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Abstract. Brain-computer interface (BCI) applications implement a direct communication path
between the brain and the computer. This paper deals with the fundamentals of BCI systems and the
experience of the neuroinformatics team with the design and implementation of various BCI applications.
Their advantages, drawbacks and suitability are discussed in multiple contexts.
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1. Introduction
Jonathan R. Wolpaw formalized a brain-computer
interface (BCI) system [1] as a communication or
control system in which the user’s messages or com-
mands do not depend on the brain’s normal output
channels. Nerves and muscles do not carry messages,
and neuromuscular activity is not needed to produce
the activity that does carry the message. In other
words, BCI systems mediate direct communication be-
tween the (human) brain and computer. Apart from
invasive BCIs, its non-invasive forms utilize surface
electroencephalography (EEG) and event-related po-
tential (ERP) methods; the scalp-recorded electrical
activity of the human brain is acquired to control an
application or environment.

Research on BCIs has a long history, but its ulti-
mate result, BCI systems working successfully and in
the long-term in everyday life, has not been achieved
so far. BCI paradigms, techniques and workflows fo-
cused on signal detection, off-line preprocessing and
processing of the signal have been developed. However,
standardized implementation, actual online deploy-
ment, testing, and customization of BCI systems on
target users have not achieved the expected results.
The persistent problems such as low classification ac-
curacy and information transfer bit-rate still prevent
these systems from becoming more widespread and
competing with other communication solutions such
as eye-tracking or voice recognition systems [2]. On
the other hand, there are no other usable means of
communication for locked-in people.

Current BCI systems rely on several paradigms
such as detecting the brain frequencies, event-related
components, steady-state visual evoked potentials
(SSVEPs), visual evoked potentials (VEPs) or motor
imagery signals. A comprehensive review of EEG-
based BCI paradigms is provided in [3]. Current
signal sensing technologies and computational intel-
ligence approaches (including machine learning and
deep learning algorithms) in BCI applications are
reviewed in [4].

The goal of this paper is to acquaint readers with
the fundamentals of BCI systems and the experience
of the neuroinformatics team at the University of
West Bohemia with the design and implementation of
various brain-computer interface applications, shortly
present the outcomes of these applications and debate
the advantages, drawbacks and suitability of BCI
systems in multiple contexts.

The paper is organized as follows. The Materi-
als and methods section deals with the fundamentals
of the electroencephalography method, event-related
potentials and steady-state visual evoked potentials
broadly used in BCI paradigms and applications. BCI
design is shortly presented, related work is included,
the neuroinformatics lab at the University of West
Bohemia is introduced, and the methodology of pre-
senting individual BCI experiments and applications
is provided. The section BCI experiments presents five
designed and implemented BCI applications. While
the section Results provides individual results of and
experience with the BCI applications, the section
Conclusions summarizes experience from all BCI ex-
periments/applications and gives prospects for the
future.

2. Materials and methods
This section provides an essential insight into the fun-
damental concept of BCI. The basics of collecting the
scalp-recorded electrical activity of the human brain
using the EEG/ERP methods and techniques are de-
scribed. It is extended by explaining ERP components,
steady-state visual evoked potentials (SSVEPs), and
BCI design. Then a short overview of related BCI
research is provided. Finally, the neuroinformatics
laboratory at the University of West Bohemia in the
Czech Republic is introduced. Here, the BCI appli-
cations presented further have been developed, and
related experiments have been carried out.
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2.1. Electroencephalography
The methods and techniques of electroencephalogra-
phy (EEG) and event-related potentials (ERPs) are
essential for designing and developing BCI systems.
They monitor human brain electrical activity by mea-
suring voltage changes on a scalp surface. In general,
the brain electrical activity oscillates, and these os-
cillations are termed as frequencies that include the
alpha (8-13 Hz), beta (13-30 Hz), gamma (30-60 Hz),
delta (≤4 Hz), and theta (4-8 Hz) bands. The EEG
signal amplitude varies in the tens of millivolts. At
the same time, ERPs, as changes time-locked to par-
ticular events, have a very small amplitude (up to
tens of microvolts) and can be assessed in small time
windows (tens or hundreds of milliseconds).

The EEG method has many advantages: affordabil-
ity, non-invasiveness, routine examination protocols,
and the opportunity to measure spontaneous activity.
However, it also has a significant disadvantage; the
resulting picture of brain activity (the EEG signal)
is rough since it represents many sources of neuronal
activity. Then it is challenging to derive individual
neurocognitive processes from the measured brain ac-
tivity. This significant limitation must be considered
in the design of BCI systems.

2.2. Brain Oscillations
Brain oscillations (also called brainwaves), a rhyth-
mic and repetitive brain electrical activity generated
spontaneously or in response to stimulation, play a
key role in brain sensory-cognitive processes and neu-
ral communication and create a prevalent feature of
brain recordings. These oscillations (frequencies) are
associated, e.g. with relaxation/concentration states,
and their detection is utilized in simple BCI systems
and neurofeedback applications. However, two basic
paradigms are used for more complex BCI applica-
tions: event-related potentials and steady-state visual
evoked potentials.

2.3. Event-related potentials
The event-related potential (ERP) method initially
focused on identifying and understanding ERP com-
ponents (these are explained later) and was used as an
alternative to measurements of the speed and accuracy
of motor responses in paradigms with discrete stimuli
and responses. Later, ERP research changed from
identifying and recognizing individual components to
answering questions of broader scientific interest, such
as processing visual and auditory information in the
brain, and research into human attention and human
behaviour when performing parallel tasks in the brain.
This experience has been subsequently used in BCI
research.

With the development of imaging methods and
techniques (fMRI – functional magnetic resonance
imaging and PET – positron emission tomography), a
gradual attenuation of the ERP method was predicted.
However, this method has become an essential part of

BCI and cognitive neuroscience experiments due to
the relative affordability and high temporal resolution
of the EEG signal that imaging methods lack.

ERPs have two advantages compared to behavioural
methods. They help determine which stage or stages
of processing are influenced by a given experimental
manipulation; for a detailed set of examples, see [5].
They can also provide an online measure of stimuli pro-
cessing, even when there is no behavioural response [6].

As in the case of the EEG method, the ERP method
does not require insertion of the electrodes directly
into the brain, as the change in potential is recorded
directly on the scalp.

Based on the information above, we can state that
the ERP method is suitable for solving issues such as
‘which neurocognitive process is affected by a given
experimental protocol’ [6].

In ERP research, ERP components must be ob-
served in the EEG signal. An ERP waveform consists
of a series of peaks and troughs, but these voltage
deflections reflect the sum of several relatively inde-
pendent underlying or latent components [5]. These
latent components are complicated to isolate, as the
maximum and minimum amplitude values and their
latencies in the observed signal may not necessarily
be the right guide for determining them. Limited
possibilities of their independent measurement are the
single biggest roadblock to designing and interpreting
ERP experiments [5]. It is, therefore, necessary to dis-
tinguish between observable maximum signal values
and latent components. The ERP component is then
defined as scalp-recorded neural activity generated
in a given neuroanatomical module when a specific
computational operation is performed [5].

ERP components are obtained from the EEG signal
by averaging the epochs around the events. Thus, ob-
servable local positive and negative maxima of voltage
values found in the resulting ERP signal are referred
to as components.

The designation of the component consists of a char-
acter indicating the polarity of the local maximum (P
– positive local maximum of voltage value, N – nega-
tive local maximum of voltage value) and the order of
local maxima (for positive and negative local maxima
separately, e.g., P1, N1, P3). Instead of indicating
the order of the local maximum, a timestamp is some-
times used to indicate the latency of the component
in milliseconds, e.g., P300 or N400. The order of ERP
components reflects the flow of information through
the brain.

The P300 (also denoted as P3) component depends
entirely on the task performed by the subject and
is not directly influenced by the physical properties
of the stimulus. It is sensitive to various global fac-
tors, such as time since the last meal, weather, body
temperature, and even the time of day or year [5]. Al-
though thousands of experiments related to the P300
component have been published, we still do not know
what the P300 component really means. The proposal
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that the P300 component is related to a process called
‘context updating’ seems approximately correct.

However, there are known factors that influence the
amplitude and the latency of the P300 component.
The P300 component is sensitive to the probability of
the target stimulus. P300 amplitude increases when
the probability of the target stimulus class decreases
and when more non-target stimuli precede the target
stimulus. P300 amplitude is also larger when the
subject pays more attention to a task. On the other
hand, P300 amplitude is smaller if the subject does
not know whether a given stimulus is/is not a target.
It means that more complex tasks can increase P300
amplitude because the subject pays more attention
to these tasks and simultaneously decrease it because
the subject is not certain of the stimulus category [5].

As can be seen, the experimental design of
EEG/ERP and BCI experiments is a challenging and
critical step that influences other technical issues re-
lated to BCI research. The P300 component is widely
used in BCI experiments.

2.4. Steady-state visual evoked
potentials

Steady-state visually evoked potentials (SSVEP) are
natural oscillatory cortical responses to visual stimula-
tion at specific frequencies. As an alternative to ERPs
and P300 BCIs, SSVEPs can be used for BCI systems
because they are easy to detect (they have an excellent
signal-to-noise ratio and resistance to artifacts) and
stable across participants. The relative stability of
SSVEPs under different perturbations, such as speak-
ing, listening, or thinking, is also often highlighted [7].
On the contrary, a significant disadvantage is a certain
discomfort towards the subjects because the flickering
of visual stimuli is disturbing.

2.5. BCI systems design
All of the paradigms presented above (brain oscilla-
tions, P300 ERP component and SSVEPs) require lit-
tle to no training and can easily fit the purpose of BCI
systems. They all need to use an appropriate acquisi-
tion system and an experimental protocol that allows
collecting, analyzing, and interpreting the EEG/ERP
recordings to establish communication between the
brain and computer. One of the challenges BCI sys-
tems face is their ability to classify the EEG signal
in real-time. BCI pipelines (workflow management
systems) and technical solutions, such as cloud envi-
ronments in the training phase, have been proposed
and tested. The BCI experiments section presents
five various BCI applications, from simple to more
complex ones, to demonstrate their opportunities and
drawbacks.

2.6. Related studies
BCI systems are designed and developed at many
workplaces around the world. Although they are still
considered more as research topics, there is already a

market dominated by non-invasive BCI systems. Wire-
less transmission of the EEG signal in BCI systems
is widespread; it can provide more comfort to end-
users. Various EEG electrodes (gel, semi-dry, dry),
EEG caps, headsets and headbands as a part of BCI
acquisition systems are designed and developed.

Neurosky EEG headset [8] and Muse headband [9]
detect and analyze brain frequencies and provide
neurofeedback platforms. A complete BCI research
system that uses EEG and ECoG (electrocorticog-
raphy) signals and supports all common BCI ap-
proaches (P300, SSVEP/SSSEP, Motor Imagery, VEP
slow waves) is promoted by g.tec [10]. This com-
pany also provides complete MATLAB-based research
and development systems. BCI systems focusing on
the P300 component and SSVEPs paradigms are de-
veloped by the BrainTech company [11]. A frame-
work of hardware and software components for BCI
research is developed by the BrainProducts com-
pany [12]. The EMOTIV company offers BCI devices
paired with EmotivBCI software [13]. Mobile wire-
less EEG devices are produced by the mBrainTrain
company [14]. Finally, we need to also mention the
Neuralink project [15] that is on the border of invasive
and non-invasive brain data collection.

When focusing on scientific studies, we need to
mention, in particular, a 10-year update of a review
of classification algorithms for EEG-based BCIs [16].
At this time, deep learning methods still had not
shown convincing improvement over state-of-the-art
BCI methods. Another systematic review of hybrid
deep learning approaches in BCI systems is provided
in [17]. BCI paradigms, signal processing, feature
extraction methods, hybrids BCIs, and design of the
synchronous/asynchronous BCIs are reviewed in [18].
Progress of EEG-based BCIs from the perspective
of encoding paradigms and decoding algorithms is
summarized in [19]. Finally, as the result of the IEEE
working group, a first version of the standardized BCI
glossary for a community review is presented in [20].

2.7. Neuroinformatics laboratory
When performing BCI applications/experiments, oper-
ating a laboratory with appropriate BCI infrastructure
is important. This includes mainly:

• EEG acquisition system to collect brain recordings,
• equipment/tools for stimuli presentation, in case of

the P300 paradigm, accurate time synchronization
with the EEG recording system is required,

• a computer (computers) for processing EEG record-
ings (and stimuli) and establishing the communica-
tion path to the brain,

• devices that are controlled by the BCI application,
• a pipeline (workflow management system) for pro-

cessing/managing the whole BCI communication.

Not all parts of this infrastructure are always used
in the BCI applications presented below.
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Figure 1. Smart train - a model train controlled with
brain oscillations.

2.8. Methodology
Five various BCI experimental applications were se-
lected to demonstrate the opportunities and experi-
ence from the real use of such systems. The BCI
Experiments section briefly provides specific goals,
application design, used equipment, and basic infor-
mation about experiments. While the Smart train
application used a simple acquisition headset and was
developed to show BCI to the public, the following four
applications were designed and developed to achieve
specific goals in research projects. The Results section
then provides experience with designing and using
these BCI applications to collect BCI data; i.e. spe-
cific scientific or educational findings are not focused
on in this paper.

3. BCI Experiments
This section introduces five BCI experi-
ments/applications that use various BCI paradigms
described above.

3.1. Smart Train
A simple BCI system Smart Train was developed to
demonstrate to students and the interested public
the basic principles and practical utilisation of brain
oscillations (Figure 1).

The system is based on acquiring the participant’s
EEG signal, finding its frequency, and controlling
the model train depending on the frequency. Brain
signal is collected, and brain frequencies are analyzed
with the headset; the train goes faster with a higher
concentration level (higher frequency of the brain
signal). The eye blinking signal is processed to change
the direction of the model train. The users can observe
their brain signals and interpretation in the graphical
user interface.

The Neurosky headset (as the EEG acquisition sys-
tem and signal processing unit) is used to control the
speed of the model train (a controlled device).

3.2. BCI for Developmental
Coordination Disorder Experiment

A BCI system was designed and developed to inves-
tigate developmental coordination disorder (DCD).
DCD is described as a motor skill disorder character-
ized by a marked impairment in the development of
motor coordination abilities. The main research goal
was to contribute to a diagnosis of this disorder using
the ERP method. The next goal included annotating
the raw data with relevant metadata and providing
them publicly for further analysis.

The experimental protocol was based on the ERP
paradigm; a combined auditory and visual stimula-
tion was used. Visual stimuli were represented by
pictures of animals. The corresponding auditory stim-
uli were represented by the sounds of animals that
occurred in synchronization with the visual stimuli.
Participants were asked to respond to various stimuli
combinations by pressing two different buttons during
the experimental session.

Standard gel EEG caps, the international 10-20 sys-
tem (that describes the location of EEG electrodes on
the scalp) and the BrainAmp DC amplifier were used
to collect EEG data (the EEG acquisition system).
The sampling frequency was set to 1 kHz. The raw
EEG signal was filtered using an analogue band-pass
filter with cut-off frequencies of 0.1 and 250 Hz. The
experiments were performed in a sound- and elec-
trically shielded booth (Figure 2). The data were
collected from 32 school children (16 with possible
DCD and 16 in the control group).

The experimental work, collected data and data val-
idation process were described in detail and published
in [21].

3.3. BCI for Guess the number
experiment

Guess the number is a simple P300-based BCI exper-
iment [22]. It aimed to demonstrate another simple
BCI application to school-age children and students.
In parallel, it aimed to collect a large amount of BCI
data in a noisy environment, annotate them properly,
create a large publicly available BCI dataset and use
machine/deep learning methods for P300 component
classification.

Visual stimuli (the numbers between 1 and 9) were
presented on the screen, the participants picked one
of these numbers, and experimenters tried to guess
the number thought while they were observing ERP
waveforms online (Figure 3).

EEG data were collected from three midline EEG
channels (frontal, central and parietal electrodes of
the 10-20 international system). The common gel
electrodes and the BrainProducts V-amp amplifier
were used.

The experiment was carried out in elementary and
secondary schools in the Czech Republic on 250 par-
ticipants.
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Figure 2. A participant during the DCD experi-
ment [21].

Figure 3. Researchers are observing ERPs during
the Guess the Number experiment [22].

3.4. BCI for Drivers’ attention
investigation

About twenty experimental protocols (some experi-
ments were published), each performed on 10 partici-
pants on average, were designed and run to investigate
drivers’ attention during simulated driving.

The driving conditions varied and included, e.g.,
heavy workload put on the drivers, various types
of disturbance or, on the other hand, driving on a
monotonous track. Different stimuli (both visual and
auditory) were used; the P300 component paradigm
mainly was applied. The stimuli were presented ei-
ther using a custom programmable hardware stimula-
tor (for visual stimulation with LEDs) placed on the
car windshield or the Presentation software tool (for

Figure 4. A participant during simulated driving in
a drivers’ attention experiment.

auditory stimulation) produced by Neurobehavioral
Systems, Inc [23]. The drivers were asked to respond
to stimuli by pressing the wheel buttons.

The car simulator (Figure 4, a front part of a real
Škoda Octavia car with the Logitech G27 wheel, accel-
erator, and brake connected to the control computer
via the USB port) was used. The tracks for driving
simulations were prepared mainly using the World
Racing 2 game produced by the Synetic Company.
The track was projected on the wall in front of the
car simulator. Gel EEG caps (the 10-20 international
system) and the V-amp amplifier were used to collect
EEG data. The amplifier also served as an input unit
for collecting additional biosignals.

3.5. BCI for people with limited mobility
The BCI application for people with limited mobility
focused on designing, developing, and testing an open
and affordable prototype of a BCI system built on low-
cost hardware and open-source software components.
The prototype allows people with limited mobility to
control their basic home environment. The project
added the concept of the cloud for remote BCI com-
putations and relied on testing and customization of
the whole BCI system.

Experimental protocols were based on the P300
component and SSVEP paradigms. In the case of the
P300-based experiment, the pictures corresponding
to the needs/activities of the end-user were presented
sequentially or in a matrix. In the case of the SSVEP
experiment 6, three pictures corresponding to end-
users needs/activities (turn on the radio – 15 Hz, turn
on the light – 12 Hz, make a phone call – 10 Hz) were
selected.

At first, we used common gel electrodes and the
V-amp amplifier within this BCI system. Later, hard-
ware components for signal acquisition, designed and
developed by Sensorik-Bayern GmbH, were tested.
These components included dry electrodes (Figure 5),
a head-mounted device, and a base station. Wireless
EEG signal transmission via Bluetooth connection was
implemented. The hardware components were supple-
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Figure 5. Dry electrodes (made by the Sensoric-
Bayern company) developed and tested during the
BASIL project.

Figure 6. A participant while testing the SSVEP
protocol.

mented with software components for local execution
of online BCIs; these included mainly an analysis
library and workflow designer.

The application was tested on 10 participants in
laboratory conditions, but its parts (mainly a variety
of P300 paradigms) were also tested in hospitals on
20 people.

4. Results
This section summarizes the experience with design-
ing and using the BCI applications and performing
individual experiments described above. In general,
we can state that the neuroinformatics laboratory has
been working successfully, and the conducted experi-
ments have contributed both to scientific results and
the everyday operation of the laboratory by including
advances achieved in the BCI data lifecycle (data col-
lection, annotation, storing, preprocessing, analysis,
visualization, interpretation and publication).

While experimenting with the Smart Train BCI ap-
plication (approx. five years of experimenting during
excursions, science and technology days, and exhibi-
tions), we found that most people could control the
model train after a short training. There have been
occasional technical difficulties with the headset set-

Figure 7. Mean scalp potentials distributions of the
P3b response in DCD (two left columns) and NDC
children (two right columns). Adopted from [24].

tings, but this simple BCI system can be successfully
used for such a purpose. It turned out to be very
important and beneficial that the basics of BCI can
be simply explained to BCI non-professionals (usually
students and their teachers).

When designing and developing the BCI application
for the DCD experiment, we experienced difficulties
obtaining clean data, even in laboratory conditions
and sound- and electrically shielded booth. This ex-
periment also set a comparison base to evaluate vari-
ous EEG acquisition systems (mainly various types
of EEG electrodes) to collect clean EEG data. The
used gel electrodes require skillful personnel to ap-
ply them, but at the same time, their impedance
remained consistently low during the whole experi-
ment when compared to dry and semi-dry electrodes.
The experiment data, stored in the custom EEG/ERP
Portal, were collected and annotated respecting the
outcomes of the International Neuroinformatics Coor-
dinating Facility (INCF) Program on Standards for
Data Sharing and the group developing the Ontology
for Experimental Neurophysiology.

Finally, the responses to auditory stimuli measured
by ERPs at pre-attentive and attentive levels between
children with DCD and children with normal motor
development (NDC) were compared. The child’s cry-
ing (a stimulus) evoked a significant P300 response,
composed of the early P3a peak and late P3b peak
(P3a and P3b are P300 subcomponents). The P3a
component had its maximum amplitude in the cen-
tral region, while the P3b component had maximum
amplitude in the parietal region of the brain. No sig-
nificant differences were observed between the DCD
and NCD groups in the amplitude and latency of the
P3a component. In the case of the P3b component,
significantly lower amplitude in the parietal region
was found in the DCD group (Figure 7). In contrast,
no significant difference between the groups was found
in the component latency [24].

During the Guess the Number experiment, we ex-
perienced that BCI applications can also be run, with
some limitations, in a noisy environment. Midline
electrodes were used to analyze ERPs and the P300
component was used to guess the number thought.
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Figure 8. Comparison of target and non-target epoch
grand averages. There is a large P300 component
following the target stimuli. Adopted from [26].

The number of participants also showed a variety
of P300 representations; researchers highly improved
their skills in identifying the P300 component. More-
over, an online P300 component classifier (used in the
following BCI applications) based on machine learn-
ing methods was trained on the obtained recordings.
The accuracy of up to 79.4 % was achieved when us-
ing stacked autoencoders for classification, while the
researchers guessed the numbers manually by observ-
ing gradually averaging ERP waveforms with 64.4 %
accuracy [25]. When using convolutional neural net-
works to classify the P300 component, the accuracy
was 62-64 % for single trials and 76-79 % for averaged
trials [26]. The accuracy achieved for averaged trials
was comparable with other state-of-the-art methods
used for this dataset. A comparison of target and
non-target epoch grand averages is shown in Figure 8.

The most important experience we gained during
driver’s attention experiments was properly designing
the experimental protocol since obtaining clear and
interpretable data was difficult. Besides that, we had
to cope, e.g. with the troubles related to participants’
willingness to wear an EEG cap for a longer time
or the necessity to reduce drivers’ movements. We
verified that the principles and rules for designing
BCI experiments based on the ERP paradigm had to
be rigorously followed, although many other scientific
studies often violate them.

An example result [27] of driver’s ERP data valida-
tion (based on the objective that target and non-target
trials are expected to be associated with differently
shaped ERP components) from a successful experi-
ment using a stacked autoencoder (as an important
step preceding data analysis) is provided in Figure 8.
If the classification of a specific dataset from a par-
ticipant yields low error rates, the objective of the
odd-ball paradigm is considered to be fulfilled. The
error rate was calculated as:

ERR = fp + fn

tp + tn + fp + fn
, (1)

where tp is the number of correctly classified targets,
tn is the number of correctly classified non-targets, fp

- is the number of misclassified non-targets, and fn is
the number of misclassified targets. As a result, error
rates indicate the extent to which the classifier was
unable to separate target and non-target single trials.

In the case of the BCI application for people with
limited mobility, we experienced that a BCI system
can be built on low-cost devices for EEG signal ac-
quisition and amplification. Eye blinking and alpha
activity were clearly observable, especially when gel
and dry electrodes with long pins were used to collect
data. SSVEPs were clearly observable, independently
of frequency (frequencies between 8.5 Hz and 20 Hz
were evaluated). Using the SSVEP paradigm brought
more reliable results, but end-users could not be ex-
posed to SSVEPs for a long time. A trainingless
classifier for online SSVEP classification was devel-
oped. Six out of ten participants could control the
system online, achieving more than 70 % accuracy.

Table 1 shows the results of SSVEP online detection
for each participant when the spectral difference (SD)
method and canonical correlation analysis (CCA) were
used.

On the other hand, we failed to evoke an observable
P300 component when dry electrodes were tested. It
can be explained by a generally low P300 amplitude
and a relatively low signal-to-noise ratio.

5. Conclusions
This paper presented the fundamentals of BCI sys-
tems and five specific BCI experiments/applications
designed and performed in the neuroinformatics labo-
ratory of the University of West Bohemia. We expe-
rienced the advantages and disadvantages of several
BCI paradigms, coped with BCI design principles and
their limitations, used various kinds of EEG acqui-
sition systems, and brought advances to the whole
lifecycle of BCI data. This experience accompanied
scientific and educational goals achieved.

We experienced that simple EEG devices (headsets,
headbands) work reasonably well when brain frequen-
cies are evaluated and controlling any end device is
not a critical step. Following design principles while
building BCI systems is essential; their violation leads
to uninterpretable results. We found out that gel elec-
trodes generally worked better than dry electrodes,
but the latter ones worked better in the case of the
SSVEP paradigm used.

Based on our experience, we are convinced that BCI
systems and applications are promising for future use,
although they seem beneficial for a very limited group
of people (especially those in the locked-in state) when
used as a primary communication path. However,
some issues such as low information-transfer bit-rate
and lower performance persist. We also believe that
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Figure 9. Results of validation. The error rates for each subject are depicted in bars. Higher error rates mean lower
amplitudes of P3s and/or more distortion in the EEG/ERP signal. Adopted from [27].

Accuracy [%]
Subject ID Number of trials SD CCA Combination

1 53 35.9 49.1 45.3
2 35 68.6 74.3 80
3 60 61.7 73.3 78.3
4 60 58.3 35 45
5 60 78.3 78.3 88.3
6 60 80 95 96.7
7 60 36.7 46.7 50
8 60 78.3 73.3 85
9 60 38.3 40 38.3
10 60 86.7 78.3 88.3

Summary 568 62.3 64.1 69.4

Table 1. The results achieved for SSVEP online detection for each participant are depicted. More than half of the
participants were able to control the BCI with a relatively low error rate. SD – spectral difference method, CCA –
CCA-based method.

publicly affordable BCI applications will soon provide
not only entertainment but also help people improve
their mental health.

List of symbols
BCI Brain-Computer Interface
CCA Canonical Correlation Analysis
CNN Convolutional Neural Network
DCD Developmental Coordination Disorder
EEG Electroencephalography
EoG Electrooculography
ERP Event-Related Potential
fMRI Functional Magnetic Resonance Imaging

PET Positron Emission Tomography

P300 P300 Component

P3a P300 Subcomponent
– originates from stimulus-driven frontal attention mech-
anisms during task processing

P3b P300 Subcomponent
– originates from temporal-parietal activity associated
with attention and appears related to subsequent mem-
ory processing

SD Spectral Difference method

SSVEP Steady-State Visual Evoked Potential

VEP Visual Evoked Potential
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