
i

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Neural Network Training and Non-Differentiable
Objective Functions

Doctoral Dissertation

Yash Patel

Ph.D. programme: Electrical Engineering and Information
Technology

Branch of study: Artificial Intelligence and Biocybernetics
Supervisor: Prof. Ing. Jǐŕı Matas, Ph.D.

Prague, May 2023

iii

Dissertation Supervisor:
Prof. Ing. Jǐŕı Matas, Ph.D.
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics
Karlovo náměst́ı 13
121 35 Prague 2
Czech Republic

Copyright © May 2023 Yash Patel

Declaration

I hereby declare I have written this doctoral dissertation independently and
quoted all the sources of information used in accordance with methodological
instructions on ethical principles for writing an academic dissertation. More-
over, I state that this dissertation has neither been submitted nor accepted for
any other degree.

The results presented in this dissertation were were achieved during my
own research in cooperation with my dissertation supervisor Jiri Matas pub-
lished in [1]–[8]. During the Ph.D., I also collaborated with several researchers
on multiple projects, with R. Manmatha, Srikar Appalaraju published in [9]–
[13], with Tomáš Hodaň published in [1], with Giorgos Tolias published in
[3], with Milan Šulc published in [8], [14], [15], with Dimosthenis Karatzas
published in [5], [8], with Slobodan Dukanović, Tuomas Virtanen published in
[6], with Rahaf Aljundi, Nikolay Chumerin, Daniel Olmeda published in [14],
with Daniel Barath, Alexander Shekhovtsov, Tong Wei published in [7], with
Filip Radenovic, Abhimanyu Dubey, Abhishek Kadian, Todor Mihaylov, Si-
mon Vandenhende, Yi Wen, Vignesh Ramanathan, Dhruv Mahajan published
in [16], with Štěpán Šimsa, Michal Uřičář, Ahmed Hamdi, Matěj Kocián,
Matyáš Skalický, Antoine Doucet, Mickaël Coustaty published in [8], [15],
with Nibal Nayef, Michal Busta, Pinaki Nath Chowdhury, Wafa Khlif, Uma-
pada Pal, Jean-Christophe Burie, Cheng-lin Liu, Jean-Marc Ogier published
in [5], and with Yusheng Xie, Yi Zhu published in [13].

In Prague, May 2023

..
Yash Patel

iv

Abstract

Many important computer vision tasks are naturally formulated to have a non-
differentiable objective. Therefore, the standard, dominant training procedure
of a neural network is not applicable since back-propagation requires the gra-
dients of the objective with respect to the output of the model. Most deep
learning methods side-step the problem sub-optimally by using a proxy loss for
training, which was originally designed for another task and is not tailored to
the specifics of the objective. The proxy loss functions may or may not align
well with the original non-differentiable objective. An appropriate proxy has
to be designed for a novel task, which may not be feasible for a non-specialist.
This thesis makes four main contributions toward bridging the gap between
the non-differentiable objective and the training loss function. Throughout
the thesis, we refer to a loss function as a surrogate loss if it is a differentiable
approximation of the non-differentiable objective. Note that we use the terms
objective and evaluation metric interchangeably.

First, we propose an approach for learning a differentiable surrogate of
a decomposable and non-differentiable evaluation metric. The surrogate is
learned jointly with the task-specific model in an alternating manner. The
approach is validated on two practical tasks of scene text recognition and
detection, where the surrogate learns an approximation of edit distance and
intersection-over-union, respectively. In a post-tuning setup, where a model
trained with the proxy loss is trained further with the learned surrogate on the
same data, the proposed method shows a relative improvement of up to 39%
on the total edit distance for scene text recognition and 4.25% on F1 score for
scene text detection.

Second, an improved version of training with the learned surrogate where
the training samples that are hard for the surrogate are filtered out. This
approach is validated for scene text recognition. It outperforms our previous
approach and attains an average improvement of 11.2% on total edit distance
and an error reduction of 9.5% on accuracy on several popular benchmarks.
Note that the two proposed methods for learning a surrogate and training with
the surrogate do not make any assumptions about the task at hand and can
be potentially extended to novel tasks.

Third, for recall@k, a non-decomposable and non-differentiable evaluation
metric, we propose a hand-crafted surrogate that involves designing differen-
tiable versions of sorting and counting operations. An efficient mixup technique

v

vi

for metric learning is also proposed that mixes the similarity scores instead of
the embedding vectors. The proposed surrogate attains state-of-the-art re-
sults on several metric learning and instance-level search benchmarks when
combined with training on large batches. Further, when combined with the
kNN classifier, it also serves as an effective tool for fine-grained recognition,
where it outperforms direct classification methods.

Fourth, we propose a loss function termed Extended SupCon that jointly
trains the classifier and backbone parameters for supervised contrastive clas-
sification. The proposed approach benefits from the robustness of contrastive
learning and maintains the probabilistic interpretation like a soft-max predic-
tion. Empirical results show the efficacy of our approach under challenging
settings such as class imbalance, label corruption, and training with little la-
beled data.

Overall the contributions of this thesis make the training of neural networks
more scalable – to new tasks in a nearly labor-free manner when the evaluation
metric is decomposable, which will help researchers with novel tasks. For non-
decomposable evaluation metrics, the differentiable components developed for
the recall@k surrogate, such as sorting and counting, can also be used for
creating new surrogates.

Automatic translations of the abstract to the Czech language by Google
Translate and ChatGPT are included in the appendix.

Acknowledgements

I extend gratitude to my advisor, Prof. Jǐŕı Matas for attracting my interest
towards doing a Ph.D. I would not be able to pursue my Ph.D. degree without
his support, ideas and motivation. I would like to thank the institute, Czech
Technical University in Prague, for providing a nourishing research platform.

Many thanks to my parents, Mr. Komal Singh Patel and Mrs. Rajni Patel,
and my partner Krist́ına Cinová for their unconditional love and support,
without which my research journey would not have been possible. Thanks
also to my sisters Dr. Shivani Bhatnager and Mrs. Priyanka Singh along
with my niece Kyra Bhatnager and nephew Amartya Singh for making me
explain machine learning to them, it always helps to put my work into different
perspectives. Last but not the least, I would like to thank my friends and
colleagues at the Visual Recognition Group for feedback, support and engaging
research discussions.

This research was supported by Research Center for Informatics (project
CZ.02 .1.01/ 0.0/0.0/16 019/0000765 funded by OP VVV), by the Grant
Agency of the Czech Technical University in Prague, grant No. SGS23/ 173/
OHK3/ 3T/ 13, by Project StratDL in the realm of COMET K1 center Soft-
ware Competence Center Hagenberg, and Amazon Research Award.

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Limitation of Proxy Loss Functions 3
1.3 Contributions . 7
1.4 Structure of the Thesis . 9
1.5 Publications . 10

2 Related Work 12

3 Learning Surrogates via Deep Embedding 14
3.1 Related Work . 15
3.2 Learning Surrogates via Deep Embedding 17

3.2.1 Definition of the Surrogate 18
3.2.2 Learning the Surrogate 18
3.2.3 Training with the Learned Surrogate 19

3.3 Experiments . 19
3.3.1 Analysing the Learned Surrogates 19
3.3.2 Post-Tuning with a Learned Surrogate for ED (LS-ED) . 22
3.3.3 Post-Tuning with a Learned Surrogate for IoU (LS-IoU) 25

3.4 Conclusions . 29

4 FEDS - Filtered Edit Distance Surrogate 30
4.1 Related Work . 32
4.2 FEDS: Filtered Edit Distance Surrogate 34

4.2.1 Background . 34
4.2.2 Learning edit distance surrogate 35
4.2.3 Robust Training . 35

4.3 Experiments . 36
4.3.1 FEDS model . 36
4.3.2 Scene Text Recognition model 37
4.3.3 Training and Testing data 38
4.3.4 Implementation details 39
4.3.5 Quality of the edit distance surrogate 39
4.3.6 Quantitative results . 40
4.3.7 Qualitative results . 40

viii

CONTENTS ix

4.4 Conclusions . 44

5 Recall@k Surrogate Loss with Large Batches and Similarity
Mixup 45
5.1 Related work . 48
5.2 Method . 50
5.3 Experiments on Retrieval Benchmarks 54

5.3.1 Datasets . 54
5.3.2 Implementation details 56
5.3.3 Evaluation . 58
5.3.4 Effect of hyper-parameters 64

5.4 Experiments on Fine-Grained Classification 66
5.5 Conclusions . 69

6 Contrastive Classification and Representation Learning with
Probabilistic Interpretation 71
6.1 Related Work . 73
6.2 Background . 75

6.2.1 Pairwise Losses . 75
6.2.2 Cross Entropy and Pairwise Cross Entropy 76

6.3 Learning a Classifier Jointly with Representation Learning . . . 77
6.4 Extended Supervised Contrastive Learning 78
6.5 Experiments . 79

6.5.1 Datasets . 80
6.5.2 Methods and Implementation Details 80
6.5.3 Fully Supervised Classification 81
6.5.4 Classification in Low-Sample Scenario 82
6.5.5 Classification under Imbalanced Data 83
6.5.6 Classification under Noisy Data 83
6.5.7 General Remarks . 84
6.5.8 Classifier Outputs as Posterior Probabilities 84

6.6 Conclusion . 84

7 Conclusions 86

A Abstrakt 87

Bibliography 107

Chapter 1

Introduction

Training deep networks by gradient descent on the user-defined objective is
not possible when the objective is non-differentiable. Deep learning methods
use a proxy loss function as a workaround. A proxy loss is a differentiable
function previously designed and used for another task but is not tailored to
the specifics of the user-defined objective. The use of proxy loss can empirically
lead to a reasonable performance, but it may not align well with the user-
defined objective, leading to sub-optimal performance. Often, the goal is to
perform well on standard benchmarks where the performance is measured using
an evaluation metric. In this thesis, we assume that the evaluation metric
captures the user-defined objective, and thus the terms evaluation metric and
objective function are interchangeably used.

Examples of such a mismatch between the loss and the objective exist in
object detection [17], where the evaluation metric is intersection-over-union.
Still, many popular approaches use Ln-norm as a proxy loss [18], [19]. An-
other example is scene text recognition [20], [21] where the evaluation metric
is edit distance but per-character cross-entropy and CTC [22] are commonly
used as a proxy. Similarly, in image retrieval [23], [24] where the benchmarks
use recall@k or average precision, many variants of a proxy triplet [25] and
margin [26] losses have been studied. The thesis deals with training neural
networks using learned or hand-crafted differentiable approximations of the
test-time objective function, explicitly focusing on the cases when the evalua-
tion metric is non-differentiable.

1.1 Background

Supervised deep learning requires four main components: an annotated dataset,
a model, a loss function, and an optimizer. The data is collected in a task-
specific manner and contains the annotations required to train for a task,
e.g., semantic class labels for image classification [27], bounding boxes with
semantic labels for object detection [28], per-pixel semantic labels for segmen-
tation [29], etc. The model typically consists of two components: a backbone

1

CHAPTER 1. INTRODUCTION 2

and a prediction module. The backbone of the model is designed to transform
the input data to a discriminative representation, e.g., ViT [30] for images,
BERT [31] for text, ALBEF [32] for joint vision-language modeling, etc. The
current trend is to use a backbone pre-trained on large scale datasets either
in a supervised or self-supervised manner [33], [34]. The prediction module
on top of these backbones transforms the representation to the required task-
specific prediction. The loss function compares the model’s prediction with the
ground truth. Thus the design of the loss function needs to take into account
the task-specific predictions and ground truth, e.g., cross-entropy loss for image
classification [35], smooth-L1 to regress the bounding box coordinates for ob-
ject detection [18], per-pixel cross-entropy loss for semantic segmentation [36],
etc. The exact choice of the optimizer is often a hyper-parameter which is em-
pirically determined along with the learning rate, learning rate schedule, and
weight decay. Popular choices are Adam [37], AdamW [38], RMSProp [39],
Adagrad [40], Adadelta [41], SGD, etc.

Once these components are chosen, the model is trained to minimize the
expectation of a loss on the training data. During feed-forward, the data is
fed to the model to obtain the predictions, which are then compared against
the ground-truth annotations by the loss function. During back-propagating,
the chain rule is employed to obtain the gradients of the loss with respect to
the model weights. The optimizer then updates these weights based on the
obtained gradients and the learning rate. For the chain rule in backpropagation
to work, every module in the model and the loss function are required to be
differentiable. The model is usually trained until the loss on the validation set
keeps decreasing, i.e., until the model starts over-fitting on the training data.

Once the model is trained, it is evaluated on unseen test data, and the
comparison between the predictions and the ground truth is now made using
a test-time evaluation metric. The evaluation metric is designed to fulfill task-
specific requirements and does not depend on the training process.

With supervised deep learning, the performance on a wide range of com-
puter vision tasks has been pushed to the levels of real-world practical use.
The progress has been systematically made by improving each component of
supervised deep learning, such as deeper and more powerful model architec-
tures [30], [35], [42], [43] and introduction of large-scale training datasets [27],
[44]. At first, the progress was expensive as designing architectures demanded
detailed domain expertise, and creating new datasets is costly. Therefore, to
decrease the human effort, there has been a substantial effort in automat-
ing the process of designing better task-specific architectures [45]–[47] and
employing self-supervised methods of learning to reduce the dependence on
human-annotated data [48]–[52].

There are numerous reasons why a trained model may perform sub-optimally
on a test set. Name a few; first, the trained model can over-fit on the training
data and perform poorly on the test data sampled identically and indepen-
dently from the same distribution. To remedy this issue, several regularization

CHAPTER 1. INTRODUCTION 3

techniques have been investigated [53]–[55]. Over-fitting and under-fitting of-
ten happen due to improper choice of the hyper-parameters such as learning
rate, schedule, and weight decay. Several approaches and recommendations
have been proposed to mitigate these [56]–[59]. Second, the test set could be
from a different distribution leading to a domain gap. There are several papers
in the literature on domain adaption to make the models robust to the dis-
tribution shift [60]–[69]. Further, the use of backbone models pre-trained on
very large scale datasets can lead to good generic representations, which can
implicitly bridge the domain gap [16], [33], [34], [70]. Third, the evaluation
metric may not be known at the time of training leading to a wrong choice of
the loss function.

Another possibility is that the evaluation metric is known but is non-
differentiable and thus can not be used during the training. Relatively lit-
tle attention has been paid to the case where the test-time evaluation metric
cannot be directly used as a loss function.

1.2 Limitation of Proxy Loss Functions

If the evaluation metric is known at the time of training and is differentiable,
it can be directly used as a loss function for training. However, the evaluation
metrics are known for many practical problems in computer vision but are non-
differentiable. An example of a non-differentiable metric is edit distance, also
known as Levenshtein distance, which is computed by counting unit operations
of addition, deletion, and substitution necessary to transform one text string
into another. Edit distance is a common choice for evaluating scene text recog-
nition methods. This metric is non-differentiable as it has a discrete range and
is often implemented using dynamic programming, which makes it infeasible
to obtain the gradients. Another example is intersection-over-union between
the two bounding boxes for object detection, which can be easily implemented
in a differentiable manner for axis-aligned bounding boxes, but the implemen-
tation is inconvenient for rotated bounding boxes [71]. Another example is
in lossy image compression, where the end user is human. Thus the optimal
evaluation metric is a human’s perception of similarity, which is complicated
and unknown to be adequately expressed as a mathematical function. Another
example includes recall at top-k, a popular metric for evaluating retrieval ap-
proaches on open-set datasets. Recall@k is the ratio of the number of positive
samples in top-k ranks and the total number of positive samples. Recall at
top-k is non-differentiable as it requires sorting and counting operations, both
of which are non-differentiable.

Existing approaches for these tasks side-step the issue by using an alter-
native function as a loss function. In this thesis, we term this as a proxy
loss function. A proxy loss function for a task is any function that can be
used to attain a reasonable performance but is not tailored for the test-time
objective. However, this function may not align well with the test-time evalu-

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Left: Per-character softmax predictions are obtained using three
different models for a cropped word image. The final predictions are obtained
through argmax on these softmax predictions. Right: for the three predictions,
a comparison between the mean of per-character cross-entropy loss and the
edit distance is shown. The first prediction is correct and has an edit distance
of zero. However, the cross-entropy loss still penalizes the model. The edit
distance value for the second and the third predictions is the same. However,
the value of cross-entropy is very different.

Figure 1.2: An example from the Kodak dataset [72]. In order of MS-SSIM
values: Mentzer et al.[73] > Ballé et al.[74] > BPG [75] > JPEG-2000 [76].
However, the order of performance based on 5 human evaluations is: BPG
[75] > Mentzer et al.[73] > JPEG-2000 [76] > Ballé et al.[74]. Visually the
foreground and text in BPG are better in quality.

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Similarity scores to the samples in the image collection are shown
for a query image. Consider the change in similarity scores with two options:
Option 1 is a small change in similarity that leads to a change in ranking,
Option 2 is a bigger change in similarity that does not lead to any change in
ranks. Option 1 leads to a change in the value of the evaluation metric, i.e.,
recall@2 while the proxy loss, i.e., triplet loss has a minor change in value.
Option 2 changes the value of the triplet loss a lot, whereas the value of the
evaluation metric does not change at all.

ation metric, leading to a sub-optimal performance during inference. For the
above-mentioned examples:

• Scene Text Recognition. Given an input image of a cropped word,
scene text recognition is to predict the transcription of the word. An
adequate evaluation metric for the task is the edit distance. Popular
methods [77], [78] use either per-character cross-entropy or CTC [22] as
the proxy loss function. Note that while the value of the edit distance
decreases only when a correct unit operation is being made, the value
of per-character cross-entropy may decrease when the probability of pre-
dicting the correct character increases. Further, when the prediction is
correct, the per-character cross-entropy loss will continue to penalize the
model until the correct predictions are very confident. Thus, the proxy
loss function, in this case, is harsher on the model than the evaluation
metric. The mismatch between the per-character cross-entropy loss and
the edit distance is shown in Figure 1.1 through an example.

• Scene Text Detection. Given a natural scene image, the goal is to
precisely localize all instances of text at a word level. The ground truth
consists of rotated bounding boxes. Popular approaches use smooth-L1

or L2 distance for regressing bounding box coordinates. The use of these
proxy losses does not have a strong correlation with IoU [79]. As noted
by Yu et al. [80], IoU accounts for a bounding box as a whole, whereas
regressing using an Ln proxy loss treats each point independently.

• Image compression. The objective of compression approaches is to

CHAPTER 1. INTRODUCTION 6

minimize the storage cost of images. In a lossy setting, this is achieved by
removing information that is least noticeable to humans. Learning-based
compression approaches follow a rate-distortion objective, which tries to
minimize the storage requirements while keeping the distortion as low as
possible. These approaches use peak-signal-to-noise ratio, mean squared
error, or MS-SSIM as the proxy distortion loss function. Through ex-
tensive human evaluations, our work shows that PSNR or MS-SSIM do
not correlate well with a human’s perception of similarity. In fact, in
a binary classification setup, where a human is asked to pick which of
two images is closer to the original, these metrics are only slightly better
than random predictions [9], [11], [12]. Figure 1.2 shows this through a
visual comparison of popular compression techniques.

• Image Retrieval. It is a task of ranking all database images according
to the relevance to a query. The relevance could be at a semantic or
at an instance level. Existing methods for this task use ranking proxy
loss functions such as contrastive [81], triplet [25], and margin [26] that
pull the samples from the same class closer to one another and push the
samples from different class away. As shown in Figure 1.3, the value of
a proxy loss function changes with the change in the similarity scores.
However, the evaluation metric recall@k for the task only depends on the
rank of positive samples in the retrieved list. A small change in the value
of the similarity score that changes the rank will cause a big change in
the value of the evaluation metric, whereas it will not change the value
of the proxy loss substantially [23].

• Supervised Contrastive Classification. The goal is to learn repre-
sentations that are useful for classification. The objective follows con-
trastive learning where an image, its views obtained via applying aug-
mentations, and other images with the same semantic label are pulled
closer to one another, and the samples from a different class are pushed
apart. Contrastive supervised classification has shown to be superior
and more robust than the use of standard soft-max cross-entropy loss
function. With the goal of learning to classify, these approaches follow
a two-step training procedure. First, the representations are learned via
contrastive training, and then the model is fine-tuned with the cross en-
tropy loss to perform classification. As shown by [82], a simple approach
to jointly train the representations and the classifier by combining con-
trastive loss and cross-entropy loss is sub-optimal.

The above-mentioned non-differentiable evaluation metrics can be cate-
gorized into decomposable and non-decomposable. An evaluation metric is
decomposable if a per-point evaluation is available, i.e., for a prediction of
the model, there is a fixed ground truth, e.g., edit distance, intersection-over-
union, and human perception of similarity. If the per-point evaluation is not

CHAPTER 1. INTRODUCTION 7

possible, i.e., the metric is computed on a set of samples, the evaluation metric
is termed non-decomposable, e.g., recall@k, and average precision.

1.3 Contributions

The thesis focuses on bridging the gap between the training loss function and
the test-time evaluation metric. The proposed solutions vary depending on
the nature of the evaluation metric. For decomposable and non-differentiable
evaluation metrics such as edit distance, intersection-over-union, and human
perception of similarity, we propose to learn a differentiable surrogate of the
evaluation metric and train the task-specific model with the learned surro-
gate [1], [2], [9]. For non-decomposable and non-differentiable evaluation met-
rics such as recall@k, we resort to a hand-crafted solution [3]. However, the
components involved in the developing recall@k surrogate, such as differen-
tiable sorting and differentiable counting, are general and can be used for
other evaluation metrics involving these operations as well.

The thesis makes the following contributions:

• A technique for training a neural network by minimizing a surrogate loss
that approximates the target evaluation metric, which is decomposable
and non-differentiable. The surrogate is learned via a deep embedding
where the Euclidean distance between the prediction and the ground
truth corresponds to the value of the evaluation metric. The effective-
ness of the proposed technique is demonstrated in a post-tuning setup,
where a trained model is tuned using the learned surrogate. Without a
significant computational overhead and any bells and whistles, improve-
ments are demonstrated on challenging and practical tasks of scene-text
recognition and detection. In the recognition task, the model is tuned
using a surrogate approximating the edit distance metric and achieves up
to 39% relative improvement in the total edit distance. In the detection
task, the surrogate approximates the intersection over union metric for
rotated bounding boxes and yields up to 4.25% relative improvement in
the F1 score. This work was published in [1] and detailed in Chapter 3.

• A procedure to robustly train a scene text recognition model using a
learned surrogate of edit distance. The approach borrows from self-
paced learning [83] and filters out the training examples that are hard
for the surrogate. The filtering is performed by judging the quality of
the approximation using a ramp function, enabling end-to-end training.
The experiments are conducted in a post-tuning setup, where a trained
scene text recognition model is tuned using the learned surrogate of edit
distance. The efficacy is demonstrated by improvements on various chal-
lenging scene text datasets such as IIIT-5K [84], SVT [85], ICDAR [86]–
[88], SVTP [89], and CUTE [90]. The proposed method provides an

CHAPTER 1. INTRODUCTION 8

average improvement of 11.2% on total edit distance and an error reduc-
tion of 9.5% on accuracy. This work was published in [2] and detailed in
Chapter 4.

• A differentiable surrogate of recall at top-k for learning visual represen-
tation models for retrieval (see Section 5.2). Since recall@k is a non-
decomposable and non-differentiable function, our work relies on hand-
crafting the solution.

• An implementation for training with the proposed recall@k surrogate
that side-steps the GPU memory constraints and can train up to a batch
size of 16k images on a single GPU (see Section 5.3.2).

• An efficient mixup technique that operates on pairwise scalar similari-
ties and virtually increases the batch size further (see Section 5.2). The
proposed mixup technique, in theory, is the same as the standard em-
bedding mixup. However, in practice, it is computationally and memory
efficient the mixed samples are virtual, and the technique only operates
on pairwise similarity scores.

• With synergy between the above three components, our work attains
state-of-the-art results on several metric learning benchmarks such as
iNaturalist [91], Stanford Online Products [92], Stanford Cars [93], and
PUK VehicleID [94]. The same approach also attains state-of-the-art
results, for instance-level search on revisited Oxford and Paris [95]. This
work was published in [3] and presented in Chapter 5.

• For fine-grained plant recognition, a model trained with the proposed
approach and evaluated with kNN classification outperforms the classi-
fication approaches trained using the soft-max cross-entropy loss with
performance-enhancing techniques such as class prior adaptation, heavy
data augmentations, etc.

• A new version of the supervised contrastive training that jointly learns
the classifier’s parameters and the network’s backbone. The proposed
approach enjoys the robustness of contrastive training while still main-
taining probabilistic interpretation like soft-max cross-entropy. The joint
training of the backbone and the classifier eliminates the need for two-
stage training. We empirically show that our proposed objective func-
tions significantly improve over the standard cross entropy loss with more
training stability and robustness in various challenging settings. This
work was published in [14] and presented in Chapter 6.

• Additionally, we revisit a previously proposed contrastive-based objec-
tive function that approximates cross-entropy loss and present a simple
extension to learn the classifier jointly (see Section 6.3).

CHAPTER 1. INTRODUCTION 9

An additional contribution of our research that is relevant but not included
in the thesis is on image compression, where a new end-to-end trainable model
for lossy image compression is proposed that includes several novel compo-
nents. The method incorporates an adequate perceptual similarity metric,
saliency in the images, and a hierarchical auto-regressive model. Our work
demonstrates that the popularly used evaluation metrics such as MS-SSIM
and PSNR are inadequate for judging the performance of image compression
techniques as they do not align with the human perception of similarity. Al-
ternatively, a new metric is proposed, which is learned on perceptual similarity
data specific to image compression. The proposed compression model incorpo-
rates the salient regions and optimizes on the proposed perceptual similarity
metric. The model not only generates images that are visually better but also
gives superior performance for subsequent computer vision tasks such as object
detection and segmentation when compared to existing engineered or learned
compression techniques. Note that details of these contributions are excluded
from the thesis as the work was done during an internship at AWS-AI. We
refer the reader to the related publication [9] for more details.

1.4 Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 reviews existing meth-
ods on surrogate loss functions that attempt to train on non-differentiable
objectives. Related work for specific tasks and loss functions are in each sub-
sequent chapter. Chapter 3 presents LS, a method for learning surrogate loss
functions for decomposable evaluation metrics. Chapter 4 presents FEDS, an
improved approach for learning a surrogate loss function for edit distance via
filtering. Chapter 5 presents a hand-crafted surrogate of recall@k, along with
an efficient mixup technique. Chapter 6 presents ESupCon, a loss function
for training classification models end-to-end via contrastive learning. The con-
clusions are made in Chapter 7. For general curiosity, the Czech version of
the abstract, translated by Google Translate and ChatGPT, is included in the
appendix.

From an application point-of-view, Chapter 3 focuses on scene text recog-
nition and detection, Chapter 4 on scene text recognition, Chapter 5 on metric
learning, instance level search, and fine-grained recognition, Chapter 6 on im-
age classification.

CHAPTER 1. INTRODUCTION 10

1.5 Publications

This thesis builds on the results previously published in the following publica-
tions:

• Learning Surrogates via Deep Embedding, Yash Patel, Tomas Hodan,
Jiri Matas. European Conference on Computer Vision (ECCV) 2020 [1].

• FEDS–Filtered Edit Distance Surrogate, Yash Patel, Jiri Matas. In-
ternational Conference on Document Analysis and Recognition (ICDAR)
2021 [2].

• Recall@k Surrogate Loss with Large Batches and Similarity Mixup,Yash
Patel, Giorgos Tolias, Jiri Matas. IEEE/ CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 2022 [3].

• Plant recognition by AI: Deep neural nets, transformers, and kNN in
deep embeddings, Lukáš Picek, Milan Šulc, Yash Patel and Jǐŕı Matas.
Frontiers in Plant Science 2022 [4].

• Contrastive Classification and Representation Learning with Probabilis-
tic Interpretation, Rahaf Aljundi,Yash Patel, Milan Sulc, Daniel Olmeda
Reino, Nikolay Chumerin. Association for the Advancement of Artificial
Intelligence (AAAI) 2023 [14].

The following publications are related to the topic but were not included
in the thesis, in order to keep the thesis more focused and easier to follow:

• Saliency driven perceptual image compression, Yash Patel, Srikar Ap-
palaraju, R. Manmatha. IEEE/ CVF Winter Conference on Applica-
tions of Computer Vision (WACV) 2021 [9].

• Neural Network-based Acoustic Vehicle Counting, Slobodan Djukanović,
Yash Patel, Jǐri Matas, Tuomas Virtanen. European Signal Processing
Conference (EUSIPCO) 2021 [6].

The following publications were published during the duration of the Ph.D.
but are not included in the thesis because they are not directly related to the
topic of the thesis:

• ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text De-
tection and Recognition–RRC-MLT-2019, Nibal Nayef*, Yash Patel*,
Michal Bušta, Pinaki Nath Chowdhury, Dimosthenis Karatzas, Wafa
Khlif, Jiri Matas, Umapada Pal, Jean-Christophe Burie, Cheng-lin Liu,
Jean-Marc Ogier (* indicates equal contribution). International Confer-
ence on Document Analysis and Recognition (ICDAR) 2019 [5].

CHAPTER 1. INTRODUCTION 11

• Filtering, Distillation, and Hard Negatives for Vision-Language Pre-
Training, Filip Radenovic, Abhimanyu Dubey, Abhishek Kadian, Todor
Mihaylov, Simon Vandenhende,Yash Patel, Yi Wen, Vignesh Ramanathan,
Dhruv Mahajan. IEEE/ CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) 2023 [16].

• DocILE Benchmark for Document Information Localization and Extrac-
tion, Štěpán Šimsa, Milan Šulc, Michal Uřičář, Yash Patel, Ahmed
Hamdi, Matěj Kocián, Matyáš Skalický, Jǐŕı Matas, Antoine Doucet,
Mickaël Coustaty, Dimosthenis Karatzas. International Conference on
Document Analysis and Recognition (ICDAR) 2023 [8].

The following publications were not included as they are currently under
review:

• Generalized Differentiable RANSAC, Tong Wei, Yash Patel, Alexander
Shekhovtsov, Jiri Matas, Daniel Barath. arXiv pre-print 2023 [7].

• Self-Guided Semantic Alignment for Text Supervised Segmentation,Yash
Patel, Yusheng Xie, Yi Zhu, Srikar Appalaraju, R. Manmatha. arXiv
pre-print 2023 [13].

Chapter 2

Related Work

This chapter overviews some of the popular and general approaches for training
with an approximation of the non-differentiable evaluation metrics. Specific
related work to each task and the evaluation metric are provided in the sub-
sequent chapters.

Due to the non-differentiable nature of many practical evaluation metrics,
there exists a large body of proxy loss functions that have been proposed
as smooth metric relaxations. Examples include AUCPR loss [96], pairwise
AUCROC loss [97], Lovasz-Softmax loss for IoU metric [98], cost-sensitive
classification for F-measure [99].

Similar to the focus of our research on learning surrogates, there also have
been efforts to learn the loss functions [100], [101]. However, these loss-learning
approaches are still based on metric relaxation schemes. Another set of ap-
proaches embeds the true evaluation metric as a correction term for optimiza-
tion [102], [103]. These approaches are limited to the evaluation metrics that
are available in a closed form and thus cannot be extended to the evaluation
metrics such as edit distance. Our work on learning surrogates [1], [2] follows a
simpler approach of directly learning a metric space for approximating the tar-
get evaluation metric without making any assumptions about the underlying
decomposable evaluation metric.

An approach similar to our work is MetricOpt [104]. This approach opti-
mizes a model on arbitrary non-differentiable evaluation metrics such as mis-
classification rate and recall. This approach operates in a black-box setting
where the computation details of the target metric are unknown and fine-
tunes a pre-trained model using an approximation of the evaluation metric.
Instead of fine-tuning the entire model, additional adapter parameters are in-
troduced and fine-tuned using the approximation of the evaluation metric.
Unlike our work, the approximation of the evaluation metric is learned using
a straightforward regression task. Based on empirical comparisons on Stan-
dard online products [92] dataset for image retrieval, our hand-crafted recall@k
surrogate [3] performs substantially better.

Concurrent to our research is the work of Pogančić et al. [105] that im-

12

CHAPTER 2. RELATED WORK 13

plements an efficient backward pass through black box implementations of
combinatorial solvers with linear objective functions. This work was extended
in [106] for optimizing rank-based evaluation metrics such as recall and average
precision, where the efficacy of their approach was shown on metric learning
and object detection benchmarks. When empirically compared on the stan-
dard benchmarks on the task of metric learning, our proposed approach of
recall@k surrogate [3] (Chapter 5) attains substantially better results.

Chapter 3

Learning Surrogates via Deep
Embedding

For many practical problems in computer vision, models are trained with sim-
ple proxy losses, which may not align with the evaluation metric. The eval-
uation metric may not always be differentiable, prohibiting its use as a loss
function. An example of a non-differentiable metric is the visible surface dis-
crepancy (VSD) [107] used to evaluate 6D object pose estimation methods.
Another example is the edit distance (ED) defined by counting unit opera-
tions (addition, deletion, and substitution) necessary to transform one text
string into another and is a common choice for evaluating scene text recogni-
tion methods [5], [87], [88]. Since ED is non-differentiable, the methods use
either CTC [22] or per-character cross-entropy [77] as the proxy loss. Yet
another popular non-differentiable metric is the intersection over union (IoU)
used to compare the predicted and the ground truth bounding boxes when
evaluating object detection methods. Although these methods typically resort
to using proxy losses such as smooth-L1 [108] or L2 [19], Rezatofighi et al. [79]
demonstrate that there is no strong correlation between Ln objectives and IoU.
Further, Yu et al. [80] show that IoU accounts for a bounding box as a whole
whereas regressing using an Ln proxy loss treats each point independently.

For popular metrics such as IoU, hand-crafted differentiable approxima-
tions have been designed [79], [80]. However, hand-crafting a surrogate is
not scalable as it requires domain expertise and may involve task-specific as-
sumptions and simplifications. The IoU-loss introduced in [79], [80] allows for
optimization on the evaluation metric directly but makes a strong assumption
about the bounding boxes to be axis-aligned. In numerous practical applica-
tions such as aerial image object detection [109], scene text detection [88] and
visual object tracking [110], the bounding boxes may be rotated and the meth-
ods for such tasks revert to using simple but non-optimal proxy loss functions
such as smooth-L1 [111]–[113].

To address the aforementioned issues, this chapter proposes to learn a dif-
ferentiable surrogate that approximates the evaluation metric and use the

14

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 15

� � (�, �)� ̂ Φ

�

∂ (�, �)� ̂ Φ

∂�

(�)�Θ

Model

((�), (�))�2 ℎΦ ℎΦ

Learned Surrogate
LS

Figure 3.1: For the input x with the corresponding ground-truth y, the model
being trained outputs z = fΘ(x). The learned surrogate provides a differen-
tiable approximation of the evaluation metric: êΦ(z, y) = L2(hΦ(z), hΦ(y)),
where hΦ is a learned deep embedding model, and hΦ(z) and hΦ(y) are em-
bedding representations for the prediction and the ground truth, respectively.
Model fΘ(x) for the target task (e.g. scene text recognition or detection) is

trained with the gradients from the surrogate: ∂(êΦ(z,y))
∂z

.

learned surrogate to optimize the model for the target task. The metric is
approximated via a deep embedding, where the Euclidean distance between
the prediction and the ground truth corresponds to the value of the metric.
The mapping to the embedding space is realized by a neural network, which is
learned using only the value of the metric. Gradients of this value with respect
to the inputs are not required for learning the surrogate. In fact, the gradients
may not even exist, as is the case of the edit distance metric. Throughout this
chapter, we refer to the proposed method for training with learned surrogates
as “LS”. Figure 3.1 provides an overview of the proposed method.

In this chapter, the focus on a post-tuning setup, where a model that
has converged on a proxy loss is tuned with LS. We consider two different
optimization tasks: post-tuning with a learned surrogate for the edit distance
(LS-ED) and the IoU of rotated bounding boxes (LS-IoU). To the best of our
knowledge, we are the first to optimize directly on these evaluation metrics.

The rest of the chapter is structured as follows. Related work is reviewed
in Section 3.1, the technique for learning the surrogate and training with it is
presented in Section 3.2, experiments are shown in Section 3.3 and the chapter
is concluded in Section 3.4.

3.1 Related Work

Training machine learning models by directly minimizing the evaluation metric
has been shown effective on various tasks. For example, the state-of-the-art
learned image compression [114], [115] and super-resolution [116], [117] meth-
ods directly optimize the perceptual similarity metrics such as MS-SSIM [118]
and the peak signal-to-noise ratio (PSNR). Certain compression methods op-

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 16

timize on an approximate of human perceptual similarity, which is learned
in a supervised manner using annotated data [10], [11]. Image classification
methods [35], [42], [43] are typically trained with the cross-entropy loss that
has been shown to align well with the misclassification rate, i.e. the evaluation
metric, under the assumption of large scale and clean data [119], [120].

When designing evaluation metrics for practical computer vision tasks, the
primary goal is to fulfil the requirements of potential applications and not to
ensure the metrics being amenable to an optimization approach. As a conse-
quence, many evaluation metrics are non-differentiable and cannot be directly
minimized by the currently popular gradient-descent optimization approaches.
For example, the visible surface discrepancy [107], which is used to evaluate
6D object pose estimation methods, was designed to be invariant under pose
ambiguity. This is achieved by calculating the error only over the visible part
of the object surface, which requires a visibility test that makes the metric
non-differentiable. Another example is the edit distance metric [88], [121],
which is used to evaluate scene text recognition methods and is calculated via
dynamic programming, which makes it infeasible to obtain the gradients.

There have been efforts towards approximating non-differentiable opera-
tions in a differentiable manner to enable end-to-end training. Kato et al. [122]
proposed a neural network to approximate rasterization, allowing for a direct
optimization on IoU for 3D reconstruction. Agustsson et al. [123] proposed a
soft-to-hard vector quantization mechanism. It is based on soft cluster assign-
ments during backpropagation, which allows neural networks to learn tasks
involving quantization, e.g. the image compression. Our work differs as we
propose a general approach to approximate the evaluation metric, instead of
approximating task-specific building blocks of neural networks.

Another line of research has focused on hand-crafting differentiable approx-
imates of the evaluation metrics, which either align better with the metrics or
enable training on them directly. Prabhavalkar et al. [124] proposed a way of
optimizing attention based speech recognition models directly on word error
rate. As mentioned earlier, [79], [80] proposed ways for directly optimizing on
intersection-over-union (IoU) as the loss for the case of axis-aligned bounding
boxes. Rahman et al. [125] proposed a hand-crafted approximation of IoU for
semantic segmentation.

Learning task-specific surrogates has been attempted. Nagendra et al. [126]
demonstrated that learning the approximate of IoU leads to better perfor-
mance in the case of semantic segmentation. However, the method requires
custom operations to estimate true and false positives, and false negatives,
which makes the learning approach task-specific. Engilberge et al. [127] pro-
posed a learned surrogate for sorting-based tasks such as cross-modal retrieval,
multi-label image classification and visual memorability ranking. Their results
on sorting-based tasks suggest that learning the loss function could outperform
hand-crafted losses.

More closely related to our work is the direct loss method by Hazan et

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 17

al. [102] where a surrogate loss is minimized by embedding the true loss as a
correction term. Song et al. [103] extended this approach to the training of
neural networks. However, it assumes that the loss can be disentangled into
per-instance sub-losses, which is not always feasible, e.g. the F1 score [128]
involves two non-decomposable functions (recall and precision). An alterna-
tive is to directly learn the amount of update values that are applied to the
parameters of the prediction model. The framework proposed in [129] includes
a controller that uses per-parameter learning curves comprised of the loss val-
ues and derivatives of the loss with respect to each parameter. The method
suffers from two drawbacks that prohibit its direct application to training on
evaluation metrics: a) for large networks, it is computationally infeasible to
store the learning curve of every parameter, and b) no gradient information is
available for non-differentiable losses.

Our work is similar to the approach by Grabocka et al. [128], where the
evaluation metric is approximated by a neural network. Their approach differs
as the network learning the surrogate takes both the prediction and the ground
truth as the input and directly regresses the value of the metric. Since we
formulate the task as embedding learning and train the surrogate such that
the L2 in the embedded space corresponds to the metric, our method ensures
that the gradients are smaller when the prediction is closer to the ground
truth. Furthermore, as illustrated in Section 3.2, we learn the surrogate with
an additional gradient penalty term to ensure that the gradients obtained from
our learned surrogate are bounded for stable training.

3.2 Learning Surrogates via Deep Embedding

Say that the supervised task is being learned from samples drawn uniformly
from a distribution (x, y) ∼ PD. For a given input x and an expected output y,
a neural network model outputs z = fΘ(x) where Θ are the model parameters
learned via backpropagation as:

Θt+1 ← Θt − η
∂l(z, y)

∂Θt

(3.1)

where l(z, y) is a differentiable loss function, t is the training iteration, and η
is the learning rate.

The model trained with loss l(z, y) is evaluated using metric e(z, y). When
metric e(z, y) is differentiable, it can be directly used as the loss. The tech-
nique proposed in this chapter addresses the cases when metric e(z, y) is non-
differentiable by learning a differentiable surrogate loss denoted as êΦ(z, y).
The learned surrogate is realized by a neural network, which is differentiable
and is used to optimize the model. The weight updates are:

Θt+1 ← Θt − η
∂êΦ(z, y)

∂Θt

(3.2)

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 18

3.2.1 Definition of the Surrogate

The surrogate is defined via a learned deep embedding hΦ where the Euclidean
distance between the prediction z and the ground truth y corresponds to the
value of the evaluation metric:

êΦ(z, y) = ∥hΦ(z)− hΦ(y)∥2 (3.3)

3.2.2 Learning the Surrogate

Learning the surrogate, i.e. approximating the evaluation metric, with a deep
neural network is formulated as a supervised learning task requiring three
major components: a model architecture, a loss function, and a source of
training data.

Architecture.

In this chapter, the architecture is designed manually, such that it is suitable
for the nature of the inputs z and y (details are in Section 3.3). Modern
approaches for architecture search, e.g. [45]–[47], could yield better results but
are computationally expensive.

Training Loss.

The surrogate is learned with the following objectives:

1. The learned surrogate corresponds to the value of the evaluation metric:

êΦ(z, y) ≈ e(z, y) (3.4)

2. The first order derivative of the learned surrogate with respect to the
prediction z is close to 1: ∥∥∥∥∂êΦ(z, y)∂z

∥∥∥∥
2

≈ 1 (3.5)

Both objectives are realized and linearly combined in the training loss:

loss(z, y) =
∥∥(êΦ(z, y)− e(z, y)

∥∥2
2
+ λ

(∥∥∥∥∂êΦ(z, y)∂z

∥∥∥∥
2

− 1

)2

(3.6)

Bounding the gradients (Equation 3.5) has shown to enhance the training
stability for Generative Adversarial Networks [130] and has shown to be useful
for learning the surrogate. Parameters Φ of the embedding model hΦ are
learned by minimizing the loss (Equation 3.6).

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 19

Source of Training Data.

Source of the training data for learning the surrogate determines the quality of
the approximation over the domain. The model fΘ(x) = z for the supervised
task is trained on samples obtained from a dataset D. Let us assume that R is
a random data generator providing examples for the learning of the surrogate,
sampled uniformly in the range of the evaluation metric (see Section 3.3 for
details). Note that R is independent of fΘ(x).

Three possibilities for the data source are considered:

1. Global approximation: (z, y) ∼ PR.

2. Local approximation: (z, y) ∼ PfΘ(x), where (x, y) ∼ PD.

3. Local-global approximation: (z, y) ∼ PfΘ(x)∪R.

The local-global approximation yields a high quality of both the approxi-
mation and gradients (Section 3.3.1) and is therefore used in the main experi-
ments.

3.2.3 Training with the Learned Surrogate

The learned surrogate is used in a post-tuning setup, where model fΘ(x) has
been pre-trained using a proxy loss. This setup ensures that fΘ(x) is not
generating random outputs and thus simplifies post-tuning with the surrogate.
The parameters of the surrogate Φ are initialized randomly.

Learning of the surrogate êΦ and post-tuning of the model fΘ(x) are con-
ducted alternatively. The surrogate parameters Φ are updated first while the
model parameters Θ are fixed. The surrogate is learned by sampling (z, y)
jointly from the model and the random generator. Subsequently, the model
parameters are trained while the surrogate parameters are fixed. Algorithm 1
demonstrates the overall training procedure.

3.3 Experiments

The efficacy of LS is demonstrated on two different tasks: post-tuning with a
learned surrogate for the edit distance (Section 3.3.2) and for the IoU of rotated
bounding boxes (Section 3.3.3). This section provides details of the models for
these tasks, design choices for learning the surrogates and empirical evidence
showing the efficacy of LS. Unless stated otherwise, the results were obtained
using the local-global approximation setup as elaborated in Algorithm 1.

3.3.1 Analysing the Learned Surrogates

The aspects considered for evaluating the surrogates are:

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 20

Algorithm 1 Training with LS (local-global approximation)

Inputs: Supervised data D, random data generator R, evaluation metric e.
Hyper-parameters: Number of update steps Ia and Ib, learning rates ηa and
ηb, number of epochs E.
Objective: Train the model for a given task that is fΘ(x) and the surrogate
,i.e., eΦ.

1: Initialize Θ← pre-trained weights, Φ← random weights.
2: for epoch = 1,...,E do
3: for i = 1,...,Ia do
4: sample (x, y) ∼ PD, sample (zr, yr) ∼ PR

5: inference z = fΘepoch−1(x)
6: compute loss lê = loss(z, y)+loss(zr, yr) (Equation 3.6)
7: Φi ← Φi−1 − ηa

∂lê
∂Φi−1

8: end for
9: Φ← ΦIa

10: for i = 1,...,Ib do
11: sample (x, y) ∼ PD

12: inference z = fΘi−1(x)
13: compute loss lf = êΦepoch(z, y) (Equation 3.3)

14: Θi ← Θi−1 − ηb
∂(lf)

∂Θi−1

15: end for
16: Θ← ΘIb

17: end for

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 21

1. The quality of approximation êΦ(z, y).

2. The quality of gradients ∂(êΦ(z,y))
∂z

.

Both the quality of the approximation and the gradients depend on three
components: an architecture, a loss function, and a source of training data
(Section 3.2.2). Given an architecture, the choices for the loss function to
learn the surrogate and the training data are justified subsequently.

Quality of approximation.

The quality of the approximation is judged by comparing the value of the sur-
rogate with the value of the evaluation metric, calculated on samples obtained
from model fΘ(x). When learning the surrogate, higher quality of approxi-
mation is enforced by the mean squared loss between e(z, y) and êΦ(z, y) (the
first term on the right-hand side of Equation 3.6). Figure 3.2 (left) shows the
quality of the approximation measured by the L1 distance between the learned
surrogate and the edit distance. It can be seen that the surrogate approxi-
mates the edit distance accurately (the L1 distance drops swiftly below 0.2,
which is negligible for the edit distance).

Quality of gradients.

Judging the quality of gradients is more complicated. When learning the surro-
gate, the gradient-penalty term attempts to make the gradients bounded, i.e.
to make the training stable (second term on the right-hand side of the equation
3.6). However, this is not sufficient if the gradients do not optimize fΘ(x) on
the evaluation metric. We rely on the improvement or the decline in the per-
formance of the model fΘ(x) to judge the quality of the gradients. Table 3.3
shows that the local-global approximation leads to the largest improvements
when optimizing on IoU for rotated bounding boxes.

Choice of training data.

Figure 3.3 shows the quality of approximation with different choices of training
data for learning the surrogate. These empirical observations suggest that
using global approximation leads to a low quality of the approximation. This
can be accounted to the domain gap between the data obtained from the
random generator and the model. Using the local approximation leads to a
higher quality of the approximation, however, the gradients obtained from the
surrogate are not useful to train fΘ(x) (Table. 3.3), i.e. although the quality
of the approximation is high, the quality of gradients is not. This can be
attributed to surrogate over-fitting on samples obtained from the model and
losing generalization capability on samples outside this distribution. Finally, it
was observed that using the local-global approximation leads to both properties
– high quality of approximation and high quality of gradients.

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 22

Gradient penalty with LS-ED

Training iteration

Y-axis:

Quality of the approximation with LS-ED

Y-axis:

Training iteration

Figure 3.2: Left: The error in approximation for the first 10K training iter-
ations. The error is obtained by computing the L1 distance between the true
edit distance values and the LS-ED predictions and dividing by the batch size.
Note that the edit distance can only take non-negative integer values, thus the
error in the range of 0 − 0.2 is fairly low. Right: The gradient penalty term
from the optimization of the LS-ED model (Equation 3.6).

Quality of approximation with Global LS-IoU
Y-axis:

(�(�, �), (�, �))�1 � ̂ Φ

Quality of approximation with Local LS-IoU
Y-axis:

(�(�, �), (�, �))�1 � ̂ Φ

Quality of approximation with Global-Local LS-IoU
Y-axis:

(�(�, �), (�, �))�1 � ̂ Φ

Training iteration Training iteration Training iteration

Figure 3.3: The error in the approximation of the IoU for rotated bounding
boxes is shown for the first 1K iterations of the training with LS-IoU. Error
is measured by the L1 distance between IoU and the surrogate. It can be
seen that the error is high for the global and low for the local and global-local
approximation variants.

3.3.2 Post-Tuning with a Learned Surrogate for ED (LS-
ED)

It is experimentally shown that LS can improve scene text recognition models
(STR) on edit distance (ED), which is a popularly used metric to evaluate STR
methods [5], [87], [88]. The empirical evidence shows that post-tuning STR
models with LS-ED lead to improved performance on various metrics such as

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 23

accuracy, normalized edit distance, and total edit distance [121].

Scene Text Recognition (STR).

Given an input image of a cropped word, the task of STR is to generate the
transcription of the word. The state-of-the-art architectures for scene text
recognition can be factorized into four modules [77] (in this order): (a) trans-
formation, (b) feature extraction, (c) sequence modelling, and (d) prediction.
The feature extraction and prediction are the core modules of any STR model
and are always employed. On the other hand, transformation and sequence
modelling are not essential but have shown to improve the performance on
benchmark datasets. Post-tuning with LS-ED is investigated for two different
configurations of STR models.

The transformation module attempts to rectify the curved or tilted text,
making the task easier for the subsequent modules of the model. It is learned
jointly with the rest of the modules, and a popular choice is thin-plate spline
(TPS) [131]–[133]. TPS can be either present or absent in the overall STR
model.

The feature extraction module maps the image or its transformed version
to a representation that focuses on the attributes relevant for character recog-
nition, while the irrelevant features are suppressed. Popular choices include
VGG-16 [43] and ResNet [35]. It is a core module of the STR model and is
always present.

The features are the input of the sequence modelling module, which cap-
tures the contextual information within a sequence of characters for the next
module to predict each character more robustly. BiLSTM [134] is a popular
choice.

The output character sequence is predicted from the identified features of
the image. The choice of the prediction module depends on the loss function
used for training the STR model. Two popular choices of loss functions are
CTC [22] (sigmoid output) or attention [131] (per-character softmax output).

Baek et al. [77] provides a detailed analysis of STR models and the im-
pact of different modules on the performance. Following [77], LS-ED is in-
vestigated with the state-of-the-art performing configuration, which is TPS-
ResNet-BiLSTM-Attn. To demonstrate the efficacy of LS-ED, results are also
shown with ResNet-BiLSTM-Attn, i.e., the transformation module is removed.
Note that the CTC based prediction has been shown to consistently perform
worse compared to the attention counter-part [77], and thus the analysis in
this chapter has been narrowed down to only the attention-based prediction.

Similar to [77], the STR models are trained on the union of the synthetic
data obtained from MJSynth [135] and SynthText [136] resulting in a total
of 14.4 million training examples. Furthermore, following the standard setup
of [77], there is no fine-tuning performed in a dataset-specific manner before
the final testing. Let us say that the STR model is fΘ(x), such that fΘ :
R100×32×1 −→ R|A|×L. The dimensions of the input cropped word image x is

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 24

Max Length

Set of
Characters

STR
Model

Softmax
Output

One-hot
ground truth

�

Char-CNN

Char-CNN

ℎΦ

ℎΦ

�Θ

� �

�

(�)ℎΦ

(�)ℎΦ

Approximate Edit-distance

(�, �) = ((�), (�))� ̂ Φ �2 ℎΦ ℎΦ

Input
Image

Figure 3.4: Training scene text recognition (STR) models with LS-ED. The
output of the STR model z|A|×L and the ground-truth y|A|×L (L is the maxi-
mum length of the word and A is the set of characters) are fed to the Char-
CNN embedding model to obtain embedding vectors, hΦ(z) and hΦ(y) re-
spectively. The approximate edit distance value is obtained by computing
êΦ(z, y) = L2(hΦ(z), hΦ(y)).

fixed to 100 × 32 × 1 (gray-scale). The output for attention based prediction
module is a per-character softmax over the set of characters. Here L is the
maximum length of characters in the word and |A| is the number of characters.
During inference, argmax is performed at each character location to output
the predicted text string. The ground truth y is represented as a per-character
one-hot vector.

The STR models are first trained with the proxy loss, i.e., cross-entropy
for 300K iterations with a mini-batch size of 192. The models are optimized
using ADADELTA [137] (same setup as [77]). Once the training is completed
these models are tuned with LS-ED on the same set of 14.4 million training
examples for another 20K iterations. The models trained purely on the syn-
thetic datasets are tested on a collection of real datasets - IIIT-5K [84], SVT
[85], ICDAR’03 [86], ICDAR’13 [87], ICDAR’15 [88], SVTP [89] and CUTE
[90] datasets.

LS-ED architecture.

Char-CNN architecture [138] is used for learning the deep embedding hΦ. It
consists of five 1D convolution layers equipped with LeakyReLU activation
[139] followed by two fully connected layers. The embedding hΦ maps the input
such that hΦ : R|A|×L −→ R1024. Note that since hΦ constitutes of convolution
and fully-connected layers, it is differentiable and allows for backpropagation
to the STR model. In feed-forward, the two embeddings for the ground-truth
y (one-hot) and the model prediction z (softmax) are obtained by performing
feed-forward through hΦ and an approximate of edit distance is computed by

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 25

measuring the L2 between the two vectors (Figure 3.4).

Post-tuning with LS-ED.

A random generator is designed for this task, which generates a pair of words
(zr, yr) and ensures uniform sampling in the range of the true error. It was ob-
served that the uniform sampling is essential to avert over-fitting of the learned
surrogate on a certain range of the true metric. For the edit distance metric
e(z, y) ∈ {0, ..., b} (b being the maximum possible value), the generator sam-
ples a word randomly from a text corpus and distorts the words by performing
random addition, deletion, and substitution operations.

The post-tuning of the STR model fΘ(x) with LS-ED follows Algorithm 1.
For the case of the edit distance, there is a significant domain gap between
the samples obtained from the STR model (z) and the random generator (zr).
This is because the random generator operates directly on the text string,
i.e., zr is one-hot representation. Thus, using the global approximation set-
ting yields a low quality of the approximation. Further, it was observed that
training the surrogate purely with the data generated from the STR model,
i.e., local approximation, leads to a good approximation but does not lead to
an improvement in the performance of the STR model, which indicates a low
quality of gradients.

Finally as described in Algorithm 1, the local-global approximation is used.
The quality of approximation and the gradient penalty from post-tuning with
LS-ED are shown in Figure 3.2. Note that the edit distance value is a whole
number and the surrogate attempts to approximate it, thus the error in ap-
proximation as shown in Figure 3.2 is low. The quality of the gradients can
be seen by improvement in the performance of the STR models. Thus the
local-global approximation guides to a high quality of both the approximation
and gradients.

The results for the two configurations of STRmodels, i.e., ResNet-BiLSTM-
Attn and TPS-ResNet-BiLSTM-Attn, are shown in Table 3.1 and Table 3.2,
respectively. It can be observed that LS-ED improves the performance of the
STR models on all metrics. The most significant gains are observed on total-
edit distance (TED) as the surrogate attempts to minimize its approximation.

3.3.3 Post-Tuning with a Learned Surrogate for IoU
(LS-IoU)

It is experimentally demonstrated that LS can optimize scene text detection
models on intersection-over-union (IoU) for rotated bounding boxes. IoU is
a popular metric used to evaluate the object detection [19], [108] and scene
text detection models [88], [111], [112], [121], [141]. Gradients for IoU can be
hand-crafted for the case of axis-aligned bounding boxes [79], [80], however, it
is complex to design the gradients for rotated bounding boxes. The learned

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 26

Test
Data

Loss
Function

↑ Acc. ↑ NED ↓ TED

IIIT-5K Cross-Entropy 84.300 0.954 945
IIIT-5K LS-ED 86.300 +2.37% 0.953 −0.10% 837 +11.42%

SVT Cross-Entropy 84.699 0.940 229
SVT LS-ED 86.399 +2.00% 0.947 +0.74% 196 +14.41%

ICDAR’03 Cross-Entropy 92.558 0.972 151
ICDAR’03 LS-ED 94.070 +1.63% 0.977 +0.51% 119 +26.89%

ICDAR’13 Cross-Entropy 89.754 0.949 260
ICDAR’13 LS-ED 91.133 +1.53% 0.960 +1.15% 157 +39.61%

ICDAR’15 Cross-Entropy 71.452 0.889 1135
ICDAR’15 LS-ED 74.655 +4.48% 0.899 +1.12% 1013 +10.74%

SVTP Cross-Entropy 74.109 0.891 424
SVTP LS-ED 77.519 +4.60% 0.901 +1.22% 381 +10.14%

CUTE Cross-Entropy 68.293 0.838 285
CUTE LS-ED 71.777 +5.10% 0.868 +3.57% 234 +17.89%

Table 3.1: ResNet-BiLSTM-Attn: The models are evaluated on IIIT-5K [84],
SVT [85], ICDAR’03 [86], ICDAR’13 [87], ICDAR’15 [88], SVTP [89] and
CUTE [90] datasets. The results are reported using accuracy Acc. (higher
is better), normalized edit distance NED (higher is better) and total edit
distance TED (lower is better). Relative gains are shown in green and relative
declines in red.

surrogate of IoU allows backpropagation for rotated bounding boxes. For the
task of rotated scene text detection on ICDAR’15 [88], it is shown that post-
tuning the text detection model with LS-IoU leads to improvement on recall,
precision, and F1 score.

Scene Text Detection.

Given a natural scene image, the objective is to obtain precise word-level ro-
tated bounding boxes. The method proposed by Ma et al. [111] is used for
the task. It extends Faster-RCNN [108] based object detector to incorporate
rotations. This is achieved by adding angle priors in anchor boxes to enable
rotated region proposals. A sampling strategy using IoU compares these pro-
posals with the ground truth and filter the positive and the negative proposals.
Only the filtered proposals are used for the loss computation.

The positive proposals are regressed to fit precisely with the ground truth.
Through rotated region-of-interest (RROI) pooling, the features corresponding
to the proposals are obtained and used for text/no-text binary classification.

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 27

Test
Data

Loss
Function

↑ Acc. ↑ NED ↓ TED

IIIT-5K Cross-Entropy 87.500 0.961 722
IIIT-5K LS-ED 87.933 +0.49% 0.963 +0.20% 645 +10.66%

SVT Cross-Entropy 87.172 0.952 180
SVT LS-ED 86.708 −0.53 0.954 +0.21% 163 +9.44%

ICDAR’03 Cross-Entropy 94.302 0.979 110
ICDAR’03 LS-ED 94.535 +0.24% 0.981 +0.20% 99 +10.00%

ICDAR’13 Cross-Entropy 92.020 0.966 137
ICDAR’13 LS-ED 92.299 +0.30% 0.979 +1.34% 108 +21.16%

ICDAR’15 Cross-Entropy 78.520 0.915 868
ICDAR’15 LS-ED 78.410 −0.14% 0.915 ±0.00% 837 +3.57%

SVTP Cross-Entropy 78.605 0.912 346
SVTP LS-ED 79.225 +0.78% 0.913 +0.10% 333 +3.75%

CUTE Cross-Entropy 73.171 0.871 224
CUTE LS-ED 74.216 +1.42% 0.875 +0.45% 219 +2.23%

Table 3.2: TPS-ResNet-BiLSTM-Attn: The models are evaluated on IIIT-
5K [84], SVT [85], ICDAR’03 [86], ICDAR’13 [87], ICDAR’15 [88], SVTP
[89] and CUTE [90] datasets. The results are reported using accuracy Acc.
(higher is better), normalized edit distance NED (higher is better) and total
edit distance TED (lower is better). Relative gains are shown in green and
relative declines in red.

The overall loss function for training in [111] is defined as a linear combination
of classification loss (negative log-likelihood) and regression loss (smooth-L1).

The publicly available implementation of [111], [140] is used with the orig-
inal hyper-parameter settings – the model is trained for 140K iterations using
the SGD optimizer and batch-size of 1. The model is trained on a union of
ICDAR’15 [88] and ICDAR-MLT [5] datasets, providing 6295 training images.

LS-IoU architecture.

The embedding model for LS-IoU consists of five fully-connected layers with
ReLU activation [142]. A rotated bounding box is represented with six param-
eters, two for the coordinates of the centre of the box, two for the height and
the width and two for cosine and sine of the rotation angle. The centre coor-
dinates and the dimensions of the box are normalized with image dimensions
to make the representation invariant to the image resolution.

The embedding model maps the representation of a positive box proposal
and the matching ground-truth into a vector as hΦ : R6 −→ R16. The approxi-

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 28

Loss
Function

↑ Recall ↑ Precision ↑ F1 score

Smooth-L1 71.21% 84.71% 77.37%
LS-IoU (global) 66.97% −5.95% 84.71% ±0.00% 74.81% −3.30%
LS-IoU (local) 70.92% −0.40% 86.60% +2.23% 77.98% +0.78%
LS-IoU (local-global) 76.79% +7.83% 84.93% +0.25% 80.66% +4.25%

Table 3.3: RRPN-ResNet-50 [111], [140]: Evaluations on Incidental Scene Text
ICDAR’15 [88]. Relative gains are shown in green and relative declines in red.

mation of the IoU between two bounding boxes is computed by the L2 distance
between the two vector representations.

Post-tuning with LS-IoU.

The random generator for LS-IoU samples rotated bounding boxes from the
set of training labels and modifies the boxes by changing the centre locations,
dimensions, and rotation angle within certain bounds to create a distorted
variant. Since uniform sampling over the range of IoU is difficult, we store
roughly 3 million such examples along with the IoU values and sample from
this collection.

Note that since the overall loss for training [111] is a combination of a
regression loss and a classification loss, LS-IoU only replaces the regression
component (smooth-L1) with the learned surrogate for IoU. For post-tuning
with LS-IoU, the results are shown for all three setups, that is, global ap-
proximation, local approximation and global-local approximation (Algorithm
1). For each of these, the model trained with proxy losses is post-tuned with
LS-IoU for 20K iterations. The quality of the approximations for the first 1K
iterations of the training is shown in Figure 3.3. Since the range of IoU is in
[0, 1], it can be seen that the error is high for the global approximation. For
both local and global-local, the quality of the approximation is significantly
better (roughly 10 times lower error).

As mentioned earlier, the quality of gradients is judged by the improvement
or deterioration of the model (fΘ(x)) post-tuned with LS-IoU. The results for
scene text detection on the ICDAR’15 [88] dataset are shown in Table 3.3. It
is observed that post-tuning the detection model with LS-IoU (global) leads
to deterioration. Post-tuning with LS-IoU (local) improves the precision but
makes recall worse. Finally, LS-IoU (local-global) from Algorithm 1 improves
both the precision and recall, boosting the F1 score by relative 4.25%.

CHAPTER 3. LEARNING SURROGATES VIA DEEP EMBEDDING 29

3.4 Conclusions

A technique is proposed for training neural networks by minimizing learned
surrogates that approximate the target evaluation metric. The effectiveness of
the proposed technique has been demonstrated in a post-tuning setup, where
a trained model is tuned on the learned surrogate. Improvements have been
achieved on the challenging tasks of scene-text recognition and detection. By
post-tuning, the model with LS-ED, relative improvements of up to 39% on the
total edit distance has been achieved. On detection, post-tuning with LS-IoU
has shown to provide a relative gain of 4.25% on the F1 score.

Chapter 4

FEDS - Filtered Edit Distance
Surrogate

Deep neural networks are trained by back-propagating gradients [143], which
requires the loss function to be differentiable. However, the task-specific objec-
tive is often defined via an evaluation metric, which may not be differentiable.
The evaluation metric’s design is to fulfill the application requirements, and
for the cases where the evaluation metric is differentiable, it is directly used
as a loss function. For scene text recognition (STR), accuracy and edit dis-
tance are popular evaluation metric choices. Accuracy rewards the method if
the prediction exactly matches the ground truth. Whereas edit distance (ED)
is defined by counting addition, subtraction, and substitution operations, re-
quired to transform one string into another. As shown in Figure 4.1, accuracy
does not account for partial correctness. Note that the low ED errors from M2
can be easily corrected by a dictionary search in a word-spotting setup [144].
Therefore, edit distance is a better metric, especially when the state-of-the-art
is saturated on the benchmark datasets [5], [87], [88].

30

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 31

Figure 4.2: Overview of the proposed post-tuning procedure. x is the input to
the STR model fΘ(x) with output ẑ. y is the ground truth, ŷ is the ground
truth expressed as one-hot, e(z, y) is the evaluation metric, êΦ(ẑ, ŷ) is the
learned surrogate and gλ(e, êΦ) is the filtering function. The approximations
from the learned surrogate are checked against the edit distance by the filtering
function. The STR model is not trained on the samples where the surrogate
is incorrect.

Figure 4.1: Accuracy and edit distance comparison for different predictions
of scene text recognition (STR). For the scene text images, green shows the
ground truth, red shows the prediction from a STR model M1 and blue shows
the predictions from another STR model M2. For these examples accuracy
ranks both the models equally, however, it can be clearly seen that for the
predictions in blue vocabulary search or Google search will succeed.

When the evaluation metric is non-differentiable, a proxy loss is employed,
which may not align well with the evaluation metric. Edit distance is computed
via dynamic programming and is non-differentiable. Therefore, it can not be
used as a loss function for training deep neural networks. The proxy loss
used for training STR models is per-character cross-entropy or Connectionist
Temporal Classification (CTC) [22]. The models trained with cross-entropy or
CTC may have a sub-optimal performance on edit distance as they optimize

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 32

a different objective.
The aforementioned issue can be addressed by learning a surrogate, e.g.

[1], where a model trained with the proxy loss is post-tuned on a learned
surrogate of the evaluation metric. In [1], post-tuning has shown significant
improvement in performance on the evaluation metric. While Patel et al.[1]
have paid attention to learning the surrogate, none was given to robustly train
the neural network with the surrogate. In the training procedure, [1] assumes
that the learned surrogate robustly estimates the edit distance for all samples.
Since the surrogate is learned via supervised training, it is prone to overfitting
on the training distribution and may fail on out-of-the-distribution samples.
In hope for better generalizability of the surrogate, [1] makes use of a data
generator to train the surrogate, which requires extra engineering effort. This
chapter shows that the learned edit distance surrogate often fails, leading to
noisy training.

As an improvement, this chapter proposes FilteredEditDistance Surrogate.
In FEDS, the STR model is trained only on the samples where the surrogate
approximates the edit distance within a small error bound. This is achieved
by computing the edit distance for a training sample and comparing it with
the approximation from the surrogate. The comparison is realized by a ramp-
function, which is piece-wise differentiable, allowing for end-to-end training.
Figure 4.2 provides an overview of the proposed method. The proposed train-
ing method simplifies the training and eliminates the need for a data generator
to learn a surrogate.

The rest of the chapter is structured as follows. Related work is reviewed
in Section 4.1, the technique for robustly training with the learned surrogate
of ED is presented in Section 4.2, experiments are shown in Section 4.3 and
the chapter is concluded in Section 4.4.

4.1 Related Work

Scene text recognition (STR) is the task of recognizing text from images against
complex backgrounds and layouts. STR is an active research area; comprehen-
sive surveys can be found in [77], [145], [146]. Before deep learning, STR meth-
ods focused on recognizing characters via sliding window, and hand-crafted
features [85], [147], [148]. Deep learning based STR methods have made a sig-
nificant stride in improving model architectures that can handle both regular
(axis-aligned text) and irregular text (complex layout, such as perspective and
curved text). Selected relevant methods are discussed subsequently.

Convolutional models for STR. Among the first deep learning STRmeth-
ods was the work of Jaderberg et al.[149], where a character-centric CNN [150]
predicts a text/no-text score, a character, and a bi-gram class. Later this work
was extended to word-level recognition [151] where the CNN takes a fixed di-
mension input of the cropped word and outputs a word from a fixed dictionary.

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 33

Bušta et al.[112], [152] proposed a fully-convolutional STR model, which op-
erates on variable-sized inputs using bi-linear sampling [153]. The model is
trained jointly with a detector in a multi-task learning setup using CTC [22]
loss. Gomez et al.[154] trains an embedding model for word-spotting, such
that, the euclidean distance between the representations of two images corre-
sponds to the edit-distance between their text strings. This embedding model
differs from FEDS as it operates on images instead of STR model’s predictions
and is not used to train a STR model.

Recurrent models for STR. Shi et al.[155] and He et al.[156] were among
the first to propose end-to-end trainable, sequence-to-sequence models [157] for
STR. An image of a cropped word is seen as a sequence of varying length, where
convolutional layers are used to extract features and recurrent layers to predict
a label distribution. Shi et al.[158] later combined the CNN-RNN hybrid
with spatial transformer network [153] for better generalizability on irregular
text. In [159], Shi et al.adapted Thin-Plate-Spline [160] for STR, leading
to an improved performance on both regular and irregular text (compared to
[158]). While [158], [159] rectify the entire text image, Liu et al.[161] detects
and rectifies each character. This is achieved via a recurrent RoIWarp layer,
which sequentially attends to a region of the feature map that corresponds to
a character. Li et al.[162] passed the visual features through an attention
module before decoding via an LSTM. MaskTextSpotter [163] solves detection
and recognition jointly; the STR module consists of two branches while the
first uses local visual features, the second utilizes contextual information in
the form of attention. Litman et al.[78] utilizes a stacked block architecture
with intermediate supervision during training, which improves the encoding
of contextual dependencies, thus improving the performance on the irregular
text.

Training data. Annotating scene text data in real images is complex and
expensive. As an alternative, STR methods often use synthetically generated
data for training. Jaderberg et al.[149] generated 8.9 million images by render-
ing fonts, coloring the image layers, applying random perspective distortion,
and blending it to a background. Gupta et al.[164] placed rendered text on
natural scene images; this is achieved by identifying plausible text regions us-
ing depth and segmentation information. Patel et al.[165] further extended
this to multi-lingual text. The dataset of [164] was proposed for training scene
text detection; however, it is also useful for improving STR models [77]. Long
et al.[166] used a 3D graphics engine to generate scene text data. The 3D
synthetic engine allows for better text region proposals as scene information
such as normal and objects meshes are available. Their analysis shows that
compared to [164], more realistic looking diverse images (contains shadow,
illumination variations, etc.) are more useful for STR models. As an alter-
native to synthetically generate data, Janouskova et al.[167] leverages weakly

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 34

annotated images to generate pseudo scene text labels. The approach uses an
end-to-end scene text model to generate initial labels, followed by a heuristic
neighborhood search to match imprecise transcriptions with weak annotations.

As discussed, significant work has been done towards improving the model
architectures [77], [78], [112], [151]–[153], [155], [158], [159], [168]–[174] and
obtaining data for training [151], [164], [166], [167], [175].

Limited attention has been paid to the loss function. Most deep learning
based STR methods rely on per-character cross-entropy or CTC loss functions
[22], [77]. While in theory and under an assumption of infinite training data,
these loss functions align with accuracy [120], there is no concrete evidence
of their alignment with edit-distance. In comparison to the related work, this
chapter makes an orthogonal contribution, building upon learning surrogates
[1], this chapter proposes a robust training procedure for better optimization
of STR models on edit distance.

4.2 FEDS: Filtered Edit Distance Surrogate

4.2.1 Background

The samples for training the scene text recognition (STR) model are drawn
from a distribution (x, y) ∼ UD. Here, x is the image of a cropped word, and
y is the corresponding transcription. An end-to-end trainable deep model for
STR, denoted by fΘ(x) predicts a soft-max output ẑ = fΘ(x), fΘ : RW×H×1 −→
R|A|×L. Here W and H are the dimensions of the input image, A is the set of
characters, and L is the maximum possible length of the word.

For training, the ground truth y is converted to one-hot representation
ŷ|A|×L. Cross entropy (CE) is a popular choice of the loss function [77], which
provides the loss for each character:

CE(ẑ, ŷ) = − 1

L|A|

L∑
i=1

|A|∑
j=1

ŷi,jlog(ẑi,j) (4.1)

Patel et al.[1] learns the surrogate of edit distance via a learned deep
embedding hΦ, where the Euclidean distance between the prediction and the
ground truth corresponds to the value of the edit distance, which provides the
edit distance surrogate, denoted by êΦ:

êΦ(ẑ, ŷ) = ∥hΦ(ẑ)− hΦ(ŷ)∥2 (4.2)

where hΦ is the Char-CNN [1], [176] with parameters Φ. Note that the
edit distance surrogate is defined on the one-hot representation of the ground
truth and the soft-max prediction from the STR model.

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 35

4.2.2 Learning edit distance surrogate

Objective.

To fairly demonstrate the improvements using the proposed FEDS, the loss
for learning the surrogate is the same as LS-ED [1]:

1. The learned edit distance surrogate should correspond to the value of
the edit distance:

êΦ(ẑ, ŷ) ≈ e(z, y) (4.3)

where e(z, y) is the edit distance defined on the string representation of
the prediction and the ground truth.

2. The first order derivative of the learned edit distance surrogate with
respect to the STR model prediction ẑ is close to 1:∥∥∥∥∂êΦ(ẑ, ŷ)∂ẑ

∥∥∥∥
2

≈ 1 (4.4)

Bounding the gradients (Equation 4.4) has shown to enhance the training
stability for Generative Adversarial Networks [130] and has shown to be useful
for learning the surrogate [1].

Both objectives are realized and linearly combined in the training loss:

loss(ẑ, ŷ) = w1

∥∥(êΦ(ẑ, ŷ)− e(z, y)
∥∥2
2
+ w2

(∥∥∥∥∂êΦ(ẑ, ŷ)∂ẑ

∥∥∥∥
2

− 1

)2

(4.5)

Training data.

Patel et al.[1] uses two sources of data for learning the surrogate - the pre-
trained STR model and a random generator. The random generator provides a
pair of words and their edit distance and ensures uniform sampling in the range
of the edit distance. The random generator helps the surrogate to generalize
better, leading to an improvement in the final performance of the STR model.

The proposed FEDS does not make use of a random generator, reducing
the effort and the computational cost. FEDS learns the edit distance surrogate
only on the samples obtained from the STR model:

(ẑ, ŷ) ∼ fΘ(x) | (x, y) ∼ UD (4.6)

4.2.3 Robust Training

The filtering function gλ is defined on the surrogate and the edit distance,
parameterized by a scalar λ that acts as a threshold to determine the quality
of the approximation from the surrogate. The filtering function is defined as:

gλ(e(z, y), êΦ(ẑ, ŷ)) = min(|êΦ(ẑ, ŷ)− e(z, y)|, λ) | λ > 0 (4.7)

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 36

Figure 4.3: The filtering function enforces zero gradients for the samples that
are hard for the surrogate (low quality of approximation). STR model is
trained only on the samples where the quality of the approximation from the
edit distance surrogate is high.

The filtering function is piece-wise differentiable, as can be seen in Figure
4.3. For the samples where the quality of approximation from the surrogate is
low, the gradients are zero, and the STR model is not trained on those samples.
Whereas for samples where the quality of the approximation is within the
bound of λ, the STR model is trained to minimize the edit distance surrogate.

Learning of the ED surrogate êΦ and post-tuning of the STR model fΘ(x)
are conducted alternatively. The surrogate is learned first for Ia number of
iterations while the STR model is fixed. Subsequently, the STR model is
trained using the surrogate and the filtering function, while the ED surrogate
parameters are kept fixed. Algorithm 2 and Figure 4.2 demonstrate the overall
training procedure with FEDS.

4.3 Experiments

4.3.1 FEDS model

The model for learning the deep embedding, i.e., hΦ is kept same as [1]. A
Char-CNN architecture [176] is used with five 1D convolution layers, LeakyReLU
[177] and two FC layers. The embedding model, hΦ, maps the input to a 1024
dimensions, hΦ : R|A|×L −→ R1024. Feed forward (Equation 4.2), generates em-
beddings for the ground-truth ŷ (one-hot) and model prediction ẑ (soft-max)
and an approximation of edit distance is computed by L2 distance between the
two embedding.

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 37

Algorithm 2 Post-tuning with FEDS

Inputs: Supervised data D, evaluation metric e.
Hyper-parameters: Number of update steps Ia and Ib, learning rates ηa and
ηb, number of epochs E.
Objective: Robustly post-tune the STR model, i.e., fΘ(x) and learn the edit
distance surrogate, i.e., êΦ.

1: Initialize Θ← pre-trained weights, Φ← random weights.
2: for epoch = 1,...,E do
3: for i = 1,...,Ia do
4: sample, (x, y) ∼ UD

5: inference, ẑ = fΘepoch−1(x)
6: compute loss, lê = loss(ẑ, ŷ) (Equation 4.5)
7: update ED surrogate, Φi ← Φi−1 − ηa

∂lê
∂Φi−1

8: end for
9: Φ← ΦIa

10: for i = 1,...,Ib do
11: sample, (x, y) ∼ UD

12: inference, ẑ = fΘi−1(x)
13: compute ED from the surrogate, ê = êΦepoch(ẑ, ŷ) (Equation 4.2)
14: compute ED, e = e(z, y)
15: computer loss, lf = gλ(e, ê) (Equation 4.7)

16: update STR model, Θi ← Θi−1 − ηb
∂(lf)

∂Θi−1

17: end for
18: Θ← ΘIb

19: end for

4.3.2 Scene Text Recognition model

Following the survey on STR, [77], the state-of-the-art model ASTER is used
[159], which contains four modules: (a) transformation, (b) feature extrac-
tion, (c) sequence modeling, and (d) prediction. Baek et al. [77] provides a
detailed analysis of STR models and the impact of different modules on the
performance.

Transformation.

Operates on the input image and rectifies the curved or tilted text, easing
the recognition for the subsequent modules. The two popular variants include
Spatial Transformer [153] and Thin Plain Spline (TPS) [159]. TPS employs
a smooth spline interpolation between a set of fiducial points, which are fixed
in number. Following the analysis of Shi et al.[159] [77], the STR model used
employs TPS.

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 38

Feature extraction.

Involves a Convolutional Neural Network [150], that extracts the features from
the image transformed by TPS. Popular choices include VGG-16 [43] and
ResNet [35]. Follwoing [77], the STR model used employs ResNet for the
ease of optimization and good performance.

Sequence modeling.

Captures the contextual information within a sequence of characters; this mod-
ule operates on the features extracted from a ResNet. The STR model used
employs BiLSTM [134].

Prediction.

The predictions are made based on the identified features of the image. The
prediction module depends on the loss function used for training. CTC loss
requires the prediction to by sigmoid, whereas cross-entropy requires the pre-
diction to be a soft-max distribution over the set of characters. The design of
FEDS architecture (Section 4.3.1) requires a soft-max distribution.

FEDS and LS-ED [1] are investigated with the state-of-the-art performing
configuration of the STR model, which is TPS-ResNet-BiLSTM-Attn.

4.3.3 Training and Testing data

The STR models are trained on synthetic and pseudo labeled data and are
evaluated on real-world benchmarks. Note that the STR models are not fine-
tuned on evaluation datasets (same as [77]).

Training data.

The experiments make use of the following synthetic and pseudo labeled data
for training:

• MJSynth [149] (synthetic). 8.9 million synthetically generated images,
obtained by rendering fonts, coloring the image layers, applying random
perspective distortion, and blending it to a background.

• SynthText [164] (synthetic). 5.5 million text instance by placing ren-
dered text on natural scene images. This is achieved by identifying plau-
sible text regions using depth and segmentation information.

• Uber-Text [167] (pseudo labels). 138K real images from Uber-Text
[178] with pseudo labels obtained using [167].

• Amazon book covers [167] (pseudo labels). 1.5 million real images
from amazon book covers with pseudo labels obtained using [167].

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 39

Testing data.

The models trained purely on the synthetic and pseudo labelled datasets are
tested on a collection of real datasets. This includes regular scene text - IIIT-
5K [84], SVT [85], ICDAR’03 [86] and ICDAR’13 [87], and irregular scene text
ICDAR’15 [88], SVTP [89] and CUTE [90].

4.3.4 Implementation details

The analysis of the proposed FEDS and LS-ED [1] is conducted for two setups
of training data. First, similar to [77], the STR models are trained on the
union of the synthetic data obtained from MJSynth [149], and SynthText [164]
resulting in a total of 14.4 million training examples. Second, additional pseudo
labeled data [167] is used to obtain a stronger baseline.

The STR models are first trained with the proxy loss, i.e., cross-entropy for
300K iterations with a mini-batch size of 192. The models are optimized using
ADADELTA [179]. Once the training is complete, these models are tuned with
FEDS (Algorithm 2) on the same training set for another 20K iterations. For
learning the edit distance surrogate the weights in the loss (Equation 4.5) are
set as w1 = 1, w2 = 0.1. Note that the edit distance value is a non-negative
integer, therefore, optimal range for λ is (0, 0.5). Small value of λ filters
out substantial number of samples, slowing down the training, whereas, large
values of λ allows a noisy training. Therefore, the threshold for the filtering
function (Equation 4.7) is set as λ = 0.25, i.e., in the middle of the optimal
range.

4.3.5 Quality of the edit distance surrogate

Figure 4.4 shows a comparison between the edit distance and the approxi-
mation from the surrogate. As the training progresses, the approximation
improves, i.e., more samples are closer to the solid line. The dotted lines rep-
resent the filtering in FEDS, i.e., only the samples between the dotted lines
contribute to the training of the STR model. Note that the surrogate fails
for a large fraction of samples; therefore, the training without the filtering (as
done in LS-ED [1]) is noisy.

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 40

Edit distance Edit distance

Training iterations from 0 to 2K Training iterations from 8K to 10K

Approximate Edit distanceApproximate Edit distance

Figure 4.4: A comparison between the true edit distance and the approxi-
mated edit distance is shown. Each point represents a training sample for the
STR model. The solid line represents an accurate approximation of the edit
distance. The dotted lines represent the filtering in FEDS. Left: Plot for the
first 2K iterations of the STR model training. Right: Plot for iterations from
8K to 10K of the STR model training.

4.3.6 Quantitative results

Table 4.1 shows the results with LS-ED [1] and the proposed FEDS in com-
pression with the standard baseline [77], [159]. For the training, only the
synthetic datasets [149], [164] are used. Both LS-ED [1] and FEDS improve
the performance on all evaluation metrics. Most significant gains are observed
on total edit distance as the surrogate approximates it. In comparison with
LS-ED, significant gains are observed with the proposed FEDS. On average,
FEDS provides an improvement of 11.2% on the total edit distance and 0.98%
on accuracy (an equivalent of 9.5% error reduction).

Table 4.2 presents the results with LS-ED [1] and FEDS in compression
with a stronger baseline [167]. For the training, a combination of synthetic
[149], [164] and pseudo labelled [167] data is used. LS-ED [1] provides a lim-
ited improvement of 2.91% on total edit distance whereas FEDS provides a
significant improvement of 7.90% and an improvement of 1.01% on accuracy
(equivalently 7.9% error reduction). Furthermore, LS-ED [1] declines the per-
formance on ICDAR’03 [86] dataset.

4.3.7 Qualitative results

Figure 4.5 shows randomly picked qualitative examples where FEDS leads
to an improvement in the edit distance. Notice that the predictions from the

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 41

Table 4.1: STR model trained with MJSynth [149] and SynthText [164]. Eval-
uation on IIIT-5K [84], SVT [85], IC’03 [86], IC’13 [87], IC’15 [88], SVTP [89]
and CUTE [90]. The results are reported using accuracy Acc. (higher is bet-
ter), normalized edit distance NED (higher is better) and total edit distance
TED (lower is better). Relative gains are shown in blue and relative declines
in red.

Test
Data

Loss
Function

↑ Acc. ↑ NED ↓ TED

IIIT-5K (3000)
Cross-Entropy [77] 87.1 0.959 772
LS-ED [1] 88.0 +1.03% 0.962 +0.31% 680 +11.9%
FEDS 88.8 +1.95% 0.966 +0.72% 591 +23.44%

SVT (647)
Cross-Entropy [77] 87.2 0.953 175
LS-ED [1] 87.3 +0.11% 0.954 +0.10% 161 +8.00%
FEDS 88.7 +1.72% 0.957 +0.41% 147 +16.0%

IC’03 (860)
Cross-Entropy [77] 95.1 0.981 105
LS-ED [1] 95.3 +0.21% 0.982 +0.10% 89 +15.2%
FEDS 95.4 +0.31% 0.983 +0.20% 87 +17.1%

IC’03 (867)
Cross-Entropy [77] 95.1 0.982 102
LS-ED [1] 95.2 +0.10% 0.983 +0.10% 90 +11.7%
FEDS 95.0 −0.10% 0.981 −0.10% 81 +20.5%

IC’13 (857)
Cross-Entropy [77] 92.9 0.979 110
LS-ED [1] 93.9 +1.07% 0.981 +0.20% 97 +11.8%
FEDS 93.8 +0.96% 0.985 +0.61% 99 +10.0%

IC’13 (1015)
Cross-Entropy [77] 92.2 0.966 140
LS-ED [1] 93.1 +0.97% 0.969 +0.31% 123 +12.1%
FEDS 92.6 +0.43% 0.969 +0.31% 118 +15.7%

IC’15 (1811)
Cross-Entropy [77] 77.9 0.915 880
LS-ED [1] 78.2 +0.38% 0.915 - 851 +3.29%
FEDS 78.5 +0.77% 0.919 +0.43% 820 +6.81%

IC’15 (2077)
Cross-Entropy [77] 75.0 0.884 1234
LS-ED [1] 75.3 +0.39% 0.883 −0.11% 1210 +1.94%
FEDS 75.7 +0.93% 0.888 +0.45% 1176 +4.70%

SVTP (645)
Cross-Entropy [77] 79.2 0.912 340
LS-ED [1] 80.0 +1.01% 0.915 +0.32% 327 +3.82%
FEDS 80.9 +2.14% 0.919 +0.76% 307 +9.70%

CUTE (288)
Cross-Entropy [77] 74.9 0.881 221
LS-ED [1] 75.6 +0.93% 0.885 +0.45% 204 +7.69%
FEDS 75.3 +0.53% 0.891 +1.13% 197 +10.8%

TOTAL
Cross-Entropy [77] 85.6 0.941 4079
LS-ED [1] 86.1 +0.61% 0.942 +0.18% 3832 +6.05%
FEDS 86.5 +0.98% 0.946 +0.48% 3623 +11.2%

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 42

Table 4.2: STR model trained with MJSynth [149], SynthText [164] and pseudo
labelled [167] data. Evaluation on IIIT-5K [84], SVT [85], IC’03 [86], IC’13
[87], IC’15 [88], SVTP [89] and CUTE [90]. The results are reported using
accuracy Acc. (higher is better), normalized edit distance NED (higher is
better) and total edit distance TED (lower is better). Relative gains are shown
in blue and relative declines in red.

Test
Data

Loss
Function

↑ Acc. ↑ NED ↓ TED

IIIT-5K (3000)
Cross-Entropy [77] 91.7 0.973 550
LS-ED [1] 91.8 +0.14% 0.973 - 539 +2.00%
FEDS 92.2 +0.54% 0.975 +0.20% 479 +12.9%

SVT (647)
Cross-Entropy [77] 91.8 0.970 107
LS-ED [1] 91.8 - 0.971 +0.10% 100 +6.54%
FEDS 92.1 +0.32% 0.971 +0.10% 102 +4.67%

IC’03 (860)
Cross-Entropy [77] 95.6 0.984 85
LS-ED [1] 95.5 −0.01% 0.983 −0.10% 91 −7.05%
FEDS 96.2 +0.62% 0.986 +0.20% 73 +14.1%

IC’03 (867)
Cross-Entropy [77] 95.7 0.984 89
LS-ED [1] 95.7 +0.03% 0.984 - 91 −2.24%
FEDS 96.4 +0.73% 0.987 +0.30% 77 +13.4%

IC’13 (857)
Cross-Entropy [77] 95.4 0.988 65
LS-ED [1] 96.3 +1.03% 0.989 +0.10% 55 +15.3%
FEDS 96.5 +1.15% 0.989 +0.10% 57 +12.3%

IC’13 (1015)
Cross-Entropy [77] 94.1 0.975 97
LS-ED [1] 94.8 +0.82% 0.975 - 87 +10.3%
FEDS 95.3 +1.27% 0.975 - 90 +7.21%

IC’15 (1811)
Cross-Entropy [77] 82.8 0.939 614
LS-ED [1] 83.2 +0.56% 0.939 - 599 +2.44%
FEDS 83.8 +1.20% 0.942 +0.31% 578 +5.86%

IC’15 (2077)
Cross-Entropy [77] 80.0 0.908 961
LS-ED [1] 80.4 +0.54% 0.908 - 944 +1.76%
FEDS 80.9 +1.12% 0.91 +0.22% 929 +3.32%

SVTP (645)
Cross-Entropy [77] 82.4 0.930 271
LS-ED [1] 83.4 +1.22% 0.933 +0.32% 258 +4.79%
FEDS 84.0 +1.94% 0.935 +0.53% 248 +8.48%

CUTE (288)
Cross-Entropy [77] 77.3 0.883 211
LS-ED [1] 77.3 +0.06% 0.885 +0.22% 197 +6.63%
FEDS 79.0 +2.19% 0.898 +1.69% 176 +16.5%

TOTAL
Cross-Entropy [77] 88.7 0.953 3050
LS-ED [1] 89.0 +0.41% 0.954 +0.62% 2961 +2.91%
FEDS 89.6 +1.01% 0.956 +0.35% 2809 +7.90%

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 43

baseline model are incorrect in all the examples. After post-tuning with FEDS,
the predictions are correct, i.e., perfectly match with the ground truth.

Figure 4.5: Randomly chosen examples from the test set where FEDS improves
the STR model trained with cross-entropy. Red shows the incorrect predictions
from the baseline model, blue shows the correct prediction after post-tuning
with FEDS and the arrow indicates post-tuning with FEDS.

Figure 4.6 shows hand-picked examples where FEDS leads to a maximum
increase in the edit distance (ED increases). Notice that in these examples,
the predictions from the baseline model are also incorrect. Furthermore, the
input images are nearly illegible for a human.

Figure 4.6: Four worst examples out of 12K samples in the test set where FEDS
leads to an increase in the edit distance. Red shows the incorrect predictions,
green shows the ground truth and the arrow indicates post-tuning with FEDS.

CHAPTER 4. FEDS - FILTERED EDIT DISTANCE SURROGATE 44

4.4 Conclusions

This chapter makes an orthogonal contribution to the trend of scene text
recognition progress. It proposes a method to robustly post-tune a STR model
using a learned surrogate of edit distance. The empirical results demonstrate
an average improvement of 11.2% on total edit distance and an error reduction
of 9.5% on accuracy on a standard baseline [77]. Improvements of 7.9% on
total edit distance and an error reduction of 10.3% on accuracy are shown
on a stronger baseline [167] that uses additional weakly supervised data for
training.

Chapter 5

Recall@k Surrogate Loss with
Large Batches and Similarity
Mixup

Minimization of a loss that is a function of the test-time evaluation metric has
shown to be beneficial in deep learning for numerous computer vision and nat-
ural language processing tasks. Examples include intersection-over-union as a
loss that boosts performance for object detection [17], [180] and semantic seg-
mentation [181], and structural similarity [182], peak signal-to-noise ratio [183]
and perceptual [184] as reconstruction losses for image compression that give
better results according to the respective evaluation metrics.

Training deep networks via gradient descent on the evaluation metric is not
possible when the metric is non-differentiable. Deep learning methods resort
to a proxy loss, a differentiable function, as a workaround, which empirically
leads to a reasonable performance but may not align well with the evaluation
metric. Examples exist in object detection [17], scene text recognition [20],
[21], machine translation [185] and image retrieval [23], [24].

This chapter deals with the training of image retrieval posed as deep metric
learning and Euclidean search in the learned image embedding space. It is the
task of ranking all database examples according to the relevance to a query,
which is of vital importance for many applications. The standard evaluation
metrics are precision and recall in the top retrieved results and the mean
Average Precision (mAP). These metrics are standard in information retrieval,
they reflect the quality of the retrieved results and allow for flexibility to focus
either on the few top results or the whole ranked list of examples, respectively.
Recall at top-k retrieved results, denoted by recall@k in the following, is the
primary focus of this work.

The problem related to the optimization of non-differentiable evaluation
metrics applies to recall@k as well. Estimating the position of positive images
in the list of retrieved results and counting how many positives appear inside
a short-list of a fixed size involves non-differentiable operations. Note that

45

CHAPTER 5. RECALL@K SURROGATE LOSS 46

Query Ranked Database Images

Similarity: 0.940 0.870 0.850 0.800 0.775 0.650 0.570 0.430 0.400 0.320
recall@4 = 0.33, recall@8 = 0.67 rs@4 = 0.310, rs@8 = 0.616

Similarity: 0.940 0.870 0.850 0.800 0.775 0.774 0.570 0.430 0.400 0.320
recall@4 = 0.33, recall@8 = 0.67 rs@4 = 0.315, rs@8 = 0.632

Similarity: 0.940 0.870 0.850 0.800 0.790 0.775 0.570 0.430 0.400 0.320
recall@4 = 0.33, recall@8 = 0.67 rs@4 = 0.334, rs@8 = 0.666

Similarity: 0.940 0.880 0.870 0.850 0.820 0.800 0.775 0.570 0.430 0.320
recall@4 = 0.67, recall@8 = 1.0 rs@4 = 0.577, rs@8 = 0.957

 1 2 3 4 5 6 7 8 9 10

Figure 5.1: A comparison between recall@k and rs@k, the proposed differen-
tiable recall@k surrogate. Examples show a query, the ranked database images
sorted according to the similarity and the corresponding values for recall@k
and rs@k and their dependence on similarity score change. Note that the val-
ues of recall@k and rs@k are close. Changes to similarity and ranking in some
cases may not affect the original recall@k but can affect the surrogate, with
the latter having a more significant impact than the former. Similarity values
of all negatives are fixed for ease of understanding. The similarity values of
the positives that were changed in rows 2, 3 and 4 are underlined.

CHAPTER 5. RECALL@K SURROGATE LOSS 47

methods for training on non-differentiable losses, such as actor-critic [185] and
learning surrogates [20] are not directly applicable to recall@k. This is due
to the fact that these methods are limited to decomposable functions, where
a per-example performance measure is available. Such an attempt is made
by Engilberge et al . [186], where an LSTM learns sorting-based metrics, but
is not adapted in consequent work due to slow training. As an alternative,
deep metric learning approaches for image retrieval often use ranking proxy
losses, termed pairwise losses. In the embedding space, loss functions such as
contrastive [81], triplet [25], and margin [26] pull the examples from the same
class closer to one another and push the examples from a different class away.
These losses are hand-crafted to reflect the objectives of the retrieval task and,
consequently, the evaluation metric. The loss value depends on the image-
to-image similarity for image pairs or triplets and does not take into account
the whole ranked list of examples. Changes in the similarity value without
any change in the overall ranking alter the loss value indicate that they are
not well correlated with ranking [23]. Recent methods focus on optimizing
Average Precision (AP) and use a surrogate function as a loss [23], [187]–[190].
A surrogate of an evaluation metric is a function that approximates it in a
differentiable manner.

The proposed method attains state-of-the-art results for 4 fine-grained re-
trieval datasets, namely iNaturalist [91], VehicleID [91], SOP [92] and Cars196 [93],
and 2 instance-level retrieval datasets, namely Revisited Oxford and Paris [95].
This is accomplished by the demonstrated synergy between the three following
elements. First, a new loss that is proposed as a surrogate of an established re-
trieval evaluation metric, namely recall at top k, and is experimentally shown
to consistently outperform existing competitors. A comparison between the
evaluation metric and the proposed loss is shown in Figure 5.1. Second, the
use of a very large batch size, in the order of several thousand large resolution
images on a single GPU. This is inspired by the instance-level retrieval liter-
ature [188] and is introduced for the first time in the context of fine-grained
categorization. In a recent work of verifying prior results in deep metric learn-
ing for fine-grained categorization [191] the batch-size is considered fixed to a
single and small value among a large set of comparisons for different losses; in
this work we reach batch-sizes that are two orders of magnitude larger than in
the work of Musgrave et al . [191]. The third elements is the proposed mixup
regularization technique that is computationally efficient and that virtually
enlarges the batch. Its efficiency is obtained by operating on the very last
stage of similarity estimation, i.e. scalar similarities are mixed, while its appli-
cability goes beyond the combination with the proposed loss in this work. The
proposed loss is used for training widely used ResNet architectures [192] but
also recent vision-transformers (ViT) [30]. The superiority of this loss com-
pared to existing losses is demonstrated with both architectures, while with
ViT-B/16 top results are achieved at lower throughput than with ResNet.

The rest of the chapter is structured as follows: related work specific to

CHAPTER 5. RECALL@K SURROGATE LOSS 48

metric learning is provided in Section 5.1, the proposed recall@k surrogate
along with the similarity mixup is presented in Section 5.2, experimental restuls
for metric learning, instance-level search, fine-grained recognition and ablation
studies are presented in Section 5.3, finally, the conclusions for the proposed
contributions of the chapter are made in Section 5.5.

5.1 Related work

In this section, the related work is reviewed for two different families of deep
metric learning approaches regarding the type of loss that is optimized, namely
classification losses and pairwise losses. Given an embedding network that
maps input images to a high dimensional space, in the former, the loss is a
function of the embedding and the corresponding category label of a single
image, while in the latter, the loss is a function of the distance, or similarity,
between two embeddings and the corresponding pairwise label. Prior work for
mixup [193] techniques related to embedding learning is reviewed too.

Classification losses. The work of Zhai and Wu [194] supports that the
standard classification loss, i.e. cross-entropy (CE) loss is a strong approach for
deep metric learning. Their finding is supported by the use of layer normaliza-
tion and class-balanced sampling. In the domain of metric learning for faces,
several different classification losses are proposed, such as SphereFace [195],
CosFace [196] and ArcFace [197], where contributions are in the spirit of large
margin classification. Despite the specificity of the domain, such losses are
applicable beyond faces. Another variant is the Neighborhood Component
Analysis (NCA) loss that is used in the work of Movshovitz-Attias et al . [198],
which is later improved [199] by temperature-based scaling and faster update
of the class prototype vectors, also called proxies in their work. The restriction
of a single prototype vector per class is dropped by Qian et al . [200] who stores
multiple representatives per category.

Classification losses, in contrast to pairwise losses, perform the optimiza-
tion independently per image. An exception is the work of Elezi et al . [201]
where a similarity propagation module captures group interactions within the
batch. Then, cross-entropy loss is used, which now comes with significant
improvements by taking into account such interactions. This is recently im-
proved [202] by replacing the propagation module with an attention model.
The relation between CE loss and some of the widely used pairwise losses is
studied from a mutual information point of view [203]. CE loss is viewed as ap-
proximate bound-optimization for minimizing pairwise losses; CE maximizes
mutual information, and so do these pairwise losses, which are reviewed in the
following.

Pairwise losses. The first pairwise loss introduced for this task is the so-
called contrastive loss [81], where embeddings of relevant pairs are pushed

CHAPTER 5. RECALL@K SURROGATE LOSS 49

as close as possible, while those of non-relevant ones are pushed far enough.
Since the target task is typically a ranking one, the triplet loss [25], a popular
and widely used loss, improves that by forming training triplets in the form of
anchor, positive and negative examples. The loss is a function of the difference
between anchor-to-positive and anchor-to-negative distances and is zero if such
a difference is large enough, therefore satisfying the objectives of a ranking
task for this triplet. Optimization over all pairs or triplets is not tractable and
is observed to be sub-optimal [26]. As a result, a lot of attention is paid to
finding informative pairs and triplets [191], [204]–[207], which typically includes
heuristics. Several other losses are suggested in the literature [26], [205], [208]
and are added to the long list of hand-designed proxy losses which target to
learn embeddings that transfer well to a ranking or a similar task.

A few cases follow a principled approach for obtaining a loss that is appro-
priate for ranking tasks. This is the case with the work of Ustinova et al . [209]
where the goal is to minimize the probability that the similarity between em-
beddings of a non-relevant pair is larger than that of a relevant one. This
probability is approximated by the quantization of the range of possible simi-
larities and the histogram loss, which is estimated within a single batch. Their
work dispenses with the need for any kind of sampling for mini-batch construc-
tion. An information-theoretic loss function, called RankMI [210], maximizes
the mutual information between the samples within the same semantic class
using a neural network. Another principled approach focuses on optimizing
AP, which is a standard retrieval evaluation metric. A smooth approximation
of it is often used in the literature [187]–[189], while the work of Brown et
al . [23] is the closest to ours. In combination with such AP-based losses, a
large batch size is crucial, which meets the limitations set by the hardware.
Such limitations are overcome in the work of Revaud et al . [188] who uses a
batch of 4, 000 high-resolution images.

Embedding mixup. Manifold mixup [211], which involves mixing [193] in-
termediate representations and labels of two examples, has demonstrated to
improve generalizability for supervised learning by encouraging smoother deci-
sion boundaries. Such techniques are investigated for embedding learning and
image retrieval by mixing the embedding of two examples. Duan et al . [212]
uses adversarial training to synthesize additional negative samples from the
observed negatives. Kalantidis et al . [213] synthesize hard-negatives for con-
trastive self-supervised learning by mixing the embedding of the two hardest
negatives and also mixing them with the query itself. Zheng et al . [214] uses a
linear interpolation between the embeddings to manipulate the hardness lev-
els. In the work of Gu et al . [215], two embedding vectors from the same class
are used to generate symmetrical synthetic examples and hard-negative min-
ing is performed within the set of original and the synthetic examples. This
is further extended to proxy-based losses, where the embedding of examples
from different classes and labels is mixed to generate synthetic proxies [216].

CHAPTER 5. RECALL@K SURROGATE LOSS 50

Linearly interpolating labels entails the risk of generating false negatives if the
interpolation factor is close to 0 or 1. Such limitations are overcome in the work
of Venkataramanan et al . [217], which generalizes mixing examples from dif-
ferent classes for pairwise loss functions. The proposed SiMix approach differs
from the aforementioned techniques as it operates on the similarity scores in-
stead of the embedding vectors, does not require training an additional model,
making it computationally efficient. Furthermore, unlike the existing mixup
techniques, it uses a synthetic sample in the roles of a query, positive and
negative example.

5.2 Method

This section presents the task of image retrieval and the proposed approach
for learning image embeddings.

Task. We are given a query example q ∈ X and a collection of examples
Ω ⊂ X , also called database, where X is the space of all images. The set
of database examples that are positive or negative to the query are denoted
by Pq and Nq, respectively, with Ω = Pq ∪ Nq. Ground-truth information for
the positive and negative sets per query is obtained according to discrete class
labels per example, i.e. if two examples come from the same class, then they
are considered positive to each other, otherwise negative. This is the case for
all (training or testing) databases used in this work. Terms example and image
are used interchangeably in the following text. In image retrieval, all database
images are ranked according to similarity to the query q, and the goal is to
rank positive examples before negative ones.

Deep image embeddings. Image embeddings, otherwise called descriptors,
are generated by function fθ : X → Rd. In this work, function fθ is a deep fully
convolutional neural network or a vision transformer mapping input images of
any size or aspect ratio to an L2-normalized d-dimensional embedding. Em-
bedding for image x is denoted by x = fθ(x). Parameter set θ of the network
is learned during the training. Similarity between a query q and a database
image x is computed by the dot product of the corresponding embeddings and
is denoted by s(q, x) = q⊤x, also denoted as sqx for brevity.

Evaluation metric. Recall@k is one of the standard metrics to evaluate
image retrieval methods. For query q, it is defined as a ratio of the number
of relevant (positive) examples within the top-k ranked examples to the total
number of relevant examples for q given by |Pq|. It is denoted by Rk

Ω(q) when
computed for query q and database Ω and can be expressed as

CHAPTER 5. RECALL@K SURROGATE LOSS 51

Rk
Ω(q) =

∑
x∈Pq

H(k − rΩ(q, x))

|Pq|
, (5.1)

where rΩ(q, x) is the rank of example x when all database examples in Ω are
ranked according to similarity to query q. Function H(.) is the Heaviside step
function, which is equal to 0 for negative values, otherwise equal to 1. The
rank of example x is computed by

rΩ(q, x) = 1 +
∑

z∈Ω,z ̸=x

H(sqz − sqx), (5.2)

Therefore, (5.1) can now be expressed as

Rk
Ω(q) =

∑
x∈Pq

H(k − 1−
∑

z∈Ω,z ̸=x

H(sqz − sqx))

|Pq|
. (5.3)

Recall@k surrogate loss. The computation of recall in (5.3) involves the
use of the Heaviside step function. The gradient of the Heaviside step func-
tion is a Dirac delta function. Hence, direct optimization of recall with back-
propagation is not feasible. A common smooth approximation of the Heaviside
step function is provided by the logistic function [218]–[220], a common sig-
moid function στ : R → R controlled by temperature τ , which is given by

στ (u) =
1

1 + e−
u
τ

, (5.4)

where large (small) temperature value leads to worse (better) approximation
and denser (sparser) gradient. This approximation is common in the machine
learning literature for several tasks [221]–[223] and also appears in the approx-
imation of the Average Precision evaluation metric [23], which is used for the
same task as ours. By replacing the step function with the sigmoid function,
a smooth approximation of recall is obtained as

R̃k
Ω(q) =

∑
x∈Pq

στ1(k − 1−
∑
z∈Ω
z ̸=x

στ2(sqz − sqx))

|Pq|
, (5.5)

which is differentiable and can be used for training with back-propagation.
The two sigmoids have different function domains and, therefore, different
temperatures (see Figure 5.2). The minimized single-query loss in a mini-
batch B, with size M = |B|, and query q ∈ B is given by

Lk(q) = 1− R̃k
B\q(q). (5.6)

while incorporation of multiple values of k is performed in the loss given by

LK(q) =
1

|K|
∑
k∈K

Lk(q). (5.7)

CHAPTER 5. RECALL@K SURROGATE LOSS 52

Figure 5.3 shows the impact of using single or multiple values for k.
All examples in the mini-batch are used as queries and the average loss

over all queries is minimized during the training. The proposed loss is referred
to as Recall@k Surrogate loss, or RS@k loss for brevity.

To allow for 0 loss when k is smaller than the number of positives (note
that exact recall@k is less than 1 by definition), we slightly modify (5.5) dur-
ing the training. Instead of dividing by |Pq|, we divide by min(k, |Pq|), and,
consequently, we clip values larger than k in the numerator to avoid negative
loss values.

Similarity mixup (SiMix). Given original batch B, virtual batch B̂ is cre-
ated by mixing all pairs of positive examples in the original batch. Embeddings
of examples x ∈ B and z ∈ B are used to generate mixed embedding

vxzα = αx+ (1− α)z | α ∼ U(0, 1), (5.8)

for a virtual example that is denoted by xzα ∈ B̂. The similarity of an original
example w ∈ B to the virtual example xzα ∈ B̂ is given by

s(w, xzα) = w⊤vxzα = αswx + (1− α)swz, (5.9)

where the original and virtual examples can be the query and database ex-
amples, respectively, or vice versa. In case both examples are virtual, e.g .
xzα1 ∈ B̂ used as a query and ywα2 ∈ B̂ as a part of the database, then their
similarity is given by

s(xzα1, ywα2) = v⊤
xzα1

vywα2

= α1α2sxy + (1− α1)(1− α2)szw

+ α1(1− α2)sxw + (1− α1)α2szy. (5.10)

The pairwise similarities that appear on the right-hand side of the previous
formulas, e.g . swx and swz in (5.9), are computed from the embeddings of the
original, non-virtual examples and are also required for the computation of the
RS@k without any virtual examples. Therefore, the mini-batch is expanded
to B ∪ B̂ by adding virtual examples without the need for explicit construc-
tion of the corresponding embeddings or computation of the similarity via
dot product; simple mixing of the corresponding pairwise scalar similarities is
enough. SiMix reduces to mixing pairwise similarities due to the lack of re-
normalization of the mixed embeddings, which is different to existing practice
in prior work [213], [215]–[217] and brings training efficiency benefits.

Virtual examples are created only between examples of the same classes
and are labeled according to the class of the original examples that are mixed.
Virtual examples are used both as queries and as database examples, while
mixing is applied to all pairs of positive examples inside a mini-batch.

CHAPTER 5. RECALL@K SURROGATE LOSS 53

−8 −6 −4 −2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

u = k − 1− rΩ(q, x)

g(u) = στ1 (u), τ1 = 1

g(u)
dg(u)
du

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

u = sqz − sqx

g(u) = στ2 (u), τ2 = 0.01

Figure 5.2: The two sigmoid functions which replace the Heaviside step func-
tion for counting the positive examples in the short-list of size k (top) and for
estimating the rank of examples (bottom).

CHAPTER 5. RECALL@K SURROGATE LOSS 54

1 3 5 7 9

0

0.2

0.4

0.6

r

d
σ
τ
1
(u

)

d
u

,
u
=

k
−

r
k = 1
k = 2
k = 4

K = {1, 2, 4}

Figure 5.3: Gradient magnitude of the sigmoid used to count the positive
examples in the short-list of size k versus the rank r (equal to rΩ(q, x), see
(5.2)) of a positive example x. It shows how much a positive example is pushed
towards lower ranks depending on its current rank. In the case of multiple
values for k, the total gradient is equivalent to the sum of the separate ones.

Overview. An overview of the training process with the proposed loss and
SiMix is given in Algorithm 3. In case SiMix is not used, then lines 11, 13, 14
and 15 are skipped. It is assumed that each image in training is labeled to a
class. Mini-batches of size M are generated by randomly sampling m images
per class out of M/m sampled classes.

5.3 Experiments on Retrieval Benchmarks

5.3.1 Datasets

The training and evaluation is performed on four widely used image retrieval
benchmarks, namely iNaturalist [91], PKU VehicleID [94], Stanford Online
Products [92] (SOP) and Stanford Cars [93] (Cars196). Recall at top k re-
trieved images, denoted by r@k, is one of the standard evaluation metrics in
these benchmarks. Metric r@k is 1 if at least one positive image appears in
the top k list, otherwise 0. The metric is averaged across all queries. Note
that this is different from the standard definition of recall in (5.1).

iNaturalist [91] is firstly used by Brown et al . [23], whose setup we follow:
5, 690 classes for training and 2, 452 classes for testing. For VehicleID, accord-
ing to the standard setup [94], 13, 134 classes are used for training, and the
evaluation is conducted on the predefined small (800 classes), medium (1600
classes) and large (2400 classes) test sets. For SOP [92] and Cars196 [93], the
standard experimental setup of Song et al . [205] is followed. The first half of

CHAPTER 5. RECALL@K SURROGATE LOSS 55

Algorithm 3 Training with RS@k and SiMix.
1: procedure Train-RS@k(X, Y , M , m)
2: X : training images
3: Y : class labels
4: M : mini-batch size
5: m : number of images per class in mini-batch
6:
7: θ ← initialize according to pre-training ▷ use ImageNet
8: for iteration ∈ [1, . . . ,number-of-iterations] do
9: loss← 0 ▷ set batch loss to zero
10: B ← Batch-sampler(X, Y , M , m)
11: B̂ ← Virtual-batch(B) ▷ enumerate virtual examples
12: for (x, z) ∈ B ×B do compute s(x, z) ▷ use x⊤z
13: for (x, z) ∈ B × B̂ do compute s(x, z) ▷ use (5.9)
14: for (x, z) ∈ B̂ × B̂ do compute s(x, z) ▷ use (5.10)
15: B ← B ∪ B̂ ▷ expand batch with virtual examples
16: for q ∈ B do ▷ use each image in the batch as query
17: Bq ← B \ q ▷ exclude query from the database
18: loss← loss+ LK(q) ▷ Recall@k loss (5.7)
19: end for
20: θ ← Minimize(loss|B|) ▷ SGD update

21: end for
22: end procedure

Dataset #Images #Classes #Avg

iNaturalist Train [91] 325, 846 5, 690 57.3

iNaturalist Test [91] 136, 093 2, 452 55.5

VehicleID Train [94] 110, 178 13, 134 8.4

VehicleID Test [94] 40, 365 4, 800 8.4

SOP Train [92] 59, 551 11, 318 5.3

SOP Test [92] 60, 502 11, 316 5.3

Cars196 Train [93] 8, 054 98 82.1

Cars196 Test [93] 8, 131 98 82.9

ROxford [95] 4, 993 11 n/a

RParis [95] 6, 322 11 n/a

GLDv1 [224] 1, 060, 709 12, 894 82.3

Table 5.1: Dataset composition for training and evaluation.

CHAPTER 5. RECALL@K SURROGATE LOSS 56

the classes are used for training and the rest for testing, resulting in 11, 318
classes for SOP and 98 for Cars196.

The method is evaluated for instance-level search on Revisited Oxford
(ROxford) and Paris (RParis) benchmark [95], where the evaluation metric
is mean Average Precision (mAP). The training uses the Google Landmarks
dataset (GLDv1) [224] to perform a comparison with the work of Revaud et
al . [188] and their AP loss. The validation is performed according to the work
of Tolias et al . [225].

The number of examples, classes, and average number of examples per class
can be found in Table. 5.1. Note that these datasets are diverse in the number
of training examples, the number of classes, and the number of examples per
class, ranging from class balanced [93] to long-tailed [91].

5.3.2 Implementation details

Implementation details are identical for the four image retrieval benchmarks
but differ for ROxford/RParis to follow and compare to prior work [188].
Differences are clarified when needed.

Architecture. An ImageNet [226] pre-trained ResNet-50 [192] is used as
the backbone for deep image embeddings. Building on the standard imple-
mentation of [204], the BatchNorm parameters are kept frozen during the
training. After the convolutional layers, Generalized mean pooling [227] and
layer normalization [228] are used, similar to [199]. For vision transformers [30]
ViT-B/32 and ViT-B/16 with an ImageNet-21k initialization from the timm
library [229] are used. The last layer of the model is a d dimensional fully
connected (FC) layer with L2 normalization. In the case of ROxford/RParis,
ResNet-101 [192] is used, layer normalization is not added, while the FC layer
is initialized with the result of whitening [227].

Training hyper-parameters. For ResNet architectures, Adam optimizer [230]
is used and for vision transformers, AdamW [38] is used. We follow the stan-
dard class-balanced-sampling [23], [191], [199] with 4 samples per class for all
the datasets, while classes with less than 4 samples are not used for training.
Unless stated otherwise, the batch size for training is set 4, 000 for all datasets
but Cars196 where it is equal to 4 × #classes = 392. Following the setup of
ProxyNCA++ [199], the training set is split into training and validation by
using the first half of the classes for training and the other half for validation.
With this split, a grid search determines the learning rate, decay steps, decay
size and the total number of epochs. Once the hyper-parameters are fixed,
training is conducted once on the entire training set and evaluated on the test
set. When training on GLDv1 and testing on ROxford/RParis, the batch size
is set to 4096 [188], and training is performed for 500 batches, while other
training hyper-parameters are set as in the work and GitHub implementation

CHAPTER 5. RECALL@K SURROGATE LOSS 57

of Radenovic et al . [227]. Note that the hyper-parameters for each dataset will
be released with the implementation.

RS@k hyper-parameters. The proposed Recall@k Surrogate (RS@k) loss
(5.5) contains three hyper-parameters: sigmoid temperature τ2 - applied on
similarity differences, sigmoid temperature τ1 - applied on ranks and the set
of values for k for which the loss is computed. Both sigmoid temperatures
are kept fixed across all the experiments as τ2 = 0.01 (same as [23]) and
τ1 = 1. The values of k are kept fixed as k = {1, 2, 4, 8, 16} without SiMix
and k = {1, 2, 4, 8, 12, 16, 20, 24, 28, 32} with SiMix. For GLDv1 [224], this is
k = {1, 2, 4}, and k = {1, 2, 4, 8}, respectively. The values of k are studied in
the supplementary materials and the sigmoid temperature τ1 are investigated
in Section 5.3.4, where it is observed that the method is not very sensitive to
these hyper-parameters.

Large batch size. To dispense with the GPU hardware constraints and
manage to train with the large batch size, we follow the multistage back-
propagation of Revaud et al . [188]. A forward pass is performed to obtain
all embeddings while intermediate tensors are discarded from memory. Then,
the loss is computed, and so are the gradients w.r.t. the embeddings. Finally,
each of the embeddings is recomputed, this time allowing the propagation of
the gradients. Note that there is no implementation online of this approach
and that the code of this work will become publicly available. Algorithm 3
does not include such implementation details, but it is compatible with such
an extension. The batch-size impact for the proposed RS@k loss function is
validated in Section 5.3.4.

Discussion. The methods in the literature use different embedding sizes, d,
therefore, the models for the RS@k loss are trained with two embedding sizes
of d = 128 and d = 512 for image retrieval benchmarks [91]–[94], and d = 2048
for ROxford/RParis [95], to allow a fair comparison. In the standard split, the
image retrieval benchmarks [91]–[94] do not contain an explicit validation set;
as a result, image retrieval methods often tune the hyper-parameters on the
test set, leading to the issue of training with test set feedback. This issue has
been studied in [191], which proposes to train different methods with identical
hyper-parameters. The setup of [191] is not directly usable for experiments
with the RS@k loss, as large batch sizes are crucial to estimate recall@k accu-
rately. Furthermore, their setup does not allow mixup. Therefore, instead of
following [191], the issue is eliminated by using a part of the training set for
validation as described above.

CHAPTER 5. RECALL@K SURROGATE LOSS 58

Method Arch.dim
iNaturalist [91]

r@k
1 4 16 32

ProxyNCA [198] I1281 61.6 77.4 87.0 90.6
Margin [26] R128

50 58.1 75.5 86.8 90.7
RS@k† R128

50 69.3 82.9 90.6 93.1
RS@k† +SiMix R128

50 69.6 83.3 91.2 93.8
+21% +26% +32% +33%

FastAP [190] R512
50 60.6 77.0 87.2 90.6

Blackbox AP [189] R512
50 62.9 79.0 88.9 92.1

SAP [23] R512
50 67.2 81.8 90.3 93.1

SAP† [23] +GeM +LNR512
50 68.7 82.7 90.9 93.5

RS@k† R512
50 71.2 84.0 91.3 93.6

RS@k† +SiMix R512
50 71.8 84.7 91.9 94.3

+14% +16% +16% +17%

SAP† [23] ViT-B/32512 72.2 84.6 91.6 93.9
RS@k† ViT-B/32512 75.9 87.1 93.1 95.1
SAP† [23] ViT-B/16512 79.1 89.0 94.2 95.8
RS@k† ViT-B/16512 83.9 92.1 95.9 97.2

Table 5.2: Recall@k(%) on iNaturalist [91]. Best results are shown with bold,
previous state-of-the-art with underline and relative gains over the state-of-
the-art in % of error reduction with blue and relative declines in red. Methods
marked with † were trained using the same pipeline by us.

5.3.3 Evaluation

Unless otherwise stated, the results of the competing methods are taken from
the original papers. Methods marked with a † were trained by us, using the
same implementation as used for the RS@k loss. The results on image retrieval
benchmarks [91]–[94] are compared with the methods that use either ResNet-
50 [192] or Inception network [231]. ResNet-50 [192] is represented as Rd

50 in the
tables and the standard Inception network [231] as Id1 , the Inception network
with BatchNorm as Id3 (same as [199]). Here d is the embedding size. On all
the datasets, the performance of the baseline, Smooth-AP (SAP) [23], is also
reported with Generalized mean pooling [227] and layer normalization [228],
shown as SAP† (+Gem +LN). This is to eliminate any performance boost
in the comparisons that were caused by the architecture. Note that unless
otherwise stated in our experiments, the batch size for SAP is set as 384,
the same as the original implementation [23]. Further, we demonstrate the
performance of SAP and RS@k on ViT-B architectures. The variant of ViT-B
that uses a patch size of 32×32 is denoted by ViT-B/32 and the one that uses
a patch size of 16× 16 by ViT-B/16.

iNaturalist. The results on iNaturalist [91] species recognition are presented
in Table 5.2. The performances of the competing methods are taken from [23],

CHAPTER 5. RECALL@K SURROGATE LOSS 59

Method Arch.dim
SOP [92]

r@k
100 101 102 103

ProxyNCA [198] I1281 73.7 - - -
Margin [26] R128

50 72.7 86.2 93.8 98.0
Divide [25] R128

50 75.9 88.4 94.9 98.1
MIC [232] R128

50 77.2 89.4 95.6 -
Cont. w/M [233] R128

50 80.6 91.6 96.2 98.7
RS@k† R128

50 80.6 91.6 96.4 98.8
RS@k† +SiMix R128

50 80.9 91.7 96.5 98.8
+1.5% +1.2% +7.9% +7.7%

FastAP [190] R512
50 76.4 89.0 95.1 98.2

MS [234] I5123 78.2 90.5 96.0 98.7
NormSoftMax [194] R512

50 78.2 90.6 96.2 -
Blackbox AP [189] R512

50 78.6 90.5 96.0 98.7
Cont. w/M [233] I5123 79.5 90.8 96.1 98.7
HORDE [235] R512

50 80.1 91.3 96.2 -
ProxyNCA++ [199]R512

50 80.7 92.5 96.7 98.9
SAP [23] R512

50 80.1 91.5 96.6 99.0
SAP† [23] +GeM +LN R512

50 80.3 92.0 96.9 99.0
RS@k† R512

50 82.8 92.9 97.0 99.0
RS@k† +SiMix R512

50 82.1 92.8 97.0 99.1
+11% +5.3% +12% +10%

SAP† [23] ViT-B/32512 83.7 94.0 97.8 99.3
RS@k† ViT-B/32512 85.1 94.6 98.0 99.3
SAP† [23] ViT-B/16512 86.6 95.4 98.4 99.5
RS@k† ViT-B/16512 88.0 96.1 98.6 99.6

Table 5.3: Recall@k(%) on Stanford Online Products (SOP) [92]. Best results
are shown with bold, previous state-of-the-art with underline and relative
gains over the state-of-the-art in % of error reduction with blue and relative
declines in red. Methods marked with † were trained using the same pipeline
by us.

which uses the official implementations of these methods. It can be clearly
seen that the RS@k outperforms classification and pairwise losses, including
the three AP approximation losses, reaching the recall@1 score of 71.8% with
SiMix, an error reduction of 14%.

SOP. The performance on SOP [92] is presented in Table 5.3, along with the
comparisons with the competing methods. The proposed RS@k loss demon-
strates clear state-of-the-art results, surpassing ProxyNCA++ [199] by 2.0%
on recall@1, an error reduction of 10.4%. If a smaller batch size, equal to
384, is used for RS@k, it reaches a performance of 81.2%, 92.2%, 96.9% and
99.0% on r@100, r@101, r@102 and r@103 respectively. This result shows that
large batch size helps in improving the performance, but RS@k outperforms
the competing methods even with smaller batch size.

CHAPTER 5. RECALL@K SURROGATE LOSS 60

Method Arch.dim
VehicleID [94]

r@k
Small Medium Large

1 5 1 5 1 5

Divide [25] R128
50 87.7 92.9 85.7 90.4 82.9 90.2

MIC [232] R128
50 86.9 93.4 - - 82.0 91.0

Cont. w/M [233] R128
50 94.7 96.8 93.7 95.8 93.0 95.8

RS@k† R128
50 95.6 97.8 94.4 96.8 93.5 96.6

RS@k† +SiMix R128
50 95.4 97.5 93.8 96.6 93.0 96.2

+17% +31% +11% +24% +7.1% +19%

FastAP [190] R512
50 91.9 96.8 90.6 95.9 87.5 95.1

Cont. w/M [233] I5123 94.6 96.9 93.4 96.0 93.0 96.1
SAP [23] R512

50 94.9 97.6 93.3 96.4 91.9 96.2
SAP† [23] +GeM +LNR512

50 94.2 97.2 92.7 96.2 91.0 95.8
RS@k† R512

50 95.7 97.9 94.6 96.9 93.8 96.6
RS@k† +SiMix R512

50 95.3 97.7 94.2 96.5 93.3 96.4
+16% +13% +18% +14% +11% +10%

SAP† [23] ViT-B/32512 94.8 97.7 93.5 96.8 92.1 96.3
RS@k† ViT-B/32512 95.1 97.7 94.1 96.7 93.2 96.5
SAP† [23] ViT-B/16512 95.5 97.7 94.2 96.9 93.1 96.6
RS@k† ViT-B/16512 96.2 98.0 95.2 97.2 94.7 97.1

Table 5.4: Recall@k(%) on PKU VehicleID [94]. Best results are shown with
bold, previous state-of-the-art with underline and relative gains over the state-
of-the-art in % of error reduction with blue and relative declines in red. Meth-
ods marked with † were trained using the same pipeline by us.

CHAPTER 5. RECALL@K SURROGATE LOSS 61

Method Arch.dim
Cars196 [93]

r@k
1 2 4 8

ProxyNCA [198] I1281 73.2 82.4 86.4 88.7
Margin [26] R128

50 79.6 86.5 91.9 95.1
RS@k† R128

50 78.1 85.8 91.1 94.5
RS@k† +SiMix R128

50 84.7 90.9 94.7 96.9
+25% +33% +35% +37%

MS [234] I5123 84.1 90.4 94.0 96.1
NormSoftMax [194] R512

50 84.2 90.4 94.4 96.9
HORDE [235] R512

50 86.2 91.9 95.1 97.2
ProxyNCA++ [199]R512

50 86.5 92.5 95.7 97.7
SAP [23] R512

50 76.1 84.3 89.8 93.8
SAP† [23] +GeM +LN R512

50 78.2 85.6 90.8 94.3
RS@k† R512

50 80.7 88.3 92.8 95.7
RS@k† +SiMix R512

50 88.2 93.0 95.9 97.4
+13% +6.7% +4.7% −13%

SAP† [23] ViT-B/32512 78.1 85.7 91.0 94.8
RS@k† ViT-B/32512 78.1 86.4 92.3 95.6
SAP† [23] ViT-B/16512 86.2 92.1 95.1 97.2
RS@k† ViT-B/16512 89.5 94.2 96.6 98.3

Table 5.5: Recall@k(%) on Stanford Cars (Cars196) [93]. Best results are
shown with bold, previous state-of-the-art with underline and relative gains
over the state-of-the-art in % of error reduction with blue and relative declines
in red. Methods marked with † were trained using the same pipeline by us.

VehicleID. The results on VehicleID [94] are presented in Table 5.4. RS@k
outperforms the competing methods both with and without SiMix. Better re-
sults were observed without SiMix where RS@k reaches recall@1 performance
of 95.7%, 94.6% and 93.8% on the small, medium, and large test sets, respec-
tively.

Cars196. Evaluation on a small scale dataset, Cars196 [93] is presented in
the Table 5.5. We train SAP with a batch size of 392; it provides a perfor-
mance of 79.5%, 86.6%, 91.2%, and 94.4% and when combined with SiMix a
performace of 85.4%, 91.0%, 94.3% and 96.7% on r@1, r@2, r@4 and r@8 re-
spectively. SiMix makes a large difference in performance for both RS@k and
SAP [23], primarily because of a smaller batch size (392), as constrained by
the low number of classes. With SiMix, RS@k reaches the state-of-the-art re-
sults on three out of four recall@k values. If the batch size is further increased
to 588 by changing the number of samples per class from 4 to 6, then RS@k
provides a larger gain with performance 88.3%, 93.3%, 95.9% and 97.6%.

Results with ViT-B. The results by replacing the ResNet-50 [192] back-
bone with a ViT-B [30] for SAP [23] and the proposed RS@k are also shown

CHAPTER 5. RECALL@K SURROGATE LOSS 62

Arch. Loss Train-set
RO RO+R1M

med hard med hard

GeM∗ AP [187] Landmarks-clean [237][238] [188]/ [225] 67.1 42.3 47.8 22.5
GeM∗ AP [187] GLDv1 [224] [188]/github 66.3 42.5 - -
GeM† SAP [23] GLDv1 [224] [23] 67.9 46.3 49.5 25.8
GeM† RS@k GLDv1 [224] ours 68.3 46.1 50.1 25.8
GeM+SiMix† RS@k GLDv1 [224] ours 68.4 45.3 51.0 26.4

Table 5.6: Performance comparison (mAP%) on ROxford with 1m distractor
images (R1m). ∗ denotes that the FC layer is not part of the training but is
added afterward to implement whitening. Batch size is 4096 for all methods;
SiMix virtually increases it to 10240. ResNet101 is used as a backbone for all
methods.

in Tables 5.2, 5.3, 5.4 and 5.5. With an exception of ViT-B/32 on VehicleID
and Cars196 datasets, the use of ViT-B backbone leads to better performance
for both methods, compared to the ResNet counterpart. It can be clearly seen
that RS@k outperforms SAP [23] on all datasets. ViT-B/16 when trained
with RS@k shows unprecedented performance on all datasets reaching recall@1
score of 83.9% on iNaturalist [91], 88.0% on SOP [92], 96.2% on VehicleID [94]
(small) and 89.5% on Cars196 [93]. Note that while ResNet-50 has 24.5 M pa-
rameters and operates with 8.12 GMac/image, ViT-B has 87.8 M parameters
and operates with 4.36 and 16.8 GMac/image for ViT-B/32 and ViT-B/16
respectively.

Concurrent work. The method of learning intra-batch connections for deep
metric learning [202] achieves r@1 of 81.4% on the SOP and 88.1% on Cars196
dataset. The approach for Grouplet embedding learning [236] obtains r@1 of
82.0% on SOP and 91.5% on Cars196. The metric mixup approach [217]
reports the best results of 81.3% r@1 on SOP in combination with Prox-
yNCA++ [199] and 89.6% on Cars196 which is in combination with MS [234].

ROxford/RParis. Tables 5.6, 5.7, and 5.8 summarizes a comparison with
AP-based losses in the literature on ROxford/RParis with and without dis-
tractor images. The comparison is performed with GLDv1 as a training set
whose performance is reported for the work of Revaud et al . [188] in their
GitHub page, while the landmarks-clean dataset is avoided as all initial im-
ages are not publicly available at the moment. During the training performed
by us, training images are down-sampled to have a maximum resolution of
1024 × 1024. The inference is performed with multi-resolution descriptors at
three scales with up-sampling and down-sampling by a factor of

√
2. Note

that SAP is not evaluated on these datasets in the original work and this
experiment is performed by us, which outperforms the previously used AP
loss [187]. RS@k, with or without the SiMix, increases the performance by a

CHAPTER 5. RECALL@K SURROGATE LOSS 63

Arch. Loss Train-set
RPar RP+R1M

med hard med hard

GeM∗ AP [187] Landmarks-clean [237][238] [188]/ [225] 80.3 60.9 51.9 24.6
GeM∗ AP [187] GLDv1 [224] [188]/github 80.2 60.8 - -
GeM† SAP [23] GLDv1 [224] [23] 81.7 63.3 57.4 29.8
GeM† RS@k GLDv1 [224] ours 82.1 63.9 57.9 30.2
GeM+SiMix† RS@k GLDv1 [224] ours 81.2 62.4 58.7 31.1

Table 5.7: Performance comparison (mAP%) on RParis with 1m distractor
images (R1m). ∗ denotes that the FC layer is not part of the training but is
added afterward to implement whitening. Batch size is 4096 for all methods;
SiMix virtually increases it to 10240. ResNet101 is used as a backbone for all
methods.

Arch. Loss Train-set
Mean

all R1M
GeM∗ AP [187] Landmarks-clean [237][238] [188]/ [225] 49.7 36.7
GeM∗ AP [187] GLDv1 [224] [188]/github - -
GeM† SAP [23] GLDv1 [224] [23] 52.7 40.6
GeM† RS@k GLDv1 [224] ours 53.1 41.0
GeM+SiMix† RS@k GLDv1 [224] ours 53.1 41.8

Table 5.8: Performance comparison (mAP%) on ROxford and RParis with
1m distractor images (R1m). Mean performance is reported across all setups
or the large-scale setups only. ∗ denotes that the FC layer is not part of the
training but is added afterward to implement whitening. Batch size is 4096
for all methods; SiMix virtually increases it to 10240. ResNet101 is used as a
backbone for all methods.

CHAPTER 5. RECALL@K SURROGATE LOSS 64

small margin.

5.3.4 Effect of hyper-parameters

We study the impact of hyper-parameter on the Cars196 dataset [93] since it
is the smallest compared to the others and has the lowest training time.

Sigmoid temperature τ1 - applied on ranks. The effect of the sigmoid
temperature τ1 is summarized in Figure 5.4 (top). For both setups of with and
without SiMix, τ1 = 1.0 gives best results while higher and lower values lead
to a decline.

Batch size. The effect of the varying batch size is shown in Figure 5.4 (bot-
tom). It demonstrates that large batch size leads to better results. A significant
performance boost is observed with the use of SiMix, especially in the small
batch size regime, which comes at a small extra computation. A comparison
with SAP [23] is also shown in this figure. Note that on smaller batch sizes,
the proposed RS@k outperforms SAP with a larger margins.

Values for k. The study for the set of values of k used for RS@k loss can
be found in Table 5.9. The results RS@{1}, RS@{1, 2}, RS@{1, 2, 4} and
RS@{1, 2, 4, 8} suggest that adding larger values of k leads to decline in the
performance. However, RS@{1, 2, 4, 8, 16} gives on an average the same results
as RS@{1}, with higher performance on larger k values. Comparing the entries
RS@{4, 8, 16} with RS@{1, 2, 4, 8, 16} suggests that the use of small values,
such as k = 1 or k = 2, is crucial as the performance drops significantly
when these values are removed. Further removing k = 4 (RS@{8, 16}) does
not change the performance. However, removing k = 8 (RS@{16}) leads to a
significant decline in the performance.

Method r@1 r@2 r@4 r@8 r@16 Avg

RS@{1}† 81.1 87.7 92.0 95.0 96.9 90.5
RS@{1, 2}† 80.2 87.2 91.9 95.0 97.2 90.3
RS@{1, 2, 4}† 79.6 86.5 91.2 94.5 96.8 89.7
RS@{1, 2, 4, 8}† 79.3 86.3 91.0 94.5 96.9 89.6
RS@{1, 2, 4, 8, 16}† 80.8 87.6 92.2 95.0 97.1 90.5
RS@{2, 4, 8, 16}† 80.3 87.5 92.3 95.4 97.5 90.6
RS@{4, 8, 16}† 79.6 87.1 91.7 95.0 97.3 90.1
RS@{8, 16}† 79.6 87.1 91.7 95.0 97.3 90.1
RS@{16}† 75.8 83.9 89.8 93.6 96.4 87.9

Table 5.9: Varying the set of values of k. Results on Cars196 [93]. In all
experiments, τ1 = 1 and τ2 = 0.01.

Impact of SiMix Our results suggest that SiMix leads to a larger perfor-
mance gain on smaller datasets, where batch size is restricted by the total

CHAPTER 5. RECALL@K SURROGATE LOSS 65

0.1 0.5 1.0 2.0 5.0
70

75

80

85

τ1

r@
1

varying temperature

RS@k†

RS@k+SiMix†

24 25 26 27 28 29

70

75

80

85

90

batch size

r@
1

varying batch size

SAP†

Figure 5.4: The effect of sigmoid temperature τ1 applied on ranks (top) and
of batch size (bottom). Results are shown on Cars196 [93].

CHAPTER 5. RECALL@K SURROGATE LOSS 66

number of classes. Results are summarized in Table 5.10, where we addition-
ally report results on CUB which has small (100) number of training classes.
On Cars196 dataset, RS@k attains a r@1 of 80.7% without and 88.2% with
SiMix (an absolute improvement for 7.5%). Similarly on CUB200, RS@k at-
tains a r@1 of 63.8% without and 69.5% with SiMix (an absolute improvement
of 5.7%).

Dataset # Training Samples SAP† RS@k† RS@k† + SiMix
iNaturalist 325, 846 70.7 71.2 71.8
VehicleID 110, 178 95.5 95.7 95.3
SOP 59, 551 81.3 82.8 82.1
Cars196 8, 054 79.5 80.7 88.2
CUB200 5, 864 63.6 63.8 69.5
ROxf & RPar (1m) 1, 060, 709 40.6 41.0 41.8

Table 5.10: Recall@1 (in %) with batch size of min(4000, 4 × #classes) for
iNaturalist, VehicleID, SOP, Cars196 and CUB200. mAP (in %) with batch
size of 4096 for ROxford and RParis with 1 million distractor samples.

5.4 Experiments on Fine-Grained Classifica-

tion

This section compares training a softmax image classifier explicitly and train-
ing an image retrieval system, which is subsequently used for nearest neighbour
classification. The resolution of images, pre-trained weights and number of
training epochs are kept the same across the two setups for a fair comparison.

Overall, the proposed retrieval approach achieved superior performance
in all measured scenarios. Notably, the ViT-Base/16 feature extractor ar-
chitecture achieved a higher classification accuracy with a margins of 0.28%,
4.13%, and 10.25% on ExpertLifeCLEF 2018 [239], PlantCLEF 2017 [240]
and iNat2018–Plantae [91], respectively. Besides, the macro-F1 performance
differences margin is noticeably higher—1.85% for ExpertLifeCLEF 2018 and
12.23% for iNat2018–Plantae datasets. Even though the standard classifica-
tion approach performs better on classes with fewer samples (See Table 5.6),
common species with high a-prior probability are frequently wrongly predicted.
This is primarily due to the high-class imbalance preserved in the dataset mim-
icked by the deep neural network optimized via SoftMax Cross-Entropy Loss.
Thus, the results of the standard image classification approach performs way
worst in case of the macro-F1 score. Full comparison of the classification and
retrieval-based methods and their appropriate recognition scores are listed in
Table 5.11. Three architectures—ResNet-50, ViT-Base/32, and ViT-Base/16
are evaluated. It can be seen from the results that for all selected architectures,
retrieval leads to a better performance.

CHAPTER 5. RECALL@K SURROGATE LOSS 67

0.0 0.2 0.4 0.6 0.8 1.0
Species Accuracy

0

100

200

300

400

500

Nu
m

be
r o

f S
pe

cie
s

0.0 0.2 0.4 0.6 0.8 1.0
Species F1

Classification
Retrieval

ViT-Base/16 - 224

Figure 5.5: Species-wise classification performance histogram within a given
5% interval, evaluated on the PlantCLEF2017 test set with ViT-Base/16 back-
bone and Classification and Retrieval approaches.

>500251-500201-250151-200101-15051-10026-5011-255-10<5
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification
Retrieval

>500251-500201-250151-200101-15051-10026-5011-255-10<5
Number of samples

F1
-m

ac
ro

Classification
Retrieval

ResNet-50 - 224

>500251-500201-250151-200101-15051-10026-5011-255-10<5
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification
Retrieval

>500251-500201-250151-200101-15051-10026-5011-255-10<5
Number of samples

F1
-m

ac
ro

Classification
Retrieval

ViT-Base/32 - 224

>500251-500201-250151-200101-15051-10026-5011-255-10<5
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Classification
Retrieval

>500251-500201-250151-200101-15051-10026-5011-255-10<5
Number of samples

F1
-m

ac
ro

Classification
Retrieval

ViT-Base/16 - 224

Figure 5.6: Classification performance (F1 and Accuracy) as box-plot for three
backbone architectures and Classification Retrieval approaches. Tested on
PlantCLEF2017 test set with input resolution of 224× 224.

CHAPTER 5. RECALL@K SURROGATE LOSS 68

Table 5.11: Classification (C) vs Retrieval (R). All models were trained for 100
epochs with fixed image size (224 × 224). No test-time augmentations were
used. The most confident image prediction is used for all images belonging to
the same observation.

ExpertLifeCLEF 2018 PlantCLEF 2017 iNat2018–Plantae

Architecture Method Acc. macro F1 Acc macro F1 Acc macro F1

ResNet-50 C 59.87 55.11 77.89 54.48 57.73 52.69

ViT-Base/32 C 65.21 60.29 80.68 59.18 57.24 53.17

ViT-Base/16 C 71.71 67.35 84.48 65.40 67.42 64.51

ResNet-50 R 60.15 56.30 80.27 55.57 57.95 56.32

ViT-Base/32 R 66.48 61.49 84.89 60.79 63.12 61.24

ViT-Base/16 R 71.99 69.20 88.61 66.39 77.67 76.74

Training an image retrieval system and subsequently performing a nearest
neighbour classification is a competitive alternative, with better results than
direct classification. The prediction obtained via a nearest neighbour search
is more interpretable as the samples contributing to the prediction can be
visualized. Therefore, a retrieval-based approach is more suitable if utilized
within the humans in the loop. On the other hand, the softmax predictions of a
standard neural network classifier allow for simple post-processing procedures
such as averaging, prior shift adaptation, etc., which are yet to be explored
for the retrieval approach, and which noticeably improve the final recognition
accuracy of the standard classifiers.

Overall, using image-retrieval has clear advantages, e.g., recovering rele-
vant nearest-neighbour labelled samples, providing ranked class predictions,
and allows user or experts to visually verify the species based on the k-nearest
neighbours Besides, the retrieval approach naturally supports open-set recog-
nition problems, i.e., the ability to extend or modify the set of recognised
classes after the training stage. The set of classes may change e.g. as a results
of modifications to biological taxonomy. New classes are introduced simply by
adding training images with the new label, whereas in the standard approach,
the classification head needs re-training. On the negative side, the retrieval
approach requires, on top of running the deep net to extract the embedding,
to execute the nearest neighbour search efficiently, increasing the overall com-
plexity of the fine-grained recognition system.

Contrary to our expectations, the error analysis in Figure 5.6 shows that
the retrieval approach does not bring an improvement in classifying images
from classes with few training samples. Figure 5.5 shows that retrieval has a
very high accuracy for a higher number of species, but it also fails for a higher
number of species.

CHAPTER 5. RECALL@K SURROGATE LOSS 69

5.5 Conclusions

This work has presented image embedding learning for retrieval using a novel
surrogate loss function for the recall@k metric. State-of-the-art results were
achieved on a number of standard benchmarks. Training with very large batch
size, up to 4k images, has shown to be highly beneficial. The batch size is fur-
ther increased, in a virtual way, with a newly proposed mixup approach that
acts directly on the scalar similarities. This approach offers a boost in perfor-
mance at a small increase of the computational cost, while its applicability goes
beyond the proposed loss. The implementation of the proposed Recall@k Sur-
rogate loss, proposed similarity mixup, along with the training procedure that
allows the use of large batch sizes on a single GPU by sidestepping memory
constraints, is available at https://github.com/yash0307/RecallatK surrogate.

https://github.com/yash0307/RecallatK_surrogate

CHAPTER 5. RECALL@K SURROGATE LOSS 70

Target Top 1 Top 2 Top 3 Top 4 Top 5

Figure 5.7: Qualitative examples from the retrieval approach on iNaturalist
dataset. The left most column shows samples from the test set followed by
five nearest neighbours in the learned embedding space from the training set.

Chapter 6

Contrastive Classification and
Representation Learning with
Probabilistic Interpretation

Representation learning is a powerful tool to create an embedding space that
is beneficial for performing downstream tasks e.g., classification or retrieval.
Contrastive representation learning first proposed by [241] is a dominant suc-
cessful line for representation learning. It divides the data into pairs of positive
(similar) and negative (unrelated) samples with the objective of maximizing
the similarity of positive pairs samples and minimize it for negative pairs.

More recently, contrastive learning has become a key component of meth-
ods for self-supervised learning [242]–[245] and has shown impressive perfor-
mance [245], [246] that is very close to the supervised learning counterpart
with cross entropy loss. Moreover, it was shown that supervised contrastive
learning marginally outperforms the cross entropy loss in fully supervised im-
age classification [82]. Not only for standard supervised classification but it has
been applied in continual learning [247], Out of Distribution Detection [248],
Domain Adaptation [249] and many more showing superior performance to
cross entropy based counterpart.

Minimizing cross entropy (CE) loss is widely used in training deep neural
network classifiers, derived as the maximum likelihood estimate (MLE) of clas-
sifier’s parameters θ to approximate posterior probabilities p̂(class|observation).
[250] draw the connection among popular pairwise-distance losses and the cross
entropy loss, showing that all of them are related to maximizing the mutual
information (MI) between the learned embeddings and the corresponding sam-
ples’ labels.

We emphasize the advantages of the probabilistic interpretation of the CE
loss in classification problems. Such explicit probabilistic interpretation is
missing within the embedding spaces trained by popular contrastive learning
methods. The posterior estimates p̂(class|observation) can be utilized when
combining classifiers [251]–[253], in adaptation to prior shift [254]–[257], in

71

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 72

CE pairs SupCon pairs

Number of pairs:
N(N-1)

Number of pairs:
NK

Number of pairs:
N(N +K -1)

ESupCon pairs

Positive pair Negative pair Class
1
 sample Class

1
 prototype Class

2
 sample Class

2
 prototype

Figure 6.1: Illustration of the possible number of pairs that each loss accesses
during training in the learned embedding space, N is the batch size and K is
the number of classes. CE pairs are only defined through classes weights while
in SupCon each sample forms positive pairs with its class samples and negative
pairs with samples from other classes. For our ESupCon in addition to the
positive and negative samples pairs, class weights (prototypes) form positive
pairs with corresponding class samples and negative pairs with other classes
samples. Note that here we don’t consider augmentations.

knowledge distillation [258]; out-of-distribution detection [259] and in many
other problems.

In this chapter, we suggest that one possible reason for the improved per-
formance of supervised contrastive learning is the inherent access to a large
number of samples pairs, while the “pairs” within the softmax CE loss are cen-
tered around the linear classifier weights. Here we draw an analogy with proxy
based loss and consider the linear classifier weights optimized in the softmax
CE loss as proxies for learning the samples representations. Proxy base train-
ing that utilizes proxies instead of the direct sample to sample relationship is
simple and faster to converge, however, it doesn’t leverage the rich data to
data similarities as the supervised contrastive loss. We refer to Figure 6.1 for
an illustration on this assumption. We hypothesize that the access to more
pairs during training might lead to a better convergence and less overfitting
resulting in the advantages hinted in recent work [82], [260].

Hence, to combine the advantages of contrastive representation learning via
pairwise losses and the clear probabilistic interpretation of classifiers trained
by cross entropy minimization, we present the following contributions: First,
we consider the weights of the last linear classification layer as prototypes of
each class. We show that adding a simple term corresponding to maximizing
the similarity between the prototypes and their class samples, leads to an as-
signment of the prototypes to the mean of each class samples with momentum
updates of representation. This is optimized during the representation train-

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 73

ing with a supervised contrastive loss [82], resulting in a nearest prototype
classifier [261]. Second, we propose an extension to the supervised contrastive
loss (SupCon) [82], where samples of a given class form positive pairs with
their class prototype and other classes samples correspond to negative pairs.

We show that the resulting objective combines in its formulation the SupCon
loss [82] and the standard CE loss on prototypes related pairs, preserving the
probabilistic interpretation of the predictions. We refer to this loss as ESupCon
(short for Extended Supervised Contrastive loss).

Third, we revisit the Simplified Pairwise Cross Entropy (SPCE) loss, pro-
posed in the theoretical analysis of [250], and compare it with standard CE
loss and the supervised contrastive learning loss in an extensive experimental
evaluation.

In our experimental evaluation, we not only consider the fully supervised
setting but also for the first time a number of challenging settings (low sample
regime, imbalanced data and noisy labels). To the best of our knowledge, this
is the first comprehensive evaluation of SupCon loss and the standard CE loss
in addition to our proposed extensions.

We show ESupCon is more powerful as a training objective than the stan-
dard CE loss while maintaining a probabilistic interpretation. and is more
robust in challenging and low sample settings. Surprisingly, our simple proto-
types similarity term is more robust than CE loss for learning a linear classifier
after SupCon in most of the imbalanced and noisy data experiments.

In the following, we describe the closely Related Work, then provide a short
Background on pairwise losses and the link to Cross Entropy loss, followed
by our extension to Supervised Contrastive Loss. We validate and compare
different studied losses in the Experiments, and summarize our contributions
and limitations in Conclusion.

6.1 Related Work

CE loss is a standard and powerful training objective to optimize deep neural
networks for classification-related problems. For long, the CE loss was believed
to be more effective than representation learning losses e.g ., metric learning
based losses. For example, [250] studied the relation of CE loss to contrastive
metric learning losses and showed that the CE loss also has a contrastive and a
tightness part. The authors suggested that CE “does it all” and that it is easier
to optimize compared to its contrastive-learning counterparts. Recently, self-
supervised learning losses have shown great success [242], [244]–[246], [262]–
[264] as pretraining methods with only a small performance gap to that of
fully supervised learning. The core of the self-supervised methods is the use of
rich data augmentation methods to construct positive pairs corresponding to
augmented version of a given sample. Closer to our work, [246], [265] construct
clusters and establish cluster assignments through prototypes while learning
the embedding space. It remains unclear how these losses can be extended to

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 74

the supervised setting as in our case.
Inspired by the self-supervised SimCLR loss [242], [82] introduced a new

supervised contrastive learning method called SupCon, which achieved supe-
rior results compared to the standard CE minimization, and which has been
shown to be more generalizable and robust to noise. However, the method is
only used to train the image representation and still relies on the CE loss to
train the linear classifier afterwards. CE-based training suffers from known
issues of noise sensitive, overfitting [119], and being less transferable than the
representation learning counterparts [242]. Recently, [260] investigated the dif-
ference between the SupCon [82] loss and the CE loss in the geometry of the
targeted representation. It was shown that both losses target the same geo-
metric solution, however, SupCon converges much closer to the target leading
to a better generalization performance.

As such, starting from the nice suggested characteristics of the SupCon loss
based training, we propose and study alternatives that can train the whole
network (representation and classifier) end-to-end, while preserving both the
performance improvements of contrastive representation learning and the clear
probabilistic interpretation of the CE loss. We start by considering the classes
weights as prototypes for each class samples. We learn these prototypes while
maximizing positive pairs similarities and minimizing negative pairs similari-
ties. Our work hence can be seen as combination of proxy (prototype) based
and pairwise based contrastive representation learning. Proxy based losses
resort to learning a set of proxies as representative of clusters or classes of
samples and optimize the similarities to these proxies rather than the data to
data similarities. Proxy NCA [266] was the first proxy base metric learning
method, it is an approximation of NCA (Neares Component Analysis) using
proxies. We note that in the case of learning with class level labels the Proxy
NCA matches learning with Softmax Cross Entropy loss when the last clas-
sification layer is without a bias term and its weights are normalized vectors.
Proxy anchor loss [267], attempts to combine the benefits of both proxy-based
and pairwise losses. While in the main loss formulation only similarities to
proxies are considered, the magnitude of the loss gradient w.r.t. each sample
is scaled by the corresponding proxy similarity proportional to other samples-
proxies similarities. In general, proxy based losses do not use the proxy at test
time and it is unknown how they perform for classification or whether there
can exist any probabilistic interpretations. Circle loss [268] presents a unified
framework for both pairwise and proxy based losses but it adopts an adaptive
scaling of the loss depending on how much a given similarity is deviated from
its optimum. In doing so, Circle loss abandons the probabilistic interpretation
of a sample assignment to its prototype (proxy).

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 75

6.2 Background

In this section, we describe recent self-supervised and supervised contrastive
losses and the connection with CE loss.

6.2.1 Pairwise Losses

Contrastive losses work with pairs of embeddings that are pulled together if a
pair is positive (related embeddings) and pulled further apart otherwise [241].
Consider the following: 1) a random data augmentation module that for each
sample x generates two differently augmented samples, 2) a neural network en-
coder f that maps an augmented input sample x to its feature representation:
f(x) = z, z ∈ Rd. We start by outlining SimCLR [242], a popular, effective
and simple self supervised contrastive loss to lay the ground for our work:

ℓSimCLR =
1

2N

N∑
i

ℓSimCLR(zi, zi+N) + ℓSimCLR(zi+N , zi), (6.1)

ℓSimCLR(zi, zj) = − log
exp(sim(zi, zj)/τ)∑
k ̸=i exp(sim(zi, zk)/τ)

, (6.2)

where τ is the temperature scaling term, N is the mini batch size, and the
pairs (zi, zj) consist of features of two differently augmented views of the same

data example and sim(zi, zj) =
z⊤i zj

||zi|| · ||zj||
is the cosine similarity. Assuming

normalized embedding vectors zi, this pairwise loss is:

ℓSimCLR(zi, zj) = −z⊤i zj/τ + log
∑
k ̸=i

exp
(
z⊤i zk/τ

)
. (6.3)

Note that the first term corresponding to the positive pair is the tightness term
and the second one is the contrastive term. The aforementioned self-supervised
batch contrastive approach was extended in [82] to the fully supervised setting
with the Supervised Contrastive Loss:

ℓSupCon =
1

2N

2N∑
i

ℓSupCon(zi, Pi), (6.4)

ℓSupCon(zi, Pi) =

− 1

|Pi|
∑
zp∈Pi

log
exp(sim(zi, zp)/τ)∑
j ̸=i exp(sim(zi, zj)/τ)

=

1

|Pi|
∑
zp∈Pi

(
−(z⊤i zp)/τ + log

∑
j ̸=i

exp
(
(z⊤i zj)/τ

))
,

(6.5)

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 76

where Pi is the set of representations zp forming positive pairs for the i-th
sample, and the index j iterates over all (original and augmented) samples.
SupCon loss is expressed as the average of the loss defined on each positive pair
where in this supervised setting, the positive pairs are formed of augmented
views and other samples of the same class. The authors showed that the su-
pervised contrastive learning achieves excellent results in image classification,
improving ImageNet classification accuracy with ResNet-50 by 0.5% compared
to the best results achieved by training with the CE loss.

6.2.2 Cross Entropy and Pairwise Cross Entropy

The cross entropy (CE) loss is a common choice for training classifiers, as
its minimization leads to the maximum likelihood estimate of the classifier
parameters for estimating the posterior probabilities p̂(class|observation).

For N samples of K classes, and a single-label softmax classifier, the CE
loss can be defined as follows:

ℓCE =
1

N

N∑
i=1

ℓCE(zi) = −
1

N

N∑
i=1

log
expθ⊤

yi
zi

K∑
k=1

expθ⊤
k zi

= − 1

N

N∑
i=1

θ⊤
yi
zi +

1

N

N∑
i=1

log
K∑
k=1

expθ⊤
k zi,

(6.6)

where zi is sample feature for the i-th observation having label yi ∈ {1, . . . , K},
and θ = (θ1, . . . ,θK) are the parameters of the last fully connected layer,
assuming that no bias term is used.

The Simplified Pairwise Cross Entropy (SPCE) loss was introduced in [250]
as a variant of the CE loss (6.6):

ℓSPCE = − 1

N

N∑
i=1

log
exp

(
1
N

∑
j:yj=yi

z⊤j zi

)
K∑
k=1

exp
(

1
N

∑
j:yj=k z

⊤
j zi

) . (6.7)

When training the feature encoder with the ℓSPCE loss, the classifier weights θ
can be estimated directly from the class feature means ck. Moreover, the class
posterior probabilities p(k|zi) also can be estimated explicitly:

p(k|zi) =
exp

(
1
N

∑
j:yj=k z

⊤
j zi

)
K∑
c=1

exp
(

1
N

∑
j:yj=c z

⊤
j zi

) . (6.8)

In the experimental section, we will evaluate SPCE loss and compare it with
SupCon. Differently from SPCE, with SupCon, one needs to train a classifier
on top of the learned representation as a posthoc process. In the following
we will discuss and propose alternatives to jointly learn the classifier and the
feature extraction parameters.

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 77

6.3 Learning a Classifier Jointly with Repre-

sentation Learning

Representation learning under SupCon or SPCE losses targets grouping one
class samples together while pushing away samples of other classes. In fact,
both losses contain tightness and contrastive terms and fulfill similar objectives
to that of the cross entropy loss.

Assuming that forcing samples of different classes to lie far apart is achieved
by the contrastive part of SupCon or SPCE, in order to learn the parameters
of the classifier, one can consider the weight vectors of the linear classifier as
prototypes and optimize these prototypes to be closest to the samples of the
class they represent (with solely a tightness term). We assume that both the
samples representations and the classifier weights are normalized vectors and
that the classifier is linear with no bias term. We define the following loss to
learn the desired prototypes:

ℓtt =
1

N

N∑
i

ℓtt(zi,θyi) =
1

N

N∑
i

−z⊤i θyi . (6.9)

Note that the number of samples in (6.9) might differ from N (e.g ., due to aug-
mentation), in which case N should be replaced by the corresponding number
of samples. With that assumption, the classifier we use is a nearest prototype
classifier i.e., assigning a test sample to the class of the nearest prototype. Note
that ℓtt resembles only the tightness part of the CE loss (6.6). The gradient
of the ℓtt loss w.r.t. the classifier weights can be directly derived from (6.9):

∂ℓtt
∂θk

= − 1

N

∑
i:yi=k

zi. (6.10)

Through minimizing this loss jointly with the representation learning loss, we
update the classifier weights using the following iterative formula:

θ0
k = η

1

N

∑
i:yi=k

z0i , θt+1
k = θt

k + η
1

N

∑
i:yi=k

zt+1
i , (6.11)

where t is the iteration index and η is the learning rate. Note that this is
equivalent to setting (up to a constant) the class weights θk to the class features
mean ck with momentum updates, where the new prototype combines the
new iteration representation mean with the previous iteration mean. We will
compare the minimization of the ℓtt loss jointly with the the representation
learning loss vs. simply setting the classifier weights θk to the hard mean ck
for each class k.

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 78

6.4 Extended Supervised Contrastive Learn-

ing

Here we aim at extending the SupCon loss to include the classes prototypes
being learned. For this, we propose to consider an explicit linear classification
layer with parameters θ = (θ1, . . . ,θK) in the optimization of the supervised
contrastive loss (6.5). Note that here we consider the embeddings zi and the
class prototypes θk in the same feature space. A class prototype θk should
represent as closely as possible its class features. Hence a prototype similarity
with its class features should be maximized and minimized with other classes
features. To achieve this we propose to construct the following prototype-
feature pair (zi,θyi) with sample representation zi (yi = k) as a positive pair.
Now we define the following loss on a positive prototype-feature pair:

ℓpt(zi,θyi) = −z⊤i θyi

+ log

(
K∑
k=1

exp(z⊤i θk) +
2N∑

j=1:j ̸=i

exp(z⊤i zj)

)
. (6.12)

Note that SupCon loss on a positive pair of samples is defined as follows:

ℓSupCon(zi, zp) = −z⊤i zp + log
∑
j ̸=i

exp(z⊤i zj). (6.13)

Here we omit the temperature τ for clarity and for a better connection to
the CE loss. In (6.12) we have extended the set of existing data representations
zi with the class prototypes θl. Following the same analogy and constructing
all positive prototype-feature pairs, the prototype loss for a class weight θk

will be defined as follows.

ℓpt(θk) =
1

2Nk

∑
i:yi=k

ℓpt(zi,θk). (6.14)

Note that the number of summation terms in (6.14) is 2Nk (where Nk is the
number of the non-augmented samples in k-th class), since the samples in
SupCon are considered with their augmentations. Having the loss defined
per prototype θk, we can define the full objective function that optimizes
the encoder (representation backbone) parameters jointly with the classifier
parameters θ as:

ℓESupCon =
1

2N +K

(
K∑
k=1

ℓpt(θk) +
2N∑
i

ℓSupCon(zi, Pi)

)
. (6.15)

Next we show that our proposed prototype loss ℓpt(zi,θk) for a given positive
pair can be expressed in terms of SupCon loss on that positive pair and CE

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 79

loss on the concerned sample . Let us define the following:

T = z⊤i θyi ,

C1 =
K∑
k=1

exp(z⊤i θk),

C2 =
2N∑

j=1:j ̸=i

exp(z⊤i zj),

exp(ℓCE(zi)) = exp(−T + log(C1))

= exp(−T)C1,

exp(ℓSupCon(zi,θyi)) = exp (−T + log(C2 + exp(T))

= exp(−T)(C2 + exp(T)), (6.16)

where T is the tightness term, C1 is the first contrastive term and C2 is the
second contrastive term, ℓCE(zi) is the CE loss for a sample zi, and the SupCon
loss ℓSupCon(zi,θyi) is estimated after including θyi into the pool of representa-
tions.

Then our loss for the (zi,θyi) pair can be expressed as:

ℓpt(zi,θyi) = −T + log(C1 + C2)

= log (exp(−T + log(C1 + C2)))

= log (exp(−T)(C1 + C2))

= log (exp(−T)(C1 + C2 + exp(T)− exp(T)))

= log(exp(−T)C1 + exp(−T)(C2 + exp(T))

− exp(−T) exp(T))
= log (exp(ℓCE(zi)) + exp(ℓSupCon(zi,θyi))− 1) .

(6.17)

As such, minimizing ℓpt(zi,θyi) is minimizing the log sum exponential
(LSE) of cross entropy loss and supervised contrastive loss for a given pos-
itive pair (zi,θyi), a smooth approximation to the max function. Note that
ℓpt(zi,θyi) = 0 ⇐⇒ ℓCE(zi) = ℓSupCon(zi,θyi) = 0.

We refer to the loss in (6.15) as ESupCon, short for Extended Supervised
Contrastive learning. In the following, we will extensively compare the different
studied loss functions.

6.5 Experiments

This section serves to compare the performance of deep models trained un-
der the different objective functions discussed earlier including tightness loss
term (6.9) and ESupCon (6.15). Our goal is to perform an extensive evaluation
of the different losses behaviour not only under fully supervised setting but also

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 80

Method CIFAR-10 CIFAR-100 Tiny ImageNet Caltech256 Avg.

CE 95.39 76.36 65.76 55.9 −

*SupCon+CE 95.50 +0.11 75.90 −0.46 65.56 −0.20 57.91 +2.01 +0.36
*SupCon+CE(n) 95.27 −0.12 74.57 −1.79 61.69 −4.07 52.92 −2.98 −1.52
*SupCon+Tt 95.20 −0.19 74.80 −1.56 59.66 −6.1 57.42 1.52 −2.24

SPCE 95.62 +0.23 78.15 +1.79 66.52 +0.76 48.46 −7.44 −1.16
SPCE(M) 95.30 −0.09 77.49 +1.13 66.28 +0.52 48.37 −7.52 −1.49
ESupCon 95.9 +0.51 76.92 +0.56 66.2 +0.44 58.27 +2.37 +0.97

Table 6.1: Accuracy (%) of the different studied and proposed losses on fully
labelled datasets. * indicates the use of a projection head. Absolute gains over
cross entropy are reported blue and absolute declines in red. The last column
shows an average improvement or decline over CE, across the datasets.

Method
CIFAR-10 CIFAR-100 Tiny ImageNet

Avg.N = 2K N = 5K N = 10K N = 8K N = 10K N = 20K N = 20K N = 50K N = 70K

CE 28.02 69.91 85.08 43.67 51.09 64.31 44.29 57.19 60.94 -

*SupCon+CE 72.27 +44.25 82.37 +12.46 88.03 +2.95 50.96 +7.2 54.49 +3.4 64.39 +0.08 44.00 −0.29 59.24 +2.05 62.88 +1.94 +8.22
*SupCon+CE(n) 71.99 +43.97 82.73 +12.82 87.91 +2.83 50.60 +6.93 53.92 +2.83 63.27 −1.04 43.50 −0.79 57.62 +0.43 59.62 −1.32 +7.41
*SupCon+Tt 72.17 +44.15 82.97 +13.06 87.37 +2.29 51.23 +7.56 54.49 +3.4 64.28 −0.02 43.82 −0.47 52.21 −4.98 57.88 −3.06 +6.88

SPCE 31.81 +3.79 78.60 +8.69 86.15 +1.07 50.09 +6.42 53.78 +2.69 64.82 +0.51 40.94 −3.35 55.70 −1.49 55.49 −5.45 +1.43
ESupCon 74.08 +46.06 83.89 +13.98 88.83 +3.75 48.26 +4.59 52.58 +1.49 63.12 −1.19 44.17 −0.12 58.66 +1.47 62.62 +1.68 +7.97

Table 6.2: Accuracy (%) on CIFAR-10, CIFAR-100 and Tiny ImageNet for a
low-sample training scenario, where N represents the number of samples used
for the training. Absolute gains over cross entropy are reported in blue and
absolute declines in red. * indicates the use of a projection head. The last
column shows an average improvement or decline over cross entropy (CE),
across the datasets and the settings.

under more challenging yet more plausible settings, namely limited data, im-
balanced data and noisy labels settings. For the purpose of this experimental
validation, we focus on the object recognition problem.

6.5.1 Datasets

We consider Cifar-100, Cifar-10 [269], Tiny ImageNet [270] (a subset of 200
classes from ImageNet [27], rescaled to the 32×32) datasets and Caltech256 [271].
We refer to the supplementary materials for more results.

6.5.2 Methods and Implementation Details

In all experiments we use ResNet50 as a main network and evaluate the fol-
lowing losses:

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 81

Method
CIFAR-10 CIFAR-100 Tiny ImageNet

Avg.IR = 0.05 IR = 0.1 IR = 0.5 IR = 0.05 IR = 0.1 IR = 0.5 IR = 0.05 IR = 0.1 IR = 0.5

CE 82.85 87.83 93.99 48.57 54.44 71.19 40.65 46.16 60.30 −

*SupCon+CE 79.94 −2.91 86.86 −0.97 94.34 +0.35 46.79 −1.78 44.21 −10.23 71.13 −0.06 44.96 +4.31 49.57 +3.41 62.45 +2.15 −0.64
*SupCon+CE(n) 47.77 −35.08 47.64 −40.19 90.14 −3.85 40.00 −8.57 40.32 −14.12 55.94 −15.25 35.69 −4.96 35.61 −10.55 37.70 −22.60 −17.24
*SupCon+Tt 85.62 +2.7 88.76 +0.93 94.40 +0.41 54.40 +5.83 56.79 +2.35 70.38 −0.81 44.11 +3.46 47.39 +1.23 57.30 −3.00 +1.46

SPCE 85.62 +4.5 86.94 +2.6 93.95 +0.7 49.59 +6.7 53.78 +5.4 68.61 −1.6 37.27 +2.0 40.55 +1.5 61.14 +3.5 −0.95
ESupCon 86.00 +3.15 89.26 +1.43 94.77 +0.78 52.74 +4.17 58.08 +3.64 71.37 +0.18 45.55 +4.90 50.90 +4.74 63.08 +2.78 +2.86

Table 6.3: Accuracy (%) on CIFAR-10, CIFAR-100 and Tiny ImageNet for
an imbalanced training scenario, where IR represents the rate of imbalance.
Absolute gains over cross entropy are reported blue and absolute declines in
red.* indicates the use of a projection head. The last column shows an average
improvement or decline over cross entropy (CE), across the datasets and the
settings.

CE: we optimize the network parameters using the standard CE loss. For
the SupCon loss [82], we use the publicly available implementation, which uses
L2-normalized outputs of a multi-layer head (FC, ReLU, FC), a projection
head, on top of the embeddings used for classification. We learn the classifier
parameters using: i) Cross entropy loss (SupCon+CE), on the linear layer after
optimizing minimizing SupCon loss. ii) For the sake of fair comparison with
other losses, we consider also cross entropy loss with no bias term, normal-
ized embeddings and normalized classifier weights. We denote this variant by
SupCon+CE(n). iii) Tightness loss (SupCon+Tt), where we optimize the param-
eters of a linear classifier using (6.9) during the optimization of the rest of the
network (projection head + backbone) with SupCon loss. Note that the gradi-
ents of the tightness loss are not propagated to the rest of the network. SPCE:
we optimize the backbone with SPCE loss (6.7) and the classifier weights with
the tightness term (6.9). We also show the performance with directly assigning
the weights to the mean of each class samples SPCE(M) .

Our ESupCon: with (6.15) we optimize jointly a linear classifier and the
backbone parameters.

Note that SupCon+CE, SupCon+CE(n) and SupCon+Tt use a projection head,
unlike CE, SPCE and ESupCon. All studied variants benefit from the same
type of data augmentations and hyper-parameters were estimated on Cifar-10
dataset and fixed for the rest. We refer to the supplementary materials for
more details.

6.5.3 Fully Supervised Classification

We first start by comparing the different studied methods on the standard
classification setting while leveraging all the labelled training data of each
dataset. Table 6.1 shows the average test accuracy at the end of the training
on the three considered datasets.

First, ESupCon outperforms CE training alone, using the same number

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 82

of parameters. SupCon+CE improves over CE. SupCon+Tt is comparable to
SupCon+CE(n).

ESupCon shows the best performance on all four datasets. Except from
Caltech dataset, SPCE achieves superior results to CE. When assigning the
classifier weights directly to the mean of the features, SPCE(M), results are
slightly inferior to the use of our tightness loss (6.9) for training the classifier
parameters. For the rest the of experiments, we show only SPCE, using the
suggested tightness term to train the classifier parameters.

6.5.4 Classification in Low-Sample Scenario

Method
CIFAR-10 CIFAR-100 Tiny ImageNet

Avg.NR = 0.5 NR = 0.3 NR = 0.2 NR = 0.5 NR = 0.3 NR = 0.2 NR = 0.5 NR = 0.3 NR = 0.2

CE 60.88 87.08 88.93 35.47 56.57 64.93 31.55 49.62 55.40 -

*SupCon+CE 48.08 −12.8 74.47 −12.61 85.94 −2.99 34.78 −0.69 58.06 +1.49 65.57 +0.64 31.81 +0.26 46.20 +3.42 54.74 +0.66 −3.42
*SupCon+CE(n) 46.35 −14.53 77.42 −9.66 87.45 −1.48 33.55 −1.92 62.44 +5.87 67.87 +2.94 28.88 −2.67 54.64 +5.02 58.62 +3.22 −1.47
*SupCon+Tt 58.05 −2.83 89.70 +2.62 90.66 +1.73 37.23 +1.76 67.76 +11.19 69.41 +4.48 28.67 −2.88 54.81 +5.19 57.93 +2.53 +2.64

SPCE 65.63 +4.75 88.77 +1.69 88.93 +0.0 36.56 +1.09 60.35 +3.78 65.75 +0.82 25.27 −6.28 42.45 −7.17 49.52 −5.88 −0.80
ESupCon 59.18 −1.70 88.15 +1.07 90.92 +1.99 37.04 +1.57 62.94 +6.37 65.81 +0.87 32.555 +1.0 52.80 +3.18 56.79 +1.39 +1.75

Table 6.4: Accuracy (%) on CIFAR-10, CIFAR-100 and Tiny ImageNet for a
noisy training scenario, NR represents the rate of noise. Absolute gains over
cross entropy are reported in blue and absolute declines in red. * indicates the
use of a projection head. The last column shows an average improvement or
decline over cross entropy (CE), across the datasets and the settings.

Figure 6.2: Reliability Diagrams and Expected Calibration Error of probabilis-
tic classifiers learned with different studied loss functions and further calibrated
by temperature scaling.

After studying the fully labelled scenario, here, we are interested in the
performance under limited data setting. Our goal is to see how prone each
method is to overfitting in low data regime and whether significant differences
can be observed among the different alternatives. Table 6.2 reports the av-
erage test accuracy on Cifar-10, Cifar-100 and Tiny ImageNet using different
numbers of training samples (N).

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 83

While CE performance is comparable to other losses on the full data sce-
nario, here it is significantly lower than other competitors with a gap increas-
ing as the sample size gets smaller. Except from Tiny ImageNet, SupCon+Tt
shows comparable performance to SupCon+CE and is slightly inferior (0.5%) to
SupCon+CE(n) on average. SPCE results are better than CE on Cifar-10 and
Cifar-100. ESupCon improves significantly over CE while being comparable
with SupCon+CE, however, with no projection head. ESupCon is much more
robust than SPCE in this setting.

6.5.5 Classification under Imbalanced Data

Our goal is to compare the performance of a model trained by the different
studied losses under various challenging settings beside the standard fully su-
pervised setting. Here, we examine the scenario where training data are not
uniformly distributed. Some classes are undersampled while others are over-
sampled. Specifically, we want to test the ability of the different losses to cope
with this data nature and learn the underrepresented classes. We simulate this
scenario by altering the training data in which half of the categories are un-
derrepresented with a number of samples equals to the imbalance rate (IR) of
other categories samples. The test set on which we report the average accuracy
remains balanced.

Table 6.3 reports the average test accuracy of models trained to minimize
the different losses on the three considered datasets. For each dataset we
consider imbalance rates of 0.05, 0.1, and 0.5 where, for example, an imbalance
rate of 0.1 means that the size of undersampled classes samples is 0.1 compared
to the oversampled classes size.

Here it seems that SupCon+CE doesn’t improve over CE alone. SPCE re-
sults are marginally lower than CE. Our two proposed losses SupCon+Tt and
ESupCon exhibit more robust and powerful performance compared to CE with
ESupCon performing the best.

6.5.6 Classification under Noisy Data

We continue our investigation on the different losses performance under chal-
lenging setting and test another interesting scenario: classification with noisy
labels. We want to test the ability of the different training regimes to learn
generalizable decision boundaries in spite of the presence of wrongly labelled
samples. To simulate this scenario, during training a percentage of the train-
ing data, denoted by noise rate (NR), is associated with wrong labels (shuffled
labels). As in the previous experiments, we report the results on the standard,
correctly labelled, test set. Table 6.4 reports the average test accuracy on
Cifar-10, Cifar-100 and Tiny ImageNet with noise rates of (0.2, 0.3, 0.5). Here
we obtained similar results to the imbalanced settings, SupCon+CE doesn’t con-
sistently improve over CE, same applies for SPCE. Our both proposed losses

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 84

improve over CE with SupCon+Tt performing the best here.

6.5.7 General Remarks

We note the following on the shown results of the different losses: CE training
after SupCon pretraining (SupCon+CE) improves over standard CE in full and
low data regime. However, deploying CE to learn the classifier with or with-
out SupCon pretraining is sensitive to noise and data imbalance. Interestingly,
our proposed tightness term is more effective on these two scenarios, however
inferior on the full and low data regime. In all studied settings, our proposed
ESupCon loss improves over CE and over (SupCon+CE) on the challenging im-
balanced and noisy settings. In Supplementary we discuss the computational
complexity of the different losses and their sensitivity to hyper-parameters.

6.5.8 Classifier Outputs as Posterior Probabilities

To access the interpretation of the classifier outputs as estimates of posterior
probabilities p̂(class|observation), we calibrated the outputs by temperature
scaling [272] – we estimated the temperature on a holdout set (20% of the test
set) and computed the reliability diagram and the expected calibration error
(ECE) on the remaining test samples of Cifar-100 dataset. Results are shown
in Figure 6.2: while the standard CE loss has the lowest calibration error,
all other calibrated classifiers provide reliable predictions, an interesting result
given the shown performance advantage.

6.6 Conclusion

In this work, we derive novel, robust objective functions, inspired by new
evidence showing that contrastive losses improve performance over CE. Driven
by the question of whether cross entropy loss is the best option to train jointly
a good representation and powerful, generalizable, decision boundaries, we
start from a recent approximation to cross entropy loss (SPCE) with pairwise
training of representation where classifier weights can be assigned to the mean
of each class features. We then suggest to learn the classifier weights under
only a tightness term jointly with SupCon representation training or SPCE.
Next, we propose an extension to SupCon, where the classifier weights are
treated as learnable prototypes in the same space as the samples embeddings,
and where data points form positive pairs with their classes prototypes. We
show that the proposed loss for a given pair (zi,θk) is a smooth approximation
to the maximum of the CE and SupCon losses on that pair. To this point,
we test the performance of models trained with the different discussed losses
under different challenging settings. We show that the proposed extensions
demonstrate more robust and stable performance across different settings and
datasets. As a future work, we plan to extend the experiments to object

CHAPTER 6. EXTENDED SUPERVISED CONTRASTIVE LEARN... 85

detection and image segmentation problems, as well as to test the discussed
losses on Out-Of-Distribution and Continual Learning benchmarks.

Chapter 7

Conclusions

The thesis contributes to bridging the gap between the user-defined objective
and the training loss when the objective is known and non-differentiable. To
this end, we proposed a technique to learn the surrogate of a decomposable and
non-differentiable evaluation metric (Chapter 3) [1]. The surrogate is learned
jointly with the task-specific model in an alternating training setup. The
approach showed a relative improvement of up to 39% on the total edit distance
for scene text recognition and 4.25% on F1 score for scene text detection.

After observing the noisy predictions from the surrogate at the initial stage
of the training, we designed an approach to train robustly with the learned
surrogate (Chapter 4) [2]. The method filters out the samples that are hard for
the surrogate. With this approach, we observed the merits of training a scene
text recognition model using a learned surrogate of edit distance. We attained
an average relative improvement of 11.2% on the total edit distance and an
error reduction of 9.5% on accuracy on several benchmarks. For comparison,
our previous approach [1] obtains an relative improvement of 6.05% on the
total edit distance.

We introduced a surrogate loss for recall@k, a non-decomposable and non-
differentiable evaluation metric (Chapter 5) [3]. When combined with a novel
and efficient mixup technique and training on large batch sizes, the pro-
posed approach attained state-of-the-art results on several metric learning
benchmarks and instance-level search. Further, when combined with kNN
classifier, it can also serve as an effective tool for fine-grained recognition
where it substantially outperforms direct classification methods equipped with
performance-enhancing techniques [4].

We put forward an approach for supervised contrastive classification that
jointly learns the parameters of the classifier and the backbone (Chapter 6) [14].
This approach leverages the robustness of contrastive training and maintains
the probabilistic interpretation useful for several calibration tasks. The method
outperformed standard cross-entropy and supervised contrastive losses and was
shown to be robust in various challenging settings such as class imbalance, label
corruption, and training with a low number of samples.

86

Appendix A

Abstrakt

(Automatic translation by Google Translate)

Mnoho d̊uležitých úkol̊u poč́ıtačového viděńı je přirozeně formulováno s
nediferencovatelným ćılem. Proto standardńı, dominantńı trénovaćı postup
neuronové śıtě neńı použitelný, protože zpětné š́ı̌reńı vyžaduje gradienty ćıle
vzhledem k výstupu modelu. Většina metod hlubokého učeńı obcháźı problém
neoptimálně použit́ım proxy ztráty pro trénink, který byl p̊uvodně navržen pro
jiný úkol a neńı přizp̊usoben specifik̊um ćıle. Funkce proxy ztráty se mohou,
ale nemuśı dobře shodovat s p̊uvodńım nediferencovatelným ćılem. Pro nový
úkol muśı být navržen vhodný proxy, který nemuśı být proveditelný pro laika.
Tato práce přináš́ı čtyři hlavńı př́ıspěvky k překlenut́ı propasti mezi nedifer-
encovatelným ćılem a funkćı ztráty tréninku. Ztrátovou funkci v celé práci
označujeme jako náhradńı ztrátu, pokud se jedná o diferencovatelnou aproxi-
maci nediferencovatelného ćıle.

Nejprve navrhujeme př́ıstup k učeńı diferencovatelné náhrady rozložitelné a
nediferencovatelné vyhodnocovaćı metriky. Náhradńık se uč́ı společně s mod-
elem specifickým pro úkol stř́ıdavým zp̊usobem. Tento př́ıstup je ověřen na
dvou praktických úlohách rozpoznáváńı a detekce textu scény, kde se náhradńık
uč́ı aproximaci vzdálenosti úprav a pr̊useč́ıku přes spojeńı. V nastaveńı po vy-
laděńı, kde je model trénovaný se ztrátou proxy dále trénován s naučeným
náhradńıkem, navrhovaná metoda ukazuje relativńı zlepšeńı až o 39 % celkové
vzdálenosti úprav pro rozpoznáńı textu scény a 4, 25 % na F1 skóre za detekci
textu scény.

Za druhé, vylepšená verze tréninku s naučeným náhradńıkem, kde jsou
odfiltrovány tréninkové vzorky, které jsou pro náhradńıka těžké. Tento př́ıstup
je ověřen pro rozpoznáváńı textu scény. Překonává náš předchoźı př́ıstup a
dosahuje pr̊uměrného zlepšeńı o 11, 2% celkové vzdálenosti úprav a sńıžeńı chyb
o 9, 5% v přesnosti v několika obĺıbených benchmarćıch. Všimněte si, že dvě
navrhované metody pro učeńı náhradńıka a školeńı s náhradńıkem nevytvářej́ı
žádné předpoklady o daném úkolu a mohou být potenciálně rozš́ı̌reny na nové
úkoly.

87

APPENDIX A. ABSTRAKT 88

Za třet́ı, pro reminiscenci@k, nerozložitelnou a nediferencovatelnou vy-
hodnocovaćı metriku, navrhujeme ručně vytvořenou náhradu, která zahrnuje
navrhováńı diferencovatelných verźı operaćı tř́ıděńı a poč́ıtáńı. Je také navržena
účinná kombinačńı technika pro učeńı metriky, která mı́chá skóre podobnosti
namı́sto vkládaćıch vektor̊u. Navrhovaná náhrada dosahuje nejmoderněǰśıch
výsledk̊u na několika metrických učeńıch a srovnávaćıch testech vyhledáváńı
na úrovni instanćı v kombinaci se školeńım na velkých dávkách. Dále v kom-
binaci s klasifikátorem kNN slouž́ı také jako účinný nástroj pro jemnozrnné
rozpoznáváńı, kde překonává př́ımé klasifikačńı metody.

Za čtvrté navrhujeme ztrátovou funkci nazvanou Extended SupCon, která
společně trénuje parametry klasifikátoru a páteře pro ř́ızenou kontrastńı klasi-
fikaci. Navrhovaný př́ıstup těž́ı z robustnosti kontrastivńıho učeńı a zachovává
pravděpodobnostńı interpretaci jako soft-max predikci. Empirické výsledky
ukazuj́ı účinnost našeho př́ıstupu v náročných podmı́nkách, jako je tř́ıdńı
nerovnováha, korupce št́ıtk̊u a školeńı s málo označenými údaji.

Celkově př́ınosy této práce čińı trénováńı neuronových śıt́ı škálovatelněǰśım
– na nové úkoly téměř bezpracně, když je vyhodnocovaćı metrika rozložitelná,
což výzkumńık̊um pomůže s novými úkoly. Pro nerozložitelné vyhodnocovaćı
metriky lze pro vytvářeńı nových náhradńıch prvk̊u použ́ıt také diferencov-
atelné komponenty vyvinuté pro náhradńıho prvku pro odvoláńı@k, jako je
tř́ıděńı a poč́ıtáńı.

APPENDIX A. ABSTRAKT 89

(Automatic translation by ChatGPT)

Mnoho d̊uležitých úkol̊u v oblasti poč́ıtačového viděńı je přirozeně for-
mulováno s nenadifferentovatelným ćılem. Standardńı a dominantńı tréninkový
postup neuronové śıtě tak neńı použitelný, protože zpětná propagace vyžaduje
gradienty objektivu vzhledem k výstupu modelu. Většina metod hlubokého
učeńı tento problém řeš́ı podobným zp̊usobem pomoćı proxy ztráty pro trénováńı,
která byla p̊uvodně navržena pro jiný úkol a neńı přizp̊usobena specifikám ćıle.
Funkce proxy ztráty mohou nebo nemuśı dobře korespondovat s p̊uvodńı ne-
nadifferentovatelným ćılem. Pro nový úkol muśı být navržena vhodná proxy,
což pro neodborńıka nemuśı být proveditelné. Tato práce přináš́ı čtyři hlavńı
př́ınosy pro překlenut́ı rozd́ılu mezi nenadifferentovatelným ćılem a ztrátovou
funkćı pro trénováńı. V celé práci označujeme ztrátovou funkci jako náhradńı,
pokud je diferencovatelnou aproximaćı nenadifferentovatelného ćıle.

Nejprve navrhujeme př́ıstup pro učeńı diferencovatelného náhradńıho mod-
elu pro rozložitelnou a nespojitou hodnot́ıćı metriku. Náhrada je společně s
úkolspecifickým modelem učena stř́ıdavým zp̊usobem. Př́ıstup je ověřen na
dvou praktických úlohách rozpoznáváńı a detekce textu v scéně, kde náhrada
modeluje aproximaci editačńı vzdálenosti a překryvu-union, odpov́ıdaj́ıćıch. V
post-tuningovém nastaveńı, kde model trénovaný pomoćı proxy ztráty je dále
trénován s naučenou náhradou, navrhovaná metoda ukazuje relativńı zlepšeńı
až o 39% celkové editačńı vzdálenosti pro rozpoznáváńı textu v scéně a 4.25%
F1 skóre pro detekci textu v scéně.

Druhá část našeho návrhu zahrnuje vylepšenou verzi tréninku pomoćı naučeného
náhradńıho modelu, kdy jsou filtrace tvrdých tréninkových vzork̊u založená
na náhradńım modelu. Tento postup byl ověřen pro rozpoznáváńı textu v
obrazech. Tento nový postup předčil naše předchoźı řešeńı a dosáhl pr̊uměrného
zlepšeńı celkové editačńı vzdálenosti o 11.2% a sńıžeńı chybovosti o 9.5% v
přesnosti na několika populárńıch testech. Poznamenejme, že oba navržené
postupy, a to učeńı náhradńıho modelu a trénink s náhradńım modelem,
nekladou žádné předpoklady na řešený úkol a mohou být potenciálně rozš́ı̌reny
na nové úkoly.

Třet́ı př́ıstup se týká metriky recall@k, což je nedekomponovatelná a ne-
spojitá metrika. Navrhujeme ručně vytvořený náhradńı funkčńı prvek, který
zahrnuje návrh diferencovatelných verźı řazeńı a poč́ıtáńı operaćı. Dále navrhu-
jeme efektivńı techniku mixup pro učeńı metrik, která mı́chá podobnostńı skóre
mı́sto vektor̊u vnořeńı. Navrhovaný náhradńı funkčńı prvek dosahuje výsledk̊u
na špičkové úrovni na několika měř́ıćıch a vyhledávaćıch úlohách na úrovni in-
stanćı, když se kombinuje s trénováńım na velkých dávkách. Když se nav́ıc
použije kNN klasifikátor, slouž́ı také jako účinný nástroj pro jemné rozlǐseńı,
kdy překonává př́ımé metody klasifikace.

Čtvrtým př́ıspěvkem této práce je návrh loss funkce s názvem Extended
SupCon, která společně trénuje klasifikátor a parametry základńı śıtě pro su-
pervised contrastive classification. Navržený př́ıstup využ́ıvá robustnosti con-

APPENDIX A. ABSTRAKT 90

trastive learning a zachovává pravděpodobnostńı interpretaci jako u soft-max
predikce. Empirické výsledky ukazuj́ı účinnost našeho př́ıstupu i v náročných
podmı́nkách, jako je nerovnováha tř́ıd, zkreslené št́ıtky a trénováńı s málem
označených dat.

Celkově př́ınosy této práce umožňuj́ı škálovat trénováńı neuronových śıt́ı
pro nové úlohy v téměř bezúdržbovém režimu, pokud je vyhodnocovaćı metrika
rozložitelná, což pomůže výzkumńık̊um s novými úkoly. Pro metriky vyhod-
nocováńı, které nejsou rozložitelné, lze komponenty vyvinuté pro recall@k sur-
rogate, jako je tř́ıděńı a poč́ıtáńı, použ́ıt k vytvářeńı nových surrogate.

Bibliography

[1] Y. Patel, T. Hodan, and J. Matas, “Learning surrogates via deep em-
bedding”, in ECCV, 2020.

[2] Y. Patel and J. Matas, “Feds-filtered edit distance surrogate”, in IC-
DAR, 2021.

[3] Y. Patel, G. Tolias, and J. Matas, “Recall@k surrogate loss with large
batches and similarity mixup”, in CVPR, 2022.

[4] L. Picek, M. Šulc, Y. Patel, and J. Matas, “Plant recognition by ai: Deep
neural nets, transformers, and knn in deep embeddings”, Frontiers in
Plant Science, 2022.

[5] N. Nayef, Y. Patel, M. Busta, et al., “Icdar2019 robust reading challenge
on multi-lingual scene text detection and recognition–rrc-mlt-2019”,
arXiv preprint arXiv:1907.00945, 2019.

[6] S. Djukanović, Y. Patel, J. Matas, and T. Virtanen, “Neural network-
based acoustic vehicle counting”, in European Signal Processing Con-
ference (EUSIPCO), 2021.

[7] T. Wei, Y. Patel, J. Matas, and D. Barath, “Generalized differentiable
RANSAC”, arXiv preprint arXiv:2212.13185, 2023.

[8] Š. Šimsa, M. Šulc, M. Uřičář, et al., “Docile benchmark for document in-
formation localization and extraction”, arXiv preprint arXiv:2302.05658,
2023.

[9] Y. Patel, S. Appalaraju, and R Manmatha, “Saliency driven perceptual
image compression”, in WACV, 2021.

[10] Y. Patel, S. Appalaraju, and RManmatha, “Hierarchical auto-regressive
model for image compression incorporating object saliency and a deep
perceptual loss”, arXiv preprint arXiv:2002.04988, 2020.

[11] Y. Patel, S. Appalaraju, and R Manmatha, “Deep perceptual compres-
sion”, arXiv preprint arXiv:1907.08310, 2019.

[12] Y. Patel, S. Appalaraju, and R Manmatha, “Human perceptual evalu-
ations for image compression”, arXiv preprint arXiv:1908.04187, 2019.

[13] Y. Patel, Y. Xie, Y. Zhu, S. Appalaraju, and R Manmatha, “Simcon
loss with multiple views for text supervised semantic segmentation”,
arXiv preprint arXiv:2302.03432, 2023.

91

BIBLIOGRAPHY 92

[14] R. Aljundi, Y. Patel, M. Sulc, D. Olmeda, and N. Chumerin, “Con-
trastive classification and representation learning with probabilistic in-
terpretation”, AAAI, 2023.

[15] Š. Šimsa, M. Šulc, M. Skalickỳ, Y. Patel, and A. Hamdi, “Docile 2023
teaser: Document information localization and extraction”, in ECIR,
2023.

[16] F. Radenovic, A. Dubey, A. Kadian, et al., “Filtering, distillation, and
hard negatives for vision-language pre-training”, 2023.

[17] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang, “Unitbox: An advanced
object detection network”, in ACM-MM, 2016.

[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks”, TPAMI, 2017.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection”, in CVPR, 2016.

[20] Y. Patel, T. Hodaň, and J. Matas, “Learning surrogates via deep em-
bedding”, in ECCV, 2020.

[21] Y. Patel and J. Matas, “Feds–filtered edit distance surrogate”, in IC-
DAR, 2021.

[22] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: Labelling unsegmented sequence data with
recurrent neural networks”, in ICML, 2006.

[23] A. Brown, W. Xie, V. Kalogeiton, and A. Zisserman, “Smooth-ap:
Smoothing the path towards large-scale image retrieval”, in ECCV,
2020.

[24] Y. Patel, L. Gomez, M. Rusiñol, D. Karatzas, and C. Jawahar, “Self-
supervised visual representations for cross-modal retrieval”, in ICMR,
2019.

[25] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified em-
bedding for face recognition and clustering”, in CVPR, 2015.

[26] C.-Y. Wu, R Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling
matters in deep embedding learning”, in ICCV, 2017.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database”, in CVPR, 2009.

[28] T. Lin, M. Maire, S. J. Belongie, et al., “Microsoft COCO: common
objects in context”, in ECCV, 2014.

[29] B. Zhou, H. Zhao, X. Puig, et al., “Semantic understanding of scenes
through the ade20k dataset”, IJCV, 2019.

[30] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth
16x16 words: Transformers for image recognition at scale”, in ICLR,
2021.

BIBLIOGRAPHY 93

[31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding”, arXiv
preprint arXiv:1810.04805, 2018.

[32] J. Li, R. Selvaraju, A. Gotmare, S. Joty, C. Xiong, and S. C. H. Hoi,
“Align before fuse: Vision and language representation learning with
momentum distillation”, NeurIPS, 2021.

[33] A. Radford, J. W. Kim, C. Hallacy, et al., “Learning transferable visual
models from natural language supervision”, in ICML, 2021.

[34] M. Singh, L. Gustafson, A. Adcock, et al., “Revisiting Weakly Super-
vised Pre-Training of Visual Perception Models”, in CVPR, 2022.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition”, in CVPR, 2016.

[36] S. Jadon, “A survey of loss functions for semantic segmentation”, in
CIBCB, 2020.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion”, arXiv preprint arXiv:1412.6980, 2014.

[38] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization”,
in ICLR, 2019.

[39] S. Ruder, “An overview of gradient descent optimization algorithms”,
arXiv preprint arXiv:1609.04747, 2016.

[40] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.”, Journal of machine
learning research, 2011.

[41] M. D. Zeiler, “Adadelta: An adaptive learning rate method”, arXiv
preprint arXiv:1212.5701, 2012.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks”, in NeurIPS, 2012.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.

[44] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common ob-
jects in context”, in ECCV, 2014.

[45] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey”, arXiv preprint arXiv:1808.05377, 2018.

[46] M. S. Ryoo, A. Piergiovanni, M. Tan, and A. Angelova, “Assemblenet:
Searching for multi-stream neural connectivity in video architectures”,
NeurIPS, 2019.

[47] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning”, arXiv preprint arXiv:1611.01578, 2016.

BIBLIOGRAPHY 94

[48] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations”, ICLR, 2018.

[49] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering
for unsupervised learning of visual features”, in ECCV, 2018.

[50] L. Gomez, Y. Patel, M. Rusiñol, D. Karatzas, and C. Jawahar, “Self-
supervised learning of visual features through embedding images into
text topic spaces”, in CVPR, 2017.

[51] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning”, in CVPR, 2020.

[52] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners”, in CVPR, 2022.

[53] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting”, 2014.

[54] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift”, arXiv preprint arXiv:1502.03167,
2015.

[55] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization”, arXiv
preprint arXiv:1607.06450, 2016.

[56] Y. Bengio, A. Courville, and P. Vincent, “Practical recommendations
for gradient-based training of deep architectures”, in NeurIPS, 2012.

[57] L. N. Smith, “Learning rate schedules for faster convergence”, Deep
Learning, 2017.

[58] S. N. Law, D. P. Wipf, and A. Gupta, “Grid search hyperparameter
tuning for deep learning models: A review”, Neural Computing and
Applications, 2020.

[59] A. Klein, S. Falkner, and F. Hutter, “Hyperparameter optimization in
machine learning: A review”, JMLR, 2019.

[60] P. Tang, X. Wang, W. Liu, and J. Wang, “Multi-source domain adap-
tation for semantic segmentation”, in CVPR, 2019.

[61] L. Li, Z. Lu, Y. Huang, and J. Tang, “D-sym: Diversified synthesis for
domain adaptive object detection”, in CVPR, 2020.

[62] W. Huang, H. Ling, and W. Lin, “Improving unsupervised domain
adaptation by self-training with deep reconstruction”, in ECCV, 2020.

[63] H. Liu, M. Wan, L. Zheng, Z. Yuan, J. Qin, and Z. Zhu, “Rethinking
the value of labels for improving class-imbalanced learning”, in CVPR,
2021.

[64] Y. Liu, Y. Liu, W. Xia, and D. Lin, “Self-supervised domain adaptation
for computer vision tasks”, in CVPR, 2021.

BIBLIOGRAPHY 95

[65] L. Zheng, S. Wang, and P. O. Ogunbona, “Cross-domain cascaded deep
feature learning”, in CVPR, 2015.

[66] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Learning transferable
features with deep adaptation networks”, in ICML, 2015.

[67] S. Hussain, F. Porikli, and J. K. Tsotsos, “Deep domain confusion:
Maximizing for domain invariance”, in ECCV, 2016.

[68] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, and H. Larochelle,
“Domain-adversarial training of neural networks”, JMLR, 2016.

[69] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, and H. Larochelle, “Un-
supervised domain adaptation by backpropagation”, in ICML, 2015.

[70] D. Mahajan, R. Girshick, V. Ramanathan, et al., “Exploring the limits
of weakly supervised pretraining”, in ECCV, 2018.

[71] D. Zhou, J. Fang, X. Song, et al., “Iou loss for 2d/3d object detection”,
in 2019 International Conference on 3D Vision (3DV), 2019.

[72] R. Franzen, “Kodak lossless true color image suite”, source: http://r0k.
us/graphics/kodak, 1999.

[73] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van
Gool, “Conditional probability models for deep image compression”,
in CVPR, 2018.

[74] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression”, arXiv preprint arXiv:1611.01704, 2016.

[75] F. Bellard. “Bpg image format”. (2014), [Online]. Available: http://
bellard.org/bpg/.

[76] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The jpeg 2000 still
image compression standard”, IEEE Signal processing magazine, 2001.

[77] J. Baek, G. Kim, J. Lee, et al., “What is wrong with scene text recog-
nition model comparisons? dataset and model analysis”, ICCV, 2019.

[78] R. Litman, O. Anschel, S. Tsiper, R. Litman, S. Mazor, and R Man-
matha, “Scatter: Selective context attentional scene text recognizer”,
in CVPR, 2020.

[79] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding
box regression”, in CVPR, 2019.

[80] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang, “Unitbox: An advanced
object detection network”, in ACM-MM, 2016.

[81] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping”, in CVPR, 2006.

[82] P. Khosla, P. Teterwak, C. Wang, et al., “Supervised contrastive learn-
ing”, arXiv preprint arXiv:2004.11362, 2020.

http://bellard. org/bpg/
http://bellard. org/bpg/

BIBLIOGRAPHY 96

[83] M Kumar, B. Packer, and D. Koller, “Self-paced learning for latent
variable models”, NeurIPS, 2010.

[84] A. Mishra, K. Alahari, and C. Jawahar, “Scene text recognition using
higher order language priors”, in BMVC, 2012.

[85] K. Wang, B. Babenko, and S. Belongie, “End-to-end scene text recog-
nition”, in ICCV, 2011.

[86] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and R. Young,
“Icdar 2003 robust reading competitions”, in ICDAR, 2003.

[87] D. Karatzas, F. Shafait, S. Uchida, et al., “Icdar 2013 robust reading
competition”, in ICDAR, 2013.

[88] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, et al., “Icdar 2015 com-
petition on robust reading”, in ICDAR, 2015.

[89] T. Quy Phan, P. Shivakumara, S. Tian, and C. Lim Tan, “Recognizing
text with perspective distortion in natural scenes”, in ICCV, 2013.

[90] A. Risnumawan, P. Shivakumara, C. S. Chan, and C. L. Tan, “A ro-
bust arbitrary text detection system for natural scene images”, Expert
Systems with Applications, 2014.

[91] G. Van Horn, O. Mac Aodha, Y. Song, et al., “The inaturalist species
classification and detection dataset”, in CVPR, 2018.

[92] E.-J. Ong, S. Husain, and M. Bober, “Siamese network of deep fisher-
vector descriptors for image retrieval”, in arXiv, 2017.

[93] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations
for fine-grained categorization”, in ICCV workshops, 2013.

[94] H. Liu, Y. Tian, Y. Wang, L. Pang, and T. Huang, “Deep relative dis-
tance learning: Tell the difference between similar vehicles”, in CVPR,
2016.

[95] F. Radenović, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Revis-
iting oxford and paris: Large-scale image retrieval benchmarking”, in
CVPR, 2018.

[96] E. Eban, M. Schain, A. Mackey, A. Gordon, R. Rifkin, and G. Elidan,
“Scalable learning of non-decomposable objectives”, in AISTAT, 2017.

[97] A. Rakotomamonjy, “Optimizing area under roc curve with svms.”, in
ROCAI, 2004.

[98] M. Berman, A. R. Triki, and M. B. Blaschko, “The lovász-softmax loss:
A tractable surrogate for the optimization of the intersection-over-union
measure in neural networks”, in CVPR, 2018.

[99] S. Puthiya Parambath, N. Usunier, and Y. Grandvalet, “Optimizing
f-measures by cost-sensitive classification”, NeurIPS, 2014.

BIBLIOGRAPHY 97

[100] H. Xu, H. Zhang, Z. Hu, X. Liang, R. Salakhutdinov, and E. Xing, “Au-
toloss: Learning discrete schedules for alternate optimization”, arXiv
preprint arXiv:1810.02442, 2018.

[101] L. Wu, F. Tian, Y. Xia, et al., “Learning to teach with dynamic loss
functions”, in NeurIPS, 2018.

[102] T. Hazan, J. Keshet, and D. A. McAllester, “Direct loss minimization
for structured prediction”, in NeurIPS, 2010.

[103] Y. Song, A. Schwing, R. Urtasun, et al., “Training deep neural networks
via direct loss minimization”, in ICML, 2016.

[104] C. Huang, S. Zhai, P. Guo, and J. Susskind, “Metricopt: Learning to
optimize black-box evaluation metrics”, in CVPR, 2021.

[105] M. V. Pogančić, A. Paulus, V. Musil, G. Martius, and M. Rolinek,
“Differentiation of blackbox combinatorial solvers”, in ICLR, 2020.

[106] M. Roĺınek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, and
G. Martius, “Optimizing rank-based metrics with blackbox differen-
tiation”, in CVPR, 2020.

[107] T. Hodan, F. Michel, E. Brachmann, et al., “Bop: Benchmark for 6d
object pose estimation”, in ECCV, 2018.

[108] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks”, in NeurIPS, 2015.

[109] G.-S. Xia, X. Bai, J. Ding, et al., “Dota: A large-scale dataset for object
detection in aerial images”, in CVPR, 2018.

[110] M. Kristan, J. Matas, A. Leonardis, et al., “The seventh visual object
tracking vot2019 challenge results”, in ICCV Workshops, 2019.

[111] J. Ma, W. Shao, H. Ye, et al., “Arbitrary-oriented scene text detection
via rotation proposals”, IEEE Transactions on Multimedia, 2018.

[112] M. Bušta, Y. Patel, and J. Matas, “E2e-mlt-an unconstrained end-to-
end method for multi-language scene text”, in ACCV, 2018.

[113] S. M. Azimi, E. Vig, R. Bahmanyar, M. Körner, and P. Reinartz, “To-
wards multi-class object detection in unconstrained remote sensing im-
agery”, in ACCV, 2018.

[114] J. Lee, S. Cho, and S.-K. Beack, “Context-adaptive entropy model for
end-to-end optimized image compression”, ICLR, 2019.

[115] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Varia-
tional image compression with a scale hyperprior”, ICLR, 2018.

[116] C. Ledig, L. Theis, F. Huszár, et al., “Photo-realistic single image super-
resolution using a generative adversarial network”, in CVPR, 2017.

[117] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks”, TPAMI, 2015.

BIBLIOGRAPHY 98

[118] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment”, in ACSSC, 2003.

[119] L. Berrada, A. Zisserman, and M. P. Kumar, “Smooth loss functions
for deep top-k classification”, ICLR, 2018.

[120] M. Lapin, M. Hein, and B. Schiele, “Loss functions for top-k error:
Analysis and insights”, in CVPR, 2016.

[121] R. Gomez, B. Shi, L. Gomez-Bigorda, et al., “ICDAR2017 robust read-
ing challenge on coco-text”, in ICDAR, 2017.

[122] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer”, in
CVPR, 2018.

[123] E. Agustsson, F. Mentzer, M. Tschannen, et al., “Soft-to-hard vector
quantization for end-to-end learning compressible representations”, in
NeurIPS, 2017.

[124] R. Prabhavalkar, T. N. Sainath, Y. Wu, et al., “Minimum word er-
ror rate training for attention-based sequence-to-sequence models”, in
ICASSP, 2018.

[125] M. A. Rahman and Y. Wang, “Optimizing intersection-over-union in
deep neural networks for image segmentation”, in ISVC, 2016.

[126] G. Nagendar, D. Singh, V. N. Balasubramanian, and C. Jawahar, “Neuro-
iou: Learning a surrogate loss for semantic segmentation.”, in BMVC,
2018.

[127] M. Engilberge, L. Chevallier, P. Pérez, and M. Cord, “Sodeep: A sorting
deep net to learn ranking loss surrogates”, in CVPR, 2019.

[128] J. Grabocka, R. Scholz, and L. Schmidt-Thieme, “Learning surrogate
losses”, arXiv preprint arXiv:1905.10108, 2019.

[129] K. Li and J. Malik, “Learning to optimize neural nets”, arXiv preprint
arXiv:1703.00441, 2017.

[130] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans”, in NeurIPS, 2017.

[131] B. Shi, X. Wang, P. Lyu, C. Yao, and X. Bai, “Robust scene text recog-
nition with automatic rectification”, in CVPR, 2016.

[132] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spa-
tial transformer networks”, in NeurIPS, 2015.

[133] W. Liu, C. Chen, K. K. Wong, Z. Su, and J. Han, “Star-net: A spatial
attention residue network for scene text recognition”, in BMVC, 2016.

[134] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
computation, 1997.

BIBLIOGRAPHY 99

[135] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Synthetic
data and artificial neural networks for natural scene text recognition”,
CoRR, 2014.

[136] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text lo-
calisation in natural images”, in CVPR, 2016.

[137] M. D. Zeiler, “ADADELTA: an adaptive learning rate method”, CoRR,
2012.

[138] X. Zhang, J. J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification”, in NeurIPS, 2015.

[139] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network”, CoRR, 2015.

[140] J. Ma, RRPN in pytorch, https://github.com/mjq11302010044/
RRPNpytorch, 2019.

[141] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan, “FOTS: fast
oriented text spotting with a unified network”, in CVPR, 2018.

[142] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works”, in AISTATS, 2011.

[143] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors”, Nature, 1986.

[144] Y. Patel, L. Gomez, M. Rusinol, and D. Karatzas, “Dynamic lexicon
generation for natural scene images”, in ECCV, 2016.

[145] Q. Ye and D. Doermann, “Text detection and recognition in imagery:
A survey”, in TPAMI, 2014.

[146] S. Long, X. He, and C. Yao, “Scene text detection and recognition: The
deep learning era”, in IJCV, 2020.

[147] K. Wang and S. Belongie, “Word spotting in the wild”, in ECCV, 2010.

[148] C. Yao, X. Bai, B. Shi, and W. Liu, “Strokelets: A learned multi-scale
representation for scene text recognition”, in CVPR, 2014.

[149] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Deep features for text
spotting”, in ECCV, 2014.

[150] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition”, in Proceedings of the IEEE, 1998.

[151] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Reading
text in the wild with convolutional neural networks”, in IJCV, 2016.

[152] M. Busta, L. Neumann, and J. Matas, “Deep textspotter: An end-to-
end trainable scene text localization and recognition framework”, in
ICCV, 2017.

[153] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer
networks”, in NeurIPS, 2015.

https://github.com/mjq11302010044/RRPNpytorch
https://github.com/mjq11302010044/RRPNpytorch

BIBLIOGRAPHY 100

[154] L. Gómez, M. Rusinol, and D. Karatzas, “Lsde: Levenshtein space deep
embedding for query-by-string word spotting”, in ICDAR, 2017.

[155] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene text
recognition”, PAMI, 2016.

[156] P. He, W. Huang, Y. Qiao, C. Loy, and X. Tang, “Reading scene text
in deep convolutional sequences”, in AAAI, 2016.

[157] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks”, in NeurIPS, 2014.

[158] B. Shi, X. Wang, P. Lyu, C. Yao, and X. Bai, “Robust scene text recog-
nition with automatic rectification”, in CVPR, 2016.

[159] B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai, “Aster: An
attentional scene text recognizer with flexible rectification”, in PAMI,
2018.

[160] F. L. Bookstein, “Principal warps: Thin-plate splines and the decom-
position of deformations”, in TPAMI, 1989.

[161] W. Liu, C. Chen, and K.-Y. K. Wong, “Char-net: A character-aware
neural network for distorted scene text recognition”, in AAAI, 2018.

[162] H. Li, P. Wang, C. Shen, and G. Zhang, “Show, attend and read: A
simple and strong baseline for irregular text recognition”, in AAAI,
2019.

[163] M. Liao, P. Lyu, M. He, C. Yao, W. Wu, and X. Bai, “Mask textspotter:
An end-to-end trainable neural network for spotting text with arbitrary
shapes”, in TPAMI, 2019.

[164] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text lo-
calisation in natural images”, in CVPR, 2016.

[165] Y. Patel1, M. Bušta1, and J. Matas1, “E2e-mlt-an unconstrained end-
to-end method for multi-language scene text”, 2018.

[166] S. Long and C. Yao, “Unrealtext: Synthesizing realistic scene text im-
ages from the unreal world”, in CVPR, 2020.

[167] K. Janoušková, J. Matas, L. Gomez, and D. Karatzas, “Text recognition
- real world data and where to find them”, in ICPR, 2021.

[168] M. Liao, J. Zhang, Z. Wan, et al., “Scene text recognition from two-
dimensional perspective”, in AAAI, 2019.

[169] F. Zhan and S. Lu, “Esir: End-to-end scene text recognition via iterative
image rectification”, in CVPR, 2019.

[170] M. Yang, Y. Guan, M. Liao, et al., “Symmetry-constrained rectification
network for scene text recognition”, in ICCV, 2019.

BIBLIOGRAPHY 101

[171] T. Wang, Y. Zhu, L. Jin, et al., “Decoupled attention network for text
recognition”, in AAAI, 2020.

[172] D. Yu, X. Li, C. Zhang, et al., “Towards accurate scene text recognition
with semantic reasoning networks”, in CVPR, 2020.

[173] Z. Qiao, Y. Zhou, D. Yang, Y. Zhou, and W. Wang, “Seed: Semantics
enhanced encoder-decoder framework for scene text recognition”, in
CVPR, 2020.

[174] X. Yue, Z. Kuang, C. Lin, H. Sun, and W. Zhang, “Robustscanner:
Dynamically enhancing positional clues for robust text recognition”, in
ECCV, 2020.

[175] R. Gomez, A. F. Biten, L. Gomez, J. Gibert, D. Karatzas, and M.
Rusiñol, “Selective style transfer for text”, in ICDAR, 2019.

[176] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional net-
works for text classification”, in NeurIPS, 2015.

[177] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network”, in CoRR, 2015.

[178] Y. Zhang, L. Gueguen, I. Zharkov, P. Zhang, K. Seifert, and B. Kadlec,
“Uber-text: A large-scale dataset for optical character recognition from
street-level imagery”, in CVPR workshop, 2017.

[179] M. D. Zeiler, “ADADELTA: an adaptive learning rate method”, in
CoRR, 2012.

[180] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding
box regression”, in CVPR, 2019.

[181] G. Nagendar, D. Singh, V. N. Balasubramanian, and C. Jawahar, “Neuro-
iou: Learning a surrogate loss for semantic segmentation.”, in BMVC,
2018.

[182] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van
Gool, “Conditional probability models for deep image compression”,
in CVPR, 2018.

[183] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Varia-
tional image compression with a scale hyperprior”, in ICLR, 2018.

[184] Y. Patel, S. Appalaraju, and R Manmatha, “Saliency driven perceptual
image compression”, in WACV, 2021.

[185] D. Bahdanau, P. Brakel, K. Xu, et al., “An actor-critic algorithm for
sequence prediction”, in ICLR, 2017.

[186] M. Engilberge, L. Chevallier, P. Pérez, and M. Cord, “Sodeep: A sorting
deep net to learn ranking loss surrogates”, in CVPR, 2019.

BIBLIOGRAPHY 102

[187] K. He, Y. Lu, and S. Sclaroff, “Local descriptors optimized for average
precision”, in CVPR, 2018.

[188] J. Revaud, J. Almazán, R. S. Rezende, and C. R. d. Souza, “Learning
with average precision: Training image retrieval with a listwise loss”, in
ICCV, 2019.

[189] M. Roĺınek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, and
G. Martius, “Optimizing rank-based metrics with blackbox differen-
tiation”, in CVPR, 2020.

[190] F. Cakir, K. He, X. Xia, B. Kulis, and S. Sclaroff, “Deep metric learning
to rank”, in CVPR, 2019.

[191] K. Musgrave, S. Belongie, and S.-N. Lim, “A metric learning reality
check”, in ECCV, 2020.

[192] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition”, in CVPR, 2016.

[193] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond
empirical risk minimization”, arXiv preprint arXiv:1710.09412, 2017.

[194] A. Zhai and H.-Y. Wu, “Classification is a strong baseline for deep
metric learning”, arXiv preprint arXiv:1811.12649, 2018.

[195] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep
hypersphere embedding for face recognition”, in CVPR, 2017.

[196] H. Wang, Y. Wang, Z. Zhou, et al., “Cosface: Large margin cosine loss
for deep face recognition”, in CVPR, 2018.

[197] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition”, in CVPR, 2019.

[198] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh,
“No fuss distance metric learning using proxies”, in ICCV, 2017.

[199] E. W. Teh, T. DeVries, and G. W. Taylor, “Proxynca++: Revisiting
and revitalizing proxy neighborhood component analysis”, in ECCV,
2020.

[200] Q. Qian, L. Shang, B. Sun, J. Hu, H. Li, and R. Jin, “Softtriple loss:
Deep metric learning without triplet sampling”, in ICCV, 2019.

[201] I. Elezi, S. Vascon, A. Torcinovich, M. Pelillo, and L. Leal-Taixé, “The
group loss for deep metric learning”, in ECCV, 2020.

[202] J. Seidenschwarz, I. Elezi, and L. Leal-Taixé, “Learning intra-batch
connections for deep metric learning”, in ICML, 2021.

[203] M. Boudiaf, J. Rony, I. M. Ziko, et al., “Metric learning: Cross-entropy
vs. pairwise losses”, in ECCV, 2020.

BIBLIOGRAPHY 103

[204] K. Roth, T. Milbich, S. Sinha, P. Gupta, B. Ommer, and J. P. Cohen,
“Revisiting training strategies and generalization performance in deep
metric learning”, in ICML, 2020.

[205] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning
via lifted structured feature embedding”, in arXiv, 2015.

[206] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective”, in NeurIPS, 2016.

[207] J. Lu, C. Xu, W. Zhang, L.-Y. Duan, and T. Mei, “Sampling wisely:
Deep image embedding by top-k precision optimization”, in ICCV,
2019.

[208] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning
with angular loss”, in ICCV, 2017.

[209] E. Ustinova and V. Lempitsky, “Learning deep embeddings with his-
togram loss”, in NeurIPS, 2016.

[210] M. Kemertas, L. Pishdad, K. G. Derpanis, and A. Fazly, “Rankmi: A
mutual information maximizing ranking loss”, in CVPR, 2020.

[211] V. Verma, A. Lamb, C. Beckham, et al., “Manifold mixup: Better rep-
resentations by interpolating hidden states”, in ICML, 2019.

[212] Y. Duan, W. Zheng, X. Lin, J. Lu, and J. Zhou, “Deep adversarial
metric learning”, in CVPR, 2018.

[213] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus,
“Hard negative mixing for contrastive learning”, NeurIPS, 2020.

[214] W. Zheng, Z. Chen, J. Lu, and J. Zhou, “Hardness-aware deep metric
learning”, in CVPR, 2019.

[215] G. Gu and B. Ko, “Symmetrical synthesis for deep metric learning”, in
AAAI, 2020.

[216] G. Gu, B. Ko, and H.-G. Kim, “Proxy synthesis: Learning with syn-
thetic classes for deep metric learning”, AAAI, 2021.

[217] S. Venkataramanan, B. Psomas, Y. Avrithis, E. Kijak, L. Amsaleg, and
K. Karantzalos, “It takes two to tango: Mixup for deep metric learning”,
in ICLR, 2022.

[218] N. Kyurkchiev and S. Markov, “Sigmoid functions: Some approxima-
tion and modelling aspects”, LAP LAMBERT Academic Publishing,
Saarbrucken, 2015.

[219] A. I. Iliev, N. Kyurkchiev, and S. Markov, “On the approximation of the
cut and step functions by logistic and gompertz functions”, Biomath,
2015.

[220] A Iliev, N. Kyurkchiev, and S Markov, “On the approximation of the
step function by some sigmoid functions”, Mathematics and Computers
in Simulation, 2017.

BIBLIOGRAPHY 104

[221] R. Salakhutdinov and G. Hinton, “Semantic hashing”, International
Journal of Approximate Reasoning, 2009.

[222] S. Gu, S. Levine, I. Sutskever, and A. Mnih, “Muprop: Unbiased back-
propagation for stochastic neural networks”, in ICLR, 2016.

[223] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution:
A continuous relaxation of discrete random variables”, in ICLR, 2017.

[224] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-scale image
retrieval with attentive deep local features”, in ICCV, 2017.

[225] G. Tolias, T. Jenicek, and O. Chum, “Learning and aggregating deep
local descriptors for instance-level recognition”, in ECCV, 2020.

[226] W. Dong, R. Socher, L. Li-Jia, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database”, in CVPR, 2009.

[227] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning cnn image retrieval
with no human annotation”, PAMI, 2019.

[228] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization”, arXiv
preprint arXiv:1607.06450, 2016.

[229] R. Wightman, Pytorch image models, https://github.com/rwightman/
pytorch-image-models, 2019. doi: 10.5281/zenodo.4414861.

[230] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
in ICLR, 2015.

[231] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions”,
in CVPR, 2015.

[232] K. Roth, B. Brattoli, and B. Ommer, “Mic: Mining interclass charac-
teristics for improved metric learning”, in ICCV, 2019.

[233] X. Wang, H. Zhang, W. Huang, and M. R. Scott, “Cross-batch memory
for embedding learning”, in CVPR, 2020.

[234] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-
similarity loss with general pair weighting for deep metric learning”,
in CVPR, 2019.

[235] P. Jacob, D. Picard, A. Histace, and E. Klein, “Metric learning with
horde: High-order regularizer for deep embeddings”, in ICCV, 2019.

[236] Y. Zhang, L. Luo, W. Xian, and H. Huang, “Learning better visual
data similarities via new grouplet non-euclidean embedding”, in ICCV,
2021.

[237] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes
for image retrieval”, in ECCV, 2014.

[238] A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “End-to-end learning
of deep visual representations for image retrieval”, IJCV, 2017.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861

BIBLIOGRAPHY 105

[239] H. Goëau, P. Bonnet, and A. Joly, “Overview of expertlifeclef 2018:
How far automated identification systems are from the best experts?”,
in CLEF, 2018.

[240] H. Goeau, P. Bonnet, and A. Joly, “Plant identification based on noisy
web data: The amazing performance of deep learning (lifeclef 2017)”,
in CLEF, 2017.

[241] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification”, in CVPR, 2005.

[242] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations”, in ICML, 2020.

[243] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Lar-
lus, “Hard negative mixing for contrastive learning”, arXiv preprint
arXiv:2010.01028, 2020.

[244] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton, “Big
self-supervised models are strong semi-supervised learners”, arXiv preprint
arXiv:2006.10029, 2020.

[245] M. Caron, H. Touvron, I. Misra, et al., “Emerging properties in self-
supervised vision transformers”, in ICCV, 2021.

[246] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments”, arXiv preprint arXiv:2006.09882, 2020.

[247] M. Davari, N. Asadi, S. Mudur, R. Aljundi, and E. Belilovsky, “Prob-
ing representation forgetting in supervised and unsupervised continual
learning”, in CVPR, 2022.

[248] J. Winkens, R. Bunel, A. G. Roy, et al., “Contrastive training for im-
proved out-of-distribution detection”, arXiv preprint arXiv:2007.05566,
2020.

[249] D. Chen, D. Wang, T. Darrell, and S. Ebrahimi, “Contrastive test-time
adaptation”, in CVPR, 2022.

[250] M. Boudiaf, J. Rony, I. M. Ziko, et al., “A unifying mutual information
view of metric learning: Cross-entropy vs. pairwise losses”, in ECCV,
2020.

[251] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classi-
fiers”, TPAMI, 1998.

[252] L. Breiman, “Bagging predictors”, Machine learning, 1996.

[253] C. Ju, A. Bibaut, and M. van der Laan, “The relative performance of
ensemble methods with deep convolutional neural networks for image
classification”, Journal of Applied Statistics, 2018.

BIBLIOGRAPHY 106

[254] M. Saerens, P. Latinne, and C. Decaestecker, “Adjusting the outputs
of a classifier to new a priori probabilities: A simple procedure”, Neural
computation, 2002.

[255] M. Sulc and J. Matas, “Improving cnn classifiers by estimating test-time
priors”, in ICCV Workshops, 2019.

[256] A. Alexandari, A. Kundaje, and A. Shrikumar, “Maximum likelihood
with bias-corrected calibration is hard-to-beat at label shift adapta-
tion”, in ICML, 2020.

[257] T. Sipka, M. Sulc, and J. Matas, “The hitchhiker’s guide to prior-shift
adaptation”, arXiv preprint arXiv:2106.11695, 2021.

[258] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network”, arXiv preprint arXiv:1503.02531, 2015.

[259] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks”, arXiv preprint
arXiv:1610.02136, 2016.

[260] F. Graf, C. Hofer, M. Niethammer, and R. Kwitt, “Dissecting super-
vised constrastive learning”, in ICML, 2021.

[261] P. Wohlhart, M. Kostinger, M. Donoser, P. M. Roth, and H. Bischof,
“Optimizing 1-nearest prototype classifiers”, in CVPR, 2013.

[262] X. Chen and K. He, “Exploring simple siamese representation learning”,
in CVPR, 2021.

[263] J.-B. Grill, F. Strub, F. Altché, et al., “Bootstrap your own latent: A
new approach to self-supervised learning”, arXiv preprint arXiv:2006.07733,
2020.

[264] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning”, in CVPR, 2020.

[265] J. Li, P. Zhou, C. Xiong, and S. C. Hoi, “Prototypical contrastive learn-
ing of unsupervised representations”, arXiv preprint arXiv:2005.04966,
2020.

[266] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh,
“No fuss distance metric learning using proxies”, in ICCV, 2017.

[267] S. Kim, D. Kim, M. Cho, and S. Kwak, “Proxy anchor loss for deep
metric learning”, in CVPR, 2020.

[268] Y. Sun, C. Cheng, Y. Zhang, et al., “Circle loss: A unified perspective
of pair similarity optimization”, in CVPR, 2020.

[269] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images”, 2009.

[270] Stanford, Tiny ImageNet Challenge, CS231N Course. [Online]. Avail-
able: https://tiny-imagenet.herokuapp.com/.

https://tiny-imagenet.herokuapp.com/

BIBLIOGRAPHY 107

[271] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset”, 2007.

[272] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks”, in ICML, PMLR, 2017.

	Introduction
	Background
	Limitation of Proxy Loss Functions
	Contributions
	Structure of the Thesis
	Publications

	Related Work
	Learning Surrogates via Deep Embedding
	Related Work
	Learning Surrogates via Deep Embedding
	Definition of the Surrogate
	Learning the Surrogate
	Training with the Learned Surrogate

	Experiments
	Analysing the Learned Surrogates
	Post-Tuning with a Learned Surrogate for ED (LS-ED)
	Post-Tuning with a Learned Surrogate for IoU (LS-IoU)

	Conclusions

	FEDS - Filtered Edit Distance Surrogate
	Related Work
	FEDS: Filtered Edit Distance Surrogate
	Background
	Learning edit distance surrogate
	Robust Training

	Experiments
	FEDS model
	Scene Text Recognition model
	Training and Testing data
	Implementation details
	Quality of the edit distance surrogate
	Quantitative results
	Qualitative results

	Conclusions

	Recall@k Surrogate Loss with Large Batches and Similarity Mixup
	Related work
	Method
	Experiments on Retrieval Benchmarks
	Datasets
	Implementation details
	Evaluation
	Effect of hyper-parameters

	Experiments on Fine-Grained Classification
	Conclusions

	Contrastive Classification and Representation Learning with Probabilistic Interpretation
	Related Work
	Background
	Pairwise Losses
	Cross Entropy and Pairwise Cross Entropy

	Learning a Classifier Jointly with Representation Learning
	Extended Supervised Contrastive Learning
	Experiments
	Datasets
	Methods and Implementation Details
	Fully Supervised Classification
	Classification in Low-Sample Scenario
	Classification under Imbalanced Data
	Classification under Noisy Data
	General Remarks
	Classifier Outputs as Posterior Probabilities

	Conclusion

	Conclusions
	Abstrakt
	Bibliography

