataset)

4.1.3 Hostname Format

Some hostnames can differ by only one single domain; the remaining domains may
be the same. Those hostnames may have the same characteristics and be com-
mon for some groups of labels and completely atypical for others. For example,
www.bbc.com and www.m.bbc.com lead to the same web, and joe.wordpress.com and
marry.wordpress.com lead to the different hosts with different popularity, but those
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pages could be combined into one group "URLs created with WordPress". Those
hostnames seemed distinct in the telemetry, but uniting such cases may help to im-
prove the accuracy of the classification and reduce the dictionary size, therefore, the
length of the feature vectors. In this section, we will test various modifications of
the hostname’s format and compare the impact on the results of the classification.

The hostnames consist of domains of various levels. The Top Level domains, located
at the end of the hostname, are only a few types so they might not bring additional
information. On the other side, the low–level domains are too specific for a given
hostname and also might be useless for differentiating OS. Hence we try different
combinations of the domains to evaluate the value of the information carried.

Formats of hostnames in each experiment presented in Table 4.5 are as follows:

• I: without modification;

• II: hostnames were separated into individual domains;

• III: Raw IP addresses were removed from the feature vectors;

• IV: Second level domain (SLD) and top–level domain (TLD) were combined
together and the rest of the hostname was as it is;

• V: Only SLD and TLD were left in hostnames together, lower-level domains
were removed;

• VI: The same as the previous one, but SLD and TLD were separated this time;

• VII: TLDs were removed from hostnames;

Experiment
I II III IV V VI VII

Android Precision 0.9 0.91 0.9 0.89 0.92 0.93 0.91
Recall 0.83 0.81 0.81 0.83 0.79 0.79 0.84

Linux Precision 0.95 0.95 0.95 0.96 0.93 0.94 0.95
Recall 0.96 0.96 0.97 0.96 0.97 0.97 0.97

Mac OS X Precision 0.84 0.8 0.8 0.76 0.63 0.64 0.7
Recall 0.57 0.56 0.51 0.51 0.38 0.46 0.45

Windows Precision 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Recall 1 1 1 1 0.99 0.99 1

iOS Precision 0.91 0.91 0.93 0.96 0.94 0.94 0.93
Recall 0.95 0.95 0.93 0.95 0.9 0.91 0.94

Table 4.5: Accuracy of the RF classifier for the different formats of hostnames

From experiments, it follows that accuracy in results for each class is varying for
different filters. The best accuracy for Android is achieved for a shortened version
of a hostname, where only TLD and SLD are used and each of them is a feature on
its own. However, devices with Mac OS X label for the best precision score required
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all available information and the precision score is decreasing with every additional
limitation.

To summarize the results of the experiments, we conclude, the best 2 options for
a hostname’s format are specified in experiment number III and number VII. The
results of combining those 2 transformations can be seen in Table 4.6 in column III.
Slight degradation in precision for devices with Linux label can be observed along
with improvement in precision for other devices when compared with the results of
each transformation separately.

4.1.4 Vectorization

In this subsection, we present a series of experiments with different text vectorizers
described in Section 2.3 to investigate their impact on the performance of a clas-
sification task. To compare two classifiers mentioned in Section 2.3 we conducted
experiments with a different set of filters and token variations and compared the
results of experiments where the only difference was the selected vectorizer.

Experiment
I II III IV V VI VII

Android CV 0.88 0.91 0.91 0.89 0.88 0.96 0.94
TF-IDF 0.94 0.95 0.98 0.94 0.93 0.96 0.94

Linux CV 0.91 0.92 0.92 0.93 0.93 0.89 0.81
TF-IDF 0.96 0.96 0.96 0.95 0.95 0.92 0.95

Mac OS X CV 0.67 0.84 0.89 0.78 0.74 0.6 0.88
TF-IDF 0.81 0.71 0.82 0.85 0.71 0.79 0.71

Windows CV 0.99 0.99 0.99 1 1 0.99 1
TF-IDF 0.99 1 1 1 1 1 1

iOS CV 0.96 0.92 0.95 0.94 0.94 0.85 0.82
TF-IDF 0.94 0.92 0.94 0.92 0.88 0.97 0.88

Table 4.6: Change in prediction accuracy depending on the selected vectoriser

Experiments, as in the previous section were made with the RF classifier with the
default parameters. A second mutual parameter is a minimum number of flows which
is set to 50 flows. The rest filters, including parameters of the vectorisers, can be de-
scribed by the scheme in Table 4.7 with colors in the column of the experiment. The
last, blue, row on the scheme shows the format of hostnames used in the experiment.
For example, filters in Experiment V described in Table 4.7 are as follows:

• Minimum document frequency of a hostname is 50;

• Minimum number of visited hostnames for each device is 5;

• Hostnames that are left in the data set do not include raw IP addresses
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Experiment no. I II III IV V VI VII

Flow Threshold (�) 10 50 10

Visited Domains (�) 2 5 10 20

Hostnames - No IPs No IP & No TLD No IP

Table 4.7: Scheme of applied filters and transformations for experiments described
in Table 4.6

4.2 Hyper–parameters of the classifiers

Figure 4.3: Machine learning process flow. Classification

The previous section was dedicated to the filtering and transformation of the input
dataset and the representation of feature vectors. In this section, we will discuss
the possibilities for improving the parameters of the classifiers and compare their
precision. The proposed new parameter values will be tested along with the default
parameters that were used in all previous experiments. Thus, we do not exclude the
possibility of choosing the default parameters as the best combination, and we will
also try out a partial improvement of the default parameters by combining them
with new ones.

We used GridSearchCV 1 function to try the different combinations of suggested pa-
rameters. This function requires the scoring parameter which will numerically eval-
uate the classification. For multi–class classification, balanced accuracy was chosen
as the scoring parameter. This parameter avoids inflated performance estimates on
imbalanced datasets.

If yi is a true value if the i-th sample and wi is the weight of the sample, then the
adjusted weight w

a
i will be:

w
a
i =

wiP
j I(yj = yi)wj

, (4.1)

1http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html
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where I(x) is the indicator function. Therefore, for predicted ŷi for the i-th sample
balanced accuracy is defined as:

balanced accuracy(y, ŷ, w) =
1P
w

a
i

X

i

I(ŷi = yi)w
a
i . (4.2)

For the experiment, we will fix the filters and transformation of the input data on
values selected in the previous section, so the only difference in experiments is the
classifiers and their parameters. The parameters chosen in the previous sections are:

• The minimum number of flows per device is 100;

• The minimum number of visited hostnames is 1;

• Feature vectors have frequency representation;

• Raw IP addresses and TLDs are removed from the list of hostnames;

• The rest hostnames should be visited by at least 2 devices in the data set.

Most of the parameters influence the fine splitting of the data, which is very im-
portant for highly imbalanced data sets with a small number of samples in some
classes. Tuning of hyper–parameters can significantly improve the time of training
and save computational resources. As can be seen from the previous experiments on
classifiers set to default parameters, the time spent on training the classifier is quite
small and is not the main problem. The experiments in this chapter are primarily
aimed at improving the prediction of underrepresented/overlapped classes.

We chose three classifiers to compare: Decision Tree (DT), Random Forest (RF),
and AdaBoost. Detailed information about those classifiers and the description of
their hyper–parameters are in Chapter 3.

4.2.1 Decision Tree

Default Chosen by GridSearchCV()
criterion Gini impurity Gini impurity
max_depth none none
min_samples_split 2 2
min_samples_leaf 1 1
min_weight_fraction_leaf 0 0
max_features none none
max_leaf_nodes none none
min_impurity_decrease 0 0
class_weight none Balanced
ccp_alpha 0 0

Table 4.8: Hyper–parameters of the Decision Tree classifier
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The depth of the tree is already set to its maximum, as well as the number of samples
to split and the number of samples in the leaf.

By trying the different criterion values classifier changes the way of measuring
the quality of a split, and by testing different weights of the classes the focus of
the classifier can be shifted to weaker classes. The suggestion is to compare the
imbalanced (the default setting, already tested), balanced, and custom weights, that
are shifted to the classes with worse results.

The default balanced weights are calculated in inverse proportion to class frequencies
in the training set (3.7). Suggested sets of weights are in Table 4.9.

Default Balanced Set 1 Set2
Android 1 3.95 1 10
Linux 1 1.33 1 3
Mac OS X 1 69.93 100 100
Windows 1 0.26 1 1
iOS 1 9.8 5 30

Table 4.9: Variety of class weights for training the classifier

The output of the GridSearchCV() function is an optimal combination of suggested
parameters, and in this case, they are, as also shown in Table 4.8: gini criterion and
balanced class weights.

The results of the classification for each class with tuned hyper–parameters are
presented in Figure 4.4.

Figure 4.4: Results of the classification with the DT classifier with tuned parameters.

4.2.2 Random Forest

The next tested classifier is a Random forest, which is an ensemble of decision trees,
described in Section 3.2. The default parameters of the classifier are in Table 4.10.
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Default Chosen by GridSearchCV()
criterion Gini impurity Gini impurity
max_depth none none
min_samples_split 2 2
min_samples_leaf 1 1
min_weight_fraction_leaf 0 0
max_features none none
max_leaf_nodes none none
min_impurity_decrease 0 0
class_weight none Balanced
ccp_alpha 0 0
n_estimators 100 100
bootstrap False False
oob_score False False
max_samples None None

Table 4.10: Hyper–parameters of the Random Forest classifier

In the case of the Random Forest classifier, some of the hyper–parameters which
are inherited from the DT classifier, the results of the previous experiments can be
used. In that experiment, we will focus on parameters that tune the ensemble setup,
which is n_estimators, bootstrap, oob_score and max_samples.

Similarly to the previous experiment, we will use the GridSearchCV() function,
which will test combinations of the following values.

• bootstrap: True, False;

• n_estimators: 50, 100, 120;

• oob_score: True, False;

• max_samples: None, 0.5, 0.3;

The following parameters have been chosen by the function as the best: n_estimators
= 100, bootstrap = False, therefore, oob_score = False and max_samples = None.
That set of parameters matches the default setup. The precision score for each class
can be found in Figure 4.5.

4.2.3 AdaBoost

The AdaBoost classifier uses boosting algorithm, described in Section 3.3, applied
to the decision tree classifiers. Unlike the RF classifier, ensembles of the AdaBoost
can be used with different base classifiers. In that experiment was used DT as a base
classifier. Default parameters of the classifier:

• The base estimator estimator is the DT classifier with a maximum depth
equal to 1;
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Figure 4.5: Results of the RF classifier with tuned hyper–parameters

• The maximum number of estimators n_estimators = 50;

• The learning rate learning_rate = 1;

• algorithm is SAMME.R;

Tested parameters:

• n_estimators: 30, 50, 70;

• learning_rate: 0.5, 1, 2;

• algorithm: SAMME, SAMME.R;

Parameters that have been chosen by GridSearchCV(): algorithm = SAMME.R,
learning_rate = 1, and n_estimators = 70. The results of training the classifier
with those parameters are in Figure 4.6.

Figure 4.6: Results of the classification with AdaBoost classifier with tuned param-
eters
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The results are as expected worse than the results of the RF classifier because boost-
ing the ensemble of DTs was also tested in experiments on RF hyper–parameters and
did not show a better–balanced accuracy score than the ensemble without boosting.

There is a possibility, that changing the base classifier can give better results.

4.3 Discussion

As in any research work, the results of experiments and new explorations of new
depths of the topic open up new horizons for future work. Unfortunately, not all
of these discoveries fit into this work due to their volume, but we would like to
mention them. In this section, we would like to tell about some methods that have
not been implemented, as well as some possibilities that have been found during the
experiments, and achieved results.

The first such possibility is a different way of labeling devices. The confusion matrix
was not fully shown in this thesis, however, its values showed the biggest confu-
sion between the Mac OS X and the Windows classes. Section 2.2 also described
the labeling method and separately pointed out the specifics of the iOS devices.
We assume, that devices with those two labels can be mislabeled and the labeling
approach should differ from other devices or a new labeling algorithm should be
developed for all devices. the other possibility is to join those two classes as their
behaviour could be similar.

The second improvement can be done by filtering active hostnames by the combi-
nation of the number of flows and the number of devices. In Subsection 1.2.2 found
a correlation between those values, that can be used for developing of a new crite-
rion for hostnames filtering. Analogically can be investigated and developed filter
for devices by combining the number of visited hostnames and the number of flows.

Experiments can be repeated with different ratios of known/unknown user agents
and different labeling processes, than was used in this thesis. This could improve
the labeling of the devices, and improve the results of the classification. The results
demonstrated above were performed on data on the lower border of confidence, where
labels were assigned to devices that we know at least something about. Certainly,
by raising a confidence border for labeling more and more devices will be filtered
out, and the results of the classification can change too.

Experiments on hyper–parameters of classifiers show that the default parameters
are a pretty good estimation. For the Decision Tree and Random Forest, only one
hyper–parameter was improved.

In comparison with other classifiers, the AdaBoost classifier has the worst results,
which could be improved with the different base classifiers.
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Conclusion

In this thesis, a method was developed to apply machine learning to detect the
operating system of a device on a network based on its behaviour, namely based on
visited hostnames. The method was developed using data collected from network
devices from 9 different networks over a 24-hour period. The collected data set was
in a form of a table with information from the headers of the TCP packets. From
the table were used: device ID, hostname, user agent, and a number of flows.

The resulting table was analysed for completeness and diversity of data and, based on
this analysis, methods were proposed to help identify the most useful and complete
information for training the operating system classifier. The results of the analy-
sis showed that the information needed to label devices were available for 76% of
the traffic, but only 44% of devices were labeled using the most permissive labeling
method. There was also a strong imbalance of classes, where the most underrep-
resented class was the device class with the Mac OS X label, which was partly
explained by the labeling method: the user agents with this label were dominant
only in a small proportion of cases.

The greatest improvement of the classifier was achieved by introducing the threshold
on a minimum number of flows, which increased the accuracy of the prediction for the
most difficult class of devices, with Mac OS X label, by 44%. On the contrary, using
the threshold for the number of visited hostnames proved to be ineffective. When
comparing vectorisation methods used for processing the hostnames, the TF–IDF
showed distinctly better results than the Count Vectorizer. Similarly, experiments
on feature representation showed a strong correlation between its shape and the clas-
sification results. The most successful experiment was the one in which hostnames
were without top–level domains and there were no raw IPs among them.

In the final part, experiments were carried out to tune the parameters of the classi-
fiers, which revealed that the default settings of hyper–parameters were quite close
to the most optimal ones and were only slightly adjusted. The Random Forest clas-
sifier with balanced class weights had the best performance: achieved precision for
Android devices is 95%, Linux — 95%, Mac OS X — 96%, Windows — ⇠100%,
and iOS — 95%.

The resulting algorithm has achieved, by a combination of simple transformations
and filters, a high level of accuracy in the device operating system prediction. The
other advantage of the algorithm lies in its versatility and not being tied to a specific
company, region, or period of time. The method proved to be fast, simple, and easily
adjustable if necessary.
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Appendix A

Additions to Chapter 1

A.1 Top 30 Popular Hostnames. Devices

Hostname Devices Devices, %
NAN 100035 48.17
ctldl.windowsupdate.com 81873 39.43
www.msftconnecttest.com 57682 27.78
x1.c.lencr.org 54370 26.18
www.google.com 41567 20.02
ocsp.digicert.com 39987 19.26
edgedl.me.gvt1.com 38866 18.72
update.googleapis.com 36903 17.77
config.edge.skype.com 35572 17.13
login.microsoftonline.com 33115 15.95
arc.msn.com 32798 15.79
18.185.217.177 31457 15.15
ocsp.pki.goog 31455 15.15
18.184.249.36 31449 15.14
18.194.154.159 31425 15.13
ipv6.msftconnecttest.com 31121 14.99
login.live.com 29872 14.39
13.107.21.239 28852 13.89
204.79.197.239 28852 13.89
3.120.91.16 28620 13.78
18.196.194.92 28589 13.77
3.121.5.209 28510 13.73
40.127.240.158 28487 13.72
api.msn.com 28435 13.69
safebrowsing.googleapis.com 28336 13.65
51.104.136.2 28275 13.62
smartscreen-prod.microsoft.com 27835 13.4
assets.msn.com 27748 13.36
www.bing.com 27588 13.29
51.124.78.146 27210 13.1

Table A.1: The most popular hostnames by number of devices
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A.2 Top 30 Popular Hostnames. Flows

Hostname Number of flows Flows, %
g.ceipmsn.com 185452847 37.7
NAN 49085551 9.98
weather.service.msn.com 11366343 2.31
istio-galley.platform.svc 9889967 2.01
212.23.17.73 3960073 0.81
www.msftconnecttest.com 3790441 0.77
cloud-ec-asn.amp.cisco.com 3628237 0.74
ctldl.windowsupdate.com 3224064 0.66
www.google.com 2732376 0.56
maglevserver.maglev-system.svc.cluster.local 2596825 0.53
www.ciscoconnectdna.com 2497382 0.51
staging.ciscoconnectdna.com 2278257 0.46
officecdn.microsoft.com 2235599 0.45
detectportal.firefox.com 2130231 0.43
connectdna.cisco.com 2098499 0.43
monitoring.googleapis.com 2057820 0.42
login.microsoftonline.com 2041318 0.41
136.117.74.62 1884563 0.38
dl.delivery.mp.microsoft.com 1856126 0.38
cndp-20211202-monitor.dev.cndp-cloud-proxy.com 1811161 0.37
tetra-defs.amp.cisco.com 1698475 0.35
tlu.dl.delivery.mp.microsoft.com 1659932 0.34
cndp-20211202-configbe.dev.cndp-cloud-proxy.com 1502701 0.31
edgedl.me.gvt1.com 1481729 0.3
staging-connectdna.cisco.com 1345288 0.27
maglev.maglevcloud3.tesseractinternal.com 1290580 0.26
assets.msn.com 1283379 0.26
outlook.office365.com 1186002 0.24
download.windowsupdate.com 1152534 0.23
self.events.data.microsoft.com 1145690 0.23

Table A.2: List of the most popular hostnames by the number of flows
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A.3 Ua–Parser Return Examples

from ua_parser import user_agent_parser
import ppr int
pp = ppr int . Pre t tyPr in t e r ( indent=4)
ua_str ing = ’ Moz i l l a /5 .0 � ( Macintosh ; � I n t e l �\
Mac�OS�X�10_9_4) �AppleWebKit /537 .36 � (KHTML, �\
l i k e �Gecko ) �Chrome /41 . 0 . 2272 . 104 � Sa f a r i /537 .36 ’
parsed_str ing = user_agent_parser . Parse ( ua_str ing )
pp . ppr int ( parsed_str ing )
{ ’ dev i c e ’ : { ’ brand ’ : ’ Apple ’ ,

’ f ami ly ’ : ’Mac ’ ,
’ model ’ : ’Mac ’ } ,

’ os ’ : { ’ f ami ly ’ : ’Mac�OS�X’ ,
’ major ’ : ’ 10 ’ ,
’ minor ’ : ’ 9 ’ ,
’ patch ’ : ’ 4 ’ ,
’ patch_minor ’ : None} ,

’ s t r i n g ’ : ’ Moz i l l a /5 .0 � ( Macintosh ; � I n t e l �Mac�OS�X�10_9
������������_4) � ’ ’AppleWebKit /537.36 � (KHTML, � l i k e �Gecko )
������������\�Chrome /41 . 0 . 2272 . 104 � ’ ’ S a f a r i /537 .36 ’ ,

’ user_agent ’ : { ’ f ami ly ’ : ’Chrome ’ ,
’ major ’ : ’ 41 ’ ,
’ minor ’ : ’ 0 ’ ,
’ patch ’ : ’ 2272 ’ }}

Listing A.1: Example of using the Parse function [23]
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Appendix B

Additions to Chapter 2

B.1 Number of Flows per User Agent Label

Label Number of flows
Other 289797163
Empty 118683118
Windows 74152949
Linux 5661875
Android 1741906
Ubuntu 557032
Debian 513565
iOS 312982
Mac OS X 242470
Red Hat 85230
Web0S 34253
HOFER 25874
CentOS 21531
Samsung 17772
NABO 14017
Chrome OS 10633
FreeBSD 9289
Fedora 3293
Chromecast 2366
Tizen 1400

Table B.1: Number of flows per user agent label captured in the given data set
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B.2 Number of Devices per User Agent Label

Label Number of devices
Other 176192
Empty 173100
Windows 81872
Linux 21038
Android 11748
iOS 9652
Debian 5416
Mac OS X 1420
Ubuntu 746
Red Hat 485
CentOS 319
Chrome OS 20
Tizen 18
Fedora 17
Web0S 9
Samsung 4
FreeBSD 3
HOFER 2
Chromecast 2
NABO 1

Table B.2: Number of devices that used user agents with the certain label
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Appendix C

Attachment Information

The following files are part of the electronic attachment of this work:

• Three Python notebooks with the source code:

– The first file contains the filtering process: reading the input file from
the directory, applying filters, showing some statistics, graphs, and other
information about the resulting dataset, and saving the output file to the
external directory. (Filtering.ipynb)

– The second file describes the labeling process: it downloads some files
made by the first notebook, plots information about the dataset, and
labels the given list of devices. The list of devices and their labels are
saved into a given directory. (Labeling.ipynb)

– The last notebook loads some output files of the first notebook, a list of
labeled devices from the second notebook, and combines the information
to prepare a dataset for vectorization and training the classifiers. The in-
put dataset is filtered, transformed, vectorized, divided into train and test
sets, and passed for training the classifiers with the default parameters
or running the GridSearchCV function. (TrainingAndEvaluation.ipynb)

• The file with the information about the notebooks (README.txt)

Computational results and outputs of some cells were redacted and anonymized to
protect personally identifiable information.
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