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Abstract. For the energy-efficient design of district heating networks, knowledge about the
neighborhood heat load behavior, through heating load profiles in high temporal and spatial resolution,
is crucial. Due to the high effort required for transient calculations, a less complex method is needed
at the neighborhood level. For this reason, a method is developed, which identifies the relevant
parameters influencing the building heating load behavior. Taking these parameters into account,
a simple method for heating load profiling is developed using a machine learning algorithm. For this
purpose, a parameter study is conducted using dynamic thermal building simulation software. Different
parameters influencing the building heating load behavior are varied. To determine the strength of the
influence of the individual parameters on the building heating load, to check whether the influence of
the parameters is constant or varies over the year and whether parameters are missing here, the results
of the parameter study are evaluated statistically. First results show promising results in the detection
of the significant parameters, for the creation of a model based on a machine learning algorithm, and
the possibility of quantifying their impact on building heating load behaviour.

Keywords: Energy-efficient building design, sector coupling, thermal load behaviour, standardised
and parameterised thermal load curves.

1. Introduction
Globally, the building sector accounts for a large share
of total energy demand and greenhouse gas emissions.
In the EU, the building sector is estimated to be re-
sponsible for 40 % of total energy demand and about
36 % of greenhouse gas emissions [1]. In the United
States, the building sector accounts for 38.9 % of en-
ergy demand, with heating, cooling, and ventilation
of buildings already accounting for 34.8 % [2].

These facts highlight the great potential for energy
and greenhouse gas savings in the building sector.
In order to exploit this potential, not only an energeti-
cally optimized building envelope and an optimization
of energy generation and transmission technology are
required, but also a targeted establishment of techni-
cal building equipment, since local and district heating
networks are being expanded more and more world-
wide. Most research on the optimization of local and
district heating networks is still based on energy gen-
eration and only a few consider the consumer side [3].

However, a suitable prediction of the load behavior
on the load side is a fundamental prerequisite for the
development and optimization of local and district
heating networks. In particular, for an energy-efficient
design of the networks and their components, the
knowledge of the temporally high-resolution course
of the load as well as the simultaneity of the heat
demand is of central importance.

These parameters, the coincidence factor and the
heat load curve, are currently determined using static
methods and assigned safety factors due to the result-
ing uncertainties [4].

As a result, systems are not operated in terms
of optimal energy efficiency. In practice, local and
district heating networks are designed and optimized
on the basis of previous findings. Historical data from
other local and district heating networks are used to
predict the load behavior of an area supplied. Since
different areas may differ greatly in their underlying
conditions, the inherent data characteristics must be
adapted for the new area. How well this transfer fits,
depends heavily on the experience of the planner [5].

In order to enable a differentiated and quantita-
tive prediction of the heat load demand for the plan-
ning and optimization of local and district heating
networks, some research has been done in the last
years [3]. On the one hand, so-called top-down mod-
els have been developed, which are based on historical
data of existing local and district heating networks.
However, these models have proven to be too coarse
and too general for network planning and optimization.
Bottom-up models, on the other hand, which consider
individual nodes in detail as a basis for operation,
for example, can be divided into four categories: em-
pirical models, statistical models, physical-statistical
hybrid models, and engineering models. While models
in the first three categories have a high level of detail,
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Stage experimental plan
Climate TRY 2 TRY 4 TRY 14
Wind city centre in the countryside sea

Building tightness tight medium tight leaky
Window size 10 % 100 % 200 %
Orientation north south west east

Table 1. Experimental plan.

compared to top-down models, they still have disad-
vantages, especially in the early stages of planning,
because they are also based on historical data and are
therefore not transferable. It is not possible to im-
plement effects that are not included in the observed
data in these models. The engineering models allow
the implementation of all required physical effects and
user behavior and are based on thermal building sim-
ulations. This makes them highly adaptive and also
quite accurate in predicting heat demand. However,
this approach is very complex and thus expensive to
create, since each unit of a neighborhood to be sup-
plied must be simulated individually. To facilitate
this, general load profiles can be developed for spe-
cific building types, e.g. office buildings, residential
buildings, etc. While this simplification speeds up
the development of the heat load profiles, it comes
at the expense of accuracy as it relates to average
building data. For a more detailed overview of heat
load profile modeling, the reader is referred to [3],
where the authors provide a comprehensive review of
current assessment methods.

Following the latter approach, the goal of this re-
search is to produce heat demand profiles with rea-
sonable accuracy and the advantage of a less time-
consuming setup, compared to methods, where all
units are assessed individually.

For this purpose, a method is developed to identify
the relevant parameters that influence the heating
load of a building. On the basis of these identified
influencing factors, a simple method for the creation
of heating load profiles will be developed with the
help of a machine learning algorithm.

In this work, the method for identifying the influ-
encing variables is tested.

2. Method
According to the need to gain insight into the load
behavior of the building without a complex transient
simulation, the method aims at reducing the building
analysis to the crucial parameters of the heat load pro-
files. In contrast to a coarse simulation for the whole
building with only one node, in this work a method
is developed and tested making an identification of
the most important parameters is possible. With the
help of these identified parameters, a method will
be developed at a later stage which, with the help
of machine learning algorithms, can quickly generate
precise heating load profiles.

The approach is induced by the task to provide
profiles for a long-term simulation and a linear opti-
mization of a district heating network and its heat
generators and to develop its future-oriented energy
concept.

2.1. Principle procedure
The individual simulations of the test series for this
work are very time-consuming. For this reason, only
one building and only one user profile are used to
test the method. The basis of the investigations is
the small residential building (EFH_klein) from the
research report “Entwicklung einer Datenbank mit
Modellgebäuden für energiebezogene Untersuchungen,
insbesondere der Wirtschaftlichkeit” [6]. Using this
building, the variables generally considered as rele-
vant, such as storage mass, window size, building
orientation, etc., are varied and simulated with the
help of a parameter study. Subsequently, the simula-
tion results from the parameter study are statistically
evaluated with the help of an ANOVA (analysis of
variance).

In order to find out which parameters have a sig-
nificant influence on the heating load behavior of
a building, the small residential building from the
research report “Entwicklung einer Datenbank mit
Modellgebäuden für energiebezogene Untersuchungen,
insbesondere der Wirtschaftlichkeit” [6] was first im-
plemented in the dynamic thermal building simulation
software IDA ICE [7]. In this first step, a residential
use from DIN V 18599-10 [8] was assumed as the user
profile and user behavior and was not varied further.
Thus, the results are based on a small residential
building and may differ for a large building and/or
a different use to these.

The varying parameters were changed in a two to
four step experimental design.

The parameters climate, taken from DIN 4710 [9],
wind, building tightness and window size were varied
in a three-stage test plan. The parameter building
orientation was varied in a four-stage test plan, see
Table 1.

The building insulation and storage mass were var-
ied in a two-stage experimental design. For the build-
ing insulation, the TABULA database [10] was used as
a basis for the varying component structures. The U-
values and the corresponding storage mass are shown
in Table 2. All parameters are varied and simulated
using the experimental plan Table 1.
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Heavy LightU-value Storage mass
[W/m2K] [kJ/m2K]

Exterior wall new construction 0.136 484 24
Exterior wall not refurbished 1.52 352 16.6

Interior wall 74 16.1
False ceiling 370 176

Base plate new construction 0.21 531 348
Base plate not refurbished 0.95 495 215

Roof new construction 0.14 393 29
Roof not refurbished 1.81 281 18.1

Table 2. Characteristic values of the building components.

For these investigations, as mentioned above,
ANOVAs were performed to find out to what extent
the influencing parameters and their interaction have
an influence on the building heating load. For this
purpose, the average heating load was determined for
each month of the year and used as a dependent vari-
able. The varied influence parameters from the test
plan form the independent / explanatory variables in
the analysis. Thus, 12 ANOVAs were performed, one
for each month. Subsequently, for each independent
variable and interaction among the variables, the par-
tial η2 was used to determine the influence strength
on the building heating load within the ANOVA. In
a further step it was examined whether the influence
strength changes over the year. Finally, it was exam-
ined, whether the coefficient of determination R2 of
the individual ANOVAs changes over the year.

2.2. Model set up
The software “IDA ICE” of the software manufacturer
EQUA provides the possibility of parameterized simu-
lations. This makes it comparatively easy to carry out
parameter studies with several varying parameters.
Following the parameterized simulations, the gener-
ated data can be relatively easily merged in Excel for
further analysis.

At the beginning of a series of tests, the parameters
within this series are permanently set according to the
experimental setup in Table 1. For example, before
a parameter simulation, it is determined whether it
is a heavy or light building. Furthermore, the qual-
ity of the building envelope is defined. Here it is
distinguished, whether it is a “not refurbished” build-
ing envelope or whether it is a “new” building. The
components for the category “not refurbished” would
correspond to buildings of the age class 1816 to 1918,
the components of the category “new construction”
to the age classes 2016 to today. The characteris-
tic values of the building components are shown in
Table 2.

The parameters to be varied are defined in the
IDA ICE software at the beginning and automatically
varied during the parameter simulations.

For the climate, the test reference years TRY 2,
TRY 4 and TRY 14 of DIN 4710 [9] were used. The
test reference years contain hourly values of, for ex-
ample, outdoor temperature, solar radiation, etc. For
more detailed information see DIN 4710 [9]. For the
wind profiles (wind), the ASHRAE profiles “In the
countryside”, “Sea” as well as “City centre” stored in
the software IDA ICE were used. The n50 air change
rate was used to characterize the building tightness.
This defines how often the air exchanges in one hour at
a pressure difference of 50 Pa. In the “tight” category,
an n50 value of 0.35/h was assumed, in the “medium
tightness” category an n50 value of 3.675/h was as-
sumed, and in the “leaky” category an n50 value of 7/h
was assumed. Window sizes were simulated at 10 %,
100 % and 200 % starting from the initial model. From
the research report “Entwicklung einer Datenbank mit
Modellgebäuden für energiebezogene Untersuchungen,
insbesondere der Wirtschaftlichkeit” [6], the small res-
idential building has a volume of 465 m3 in its basic
configuration and has 26.5 m2 of window area, a usable
floor area of 148.8 m2 and an A/V ratio of 0.98. The
building orientation was varied in four steps starting
from a south orientation to a west, north and east
orientation.

3. Results
The following section presents the results for testing
the method of quantifying the effects of external and
internal factors and their interactions on the thermal
load behavior of a building and interprets the results
Statistical analysis on the parameter studies of se-
lected influencing factors and their interactions, as
well as the change in model quality over the course of
the year.

3.1. Difference in the strength of
influence of individual parameters
and their interactions over the
course of the year

The first step was to investigate the extent to which
the influence of the individual independent variables
and their interactions change over the year. Due to
the abundance of independent variables and especially
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Data series ANOVA-model parameter (Variable and interaction)
1 Wind
2 Building tightness
3 Climate * Building tightness
4 Window size * Wind
5 Wind * Building tightness
6 Wind * Average U-value building
7 Climate * Window size * Wind
8 Climate * Wind * Building tightness
9 Window size * Orientation * Average U-value building
10 Climate * Window size * Wind * Building tightness

Table 3. Selected data series with model parameters.

Figure 1. Influence of data series 1 and 2 over the
year.

Figure 2. Influence of data series 4 and 6 over the
year.

their interactions, which leads to a total of 1585 model
parameters (variables and their interactions) within
an ANOVA, the 10 most important data series are
shown as examples. The presented data series with
their model parameters are listed in Table 3.

In order to quantify the strength of influence or
effect of the individual variables and their interactions
on the overall model, the partial Eta-squared η2, which
results from the quotient of the explainable sum of
squares to the total sum of squares, was calculated

Figure 3. Influence of data series 5 and 8 over the
year.

Figure 4. Influence of data series 3, 7 and 9 over the
year.

for each data series. According to Cohen [11], a η2 of
0.01 indicates a small effect, whereas a η2 of 0.14 and
higher indicates a large effect.

The following figures show the influence of the indi-
vidual variables and their interactions over the year.

As shown in Figures 1, 2, 3 and 4, the influence of
the individual variables and their interactions change
over the year, except for data series 2, where the influ-
ence on the heating load behavior remains relatively
constant over the year. With the data series and the
variables and interactions contained therein 1 as well
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Figure 5. Coefficient of determination of the ANOVAs over one year.

as 3 to 10 it is to be recognized that their influence of
the winter months to the summer months decreases
and in the connection again rises. If we look at the
variable in data series 2 in combination with the vari-
able climate, which corresponds to data series 3, we
can see that the building tightness, which corresponds
to the variable in data series 2, also loses importance
from the winter months to the summer months and
vice versa gains importance again.

It seems to be possible to determine the influence of
individual parameters and their interactions with the
help of this method. In addition, this analysis indi-
cates that the significance of the influencing variables
and their interactions change over the year.

3.2. Coefficient of determination of the
ANOVAs

Next, it was checked whether the coefficient of deter-
mination R2 of the ANOVAs remains constant over
the year or whether there are differences. For this
purpose, the coefficient of determination R2 was cal-
culated for each ANOVA and compared with each
other.

As shown in Figure 5, the quality R2 of the ANOVAs
decreases from the winter months to the summer
months and then increases again. In the winter months
the R2 is about 0.91 which indicates a very good pre-
dictability of the building heating load by the ANOVA.
In the summer months, the R2 decreases to about 0.6,
indicating only moderate predictability.

Overall, this decrease in R2 from the winter months
to the summer months indicates that explanatory
variables are missing here to be able to predict the
building heating load well in summer. This means
that more variables have to be included and not all
explanatory variables are included in the regression
model to predict the building heating load behavior in
summer. This means that not all variables that have
an influence on the heating load behavior of a building
have been identified yet.

4. Discussion
The results from Section 3 show that it is possible
to determine the strength of influence of individual
parameters and their interactions. Furthermore, the
analyses show that these vary strongly over the year.
Also, it seems to be possible to determine with this
method whether all important parameters for the
prediction of the heating load behavior of buildings
have been found. As shown in Section 3.2, the decrease
of R2 from winter to summer and vice versa indicates
that not all important parameters have been included
in the analysis yet.

In a next step, further analyses will be performed
to determine the last missing parameters that have
an influence on the building heating load behavior.
Afterwards a principal component analysis will be
performed to check if variables can be combined. This
should reduce the input effort for a later heat load
prediction model. With the principal component anal-
ysis, the influence of the individual parameters on the
building heating load model can be determined and
quantified even more precisely.

The influential parameters will ultimately serve
as input variables for a machine learning algorithm,
which will then be used to predict the building heating
load behavior with similar precision as with a dynamic
thermal building simulation, but with considerably
less effort. With this algorithm, the heating load be-
havior of entire neighborhoods should also be precisely
presentable without great effort.
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