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znamé Rényiho rozvoje v redlné bazi. My pak konkrétné uvazujeme alternujici systémy, ve kterych
roli baze hraje ¢isté periodicka posloupnost. Studujeme aritmetiku v téchto systémech a definujeme
takzvanou vlastnost konecnosti a vlastnost kladné konec¢nosti. Uvadime a dokazujeme nékolik nut-
nych a postacujicich podminek pro tyto vlastnosti. Mezi ostatni vysledky patii i véta o existenci
a jednoznacnosti alternujici baze s periodou 2, potfebna pro zobecnéni Parryho véty. Nakonec se za-
méfujeme na vlastnosti ¢isté periodickych rozvoju v systémech s Cantorovou realnou bazi. Vysledky

tykajici se aritmetiky a ¢isté periodickych rozvoju jsou znazornény v nékolika prikladech.

Klicovd slova: systémy se zobecnénou Cantorovou bazi, alternujici baze, aritmetika, ¢isté periodické

rozvoje

Title: Arithmetics in generalised Cantor base systems
Author: Bc. Katarina Studenicova

Supervisor: Prof. Ing. Zuzana Masakova, Ph.D.

Abstract: We study recently defined positional numeration systems called Cantor real base systems.
They include classic expansions of real numbers known as Cantor series and also the well-known
Rényi expansions in a real base beta. Particularly, we consider alternate base systems with the base
being a purely periodic sequence of real numbers. We study arithmetics in these systems, and define
so-called positive finiteness and finiteness property. We state and prove several necessary conditions
and a sufficient condition of these properties. Other results include a proposition about existence
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Lastly, we study properties of purely periodic expansions in Cantor real bases. Results considering
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Introduction

Various ways of representing real numbers have been studied by mathematicians for centuries. In this
work, we focus on one particular construction, the so-called generalised Cantor base numeration
system. Although Cantor published his work already in the 19th century, some of his ideas about
numeration systems are still discussed lively even today. The definition of the system we are
interested in was first given only recently in [4] and [6] by two independent groups of researchers.
Our goal is to contribute to the study of these systems and to provide illustrative examples.

In the first chapter, we recall notions from combinatorics on words, matrix theory, and number
theory. Another preliminary part is Chapter 2, in which we focus primarily on Rényi numeration
systems. We provide the essential definitions and several theorems considering S-expansions, their
periodicity and finiteness, and especially purely periodic expansions.

The third chapter is devoted to the description of generalised Cantor base systems. We at first
focus on the definition of these systems and recall some of their properties as they were already
presented in numerous papers, mainly [4] and [6]. Then we expand on the notion of generalised
Cantor base, which so far allowed only representations of numbers in [0, 1] by the one-sided string
of digits, so that all real numbers can be represented as bi-infinite strings. We call such generalisa-
tion a bi-infinite Cantor real base. In addition, we provide a definition of positive finiteness (PF)
and finiteness property (F') for these systems. These properties reflect closedness of the set of num-
bers with finite expansions under addition and subtraction, and are potentially crucial in order to
perform the arithmetical operations in generalised Cantor base systems.

In Chapter 4 we focus on the proof of existence and uniqueness of a base suitable for the gen-
eralisation of the Parry theorem. This theorem is well-known in the context of Rényi numeration
systems, and possible generalisation of this theorem is of great interest to researchers in the field
of non-standard numeration systems. The proof of a proposition considering the existence of the suit-
able base is an important step towards an analogue of the result of Parry for generalised Cantor
base systems.

Chapter 5 is devoted to one of the main results of our work — we focus on arithmetics in bi-
infinite Cantor real bases. Firstly, we formulate and prove several necessary conditions of positive

finiteness and finiteness property. We also inspect the connection between property (PF') and (F)
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for an alternate base and its shifts. One of the main results of our thesis is a sufficient condition
of positive finiteness property. Moreover, we present a whole class of bases satisfying this condition.
All properties were at first carefully verified on examples that we provide in Appendices A and B.

The last research chapter comments on the properties of numbers with purely periodic (-
expansions. This research question was strongly influenced by the previous research in Rényi nu-
meration systems and systems with negative bases, see [2, 19, 1, 16]. The main problem considered
the existence of I'(3) € (0, 1] such that all rational numbers in [0,I'(3)) have purely periodic 3-
expansion. We at first provide a necessary condition of the property I'(3) > 0, and then we focus
on the initial step toward proving a sufficient condition. Alongside the theoretical results, we anal-
ysed expansions of multiple sets of fractions in several alternate bases. We hope that this numerical
experiment will greatly help to develop an intuition and to formulate new propositions considering

purely periodic expansions.
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Chapter 1

Preliminaries

1.1 Combinatorics on words

Let us briefly introduce the basic concepts of combinatorics on words as may be found in [15].
A finite set of symbols A is called an alphabet, its elements are referred to as letters. However,
in the context of numeration systems, we will usually call them digits. A finite word is a finite
sequence of letters. We will denote it by w = wjws...w,. In this notation n is the length of
the word w, symbolically |w| = n. The empty sequence is called the empty word and usually
denoted by ¢, we set |¢| = 0. We will denote by A* the set of all finite words over the alphabet A.
This set equipped with the operation of concatenation, defined for any two words v = vivs ... vm,
W = WIW2 . .. Wy a8

VW = V1V ... UV W1W?2 . . . Wy,

forms a monoid. Similarly, an infinite sequence of letters indexed by positive integers will be called
a right-sided infinite word, or sometimes, for the sake of brevity, just an infinite word. An infinite
sequence of letters indexed by n € Z will be referred to as a both-sided infinite word, or shortly just
as a bi-infinite word. The set of all right-sided infinite words is usually denoted by AN, the set of all
both-sided infinite words is denoted by AZ.

A finite word w is called a factor of a word v (finite of infinite), if there exists a finite word
x and a word y such that v = xwy. The factor x is a prefiz of v, the factor y is a suffix of v.
The prefix x is proper if v # @, analogously, the suffix y is proper if v # y. A language is any
subset of A*. The set of all factors of a word w is called the language of wu.

Let us assume we have an order on the alphabet A (denoted by <). The lezicographic order
(denoted by <) on words in A* is defined as follows. For two finite words u, v we have u < v if u is
a proper prefix of v or if there exist finite words x, va, uo and letters a, b such that w = xaus,v =
xbvy and a < b. For u, v infinite words, the lexicographic order is defined as u < v if there exists

a finite word @, infinite words us, v and letters a, b such that u = xaus, v = xbvy and a < b.
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We denote u” the factor u which is repeated n times consecutively. Similarly, if a word w
ends in infinitely many repetitions of some factor w, we denote it by w = vu®. In that case we say
that the word w is eventually periodic (or periodic). The word v is then called the preperiod, and
u the period of the word w. If v = ¢, then we say that the word w = vu®“ = u® is purely periodic.
Note that finite words may also be written in the form w = vu® for u = ¢, therefore we consider
finite words as periodic with period .

Let us introduce a metric on A* U AN. Let u,v be two words in A* U AY. If one of them is
finite, take some symbol which is not contained in A, let us denote it a, and extend the finite word
by o to the right. If both words are finite, take two distinct symbols not contained in the alphabet,
say « and [, and extend u by o to the right and v to 8% to the right. Then the distance of two
words (which were either infinite or both extended as described) u = ujug... and v = vjvs...,
u # v, is defined as

1
d(u, v) = inf{k >1|up # v}

If u=v we set d(u,v) := 0. It is readily seen that the above defined function d is indeed a metric
and therefore induces a topology on A* U AN,

Lastly, let us define the so-called shift operator. For a word a = ajaqas ... we define the shift
operator o as

o(a):=azas....

Iterating this operator gives us 0" (@) = am4+1am+2 - - - -

1.2 Standard representations of real numbers

Firstly, recall a numeration system where the base is a natural number. This system is surely

well-known and used on a daily basis.

Definition 1.1 (S-ary representation). Let 8 > 1 be an integer, z > 0 be a real number. An infinite

sequence (z;);<k, where x; € {0,..., 5 — 1} for all i, satisfying
S
i<k

for some k € Z is called a B-ary representation of x.

Now consider a numeration system where the base is a real number 8 > 1. These systems are

know as Rényi numeration systems. We will recall their properties and other details in Chapter 2.
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Definition 1.2 (S-representation). Let 5 > 1 and x > 0 be real numbers. A S-representation of x

is a sequence (z;)¥___, where z; € Ny for all i € N and x, # 0, satisfying

k
v= Y wf (L1.1)

1=—00

We denote a S-representation of x, as it is usual even in other numeration systems, by

TpTp_1...T0*T_1T_2... for k > 0,

0:0...0xgrp_1... otherwise.
N——
—(k+1) times

In the first case, the word xpxg_1---xo is called the integer part of the [-representation of x,
the word x_1x_o--- is the fractional part of the S-representation of x. Analogically, in the second
case, the integer part is zero and the fractional part consists of all the symbols to the right of the radix
point. If a B-representation ends in infinitely many zeros we call the representation finite and we
often omit repeating zeros.

Another generalisation of numeration systems with integer base was proposed by Cantor in
1869 [5]. Instead of considering just one integer, in this case the base consists of a sequence of positive

integers.

Definition 1.3 (Cantor representation). Let 2 € [0,1) be a real number and (b;);>1 be a sequence

of integers greater than 1. Let z be represented as

ax a2 as
x= o+ T 1.2
Z Hz bi by biby | bybobs (12)

where a, € {0,...,b, — 1} for all n € N. If apapti1an+2... # (b — 1)(bpy1 — 1)(bpg2 — 1)...
for all n € N, we call the series (1.2) the Cantor series of x and the sequence (ay)p>1 the Cantor

representation of x.

Note that the condition anapiianto... # (by — 1)(bpt1 — 1)(bpgy2 — 1)... for all n € N is
necessary in order to ensure uniqueness of expansions. It can be proven that for each sequence
(bi)i>1 of integers greater than 1 and for each real number = € [0,1) there exists a unique Cantor
representation of x (the digits can be obtained by an algorithm similar to the standard greedy
algorithm). The sequence (b;);>1 from the above definition is usually called the Cantor base. Other

properties of Cantor base systems will be presented in Chapter 3.
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1.3 Classes of numbers

Let us now recall several definitions from number theory. An algebraic number [ is a root of a monic
polynomial with rational coefficients. Among such polynomials the one with the smallest degree
is irreducible over Q and is called the minimal polynomial of 8. The degree of an algebraic number
is defined as the degree of its minimal polynomial. Other roots of the minimal polynomial of 3
are called conjugates of 3. Note that conjugates of 8 are mutually distinct. Some authors consider
even 3 its own conjugate. To avoid confusion, especially in newly formulated propositions in later
chapters, we will always make clear if that is the case or not.

An algebraic integer [ is a root of a monic polynomial with integer coefficients. It can be shown
that its minimal polynomial also has integer coefficients.
According to the properties of their conjugates we may define several classes of algebraic integers.

An algebraic integer 5 > 1 is called
e a Pisot number if all its conjugates have modulus < 1,

e a Salem number if all its conjugates have modulus < 1 and at least one conjugate lies on

the unit circle,
e a Perron number if all its conjugates have modulus < j.

From the definition, it is clear that both Pisot and Salem numbers are Perron numbers. Since
Pisot numbers will be often discussed in later chapters, let us now give some examples of these
numbers. The smallest Pisot number is the larger root of the polynomial 2 — 2 — 1. Another

well-known class is a set of quadratic Pisot numbers. They can be classified as follows

2 —maz —n, where m,n € N, m > n,

1. larger roots of polynomials of the form x
2. larger roots of polynomials of the form 2> — max + n, where m,n € N, m >n +2 > 3.

Lastly, let us give several comments on isomorphisms of number fields we will be working with.
We will denote Q(3) the minimal subfield of C containing 3. In case that § is an algebraic number

of degree n, the field can be written in the following form

QB) ={ao+aiB+ - +an_18"" | a; € Q}.

Note that fields Q(5) and Q(/3;), where 3; are conjugates of 3, are isomorphic. It is clear from
the relation above that o € Q(f) may be written as a = g(3), where g is some polynomial with

rational coefficients. Then we may define an isomorphism ¢; : Q(8) — Q(p;) as

¢;(9(B)) = 9(B;).
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Moreover, for an algebraic number 3, the subfields Q(3;) are the only subfields of C isomorphic
to Q(8).

1.4 Matrix theory

We now recall two well-known theorems about matrices — Perron-Frobenius and Gershgorin circle

theorem [10].

Theorem 1.4 (Perron-Frobenius). Let M be an irreducible non-negative complex p X p matriz with

spectral radius A. Then the following statements hold.
1. The number X is a positive real number and it is an eigenvalue of the matriz M.
2. The eigenvalue X has one-dimensional eigenspace.
3. M has an eigenvector with eigenvalue A whose components are all positive.

4. The only eigenvectors whose components are all positive are those associated with the eigen-

value \.

The number A from the theorem is called the Perron—Frobenius eigenvalue. The theorem
holds for an irreducible non-negative matrix. According to the definition, the matrix is irreducible
if and only if it can not be transformed by any simultaneous permutation of rows and columns into
a block upper triangular form. Equivalently, a matrix is irreducible if and only if the oriented graph

associated with the matrix is strongly connected.

Theorem 1.5 (Gershgorin). Let M be a complex p x p matriz. Denote m;; elements of M and
R; = Zz’;ﬁj|m’ij|' Denote D; := D(a;, R;) the closed disk centered in a;; with radius R;. Then
the spectrum of Ml is a subset of |J,; D;.

In particular, if the matrix M is diagonal, then the set | J, D; coincides with spectrum. For di-
agonally dominant matrix with non-negative elements the above theorem implies that the real parts

of all eigenvalues are non-negative.

16



Chapter 2

Rényl numeration systems

This chapter will be devoted to properties of S-representations of real numbers. We have already

given the definition of these numeration systems in Preliminaries, see Definition 1.2.

2.1 [-expansions

So far the only requirement that we have on [-representation is the convergence of the sum (1.1).
We will now introduce a particular S-representation — the representation computed by the so-called
greedy algorithm.

Greedy algorithm
Let 8 > 1 and = > 0 be real numbers. Let us denote |z] the integer part of z and {z} := z — =]

the fractional part of z. Then the greedy algorithm consists of the following steps.

e Find k € Z such that gF < z < gFtl,

e Put xp = Lg—kj and 1 = {ﬂ%}

e Fori < k put x; = |fBriy1]| and r; = {friz1}.

In this way we obtain the digits x; of the S-representation of x in the form (1.1). We will denote this
representation by (x)g and call it the greedy expansion of x. If § is an integer, the digits obtained
by the algorithm belong to {0, 1,...,3—1}, otherwise the digits are in {0, 1,...,|[3]}. Note that for
[ being an integer the greedy representation coincides with the S-ary representation as introduced

in Definition 1.1.

Remark 2.1 (Radix order). Let us introduce the radiz order on [-representations. A [-
representation xy ... xg+x_1 ... is greater with respect to the radix order than the S-representation
Yr-. Yo+ Y—1-.., if either k> 1, or k =1 and x; > y; for j = max{i < k| z; # y;}. We will denote
this by

Th---TO0*T—1.-- >rad Yl---Yo*Y-1----

17



Note that the greedy algorithm yields the largest S-representation of a given x according to the radix
order. Lastly, let us recall the fact, that the radix order on greedy expansions corresponds to the or-

dering of real numbers, i.e. for 5 > 1 and x,y > 0, the following holds

<y <= ()8 <rad (Y)s-

Remark 2.2. Note that if (x)g = zp2k—1... 20 T—1 ..., then xpxp_1 ... 21 - 2o2_1... = (%)5 We
see that multiplication by some power of § is equivalent to shifting the radix point. Now let = > 1
be a real number. For any 8 > 0 there exists k € N such that g% < z < g¥*!, hence 0 < # < 1.
Therefore it is enough to consider just representations of numbers in [0, 1], representations of all
other positive numbers can be obtained simply by shifting the radix point. In the following text,

when working with the numbers x € [0, 1), we will use notation z =), , ;87" instead of indexing

used in (1.1), i.e. z will be represented by the sequence (z;)i>1.

The -representation of z € [0, 1) obtained by the greedy algorithm can be defined equivalently
in terms of a particular transformation and its orbits. Let us therefore introduce the following
mapping.

Transformation T}

In the light of Remark 2.2 we consider just z € [0,1],5 > 1. The mapping T3 : [0,1] — [0, 1)
defined by

Tp(w) = {Br}

is called the (B-transformation. One particular S-representation (z;);>1 of x can be then defined
by x; = LﬂTgfl(:z:)J for i > 1. We will denote this S-representation of x € [0,1] as dg(x) and
call it the B-expansion. Note that for x = 1 the transformation does not give us the same result
as the greedy algorithm, however we will see later that dg(1), the so-called Rényi expansion of 1,
will play an important role. Therefore, we will often use a special notation for the digits of this
representation

dﬁ(l) = t1lats....

On the other hand, the greedy expansion of 1 is always of the form (1)g = 1.

S

Q

1+
2

1.618.... Let us find dg(1) for § = 7. The digits will be t; = |7| =1, to = [7(7 — 1)] = 1]
0=t =ty =.... Therefore d,(1) = 110“.

Example 2.3. The golden ratio 7 is the larger root of the polynomial 22 — 2 — 1, i.e. 7 =

1

)

We now define the infinite Rényi expansion of 1 in the base [ as

ds(1) :== lim dg(1 —¢),

e—0t

18



where the limit is in the metric introduced in Section 1.1. It can be shown that this expansion can

be rewritten in the following form.

Proposition 2.4. For 8 > 1 the infinite Rényi expansion of 1 is of the form

dg(1 if dg(1) s infinite,
25(1) = (1) (1)
(tita .. tp—1(tm — 1))*  ifdg(l) =t1---t,0% for some m € N and t,, # 0.

Example 2.5. Proposition 2.4 allows us to easily calculate that in the base of the golden ratio we

have d%(1) = (10)~.

The infinite Rényi expansion of 1 enables us to decide whether a given S-representation is even

the [-expansion or not [18].

Theorem 2.6 (Parry condition). For 8 > 1 let ® = (x;);>1 be a [-representation of x € [0,1).
Then x1xs ... = dg(x) if and only if for all j >0

ol (x) < dj(1). (2.1)

A string of non-negative integers satisfying the Parry condition (2.1) is called admissible. If
the string of non-negative integers does not satisfy (2.1), we say it is forbidden.

We could ask what conditions some sequence (t;);>1 must satisfy in order to be a S-expansion
of 1 or an infinite Rényi expansion of 1 in some base 5 > 1. The following theorems by Parry [18§]

answer this question.

Theorem 2.7. Let us have t = tita..., t = 10¥. Then t = dg(1) for some > 1 if and only if
forall j € N
ol (t) < t. (2.2)

Theorem 2.8. Let us have t = tito..., t > 10¥ with infinitely many non-zero digits. Then
t =dj(1) for some B > 1 if and only if for all j € N

ol(t) <t (2.3)

19



2.2 Periodicity and finiteness

Let us now mention some notions connected with finiteness and periodicity of the greedy expansions.
The well-known result considering S-expansions of 1 is that dg(1) is never purely periodic. However,
a special class of numeration systems with § such that dg(1) is eventually periodic is interesting
from the number theoretical point of view, and was first examined already by Parry [18]. Therefore,

such numbers S are called Parry numbers. It is known that
Pisot numbers C Parry numbers C Perron numbers .

On the other hand, the relation between Salem and Parry numbers had not been fully described
yet. Note that in the case of quadratic algebraic numbers Pisot and Parry numbers coincide. Let us
give one interesting illustrative example. The larger of real roots of 2% — 323 — 222 — 3 is a Perron
number, but it is neither a Pisot nor a Salem number. Moreover, S-expansion of 1 is in this case
finite: dg(1) = 3203, therefore this number is a Parry number.

We now present several known results about sets of numbers with periodic expansions, finite

expansions, and numbers with fractional part of their S-representation 0“. For 5 > 1 we denote

Per () = {x € R | (|z|)s is eventually periodic},
Fin (8) = {x € R | (|z]) g has just finitely many non-zero digits },

Zg ={x € R|(|z|)g = xpTg—1...20 - 0¥ for some k € Ny}.

One of the main results concerning the set Per (/) is a well-known theorem of K. Schmidt [19].

Theorem 2.9 (Schmidt). Let 5 > 1 be a real number. If Q(B) = Per(5), then [ is either a Pisot
or a Salem number. On the other hand, if B is a Pisot number, then Per(f) = Q(f).

Remark 2.10. Note that the greedy expansion of z € [0,1) is finite if and only if there exists n
such that Tg(:n) = 0 and is periodic if and only if the orbit of x under T} is finite. By the orbit of
z under T we mean the set {7} (z) [ n > 1}.

The set Zg is also known as the set of -integers. It is not difficult to show that for 8 > 1
the set Zg is a ring if and only if 5 € N.

On the other hand, the situation for the set Fin(f) is far more complicated. If g > 1 is
an integer, then Fin(f) is closed under addition, subtraction, and multiplication, i.e. it is a ring.
However, if > 1 is not an integer, we do not know any general algebraic description that would
help us decide whether Fin(f) is a ring. Let us now introduce a so-called finiteness property and

positive finiteness property, we denote (F') and (PF).
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Definition 2.11. Let 8 > 1. We say that g satisfies (F), if Fin(3) is closed under addition. We
say that g satisfies (PF), if Fin(/3) is closed under addition of positive elements.

It is not difficult to show that 8 > 1 satisfies (F) if and only if Fin(3) is a ring, i.e. closed
under addition and multiplication of its elements. Equivalently, 5 > 1 satisfies (F'), if and only if
Fin(3) = Z[3, 37']. We now state several results considering Property (F) as they were presented
in [3, 11].

Proposition 2.12. Let > 1 be such that Property (F) is satisfied. Then [ is a Pisot number

such that none of its conjugates v, v # 3, is a positive real number.
Proposition 2.13. Let > 1.

1. If dg(1) is infinite, then B does not satisfy (F).

2. If dg(1) is finite, then B satisfies (F') if and only if it satisfies (PF).

Note that even if dg(1) is infinite, the set Fin(f) may be closed under addition of positive elements.
Let us now explore the second case of the above proposition. The goal is to describe the process
of addition of positive elements of Fin(3). We follow the construction presented in [3]. Note that
authors were working especially with representations with non-zero digits just on the left-hand side
of the radix point. They may indeed do so, because the shift of representation corresponds just to
multiplication of z by 3, as we already mentioned. In this chapter we follow their formalism, and

thus usually index digits of the given word with descending indices.

Definition 2.14. Let 8 > 1. A forbidden string arag_1...ao of non-negative integers is called

minimal, if
® ap_1...ag and ag ...aq are admissible, and
e a; > 1 implies ay...a;41(a; — 1)a;—1...ap is admissible for all i € {0,...,k}.

For a 8 > 1 such that dg(1) = t1ta. .. t,, is finite, surely a minimal forbidden string has to have

one of the forms
(ti+1),  tta+1), ..., tte...(tma+1),  tits...tm_1tm.

Note that not all such strings have to be minimal forbidden. In order to construct an algorithm
for addition, authors of [3] use wisely chosen transcriptions of forbidden strings. Let us present their

definition of transcription.
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Definition 2.15 (Transcription). Let k,p € Z, k > pand let z = > ;|

A finite sum 37, v; 37 such that > i v;’ = z and

23, where z; € Ny for all 4.

k<n and UpUp—1...00 = 00...0 2p...2

(n—k) times
is called a transcription of Zf:p 2B

Now the following necessary condition on 3 such that Fin(/3) is closed under addition of positive

elements may be stated.

Proposition 2.16 (Property T). Let § > 1. If Fin(pB) is closed under addition of positive elements,
then 3 satisfies Property T:
k
For every minimal forbidden string agag_1 ...aq there exists a transcription of Zaiﬁi.
i=0
If Property T is satisfied, then the transcription of a series representing number z > 0
in base f > 1 can be obtained in the following way. Again, as already mentioned before, it
suffices to consider only representations with non-zero digits just on the left-hand side of the radix
point. If a representation of z contains a forbidden string, the series representing z can be written as
a sum of a value of minimal forbidden string on a suitable position 37 (v,8" +- - - +v;8') and a series
representing some number u in base 5. The new transcribed [-representation of z is obtained by
digit-wise addition of the transcription 7 (v," + --- + v;4!) and the B-representation of u. Re-
peating this process yields a lexicographically increasing sequence of transcribed Sg-representations
of z. In general, this procedure may be repeated infinitely many times without obtaining the lexico-
graphically greatest (-representation of z. The following propositions provide sufficient conditions

for avoiding this situation.

Proposition 2.17. Let 8 > 1. Suppose that for every minimal forbidden string arax_1 - ..ag there

exists a transcription Z?:l v; 3 of Z?zo a; 3" such that

n k
TS o
]:l j:()

Then B satisfies (PF'). Moreover, for every positive z,y € Fin(3), the greedy expansion of x + y

can be obtained from any finite B-representation of x + y using just finitely many transcriptions.

The following corollary presents one class of bases satisfying the conditions of the above proposition.

This result was originally presented in [11].
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Corollary 2.18. Let > 1 be such that dg(1) =t1...tm,, t1 >ty > --- >ty > 1. Then (3 satisfies
(PF).

In the light of Proposition 2.13 we may conclude that such [ satisfies finiteness property.
A result similar to the above corollary for the case when dg(1) is periodic with length of period 1

was shown as well in [11].

Proposition 2.19. Let 8 > 1 be such that dg(1) =t1 ... ty—1(tm)”, t1 >t > -+ > ty1 >ty > 1.
Then f satisfies (PF).

2.3 Purely periodic expansions

When dealing with numbers with periodic S-expansions, we may be interested if these expansions are
even purely periodic or not. Consider the decimal system and numbers in (0, 1). It is well known that
in this case all rational numbers have periodic expansions. Among them, the numbers of the form %
where p and ¢ are coprime and ¢ and 10 are coprime, have purely periodic expansion. This result
may be straightforwardly reformulated for integer bases 5 > 1. However, when considering 5 ¢ N,
the problem becomes much harder.

Consider the following examples. Let ;1 = 7 be the golden ratio. In this case Schmidt [§]
proved, that each rational number in (0, 1) indeed has purely periodic T-expansion. On the other
hand, it has been shown in [13], that for 35 the larger root of polynomial 22 — 3z + 1 there are no
rational numbers in (0, 1) with purely periodic 2-expansion.

In the sequel we present several results from [1| about bases [ such that all sufficiently small

rational numbers have purely periodic S-expansions. Denote

I'(B) :==sup{c € [0,1) | Vp/q: 0<p/q<ec, dg(p/q) is purely periodic}.

In the examples above I'(51) = 1 and I'(82) = 0. It can be shown, that if I'(8) > 0, then necessarily 3
is an algebraic integer. Moreover, it was shown in [2] that 5 must be an algebraic unit. Furthermore,
by the result of Schmidt [19], such base 3 is either a Pisot or a Salem number. Later, see the work
of Akiyama [2|, this result was further specified — it has been proven that £ such that I'(8) > 0
cannot have a positive conjugate, thus it is not a Salem number. Therefore, let us conclude this
section by results about the only class of bases which possibly can have I'(3) > 0, namely the Pisot
bases.

It has been proven by [2] that the property I'(8) > 0, even though it is quite restrictive, holds

for the whole following class of 3.

Proposition 2.20. If 8 is a Pisot unit satisfying (F'), then T'(8) > 0.
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On the other hand, numbers which are not Pisot units does not have the desired property [1].
Proposition 2.21. Let > 1 be a real number which is not a Pisot unit. Then I'(5) = 0.

The case when § is either a quadratic or a cubic algebraic integer have already been charac-

terised fully |1, 13].

Proposition 2.22. Let f > 1 be a quadratic number. Then I'(8) > 0 if and only if B is a Pisot
unit satisfying (F'). In that case, T'(B) = 1.

Furthermore, if the condition is not satisfied, i.e. I'(3) = 0, then no rational number in (0, 1)
has purely periodic S-expansion (as we have already seen in the example above). Finally, let us

present results considering cubic Pisot numbers [1].

Proposition 2.23. Let § > 1 be a cubic number. Then T'(8) > 0 if and only if B is a Pisot unit
satisfying (F).

Moreover, it can be shown that Pisot quadratic units satisfying (F') correspond to positive
roots of polynomials #2 — nx — 1 for n € N. Similarly, it was proven in [2], that cubic Pisot units
satisfying (F') are precisely the largest real roots of polynomials 3 — az? — bz — 1, where a, b are
integers such that a > 1 and -1 <b<a+ 1.

Note that for 8 such as in Proposition 2.23 it does not need to be I'(8) = 1. Akiyama [2]
provided a counterexample — for o the real root of 2> — 2 — 1 the value of I' is approximately

I'(a) = 0,6667. Moreover, this example may be generalised as follows [1].

Proposition 2.24. Let 3 be a cubic Pisot unit satisfying (F') with complex Galois conjugates. Then
['(B) is irrational. In particular, 0 <T'(B) < 1.
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Chapter 3

Cantor base

Let us continue the discussion about Cantor base systems. We have already presented these systems
in Preliminaries, see Definition 1.3. Multiple articles were written about the properties of Cantor
series, especially from the stochastic perspective, for example |9, 12, 14, 20, 22|, or other works
of A. Rényi. The authors mainly discuss digit frequencies for Cantor representations. For a sys-

tematic review of these results we refer the reader to our previous work [21].

3.1 Cantor real base

We now introduce a numeration system which is a generalisation of Cantor series. Instead of an inte-
ger base, we now consider real sequences. Such systems were first considered in [4] and independently
in [6].
Definition 3.1 (Generalised Cantor). Let z € [0, 1] be a real number, 3 = (3;);>1 be a sequence
of real numbers greater than 1 such that Hz‘zl Bi = +o0o. Let x be represented as a convergent
series of the form

ai az as

Z:HZ 1 Bi ﬁ1+@+515253+”"

(3.1)

where a,, € Ng. We call the sequence (ay)n>1 a B-representation of x. The sequence B with given

properties is called a Cantor real base.

In the case that 8; = B for all ¢ € N, the representation in base 8 coincides with the -
representation, as it was presented in Definition 1.2.
We will later need to represent numbers not only in some given base (3;);>1, but also in bases

(Bi)i>n for n € N. Let us, therefore, introduce the following notation

B™ = (Bint1, Bmsas - - ) (3.2)

for m € Ny. Bases 8™ are often referred to as shifts of base 8 = 80
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Similarly as in the case of S-representations, the representation of z in base 3 need not be
unique. We will consider one special representation, which can be obtained by the greedy algorithm,
or equivalently by the S-transformation, as shown below.

Greedy algorithm for Cantor real base
For z € [0,1] and the Cantor real base 3 one particular B-representation of x, let us denote it by

(ai)i>1, can be found by the so-called greedy algorithm in the following way.
e Put a; = |f1z] and ri(z) = fix — a3.
e For n > 2 put a, = [Bnrn—1(x)] and ry(x) = Bpra—1(x) — apn.

Consequently a,, € {0,...,[8,]} for all n € N. This algorithm indeed gives us a (3-representation
of z, because we assume that HZI Bi = +00. We denote this particular B-representation of z as
dg(x) and call it the B-expansion of x.
As we mentioned before, we may obtain this representation also by the S-transformation.
Transformation 7T for Cantor real base
We have already defined the mapping T3 on the unit interval in Chapter 2. Let us recall that for
f > 1 we have Tg = {fz}. Let € [0,1] be a real number and let 8 = (f;);>1 be a Cantor real
base. Then the digits of dg(x) and the remainders 7,(x) from the greedy algorithm can be obtained

as

an = [Bn(Tp,, 00 Tp ()] (@) =T, 00T (z).

Similarly as for representations in base g8 > 1, also in the case of some given Cantor base 3,
the B-representation of = € [0, 1] obtained by the greedy algorithm, i.e. dg(z), is lexicographically
maximal among all 3-representations of x. Moreover, the lexicographical order on the 3-expansions
corresponds to the ordering of real numbers — for a Cantor real base 3 and for z,y € [0, 1] the fol-
lowing holds true

r <y < dg(z) < dg(y).

In the sequel we will be mainly interested in Cantor real bases 8 = (/3;);>1 such that the se-
quence (f;)i>1 is purely periodic, i.e. there exists p € N such that Blrti) = B0 for all k € Ny
and for all i € Ny, where 8™ as in (3.2). We call such base an alternate base, the integer p is
called the length of period of the base 3. We usually consider p minimal such, and sometimes,
for the sake of brevity, we just say that the base has period p. We denote the base of this form as
B = m and the B-expansion of x in this base as dg(x) as we already denoted it before for
all real Cantor bases. Another notation which will be used for dg(z) in some cases is dg, .. 3,)(7),
i.e. we write explicitly the components of the base and we omit the line over them for the sake

of simplicity. Note that for alternate bases it always holds that Hi21 Bi = +o0.
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Remark 3.2. According to Remark 2.10, for a real number 8 > 1 the S-expansion of = € [0,1]
is periodic if and only if the orbit of  under T} is finite, or equivalently, if and only if the set
of remainders 7 in the greedy algorithm is finite. Similarly, for an alternate base 3 = m,
the B-expansion of z is periodic if and only if there exists m, k, j € No, m # k such that rp,,4;(x) =
Tpk+; (), where r,(z) denotes the remainder in the greedy algorithm for a Cantor real base. Note

that it is indeed necessary to consider just remainders with indices congruent modulo p.

Example 3.3. Let 3 = (7,72), where 7 is the golden ratio, i.e. the greater root of 22 — 2 — 1. Let

us calculate dg(1) = t1ta... and dga)(1) = s1s2.... For base B the greedy algorithm yields

t1:LTJ:1 7“1:7'—1
ty=|r2(r=1)] = |2 -1]=|7] =1 ro=1—1
ts=|7(r—1)]=]1] =1 r3 = 0.

Similarly, for the shifted base 8(!)

81:LT2J 7“1:7'2—2

=l =] =lrr-D) = =1 =
Consequently for all n € Ny

dirar)(1) = dg(1) = dgem (1) = 1110% = 111,
dr2,r)(1) = dg (1) = dgen+n (1) = 210% = 21.

Now we would like to generalise other notions that we have already seen in Chapter 2. We may
define an infinite Rényi expansion of 1 in the Cantor real base 3 as

dg(1) == lim dg(1 —¢),

e—0t

where the limit is considered in the metric introduced in Section 1.1. Authors of [6] call this sequence
the quasi-greedy expansion of 1. Note that dE(l) is lexicographically greatest of all representations
of 1 with infinitely many non-zero digits in the given base.

We may ask if this limit can be rewritten in the form that would allow us to calculate djg(1) in
a simpler way. It is indeed possible — it can be shown, see [6], that dj(1) for the given Cantor real

base 3 is of the form

da(1 if dg(1) has infinitely many non-zero digits,
- |0 5(1) s
(tita - tim—1)(tm — 1)d*ﬁ(m)(]‘) if dg(1) =t1-- -ty for some m € N and ¢, # 0.

27



Example 3.4. Let again 3 = (7,72). Then the infinite Rényi expansions of 1 in bases 3 and
B = (72,7) may be derived as follows. We need to calculate both expansions simultaneously.

The first step of the calculation is

dg(1) = 110d}) (1) = 110d5, (1),
50 (1) = 20dg) (1) = 20dj5(1).

We may now concatenate in the following way

(1) = 110d%,, (1) = 11020dg(1),

ﬁ(l)

Therefore, both infinite Rényi expansions of 1 are purely periodic

(1) = (11020),
dy) (1) = (20110)*.

Let us now state an important result that was proven in [6] — a generalisation of the Parry

condition (Theorem 2.6).

Theorem 3.5 (Parry for Cantor real base). Let B8 > 1 be a Cantor real base and let (a;)i>1 be
a B-representation of x € [0,1). Then (a;)i>1 is a B-expansion of x if and only if for all i > 0 it
holds that

Ai1Qi42 - < dg(z)( )-

We say that a sequence & = (x,,),>1 of integers is admissible in base 3, if there exists a real
number = € [0,1) such that £ = dg(x). The above theorem provides a criterion of admissibility.

It can be proven, see [17], that a finite string is admissible in 3 if and only if for all i € Ny

Qi1 1542 < dﬁ(i) (1)

3.2 Bi-infinite Cantor real base

We now generalise the notion of Cantor real base even further. As an introductory example consider
the binary numeration system as it was presented in Section 1.2. In this system, each x > 0 may
be represented in the form = = ) _, x,2". A suitable sequence of digits x, may be obtained by
the greedy algorithm. In that case x,, € {0,1} for all n € Z. Denote (Uy)nez := (2")nez. Then

the ratio U{}“ = 2 yields the base 8 = 2 for all n. Note that we may perform the greedy algorithm,
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because lim,,—, o Uy, = +00 (thus arbitrarily large = may be represented) and lim,_,_~ U, = 0
(thus arbitrarily small z > 0 may be represented).
Let us now generalise several notions from the above example. Let (U, ),cz be a real sequence

such that Uy = 1, U{}:l > 1 for all n € Z and

lim U, = +oo,
lim U, =0.
n——oo

Denote 5, := Ug—:l for all n € Z. Then we may invert the relation between (,, and U,, as follows

Bn-1--Bo forn >0,
Un=11 for n =0, (3.5)

ﬁ forn<0.

Again, for every x > 0 there exists an integer sequence (2, )nez such that = >, 2, Uy. If the dig-
its z,, are obtained by the greedy algorithm, then z,, € {0,...,|U,]} for all n € Z. Indeed, we
may perform the algorithm because of the additional assumptions on limits (3.4). The greedy

representation of x in terms of U,, may be rewritten in terms of /3, as

T = Zl‘nUn:Zwkﬁk—l'”ﬂO""Zﬁ-

nez k>0 k<0

Definition 3.6. Consider (U,)ncz as above. Denote B := (8, )nez, where 3, := U[’}Zl for alln € Z.

We call such sequence B a bi-infinite Cantor real base induced by the sequence (Uy,)nez. We denote

B=(...026100+ B-18-2...). Take z > 0. The sequence of digits (z,)nez obtained by the greedy

algorithm as explained above is called the greedy expansion of x in B. We denote
<(L‘>B = ... 21X X1 -2 ....

Moreover, any sequence (y,)nez C Ng such that

xzzykﬂk—l"'BO‘f‘Zﬁ

k>0 k<0
is called a B-representation of x.

In any B-representation of a real number z, the sequence (y,)nez has only finitely many non-

zero digits at the left side of the radix point. We usually omit the leading zeros and write just
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Ym -+ - Y0 Y—1Y—2 - ... Similarly, we omit the suffix 0“, if there are only finitely many non-zero digits
at the right side of the radix point.

If we consider a bi-infinite sequence of real numbers (3,)ncz such that 8, > 1 for all n,
limy, 4 oo HZ;& Br = +oo and lim, o [[f__; B = +00, then the sequence (Up)nez defined by

the relations (3.5) satisfies Uy = 1, U(’}Zl > 1 for all n, lim, 1o U, = +o00, lim,,—,_ U, = 0, thus

it is the suitable sequence which induces base consisting of these 3,. We see that there is a clear
correspondence between the base and its inducing sequence. Therefore, we will usually mention just
the base.

Note that the greedy expansion of x € (0,1) in bi-infinite B = (3, )necz has non-zero digits just
at the right side of the radix point and these digits coincide with digits of the B-expansion of x in
base 3 = (8_n)n>1. Therefore for z € (0,1) we will sometimes call the greedy expansion of x in B
just the B-expansion of x.

In the one-sided Cantor real base 3 we considered one particular representation of 1, namely
the B-expansion, denoted dg(1). This notion may be naturally extended for the bi-infinite Cantor
real base B=(...[0316p+ f-18-2...) as follows

dp(1) := 0 - dg(1),

where 8 = (B_n)n>1- Again, the B-expansion of 1 is lexicographically greatest of all 5-
representations of 1 such that they have non-zero digits just at the right side of the radix point.
Instead of writing dg(1) = 0+ x_jx_5... we will often use the notation similar as for the case
of one-sided base dp(1) = tita.. ..

Similarly as when working with one-sided Cantor real base, we define the i-th shift of base

B=(..5p1po-B-18-2...) as

(-~-61/80/8—1-~~6—i’/B—i—l---) fOI‘iSO,
('--51"/61'—1--'6150/3—1---) for ¢ > 0.

B .—

We will be especially interested in the case when B is periodic with period p € N, i.e.

B=1(...8,81B2...Bp-BiBa...BpBr...).

In this case B = B*P) for all k € Z. This case is a natural extension of the notion of an alternate
Cantor real base 8 = (f1,...,0p). We call such B a bi-infinite periodic extension of 3. We will also
denote the periodic bi-infinite base as B = (f1,...,0p) and call it an alternate bi-infinite Cantor

real base.
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We conclude this section with definitions of several notions, especially considering finiteness

of representations, analogous to those in Section 2.2.

Definition 3.7. Let B be a bi-infinite Cantor real base. We denote
Fin (B) = {z € R | (|z|)s has only finitely many non-zero digits}.

Definition 3.8. Let B be a bi-infinite Cantor real base. We say that B satisfies finiteness property,
denoted (F'), if Fin(B) is a closed under addition. We say that B satisfies positive finiteness property,
denoted (PF), if Fin(B) is closed under the addition of positive elements.

Note that, unlike in the case of Rényi bases, Property (F') does not need to mean that Fin(B)
is a ring, because it may not be closed under multiplication of its elements, as the following example

illustrates.

Example 3.9. Consider B = (81, 32), where 31 is the positive root of the polynomial 222 — 7z — 3,
and f32 is the positive root of the polynomial 3z — 5z — 4. Then dp(1) = 32, dgu(1) = 21, and
the system has Property (F'), as it will be shown in Section 5.4. Now consider the number z = %

Surely, z € Fin(B), since (z)g = 0- 1, but
(xxx)p=0-010 2]“,

thus Fin(B) is not closed under multiplication of its elements.
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Chapter 4

Existence and uniqueness of a suitable

base for generalised Parry theorem

In this chapter we focus on the proof of existence and uniqueness of a suitable base, as it is needed
in order to further generalise Parry’s [18| characterisation of digit sequences which can serve as
greedy expansions of 1, see Theorem 2.7. We are especially interested in a generalisation for the sys-
tems with alternate Cantor bases. The original theorem for a Rényi base (3 is a simple consequence
of other results of Parry, mainly of Theorem 2.6. However, the situation for an alternate Cantor
base is considerably more difficult. We solve this question for the case when the length of period
of the base is p = 2.

Firstly, let us comment on the existence of 51 and (2 such that given sequences would be

representations of 1 in an alternate Cantor base (1, f2) and (32, f1) respectively. At first, we state

a lemma that will be needed in the proof of existence of a suitable base.

Lemma 4.1. Let (¢y)n>1 be a bounded sequence of non-negative real numbers, ¢y > 1. Then there

exists a unique 3 > 1 such that

1=y % (4.1)

k>1

Proof. For a bounded sequence (cp)p>1 the right-hand side of (4.1) is a power series in % with
radius of convergence p > 0. Denote Zkzl g—’fc =5 <%) For % approaching p from the left S goes
to infinity, for % approaching 0 from the right the value of S goes to zero. Moreover, the power
series S is continuous on the interval (0, p). Therefore, there has to exist 8; such that (4.1) holds
true, i.e. S (i) = 1. The function S is strictly monotone, thus such f; is unique. Since ¢; > 1

and all terms are non-negative, it has to be 51 > ¢1 > 1. O
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Note that if the sequence above has at least two non-zero digits, then the suitable § is strictly
greater than c¢;. We may now prove the existence and uniqueness of a suitable Cantor real base

for the case of two given sequences.

Lemma 4.2. Let ajaz..., bibs... be two bounded sequences of non-negative integers such that

a1 > 1, by > 1 and both sequences have at least two non-zero digits. Then there exist unique B1 > 1

and By > 1 such that the given sequences are representations of 1 in the bases (51, 52) and (B2, B1)

respectively.

Proof. Existence. Firstly, note that 81 and 52 have to be positive solutions of the following system

of two equations

0=F =—-14+—4+ "4+ —=—+--- 4.2
u(@,y) tetm Tyt (4.2)
b b b
0=Fy(z,y) = —1+— + =+ — 4. (4.3)
Y ry xy

Now for Fy(z,y) = 0 denote y = ¢p(x) the corresponding implicit function. By Lemma 4.1
applied on equation (4.3), for each > 0 there exist a unique y > 1 such that Fy(z,y) = 0.
Moreover, since all terms of the sum in (4.3) except —1 are non-negative and there exist & > 1 such
that by > 0, it has to be y > b;. Thus ¢} is a function that maps (0,+o00) into (b1, +00). Let us

now comment on surjectivity of this functions onto (b1, +00). Equation (4.3) may be rewritten as

b by bs b =1 by | baig . h 1
1—;4‘;@/4‘@4‘"'—;4‘2; ?—Fy“_l —54-5(5)
i=1

Take y € (b1, +00) fixed. The above sum may be considered a power series in variable % with radius
of convergence p > 0, because (by)r>1 is bounded and y is fixed. For % approaching p from the left,

the value of S goes to infinity. For % approaching 0 from the right, the value of S goes to zero.

Power series S is continuous on (0, p) and we have % < 1, thus there has to exist 1 > 0 such that
b
1=—+8 <ﬁ) :
Yy

ie. y = pp(x1). Therefore, ¢y is onto (by, +00). Moreover, since there are at least two non-zero
digits in the sequence (bg)r>1, the function ¢y is strictly decreasing, thus injective. The function
decreases to the horizontal asymptote y = b;.

Similarly, for F,(x,y) denote x = 1,(y) the corresponding implicit function. By Lemma 4.1
applied on equation (4.2) and discussion similar as above we have that for any y > 0 there exists
x > a; such that F,(z,y) = 0. Analogously, v, : (0,+00) — (a1, +00) is strictly decreasing, thus

injective and it can be shown that it is also surjective. Therefore, there exist its inverse function
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©0a = (1a)71 ¢ (a1,+00) — (0,400). The vertical asymptote for ¢, is * = a1, the function is
strictly decreasing and the horizontal asymptote is y = 0.

Finally, note that both functions ¢, and ¢ are continuous, therefore there has to exist an in-
tersection of their plots (x,y), such that x > a1, y > b;. These x, y are solutions of both (4.2) and
(4.3), thus = and y are a suitable choice for 31, 82 > 1. We illustrate this for one particular choice

of sequences in Figure 4.1.

Figure 4.1: A plot of functions ¢, in orange and ¢ in blue for sequences
321 and 222.

Uniqueness. With notation as above we have Fy(z,y) = Fy(x,pq(x)) = 0 for all z > ay.

The chain rule for the derivative yields

OF, OF,
¢ + . SDIG = Oa
Ox oy
therefore oF
‘P:z == 381%
By
Similarly
OFy
0
%= ~or,
Jy

We now show that (¢, — ¢p)’ < 0 at the interval (a;,+00). Consequently, the vertical distance
between graphs of continuous functions ¢, and ¢y is strictly decreasing (we consider this distance
negative when the graph of ¢, is below the graph of ¢3), thus there cannot be more than one
intersection of these graphs at the interval (a;, +00), and that proves the uniqueness of suitable (;

and fBs.

34



Let us now calculate partial derivatives of F, and Fj. Functions F, and F}, may be written as

follows

a2)— 1 aoy
Fa(z, __1+Z< - xkyk>

bok—1 boy,
Fy(a, __H'Z(xk 1 xkyk>'

Both functions may be considered power series in one variable for a fixed x or y, thus we may

exchange partial derivative and infinite sum on the convergence domain. Then

+

3Fa__g_§ J2E (g 4 q) 2k

or a2 ahtlyk xht2yk )7
k=1

oF, asg a2k+1

oy - _Z xk l<;+1 xk‘*‘l k+1

oF, Z bog bok+1
or yk$k+1 k—&-lxk—i-l

OF b~ < bok bok+1 )
— = - k—=—+ (k+1) .
2 Z k+1 .k k+2 k
dy y: oo\ oyt

Proving the desired inequality (¢, —pp) < 0 is equivalent to verifying that 381;“ . 8Fb < aF a. 831; &b,

R
8F 0F, _ 0F, . OFy :
"o < or 9y may be written as

OF, OF = X[ by baj
t= | X (b e ) ) | 2 Ve ) |
oy Or —\ %y + ahtlyk+ o yIxit yitlgit

and the right-hand side is

OF, 8Fb ai = a2k a2k+1 by X/ ba; : baj+1
ox 8y B <_372_§_: kW+(k+1)xk+2yk _?_Z jyj'HﬂJj +(‘7+1)yj+233j '

-

Eond
—
<

=5, =5,
Multiplying both sums yields
+
OF, OF, _ 20:0 . asyba; e aop+1b2; ik asgboji1 ” aok+1b2511
oy  ox R T R Y sy B A e e W s R AR S p RS
]7k:1
oF, O0F, = . azibaj ) aok41b2;
JHR=
. aobaji1 . aok+1b2j41 bl alb1
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We may now compare term by term

agkbgj . a2kb2j
I i kT I e Ty
ety S 90+ ) it e
J % <@+ 1)k%
S < U D )
for all k, j > 1. Moreover, Sy 7% + Sl?% % > 0, therefore finally % . % < %i; . %—1;". O

Remark 4.3. If all the asymptotes of functions in the proof above would be zero, i.e. a1 = by =0,

then the suitable solution (z,y) of the system of equations

a az as

e e I SR 4.4

=7 xy+x2y+ ’ (44)
b b b

T (4.5)
Yy ry Ty

for some fixed z = const. may not exist. For instance, for sequences 0202 and 0901, there is no
intersection of their graphs in the plane z = const. for any choice of constant as is illustrated in
Figure 4.2. Thus, especially for z = 1, we get that there is no suitable Cantor base in which the given

sequences would be representations of 1.

<l

“

Figure 4.2: A plot of (4.4) in orange and (4.5) in blue; for sequences 0202,
0901.

In contrast with this plot, the situation with non-zero asymptotes (we consider the sequences

with properties as described in Lemma 4.2 and its proof) is illustrated in Figure 4.3. The intersection
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of the green plane z = 1 with graphs for the case of sequences 321 and 222 then define the plane
depicted in the proof of Lemma 4.2, see Figure 4.1.

Figure 4.3: A plot of (4.4) and (4.5) for sequences 321, 222, and a green
plane z = 1.

Remark 4.4. As follows from the proof, it may be easily concluded that with assumptions as in
Lemma 4.2, there is no solution z, y of the system of equations (4.2) and (4.3) such that 0 < x < a;
or 0 < y < by. Indeed, let provide a short proof by contradiction. Without loss of generality for
a solution z,y > 0 let 0 < x < ay. Since there exist at least one non-zero digit ag, k > 1, we have

the following estimate

a a a a a a
Falmy)+1l=—+ 24 2 g g >y 2R

> 1,

r  xy 2y xiyd ay iyl

which is a contradiction with (4.2). Therefore, any positive solution x,y of the system of equations

(4.2) and (4.3) satisfies > a1 and y > by.

Remark 4.5. Let us now comment on the existence of a solution of the system of equations (4.2)
and (4.3) in the case when one or both sequences have only one non-zero digit. We still consider
sequences such that a; > 1 and by > 1. If both sequences have only one non-zero digit, then

the system of equations is of the form

b
1:% 1:—1,
x

so clearly the only solution is z = a1, y = b;.
Now, without loss of generality, let ajas - - - = a10“ be a sequence with only one non-zero digit

and let b1by ... have two or more positive digits and be bounded. Then z = a; and Lemma 4.1
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yields that y > 1 is uniquely given by the equation

b b b
1:71_1'_724_ 32
Y ay a1y

Similarly, as it was already commented above, it can be shown that y > by. If we want a solution
of the above system to be also a Cantor base, i.e. both x,y > 1, we need to assume that if
the sequence is just one digit long, then this digit is strictly greater than 1.

In conclusion, together with Lemma 4.2, we have shown the existence and uniqueness of a suit-

able base for two bounded sequences that are both lexicographically greater than 10“.

Proposition 4.6. Let ajas--- > 10¥, biby--- = 10% be bounded sequences of non-negative integers.
Then there exist unique B1 > 1 and B2 > 1 such that the given sequences are representations of 1 in

bases (51, B2) and (B2, B1) respectively.
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Chapter 5

Arithmetics in Cantor base systems

In Rényi numeration systems addition and subtraction of two numbers with finite S-expansions
does not necessary yield a number with a finite 8-expansion, i.e. the system does not need to have
Property (F'). Similarly, this situation occurs in generalised Cantor base systems, as the following

example illustrates.

Example 5.1. Let B = (2,7). Then dg(l) = 0-20* and dgu)(1) = 0-3001202... is non-
periodic infinite (otherwise we would be able to construct a polynomial with rational coefficients
and root 7). Now consider numbers 2 and 27. These numbers have finite greedy expansions in both

shifts of the base B.

(2)p=2-0" (2)py =10-0%
(2m)5 = 100 - 0¥ (2 gy = 100 - 0

However, the greedy expansions of 2 — 2 are non-periodic infinite, since the digit string 0012021 ...

at the right-hand side of the radix point is a suffix of dga) (1).
(2m —2)p =11-0012021... (2m — 2>B(1) = 20-0012021...

Therefore, none of bases B and BY) have (F) property.

Let us now explore the phenomena which may occur when adding and subtracting numbers

with finite greedy expansions in Cantor real base systems.

5.1 Necessary conditions

Firstly, we state and prove several necessary conditions of positive finiteness and finiteness property
of a bi-infinite alternate Cantor real base. The results are analogous to Proposition 2.12 and

Proposition 2.13 for Rényi numeration systems.
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Lemma 5.2. Let p € N and B = (f1,...,0p). If B satisfies (F), then dgu (1) is finite for all
ie{0,...,p—1}.

Proof. We proceed by contradiction. Let there exist i € {1,...,p} such that dgu-1)(1) = titats. ..
has infinitely many non-zero digits. The above expansion may be written as
131 2 123 lkt1 tp

1:7+5zﬂi+1+m+5¢"'5p+5i“'5p51+m+m+m

for some k € {1,...,p}. We multiply by 3; and subtract ¢;.

to tr tht1 tp
=2 4.+ 4 N 4.
Bit+1 Biv1-Bp  Biv1-- Bpbr B1- Bic1Bix1- - Bp

Bi —t1

We repeat the process of multiplying by the denominator of the first fraction on the right-hand side

and subtracting the numerator until we get

,Bi"',Bp_(tlﬂi-i-l"'ﬁp‘i‘"“"tk):tlgl_l ..._|_51”t'pﬁ'1_|_...

Since the string t1tsts ... was obtained by the greedy algorithm, the string txi1tg+2... is the B-
expansion of a number S;--- B, — (t18i41---Bp + -+ +tx). Now note that the greedy expansions

of the terms on the left-hand side have finitely many non-zero digits

(Bi-+ Bpyg = 10" - 0¥ (t1Big1- - Bp+ -+ tgyp=1t1...1 - 09,

thus §;--- B, and t1 841+ Bp + - - -+t are in Fin(B). Therefore, we get that Fin(B) is not closed

under subtraction of its elements and that is a contradiction. O

Remark 5.3. Note that even if some dg) (1) is infinite, the above lemma does not exclude the case

that the base B satisfies the positive finiteness property.

Lemma 5.4. Let p e N and B = (p1,...,0p). Let dgwy(1) be finite for alli € {0,...,p—1}. Then
8 =[1E_, Bi is an algebraic integer and B; € Q(8) for all j € {1,...,p}.

Proof. This property follows from the proof of the generalisation of the Schmidt’s theorem that we

presented in our research project, see [21]. O

Lemma 5.5. Let B be a bi-infinite Cantor real base. If B satisfies (PF), then N C Fin(B).
Consequently, if B satisfies (F'), then N C Fin(B).

Proof. Follows straightforwardly from the definition of positive finiteness property, since 1 € Fin(B5).
O
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Lemma 5.6. Let p € N and B = (p1,...,0p). Let dgw(1) be finite for all i € {0,...,p—1}. If
N C Fin(B), then § = [[t_; B; is either a Pisot or a Salem number.

Proof. According to Lemma 5.4 the number ¢ is an algebraic integer. It remains to show that for
all v conjugates of 0, v # ¢, it holds that |y| < 1. If § € N the claim is trivial. Now consider § ¢ N.
Take m € N sufficiently large so that

O < 0] +1 < 0" By, (5.1)
Since obviously [™ |+ 1 — 6™ € (0,1), we obtain
(6™ +1)p=10""-z_12_9...,

where at least one digit x_; is non-zero, but according to the assumptions there are just finitely
many non-zeros. Choose k € N such that x_,, ;) are zeros for all j € Ng. We may rewrite

the above expansion in the form of sum and group terms in the following way

m m  T—1 = T-2 T—p L—kp
M 1=m e T S T g =
197 B1 1B 5 ok

k—1
1
=5 43 s (E B By T iy B+ i)
=0
We now proceed by contradiction. Let there exist v conjugate of §, v # ¢ such that |y| > 1.

Denote o the isomorphism of Q(d) and Q(+) induced by o(d) = ~. Since [6™] +1 € N we have
o([0™] +1)=[0"] +1, ie.

k—1 k-1
2 +Z i+l (:U—(1+ip)‘7(52 e Bp) '+33—(p+ip)) =90 +Z Sitl (z—(1+ip)ﬁ2 e Bp '+33—(p+z‘p)) .
i=0 1=0

Denote D; = {0,1,..., 8]} and D :={a152--- Bp + azfs---Bp+ ---+ap | a; € D;}. Then

k—1

m em 1 1
Y=o :Z S+l (x,(lﬂ-p)ﬂg e Bptet x*(pﬂ'p)) Tt (x7(1+ip)‘7(ﬁ2 o Bp)t "*‘xf(pﬂp))
i=0

€D € o(D)

Denote M := max{|z| | z € o(D) UD}, and n := max {%, %} Then we may estimate

M
§itl

M
it

_l’_

k—1
=<3
=0

k—1
2
) <M E 7 = const. (5.2)
— 1
1=0
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This estimate holds true for all m sufficiently large, as in (5.1). If v € R, then it is readily seen
that |6™ — ™| — +o0 as m — +oo, which is a contradiction. Now consider v ¢ RT. Then there
exists a sequence (m;);Z°F C N such that Re(y™i) < 0 and all m; are sufficiently large so that (5.1)
and (5.2) hold true. Then [0 — 4™i| > |§™i| — 400, which is a contradiction. O

Lemma 5.7. Letp € N and B = (f1,...,8,). Moreover, let N C Fin(B) and dgw (1) be finite for all
i €{0,...,p—1}. Denote & =[[0_, Bi, let v be a conjugate of §, v # 8. Denote o the isomorphism
of Q(0) and Q(v), o(6) =~. Then there exists j € {1,...,p} such that o(B;) <0 or o(B;) ¢ R.

Proof. 1f § € Q, then there is no conjugate v # 0. Therefore consider § ¢ Q. All dy)(1) are finite,
therefore there exist n € N such that we may write

dg (1) = 040 ¢

for all i € {0,...,p — 1}. Thus we have the following relation

NORNG (i)
1= 1 et
Bi+1  Biv1Biv2 Bit1 - Bitn

for all i. We now proceed by contradiction. Assume that o(f;) > 0 for all j € {1,...,p}. Multi-

plying by B;+1, subtracting tgi) and applying ¢ on the above equations yields

(Bon) =t = 15 1y - >0
o(fiy1) —t;7 = o (Biso) +0’(/8i+2)0'(6i+3) + +U(5¢+2)"'U(5z‘+n) 7

i.e. for all indices j € {1,...,p} it holds that o(3;) > tgj_l). Since 0 ¢ Q, there exists at least one

index j such that §; ¢ Q, and thus at least one of the inequalities is strict. Therefore

p—1
y=0(8) =o(B)o(8) > [[#) > 1.
i=0
This is a contradiction, because according to Lemma 5.6 the number § is either a Pisot or a Salem
number. O
Statements of the above lemmata 5.2 — 5.7 can be concluded in the following theorem.

Theorem 5.8 (Necessary conditions of (F')). Let p € N and B = (51,...,5p). Let B satisfy (F).
Denote § = [[%_, B;. Then

e § is either a Pisot or a Salem number;

o dpi (1) is finite for all i € {0,...,p —1}.
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Moreover, for all B; we have B; € Q(0), and for any non-identical embedding o of Q(6) into C there
exists j € {1,...,p} such that o(B;) <0 or o(B;) ¢ R.

5.2 Addition of positive elements

Consider a bi-infinite Cantor real base B. We proceed similarly, as it was presented for a real base
B > 1 in Section 2.2. At first, we describe a process of addition of two non-negative elements, say
z,y, of Fin(B). We will in particular consider B = m an alternate base. In this case,
instead of working with all expansions of numbers in Fin(5), we consider just those with non-zero
digits only to the right side of the radix point. It indeed suffices to do so to describe the addition
of arbitrary non-negative z,y € Fin(B), as we now explain. At first, we divide both x and y by
a suitable power n of 6 = [[?_; 8;. We choose this n so that Ié—ff’ < 1, i.e. the B-expansion (and
thus also all other B-representations) of 355# have non-zero digits only at the right side of the radix
point. By the digit-wise addition of (3%)s and (#)s we obtain a string representing % in B. We
may then perform operations (for example transcriptions as described below) on this string, and
afterwards convert it back to the representation of x + y just multiplying by 0™, which is equivalent
to shifting the radix point by np digits to the right. Note that we can do this only if the Cantor
real base B is an alternate base.

From now on we will mostly work with representations with non-zero digits at the right-hand
side of the radix point, thus we define most of the following terms only for the Cantor real base 3

(not bi-infinite).

Notation 5.9. We denote evaluation of a word @ = ajasg ... in the base 8 = (81, f2,...) as

a1 a9 as
Val — 4+ + +
ola Z Hz 1@ B BB BiBeBs
Similarly, we denote evaluation of a bi-infinite word b = ...b1by - b_1b_5... in the base B =

(...B2B1P0 - B-1P—2...) as

by by
valg(b) == > b + +b S b1fo b+ Ly TH
B(b 2 kBk—1-Bo k<0ﬁ . 28180 + b1 + by EERR I

Let us now describe the relationship considering the finiteness and the positive finiteness prop-

erty for the base and its shifts. We will in particular work with alternate bases.

Proposition 5.10. Let B = (f1,...,5p) be an alternate base. Then for any i € N the base B
satisfies Property (PF) or Property (F), if and only if B satisfies Property (PF) or Property (F),

respectively.
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Proof. We now show that if B = B() satisfies Property (PF) or Property (F), then, for every k > 1,
the base B*) satisfies Property (PF) or Property (F), respectively. The other implication follows
from periodicity of B.

Let k = 1. As we already commented above, it suffices to consider z € [0,1). From the greedy

algorithm, it is not difficult to show that
<Z>B(1) =0- 292324 < <Z/51>B(0) =0- 0222324 e, (5.3)

Consequently,

ﬂlFin (BY) ¢ Fin (B©).
1

Take z,y € Fin (B(l)) such that z := x +y < 1. Then B‘T—l, % € Fin (B(O)), and, moreover, é =

ﬁ + % < %1 < 1. By Property (PF) of the base B necessarily ﬁ € Fin (B(O)). Moreover, since
é < %1, the greedy algorithm implies that the B(®)-expansion of z/f; is of the form (2/B1)po) =
00222324 - - - with finitely many non-zero digits. Therefore (2)za) = 0+ 292324 - - -, and this string
also has only finitely many non-zeros, which means that = + y € Fin (B(l)). This proves that B(1)
satisfies Property (PF). The proof for subtraction is analogous. For B®) k> 2 we proceed by

induction. O

We now proceed with definitions of notions needed in order to provide a construction for addi-

tion similar as was briefly presented for Rényi numeration systems in Chapter 2.

Definition 5.11 (Transcription). Let 8 be a Cantor real base. Consider words 07by ...bg, Olcy ... cm
for some j,l € No, k,m € N where b;, c; € Ny for all 7 and all j. Then the word 0lcy ... ¢ is called

a transcription of 07by ... by, if

valg(0lcy . .. ¢p) = valg(07by ... by) and 0lcy...cm > 07by ... by. (5.4)
Remark 5.12. Note that so far our only requirement is that transcriptions are lexicographically
increasing, we do not require them do be admissible in the given base.

It is possible that by the digit-wise addition of two expansions with finite support we obtain
a string, which is no longer admissible. We will try to construct an admissible string representing
the same number by repeatedly subtracting, transcribing and digit-wisely adding certain strings,

which are in some sense minimal.

Definition 5.13 (Minimal forbidden string). Let 3 be a Cantor real base. A non-admissible string
of the form 07b; ... by, for some j € Ng, k € N is called minimal forbidden,

e if both 070bs...b, and 07b; ...bs_, are admissible, and
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e b; > 1 implies that 076y ...b;_1(b; — 1)b;41 ... by is admissible for all i € {1,...,k}.

Note that even minimal forbidden strings may have a non-admissible transcription (which
is by definition lexicographically greater than the former string), as can be seen in Example 7,

Appendix B.

Definition 5.14 (Property T). We say that a Cantor real base 3 satisfies Property T if for every

minimal forbidden string 07b; ... by such that valg(07b; ...b) < 1 there exist its transcription.

Remark 5.15. Let 8 = (f1,...,8p). Denote dg)(l) = tgi)tg) ... for i €{0,...,p}. Now consider
the case that all dg)(l) are finite, i.e. dg)(l) = tgi)tgi) . tﬁf} for some n; € N. Then the minimal

forbidden strings are either among

OPI (tﬁl) + 1) , opi¢( (tg) n 1) : oD (tﬁ}l),l + 1)
o (1 1), o (8 1)), 0 (1 1)
opi P (tﬁp) + 1) , ot lylp) (tg’) + 1) S opj“’l.tgp) Lt (tff;)_l + 1)

for some j € Ny, or among

oPith=14) L 4(®)

for some j € Ny and k € {1,...,p}. Note that not all such strings have to be minimal forbidden.
Also note that if we have a transcription of a string of the form 0P/*!p, ... by, for some j € Ny, then
transcriptions of 0P"+!by ... by, for all i € Ny may be easily obtained just by concatenating/omitting

0Pli=3l at the beginning of the former transcription.

Example 5.16. Consider base 3,, = (7,72), where ~ is the larger root of 2 — ma — 1 for m € N.
As presented in Appendix A the expansions of 1 are of the form dg(1) = titats = mml; dga)(1) =

5189 = (m? + 1)m. The minimal forbidden strings in base 3,, have to be among

0%ty +1) = 0% (m +1)
0%ty (ta + 1) = 0%m(m + 1)
0%t tots = 0%mml
02+ (51 + 1) = 0%+ (2 4 2)

02k+15152 — 02k+1(m2 + 1)m

for k € Ny. Let us verify that 3, has Property T. All strings above except (m + 1), m(m + 1) and

mm1 have evaluation in 3,, smaller than 1. We need to find their suitable transcriptions. With
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the help of the greedy algorithm we obtain the following transcriptions

00(m+1)  —  010(m* —m+1)(m —1)
00om(m+1) — 0100(m — 1)ml

00mml1 — 01

o(m?>+2) —  100ml

om?+1)m — 1.

It is obvious that these transcriptions satisfy the lexicographical condition (5.4). The fact that
transcribed strings do really have the same evaluation as the former ones, could be verified by
straightforward calculation (the form of minimal polynomial of 4 would be used during the process).
Transcriptions for other k£ may be obtained by concatenation of a suitable string of zeros, as we

have already mentioned above. So indeed, our class of bases 3,, satisfies Property T.

Consider now G satisfying Property T. If a B-representation of z 4+ y < 1 is not admissible,
then it is possible to subtract some minimal forbidden string s digit-wisely and still get a valid
B-representation (i.e. digits will be non-negative) of a number x + y — valg(s). With help of (3.3)
it is not difficult to show that such minimal forbidden string indeed exists. We will not elaborate
this thought here any further, however, the detailed commentary may be found in our upcoming
paper [17]. Consequently, we may obtain a new (3-representation of x + y by digit-wise subtraction
of s, followed by digit-wise addition of some transcription of s. By repeating this process we obtain
a lexicographically increasing sequence of transcriptions of the original representation of x + y.
In general, this sequence does not need to be finite. If it is finite (i.e. we come to the point when it
is not possible to subtract any minimal forbidden string), this process yields the lexicographically
maximal (-representation of x + y, i.e. its B-expansion. Below we state and prove a theorem

providing a sufficient condition so that the sequence of transcriptions terminates, see Theorem 5.19.

Definition 5.17. Let p € N. We say that f : Nj U NIST — N is a counting function if for all
r,s € NjU NI(?

1. if f(r) =0, then r is a string of zeros;

2. f(r@s)= f(r)+ f(s), where r @ s is a digit-wise summation (if |r| # |s|, we consider the

shorter word concatenated from the right with sufficiently many zeros);
3. f(t) is finite for all £ € N§,.

If moreover f(r) = f(0Pr), we say that a counting function has period p.
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Example 5.18. A simple example of a counting function is the digit sum of a string, i.e. the function
defined as f(rirors...) := > ;5,7 for any word r = rirors--- € Ny U N). We may say that this
function is a counting function with period p for any p € N. Another example is a weighted digit
sum of a string with period ¢, defined as follows. Consider ¢ € N, wy,...,wq—1 € N. Then the

function g defined for any r = riror3--- € Nj UNY as

k=0 i=k mod q
is a counting function with period ng for any n € N. We will usually write just q.

Theorem 5.19. Let B = (f1,...,0p) and let f be a counting function. Assume that for each
minimal forbidden string 07by ...by such that valg(0by...by) < 1 there ewists its transcription

0cy . ..cm with the following property

F(09by ... bp) > F(O'cy...cm). (5.5)

Denote BY) q bi-infinite periodic extension of B9 for i € {0,...,p — 1}. Then for every positive
x,y € Fin(B(i)) the B -expansion of x +y may be obtained from any finite B® -representation
of x +y by using finitely many transcriptions. Consequently, Fin(B(")) 15 closed under addition

of positive elements, i.e. BY) satisfies (PF) for all i € {0,...,p—1}.

Proof. Let us comment on the case when i = 0. For B®), i > 1, the claim follows from Proposi-
tion 5.10. Without loss of generality (since B is alternate), let =,y € Fin(B) be positive and such
that z +y < 1. As we have already commented on above, since this system has Property T, ei-
ther the B-expansion (which is the same as B-expansion) of x +y may be obtained by finite process
of transcribing the digit-wise sum of x and y, or there exists an infinite sequence of lexicographically
increasing transcriptions of this sum.

In order to exclude the latter possibility, we proceed by contradiction. Both z and y are in
Fin(B), thus there exists m € N such that their B-expansions can be written as dg(z) = z122. .. Ty,
dg(y) = yiy2...ym. We denote the digit-wise sum of dg(z) and dg(y) by d = (1 + y1)(x2 +
Y2) ... (Tm + Ym). Suppose we can transcribe d infinitely many times (each transcription obtained
by subtracting some minimal forbidden string digit-wisely, transcribing it, and then adding it back
digit-wisely). Consider k € N. Since x + y < 1, there exists I € Ny such that the B-representation
of z 4+ y obtained after the k-th transcription of d is of the form

U 7(K) k)
odl) ..ah)
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for some ni € N. Moreover, for every i € N there exists f; € N such that
valg(0'~' f;) >z +y,

thus dgk) < fi for all k. Note that for each » € N and each | € Ny there are only finitely many
sequences of non-negative integers d;41djyo . . . i1, satisfying 0 < d; < f; forall i € {I+1,...,1+7r}.

Since in every step k the sequence 0% dl(f_)l dl( +)n lexicographically increases, for every r there exists

k) g8

o1, d) 29y -+ d) [, are constant for all £ > K. Now

a step K, so that [, = | = const. and digits d
consider any r € N fixed. We assume that d may be transcribed infinitely many times. Therefore,
it is not possible that the digits dEK) for i > [ + r are all equal to 0. Denote ¢ the minimal index
t > r such that dEK) > 0. To obtain a contradiction we repeat the above idea. For n; = r we find

K1, t1 as above, therefore we may write

w4y =valg (04f) . dlf)) +valg (001l ) + valg (0mdlalf ).
. dy > 1, be-

(k) (k)
l+ni+1 """ dtl

) remains constant and f(O”"ld( )

For k£ > K; the value of f(Ol l+1 d® I+ng+1

I+n1
cause the sequence of digits lexicographically increases with each transcription, thus d
is not a string of zeros. Therefore for every k > K;

f(O d( )

+1 d(k)) = f(oldl(—lf-)l l+n1) f(OlJrnldl—IT-)ru-i-l ) 2 f(oldl(—’f—l dl(-]&c-)nl) 1.

We repeat the process for [ +r = t1. We find Ky > K; and to > ¢1 such that for all £ > Ky

k) k

FOGT o dy)) = 0 i) 1,

By repeating infinitely many times, we obtain strictly increasing sequences (K;);>1 and (;);>1
such that f (O dlff ). dg{s)) increases with s to infinity. We have started with d finite, thus f(d) is
finite. Each transcription of d was obtained by subtracting minimal forbidden string, transcribing
it and adding it back, and since transcriptions of minimal forbidden strings by assumptions do
not increase the value of f and f(r +s) = f(r) + f(s) for any r,s; transcriptions of d do not
increase the value of f. Thus f(Olde_)1 l_kmk) < f(d) = const. < +oo for all k € N, and that is
a contradiction. O

Remark 5.20. Note that if the assumptions of the above theorem hold true, then it is clear from
the proof, that any finite string s may be transcribed into B-expansion of valp(s) by finitely many
transcriptions. Moreover, if the assumptions of Theorem 5.19 are satisfied, then there cannot exist

an infinite sequence of transcriptions of any finite string (i.e. all possible sequences of transcriptions
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of all finite strings are terminating). If all sequences of transcriptions are finite, it does not matter
which order of transcriptions we choose.

On the other hand, if the assumptions are not satisfied and we are transcribing some string r
such that the B-expansion of R := valp(r) is finite, it might happen that some sequence of transcrip-
tions is finite and leads to the B-expansion of R, but other sequence is infinite and the transcribed
strings converge to some other infinite B-representation of R. We described one such case in Ap-

pendix B, Example 5.

Example 5.21. Consider the base 3 = ;1 = (7,72) from Example 5.16. Then transcriptions

of the minimal forbidden strings may be chosen as

02+2 — 0% 1101
0212 —  0%*'100011
0111 — 0% 1
0%*-13  —  0%*210011
0%k=l21  —  0%%.

for some k € N. As the counting function consider the digit sum, as we have already presented
it in Example 5.18. Then all these transcriptions satisfy conditions of Theorem 5.19, thus the set
Fin(B(i)), where B the bi-infinite periodic extension of 3, is closed under addition of positive
elements for i € {0,1}. Let us illustrate the process of addition in B for x = %6 and y = 7—13 + %
The B-expansions of x and y are (z)p = 0-0001, (y)p = 0-0102. By digit-wise addition of the digits

at the right-hand side of the radix point we obtain

0001
-+ 0102
0103.

We have valgp (0 - 0103) = = + y, but the string 0103 is not admissible in 3. We now subtract one
of the minimal forbidden strings, namely 0003, and add its transcription 0010011 digit-wisely (we
align strings on the left).

0103

- 0003

-+ 0010011
0110011.

The result 0-0110011 is the B-expansion of x + y.
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5.3 From positive finiteness to finiteness property

We have described several necessary conditions of (PF') and (F') property and stated a sufficient
condition of (PF') property. Finally, let us describe the connection between (PF') and (F') property
for systems with finite expansions of 1. Note that, clearly, the property (PF') may be reformulated

as follows.

Lemma 5.22. A Cantor real base B satisfies Property (PF) if and only if for any string z of non-

negative integers with finite support we have valg(z) € Fin(B).

Let us now proceed with the statement providing a step from positive finiteness to finiteness

property.

Lemma 5.23. Let p € N, B = (B1,...,Bp). Let B satisfy (PF) and let dg; (1) be finite for all
j€{0,...,p—1}. Then BY satisfies (F) for alll € {0,...,p—1}.

We at first prove an auxiliary statement.

Lemma 5.24. Let p € N, and B = (p1,...,8p). Let dgu(1) be finite for all i € {0,...,p—1}.
Then for all j,k € Ng, j > 1, there exists a B-representation of the number valg(0 - 077110%)

of the form 0 - Oj_lujuj+1uj+2 --+, such that it has finitely many non-zero digits, and wjiy > 1.

Proof. We proceed by induction on k. For k = 0, the statement is trivial. Let £ > 1. By induction
hypothesis, there exists a string u =0 - Ojilulju‘j_i_lUj_i_Q -+ with finitely many non-zeros, such that
valg(0 - 0/7110%) = valgw and ujij > 1. Denote dgm)(1) = 0 - tgn)t(;) coo=0-t™. Then from
the definition of tU**) we derive that the string 0-07*~1(—1)tU*%) of integer digits has evaluation
valg (0 - 07FF=1(—=1)tU+k)) = 0. The digit-wise sum of the strings w and 0/+*¥=1(—1)tU*%) has
all digits non-negative and has finite support (i.e. only finitely many non-zero digits). Its digit at

the position j+k+1is equal to w4541 +t§j+k) > 1, and its evaluation is equal to valg(0-0/~110¥). [

Let us now conclude the proof of Lemma 5.23.

Proof of Lemma 5.23. Assume that the base B has Property (PF). Again, since we consider al-
ternate base, we can limit ourselves to numbers in [0,1). According to Lemma 5.22, if a number
z has a B-representation with finite support, then the B-expansion of z has only finitely many
non-zero digits as well. In order to show Property (F), it is thus sufficient to verify that for any
z,y € Fin(B) N [0,1) such that z := . —y € (0,1), we can find a B-representation of z with finite
support.

Let @, y be the B-expansions of numbers z,y € [0,1) such that x = valgx > y = valgy > 0,
and let support of  and y be finite. We proceed by induction on the sum of digits in y. If the sum

is 0, then y = 0 and the statement is trivial. Suppose the sum of digits in y is positive. Denote &
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the operation of a digit-wise addition of strings. Since valgx > valgy, we have x > y, and
there exist j,k € Ny, j > 1, such that = ' ® " and y = ' @ y”, where £’ = 0-0/~110¥ and
y" = 0-077k=110%. Tt follows directly from Lemma 5.24 that valg " —valg y” has a B-representation,

say z’, with finitely many non-zero digits. Hence
z =valgx — valgy = valg ' + valg 2" — valg y/'.
Property (PF) guarantees that valg @’ + valg 2” has a finite B-expansion, say @ye,. Thus
2z =valgx — valgy = valg e, — valgy'.

The sum of digits in 4 is smaller by 1 than the sum of digits in y, and y’ is the B-expansion
of valg y’. Induction hypothesis implies that z has a finite B-representation, and, by Property (PF),

also a finite B-expansion. O
Lemmata 5.2 and 5.23 are summarised in the following statement.

Proposition 5.25. Let p € N and B = (f1,...,8p). Let B satisfy (PF). Then BYU) satisfies (F)
for all j € {0,...,p— 1} if and only if dg) (1) is finite for all j € {0,...,p —1}.

5.4 Special choice of bases

Let us now explore properties (F') and (PF) for some particular choice of bases. Firstly, we may
be interested in arithmetic properties of the bases we have already explored in other context in
our previous research [21]. We recapitulate our results concerning this topic in Appendix A. To see
the complete discussion about arithmetic properties of these bases we refer the reader to Appendix B.
The discussion is detailed, and thus lengthy, therefore we do not include all examples already in
this chapter. However, we recommend the reader to explore the examples in this appendix first,
otherwise the proofs in the sequel may seem to be exceedingly technical.

We now briefly present just one of the many examples there, see Example 7, Appendix A.
In the case of base 3 with expansions of 1 of the form ajacas and b1bobs, we have proven that
if ag > bg and by > as, the system satisfies (PF') and consequently also (F'). However, in other
cases we have proven that it is not possible to find a suitable weighted digit sum with period 2
satisfying assumptions of Theorem 5.19, when transcriptions are chosen as admissible. Based on this
observation, we now present two classes of bases where stronger assumptions on inequalities between
terms of expansions of 1 ensure the existence of a suitable counting function needed to satisfy
assumptions of Theorem 5.19. Note that these propositions are generalisations of Corollary 2.18

and Proposition 2.19.
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Proposition 5.26. Let 3 = (f1,82). Denote BY a bi-infinite periodic extension of B and
dg(l) = a1azas. . ., dﬁ(l)(l) = b1bobs .... Moreover, let

ay > by > a3 >by > >bj, =aj41 ="

by >2a3>bg>as > >aj, =bjo1 =",

for some jo in N. Then B and BY) satisfy (PF).

Proof. We show that the assumptions of Theorem 5.19 are satisfied. Because of (5.6) we need
to consider just two cases. Either both dg(1) and dga)(1) are finite, or they both have infinitely
many non-zero terms. At first, we comment on the case when both sequences have infinitely many
non-zero digits.

We now find a suitable set of transcriptions of minimal forbidden strings. Consider the set
of strings containing all minimal forbidden strings (similar as in Remark 5.15, but without the strings

of the form 07¢1t5t3...). In our case this set consists of strings of the form

OQjal R ak(akH + 1)

0%y . bp(bpgr + 1)

for j, k € Ng. For k = 0 we consider a; ... ag = € the empty word. We now derive suitable transcrip-
tions of all these strings with evaluation in 3 smaller than 1. We consider two cases. At first let k be
even, i.e. k = 2l for some [. Take s1 := 0%q; .. .agy(ag+1 + 1) for some j € N. To construct lexico-
graphically greater B-representation of valg(s) we digit-wisely add strings r := 0%~11(—a1)(—az). ..
and t := 020D (—1)b1by.... Note that valg(r) = valg(t) = 0, thus the digit-wise sum s @ r O ¢

yields a B-representation of valg(s). This representation is of the form
02j—1102l+1(b1 - a2[+2)(b2 - a2l+3) PN

and is readily seen that it is indeed lexicographically greater than the string s1. Because of (5.6), this
representation has only finitely many non-zero digits. Now consider sg := 02F1by ... bo(boyp1 + 1).

We can proceed similarly as above and obtain a transcription of sg in the following form
02j102l+1(a1 - b2l+2)(a2 - bgl+3) e

In the case when k is odd, i.e. k = 2] — 1 for some [, we would proceed analogously and obtain

a suitable transcription of s3 := 0%ay ... ag_1(agy + 1) of the form
02j_11021(a1 - a2l+1)(a2 - a2l+2) N
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Similarly, a transcription of s4 := 0%+1b; ... bai—1(by + 1) may be chosen as
02102 (by — boyy1)(ba — byrga) . . ...
In conclusion, we have the following rules for transcriptions

1= 02ja1 NN agl(ang + 1) 02j_1102l+1 (bl — a21+2)(b2 — a21+3) ce

= 02j+1b1 e b2l(b2l+1 + 1) 02j102l+1(a1 - b2l+2)(a2 - b21+3) e
02j—1102l(a1 — ang)(aQ - aglJrQ) NN

0%10% (by — boys1) (b2 — bar12) - . -,

N

N
s3=0%ay...ay_1(ay +1) —
84 =07 by by 1(by + 1) -
for indices as considered above. Note that all the above transcriptions are admissible and indeed
consist only of non-negative digits. Moreover, only finitely many of them are non-zero. For these
transcriptions we now construct a suitable counting function needed in order to satisfy the assump-
tions of Theorem 5.19.

Consider a weighted digit sum with period 2, denote its weights as u,v. The weights need to
satisfy condition (5.5) for all the above transcriptions. Firstly, consider the case when k is odd in
the notation as in the first part of the proof. Then the condition (5.5) for strings sg and s4 and

their admissible transcriptions yields

UZGQJ 1+uza21+U>vZ a2j—1 — A2(14+j5)—1 +“Z(a2i—a2(l+i))+u,

i>1 i>1
uzsz 1 +Uzb2z v > UZ boj—1 — ba(4j)—1 +UZ (bi — b2(l+z
i>1 i>1

These inequalities are satisfied for any positive u,v. Now consider k even, i.e. strings s1 and ss.

The condition (5.5) for these strings and their admissible transcriptions yields

I+1
UZCLQJ 1 +uza21 +v 2> UZ baj — A2(14-5)+1 +UZ boi—1 — ap l+z))
i>1 i>1
H—l
Uzb2j 1+Uzb21+U>UZ a5 — b2(l+j +1 +UZ a2i—1 — I—H))
7>1 i>1
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Equivalently,

v 1+Z(a2j_1—b2j) >u 1+Z(b2j—1_a2j)

j21 Jj=21

U 1+Z(bgj_1—a2j) > 1+Z(a2j_1—sz) ,

j21 Jz1

where all sums are finite, since the sequences in (5.6) are constant from some jp on. The suitable

choice of weights satisfying these inequalities is for example

u:=1+ Z (azj_l — bgj)

Jj=1
vi=1+ Z (b2j—1 — agi),

j>1
thus we have found suitable transcriptions and a counting function satisfying assumptions of The-

orem 5.19 for the case of infinite expansions of 1.
It remains to discuss the case when both dg(1) and dga)(1) have just finitely many non-zero
digits. Denote dg(1) = ajas...a,0%, dﬁ(l)(l) = biby...b,, 0%, where ay, b, # 0. Consider the set
of strings containing all minimal forbidden strings, as we have seen it in Remark 5.15. In our case

these strings are either of the form
0%ay ... ag(ar+1 + 1)

| (5.7)
02J+1b1 e bi(bi+1 + 1)

or 0¥ay ...ap, 0+ ... by, for some j € Ny and some k € {0,...,n — 2}, i € {0,...,m — 2}.
The inequality (5.6) then yields |m —n| < 1.
We need to find transcriptions of the above set of minimal forbidden strings. The transcriptions

of the strings of the form (5.7) may be chosen the same as in the case of infinite expansions of 1 as

it was discussed above. Transcriptions of 0% a; .. .a, and 0%+, .. b, are

0¥ay...an — 0%-11

0%y ... by, — 0%1.

When deriving the suitable weights u, v we would proceed the same way as for the case of infinite
expansions of 1. The inequalities (5.5) for strings of the form (5.7) where k, i is odd with transcrip-

tions as in the infinite case, would be satisfied trivially for any u,v € N. Inequalities for strings
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where k, i is even would be satisfied for example for the choice

1 5]
wi=1 +Za2j_1 - me‘
j=1 i=1
] 5]
v:i=1+4 Z bgjfl — Zagi.
j=1 i=1
Lastly, we need to check that the weighted digit-sum f with these weights u, v satisfies (5.5) even

for transcriptions of 0%a; . ..a, and 0% ... b, i.e. we need to verify

v(ar +az3+ - ) Fufag+ags+---) >u
(5.8)

u(by +b3+ ) Fv(bg+bs+---) > 0.

Let us verify the first inequality in (5.8). Either there exist j such that as; > 0, then the inequality
is satisfied trivially, or 0 = ag; for all ¢ > 0. Then also 0 = bg; 1 for all 4 > 0. Therefore v =1+ by,

and the first inequality may be then rewritten as

(5] 31 L5
(L4b)(ar+az+--)=(1+b)> agi1>1+> agi1— by,
=1 =1 i=1

which holds true, since ajby > 1. The second inequality in (5.8) could be verified analogously.
In conclusion, we have found the suitable counting function in the form of the weighted sum with

period 2 with the above weights u, v for all cases. O

Corollary 5.27. Let B = (p1,02) and let dg(l) = ajaz... and dgay(1) = biba... be finite.

Moreover, let

Then B and BY satisfy (F).

Proof. According to Proposition 5.26 both B and BW) satisfy (PF). Therefore the result follows
from Proposition 5.25. OJ

Note that if both expansions of 1 Proposition 5.26 have infinitely many non-zero digits, the sys-
tem cannot have (F') property. Thus we have found a whole class of bases which have (PF'), but
not (F') property.

Let us now state and prove a result similar to Proposition 5.26 for an alternate base with period

of the length p = 3.
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Proposition 5.28. Let 3 = (p1, 52, 03). Denote B9 the bi-infinite periodic extension of B9 and
dg(l) = araz..., dgo)(1) = biba..., dge (1) = cicz.... Moreover, let

a1 >c2>b3>ay>c5 >bg > > aj, = Cjgr1 = bjgpo2 =
by >as>c3>by>a5>ce > >bjy = ajo41 = Cjy42 ="~ (5.9)
C1 b2>a3>C4 b5>a/62 'ZCJ'O: j0+1:a“j0+2:"'7

for some jo € N. Then B, B and B®) satisfy (PF).

Proof. Note that we need to consider two cases - either all three expansions dﬂ@(l) have infinitely
many non-zero digits, or they all have just finitely many non-zero digit. Firstly consider the case
when all dg) (1) have infinitely many non-zeros. Similarly as in the proof of Proposition 5.26, we
now show that the assumptions of Theorem 5.19 are satisfied. At first, we need to find transcriptions

of the following strings

0¥ay ... ap—1(ar + 1)
0%72by ... bp_1 (b + 1)

03]'7161 .. Ck—l(Ck + 1)

for j € N, k € Nyg. We need to distinguish three cases according to & mod 3. At first let k = 3 for

some [ € Ng. The transcriptions of the above strings for such £ may be chosen as follows

O3ja1 - agl_l(a3l + 1) — 03j71103l(a1 - (13[+1)((12 - a31+2) -
0%72by .. by 1 (by +1)  — 0%7310% (by — byy1) (b2 — b3r42) - .-

0%ty ... cgi—1(eyr +1)  — 037’721031(01 —c3i41)(c2 — c3142) -

Now consider k = 3] 4+ 1 for some [ € Ny. In this case suitable transcriptions are

O?’jal .. agl(a3l+1 + 1) — 03j71103l+1(b1 — a31+2)(b2 - a31+3) ..
0%72by .. by (by1 +1)  — 03973103 (c1 — baro)(ca — baits) - -
03]'7161 ce C3Z(C3l+1 + 1) — 03j72103l+1(a1 - 03l+2)(a2 - 631+3) e

Lastly, consider k = 3l + 2 for some [ € Ny. Then the transcriptions may be chosen as

Ogjal - a31+1(a31+2 + 1) — 03j711031+2(01 — a31+3)(02 — a31+4) -
03j—2b1 PN b31+1(b3l+2 + 1) — 03j_3103l+2(a1 — b3¢+3)(&2 — b31+4) PN
03]'7101 .. C3l+1(c3l+2 + 1) — 03j721031+2(b1 — Cgl+3)(bg — Cgl+4) e
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All these realtions were derived analogously as transcriptions in the proof of Proposition 5.26. Note

that all the above transcriptions indeed have just finitely many non-zero digits, since sequences

(5.9) are constant from some index on. Now we construct a weighted digit sum with period 3 and

weights u, v, w such that (5.5) holds true on all the above transcriptions. The condition (5.5) on

these transcriptions yields the system of nine inequalities for u, v, w, out of which three are trivially

satisfied, and the non-trivial ones are

ull+ Z(CLSH—l —b3iq3) | +v Z(a3i+2 —b3iq1) | +w Z(asi+3 —b3ip2) | 2w
>0 >0 >0

U Z(a3i+1 —czit2) | v |1+ Z(a3i+2 —c3i43) | +w Z(a3i+3 —c3i41) | 2w
i>0 i>0 i>0

w | Y (bsiys —caira) | +o | 1+ ) (bsiyr — csirs) | +w [ D (bsivz —caipr) | = u
i>0 i>0 i>0

w Y (bsiys —aziyr) | o [ D (bsip1r —asip2) | Fw |1+ (bsiy2 — asiys) | > u
i>0 i>0 i>0

w D (esiva —asivr) | +v [ D (esis —asip2) | +w [ 14+ (csir —agips) | >0
i>0 i>0 >0

ull+ Z(C3i+2 —bzit3) | +v 2(03i+3 —b3ip1) | +w Z(C&‘H —b3ig2) | > .

i>0 >0 i>0
Now note that inequalities (5.10) and (5.13) may be rewritten as

U Z(a3i+1 —b3i3) | +v Z(a3i+2 —b3iq1) | +w Z(a3z+3 —bsit2) | >w—u

i>0 i>0 i>0

w Y (asipr —bsiys) | v [ D (asir2 —bsip1) | +w | Y (asips —baiya) | Sw -,
i>0 i20 20

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

respectively, therefore there has to be equality in both of these inequalities. We may proceed

similarly for inequalities (5.12) and (5.15) and for inequalities (5.14) and (5.11). In this way we
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obtain the following system of equations equivalent to the system of inequalities (5.10)—(5.15)

w Y (asip1 —bsiys) | +v [ D (asira —bsip1) | +w | Y (asits —bsiya) | =w—u

i>0 i>0 i>0

u Z(b?n'—i-?) —c3it2) | +v Z(b3i+1 —c3i43) | +w Z(b3i+2 —c3iy1) | =u—v  (5.16)
>0 >0 >0

u Z(CSH—Q —aziy1) | +v Z(C3i+3 —aziy2) | +w Z(C&'H —azi43) | =v—w.
i>0 i>0 i>0
Note that since we assume (5.9), all the above sums are finite. Denote d; the distance between
i-th and 7 + 1-th term of the sequence a1, co, b3, aq,¢5,b6..., i.e. di := a1 — co, do := co — b3 etc.
Similarly, let A; for ¢ € N denote the distances between terms of the sequence by, ao, c3, b4, a5, ¢q . . .
and D; the distances between the terms of ¢y, bo, as, c4, b5, a6 . ... According to (5.9) all d;, A;, D;

are non-negative for all ¢ € Ng. Especially for ¢ > jg they are all equal to zero. Denote

d:= Z dziy1 A= Z Azt D = Z D3; 1

>0 >0 >0
d:= E dziv2 A= E Azito D := E D3 a.
>0 >0 >0

Now note that summing up the equations (5.16) yields 0 = 0, thus they are linearly dependent.
Therefore there exist a non-zero vector (u,v,w)” satisfying the system of equations (5.16), which

can be in our notation written as

1+d+d —A ~1-D u 0
1-d 1+A+A -D v]l=10
—d —1-A 1+D+D) \w 0

We need to show that (u, v, w) can be chosen as a vector with positive components. We may rewrite

the above system as follows

A+A+D+D A 1+D u u
1+d d+d+D+D D v|=0+d+d+A+A+D+D)| v
d 1+A d+d+A+A) \w w

Denote the above matrix as M. This matrix is non-negative, diagonally dominant and irreducible.
The number A\; := 1+d+d+A+A+ D+ D is its eigenvalue corresponding to the vector (u,v,w)T.

We now show that A; is a dominant eigenvalue of matrix M.
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We need to consider two cases. Denote o(M) the spectrum of the matrix M. FEither
o(M) = {\1,A2, A3} CR; or \; € R and Ay = A3 € C\ R. Firstly, let o(M) C R. Gershgorin theo-
rem 1.5 implies that \; are all non-negative. Since A\j + Ao+ A3 = tr(M) = 2(d+d+A+A+ D+ D),
we have A\ —2 = Ay + A3 > 0, and thus A; is the dominant eigenvalue.

Now consider the case Ay = A3 € C \ R. According to Perron-Frobenius, there exist a positive
eigenvalue of M such that it is equal to the spectral radius of M. In this case it has to be A\;. Thus
in either case A; is a Perron-Frobenius eigenvalue.

For A\ the dominant eigenvalue of M, Perron-Frobenius theorem implies existence of a positive
T

eigenvector corresponding to A; with one dimensional eigenspace. Therefore (u,v,w)" is in this

eigenspace and thus may be chosen positive. Moreover, since matrix M has integer components,

T may be chosen as integer vector, which concludes

and \p is also an integer, the vector (u,v,w)
the proof for the case when all dge) (1) have infinitely many non-zero digits.

Let us now comment on the case when all dg (1) have just finitely many non-zero digits. De-
note k; the index of the last non-zero digit in dgg) (1). The set of minimal forbidden strings contains

also strings of the form 0%ajas . . Ok 0%-2b1b, . .. b, and 0% 1¢iey. .. Ck,- Their transcriptions

can be chosen as

03ja1 e Qg — 0%-11
0% 2y ... by, — 037731 (5.17)
03j_161 o Cy — 0%721.

The transcriptions of other minimal forbidden strings and weight u, v, w may be chosen the same as
in the first part of the proof. Consider now any fixed positive integer vector (u,v,w)” fulfilling all
the conditions in the first part of the proof. It is left to verify that the weighted sum with period 3
with weights u, v, w chosen this way is non-increasing also on transcriptions (5.17). The condition

(5.5) yields the following system of inequalities

A::UZGBH—I +Uza3i+2+wza3i+3 > w

i>0 i>0 i>0

B:=u) bgyz+vY bait1+w) bgiya > (5.18)
i>0 i>0 120

C:= UZ C3i42 + Z c3i43 +w Z C3i41 = .
i>0 i>0 i>0

Let us verify that these inequalities indeed hold true. Indeed, by summing up A+ B+ C', we obtain

A+B+C=u Z(CLgi-&-l +b3it3+c3i42) + 0 Z(a3i+2 +b3ir1+csivs) +w Z(a3i+3 +b3iro+C3i41)-
i>0 i>0 i>0

Note that in each sum there is at least one non-zero term, namely a1, b1, ¢; respectively. Therefore

A+ B+C > u+w+v. We now show that A > w, B > v and C > v. Let us proceed by
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contradiction. Suppose that, for example, A < w. Then B+ C > u+ v+ (w — A) > u + v.
Necessarily, either B > u, or C > v. Consider B > u. Then A — B < w — u, i.e.

w Y (asipr —baiys) | +o [ D (asiv2 —bsip1) | +w | Y (asips —bsiya) | <w—u,
i>0 i>0 i>0

which is a contradiction, since u, v, w were chosen such that they satisfy (5.16). The other cases

would be treated similarly. O

Corollary 5.29. Let B = (B1, B2, 83) and let dp(1) = araz ..., dgu)(1) = biba... and dge (1) =

cice ... be finite. Moreover, let

S S
VooV
Q Q

(V) [\
VoV

& &

Vv

SN
ALY,
S o)

ot (S}
ALY

& &

\YALY,

2
V
S
\%
Q
w
v
o
&
\%
o
(=)
v

Then B, B and B satisfy (F).

Proof. According to Proposition 5.28 all three bases B, B and B®) satisfy (PF). Therefore
the result follows from Proposition 5.25. OJ

Remark 5.30. In Proposition 5.28 we assumed that the sequences ajas ..., biba... and cico. ..
are expansions of 1, i.e. dgu) (1). We may ask if the fact that some B-representations of 1 satisfy
inequalities (5.9) does not already imply that these B _representations of 1 are in fact even B()-
expansions of 1. It is not necessarily so. Consider ajas ..., biby... and cics ... all with infinitely
many non-zero digits satisfying (5.9). It may be the case that not all three sequences are dge (1),
but some of them is d,’gm(l). For example, sequences 5(241)%, (241)“, (412)“ satisfy inequalities
(5.9), but they are not dg)(1). It can be shown that for the case of finite sequences the inequalities

5.9) are indeed strong enough to ensure that the given sequences are dgu)(1). Similar reasoning
B

can be done for the case p = 2, i.e. for Proposition 5.26.
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Chapter 6

Purely periodic expansions

This chapter will be devoted to properties of purely periodic expansions in generalised Cantor base
systems. We will focus on generalisations of properties already known for Rényi numeration systems,
as were briefly presented in Section 2.3.

Firstly, note that similarly as in the case of Rényi numeration systems, it can be shown that for
an alternate Cantor base the 3-expansion of 1 cannot be purely periodic [6]. Therefore, in the sequel,
we will focus on B-expansions of = € [0, 1).

Let B be a Cantor real base. We denote

I'(8) :=sup{c € [0,1) [ Vp/q: 0<p/q<ec, da(p/q) is purely periodic}.

Our aim is to characterise bases B such that I'(3) > 0. We present some necessary and suffi-
cient conditions for this. We then include numerical experiments with alternate Cantor bases, see
Section 6.3. Based on these results, it is likely that for an alternate base with period p we have

F(,@(i)) >0 forallie{0,1,...,p— 1}, whenever I'(3) > 0.

6.1 Necessary conditions

As we have already seen in Section 2.3, if for a real base [ it holds that T'(8) > 0, then g is
an algebraic integer, and, moreover, it is a Pisot number. Let us now show a similar result for

alternate Cantor bases. In the proof, we will use a result proven as Theorem 7 in [7].

Theorem 6.1 (Theorem 7 [7]). Let p € N and B = (B1,...,Bp). If for every i € {0,...,p — 1}

there exists a non-zero integer q; and an eventually periodic sequence a® = (an) such that

)n21

3 a1
HZ:1 5z‘+k qz‘7

n>1
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then 0 is an algebraic integer. If, moreover, these p sequences have non-negative elements and for

alli € {0,...,p— 1} there exist m; such that agl)ipﬂ > 1, then B; € Q(0) for all j € {1,...,p}.

In the sequel, we will need to use also the claim of the second part of the above theorem.
Therefore we now comment on existence of such sequences with non-zero digits on certain positions.
It suffices to consider the situation just in the base 8 = B9 and for the sequence a?), the results

for the shifted bases (i.e. other indices i of a(?) is straightforward.

Lemma 6.2. Let B3 = (p1,...,0p) be an alternate base. Then there exists r € N,r # 1, such that
in the B-expansion

dg (1/r) = x12023 . . .

there exists an index Il € N, [ = 1 mod p, so that x; # 0. Moreover, for any K > 0 the number r

may be chosen so that 1/r < K.

Proof. Since 51 > 1 and § > 1, it is clear that for every sufficiently large | = Mp + 1 the length
of the interval I = (B1---Bi_1,P1---f1) = (6M,6MpBy) is greater than 1. Therefore there exist

an integer r € I. For any K > 0, one can chose [ large enough, so that

1 1
- < — < K.
r oM

Now, by the greedy algorithm, the (B-expansion of %, ie. dg(1/r) = wixox3..., is of the form
0 Yoy ... with 2; # 0. O

With these propositions at hand, let us finally state our result. Note that the proof will follow

similar ideas as the proof of Theorem 4.4 in our research project [21].

Proposition 6.3. Let p € N and B8 = (B1,...,08p). If F(,B(i)) >0 foralli € {0,...,p— 1}, then
8 =[1E_, Bi is either a Pisot or a Salem number and 3; € Q(8) for all j € {1,...,p}.

Proof. By theorem 6.1 combined with Lemma 6.2, the number ¢ is an algebraic integer and 3; € Q(9)
for all j € {1,...,p}. Let us now show that none of conjugates of 4 other than ¢ itself has modulus
strictly greater than 1. Since I'(3) > 0 and ¢ > 1, for all sufficiently large k£ € N it holds that

% < I'(B). Moreover, for each such k and each n € N there exists a rational number «,, in
the interval ((sik, 5% + (Sk%) Such a,, has its purely periodic 3-expansion of the form
1 Zj
wm=git )

i 57
jzplerny1 iz Bi
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where z; € D; = {0,1,...,|f;]} are digits of the B-expansion of a,, i.e. they are obtained by

the greedy algorithm. We may rewrite the relation as

= ik + > (’% (6.1)

j>k+n+1
where z; € D = {a1f2---Bp +a2f3---Pp+ -+ ap-108p + ap | a; € D;}. We have shown that
Bi € Q(0) for all 4, therefore D C Q(J). We assume that (2;);>p(r+n)+1 is periodic, thus also
(2j)j>(k4n)+1 18 a periodic sequence. Let v denote a conjugate of ¢ (other than d), and let o denote
the isomorphism of Q(d) and Q(v) induced by o(d) = 7. For a contradiction let |y| > 1. Since

ap, € Q, we know that «,, = o (), i.e.

Gt Y 2eolgt ¥ Feat X 7(5)

j>k+n+1 y>k+n+1 j>k4+n+1

Note that periodicity of the sequence (2;);>n+1 allowed us to map each member of the sum with o

separately. Therefore

> Rz

jZk+n+1 j>k+n+1

o(#)]

f)/]

n 1
)<202 *—20 D=1 e

j>k+n+1

where 1 := min{|y|, |§]} >1, C := max{max,ep|o(z)|, max,ep|z|}. Since the inequality holds for all
n € N, the right-hand side may be arbitrarily small, which is a contradiction, because k may be

chosen so that the left-hand side is non-zero. O

6.2 Sufficient conditions

In this section we will in particular focus on the case of an alternate Cantor base with finiteness
property. Moreover, we will consider only bases where § = Hle B; is either a Pisot or a Salem
number, and it is an algebraic unit. Note that this setting is analogous to the assumptions of
Proposition 2.20 for Rényi numeration systems. In the sequel we will follow similar steps as authors
of [16] (they focused on the same problem, but for numeration systems with negative bases).

Let B8 = m be an alternate base and let B denote its bi-infinite periodic extension.
At first, let us give some remarks considering the properties of z € (0,1) with purely periodic 8-
expansion. Consider such = € (0,1). Then there exist some j € N so that its (3-expansion can be

written as

dg(x) = aras...apjaias ... ap;... = (a1az...apy;)"~,
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i.e. we may stretch the period so that its length is a multiple of p. Then the number x itself may

be written in the following form

aq as Qpj 1 1 > (a1 a9 apj> (5j
=\t oot ) (It gt )=+ to+ B —— (62
’ </81 152 07 ) ( 5 0 B BB 85 ) 63 —1 (6:2)

We may now multiply each term in parenthesis on the right-hand side by ¢/ and multiply the whole

equation by §7 — 1
(5j — 1z = a1 13y - Bp + asd? 1By B+ + api—1Bp + ap;. (6.3)

With this motivation at hand, let us proceed with the first step towards a sufficient condition.
Consider 3 a Cantor base, B a bi-infinite Cantor base, and d>1 an algebraic unit. We will use

the following notation

Z[B) :=={z € R| I a=(a;)]>,a; € Ny with finitely many non-zeros so that valg(a) =z},
Z[B) :={r e R| 3 b= (b;)T2,b; € Ny with finitely many non-zeros so that valg(b) = z},

Z[6) :={x € R|Fe=(c;)T2, ¢; € Ny with finitely many non-zeros so that vals(c) = z},

where valg for an infinite sequence @ = aqaz . .. and valg for a bi-infinite sequence ... b1bg-b_1b_2 . ..
were already defined in Chapter 5, see Notation 5.9. The symbol vals for a real number § > 1 denotes

standard evaluation of the bi-infinite sequence in a base 9, i.e.

vals(c) :"'+C252+Cl5+60+%+05;22+“- .
Note that for an alternate base 8 = (f1,...,[p), for its bi-infinite periodic extension B, and for
6 =[1%_, i it holds that
Z[3] C Z[B] and Z[6] C Z[B].

In analogy to [16], the first property needed in order to formulate a sufficient condition is the fol-

lowing claim.

Lemma 6.4. Let B = (p1,...,0p) be an alternate base and denote B its bi-infinite periodic exten-
sion. Let 6 = [[V_; be an algebraic unit. Then for every x € Q(0) there exist infinitely many j € N
such that (67 — 1)z € Z[B].

Proof. 1t has already been shown in [16], see Lemma 2, that for an algebraic unit § > 1 and for
x € Q(J) there exist infinitely many j € N such that (67 — 1)a € Z[6]. The proof is concluded since
Z[6] C Z[B], as we already mentioned above. O
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Recall now that in this section we consider in particular alternate bases with finiteness property.
For such bases, it holds true that Z[B] = Fin(B). Therefore, with assumptions as in Lemma 6.4, for
the case of an alternate base with Property (F), each (87 — 1)z € Z[B] = Fin(B) have the greedy

expansion in B of the form
(07 = 1)x)p = TpTp_1... 20 T 1. . T i1 m

for some m,n € N. To proceed further, we need to comment on the size of minimal possible such
indices m and n.

Firstly, motivated by the above analysis of numbers with purely periodic B-expansions, see
Equation (6.3), we would like to have x_1...x_py12_p, = 0™. Similar question for the Rényi
numeration systems with base 5 > 1 was investigated in [23]. Authors provided a condition ensuring
that the right-hand side of the considered §-expansions is 0. The condition was formulated in terms
of images of conjugates of # in non-identical isomorphisms of Q(3). However, to generalise this result
for the case of an alternate base seems to be very technical, we left this question open. From now
on we will comment on the case when the condition z_1 ... z_p,112_m = 0™ holds true.

Let us analyse the size of the index n. Consider j fixed. Since we are working with the greedy
expansions in the base with positive elements, it is clear that the index n can be controlled just by
the size of the number z in expression (67 — 1)z. To be precise, it has to be H?Ill ;< (67 — 1)z,
Again, motivated by Equation (6.3), we firstly need to ensure that n+1 < pj. Then (67 — 1)z may
be represented in the form of a sum similar as in (6.3), and thus = may be written in the form as

in (6.2)

x—<0+ + . b +xo> <1+1+1+ >
B Bi---Bpj—n-1  Br---Bpj-n o 6 02 '

Consequently, there exists a B-representation of x of the form (0™ =Pz, ...xq)~. However, it does

not yet need to be the B-expansion of . In order to ensure this property, the index n has to be
small enough, so that the string (0™ ~Px,,...x0)¥ is admissible in base 3. This can be achieved by
controlling the size of  (more zeros will be padded at the beginning of the sequence for smaller z),

i.e. the proper choice of I'(B) will be needed.

6.3 Numerical experiments

In this section we present several numerical experiments considering the value of I'(3) for alternate
Cantor bases. We hope that these experiments will greatly help with building an intuition much

needed in order to state new conjectures, and hopefully prove theorems in the future research.
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All calculations were done in Julia programming language with help of Nemo.jl package. During
the experiments multiple sets of fractions with values in (0,1) (details differ in each example, see
below) were generated and their (3-expansions up to the certain number of digits were calculated
using the greedy algorithm. Then the length of preperiod and period were determined. Note that
if we want the greedy algorithm to function properly, one should choose a symbolic representations
of numbers via their minimal polynomials, instead of numerical representations with fixed precision.
Moreover, the periodicity of expansions is verified using comparison of certain reminders generated
by the greedy algorithm, as we explained in Remark 3.2, therefore in this step it is indeed necessary
to represent numbers symbolically.

Recall now one of previous results considering alternate Cantor bases — a generalisation
of Schmidt’s theorem 2.9, as it was proven independently by authors of [7| and by us in [21].

In order to state the result, we will need the following notation
Per 8 :={z €[0,1) | dg(x) is eventually periodic}.

Theorem 6.5 (Schmidt for an alternate base). Let 3 = (B1,...,3y) be an alternate base. Denote
6= H§:1 B
1. IfQN0,1) € Per BY) for all j € Ny, then § is either a Pisot or a Salem number and 3; € Q(6)
for all i € N.

2. If § is a Pisot number and f; € Q(8) for all i € N, then Q(8)N[0,1) = Per 8Y) for all j € Ny.

In majority of examples below the base will be chosen so that § is a Pisot number and 3; € Q(9)
for all ¢ € N. Therefore, we will always be able to decide whether fractions in the tested sets indeed
have purely periodic expansion or not just by calculating sufficiently many digits and running
an algorithm for a periodicity check. Note that in the case when ¢ is a Salem number, this method
does not need to provide a desired answer considering periodicity.

Let us now present the results of our numerical experiments. We will focus on bases that we
have already encountered in other context, see Appendices A and B. One example will also comment
on the favourite base of authors of [6]. The whole generated data set is rather large (it contains
all generated fractions along with length of their preperiods and periods), thus we chose to present
here just the qualitative results, which we consider crucial for the further research. The script used
to generate data and the final data set is available upon request.

In the examples below we will denote 7, the positive root of the polynomial 22 — mz — 1
for m € N, ie. v; is a quadratic Pisot unit without positive conjugate. Note that for m = 1
the number v; = 7 is a Golden ratio. In all examples we denote § = le B; and T'eg(3) will denote
our estimate of I'" for the given base 3 based on the results of numerical experiments. We round

this estimate usually to 2 or 3 decimal places.
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Example 6.6. Denote a; = (71,7?2) = (7,72). We generated three sets of fractions

1
- n:2,3,...,100},

{TL

n
={—1|n=12,..., }
SQ {100 n 99

‘n:2,3,...,100}.

For the set 57 all fractions have purely periodic expansions. Note that all these numbers have value
at most % However, for the set S3 where fractions are greater than %, all numbers in this set have
just eventually, but not purely periodic expansions. Finally, for the set Sy also all fractions with
value < % are purely periodic, but the fractions which are strictly greater than % do not have purely
periodic expansions. Note that in general for I' > 0 it does not need to hold true that all fractions
greater than the given bound are not purely periodic. It may be that above the value of I'" some
fractions have purely periodic expansions, and some do not. We will see such (possible) examples

below. In conclusion, for the base a; we estimate e (1) =~ 0.5.

Example 6.7. Denote a; = (’yj,’yjz) for j € {2,3,4,5}. We at first tested sets S; and Sy as in
Example 6.6. For each j € {2,3,4,5} we found multiple fractions in S; such that they do not have
purely periodic expansion, i.e. it is clear, that I' has to be smaller than % for all j. In order to

further specify the value of I'(ey;) for each j € {2,3,4,5}, we generated the sets

sz{mj.#‘n:2,3,...,1oo},

where m; was chosen as the smallest fraction from Sy such that its aj-expansion is not purely

periodic. The values of m; were thus chosen as follows

23 3 7 7
ms3 = — my = ——= ms = ——.

mo = ——
100 25 100 100

For the index j = 5 we generated and tested one more set of fractions

In

Sy = 7‘ —92.3....100%,
4 {200(n+1) " }

because we wanted to sample the interval close to possible I'(a5) more densely. Our estimates of T,
after calculating the length of preperiods of all these sets of fractions, may be chosen as the value
of the smallest fraction out of all tested fractions for the given base, which does not have a purely

periodic expansion. The resulting estimates are

Test(arz) ~ 0.21 Test(ars) ~ 0.11 Test(ts) ~ 0.066 Test(ats) ~ 0.042.
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Example 6.8. Consider shifts of bases o from the above examples, i.e. a}l) = (fyj??fyj) for

j € {1,2,3,4,5}. We tested sets S; and Sy as defined in Example 6.6, and, moreover, the set

n
S {n+1 ‘n 3 oo}

All tested fractions have a purely periodic expansion, thus we estimate
Test(alV) ~ 1 for all j € {1,2,3,4,5}.

For bases in Examples 6.6, 6.7 and 6.8 we know that Property (F') holds true, see Remark 6 in
Appendix B. Based on the results known about Rényi expansions (i.e. alternate bases with period
p = 1), this property might be connected with the existence of I'(3) > 0 for a given Cantor base 3.
We have already seen several examples of bases with Property (F'), let us therefore continue with
examples of bases, which either do not have finiteness property, or we cannot decide about their

finiteness property based on our sufficient an necessary conditions proven in Chapter 5.

Example 6.9. Denote ¥ = (7,72, 73). In this case we tested sets S; and S for all three shifts of this
base. Expansions of fractions in the set S; were all purely periodic in all three shifts of the given
base. However, when testing the set S5, we found some fractions which do not have purely periodic
expansions (such fractions existed for each of three shifts of base ). Thus again, we may estimate
I for each shift as the value of the smallest fraction in S5 such that its expansion in the given base

is not purely periodic. Resulting estimates are
Test (1) ~ 0.39 Test (™M) = 0.70 Test (1) ~ 0.52.

Note that in all three shifts of the given base we found fractions with purely periodic expansions
even above the estimated bound T'es;. In our opinion, this property might be quite common and
is not surprising. As we already mentioned, for this base it is not clear if the finiteness property

holds true or not.

Example 6.10. Let = m This base is also an example of an alternate base about which
we cannot decide if it has finiteness property with help of our sufficient and necessary conditions.
Let us now explore properties of this base and its shift in a similar way as in the above examples.
Firstly, we tested fractions in the set Sy for all shifts. For (1) all these tested numbers had purely
periodic expansions, we did not test this shift for any other fractions. In the case of the second shift
and of the base itself, the set Ss contained multiple fractions with expansions that were eventually,
but not purely periodic. In the base pu the minimal such fraction was kg = 1—10. For the second shift
of the base, the smallest fraction in Sy with non-purely periodic expansion was kg = 5—70. We tested

few more terms of sequences convergent to values ko and ko from below. To be precise, we tested
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fractions of the form k; - ;77 for n integer bigger than 2, until we found a fraction which does
not have a purely periodic expansion. This is the fraction that might serve as our final estimate

of the value of I'. Therefore, the resulting values for p and its shifts are
Lo () = 0.05 Test (M) ~ 1 Test (1'?) ~0.13.

Remark 6.11. Note that even if we consider an alternate base satisfying the second part
of Schmidt’s theorem 6.5, i.e. we know that all fractions in (0, 1) have at least eventually periodic
expansions, their periods and preperiods might be considerably long and thus it may be needed
to let the greedy algorithm and the algorithm for periodicity check run for even more than few
thousand cycles. In the above example 6.10, the further refinement of the value F(,u@)) could be

done for instance by calculating preperiods and periods of fractions in the set

93n

51 {700(n+1)’" '3, ’00}

However, when calculating preperiods and periods on first 5000 digits, for multiple fractions in this
set we were not able to decide if their expansions are even purely periodic or not, therefore we

decided to not continue with estimating the value of desired I' even further.

Example 6.12. Let us now examine an example of an alternate base without finiteness property.
Let & = m. This base does not fulfil necessary conditions of finiteness property as stated
in Theorem 5.8, namely the last condition considering images of (3; of non-identical isomorphisms
of Q(6). Moreover, neither dg(1), nor dga) (1) are finite. In the numerical experiments, we tested

fractions from the set

|
ng{’n:2,3,...,500},
n

i.e. the same form of fractions as we usually test in the set S7, but for more vales of n. We found
out, that none of these fractions has a purely periodic expansion, neither in the base &, nor in its

shift €). Therefore, we estimate
Fest(g) ~ 0 Fest (5(1)) ~ 0.

Example 6.13. Let us examine one last example of the base consisting of powers of a Golden ratio.
Consider n = (7,72, 7). We tested, as usually, the sets S7 and So. The estimated values of T for
the given base and its shifts might be chosen as the smallest fraction from S; U Sy such that its

expansion is eventually, but not purely periodic. The results are as follows

Test(n) ~ 0.09 Test(n'V)) ~ 0.37 Test(n®) = 0.87.
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Example 6.14. Consider the favourite base of authors of [6], i.e. let x = (%, %) In this

1413 5413 _ 3+V/13
2 6 2

case § = is a Pisot unit with minimal polynomial 22 — 3z — 1. The expansions
of 1 are of the form dy(1) = 201 and d, ) (1) = 11. Note that these expansions satisfy sufficient
condition for finiteness property as stated in Corollary 5.27. Again, we tested the sets of fractions
S1 and Sy for both shifts, as in all the above examples. In the base itself we found multiple fractions
with non-purely periodic expansions, and the smallest fraction from S; U Se with just eventually,

but not purely periodic x-expansion was % Therefore, in order to further specify the value of I'(x)

we tested fractions of the form 15—2 * 747 for n integers greater than 2. The smallest fraction with
non-purely periodic expansion we found this way was % ~ 0.41, thus we set our estimate as

Cest(x) =~ 0.41. In the shifted base all fractions in S; U Sy were purely periodic. Moreover, we
tested the set of fractions of the form 27 for n € {2,3,...,100}, i.e. the fractions in Sg. In this

case also all tested numbers had purely periodic x(M-expansions. In conclusion, our estimates are

Lest(x) =~ 0.41 Test(xV) ~ 1.

Example 6.15. Consider § the positive root of 2® — 3122 — 122 — 3 and B; := ‘?_—Jf’, = %.

Then f is the positive root of the polynomial 2123 — 10322 — 108z — 39 and f3 is the positive root

of 1323 — 7122 + 102 — 21, i.e. neither 3 nor By are algebraic integers. According to Proposition 12

in Appendix A, we indeed have 6 = (3135. Denote 8 = (31, 32). In this base the expansions of 1
are dg(1) = 543 and dgu)(1) = 521. In this case a sufficient condition for finiteness property
Corollary 5.27 does not hold true, therefore we do not know if this system has (F'). Note that we
also analyse this example (transcriptions of the set of minimal forbidden strings and possible weights
of the weighted sum needed to Theorem 5.19) in more detail in Example 7, Case 2, Appendix B.
In this base the analysis of expansions of various sets of fractions analogous to the previous examples
was not possible due to computational limitations — it is much slower to run the greedy algorithm
and the algorithm for periodicity check on the bases where § is not an algebraic unit. Therefore we
tested just several of the fractions of the form % and tried to find some small fractions with non-
purely periodical expansions. In the base 8 we found that for example ﬁ ~ 0.0048 has a preperiod
of the length 10, in the shifted base 1) the fraction ﬁ ~ 0.0041 has a preperiod 21 digits long.

These fractions are rather small and with quite long preperiods, therefore we estimate
Fest(e) ~0 Fest (0(1)) ~ 0.

Example 6.16. Lastly, let us comment on the case when § is a Salem number. Note that in the case

of generalised Cantor bases the possibility that I' might be non-zero even though § is a Salem number
. . oy 4 3 2 _ (B

had not yet been disproven. Consider S the positive root of * —2° — 3z —x 4+ 1. Let B = <§, 2).

Due to the limitations mentioned in connection with generalised Schmidt’s theorem above, it is
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needed to choose a fixed number of digits that we compute and on which we check the periodicity,
because it might be the case that 3-expansions of some fractions are not even periodic. Therefore
we calculated just first 1500 digits. The smallest fraction with eventually, but not purely periodic
B-expansion that we found, is ﬁ ~ 0.004 with preperiod 735 digits long. Similarly, for the shifted
base B the smallest such fraction that we found is ﬁ ~ 0.003 with preperiod of the length 505

digits. Therefore we conclude

Lest(B) ~ 0 [est (ﬁ(l)) ~ 0.
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Conclusion

Let us now recapitulate our results. Firstly, we recalled several definitions and well-known theorems
considering combinatorics on words, standard numeration systems, matrix theory and algebraic
numbers. In the second chapter we focused solely on Rényi numeration systems. We presented
essential definitions considering these systems, as well as results connected with finiteness property
and periodicity.

Chapter 3 was devoted to generalised Cantor base systems. We recapitulated several already
known results, as well as provided our own definition of bi-infinite Cantor real base. Another result of
our research was presented in Chapter 4, namely a proposition considering existence and uniqueness
of a suitable alternate base with period p = 2 much needed to further generalise the well-known
result of Parry (Theorem 2.7).

The goal of Chapter 5 was to describe the arithmetics, mainly addition and subtraction, in al-
ternate Cantor bases and their bi-infinite extensions. We formulated and proved necessary and
sufficient conditions for positive finiteness and finiteness property. The proof of the sufficient con-
dition may be considered constructive. Consequently, we provided a class of alternate bases with
period p = 2 and p = 3 satisfying (positive) finiteness property. All notions were also described in
detail in numerous examples in Appendices A and B.

The research project was concluded by investigating the properties of purely periodic (3-
expansions. We considered in particular alternate Cantor bases 8 = m We show that
if there exists I'(3) € (0,1] such that all rational numbers in [0,I'(3)) have purely periodic 3-
expansion, then ¢ := [[¥_, §; is either a Pisot or a Salem number. Next, in analogy to known
results for Rényi numeration systems, we focused on a sufficient condition for I'(3) > 0 for the case
when § is a Pisot unit and the system has (F'). We provided an analysis of steps needed in or-
der to formulate such proposition. We concluded this chapter by several numerical experiments
considering expansions of fractions in multiple chosen bases.

We hope that both Appendices A and B provided a greater insight into the examined topics
even for readers who considered some proofs exceedingly technical. We also hope that numerical

results presented at the and of Chapter 6 will serve to build an intuition much needed in order
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to formulate new research ideas considering purely periodic expansions in generalised Cantor base
systems.
To conclude, generalised Cantor base systems are a still very new and lively discussed area

of research. The present work is a step towards solutions of many open problems in this field.
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Appendix A

Expansions in bases consisting of powers of a quadratic Pisot unit

We now recall our earlier results concerning expansions in bases consisting of powers of a quadratic
Pisot unit. All proofs may be found in [21].
Let v be the larger root of 2 —ma — 1 where m € N. We have calculated the greedy expansions

of 1 in bases B := (v,72), v := (7,72,73), 8 := (7,73,7?) and in all their shifts.

Proposition 1. Let m € N and let v be the larger root of 22 — ma — 1. Let B := (v,72). Then

dg(l)=mm 1

dg (1) = (m? 4+ 1) m.
Proposition 2. Let m € N and let v be the larger root of 22 — mz — 1. Let v := (v,72,73). Then

dy(1)=mm (m* +1) m
221 for m=1
dyo(1) =
(m?+1) (m*+2m—1) (m—1) (m+1) (m>+1) m for m > 2

d,y<2)(1) = (m3 +3m) 0 1.
Proposition 3. Let m € N and let 7 be the larger root of 22 — ma — 1. Let & := (v,73,72). Then

ds(1) =m (m* +1) m* m
dsy (1) = (m3 +3m)01

ds (1) = (m* +1) m.

Note that all calculated expansions of 1 were finite, which is an interesting fact — if we would
for example define 7 as the larger root of the polynomial 22 —ma + 1 where m > 3, some expansions

of 1 in bases consisting of powers of v as above would be eventually periodic, but not finite.
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With the above propositions at hand, the infinite Rényi expansions of 1 in studied bases could

be calculated similarly as it was shown in Example 3.4. We would obtain the following results.

Proposition 4. Let m € N and let v be the larger root of 22 — ma — 1. Let 3 := (v,72). Then

di(1) =[mm 0 (m*+1) (m—1)]*
dgm(l) = [(m%?+1) (m —1) m m 0]“.

Proposition 5. Let m € N and let v be the larger root of 22 — maz — 1. Let ~ := (v,v2,73). Then

form=1

d(1)=[1120220"
A (1) =400[1120220"

and for m > 2

[mm (m?+1) (m—1) (m*+1) (m*+2m —1) (m—1) (m+1) (m?>+1) (m—1)

da(1)
s (1)
5 (1) =(m>+3m) 00 [mm (m*+1) (m—1) (m*+1) (m>+2m —1) (m —1)

[(m?4+1) (m*+2m—1) (m—1) (m+1) (m*+1) (m—1) mm (m* +1) (m— 1)

(m+1) (m*+1) (m —1)]*.
Proposition 6. Let m € N and let v be the larger root of 22 — ma — 1. Let § := (v,73,72). Then

d5(1) = [m (m*+1) m? (m — 1) (m®+3m) 0 0]”
s (1) = [(m3 +3m)00m (m2 +1) m?> (m—1)¥

s (1) = [(m* +1) (m —1)].
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Bases with short expansions of 1

Another interesting results of our research project [21]| are the properties of bases with period 2 and
short expansions of 1. We now recall some of our findings.
Let us have two sequences ajagas ..., bibabs... where the digits are in Ny, both sequences

lexicographically larger than 10“, and for all ¢ > 1 the following holds

a2i4+102i42 ... < A102 ...

b2'b2'+1 o= ajag. ..
o (7.1)
a2;a2i4+1 - .- < biby ...

b2i+1b2i+2 cee < b1by. ...
We are looking for 81 > 1 and 2 > 1 such that

d(ﬁlyﬁz)(l) =aiay...
d(ﬁ2,61)(1) =bibsy....

Note that inequalities (7.1) are necessary for existence of such §; and B2. We now present the
solution of a problem of finding suitable base for some cases of finite sequences up to three digits

long.

Proposition 7. Let a; > 1,b; > 1 be integers. Then there exist unique 51, 82 > 1 such that

d(ﬂ1ﬁ2)(1) =
d(ﬁz,/ﬂ’l)(l) = b1

In particular, 81 = a1, B2 = by are integers.

Proposition 8. Let ay,a2,b1 € Nand ag # 0, by > 1 be such that as < b1. Then there exist unique
51, B2 > 1 such that

d(ﬂl,ﬂ2)(1) = a1a2
d(ﬂQ,ﬂ1)<1) = b1

In particular, 81 = a1 + 32, B2 = by are rational numbers.
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Proposition 9. Let a1, a9, b1, by € N satisfy ao < by, bo < a1. Then there exist unique 51, 52 > 1
such that

dg, ) (1) = arag
d(ﬁ%ﬁl)(l) = bibs.

In particular, if & denotes the larger root of 2% — x(ag 4+ by + a1by) + agbe, then

o — b2 a15 6 — as b15

lBl: b1 :5—CL2 52: al :5—b2'

Moreover, § is a quadratic Pisot number.
Proposition 10. Let a1,b1,a3 € N, as € Ny, by > 1 satisfy ag < a1, as < b;. Then there exist

unique (51, B2 > 1 such that

d(ﬁlyﬁz)(l) = a1a20a3
d(ﬁzﬂl)(l) = b1.
In particular, if § denotes the larger root of 22 — z(a1b; + az) — asby, then

_ day +as
0 —a

ﬁl ﬁz = b1.

Moreover, d is a quadratic Pisot number.

Proposition 11. Let a1,b1,a3,bs € N, as € Ny satisfy
as < a, by < aq, as < by or (CLQ =b; and a3z < bg)
Then there exist unique B1, 82 > 1 such that

d(ﬁlﬂz)(l) = a1a2a3
d(62,61)(1) = b1 bs.
In particular, if § denotes the larger root of 22 — z(a1by + ag + b2) — (agby — agbs), then

- daq + ag oby
- §—by

A

(5—CL2

Moreover, if asby # agbe, then § is a quadratic Pisot number. Otherwise, § = a1b1 + a2 + b is an

integer.
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Lastly, recall the result for sequences both three digits long.

Proposition 12. Let us have ay,as,b1,b3 € N, a9, by € Ny such that

a3z < ay, by < aj or (bg = aj and b3 < ag),

b3 < bl, as < by or (a2 = b; and asz < bg).
Then there exist unique 1, 82 > 1 such that

d(ﬁ1,52)(1) = a1a20a3
d(,,8,)(1) = b1babs.

(7.2)

In particular, if we denote & the root of polynomial 2° —x2(a1b1 +a+bs) —2(asby —asbs+a1b3) —azbs

greater than 1, then
_ day + a3
N 0 — a9

_ 0by + b3

b1 5 by

B2

Moreover, d is a cubic Pisot number.

Algebraic properties of alternate bases for p = 2

Also other bases with finite or at least periodic expansions of 1 have interesting algebraic properties.
We have already discussed them earlier in our research project [21] and we present them here
without proofs. Namely, we have show that § = 5135 is an algebraic integer if the given sequences
a1by ..., biby... are finite or at least eventually periodic. For the sake of simplicity, but without
loss of generality, we consider finite sequences of even length, or in the case of eventually periodic

sequences we consider even length of both preperiod and period.

Proposition 13. Let 81 > 1 and 82 > 1 be such that

d(ﬁlﬁz)(l) =ayaz...a
d(gy,5)(1) = b1bs ... b,

for some k,m € N. Then ¢ := 132 is an algebraic integer of degree less than or equal to k + m.

Proposition 14. Let $; > 1 and 83 > 1 be such that

d(61,,32)(1) =aiag...agk (a2k+1a2k+2 N a2(k+l))w

d(gy,5)(1) = b1ba . . bam (b2mt1bomt2 - - bagmin))”
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for some k,l,m,n € N. Then § := (102 is an algebraic integer of degree less than or equal to

(k+1)+ (m+n).

It follows from the proof of generalisation of Schmidt’s theorem that we presented in [21], that

this property holds also for an alternate Cantor base with period p € N.

Proposition 15. Let 8 = (B1,...,8p). Let dga (1) be eventually periodic for all i € {0,...,p—1}.
Then § := [[L_, i is an algebraic integer.
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Appendix B

In this section we describe arithmetic properties of several classes of alternate bases with p = 2
having short expansions of 1. Our aim is to illustrate on these simple examples all the results of

Chapter 5 on Properties (PF') and (F'). At first consider 51 > 1 and 2 > 1 such that

d(,31,62)(1) =aias...anm
dgy,8,)(1) = biba ... by

(8.1)

for some m,n € N, a,, and by, are considered non-zero. Take 3 = (31, B2). For the case of sequences
up to three digits long we have even presented the exact values of such 1 and (5 in Appendix A.
We now describe transcriptions of minimal forbidden strings of these systems and find a suitable
counting function for Theorem 5.19 in a form of weighted sum when it is possible. Recall that
the minimal forbidden strings are of the form presented in Remark 5.15. In the following, we will
consider transcriptions of all strings of such form, we will not discuss if they are indeed minimal
or not for the particular case of base. Moreover, in the light of the assumptions of Theorem 5.19
we will consider just strings with evaluation in base 8 smaller than 1. Note that since we consider
bases with finite expansions of 1, the property (PF') implies (F).

It can be shown that the expansions ajacas ..., bibobs... are such that they are > 10“ and
they satisfy the lexicographical condition (7.1). We will use this fact in the derivation of the suitable
transcriptions. In all examples we denote B() the bi-infinite periodic extension of B(%).

For a better orientation in this section, let us at first summarise the main results in the following

table showing which bases satisfy property (F'). Parameters m,n and coefficients a;, b; refer to (8.1).

m,n | Additional conditions Reference (F)
1,1 = Example 1 Yes
2,1 - Example 2 Yes
2,2 = Example 3 Yes
3,1 - Example 4 Yes
3,2 by > as Example 5, Case 1 Yes
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3,2 by < as Example 5, Case 2 | Not known
3,3 as > b, by > ag Example 7, Case 1 Yes

3,3 ag > b, by < ag Example 7, Case 2 | Not known
3,3 as < bz, by < ag Example 7, Case 3 | Not known
3,3 as < bz, by > as Example 7, Case 4 | Not known

Table 8.1: Results considering finiteness property of bases with period
p = 2 and expansions of 1 in the base and its shift of lengths m,n

Example 1. With notation as above let m =n =1, i.e.

d(51,/52)(1) =
d(ﬁmﬂl)(l) = b1

The minimal forbidden strings are of the form 0%*a;, 02**1b; for k € Ny. Suitable transcriptions of

such strings with evaluation in 3 smaller than 1 are

0%%a, — 0211

02F—1p, N 0221

for all £ € N. The digit sum of such transcriptions is non-increasing, thus may be chosen as a suitable
counting function in Theorem 5.19. Consequently, all bases of such form satisfy assumptions of this
theorem and Fin(B®) is closed under addition of positive elements for i € {0,1}. According to

Proposition 5.25 then both B and B(!) satisfy finiteness property.

Example 2. Now consider m =2, n=1, i.e.

d(ﬁl,ﬂz)(l) = a1a2
d(52,51)<1) = b1

Transcriptions of the set of forbidden strings as in Remark 5.15 with evaluation smaller than 1, may

be chosen as

0% (a1 + 1) — 02*=110(by — as)
0% ayas — 0211
02k—1p, . 02k—21
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for all £ € N, since (7.1) implies that ay < b;. In this case, the digit sum is a suitable counting
function in Theorem 5.19 only if a1 > b1 — as. This inequality is restrictive, thus it is natural to ask
if there exists some counting function with period 2 that would satisfy assumptions of Theorem 5.19
for the above transcriptions without any additional conditions. Consider f a weighted digit sum as

in Example 5.18 with weights wg = u, w; = v, and with period p = 2, i.e.

p—1
f(?”lTQT‘g .. ) = Z WL Z T, = Z vrej—1 + ury;. (82)
k=0

1=k mod p j=>1

Then the condition (5.5) yields inequalities

v(ar +1) > u(by —az + 1)
va; + uas > u

uby > v.

The second inequality is trivially satisfied. To satisfy the first and the third inequality, we may
choose u = a1 +1, v = 14b; —ag. With this choice of weights the function f fulfils the assumptions
of Theorem 5.19 without any further requirements on coefficients a;, b;, thus also for this class
of bases it holds that B and B() satisfy (PF) and since they have finite expansions of 1, these bases
also satisfy (F).

Example 3. With notation as above let m =n =2, i.e.

d(ﬁl,BQ)(l) = 102
d(ﬁzﬂl)(l) = byby.

Suitable transcriptions of forbidden strings as in Remark 5.15 may be chosen as

0% (a; +1) 02*7110(by — ag)bs

0% ayas 02k—17

02’671([)1 + 1) 02]67210((11 — bg)ag

I

02k—1b1b2 02k—21

for all £ € N, since (7.1) implies a2 < by, by < a;. The digit sum is non-increasing on transcriptions
of these strings only if a3 > b1 — as + b2 and by > a1 — by + a9. These conditions are again quite
restrictive. Thus similarly as in the previous example, we are looking for a better counting function.
Also in this case it is possible to find a suitable weighted digit sum f, which satisfies assumptions

of Theorem 5.19 even without any further requirements on digits of expansions of 1. We want f
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with weights u, v to be non-increasing on the above transcriptions, i.e.

v(ay + 1) > vby +u(l + by — a2)
vay + uag > u
u(by + 1) > uag +v(1l + a3 — ba)

vby + uby > wu.

The second and the last inequality are satisfied for all u,v € N. The first and the third inequality
imply u(b; —ag + 1) = v(a; — by +1). Thus a suitable choice of u, v is for example u = a3 — by + 1,
v = by — az + 1 and this choice is unique up to scaling by a constant. Consequently, for the case

of expansions of 1 both 2 digits long, bases B and B() satisfy (PF) and also (F) property.

Example 4. Let m =3, n =1, i.e.

d(ﬁlﬁz)(l) = a1a2a3
d(ﬁz,ﬁﬁ(l) = b1

Transcriptions of the set of forbidden strings as in Remark 5.15 may be chosen as the admissible

transcriptions

0% (a1 + 1) — 02*=110(b; — ag — 1)(a; — as)agas
O%al(az +1) — 02]“71100(@1 — as)agas

OQkalagag — 0%k—11

021, N 02k—271

for all & € N, since (7.1) implies b > a2 —1, a1 > as. In this case the digit sum fulfils assumptions of
Theorem 5.19 only under the condition by = 1. However, that never happens, because b = 81 > 1.
Let us now find a weighted digit sum f of the form (8.2), that satisfies assumptions of Theorem 5.19.

We want f to be non-increasing at the above transcriptions, i.e.

v(a; + 1) > vay + ub;
vai +u(ag + 1) > vay +u(ag + 1)
v(a; + a3) + uaz > u

uby > wv.

The first and the last inequality yield v = ubq, the second inequality is trivially satisfied. The choice

v = by, u = 1 satisfies all four inequalities without any further assumptions on a;, bj, thus
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the weighted sum with weights 1, b; is a suitable choice of counting function f for Theorem 5.19.
Again, the choice of weights is unique up to scaling. In conclusion, bases with expansions of 1 of

lengths 3 and 1 also have Properties (PF') and (F).
Example 5. Let m =3, n =2, ie

d(ﬁlﬂz)(l) = a1a2a3
d(ﬁzﬁl)(l) = biby.

Sequences satisfying lexicographical conditions (7.1) are of two kinds: either by > ag, or be < as.
Case 1: by > a3

Transcriptions of forbidden strings as in Remark 5.15 may be chosen as

OQk(al + 1) 02k_110(b1 — a2)<b2 — a3)
Ozkal(ag +1) 02]“_1100(@1 — as)asas
02ka1a2a3 OQk_ll

0%~ 1(by + 1)
02k—1b1b2

0%_210(@1 — by)asas

A

021@—21’

for all £ € N. The digit sums of the above transcriptions are non-increasing if and only if a; >
b1 + b2 —as — a3 and by > a1 + as + az — bo. However, similarly as in the previous examples,
there exists a weighted digit sum satisfying the condition of Theorem 5.19 for Case 1 without any
additional requirements on a;, b;. Let us now derive it. If the weighted digit sum with weights u, v

is to be non-increasing on the above transcriptions, u, v have to satisfy

v(ap +1) > v(by —a3) +u(by —az + 1)
vay +u(ag + 1) > vay + u(ag + 1)
v(ar + ag) + uaz > u
u(by +1) > v(a; +ag — by + 1) + uay

vby + biu > v.

The second and the last equation are satisfied trivially. The first and the fourth equation yields
u(by —az + 1) = v(a; + a3 — ba + 1). A suitable choice of u,v is for example v = by — as + 1,
u = a1 + az — by + 1. With this choice even the third inequality is satisfied. Therefore, according
to Theorem 5.19, Fin(B®) is closed under addition of positive elements for i € {0,1}. According
to Proposition 5.25, both B and B satisfy (F).
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Case 2: by < ag

In this case one has as < by, and transcriptions may be chosen for example as

O2k(a1 + 1) Ozk_llo(bl —as — 1)(b2 + a1 — a3)a2a3
02ka1 (CLQ + 1) OQk_lloo(al — ag)agag
02ka1a2a3 0%—11

02k_1(b1 + 1) OQk_210(CL1 — bg)agag

A

025=1p, by 02k—21

for all kK € N. Note that these transcriptions are all admissible. In this case the digit sum of tran-
scriptions is non-increasing if moreover by > a1 + ao + ag — bo and 1 > by + by. This, however, can
never happen, because we assume by > 1, bp > 1. Similarly as in the above examples, we might
hope that there exists a suitable counting function f of the form of a weighted digit sum. We now
show that neither that is the case. There is no suitable choice of weights such that the weighted
digit sum is non-increasing on the above transcriptions, thus we are left with no good candidate
for a counting function satisfying assumptions of Theorem 5.19. Indeed, if a weighted digit sum
with weights u, v and period 2 is non-increasing on the above transcriptions, the weights u, v satisfy

inequalities

v(ar +1) > v(bs 4+ a)
vay + u(az + 1) > vay + u(az + 1)
v(a + a3) + uaz > u
u(by +1) > wv(ag + az — by + 1) + uas

vby + uby > v.

The first inequality can be rewritten as v(1—by) > uby, and that cannot be satisfied with any choice
of u,v € N.

We now show that in this case there exist a finite string, which we may transcribe infinitely
many times, which is a contradiction with Remark 5.20. Thus the reason we did not succeed with
our attempts of constructing a suitable counting function is, that there is no such mapping for
the above transcriptions. Consider the string s = 00(a1 + b2)agas, denote S := valg(s). We now
construct an infinite sequence of transcriptions of this string. We will always apply transcriptions
on the minimal forbidden string 0%/ (a; +1). In each step the digit a; + by is the first non-admissible

digit when we search from the left side, we subtract a; + 1 and transcribe as follows. The symbol
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@ denotes the operation of digit-wise addition of strings. The first transcription is

s = 00(ay + bg)azasz = 00(by — 1)agas & 00(ay + 1)
— OO(bQ — 1)@2@3 D 01O(b1 — a9 — 1)(b2 + a1 — CL3)6L2(L3

= Ol(bQ — 1)(()1 — 1)(b2 + al)agag,
we sum digits aligned from the left. The second transcription is

01(()2 — 1)(1)1 — 1)([)2 + al)agag = 01(52 — 1)(()1 — 1)(b2 — 1)a2a3 & 0000(a1 + 1)
— 01(b2—1)(b1—1)(b2—1)a2a3 D 00010(b1—a2—1)(b2—|—a1—a3)a2a3

= 01(52 — 1)()1 (bg — 1)(52 + al)agag.

We see that again the first non-admissible digit from the left is bs 4+ a1, we iterate the above process
and obtain strings of the form

01[(b2 — 1)b1]k(b2 + al)agag.

This sequence of strings converges to the lexicographically greatest infinite representation of S,
i.e. 01[(b2 — 1)b1]¥. Remark 5.20 then yields that for the above transcriptions, the assumptions of
Theorem 5.19 are not satisfied, in particular there exists no suitable counting function. Note that
the B-expansion of S is equal to dg(S) = 01b, and can be obtained by transcribing the forbidden

strings in a different order, namely

s = 00(@1 + bQ)agag = 00aiasas B 00by
— 01 ® 000,
= 01bo.

Therefore, in this case we still cannot decide whether the set Fin(B) is closed under addition

of positive elements or not. Let us therefore check if the necessary conditions of (F') as stated in

Theorem 5.8 are satisfied. We know that in this case the base (1, 52) has the following properties,
see Appendix A, Proposition 11. Firstly, § = 5152 is the larger root of the polynomial

r(x) := 2% — (a1by + ag + be)x — (azby — agba),

and elements of the base are of the form 3 = 5%172';3, B2 = 5(2%2. It may be either the case that

the polynomial r is reducible with root 0 (then the necessary conditions are trivially satisfied),
or the polynomial r has two distinct non-zero roots. Let us therefore discuss the case when §

is quadratic. We have already shown in our research project [21], as recalled in Appendix A,
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Proposition 11, that § is a Pisot number. Now denote v the conjugate of d, v # §. Denote o the
isomorphism of Q(0) and Q(+y) induced by o(0) = . Let us verify that there indeed exist j € {0,1}
such that o(3;) < 0. The values of the polynomial 7 in —1,0 are

r(—1) =14+ a1bi + a2 + by — azbi + agby > 1+ as + ba + agby >0

T(O) = ashy — agby < 0,

where the last inequality holds true since we are considering Case 2. Therefore v € (—1,0). Then

o(fa2) = ,yv_béz > 0. We would like to verify that o(51) = A",;l_i"gf:?’ < 0. The denominator is negative,
thus we need to show that ya;+as > 0. This may be done straightforwardly by expressing the root
as a function of a;, b; with help of a relation for the roots of a quadratic equation, and substituting
into the inequality. Inequality will hold without any additional assumptions on coefficients. To

conclude, the necessary conditions of (F') are satisfied in both cases, and we do not have any tool

to decide whether the considered base satisfies (F') or not.

Remark 6. Note that 3,, as defined in Example 5.16 is a base with expansions of 1 of lengths 3

and 2, in particular

dg, (1) =mm 1
d_ (1) = (m? +1) m.

Denote B,,, the bi-infinite periodic extension of 3,,. We have already commented on the case m =1
in Example 5.21. We have concluded that for such base a suitable counting function may be chosen
simply as digit sum. On the other hand, with transcriptions chosen as in the Example 5.16, for
other cases of m the digit sum is not non-increasing. However, we are in Case 1 of Example 5, since
for bases 3,, we have by = m, ag = 1. Thus by > a3 a suitable counting function (for transcriptions
as in Example 5.16, which are the same as those in the above Example 5) may be chosen as a
weighted digit sum with period 2 and weights v = b1 —as+1 = m2—m+2, u=a,+az3—by+1=2.
In conclusion, all bases 3,, satisfy assumptions of Theorem 5.19, therefore Fin(Bﬁ?) is closed under

addition of positive elements for all m € N and for i € {0, 1}. Consequently, according to Proposition

5.25, all bases B,(fl) have Property (F).
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Example 7. Finally, let m =n =3, i.e.

d(ﬁl,ﬂ2)(1) = (10203
d(ﬁz,ﬁ1)(1) = b1bobs.

We need to consider four cases according to the inequality between digits as and b3, and the in-
equality between by and ag.
Case 1: as > b3 and by > ag

We may transcribe the forbidden strings as in Remark 5.15 in the following way

02k(a1 + 1) 02k_110(b1 — ag)(bg — ag)bg

02ka1 (GQ + 1) 02k_1100(a1 — ag)a2a3
O2ka1a2a3 02k_11
02k_1<b1 + 1) 02k_210(a1 — bz)(ag — bg)ag

021y (by + 1) 02*=2100(by — b3)babs

L A

02k—1b1b2b3 02k—21

for all K € N. Note that all these transcriptions are admissible. Again, the digit sum is a suitable
counting function in Theorem 5.19 only with some additional requirement, namely if a1 + a2 + ag =
b1 +ba+bs3. Let us now construct a weighted digit sum with weights u, v, that satisfies the condition
in Theorem 5.19 without this additional requirement. Such weighted digit sum is non-increasing on

the above transcriptions if

v(ar +1) > v(bg —az) +u(by + b3 —az+ 1)
vay +u(ag + 1) > va; +u(az + 1)
v(ay + ag) + uaz > u
u(by +1) > v(a; +ag — by + 1) + u(az — b3)
uby + v(ba + 1) > v(1 + ba) + uby
vbg + u(by + b3) > v.

The second and the fifth inequality trivially hold true. The first and the fourth inequality yield
v(a; + a3 — by + 1) = u(by + bg — az + 1). Thus define the weights as v = a1 + ag — ba + 1,
v = by + bg — ag + 1. Then also the third and the last inequality are satisfied. Therefore, we have
found a suitable counting function fulfilling assumptions of Theorem 5.19, and we conclude that the

base satisfies Property (F).
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Case 2: as > b3 and by < ag
Lexicographical condition (7.1) yields ag < b;. We will try to construct a non-increasing weighted
digit sum for two sets of transcriptions. However, neither of the attempts will be successful. Consider

at first the following transcriptions of the set of forbidden strings as in Remark 5.15:

O2k(a1 + 1) 02’67110(1)1 — a9 — 1>(b2 — a3z + al)(bg + ag)ag
02ka1 (a2 + 1) 0%_1100(@1 — ag)a2a3
O2ka1a2a3 02’6711

0%~1(p, + 1) 02*=210(ay — by)(az — b3)as

02k71b1 (b2 + 1) 02’672100(51 — b3)bgb3

A

02k—1b1b2b3 02k—21

for all £k € N. Note that these transcriptions are non-admissible (the first transcription has a non-
admissible digit bs 4+ a2). We now show that for this set of transcriptions there is no suitable
choice of weighted digit sum with period 2 that satisfies assumptions of Theorem 5.19. Consider
a weighted sum such that it is non-increasing on the above transcriptions. Then for the weights u, v

the following must hold

v(a; +1) > v(ba + a1) + u(by + b3)
vap + u(ag + 1) > vay +u(ag + 1)
v(ar + ag) +uaz > u
uw(bi +1) > v(ar — ba + az + 1) + u(az — b3)
v(bg + 1) +uby > v(b2 + 1) + uby

u(b1 + bg) + vby > w.

The second and the fifth inequality are trivially satisfied. The first inequality can be satisfied only
if by = 0, because u(b; + b3) > 0. Thus for other cases there is surely no suitable weighted sum
with period 2. We now show that even if by = 0, there is no suitable solution u,v € N of the above

system of inequalities. Consider bs = 0. Then the non-trivial inequalities of the above system are

v(ap + 1) > vag + u(by + b3)
v(a1 + a3) +uag > u
u(by +1) > v(a; + az + 1) + u(az — bs)

U(bl + bg) > .
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The first and the last inequality yields u(b; + b3) = v. However, when we substitute this relation

into the third inequality, we get
u(by +1) > u(br + b3)(a1 + a3z + 1) + u(az — bs),

which cannot be satisfied by any v € N. Therefore, we have no good candidate for a counting
function necessary to fulfil assumptions of Theorem 5.19.

Consider now the set of admissible transcriptions

0%(a; +1)  —  0%*7110(by —aa—1)(by—az+ay +1)(b3+ag—by ) (a3 —by—1)(by —b3)babs
02ka1(a2 +1) — 02k—1100(a1 — az)azas

Ozkalagag — 0% 11

0%~y +1) —  0%*7210(ay — b2)(ag — b3)as
0% b1 (b + 1) —  0%72100(by — b3)bobs

02k_1b1b2b3 — O2k_21.

It turns out that a weighted digit sum with period 2 for these transcriptions is also never non-
increasing (the conditions on the weights would be the same as in the case of the above non-
admissible transcriptions).

Case 3: as < by and by < ag

The condition (7.1) implies b < a; and ag < bj. We may transcribe

0%%(a1+1)  —  0*7110(by—as—1)(ba+a1 —az+1)(bg+as—b1)(as—ba—1) (b1 —b3)babs
0%ay(ag+1) —  0%*71100(a; — a3)agas

02ka1a2a3 — 0% 1

0%~ Lby +1) —  0%*7210(a1—boy—1)(ag+by —b3+1)(az+bs—a1)(bs—as—1)(a; —a3)azas
02~ 1hy(by 4+ 1) —  0%*72100(b; — b3)b2bs

02k_1b1b2b3 — 02k_21

for all £ € N. Note that the chosen transcriptions are admissible. Similarly as in Case 2, we now

show that there is no weighted digit sum with period 2 non-increasing on the above transcriptions.
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The weights of such sum would need to satisfy the following system of inequalities

v(ay + 1) > v(b2 + a1) + u(by + b3)
vay +u(ag + 1) > vay + u(ag + 1)
v(ar + ag) + uag > u
u(by +1) > v(a1 + a3) + u(az + b1)
v(by + 1) +uby > v(by + 1) + uby
vbo + u(by + b3) > v.

The second and the fifth inequality are always satisfied. However, the first and the fourth inequality
might be satisfied only if ag = b = 0. We now show that even if as = by = 0, the system does not

have any solution u,v € N. If ag = by = 0, then the non-trivial of the above inequalities are

(al +1 val + u(b1 + bg)
v(ai + as
u(by +1

(bl + b3

) >
) >
) > (a1 + ag) + uby
) >

These inequalities yield v = u(b; +b3) and u = v(aj +as3), which cannot be satisfied for any u,v € N,

since aq, b1, as,b3 € N. Therefore no weighted digit sum with period 2 is a suitable candidate of

a counting function needed to satisfy assumptions of Theorem 5.19 for the above transcriptions.
Case 4: as < b3 and by > aj

Then (7.1) yields by < a1 and suitable transcriptions are

0% 4+1)  —  0%*7110(b1 — ag)(by — a3)bs

O2ka1(a2 +1) — 02k_1100(a1 — az)azas

02ka1a2a3 — 0¥ 1

0% by +1) —  0%7210(a;—by — 1)(ag+by —bz + 1)(az+by—ay) (b3 —az—1)(a1 —a3)azas
0%~ 1b (b +1) —  0%72100(by — b3)babs

0% 1hbobs —  0%721

for all £ € N. These transcriptions are as well admissible. It could be shown similarly as is Case 2,
that there is no weighted sum with period 2 non-increasing on the above transcriptions (to obtain

a proof just interchange roles of a;, b; and u, v in the inequalities in Case 2).
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Let us now show that necessary conditions of (F), as presented in Theorem 5.8, are satisfied
in four cases of this example. As we recalled in Appendix A, § is a Pisot number and its minimal

polynomial is
q(x) =3 — (a1b1 + ag + b2)$2 — (a3b1 — agby + albg)x — agbs.

Denote 71,2 other roots of g. Denote o; the isomorphism of Q(d) and Q(+;) induced by ;(d) = ;.
We may consider two cases: either 71,72 € R, or 71,72 € C\ R and 71 = 72. We now show that
the vector (o3(51),0i(B2)) for i € {1,2} cannot have both components real non-negative.

Real case. Let 71,72 € R. Note that v; = 0;(8) = 0:(B1)0i(B2). If there exists i € {1,2} such
that v; < 0, surely it cannot be 0;(/51) > 0 and 0;(f82) > 0. It is left to discuss the case when v, > 0,
~v2 > 0. Let us now discuss the signs of coefficients of the polynomial ¢q. Surely —(a;b; +a2+b2) <0
and —agbs < 0. Since we are discussing the case when all three roots of this polynomial are positive,

according to Descartes’ rule of signs it has to be
agby — asbs + a1b3 < 0.

Thus necessarily as > 1, bo > 1. Now recall that the elements of the base are of the form

_ da1 + a3

oby +b
B8, = _ 001+ 03

Po=——.

0 —a 6 — by

Lastly, note that J is a Pisot number, thus «; < 1. Therefore

7 Z'b b
Ui(ﬁl):w <0 Ui(BZ):LH

<0,
Yi — az ¥; — b

and the necessary condition is satisfied.

Complex case. Now consider 71,72 € C\ R, v1 =73. We know that 3; € Q(d) and that ¢ is
cubic. Now note that Q(y;) "R = Q for ¢ € {1,2}. Indeed, if @ € Q(y;) N R is such that o ¢ Q,
then a has to be cubic. Thus Q(a) = Q(7;), because all numbers of maximal degree in Q(~;) are
generators of this field, and that is a contradiction, because Q(~;) contains non-real elements, but
Q(«) C R. Thus either 0;(8;) € Q or 0;(5;) ¢ R. Surely, it cannot happen that both ;(31), 0i(52)
are rational, since then o;(51) = 51, 0i(82) = P2 and thus 6 = ;82 € Q, which is a contradiction.

Another special case of bases with short expansions of 1 are bases consisting of powers
of a quadratic Pisot unit, as we have already introduced them in Appendix A. We have com-

mented on the case when the base is (7,72) already above, let us now do a similar analysis for

the base (v,7v3,72).
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Example 8. Consider ~ the larger root of 2 —mx — 1 for m € N and an alternate base of the form
4 = (v,73,7?). As we have already seen in Appendix A, the expansions of 1 in this base and its

shifts are of the form

ds(1) = m(m® + 1)m*m
dso(1) = (m3 +3m)01

da(z)(l) = (m2 +1)m

Therefore, the minimal forbidden strings have to be of the form below, and their greedy transcrip-

tions are

0% (m +1) 0%~110(m?® — m? + 3m — 2)11

Em(m? + 2) 0311001
03km(m2 +1)(m%+1)

+1)m*m

03%-110000(m? + 1)m?m
m 03k—11
03+ (m3 + 3m + 1) 0%¥10(m? + 1)(m — 1)
031 (m3 + 3m)1 03%100(m — 1)(m? + 1)m>*m
03%1

032 (m? + 2) 03*1100(m? + 1)m*m

03k+1 1

L A A

(m”
(
(
0%+ (m? + 3m)01
(
(

03k2+2 m + 1)

for some k € Ny. If a weighted digit sum with period 3 satisfies assumptions of Theorem 5.19,

the weights u, v, w € N have to satisfy inequalities

3

> u+v(m® —m?+3m—2) + 2w

v(m?® 4+ 3m + 1) Zum—i—w(mQ—i—l)
v(m? 4 3m) +w > 2um +v(m? + 1) + wm?
v(m +3m+1)+u>u
w(m? +2) > um + v(m? + 2) + wm?

um +w(m? +1) > v
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It is not difficult to show that there are no suitable u, v, w € N fulfilling these conditions. However, it
can be verified that all the necessary conditions hold true, thus do not have tools to decide whether

this system has Property (F').

94



Bibliography

1]

2]

3]

[4]

[5]

(6]

7]

8]

19]

[10]

[11]

[12]

B. ADAMCZEWSKI, C. FROUGNY, A. SIEGEL, AND W. STEINER, Rational numbers with purely

periodic -expansion, Bulletin of The London Mathematical Society, 42 (2010), pp. 538-552.
S. AKIYAMA, Pisot numbers and greedy algorithm, Number Theory, (1998), pp. 9-23.

P. AMBROZ, C. FROUGNY, Z. MASAKOVA, AND E. PELANTOVA, Arithmetics on number
systems with irrational bases, Bulletin of the Belgian Mathematical Society, 10 (2003), pp. 641
— 659.

J. CAALIM AND S. DEMEGILLO, Beta Cantor series expansion and admissible sequences, Acta

Polytechnica, 60 (2020), pp. 214-224.

G. CANTOR, Uber die einfachen Zahlensysteme, Zeitschrift fiir Mathematik und Physik, 14
(1869), pp. 121-128.

E. CHARLIER AND C. CISTERNINO, Expansions in Cantor real bases, Monatshefte fiir Math-
ematik, 195 (2021), pp. 585-610.

E. CHARLIER, C. CISTERNINO, AND S. KRECZMAN, On periodic alternate base expansions,
arXiv:2206.01810, (2022).

M. EINSIEDLER AND K. SCHMIDT, Markov partitions and homoclinic points of algebraic Z%-

actions, Proceedings of the Steklov Institute of Mathematics, 216 (1997), pp. 259-279.

P. ERDOS AND A. RENYI, Some further statistical properties of the digits in Cantor's series,
Acta Mathematica Hungarica, 10 (1959), pp. 21-29.

M. FIEDLER, Specidlni matice a jejich pouZiti v numerické matematice, SNTL, 1981.

C. FrOUGNY AND B. SOLOMYAK, Finite B-expansions, Ergodic Theory and Dynamical Sys-
tems, 12 (1992), pp. 713-723.

J. GALAMBOS, Representations of real numbers by infinite series, Springer Berlin Heidelberg,
1976.

95



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

23]

M. HAMA AND T. IMAHASHI, Periodic S-expansions for certain classes of Pisot numbers,

Commentarii mathematici Universitatis Sancti Pauli, 46 (1997), pp. 103-116.

J. HANCL AND R. TIIDEMAN, On the irrationality of Cantor and Ahmes series, Publicationes
mathematicae, 65 (2004), pp. 371-380.

M. LOTHAIRE, Algebraic combinatorics on words, Cambridge University Press, 2002.

Z. MASAKOVA AND E. PELANTOVA, Purely periodic expansions in systems with negative base,

Acta Mathematica Hungarica, 139 (2012), pp. 208-227.

Z. MASAKOVA, E. PELANTOVA, AND K. STUDENICOVA, Rewriting rules for arithmetics in

alternate base systems, arXiv:2302.10708, (2023).

W. PARRY, On the -expansions of real numbers, Acta Mathematica Academiae Scientiarum

Hungaricae, 11 (1960), pp. 401-416.

K. ScHMIDT, On periodic expansions of Pisot numbers and Salem numbers, Bulletin of the

London Mathematical Society, 12 (1980), pp. 269-278.
S. SERBENYUK, Cantor series expansions of rational numbers, arXiv:1706.03124v3, (2017).
K. STUDENICOVA, Properties of generalised Cantor base systems, Research Project, CTU, 2022.

R. TODEMAN AND P. YUAN, On the rationality of Cantor and Ahmes series, Indagationes

Mathematicae, 13 (2002), pp. 407-418.

C. BurDik, C. FROUGNY, J. P. GAZEAU, AND R. KREJCAR, Beta-integers as natural count-

ing systems for quasicrystals, Journal of Physics A, 31 (1998), pp. 6449-6472.

96



	Introduction
	Preliminaries
	Combinatorics on words
	Standard representations of real numbers
	Classes of numbers
	Matrix theory

	Rényi numeration systems
	-expansions
	Periodicity and finiteness
	Purely periodic expansions

	Cantor base
	Cantor real base
	Bi-infinite Cantor real base

	Existence and uniqueness of a suitable base for generalised Parry theorem
	Arithmetics in Cantor base systems
	Necessary conditions
	Addition of positive elements
	From positive finiteness to finiteness property
	Special choice of bases

	Purely periodic expansions
	Necessary conditions
	Sufficient conditions
	Numerical experiments

	Conclusion
	Appendix A
	Appendix B
	Bibliography

