
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Dissertation

Numerical and machine learning methods for medical
image processing

Prague 2022 Kateřina Škardová





iii

This thesis is submitted to the Faculty of Nuclear Sciences and Physical Engineering, Czech
Technical University in Prague, in partial fulfilment of the requirements for the degree of Doctor
of Philosophy (Ph.D.) in Mathematical Engineering.

Copyright © 2022 Kateřina Škardová. All Rights Reserved.





v

Bibliografický záznam

Autor Ing. Kateřina Škardová,
České vysoké učení technické v Praze, Fakulta jaderná a
fyzikálně inženýrská, Katedra matematiky

Název práce Numerické metody a metody strojového učeni pro zpracování
obrazových medicinských dat

Studijní program Aplikace přírodních věd

Studijní obor Matematické inženýrství

Školitel Doc. Ing. Tomáš Oberhuber, Ph.D.,
České vysoké učení technické v Praze, Fakulta jaderná a
fyzikálně inženýrská, Katedra matematiky

Akademický rok 2022

Počet stran 114

Klíčová slova registrace obrazu, optický tok, distanční funkce, korekce
rozostření obrazu, odhad parametrů, strojové učení, MRI,
Blochovy rovnice

Bibliographic Entry

Author Ing. Kateřina Škardová,
Czech Technical University in Prague, Faculty of Nuclear
Sciences and Physical Engineering, Department of
Mathematics

Title of dissertation Numerical and machine learning methods for medical image
processing

Degree programme Application of Natural Sciences

Field of study Mathematical Engineering

Supervisor Doc. Ing. Tomáš Oberhuber, Ph.D.,
Czech Technical University in Prague, Faculty of Nuclear
Sciences and Physical Engineering, Department of
Mathematics

Academic year 2022

Number of pages 114

Keywords image registration, optical flow, distance function, image
deblurring, parameter estimation, machine learning, MRI,
Bloch equations





vii

Abstrakt
Tato práce se zabývá využitím matematických metod při zpracování medicínských obrazových
dat. Je zde demonstrováno použití numerických metod i jejich kombinace s metodami strojového
učení. Práce se zabývá třemi tématy – registrací obrazu, odstraňováním rozmazání obrazu a
odhadem parametrů na základě obrazových dat.

V práci jsou popsány dva přístupy k registraci obrazu. Jeden z nich řeší problém registrace
obrazů s proměnlivou intenzitou, druhý je vhodný pro další analýzu získaného deformačního
pole. První metoda se používá k registraci snímků ze sekvence MOLLI. Výsledky jsou porovnány
se standardní registrační metodou. Druhá metoda je použita ve dvou variantách – s využitím
klasické podobnostní funkce založené na intenzitě a s využitím obrazového modelu. V první
variantě je metoda použita pro registraci MRI snímků srdce a následný výpočet torze levé komory,
druhá varianta je testována na syntetických tagovaných snímcích.

V další části práce je problém korekce rozostření obrazu formulován jako minimalizační
problém s vazbou danou parciální diferenciální rovnicí. Je odvozen adjungovaný problém a je
ukázáno, jak lze jeho řešení použít k řešení primárního minimalizačního problému.

Nakonec je popsána metoda odhadu parametrů tkáně na základě obrazových dat. Metoda je
použita k odhadu relaxačního času T1 z obrazových řad MOLLI. Je provedena studie na reálných
datech MRI a výsledky jsou porovnány s existující metodou pro odhad T1.

Abstract
This thesis deals with the use of mathematical methods in the medical image data processing.
The use of numerical methods as well as their combination with machine learning methods is
demonstrated. Three topics are addressed in the thesis – image registration, image deblurring,
and parameter estimation based on image data.

The thesis describes two approaches to image registration. One of which addresses the
problem of registering images with varying image intensity, and the other is suitable for further
analysis of the acquired deformation field. The first method is used to register images from
the MOLLI sequence. The results are compared with the standard registration method. The
second method is used in two variants – using a classical intensity-based similarity function and
an imaging model. In the first variant, the method is used for the registration of cardiac MRI
images and subsequent calculation of the left ventricular torsion, the second variant is tested on
synthetic tagged images.

Next, the problem of image deblurring is formulated as a PDE-constrained minimization
problem. The adjoint problem is derived and it is shown, how its solution can be used to solve
the primary minimization problem.

Finally, a method for tissue parameter estimation based on image data is described. The
method is used to estimate the T1 relaxation time from MOLLI image series. A study on real
MRI data is performed and the results are compared with the existing method for T1 estimation.





ix

Acknowledgements
First of all, I would like to thank my supervisor Tomáš Oberhuber for his patience and

constant support during my Ph.D. studies. I appreciated his vast knowledge of numerical
mathematics and all the great ideas he kept coming up with to improve my work, even at times
when we seemed to have reached a dead end in our research.

I am grateful to Radomír Chabiniok for providing invaluable medical background for my work.
Thanks to him I understood that there should indeed always be a "relevant clinical question" at
the beginning of any research project concerning the application of mathematics in medicine.

I would also like to express my gratitude to all the collaborators from the many depart-
ments – FNSPE, IKEM, Inria, École Polytechnique, and UT Southwestern Medical Center –
who participated in the research projects I was involved in. I always appreciated the supportive
working and learning environment they created for me as a starting researcher.

Finally, I would like to thank my family and especially my husband who supported me during
my Ph.D. studies and never let me give up.

My work related to the topic of my thesis was supported by:

• Application of advanced supercomputing methods for mathematical modeling of natural
processes, project of the Student Grant Agency of the Czech Technical University in Prague
No. SGS17/194/OHK4/3T/14

• Development and application of advanced methods for mathematical modeling of natural
and industrial processes using high-performance computing, project of the Student Grant
Agency of the Czech Technical University in Prague No. SGS20/184/OHK4/3T/14

• Centre for Advanced Applied Sciences, project of The Ministry of Education, Youth and
Sports of the Czech Republic under the OP RDE No. CZ2.11/0/0/16_019/0000778

• Research Center for Informatics, project of The Ministry of Education, Youth and Sports
of the Czech Republic under the OP RDE CZ2.11/0/0/16_019/0000765

• Analysis of flow character and prediction of evolution in endovascular treated arteries by
magnetic resonance imaging coupled with mathematical modeling, project of The Ministry
of Health of the Czech Republic No. NV19-08-00071





xi

Publications Related to the Thesis

Journal papers

• Škardová, K., Oberhuber, T., Tintěra, J., and Chabiniok, R. (2021). Signed-distance
function based non-rigid registration of image series with varying image intensity. Discrete
& Continuous Dynamical Systems - S, 14(3):1145–1160.

– Chapter 2

• Castellanos, D. A., Škardová, K., Bhattaru, A., Berberoglu, E., Greil, G., Tandon, A.,
Dil- lenbeck, J., Burkhardt, B., Hussain, T., Genet, M., and Chabiniok, R. (2021). Left
ventricular torsion obtained using equilibrated warping in patients with repaired tetralogy of
Fallot. Pediatric Cardiology, 42(6):1275–1283.

– Chapter 4

Conference papers

• Škardová, K., Rambausek, M., Chabiniok, R., and Genet, M. (2019). Mechanical and imag-
ing models-based image registration. In ECCOMAS Thematic Conference on Computational
Vision and Medical Image Processing, pages 77–85. Springer.

– Chapter 3

Book chapters

• Chabiniok, R., Škardová, K., Galabov, R., Eichler, P., Gusseva, M., Janoušek, J., Fučík,
R., Tintěra, J., Oberhuber, T., Hussain, T. (2021). Translational Cardiovascular Modeling:
Tetralogy of Fallot and Modeling of Diseases. In Modeling Biomaterials (pp. 241-276).
Birkhäuser, Cham.

Submitted publications

• Škardová, K., Galabov, R., Fricková, K., Pevný T., Tintěra, J., Oberhuber, T., Chabiniok,
R., (2022). Combining machine learning and mathematical modeling in estimation of T1
relaxation time from cardiac magnetic resonance imaging data. Submitted to Heliyon.

– Chapter 6





xiii

Author’s declaration

I confirm having prepared the thesis on my own and having listed all used sources of information
in the bibliography.

Prague, December 14 2022 Kateřina Škardová





Contents

Contents xv

1 Introduction 1
1.1 The focus of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Image registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Tissue parameter estimation based on medical image data . . . . . . . . . . . . . 3

2 Registration of images with varying image intensity 5
2.1 The MOLLI image series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Segmentation of the myocardium . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Mean-curvature driven motion of level sets . . . . . . . . . . . . . . . . . 7
2.3.2 Edge detection using mean-curvature flow . . . . . . . . . . . . . . . . . . 8
2.3.3 Signed-distance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 Representation of the myocardium . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Optical flow based registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Signed-distance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.4 Determining of the optical flow . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.1 Parameters of the discretization and criteria of convergence . . . . . . . . 17
2.6.2 Terminology and evaluation of results . . . . . . . . . . . . . . . . . . . . 18
2.6.3 Synthetic images with single object . . . . . . . . . . . . . . . . . . . . . . 18
2.6.4 Synthetic images with two objects . . . . . . . . . . . . . . . . . . . . . . 19
2.6.5 Registration of both objects . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.6 Registration of one object . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.7 Results MOLLI images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Application for calculation of ECV . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Mechanical and imaging models in image registration 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 The problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Incorporation of imaging and mechanical model . . . . . . . . . . . . . . . . . . . 27

3.3.1 Model of tagged MRI images . . . . . . . . . . . . . . . . . . . . . . . . . 27

xv



xvi Contents

3.3.2 Model of MRI artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Formulation of the optimization problem . . . . . . . . . . . . . . . . . . 28

3.4 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Experimental results on synthetic images . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Estimation of left ventricular torsion 31
4.1 Introduction to the tetralogy of Fallot . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 The objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Clinical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 The proposed workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Tracking the motion of the ventricle . . . . . . . . . . . . . . . . . . . . . 35
4.5.3 Estimation of left ventricular torsion . . . . . . . . . . . . . . . . . . . . . 36

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Image enhancement by solving inverse diffusion equation 39
5.1 Gradient descent method for minimization problems . . . . . . . . . . . . . . . . 40
5.2 Gradient computation in general PDE constrained minimization problem . . . . 40
5.3 Image deblurring as a PDE constrained minimization problem . . . . . . . . . . 41

5.3.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Computation of the gradient . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.1 Spatial discretization, approximation of spatial derivatives and integrals . 44
5.4.2 Numerical algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Estimation of T1 relaxation time from cardiac MRI data 49
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Tissue magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.2 Background to T1 estimation . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.3 Alternative approaches to T1 estimation . . . . . . . . . . . . . . . . . . . 51

6.2 The proposed two-stage method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.1 Mathematical model of the imaging sequence . . . . . . . . . . . . . . . . 54
6.2.2 Patient- and measurement-specific model . . . . . . . . . . . . . . . . . . 56
6.2.3 Neural network trained on the synthetic data . . . . . . . . . . . . . . . . 57
6.2.4 Parameter estimation approach combining neural network and numerical

optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.5 Regularization terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Synthetic and real MRI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.3 In vivo data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.1 Synthetic data study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.2 Phantom study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Nomenclature xvii

6.4.3 In vivo data study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusions and perspectives 75

Appendices 79

A Additional details on phantom and in-vivo study 81
A.1 Parameters of the phantom measurements . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Parameters of the in vivo measurements . . . . . . . . . . . . . . . . . . . . . . . 81
A.3 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 89





Introduction 1
Incorporating mathematical models into real clinical applications provides an opportunity to
address clinical problems that the currently available resources cannot adequately solve. Book
chapter [15] presents some examples of mathematical models employed in the assessment and
treatment of cardiovascular pathologies. The discussed methods include mathematical models
of the heart with physiological and biophysical basis, simulations of flow in vessels, advanced
acquisition and processing pipelines for clinical data, and creating personalized models by the
means of model-data fusion. Ultimately, it is the process of translating patient-specific modeling
into patient care that contribute to an accurate diagnosis or optimal clinical management.

1.1 The focus of thesis

This work revolves around medical image data processing. As will be explained in this chapter,
in the field of medical image analysis, the notion of image processing encompasses a very broad
class of problems. Most of the chapters focus on processing cardiac magnetic resonance imaging
(MRI) data. Although some of the presented methods are problem-specific as they exploit very
specific properties of a particular MRI sequence, others are directly applicable to other types of
medical image data.

When referring to image processing in general, we usually consider tasks such as image
registration, image enhancement, or pattern recognition. These tasks are not exclusive to medical
image analysis and need to be handled in many domains of human activity. Four chapters
of this work address these more classical types of image-processing tasks. Two approaches to
image registration, designed for different types of image data, are presented in Chapters 2 and
3. In Chapter 4, an incorporation of existing image registration method into the procedure
of extracting motion features is presented. The problem of image enhancement, specifically
deblurring is addressed in Chapter 5. This chapter focuses on a mathematical formulation of
the problem and derivation of its solution.

As mentioned above, in the field of medical imaging, image processing includes also a variety
of tasks specific to this domain. In principle, the intensity of a voxel in a magnetic resonance
(MR) image is determined by some characteristic of the imaged tissue. Therefore, MR can
be used to non-invasively assess not only the shape, position, or motion of organs but also the
properties of the tissue. Depending on the clinical question, suitable MR imaging sequence
can be selected that encodes the relevant tissue parameter into the output image. The set of
imaged properties can be as diverse as velocity, the amount of absorbed contrast agent, or time
constants of magnetic resonance phenomena of the examined tissue. Determining a given tissue
characteristic from image data can sometimes be straightforward. However, sometimes, it may
be rather non-trivial.

1



2 1. Introduction

The problem of estimating tissue parameters from image data can be viewed as an inverse
problem of the underlying model. In mathematics, an inverse problem is a process of determining
causal parameters that were used in a system to produce the set of given observations. The
underlying model can describe, for instance, directly the imaging sequence (the model of physical
phenomenon – nuclear magnetic resonance effect – in Chapter 6). In other applications, it may
be the model of physiological process (e.g., properties of contracting heart as in Chapter 4) or
model describing the flow in large vessels (e.g. submitted article [22]) or the microcirculation
(submitted article [26]).

In our case, the imaging sequence plays the role of the system, and the images obtained using
this sequence as the observations. In the example of the model of imaging sequence, the forward
problem consists in generating a signal (image intensity) for a given set of tissue parameters, and
the inverse problem in determining the parameters based on the observed signal:

Tissue parameters Forward problem−−−−−−−−−−→ Image intensity

Tissue parameters Inverse problem←−−−−−−−−− Image intensity

In order to mathematically solve either the direct or the inverse problem, a mathematical model
of the system – in our case, the imaging sequence – is required. For more complex imaging
sequence it can be challenging to balance the sufficient descriptiveness of the mathematical model
and the number of free parameters that need to be optimized. In Chapter 6, we demonstrate an
approach to this type of problem in the example T1 relaxation time estimation based on image
series acquired by a specific type of MR imaging sequence.

In the remaining part of this chapter, we provide deeper background to the two key topics of
this, which where mentioned above – image registration and tissue parameter estimation.

1.2 Image registration

Image registration is one of the key image-processing tasks in medical imaging. It is defined as
the process of determining the displacement between two images of the same object and removing
this displacement to align the object. It is used to resolve misalignment caused by the movement
of the imaged object during image acquisition, which may occur due to respiratory or cardiac
movements of the patient. Alternatively, registration may be required when integrating image
data acquired by different types of medical imaging techniques, the so-called multimodal images.
In this case, the problem of different spatial resolutions and modalities of the images must also
be addressed.

Registration of the image series is often the first step in any subsequent voxel-wise analysis.
For example, when estimating a tissue parameter based on image series, i.e. when the parameter
is a function of the time-dependent image intensity. An example of such a problem is the
estimation of T1 relaxation time from the MOLLI (Modified Look-Locker inversion recovery, [53])
image series, addressed in Chapter 2.

Sometimes, however, the target of the analysis may be the extraction of the motion. This is
particularly relevant in cardiac magnetic resonance imaging, where the examination of cardiac
motion patterns can be used for diagnostic or prognostic purposes. Several MR imaging techniques,
such as cardiac MRI tagging and MRI cine sequences, were specifically designed for myocardial
deformation analysis. The image registration method proposed specifically to track motion in
the tagged MRI images is presented in Chapter 3. Compared with the global features of cardiac
function such as ejection fraction, local features such as myocardial strain and torsion can provide
information about dysfunction in a segment of the myocardium, even when the global features
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are preserved within normal values. The use of image registration method in the task of torsion
estimation is illustrated in Chapter 4.

Most classical image registration methods consist of defining a suitable measure of similarity
between the two images and subsequently minimizing a loss function based on this similarity
measure. One way in which registration methods can be divided is based on which parts of
the images are taken into account when assessing the similarity between images [50, 56]. The
similarity might be evaluated based on comparing properties of all voxels, sets of landmark
points, contours, or surfaces. In the landmark based approach, the landmarks can be detected
automatically or manually. In cardiac MRI images, this approach may be problematic, as
there are usually only a few suitable anatomical landmarks and their accurate location may be
difficult, especially in the case of multimodal image registration. In the contour-based methods,
the similarity of images is evaluated based on the contours of objects detected in both images.
In [20], the B-spline method was used to register segmented left ventricle contours. Finally, in
the voxel-based methods, the similarity measure is defined based on the comparison of image
properties in all voxels of the images. A classical example of such methods is the optical flow
method. In [35], the similarity measure for the optical flow method was defined based on the
comparison of image intensity and gradient orientation.

Selecting the image features used in the registration method is yet another important aspect
in the definition of the suitable similarity measure. Some of the most basic features may be the
image intensity and the gradient of the intensity. The appropriate choice is especially important
when registering images obtained by different modalities. In such cases, the similarity cannot
be evaluated based on the image intensity and more complex features must be used, such as in
Chapter 2.

From a mathematical point of view, image registration is an ill-posed problem – there may
be many displacement fields that would lead to the same result when applied to an image, but
not all of them are admissible. Therefore, a variational approach is often used to formulate the
problem of finding the optimal deformation field, and the image similarity term is complemented
by regularization terms. The regularization should contain the additional conditions that the
deformation field should satisfy in order to be feasible.

The basic regularization conditions usually enforce a reasonable magnitude of the displace-
ments and smooth changes of displacements in adjacent voxels. More complex regularization
conditions may involve knowledge of the physiological and physical properties of the object. Such
added constraints will typically also affect the magnitude and smoothness of the displacements but
in a more problem-specific manner. Finally, in some cases, the regularization terms may include
prior knowledge about the expected type of deformation. Finding the optimal displacement field
can then be reduced to finding the parameters of the considered type of transformation.

1.3 Tissue parameter estimation based on medical image data
Lately, both mathematical models and machine learning (ML) methods were used to estimate
tissue parameters from a series of MRI images.

Mathematical models with a biophysical background may allow estimating material parameters
representing the physical properties of the tissue (e.g. passive myocardial stiffness and contractility
using cine or tagged MRI [1, 14, 32, 33, 39, 83], the density of microvessel network in the
myocardium using perfusion MRI [17], Young’s modulus or relative pressures using cine and
phase-contrast MRI [5, 10, 21].

The estimation of the tissue parameters based on the measured data are often ill-posed.
The character of the problem depends on the specific combination of mathematical model and
measured data. In some cases, only 2D measurements are available, while the mathematical
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model of the 3D system is used. Also, some quantities used as parameters in the model are not
measured at all. Typically, the more complex the mathematical model, the higher are the risks of
the measurements not containing an adequate amount of information. Therefore, succeeding in
estimating parameters in such complex models may depend also on defining an initial guess for
the parameters. Providing a sufficiently good initial guess may prevent the estimation procedure
from finding local minima and also accelerate the computation-intensive numerical optimization.
Obtaining such an initial estimate can be a difficult task in itself.

ML has recently been used in a number of tasks in medical image processing, such as image
classification, registration, or segmentation. These ML methods are frequently based on Neural
Networks (NN) and their variants, such as Convolutional Neural Networks (CNN). CNN was
used for brain tumor segmentation in [60], a cascade of CNNs was used for image reconstruction
from undersampled k-space measurements in [67]. [4] used an ensemble of several deep NNs
trained on synthetic data for denoising contrast-enhanced MR images. Application of ML in the
cardiovascular system was reviewed in [69] and book [51] provides an overview of current methods
of computational modeling and artificial intelligence in cardiac applications. [55] used a method,
which incorporated the knowledge of typical organ shape within CNN, for the segmentation of
myocardium. [43] used ML for domain adaptation in a cohort of congenital heart diseases, to
give some examples from this fast-growing research area.

It has been shown that ML methods can effectively ’learn’ even complex systems when a
large number of pairs of inputs and outputs for the system are provided. However, in the field of
medical image analysis, obtaining such dataset may not always be possible. In addition to the
fact that in some cases the data is simply not obtained in sufficient quantities, it can also be
time expensive to assess the desired output or the so-called ground truth. Insufficient training
dataset can cause overfitting, where the model prediction is overly fitted to a particular dataset.
In those applications, where acquiring a sufficient amount of real samples would be technically
impossible or very costly, data augmentation can be used. This technique expands the training
dataset by synthetic data, which are created based on the original data, e.g. in the case of image
data, by applying elastic deformations, blurring, or other modifications [76].

Alternatively, we can see this as an opportunity to combine both approaches. If the given
system can be represented by a mathematical model, additional training data may be generated
using the model itself [13]. As opposed to the augmentation of existing data, the mathematical
model can be used to supplement also the outlying measurements. One more reason to consider
combining both approaches is the potential to increase the interpretability and reliability of the
results, as it is known that the actual physical or biological character of the system can become
completely neglected when using the ML methods alone.

The presented challenges are addressed in Chapter 6 in the example of specific parameters
estimation problem.
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This chapter is based on work [77]:

Škardová, K., Oberhuber, T., Tintěra, J., and Chabiniok, R. (2021). Signed-distance
function based non-rigid registration of image series with varying image intensity.
Discrete & Continuous Dynamical Systems - S, 14(3):1145–1160.

2.1 The MOLLI image series
In this section, we describe the main features of the MOLLI image series and how these images
are used to assess the T1 relaxation time and extracellular volume fraction (ECV). We only
focus on the aspects of the MOLLI image series, that addresses in the image registration method
described in this chapter. More details of the MOLLI sequence and T1 relaxation time are
provided in Chapter 6.

Figure 2.1: Diagram of obtaining the T1 maps and subsequently the ECV map from the
MOLLI image series.

The processing of the MOLLI image series is shown in Figure 2.1. We work with the MOLLI
image series consisting of 11 images of myocardium acquired at different times. The images are

5
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used to compute a map where the intensity of each pixel represents the T1 relaxation time within
the pixel. The computation is performed pixel-wise and therefore the myocardium needs to be in
the same position in all images of the series.

In order to obtain ECV, the image series needs to be acquired before and after administering
a contrast agent. The contrast agent affects the relaxation times and therefore we obtain two
different T1 maps. These two maps are subsequently compared to obtain a map where each
pixel’s intensity corresponds to the ECV. The ECV is computed using the following formula:

ECV = (1− h) ·
1

T1,post,myo
− 1

T1,pre,myo

1
T1,post,blood

− 1
T1,pre,blood

,

where h denotes the hematocrit – a patient-specific constant that represents the cellular fraction
of blood. In order to compare T1,pre,myo and T1,post,myo correctly in each point of the myocardium,
the myocardium should be in the same position in both T1 maps.

The diagram in Figure 2.1 also shows the main characteristics of the MOLLI image series –
the changing image intensity. This feature of the images needs to be taken into consideration
when registering them.

2.2 The proposed method

In this chapter, we address the problem introduced above – registration of two images of the
same object with different image intensities acquired at different times. These images are referred
to as source and target images. To deal with this property of the image data, we propose an
image registration method based on representing the objects by their signed-distance functions.
The principle of the method is shown in Figure 2.2.

In the first step, the object of interest – the myocardium – is segmented in both images. In
the next step, the segmented objects are represented by their signed distance function (SDF). The
SDF contains information about the position and shape of the myocardium but omits the original
image intensities. Subsequently, the displacement field between the two SFDs is determined.
This is done by estimating the optical flow u. In the last step, the optical flow u is applied to
the original source image. The myocardium in the resulting image should be aligned with the
myocardium in the target image.

Each of the steps is described in detail in the following sections. First, the segmentation of
the myocardium of described within Section 2.3. Namely, the level-set method used for detecting
myocardium contours is described in Sections 2.3.1 and 2.3.2. Subsequently, the computation
of the signed-distance function is described in Section 2.3.3. Finally, the representation of the
myocardium, based on the detected contours, is described in Section 2.3.4

The optical flow method is introduced in Section 2.4. The numerical solution of the problem
is described in Section 2.5. Finally, the experimental results and comparison of the proposed
method with two other registration approaches are presented in Section 2.6.

2.3 Segmentation of the myocardium

In this work, the myocardium is segmented using the level-set method for the edge detection. The
result of this method is a closed smooth curve corresponding with the myocardium edge. The
outer (epicardial) and subsequently the inner (endocardial) edge of the myocardium is detected
and the myocardium is then defined as the area between these two curves.
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Figure 2.2: Principle of the proposed image registration method.

2.3.1 Mean-curvature driven motion of level sets

The level-set methods are based on implicit description of surfaces. In 2D domain Ω, we consider
a dynamic simple closed curve C(θ), where θ denotes the time used to track the evolution of the
curve. In the implicit description, C is viewed as a zero level set of a corresponding level-set
function ψ(x, θ), such that ψ(x, θ) = 0 for all x that lie on the curve C. That is C(θ) = {x, such
that ψ̃(x, θ) = 0} [57].

We assume that the level-set function takes positive values on the exterior of curve C(θ) –
denoted as C(θ)ext – and negative values in the interior – denoted as C(θ)int, i.e.:

ψ(x, θ) = 0, ∀x ∈ C(θ), ∀θ ∈ [0, T 1
fin], (2.1)

ψ(x, θ) < 0, ∀x ∈ C(θ)int,∀θ ∈ [0, T 1
fin],

ψ(x, θ) > 0, ∀x ∈ C(θ)ext,∀θ ∈ [0, T 1
fin],

where [0, T 1
fin] is the time interval in which the evolution takes place.

This representation may be convenient for multiple reasons. First, the position of any point
y with respect to the curve C at a given time θ can be assessed by evaluating the sign of ψ(y, θ).
Further, the unit outer normal vector to the curve can be easily obtained as n = ∇ψ/‖∇ψ‖,
assuming ψ is differentiable at a given point. Last but not least, no explicit handling is needed
to keep track of the curve splitting and merging during its evolution in time. Let us now consider
the task of edge detection using such implicitly described curve C.

Let us assume, the object whose boundary we want to detect lies inside the initial curve
Cinit(x) represented by the level-set function ψinit(x). We may use ψinit(x) as an initial condition
for the evolution of the curve, that is ψ(x, 0) = ψinit(x). We aim for such evolution of ψ that
adapts the contour C of the object.

The curve should therefore primarily move inward. If the curve moves in the direction of
an inner normal vector with velocity v = −v∇ψ/‖∇ψ‖, where v is the velocity magnitude, the
following equation holds for the corresponding level set function [71]:

∂ψ

∂θ
− ‖∇ψ‖v = 0 ∀x ∈ C(θ),∀θ ∈ [0, T 1

fin]. (2.2)

In this work, we use the so-called mean curvature flow – each point of the curve moves inward
with a velocity proportional to the boundary mean curvature at that point. In the terms of
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equation (2.2), such evolution is ensured by setting velocity magnitude v to a mean curvature
of the curve C [23], i.e. v = ∇ ·

(
∇ψ̃
‖∇ψ̃‖

)
. By substituting for v in equation (2.2), the level-set

formulation of the mean-curvature flow is obtained:

∂ψ

∂θ
− ‖∇ψ‖∇ ·

( ∇ψ
‖∇ψ‖

)
= 0 ∀x ∈ C(θ), ∀θ ∈ [0, T 1

fin]. (2.3)

For the numerical stability and existence of solution at points with zero gradients of ψ , ‖∇ψ‖
is regularized as ‖∇ψ̃‖ε =

√
ε2 + ‖∇ψ̃‖2 [23, 62]. The final form of the equation reads:

∂ψ

∂θ
− ‖∇ψ‖ε∇ ·

(
∇ψ
‖∇ψ̃‖ε

)
= 0 on Ω× (0, T 1

fin], (2.4)

ψ(x, 0) = ψ0(x) on Ω,
∇ψ(x, θ) · n = 0 on ∂Ω× (0, T 1

fin].

2.3.2 Edge detection using mean-curvature flow

In this section, we discuss, how the mean-curvature-driven evolution of curve C, described by
equation (2.2) can be modified for the purpose of edge detection. In image processing, edges are
typically characterized by a significant change of the image intensity.

Let us represent the image by image intensity function I : Ω → R, where Ω denotes the
image domain. Sudden changes in image intensity can then be identified based on the norm
of the image function gradient. In order to adapt the curve C to the edge of the object, its
mean-curvature-driven evolution (described by (2.3)) should stop when it approaches a point
with a large gradient of the image function I. For this, equation (2.3) is modified in the following
way [11]:

∂ψ

∂θ
= ‖∇ψ‖εg0∇

( ∇ψ
‖∇ψ‖ε

)
+ ∇ψ · ∇g0 on Ω× (0, T 2

fin], (2.5)

ψ(x, 0) = ψ0(x) on Ω,
∇ψ · n = 0 on ∂Ω× (0, T 2

fin],

where function g0 = g0(‖∇I‖) tends to zero for growing values of the image gradient norm. We
use the function:

g0(‖∇I‖) = 1/(1 +K‖∇I‖2), (2.6)

as proposed in [61]. The function g0 controls the sensitivity to variations of image intensity by
the parameter K.

The second added term ∇ψ · ∇g0, i.e. derivative of ψ in direction of ∇g0, has a corrective
effect in the evolution of the curve. The diagram in Figure 2.3 shows an illustrative curve C and
an object, whose edge is to be detected, but it is not fully inside the curve. In the case of point
b, the additional term ∇ψ · ∇g0 will take on negative value and therefore contribute to getting
point b inside curve C. In the case of point a, the term ∇ψ · ∇g0 will take on positive value
and therefore reinforce the movement of curve C in the inward direction towards the edge of the
object. We note, that this only holds for points sufficiently close to the edge of the object and
curve C.
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Figure 2.3: The diagram of the direction of ∇g0 in the point b inside the object and point a
outside the object whose edge is to be detected by curve C.

2.3.3 Signed-distance function

Level-set functions, obtained as a result of the level-set equation for the edge detection (2.5),
represent the detected contour of the myocardium. This representation is however not suitable
for the subsequent processing, as one contour might be represented by several level-set functions.

Therefore, we construct function φ, which has the same zero level set and additionally has the
properties of the signed-distance function (i.e. ‖∇φ(x)‖ = 1). Only one signed-distance function
exists for each detected contour and therefore it is a representation suitable for comparing the
contours. Function φ̃ with the characteristics described above is obtained by solving the following
equation [70]:

∂φ

∂θ
= S(ψ) (1− ‖∇φ‖) on Ω× (0, T 3

fin], (2.7)

φ(x, 0) = ψ(x) on Ω,
∇φ · n = 0 on ∂Ω× (0, T 3

fin],

where function S is defined as smoothed sign function S(ψ) = ψ/
√
ψ2 + ε2. We note that the

original level-set function ψ(x) function serves as the initial estimate to evaluate the smoothed
sign function S.

The shape representation by the signed-distance function is convenient as it distributes the
information about contour C into the whole area Ω and thus enables the use of the optical flow
registration method.

2.3.4 Representation of the myocardium

As mentioned above, equation (2.5) is solved twice in order to detect both contours of the
myocardium. We assume that the position of the initial curve for the outer edge segmentation
is provided by the user, as well as the value of constant K and the estimation of myocardium
thickness dmyo.

First, equation (2.5) is solved for the outer (endocardial) edge detection. The detected curve
Cendo is represented by the zero level set of function ψendo(x) = ψ(x, T 2

fin,endo). To acquire
unique representation by SDF, equation (2.7) is solved with initial condition ψendo(x). As a
result, the signed distance function φendo(x) = φ(x, T 3

fin,endo) is obtained.
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Second, equation (2.5) is solved for the inner (epicardial) contour detection. The initial
condition is determined based on φendo(x). The zero level set is moved inward by the estimated
myocardium thickness: ψ0(x) = φendo(x) + dmyo. The detected curve Cepi is then represented by
the zero level set of function ψepi(x) = ψ(x, T 2

fin,epi). Subsequently, the signed distance function
φepi(x) = φ(x, T 3

fin,epi) is obtained as a solution of (2.7), solved with initial condition ψepi(x).
Finally, the two contours are combined in a single level-set representation of the myocardium:

ψmyo(x) =
{
−φepi(x) for x : φepi(x) < 0,
φendo(x) for x : φepi(x) ≥ 0.

(2.8)

The resulting level-set function ψmyo(x) takes on negative inside the myocardium and positive
values outside the myocardium, as illustrated in simplified Figure 2.4.

Figure 2.4: Representation of the myocardium by a single level-set function ψmyo.

The final representation φmyo(x) = φ(x, T 3
fin,myo) is obtained by solving equation (2.7) with

initial condition ψmyo(x).

2.4 Optical flow based registration
Optical flow [38] is a vector field capturing the displacements occurring in the images of the same
scene taken at times t and t+ ∆t. Let us represent the input image series by a time-dependent
image function I : Ω× T → R, where T represents the time interval during which the images
were taken and Ω is the spatial domain of the image.

For such image series represented by I, the optical flow is defined as a vector field u(x, t) =
(u1(x, t), u2(x, t), t), where ui(x, t) : Ω×T → R, i ∈ {1, 2} denote the displacements in directions
of axes x and y, respectively.

To determine the optical flow, a rule for finding the correspondence between the points on
images taken at time t and t+ ∆t is needed. In most optical flow-determining algorithms, the
correspondence is found based on a constancy assumption, which states that a certain value
remains unchanged in time. The assumption frequently used for a single-modality registration is
the brightness constancy assumption, according to which the intensity of each point remains the
same in all images of the given series, i.e.:

I(x(t), y(t), t) = D, ∀x ∈ Ω,∀t ∈ T. (2.9)

In the proposed method, the optical flow is applied to the series of signed-distance functions
to avoid the problem with varying image intensities. Let us assume the SDF φmyo(x) representing
the myocardium is constructed in a way described in Section 2.3.4 in each frame of the input
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image series. This way we obtain time dependent signed-distance function φmyo(x, t). From
this point on, the index that links the SDF to the myocardium is dropped, and the SDF will be
denoted by φ(x, t)

The constancy assumption is applied to the signed-distance function φ(x, t) the same way as
it was applied to the image function I(x, t) in (2.9):

φ(x(t), y(t), t) = D, ∀x ∈ Ω, ∀t ∈ T. (2.10)

Given how the function φ(x, t) is defined, the equation (2.10) states, that distance of any given
point from the contours of the myocardium remains constant in time.

When registering the images within the MOLLI image series, we should be aware that the
images are not chronologically ordered, as discussed in detail in Chapter 6. Therefore, the image
series can be divided into two-image subsequences, each containing the target and source image,
without loss of any information. Further, the time dimension is neglected and ∆t = 1 is used in
each subsequence, for simplicity.

As a derivative of equation (2.10), we obtain:

dφ
dt = ∂φ

∂x
u1 + ∂φ

∂y
u2 + ∂φ

∂t
= 0, ∀x ∈ Ω, (2.11)

where u1 and u2 denote x- and y-component of the displacements.
Equation (2.11) is not solved directly. Instead, we apply a more convenient variational

approach, which allows for the incorporation of regularisation terms. We reformulate the
requirements stated on the vector field u in (2.11) as a minimization problem:

min
u

∫
Ω

(
∂φ

∂x
u1 + ∂φ

∂y
u2 + ∂φ

∂t

)2
dx. (2.12)

We proceed to define the regularisation terms: the assumption of smoothness and the assump-
tion of minimal magnitude. These two assumptions, together with the constancy assumption,
force the zero displacements into the areas with the constant values function φ. The final
functional has the following form:

E(u1, u2) = α

∫
Ω

(
∂φ

∂x
u1 + ∂φ

∂y
u2 + ∂φ

∂t

)2

︸ ︷︷ ︸
Econstancy

dx + β

∫
Ω

q
(
‖∇u1‖2 + ‖∇u2‖2

)
︸ ︷︷ ︸

Esmoothness

dx + γ

∫
Ω

‖u‖

︸ ︷︷ ︸
Emagnitude

dx,

(2.13)

where q
(
‖∇u1‖2 + ‖∇u2‖2

)
=
√
ε+ ‖∇u1‖2 + ‖∇u2‖2. The terms of functional (2.13) will

be referred to as Econstancy, Esmoothness and Emagnitude, respectively.
The domain of functional E(u1, u2) is W = W 1,2(Ω)×W 1,2(Ω), where W 1,2(Ω) is the Sobolev

space W 1,2(Ω) =
{
u|u,Dxu,Dyu ∈ L2(Ω)

}
[40]. The functions minimizing functional E on its

domain are denoted as (u∗1, u∗2).
Functional E(u1, u2) is convex and therefore satisfies the equation

dE((u∗1, u∗2); (θ1, θ2)) = 0, ∀(θ1, θ2) ∈W, (2.14)

where dE(u∗1, u∗2) is the Fréchet derivative of the functional E at the point (u∗1, u∗2) [63]. Equation
(2.14) is the necessary and sufficient condition for the functions (u∗1, u∗2) to be minimizers of the
functional E(u1, u2)[63].
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Using the fundamental lemma of calculus of variations [28] it can be proven that the minimizing
functions (u∗1, u∗2) have to satisfy the following set of equations:

α

(
∂φ

∂x
u∗1 + ∂φ

∂y
u∗2 + ∂φ

∂t

)
∂φ

∂x
− β∇ ·

(
q′(‖∇u∗1‖

2 + ‖∇u∗2‖
2)∇u∗1

)
+ γu∗1 = 0, ∀x ∈ Ω, (2.15)

α

(
∂φ

∂x
u∗1 + ∂φ

∂y
u∗2 + ∂φ

∂t

)
∂φ

∂y
− β∇ ·

(
q′(‖∇u∗1‖

2 + ‖∇u∗2‖
2)∇u∗2

)
+ γu∗2 = 0, ∀x ∈ Ω.

The nonlinear set of equations (2.15) is solved using the method of steepest descent. The following
set of partial differential equations is obtained:

∂u1
∂θ

=− α
(
∂φ

∂x
u1 + ∂φ

∂y
u2 + ∂φ

∂t

)
∂φ

∂x
+ (2.16)

β∇ ·
(
q′(‖∇u1‖2 + ‖∇u2‖2)∇u1

)
− γu1 on Ω× (0, T 4

fin],
∂u2
∂θ

=− α
(
∂φ

∂x
u1 + ∂φ

∂y
u2 + ∂φ

∂t

)
∂φ

∂y
+

β∇ ·
(
q′(‖∇u1‖2 + ‖∇u2‖2)∇u2

)
− γu2 on Ω× (0, T 4

fin],

ui|θ=0 = ui,0 on Ω, i = 1, 2
ui = 0 on ∂Ω× (0, T 4

fin], i = 1, 2.

2.5 Numerical solution

2.5.1 Spatial discretization

The complementary finite volume method described in [34, 42] is used for spatial discretization.
The digital image can be considered as a grid of pixels denoted by V :

V = {(ih, (i+ 1)h)× (jh, (j + 1)h) | i = 0, .., N1 − 1, j = 0, .., N2 − 1 } , (2.17)

where h = 1/max(N1, N2) is the spatial step. The individual volume elements of set V are
denoted by Vi,j = (ih, (i+ 1)h)× (jh, (j + 1)h). The centers of volume elements Vi,j are denoted
by xi,j =

[(
1
2 + i

)
h,
(

1
2 + j

)
h
]
. The edges of Vi,j are denoted E1

i,j , E
2
i,j , E

3
i,j , E

4
i,j . The set of

volume elements, the central points, and edges are shown in Figure 2.5.
The functions, defined on domain Ω are approximated by grid functions. The grid function

is constant on each element Vi,j . The function value of the grid function at given element Vi,j
is denoted by subscript i, j. No new notation is introduced for the grid functions to simplify
the following formulas. I.e. if the notation ψi,j refers to the function value of the grid function
approximating the original function ψ at point xi,j .

2.5.2 Edge detection

Partial differential equations (2.5) is solved using the method of lines. First, the spatial derivatives
are discretized. The resulting set of ordinary differential equations (ODEs) are solved by the
explicit Euler scheme until reaching a steady state, the specific criteria are provided in Section
2.6.

Let us now derive the discretization of the spatial derivatives. Equation (2.5) is first integrated
over a fixed volume Vi,j :∫

Vi,j

∂ψ

∂θ
dx =

∫
Vi,j

∇ψ · ∇g0dx +
∫
Vi,j

‖∇ψ‖εg0∇
( ∇ψ
‖∇ψ‖ε

)
dx. (2.18)
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Figure 2.5: Diagram of section of the grid V .

The left-hand side of equation (2.18) is approximated using the value of grid function ψi,j :∫
Vi,j

∂ψ

∂θ
dx ≈ h2dψi,j

dθ
(2.19)

The first term on the right-hand side of equation (2.18) is first approximated in similar way:∫
Vi,j

∇ψ · ∇g0dx ≈ h2 (∇ψ · ∇g0)|xi,j
(2.20)

Expression (∇ψ · ∇g0)|xi,j
is discretized using the first-order upwind scheme:

(
∂ψ

∂x

∂g0
∂x

)∣∣∣∣
xi,j

≈
{g0,i+1,j−g0,i−1,j

2h
ψi+1,j−ψi,j

h , if g0,i+1,j−g0,i−1,j

2h > 0,
g0,i+1,j−g0,i−1,j

2h
ψi,j−ψi−1,h

h , if g0,i+1,j−g0,i−1,j

2h < 0.

The derivatives with respect to y are treated analogically. The term (∇ψ · ∇g0)|xi,j
discretized

using this formula will be denoted D0,i,j .
The second term on the right-hand side is discretized using the schemes described in [42].

The term is approximated and divided into three parts P1,i,j , P2,i,j , P3,i,j :∫
Vi,j

‖∇ψ‖εg0∇
( ∇ψ
‖∇ψ‖ε

)
dx ≈ ‖∇ψ‖ε|Vi,j︸ ︷︷ ︸

P1,i,j

1
1 +K ‖∇I‖ε|Vi,j︸ ︷︷ ︸

P2,i,j

∫
Vi,j

∇
( ∇ψ
|∇ψ‖ε

)
dx

︸ ︷︷ ︸
P3,i,j

.

Notation |∇ψ|ε|Vi,j
and ‖∇I‖ε|Vi,j

, respectively, is used to approximate the values of function
‖∇ψ‖ε and ‖∇I‖ε in the volume element Vi,j . Similar notation will be used to approximate the
value on the edges E1

i,j , E
2
i,j , E

3
i,j , E

4
i,j .
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The terms P1,i,j , P2,i,j are discretized as:

P1,i,j ≈
√
ε2 + 1

4

[(
‖∇ψ‖|E1

i,j

)2
+
(
‖∇ψ‖|E2

i,j

)2
+
(
‖∇ψ‖|E3

i,j

)2
+
(
‖∇ψ‖|E4

i,j

)2
]
,

P2,i,j ≈
1

1 +K

√
ε2 + 1

4

[(
‖∇I‖|E1

i,j

)2
+
(
‖∇I‖|E2

i,j

)2
+
(
‖∇I‖|E3

i,j

)2
+
(
‖∇I‖|E4

i,j

)2
] ,

where ‖∇ψ‖ε|Ek
i,j

and ‖∇ψ‖ε|Ek
i,j
, for k = 1, . . . , 4, are evaluated as:

‖∇ψ‖ε|Ek
i,j

=

√√√√√(∂ψ
∂x

)2
∣∣∣∣∣
Ek

i,j

+
(
∂ψ

∂y

)2
∣∣∣∣∣
Ek

i,j

(2.21)

and

‖∇I‖ε|Ek
i,j

=

√√√√√(∂I
∂x

)2
∣∣∣∣∣
Ek

i,j

+
(
∂I

∂y

)2
∣∣∣∣∣
Ek

i,j

. (2.22)

the discretization of partial derivatives of ψ and I on the edges will be described later in this
section.

The discretization of the third term P3,i,j will be shown on a more general term

P̃3,i,j =
∫
Vi,j

∇ · (g(ψ)∇ψ) dx, (2.23)

as this approach is used also for the discretizations in differential equations (2.16). In the
case of term P3,i,j , the function has the form of g(ψ) = 1/‖∇ψ‖ε.

First, the Green’s formula is applied to P̃3:

P̃3,i,j =
∫
Vi,j

∇ · (g(ψ)∇ψ) dx =
∫
Si,j

g(ψ)∇ψ · ndS,

where n denotes the outer unit normal vector to the edge Si,j of the volume Vi,j . The boundary
Si,j consists of four edges E1

i,j , E
2
i,j , E

3
i,j , E

4
i,j as can be seen in Figure 2.5. We substitute the

values of normal vectors to the edges:

∫
Si,j

g(ψ)∇ψ · ndS =
4∑

k=1

∫
Ek

i,j

g(ψ)∇ψ · ndS =
∫
E1

i,j

[g(ψ)∇ψ]|E1
i,j
· (1, 0)dS+

∫
E2

i,j

[g(ψ)∇ψ]|E2
i,j
· (0,−1)dS +

∫
E3

i,j

[g(ψ)∇ψ]|E3
i,j
· (−1, 0)dS +

∫
E4

i,j

[g(ψ)∇ψ]|E4
i,j
· (0, 1)dS

=
∫
E1

i,j

g(ψ)|E1
i,j

∂ψ

∂x

∣∣∣∣
E1

i,j

dS −
∫
E2

i,j

g(ψ)|E2
i,j

∂ψ

∂y

∣∣∣∣
E2

i,j

dS −
∫
E3

i,j

g(ψ)|E3
i,j

∂ψ

∂x

∣∣∣∣
E3

i,j

dS

+
∫
E4

i,j

g(ψ)|E4
i,j

∂ψ

∂y

∣∣∣∣
E4

i,j

dS.
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Let us now define how the derivatives of general function f at the edges E1
i,j , E

2
i,j , E

3
i,j , E

4
i,j are

discretized. We assume function f is defined on the grid V and therefore can be approximated
by the corresponding grid function with function values denoted by fi,j . The discretization is
following:

∂f

∂x

∣∣∣∣
E1

i,j

≈ fi+1,j − fi,j
h

,

∂f

∂y

∣∣∣∣
E1

i,j

≈ fi,j+1 + fi+1,j+1 − fi,j−1 − fi+1,j−1
4h ,

∂f

∂x

∣∣∣∣
E2

i,j

≈ fi+1,j + fi+1,j−1 − fi−1,j − fi−1,j−1
4h ,

∂f

∂y

∣∣∣∣
E2

i,j

≈ fi,j − fi,j−1
h

,

∂f

∂x

∣∣∣∣
E3

i,j

≈ fi,j − fi−1,j
h

,

∂f

∂y

∣∣∣∣
E3

i,j

≈ fi−1,j+1 + fi,j+1 − fi−1,j−1 − fi,j−1
4h ,

∂f

∂x

∣∣∣∣
E4

i,j

≈ fi+1,j + fi+1,j+1 − fi−1,j − fi−1,j+1
4h ,

∂f

∂y

∣∣∣∣
E4

i,j

≈ fi,j+1 − fi,j
h

.

These formulas are used to replace all derivatives at the edges to finish the discretization of terms
P1,i,j , P2,i,j , P3,i,j . Let us denote the fully discretized right hand side by Di,j(ψi,j).

The equation 2.18 fully discretized in space reads:

h2 dψi,j
dθ = Di,j(ψi,j). (2.24)

This presented process could be repeated for all non-boundary volumes of the grid V , resulting
in set ODEs:

h2 dψi,j
dθ = Di,j(ψi,j), for i = 1 . . . N1 − 2, j = 1, . . . , N2 − 2. (2.25)

The set of ODEs is solved using explicit Euler scheme. The time is discretized using a time
step ht. We denote the value of ψi,j in time θ = 0 by ψ0

i,j . Similarly, the value of ψi,j in discrete
time nht is denoted by ψni,j . The derivative on the left hand side is then discretized using following
finite difference:

h2
(dψi,j

dθ

)∣∣∣∣
θ=nht

≈ h2ψ
n
i,j − ψ

n−1
i,j

ht
(2.26)

Finally, when discretizing the initial and boundary conditions of PDE (2.5), we obtain a set
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of equations:

h2ψ
n
i,j − ψ

n−1
i,j

ht
= Di,j(ψni,j) for i = 1 . . . N1 − 2, j = 1, . . . , N2 − 2, n = 1, . . . , Nt, (2.27)

ψ0
i,j = ψ0,i,j for i = 1 . . . N1 − 2, j = 1, . . . , N2 − 2,

ψn0,j = ψn1,j for j = 1, . . . , N2 − 2, n = 1, . . . , Nt,

ψnN1−1,j = ψnN1−2,j for j = 1, . . . , N2 − 2, n = 1, . . . , Nt,

ψni,0 = ψni,1 for i = 1, . . . , N1 − 2, n = 1, . . . , Nt,

ψni,N2−1 = ψni,N2−2 for i = 1 . . . , N1 − 2, n = 1, . . . , Nt,

where Nt is the number of time steps needed to reach the convergence.

2.5.3 Signed-distance function

The partial differential equation (2.7) was solved numerically by the method of lines. The spatial
derivatives are discretized in the first step. Second, the resulting set ODEs are solved by the
explicit Euler scheme. Godunov scheme [59] is used for the discretization of the right hand side.
First, we define two version of discretization of term ‖∇φ‖:

‖∇φ‖+i,j =
((

max
{

max
{
φi,j − φi−1,j

h
, 0
}
,min

{
φi+1,j − φi,j

h
, 0
}})2

+

(
max

{
max

{
φi,j − φi,j−1

h
, 0
}
,min

{
φi,j+1 − φi,j

h
, 0
}})2)1/2

‖∇φ‖−i,j =
((

max
{

max
{
φi+1,j − φi,j

h
, 0
}
,min

{
φi,j − φi−1,j

h
, 0
}})2

+

(
max

{
max

{
φi,j+1 − φi,j

h
, 0
}
,min

{
φi,j − φi,j−1

h
, 0
}})2)1/2

Then, the right hand side is discretized in a following way:

S(ψ) (1− ‖∇φ‖) ≈

S(ψi,j)
(
‖∇φ‖+i,j − 1

)
for S(ψi,j) > 0,

S(ψi,j)
(
‖∇φ‖−i,j − 1

)
for S(ψi,j) < 0.

= Gi,j(ψi,j) (2.28)

We remind, that S(ψ) = ψ/
√
ψ2 + ε and therefore S(ψi,j) = ψi,j/

√
ψi,j

2 + ε. Analogical equation
can be derived for all non-boundary nodes xi,j of the grid V , resulting in following set of ODEs:

∂φi,j
∂θ

= Gi,j(φi,j), for i = 1, . . . , N1 − 2, j = 1, . . . , N2 − 2. (2.29)

The ODEs are solved using Euler scheme, leading to set of equations analogical with (2.27).

2.5.4 Determining of the optical flow

The set of PDEs (2.16) is also solved using the method of lines. First, the spatial derivatives
are discretized and the resulting system of ordinary differential equation is then solved by the
explicit Euler scheme.
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In this section, the discretization of spatial derivatives is described for one of the equations,
the process would be analogical for the other one. The differential equation is first integrated
over a fixed volume Vi,j :∫

Vi,j

∂u1
∂θ

dx =− α
∫
Vi,j

(
∂φ

∂x
u1 + ∂φ

∂y
u2dx + ∂φ

∂t

)
∂φ

∂x︸ ︷︷ ︸
O1,i,j

+

β

∫
Vi,j

∇ ·
(
q′(‖∇u1‖2 + ‖∇u2‖2)∇u1

)
︸ ︷︷ ︸

O2,i,j

dx− γ
∫
Vi,j

u1

︸ ︷︷ ︸
O3,i,j

dx. (2.30)

The left-hand side is approximated by∫
Vi,j

∂u1
∂θ

dx ≈ h2 du1,i,j
dθ . (2.31)

The first term O1,i,j is discretized as:

O1,i,j ≈ h2
(
φi+1,j − φi,j

h
u1,i,j + φi,j+1 − φi,j

h
u2,i,j + φTi,j − φi,j

)
φi,j − φi−1,j

h
(2.32)

The second term O2,i,j has the same form as the term P̃3,i,j (2.23) and it is discretized in the
same way. The remaining term O3,i,j is discretized as:

O3,i,j ≈ h2u1,i,j . (2.33)

When denoting the spatially discretized right hand side of equation (2.30) by Hi,j(φi,j), the
following set of ODEs can be derived for all non-boundary elements Vi,j :

h2 du1,i,j
dθ = Hi,j(φi,j) for i = 1, . . . , N1 − 2, j = 1, . . . , N2 − 2. (2.34)

The ODEs are solved using Euler scheme, leading to set of equations analogical with (2.27).

2.6 Experimental results
At the beginning of this section, we introduce the parameters and stopping criteria for equations
discretized in the previous section, the notation used in this section, and the functions used to
evaluate the results of registration.

Then, we present the results of the proposed method applied to synthetic images and images
from real MOLLI series. The results are compared with the mutual information maximization
method [49], for which the version described in [65] and implemented in MIRTK library1 was
used.

2.6.1 Parameters of the discretization and criteria of convergence

In the numerical solution of the level-set equation for edge detection (described in 2.5.2), the
time is discretized with a time step ht = 2.0 ·10−6. The condition ‖ψn+1−ψn‖2/‖ψn‖2 < 5 ·10−4

was used as a stopping criterion for edge-detection equation.
1https://mirtk.github.io/sidebar.html
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In the computation of the signed distance function (described in 2.3.3), the time is discretized
with a time step ht = 1.0 · 10−4. The distance function was evaluated only in the surrounding of
the zero level set. Therefore, based on [2], it is not necessary to solve the equation until reaching
the steady state. In order to get the correct solution in the 10-pixel-wide neighborhood of the
zero level set, it was sufficient to set T 4

fin = 10h.
In the numerical solution of the optical flow equation (described in Section 2.5.4), the initial

conditions u1,0, u2,0 are set to uniform value 0.1h, where h is the spatial discretization step. The
time is discretized with a time step ht = 7.0 · 10−8. The stopping condition was used in the form(
‖un+1

1 − un1‖2 + ‖un+1
2 − un2‖2

)
/ (‖un1‖2 + ‖un2‖2) < 0.002.

The equation used for image denoising is not solved until a steady state to avoid “over-
smoothing” of the image, hence Tfin was set to 6 · 10−5.

The value of regularization ε = 10−4 was used.

2.6.2 Terminology and evaluation of results

Mutual information

Mutual information is a widely used metrics for comparing multimodality medical images. In
the following section, the normalized mutual information will be used to evaluate the difference
between the images with varying intensity. Before its definition, we introduce the following
notations. Let P (i) denotes the probability of intensity i being present in image I with the range
of discrete intensities i ∈ {0, 1, .., imax}. For two images I, J , P (i, j) denotes the joint probability
of intensities i, j being present at the same position in both images I and J . These probabilities
are computed as a number of pixels with given characteristics, divided by the total number of
pixels.

The normalized mutual information is defined as: MI(I, J) = (H(I) + H(J))/H(I, J),
where H(I) = −

∑imax
i=0 P (i)ln(P (i)) denotes the marginal entropy of given image and H(I, J) =

−
∑imax
i,j=0 P (i, j)ln(P (i, j)) denotes the joint entropy of two images.

Evaluation of results

To evaluate the difference between two functions f1, f2 defined on the numerical grid V we use
norm ‖ φ1 − φ2‖h,2 = h2

(∑N1,N2
i=1,j=1 (φ1(xi,j)− φ2(xi,j))2

) 1
2 , where h is the spatial discretization

step of the given grid.

Notations

In the section of experimental results, the target image is denoted as T , the source image by S,
and the signed-distance functions of the target and source objects by φT and φS , respectively. The
source image registered by the given method is denoted by Smethod, the registered signed-distance
function of the source object by φS,method. The compared methods include: optical flow applied
to signed-distance functions (OFdist), mutual information maximization method applied to the
original images (MIM), and to the signed-distance functions (MIMdist).

2.6.3 Synthetic images with single object

Two binary synthetic images of one fully visible object with dimensions N1 = 200, N2 = 200 are
shown in Figures 2.6a and 2.6b. Due to the simplicity of the scene, the segmentation was done
by thresholding. The OFdist method was applied to the signed-distance functions, as described
in the previous sections. To provide a relevant comparison, the mutual information maximization
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method was applied to both – the original images and o the signed-distance functions (i.e.
methods MIM and MIMdist).

The absolute value of the difference between the target and source images before registration
can be seen in Figure 2.6c. The differences after registration by OFdist, MIM, and MIMdist are
shown in the second line of Figure 2.6. As can be seen in Table 2.1, the best result was obtained
by the MIM method applied to the original images. The replacement of images by the distance
functions of the object of interest does not provide any advantage in this simple case.

(a) Source image S. (b) Target image T . (c) |T − S|

(d) |T − SOF dist |. (e) |T − SMIM |. (f) |T − SMIMdist | .

Figure 2.6: Source image (a), target image (b), the absolute value of their difference before
registration (c) and after registration by OFdist, MIM and MIMdist (d-f). Parameters used in
the determination of the optical flow (2.13):α = 1.0, β = 3.25, γ = 2.5.

‖T − S‖h,2 ‖T − SOF dist‖h,2 ‖T − SMIM‖h,2 ‖T − SMIMdist‖h,2

0.2365 0.0782 0.0543 0.0651

Table 2.1: Norms of difference between the target 2.6b image and source image 2.6a before and
after registration by OFdist, MIM and MIMdist.

2.6.4 Synthetic images with two objects

Next, we present binary synthetic images of two fully visible objects with dimensions N1 =
200, N2 = 200. The source and target images are shown in Figures 2.7a and 2.7b, respectively.
The absolute value of the difference between the target and source images before registration can
be seen in Figure 2.7c.

2.6.5 Registration of both objects

First, both objects were registered by OFdist, MIM, and MIMdist. The differences between the
source and target image after registration are presented in the second line of Figure 2.7.
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(a) Source image S. (b) Target image T . (c) |T − S|

(d) |T − SOF dist |. (e) |T − SMIM |. (f) |T − SMIMdist |.

Figure 2.7: Source image (a), target image (b) and the absolute value of their difference before
(c) and after registration by OF, MIM, and MIMdist (d-f). Parameters used in the determination
of the optical flow (2.13): α = 1.5, β = 3.75, γ = 3.25.

The direct application of MIM is not suitable in this case, as can be seen in Figure 2.7e. Much
better results were obtained by the MIMdist method, which uses the signed-distance functions.
However, as the values in Table 2.2 show, the smallest error was obtained by OFdist. In Figure 2.8
the difference between OFdist and MIMdist approach is well visible. Applying MIMdist decreases
the error uniformly throughout the whole image (Figure 2.8b), while OFdist (Figure 2.8b) creates
unevenly distributed error. Table 2.3 quantifies these errors and shows that OFdist performed
best. Similar results could be expected for similar images.

‖T − S‖h,2 ‖T − SOF dist‖h,2 ‖T − SMIM‖h,2 ‖T − SMIMdist‖h,2

0.1663 0.0549 0.1030 0.0901

Table 2.2: Norms of difference between the target image in Figure 2.7b image and source image
in Figure 2.7a before and after registration by OFdist, MIM and MIMdist.

‖φT − φS‖h,2 ‖φT − φS,OF dist‖h,2 ‖φT − φS,MIMdist‖h,2

21.247·10−6 5.984·10−6 7.375·10−6

Table 2.3: Norms of difference between target and source signed-distance function before and
after registration by OFdist and MIMdist. The source and target objects can be seen in Figure
2.7a and 2.7b, respectively.

2.6.6 Registration of one object

In this experiment, one object was segmented (marked by a green line in Figure 2.9a) and
registered by OFdist, while MIM was applied directly on the images in order to provide global
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(a) |φT - φS | . (b) |φT - φS,OF dist |. (c) |φT - φS,MIMdist |.

Figure 2.8: Absolute value of the difference between the target and source signed-distance
function before and after registration by OFdist and MIMdist. The signed-distance functions are
computed on a 10-pixel-wide neighborhood of the edges of the object and set to constant outside
the neighborhood.

registration. The results can be seen in Figures 2.9b and 2.9c, respectively. The global registration
by MIM provides a smaller global error, as can be seen in Table 2.4. However, the local registration
by OFdist (denoted by S1,OF dist) provides a smaller error in the object of interest as can be seen
in Figure 2.9.

(a) The segmented object.
(b) |T − SOF dist |. (c) |T − SMIM |.

Figure 2.9: The results of OFdist registration of object marked by green line in 2.9a, and global
MIM registration of the whole scene.

‖T − S‖h,2 ‖T − S1,OF dist‖h,2 ‖T − SMIM‖h,2

0.1663 0.1265 0.1030

Table 2.4: Norms of difference between the target image 2.7b and source image 2.7a before
registration, after registration of one object by OFdist, and after global registration by MIM.

2.6.7 Results MOLLI images

In this section, we present a comparison of the three registration approaches on real MRI
MOLLI data. A set of three images with segmented myocardium marked by the green contour
is presented in Figure 2.10. The dimensions of the images are N1 = 256, N2 = 218. In this
case, the segmentation was done by the level-set method described in Section 2.5.2. The initial
circle around the segmented object was provided by the user. The initial level-set function with
properties given by (2.1) was then computed as ψ0(xi,j) = ‖xi,j − s‖ − r, where s is the center of
the circle and r is the radius. The values of parameter K, which governs the sensitivity of edge
detection in equation (2.5), are provided in the caption of Figure 2.10.
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(a) Source image S1. (b) Source image S2. (c) Target image T .

Figure 2.10: Images from the MOLLI sequence with segmented myocardium. Values of
parameter K (2.6), used for the outer edge detection in images S1, S2, T are: KS1 = 1.3 · 10−6,
KS2 = 1.3 · 10−6, KT = 2.3 · 10−6. Values of the parameter used for the inner edge detection:
KS1 = KS2 = KT = 9.0 · 10−6.

The images were registered by OFdist, MIM, and MIMdist. The results of all these approaches
are presented in Figure 2.11.

(a) S1,OF dist (b) S1,MIM (c) S1,MIMdist

(d) S2,OF dist (e) S2,MIM (f) S2,MIMdist

Figure 2.11: Results of registration of S1, S2 with target image T . Parameters used in the
determination of the optical flow (2.13): α = 1.25, β = 3.5, γ = 3.0.

MI measure was used to compare all three registration approaches. The MI was computed
only in 10-pixels-wide surroundings of the edge of the segmented object. The values of MI are
presented in Table 2.5.

The largest increase in MI was obtained by the direct application of MIM on the source and
target images. However, the transformation led to an unrealistic deformation of the myocardium,
as can be seen especially in Figure 2.11e. The results obtained by OFdist and MIMdist are
visually comparable. The unrealistic deformation of the myocardium is avoided when using the
signed-distance function (see Figures 2.11d and 2.11f), while the value of mutual information is
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i MI(T, Si) MI(T, Si,OF dist) MI(T, Si,MIM ) MI(T, Si,MIMdist)

1 1.1556 1.2184 1.2273 1.2170

2 1.1012 1.2034 1.2052 1.1964

Table 2.5: MI of target image and source images from Figure 2.11 before and after registration
by OFdist and MIM and MIMdist.

higher. The largest increase of mutual information was obtained by the OFdist method.

2.7 Application for calculation of ECV
The proposed method for image registration is used in a application for the computation of ECV
available at https://mmg.fjfi.cvut.cz/mmg-medical-tools/. In the application, the ECV
map is computed based on the pre- and post-contrast T1 maps and two representative images
from the pre- and post-contrast MOLLI image series. The representative images are used to
determine the displacement field using the presented method. The displacement is then used to
register the T1 maps. Finally, ECV map is computed based on the registered maps.

2.8 Conclusions
In this chapter, we presented a new approach to the registration of medical images with varying
image intensity. We were specifically interested in the MOLLI image series, in which the changes
in intensity and contrast make the registration challenging. The proposed registration method
consists of the segmentation of the object of interest by level set method, its representation by a
signed-distance function, and determining optical flow based on these functions.

The proposed method (OFdist) was compared with two traditional registration methods
based on the maximization of mutual information: either applied to the original images (MIM)
or to the signed-distance function (MIMdist). The experiments on synthetic binary images with
one or two objects and on real images of the MOLLI cardiac MRI sequence were presented. The
segmentation of the object of interest provided no advantage in the case of one binary object. It
was however proven to be beneficial in other tested cases, i.e. synthetic images with two objects
of interest or the images of real MOLLI sequence, where both OFdist and MIMdist provided better
results than MIM. In particular, in the experiments on real MOLLI images, the MIM provided
the largest increase in mutual information by prioritizing the registration of more distinct objects
in the scene. This, however, led to unrealistic deformation of the myocardium, which was then
avoided by using OFdist and MIMdist. Based on the experiments, it can be concluded, that
the proposed segmentation-based registration using the signed-distance function provides better
results when registering the objects of interest which are not the most distinct in the scene.

Personal contribution
The author contributed to the design of the image registration method. The author was
responsible for the implementation of all the methods, the computation of experimental
results, and for including the MIRTK library, which allowed the comparison with a standard
method based on mutual information.





Mechanical and imaging
models in image registration 3

In this chapter, we deal with image registration from a different perspective, than in Chapter 2.
The image registration has two outputs – the aligned images and the deformation field. In
Chapter 2, the goal was obtaining the aligned images. The emphasis was on designing an image
similarity metric that would account for the evolving image intensity in the MOLLI image series.
In some cases, however, it is the obtained deformation field that is the object of interest or
the input for subsequent analysis. Especially in this type of application, it is often advisable
to pay more attention to the regularization requirements in order to avoid non-physiological
deformations. This can be achieved by incorporating more complex mechanical and image models
into the image registration method. One such example is given in this chapter. The method was
described in [78]:

Škardová, K., Rambausek, M., Chabiniok, R., and Genet, M. (2019). Mechanical and imag-
ing models-based image registration. In ECCOMAS Thematic Conference on Computational
Vision and Medical Image Processing, pages 77–85. Springer.

3.1 Introduction

Although new model-free machine learning-based approaches are now beginning to provide
robust and accurate results [64], extracting motion from images is still most commonly based
on combining analysis of the images intensity and a model of the underlying deformation as an
initial guess or regularizer [80].

In this chapter, we focus on avoiding the dependence on image intensity analysis. As
demonstrated in the previous chapter on the example of the MOLLI image series, building rules
for correspondence between two points in an image based on their intensity can be too restrictive.
However, complications can also arise in applications where the image intensity remains essentially
unchanged. Primarily, any artifact in the source image can drastically deteriorate the result of
the registration. In MRI, these artifacts may occur due to a local decrease in signal-to-noise ratio,
local signal void, or partial volume effect, which is caused by the boundary between two different
tissue types passing through a region corresponding to one voxel in the final image. These
issues, intrinsic to the intensity-based approach, can be limited by geometrical or mechanical
regularization. The additional regularization may, however, in turn, distort the deformation
field. For instance, radial strains are systematically underestimated in 3D tagging cardiac images
[29, 80].
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In this chapter, we introduce a novel approach to extracting motion from medical image series,
based on a model of the imaging modality. This approach is, to a large extent, independent of
the type of image – the only pre-requisite is to be able to generate a realistic image associated
with a given shape of the considered object, i.e., having an imaging model at hand.

The goal of this chapter is to propose an image registration that incorporates a model of
tagged magnetic resonance images. The application of the method is illustrated with examples
of synthetically created tagged images.

3.2 The problem setting
Let us assume I0 and I are two images of the object B, acquired at times t0 and t. In the scope
of this chapter, the position of B in I0 will be referred to as a reference configuration, and the
position in I as a deformed configuration. We define image functions I and I0:

I0 : Ω0 → R, (3.1)
I : Ω→ R,

The position of the material point in the reference and deformed configuration is denoted X and
x, respectively. I.e. image function I0 assigns intensity to points X of image domain Ω0 at time
t0 and I assigns intensity to points x in the domain Ω at time t. Domains Ω0,Ω are in most
cases identical.

The domains occupied by the object B at times t0 and t are denoted Π0 ⊂ Ω0 and Π ⊂ Ω,
respectively. The goal of the image registration problem is to find mapping Φ between the
position of the material points in the reference and deformed domain:

Φ : Π0 → Π. (3.2)

It means that mapping Φ transforms the coordinates of a given point from the reference to the
deformed configuration: Φ(X) = x.

In the following formulation, we will work with the mapping Φ, however, we can alternatively
define smooth deformation field U instead:

U : Π0 → R3, (3.3)

The relation between Φ and U is x = Φ(X) = X + U(X).
Because of the ill-posedness of the problem, finding the optimal mapping Φ∗ is formulated as

a minimization problem:

Φ∗ = arg min
Φ

Esimilarity(Φ), (3.4)

where Esimilarity is the image similarity metric. In the image-intensity based methods, Esimilarity
typically has the following form:

Eimagesimilarity(Φ) = 1
2

∫
Π0

(I(Φ(X))− I0(X))2 dX. (3.5)

In general, the functional Esimilarity may not be quadratic but is assumed to be convex.
We note that the integration in (3.5) is performed over the reference domain Π0, where X

is the position of a given point in the reference configuration and Φ(X) = x is the position of
the same point in the deformed configuration. As was mentioned in the introduction to this
chapter, this approach has drawbacks that arise from the fact that the image intensity values are
directly compared and, therefore, any artifacts in the images may distort the resulting value of
the similarity metric. Therefore, an alternative metric is proposed in the following section.
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3.3 Incorporation of imaging and mechanical model
In this section, we first define the imaging model. To goal is to use this mode to design a
functional Esimilarity(Φ) alternative to Eimagesimilarity(Φ) given by (3.5). We will present the model
for tagged MRI images [3], but we note that it could be used for other types of images.

3.3.1 Model of tagged MRI images

The tagged MRI images refer to images obtained using the SPAMM (Spatial Modulation of
Magnetization) technique [3]. In this paper, the imaging technique is described only to the extent
necessary to understand the construction of the imaging model. The principle of SPAMM is
based on generating a regular pattern of saturated magnetization in the tissue, e.g. myocardium
wall. This pattern moves with the tissue. When imaging contraction of the myocardium during
the cardiac cycle, the deformation of the pattern is also captured. The regular character of the
grid – the tagged pattern – may allow for more reliable tracking of some types of deformations.

The pattern tag lines with sinusoidal modulation in direction of axis x are generated using
the following model:

IxΠ0(X) = IΠ0(X)| sin(k(X1 −X0,1))|, ∀X ∈ Π0, (3.6)

where X1 is the x-component of X, k and X0,1 are the parameters controlling the density and
position of the waves, IΠ0 is the characteristic function of domain Π0. In tagged MRI images
the waves are typically generated in two perpendicular directions to form a grid. In 2D, when
considering X0 = (X0,1, X0,2) = 0 for simplicity, the imaging model reads:

IΠ0(X) = IΠ0(X)

√√√√ 2∏
i=1

∣∣∣∣sin(πXi

l

)∣∣∣∣, ∀X ∈ Π0, (3.7)

where l denotes the distance between the tag lines.
The imaging model is used to generate the tagged pattern over domain Π0 – the domain

occupied by object B in the reference configuration. After the deformation, the body occupies
domain Π = Φ(Π0) and the deformed image is obtained as:

IΠ,Φ(x) = IΠ0(Φ−1(x)), ∀x ∈ Ω. (3.8)

3.3.2 Model of MRI artifacts

The additional corrupting effect might be incorporated into the imaging model (3.7) to make
the resulting synthetic tagged images more realistic. To explain the chosen type of artifacts, we
first need to explain the difference between the current state of imaging model IΠ0 and MRI. We
note that the concept of MRI is explained very simplistically. The model IΠ0 assigns intensity to
points in the image domain Ω0. MRI, however, does not construct the image in this way. MRI
first creates an image in the so-called temporary image space. The final image is then obtained
by applying an inverse Fourier transform to the stored data. However, only a limited number of
frequencies can be stored in the temporary image space in a limited amount of time. To simulate
this effect of the limited bandwidth of the MR, we may apply Fourier transform to the synthetic
image, keep frequency content only within a box window and apply the inverse Fourier transform.
The same can be simulated by a convolution of the synthetic image with sinc(x) = sin(x)/x
function. The deformed image ĨΠ,Φ with this corrupting effect is therefore obtained as:

ĨΠ,Φ(x) =
∫

Ω
IΠ,Φ(y)b(y − x)dy, ∀x ∈ Π, (3.9)
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where the box-window function b is defined as:

b(x) =
2∏
i=1

sinc
(
xi
di

)
, (3.10)

where di is the image resolution in the direction of i-th axis.

3.3.3 Formulation of the optimization problem

With the imaging model at hand, the alternative similarity functional Esimilarity(Φ) can be
defined. Before proceeding to the mathematical formulation, we introduce the basic idea of how
the imaging model is incorporated into the problem of finding the mapping Φ : Π0 → Π.

Let us suppose the position of the object B in the reference configuration, i.e. Π0, is known. We
may therefore generate a synthetic tagged image of the object B using imaging model (3.7). Then,
for any admissible mappings Φ, we obtain the deformed domain Π = Φ(Π0). Furthermore, the
position of each material point X after the deformation can be determined as Φ(X). Therefore,
synthetic deformed image IΠ,Φ can be generated from the reference image using (3.8) or (3.9).
Finally, the synthetic and real deformed image can be compared and the mapping Φ is updated
based on their difference.

The similarity metric Esimilarity(Φ) that would asses the difference between the deformed
image IΠ,Φ and real deformed image I could be defined in a following way:

Êsimilarity(Φ) = 1
2

∫
Π

(IΠ,Φ(x)− I(x) )2 dx. (3.11)

However, it may be more suitable to perform the integration over the reference domain, instead
of the deformed domain, the same way it was done in (3.5):

Esimilarity(Φ) = 1
2

∫
Π0

(IΠ,Φ(Φ(X)) − I(Φ(X)) )2 dX. (3.12)

When using the basic imaging model (3.7), where IΠ,Φ(Φ(X)) = IΠ0(Φ−1(Φ(X))) = IΠ0(X),
the general equation (3.12) is simplified to:

Esimilarity = 1
2

∫
Π0

(IΠ0(X) − I(Φ(X)) )2 dX. (3.13)

When using the more complicated model (3.9), the synthetic deformed image IΠ,Φ(Φ(X) is
obtained as:

ĨΠ,Φ(Φ(X)) =
∫

Ω
IΠ,Φ(y)b(y − Φ(X))dy, ∀X ∈ Ω0. (3.14)

The variational formulation of the problem 3.4 is convenient for the incorporation of regular-
ization terms. The regularised problem reads as:

Φ∗ = arg min
Φ

(Esimilarity(Φ) + Ereg(Φ)) (3.15)

where Ereg is the regularization term. In the presented method, the regularization term proposed
by Genet, et al. in [29] is used.

This mechanical regularization is based on the assumption of mechanical equilibrium:

Div(F · S) = 0, ST = S, ∀X ∈ Ω0, (3.16)
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where S = S(Φ) is the second Piola-Kirchhoff stress tensor and F(Φ) = ∂Φ/∂X is the transforma-
tion gradient [37]. The regularization term is designed for finite element-based problems, where
the object B is discretized using a mesh of finite elements. For the definition of the regularization
term, we denote K the set of elements, F the set of interior faces with corresponding normal
vectors N , and h the characteristic length of the mesh. The regularization term is defined as:

Ereg =
∑
K

1
2‖Div(F · S)‖2L2(K) +

∑
F

1
2h‖F · S ·N‖

2
L2(F ). (3.17)

This regularisation term was used in extracting the motion from various medical image series
[29, 45].

3.4 Numerical solution
The models presented in previous sections were implemented in Python. The model and similarity
functional were integrated as an addition to the existing finite element-based tool for image
registration, implemented in Python and C++, using the FEniCS [48] and VTK [68] libraries.

The optimization problem (3.15) is solved iteratively using Newton’s method. The discretiza-
tion is done using the standard first-order continuous Galerkin elements. In [29], the numerical
solution of the optimization problem 3.15 with image intensity-based similarity term 3.5 is
described in detail.

The mapping Φ obtained by the numerical solution is obtained in the form of deformation
filed U stored at the nodes of the mesh. This is convenient for the subsequent analysis of the
deformation, e.g. computation of strains.

The implementation of the presented method is freely available at https://gitlab.inria.
fr/mgenet/dolfin_warp.

3.5 Experimental results on synthetic images
In [78], the proposed method was tested on 2D synthetic image registration problems. Rigid
(translation and rotation) and non-rigid (compression and sheering) transformations of the square
object were examined. The impact of added noise on the accuracy of the registration is also
investigated in [78]. In this chapter, only the visual results of the motion tracking in the case of
shearing and compression are presented.

All presented image series consisted of 30 time-lapse images, each image was 100×100 pixels
in size. Imaging model 3.7 was used with the distance l = 10 pixels. The synthetic images were
generated by the same imaging model used in the image registration stage. In order to make the
experiment more realistic, zero-mean gaussian noise was added to the images in both generated
image series. The standard deviation of 0.1 (SNR=10) was used in the shearing experiment and
0.3 (SNR=3) in the compression experiment, respectively. In the experiments presented in this
work, the effect of corruption artifacts was neglected, and, therefore, the simplified version of
Esimilarity given by 3.13 could be used.

The results of both experiments are shown in Figures 3.1 and 3.2, respectively. Figure 3.1
shows the synthetic images at three different times during the deformation (shearing). In Figure
3.1a, the superimposed triangular mesh is in the reference configuration – aligned with the body
B. Figures 3.1b and 3.1c, show the mesh in the middle and the end of the deformation process.
Figure 3.2 shows the superimposed mesh obtained using the proposed method for the second
type of deformation – compression. In both experiments, the mesh follows the object during the
deformation.

https://gitlab.inria.fr/mgenet/dolfin_warp
https://gitlab.inria.fr/mgenet/dolfin_warp


30 3. Mechanical and imaging models in image registration

(a) Time frame 0. (b) Time frame 14. (c) Time frame 29.

Figure 3.1: The process of shearing the tagged square, captured in three time frames. The
synthetic images contain added noise (SNR=10). The superimposed mesh shows the deformations
extracted from the image series using the proposed method.

(a) Time frame 0. (b) Time frame 14. (c) Time frame 29.

Figure 3.2: The compression of the tagged square, captured in three time frames. The synthetic
images contain added noise (SNR=3). The superimposed mesh shows the deformations extracted
from the image series using the proposed method.

3.6 Conclusions
We introduced a novel approach to the problem of image registration. This approach utilized
an imaging model used to create synthetic images similar to processed images. The similarity
functional based on this imaging model was combined with the existing mechanics-based regular-
ization. The resulting minimization problem was discretized using the finite element method and
solved by Newton’s method.

The proposed method was tested on synthetic images. The method was shown to perform
well in all presented cases. In the future, the method should be evaluated on more complicated
shapes and transformations. Finally, the method should be tested on real images.

Personal contribution
The author participated in the design and implementation of the imaging model, that
would allow the integration with the existing finite element-based solver.



Estimation of left ventricular
torsion 4

In this chapter, we present an application of cardiac motion analysis using an image registration
method. The mathematical method and subsequent clinical study including patients with
tetralogy of Fallot after a surgical repair was described in [12]:

Castellanos, D. A., Škardová, K., Bhattaru, A., Berberoglu, E., Greil, G., Tandon, A., Dil-
lenbeck, J., Burkhardt, B., Hussain, T., Genet, M., and Chabiniok, R. (2021). Left ventricular
torsion obtained using equilibrated warping in patients with repaired tetralogy of
Fallot. Pediatric Cardiology, 42(6):1275–1283.

The aim of the published study was to evaluate a novel method for the assessment of left
ventricular torsion as an early indicator of left ventricular systolic dysfunction. While in this
paper the topic has been described from a clinical perspective, in this chapter we will attempt to
describe in more detail the proposed workflow and how a general image registration method can
be incorporated into the solution of a real clinical problem.

4.1 Introduction to the tetralogy of Fallot
Tetralogy of Fallot (TOF), as described also in [15], is a congenital heart disease characterized
by specific birth defects that affect the normal blood flow through the heart and that would lead
to death in infancy, if untreated. As depicted in 4.1b, these defects typically are:

• pulmonary stenosis – a narrowing of the outflow from the right ventricle (RV),

• a ventricular septal defect – a hole allowing blood to flow between the two ventricles,

• right ventricular hypertrophy – a thickening of the right ventricular muscle,

• an overriding aorta, which is when blood from both ventricles can enter the aorta, which
leads to the mixing of both oxygenated and deoxygenated blood.

The diagrams of a normal heart and heart with the tetralogy of Fallot are shown in Figures 4.1a
and 4.1b, respectively. The surgical repair od the tetralogy of Fallot (rTOF) typically consists
of repairing the ventricular septal defect and correction of the pulmonary stenosis transannular
patch. The heart after full surgical repair is shown in Figures 4.1c.

Although the tetralogy of Fallot predominantly affects the right ventricle. A significant
number of adults with repaired TOF exhibit left ventricular (LV) dysfunction [24]. As described

31



32 4. Estimation of left ventricular torsion

(a) Normal heart. (b) Tetralogy of Fallot (c) Repaired tetralogy of Fallotl

Figure 4.1: Diagram of a normal heart, one with tetralogy of Fallot and one with repaired
tetralogy of Fallot.

in [15, 24, 31], many of the right-ventricle-related factors may contribute to suboptimal left
ventricular mechanics or even a loss in left ventricular function in patients with rTOF. Therefore,
early identification of deteriorating left ventricular mechanics and function may be used to guide
the clinical management in this population. This task is quite challenging, however, because the
findings suggest that the progression of the left ventricular dysfunction may be rather gradual,
starting decades before the first symptoms. Studies suggest that one of the early indicators of
changes in LV mechanics may be the loss of torsion in the LV [81]. This property of the LV is
also investigated in this chapter.

4.2 The objective

Torsion, also referred to as a twist, is a characteristic feature of ventricular contraction. Looking
from the apex, the base (top part of the ventricle) of a normal heart rotates clockwise in the
systole while the apex (the bottom of the left ventricle) rotates counter-clockwise, producing a
twisting motion [54]. For a simplified diagram of the twist in LV, see Figure 4.2. Typically, LV
torsion is defined as the difference in rotation between the LV apex and base at peak systole.
In this work, the LV twist gradient is also evaluated, which is obtained as the difference in
rotation divided by the distance between the base and apex to accommodate the differences in
LV dimensions between patients.

The torsion is usually determined based on a series of images capturing the contraction of
the heart. However, it has been documented that tissue tracking analysis and the subsequent
calculation of torsion performed in standard clinical software exhibits a large variance of obtained
results [9]. The aim of this study is to propose a method to determine LV torsion with higher
reliability based on the same input data.

4.3 Materials and methods

In this section, we first describe the clinical data used in the study, their pre-processing, and the
estimation of LV twist and other parameters using standard clinical software. Subsequently, we
describe the proposed method of LV twist estimation using the same input data.
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Figure 4.2: Diagram of rotation of base and apex of normal LV. The direction of rotation is
indicated as clockwise or counterclockwise when viewed from the apex to the base.

4.4 Clinical data

The study in [12] was designed as a single-center retrospective study using anonymized data
obtained from routine clinical scans. The studied dataset consisted of 76 cases of rTOF patients
and ten normal controls. The analysis was performed using short-axis cine MR images. In all
cases, the ventricle contours were manually segmented as a part of routine clinical work, using
standard clinical software (CVI42, version 5.10.1, Calgary, Canada).

The control group was used to evaluate the dependence of results on the LV segmentation.
In other words, it was investigated how the twist differed for different input segmentations. The
twist was determined using CVI42 and the proposed method. The compared quantities were:

• the difference in results when using segmentations provided repeatedly by the same observer
(the intra-observer variability)

• the difference in results when using segmentations provided by different observers (the
inter-observer variability)

The comparison between normal and abnormal torsion was performed among the patients
with rTOF, where the proposed method was used to evaluate the twist.

Additionally, standardly used indicators of LV and RV function were assessed for each subject:
end-systolic volume of LV and RV (LVESV, RVESV), the end-diastolic volume of LV and RV
(LVEDV, RVEDV), ejection fraction of LV and RV (LVEF, RVEF).

The end-diastolic (captured at the end of the relaxed phase of the cardiac cycle) LV endocardial
and epicardial surface meshes surface and the short-axis cine MR image series were used as the
input data for the proposed method described in the next section. An example of the surface
meshes exported from CVI42 overlaid on the MRI image data in two slices is shown in Figure
4.3.

4.5 The proposed workflow

In this section, we describe the workflow used to obtain the LV torsion based on the MR image
series and the segmented contours. The process consisted of three steps – the preparation of the
data, the motion tracking, and the calculation of LV twist based on the extracted motion.
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Figure 4.3: Example of the segmented endocardial (pink) and epicardial (blue) LV surface
mesh overlaid over two sections through the stack of short-axis MRI cine.

4.5.1 Data preparation

The image data were exported for each subject in DICOM format. The images are not truly 3D
but are a stack of 2D slices. The orientation of these slices in the real space (in the patient’s frame
of reference) and in the image space is shown in Figure 4.4. The stack of 2D slices in the image
space forms a 3D image. The number of stacked images was low compared to their dimensions.
Due to this, the 3D image resolution in the direction of z-axis was initially significantly lower
than the resolution in the xy-plane.

Figure 4.4: Diagram of the orientation of the 2D MRI images in the real space and in the
image space. In the image space, the stack of 2D slices forms a 3D image. The image resolution
in the direction of z-axis is significantly lower than the isotropic resolution in the xy-plane.

The image resolution in the xy-plane, was isotropic with a voxel size of approximately
1 mm× 1 mm. In the z-axis direction, the resolution was 8-10 mm. This disproportion in image
resolution is also visible in Figure 4.3. The input data were therefore interpolated to an isotropic
voxel size in all three directions using the MeVisLab software (Application Framework for Medical
Image Processing and Visualization, version 3.0.2, Bremen, Germany). The voxel spacing in the
resulting interpolated image was therefore approximately 1 mm× 1 mm× 1 mm.

The motion tracking method used in the second step required a volume mesh of the tracked
object. Therefore, the endocardial and epicardial surfaces needed to be connected into a single
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object. Both meshes, segmented from the image data in the real space, were first transformed
to the image space. In the image space, the meshes were closed by a plane perpendicular to
the z-axis at the base and apex area to obtain a closed surface. Then, the unified surface mesh
was used to generate volume mesh using GMSH [30]. Finally, the segmented contours were
extended inward and outward and this additional space was also meshed by tetrahedral elements.
The volume mesh with the extension is shown in Figure 4.5. This extension of the LV allowed
tracking objects outside the myocardial contours, such as the papillary muscles located inside
the ventricle (shown in the example in Figure 4.3). The inclusion of these additional reference
points improved the ability to detect in-plane rotation. It should be noted that the LV has a
relatively homogeneous image intensity on cine MRI images. Therefore, the detection of LV
rotation is generally more challenging than, for example, the detection of contraction or dilation
and without the inclusion of additional landmarks, it could easily be missed.

The extended computational meshes of LV had approximately 2000 nodes and 8000 to 10000
tetrahedral elements. The additional layer was dropped after the motion tracking step and the
twist was evaluated only in the segmented region.

Figure 4.5: Example of the volume mesh of the segmented LV (blue) and an additional layer of
elements used to track the motion of the objects surrounding the segmented domain (red).

4.5.2 Tracking the motion of the ventricle

The motion tracking was performed using the finite element-based method used in Chapter 3
therefore we use some of the previously defined terms. In this chapter, the tracked object B
corresponds to the LV.

The short-axis cine MR image series captures one cardiac cycle in n images corresponding
to times t0, . . . , tn−1. In the studied dataset, n = 30 was typically used. The LV contours are
segmented at the end of the diastole – the image in which the LV volume is the largest. We
denote this image I0 and the corresponding time t0. Using the terminology used in Chapter 3,
image I0 shows the body B in reference configuration, and images I1, . . . , In−1 show the body
B in the deformed configuration. The time frames are processed sequentially. At each time
t = t1, . . . , tn−1, we seek mapping Φ (3.2) that would transform the body B from the reference
configuration to the deformed one. The optimal mapping Φ∗ is found as:

Φ∗ = arg min
Φ

(Esimilarity(Φ) + Ereg(Φ)) , (4.1)

where the Ereg is the mechanical regularization term proposed by Genet, et al. in [29]. This
term was described in the previous Chapter 3. Given cine MR image data were used (i.e. image
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intensity remains constant over time), the intensity-based image similarity term 3.5 can be
employed:

Esimilarity(Φ) = 1
2

∫
Π0

(I(Φ(X))− I0(X))2 dX, (4.2)

where I0 is the reference image (where the contours were segmented) and I is the deformed
image. The optimal mapping from time frame tn−1 is used as an initial guess for mapping in
time frame tn.

The output of this step is a series of mappings Φ1, . . . ,Φn−1. The identity mapping Φ0 may
be added to the series for completeness. This series of mappings, capturing one cardiac cycle, is
used in the next step to determine the torsion of the LV.

4.5.3 Estimation of left ventricular torsion

Two torsion-related characteristics of LV contraction were calculated: peak systolic twist (the
difference in the angles by which the base and apex are rotated at the peak of LV contraction),
and peak systolic twist gradient (the peak systolic twist divided by the distance between the base
and apex). Both values are estimated based on the mesh of LV in the reference configuration
and the series of mappings Φ0, . . . ,Φn−1 obtained in the previous step.

First, the angle β(X) by which each node is rotated during the transition from the reference
position X to the deformed position x = Φi(X) is determined at each time ti. Only the rotations
in the xy-plane are considered. It is assumed that the component outside the xy-plane can be
neglected without introducing significant errors to the model due to the orientation of the image
data, where the base-to-apex LV axis is effectively parallel to the z-axis.

In the present study, the dependence of the angle β on the z-component of the corresponding
point X was assumed to be linear. Therefore, a linear regression was performed on the angle
values and z-components of the nodes. This step reduced the effect of point misregistration due
to noise in the image data and also ensured that the change in rotation direction from clockwise
to counterclockwise could only occur at one point along the base-to-apex axis of the LV. An
example of the distribution of β along the z-axis is shown in Figure 4.6, the evolution rotation
of base and apex of LV in time is shown in Figure 4.7. Finally, the twist is obtained as the
difference between the linearly fitted base and apex rotation.

4.6 Results
In this section, we provide only a summary of the results. More details and the additional
statistical analyses carried out as part of the evaluation can be found in the full text of the study
[12].

In the control group, the motion tracking step of the proposed method failed to converge to
admissible deformation in 1 of the 10 cases. The LV torsion therefore could not be estimated in
this case. The other software provided results in all cases. The comparison however showed that
in the rest of the cases, where both methods provided results, the proposed method provides
more consistent results compared to the standard clinical software.

In the rTOF group, torsion was obtained using the proposed methods in 68 of 76 cases. In
the 68 cases where the motion tracking step was successfully performed, a visual inspection of
torsion during the cardiac cycle was used to categorize the cases into two groups: those with
normal systolic torsion (clockwise basal rotation and counterclockwise apical rotation) and those
with loss of systolic torsion (loss of normal clockwise systolic basal rotation). Loss of torsion was
noted in 32 of the 68 cases.
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(a) t5 (b) t10 (c) t15

(d) t20 (e) t25

Figure 4.6: The distribution of β along the z axis in 5 of the 30 time frames. Linear regression
was performed on the angle values and z-components of the nodes. The position on z-axis is
visualized in a relative sense as the position between the LV apex and base.

Figure 4.7: The rotation of the base and apex of LV in one cardiac cycle (30 time frames).
The clockwise rotation is represented by negative values, and the counter-clockwise rotation by
positive values). The LV contraction peaks approximately at time frame t15.

There was a significant difference in the peak systolic twist determined by the proposed
method in the two groups. In the group with normal torsion, the average peak systolic twist
gradient was 0.16 [degrees/cm] while it was 0.01 [degrees/cm] in the group with the observed loss
of torsion. On the contrary, no difference was found when comparing the other characteristics,
(RVESV, RVEDV, RVEF, LVESV, LVEDV, and LVEF).
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4.7 Discussion and conclusions
The proposed method based on image registration with mechanical regularization term can
be used to extract features of left ventricular contraction. This has been demonstrated in the
example of extraction of left ventricular torsion for patients with repaired tetralogy of Fallot,
where approximately 90% success rate was achieved. The study suggests that this approach
could be used to detect the insidious progression of left ventricular dysfunction with greater
robustness compared with standard clinical software.

There was no significant association between the torsion loss and other ventricular parameters
indicative of deterioration in cardiac status, such as reduced ventricular ejection fraction. We
note, that a long-term follow-up of the studied population would be required to further support
the hypothesis of a relationship between left ventricular torsion loss and worsening of ventricular
parameters and poor clinical outcomes.

The method has shown greater robustness with regard to input segmentation, but the
coefficient of variance still remains high. This is consistent with previous publications on this
topic [81]. Also, there are still aspects in the motion tracking step that should be addressed, as
evidenced by the 8 patients with rTOF and 1 control subject in whom the motion tracking step
failed. Although modification of the image registration method itself could be considered, in
some cases these problems may be related to the image data. Specifically, the interpolation of
short-axis cine stacks in the longitudinal direction to obtain 3D image data may be problematic
due to the significant difference in the resolution in the direction of z-axis. This could be improved
by combining the short-axis cine stacks with another series of images, such as long-axis cine
images.

Finally, while this is a study performed on a cohort of patients with rTOF, it should be noted
that the method could also be used to evaluate torsion in other cardiac patients.

Personal contribution
The author contributed to the design and implementation of data pre-processing tools and
the computation of torsion directly in the clinical environment of the Division of Pediatric
Cardiology, UT Southwestern Medical Center Dallas. The author was also responsible for
the implementation of the automation of these steps and testing the method on several
datasets.
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equation 5
Image enhancement covers many techniques in image processing. Generally, it includes all
procedures that either improve the quality of the image data or make it easier for visual
interpretation by a human audience. Commonly used techniques include contrast enhancement,
denoising, enhancement of edges, or deblurring. The focus of this chapter is on image deblurring
– the process of restoring a sharp image from the blurred input image.

Image blurring can occur when using various imaging techniques. For example in photography,
blurriness is often the result of light distortion, movement of either the imaging device or the
imaged object, or the imaged object being out of focus. Blurring can also be present in MRI
image data. In this case, the blurring may be a result of the patient’s movement – e.g. cardiac
and respiratory motion – or the partial volume effect mentioned in Section 3.1.

Blurring can reduce the sharpness of edges and the visibility of smaller details in the image.
Image data processing is often heavily dependent on the information about edges. Consequently,
the reliability of indicators derived from MRI images, e.g. torsion or ejection fraction, may be
affected by the quality of segmentation which in turn may be affected the level of image blurring.
Therefore, image deblurring or blur assessment techniques are being actively researched in the
field of medical imaging. The review of the state of the art of image deblurring methods can be
found in [66]. Recently, the use of neural networks and specifically convolutional neural networks
have been intensively explored also in the field of medical imaging [46, 86].

In this chapter, we examine the solution of the inverse heat equation for the task of image
deblurring. We intend to solve the problem by solving the adjoint equation. A similar problem
was already studied in several publications, such as [52], where the deblurring was combined
with noise removal. However, to the author’s best knowledge, the problem was not studied using
the adjoint formulation. This chapter is not intended to present a method with results superior
to the existing state of the art techniques but rather to provide an alternative mathematical
approach to the given optimization problem.

First, the general principle of the adjoint method is presented in Section 5.2. In Section 5.3,
the image deblurring problem is formulated as a minimization problem with PDE constraint,
and the solution using the adjoint formulation is derived. The numerical solution of the derived
equations is described in Section 5.4 and finally, the results of the proposed method are presented
in Section 5.5.

39
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5.1 Gradient descent method for minimization problems
In this section, we briefly describe the descent algorithm that will be used to solve the optimization
problems in this chapter. Gradient descent is an iterative optimization method for finding a
local minimum of a differentiable function. Let us consider a simple minimization problem for
function f : Rn → R:

min
u
f(u). (5.1)

We denote the initial guess of the parameter u by uinit. The algorithm is initialized by this
initial guess, i.e. u0 = uinit. Then in each iteration of the algorithm, the estimation is updated
as ui+1 = ui − ν∇f(ui), i ≥ 1. The parameter ν ∈ R is called the step of the gradient descent.

When using this algorithm, the derivative of f with respect to the parameter u need to be
computed in each iteration. In the following section, we describe, how the direct computation of
the derivative may be avoided.

5.2 Gradient computation in general PDE constrained
minimization problem

Let us first formulate a general minimization problem with PDE constraints. We follow the
formulation of the problem used [8] and [36], where the theoretical background for the following
steps can be found.

Let us define a loss functional J : Y ×Θ→ R, where Y,Θ are Banach spaces. Space Θ will
be referred to as the space of parameters and Y as the space of solutions.

We further assume the solution y and parameter θ to be bound together by a constraint
e : Y × Θ → H, where H is a Hilbert space. We consider constraint e(y, θ) = 0 consisting
of system of partial differential equations (PDEs) with boundary and initial conditions. We
assume, that the constraint e(y, θ) = 0 implicitly defines unique mapping θ ∈ Θ → y(θ) ∈ Y ,
and also that function y = y(θ) is differentiable with respect to θ. Then the full PDE constraint
minimization problem reads:

min
θ∈Θ

J(y(θ), θ) subject to e(y(θ), θ) = 0. (5.2)

As stated above, we want to solve this problem by the gradient descent method. Therefore,
computing the derivative of J with respect to the optimized parameter θ is required in each
iteration. Because y is uniquely determined by θ, we may define reduced functional Ĵ(θ) =
J(y(θ), θ). Next, we would compute the Fréchet derivative of Ĵ(θ) formally. For clarity of writing,
we keep J(y(θ), θ) and we proceed to compute the derivative with respect to θ in this sense.
First, we define the Lagrange function L:

L(y, θ, λ) = J(y(θ), θ) + 〈λ|e(y(θ), θ)〉 , (5.3)

where 〈.|.〉 denotes scalar product in the Hilbert space H. Function λ ∈ H will be referred to
as the Lagrange multiplier. Given the constraint e(y(θ), θ) = 0 is met, J(y(θ), θ) is trivially
equal to L(y, θ, λ) for any λ. This equality and, therefore, also equality of the derivatives of both
functions is used in the next steps.

Let us now compute the derivative of L with respect to θ at point θ∗ ∈ Θ, denoted by L′(θ∗).
The partial derivatives of J with respect to the first and second argument are denoted ∂J

∂y and
∂J
∂θ , respectively. The derivative of y with respect to θ at point θ∗ is denoted by y′(θ∗). By
differentiating 5.3, we obtain:
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L′(θ∗)[s] = ∂L

∂y
y′(θ∗)[s] + ∂L

∂θ
[s] = ∂J

∂y
y′(θ∗)[s] + ∂J

∂θ
[s] +

〈
λ

∣∣∣∣ ∂e∂yy′(θ∗)[s] + ∂e

∂θ
[s]
〉
, (5.4)

where s ∈ Θ. Using the Riesz representation theorem [36], we denote the representation of ∂J∂y by
J∗y :

∂J

∂y
y′(θ∗) =

〈
J∗y |y′(θ∗)

〉
. (5.5)

The adjoint operator to ∂e
∂y will be denoted by

〈
λ

∣∣∣∣ ∂e∂yy′(θ∗)[s]
〉

=
〈(

∂e

∂y

)∗
λ
∣∣ y′(θ∗)[s]〉 . (5.6)

Substituting both expressions to equation 5.4, the following steps can be taken to regroup
the expressions on the right hand side of the equation:

L′(θ∗)[s] =
〈
J∗y |y′(θ∗)[s]

〉
+ ∂J

∂θ
[s] +

〈(
∂e

∂y

)∗
λ

∣∣∣∣ y′(θ∗)[s]〉+
〈
λ

∣∣∣∣∂e∂θ [s]
〉

=
〈
J∗y +

(
∂e

∂y

)∗
λ

∣∣∣∣ y′(θ∗)[s] 〉+ ∂J

∂θ
[s] +

〈
λ

∣∣∣∣∂e∂θ [s]
〉
. (5.7)

We note, that if such λ could be found, that
(
∂e
∂y

)∗
λ = −J∗y the first expression on the right side

would be equal to zero and the potentially complicated computation of y′(θ∗) would be avoided.
Therefore, the adjoint approach to computing L′(θ∗) is following:

1. Solve the adjoin equation for λ:
(
∂e
∂y

)∗
λ = −J∗y .

2. Compute L′(θ∗): L′(θ∗)[s] = ∂J
∂θ [s] +

〈
λ
∣∣∣∂e∂θ [s]

〉
= ∂L

∂θ [s].

Let us summarize the findings: if λ is the solution of the adjoint equation, then the derivative
Lθ∗ [s] is simplified to ∂L

∂θ [s]. Therefore, the derivative of J with respect to the parameter θ is
avoided.

5.3 Image deblurring as a PDE constrained minimization
problem

The problem addressed in this section is reconstructing the original image from the blurred
image. Similarly to Chapter 2, we represent the original image by image function I0 : Ω→ R
and the blurred image by the function B : Ω→ R, where Ω is the spatial domain of the image.
We assume the domain Ω ⊂ R2 to be unit square.

5.3.1 Formulation of the problem

In this chapter we deal with one type of blur – the Gaussian blur. This type of blurring process
can be modeled by solving a heat equation:
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∂I(x, t)
∂t

= ω∆I(x, t) on Ω× (0, T ), (5.8)

I(x, 0) = I0(x) on Ω× (0, T ),
∂I(x, t)
∂n

= 0 on ∂Ω× (0, T ),

where n is normal vector to the edge ∂Ω of domain Ω and ω is the diffusion coefficient. The result
at the final time T is the blurred image B(x) = I(x, T ). We consider setting I0(x) ∈ C2(Ω̄),
I(x, t) ∈ C2(Ω̄× [0, T ]).

We formulate the problem of deblurring as finding such initial image I0 based on B(x). The
goal is to find such I0, so that when the known blur is applied, the final image I(x, T ) is as
close as possible to image B(x). In this problem, the parameters θ control the initial image I0.
We set I0(x) = θ(x) and therefore also I = I(x, t, θ). In the notation of the previous section,
Y = C2(Ω̄× [0, T ]),Θ = C2(Ω̄× [0, T ]).

We assume all parameters of the blurring process – diffusion coefficient ω and final time T –
are known and not dependent on θ. We define loss function J :

J(I(θ), θ) =
∫

Ω

1
2 (I(x, T, θ)−B(x))2 dx. (5.9)

The PDE constraint e contains the diffusion equation (5.8). In the notation used in Section (5.2),
we consider H = L2(Ω̄× [0, T ])× L2(Ω̄)× L2(∂Ω× [0, T ]), and e(I, θ) reads:

e(I, θ) =


∂I
∂t − ω∆I

I − I0
∂I(x,t)
∂n

 . (5.10)

Combining the loss function J and the constrains e, the constrained minimization problem
reads analogical to (5.2):

min
θ

∫
Ω

1
2 (I(x, T, θ)−B(x))2 dx subject to (5.11)

∂I(x, t, θ)
∂t

= ω∆I(x, t, θ) on Ω× (0, T ),

I(x, 0, θ) = I0(x, θ) on Ω× (0, T ),
∂I(x, t, θ)

∂n
= 0 on ∂Ω× (0, T ).

5.3.2 Computation of the gradient

We formally follow the approach used in section 5.2 in order to simplify the computation of
gradient. Analogically with Lagrangian function in the general case (5.3), we define the function
for problem (5.11). When denoting the Lagrange multipliers λ = (λ1, λ2, λ3) ∈ H, the Lagrangian
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function reads:

L(I, θ, λ1, λ2, λ3) =
∫

Ω

1
2 (I(x, T, θ)−B(x))2 dx (5.12)

+
∫

Ω

∫ T

0
λ1(x, t)

(
∂I(x, t, θ)

∂t
− ω∆I(x, t, θ)

)
dxdt

+
∫

Ω
λ2(x) (I(x, 0, θ)− I0(x, θ)) dx

+
∫
∂Ω

∫ T

0
λ3(x, t)

(
∂I(x, t, θ)

∂n

)
dSdt

As was explained in the previous section, the loss function J is equal to the Lagrangian function
L for any λ1, λ2, λ3, given that the PDE constraint is satisfied. Therefore also the derivatives of
J and L are equal under such condition.

Therefore, we proceed to compute derivative of the Lagrangian function L with respect to
argument θ at point θ∗ and direction s. We use the same notation for the derivatives as in the
general case in Section 5.2:

L′(θ∗)[s] = ∂L

∂I
I ′(θ∗)[s] + ∂L

∂θ
[s] (5.13)

It was demonstrated in Section 5.2, that the first term ∂L
∂I I
′(θ∗)[s] can be made equal to zero,

under a specific set of conditions. The derivative is then reduced to the second term ∂L
∂θ [s].

Let us derive these conditions. We will simplify the notation and use I ′(θ∗)[s] = v. We also
omit explicitly writing the arguments of the functions in following equations. The function values
at initial and final time will be denoted by |t=0 and |t=T . We derive:

∂L

∂I
v =

∫
Ω

(I|t=T −B(x)) v|t=Tdx +
∫

Ω

∫ T

0
λ1

(
∂v

∂t
− ω∆v

)
dxdt

+
∫

Ω
λ2(v|t=0 − s)dx +

∫
∂Ω

∫ T

0
λ3

(
∂v

∂n

)
dSdt. (5.14)

Next, we offload the derivatives in the second term using Green’s formula [44]:

∫ T

0
λ1
∂v

∂t
dt = (λ1v)|t=T − (λ1v)|t=0 −

∫ T

0

∂λ1
∂t

vdt (5.15)∫
Ω
λ1ω∆vdx =

∫
Ω
ω∆λ1vdx +

∫
∂Ω
ωλ1

∂v

∂n
− ωv∂λ1

∂n
dS (5.16)

Substituting (5.15) and (5.16) to equation (5.14), we obtain:

∂L

∂I
v =

∫
Ω

(I|t=T −B(x)) v|t=Tdx−
∫

Ω

∫ T

0

(
∂λ1
∂t

v + ω∆λ1v

)
dxdt

+
∫

Ω
λ2v|t=0 + (λ1v)|t=T − (λ1v)|t=0dx

+
∫
∂Ω

∫ T

0
λ3

(
∂v

∂n

)
− ωλ1

∂v

∂n
+ ωv

∂λ1
∂n

dSdt (5.17)
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Based on (5.17), it can be concluded that ∂L
∂I v is equal to zero for any v if following conditions

are satisfied by the multipliers λ1, λ2, λ3:

∂λ1
∂t

+ ω∆λ1 = 0 on Ω× (0, T ), (5.18)

λ1|t=T −B(x) + I|t=T = 0 on Ω, (5.19)
∂λ1
∂n

= 0 on ∂Ω× (0, T ), (5.20)

λ2 − λ1|t=0 = 0 on Ω, (5.21)
λ3 − ωλ1 = 0 on ∂Ω× (0, T ). (5.22)

These conditions state the relation between λ2, λ3 and λ1 in a form of PDE with final and
boundary condition. The PDE for λ1 is similar to the original diffusion equation solved for I in
the blurring process. The final time condition (5.19) can be reformulated to initial condition using
following time-reverting substitution: τ = T−t. For the simplicity of notation, functionλ̃1(x, τ) =
λ1(x, T − t) will be denoted by λ1(x, τ) in the following equations. Substituting the new variable
τ , the PDE for λ1 reads:

∂λ1
∂τ
− ω∆λ1 = 0 on Ω× (0, T ), (5.23)

λ1|τ=0 = B(x)− I|τ=0 on Ω,
∂λ1
∂n

= 0 on ∂Ω× (0, T ).

We note that the existence of strong solution of this adjoint problem is not guaranteed. However,
if these conditions for λ1, λ2, λ3 are satisfied, the derivative of loss function J with respect to the
parameter θ is in θ∗ and direction s reduced to:

J ′(θ∗)[s] = L′(θ∗)[s] = ∂L

∂θ
[s] = −

∫
Ω
λ2sdx. (5.24)

Finally, let us summarize the adjoint approach to computing derivative of loss function J :

1. Solve the primary PDE (5.8) for I.

2. Solve the adjoint PDE (5.23) for λ1.

3. Compute λ2 = λ1|τ=T as given by (5.21).

4. Substitute to (5.24) and evaluate J ′(θ∗)[s].

5.4 Numerical solution

5.4.1 Spatial discretization, approximation of spatial derivatives and integrals

For the numerical solution, the image function I : Ω → R is approximated by a grid function
Ih : Ωh → R. First, we define Ωh – the spatial discretization of square domain Ω = [0, 1]× [0, 1]:

Ωh = {[h/2 + ih, h/2 + jh] | i = 0, .., N − 1, j = 0, .., N − 1} , (5.25)

where N is the number of grid points in each direction and h = 1/N is the spatial step. The
nodes of grid Ωh are denoted by xi,j , i = 0, .., N − 1, j = 0, .., N − 1. The grid function Ih is
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defined only in nodes xi,j . Function Ih is fully determined by the values in N ×N nodes of grid
Ωh:

Ih =
N−1∑
i=0

N−1∑
j=0

Ii,jχ(xi,j), (5.26)

where Ii,j denotes the function value and χ is the characteristic function of point xi,j . The same
approximation and notation is used for all image functions used in Section (5.3). Namely, the
blurred image B is approximated by the discrete function Bh, and the initial image function I0
is approximated by grid function I0,h.

In this work, the adjoint equation (5.23) is numerically solved on the same grid as the primary
equation (5.8). Therefore, the adjoint function λ1 is also approximated by discrete function
λ1,h : Ωh → R. Both PDEs are also solved using the same method. The spatial derivatives in
both equations are first discretized, and the resulting ordinary differential equations are solved
by the explicit Euler scheme. In equation (5.8), term ∆I is discretized using the second-order
central finite difference:

∆I(xi,j) ≈
Ih(xi−1,j)− 2Ih(xi,j) + Ih(xi+1,j)

h2 + Ih(xi,j−1)− 2Ih(xi,j) + Ih(xi,j+1)
h2 .

In the adjoint equation (5.23), term ∆λ1 is treated analogically.
Due to approximation (5.26), optimizing θ is reduced to finding optimal values θi,j i =

0, .., N, j = 0, .., N . Derivative of the loss function J with respect to θi,j is obtained based on
equation (5.24) using a piece-wise constant interpolation:

∂J

∂θi,j
≈ −

N−1∑
k=0

N−1∑
l=0

h2λ2,k,lχ(xk,l)χ(xi,j) = −h2λ2,i,j . (5.27)

5.4.2 Numerical algorithm

The minimization problem (5.11) is solved iteratively using ADAM optimization method [41].
The initial guess for θh is based on the blurred image θh0 = Bh. The k-th iteration of the
algorithm has the following form:

1. Solve discretized PDE (5.8) with initial condition I0,h = θh
k.

2. Solve discretized adjoint PDE (5.23) for λ1,h.

3. Compute λ2,h = λ1,h|τ=T based on (5.21).

4. Compute ∂J
∂θk

i,j

, i = 0, .., N1 − 1, j = 0, .., N2 − 1 based on (5.27).

5. Compute θk+1 using ADAM based on ∂J
∂θk

i,j

, i = 0, .., N1 − 1, j = 0, .., N2 − 1 and θk.

5.5 Experimental results

In this section, we present the results of the proposed deblurring method. The blurred images
are generated as a solution of diffusion equation (5.8). The parameters used to generate the
blurred images are T = 2.0 · 10−5 and three values of diffusion coefficient ω = 0.25, ω = 0.5,
ω = 0.75. For the numerical solution of equations (5.14) and (5.23), following parameters
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were used: N = 320, τ = 10−6. In the optimization algorithm, the convergence criterion of(∑N1−1
i=0

∑N2−1
j=0

(
∂J
∂θi,j

)2
)1/2

< 10−9 was used.
The input image I0 and the blurred images are shown in Figure 5.1. The diffusion coefficient

used to generate the blurred images is indicated in the subscript Bω. The estimation of the
original image θ, based on the blurred images B0.25, B0.5, B0.75 is shown in Figure 5.2. The
norms of difference between the original, blurred, and reconstructed images are provided in Table
5.1. Norm ‖ · ‖2,h is defined using notation for discretized functions used in (5.26):

‖I0 −B‖2,h =

√√√√ N∑
i=0

N∑
j=0

(I0,i,j −Bi,j)2. (5.28)

(a) I0 (b) B0.25 (c) B0.5 (d) B0.75

Figure 5.1: The original mage I0 and the three blurred images generated as a solution of
equation (5.14). The values of diffusion coefficient with ω equal used in (5.14) are indicated in
the subscript Bω.

Table 5.1 shows, that the difference between the original image I0 and the reconstruction
increases with increasing diffusion coefficient ω. This can be also observed in Figure 5.2. While
the reconstruction in Figures 5.2a and 5.2b are very similar to the original image I0, artifacts are
visible in image reconstructed from B0.75, especially around the edges.

(a) θ reconstructed from B0.25 (b) θ reconstructed from B0.5 (c) θ reconstructed from B0.75

Figure 5.2: The result of optimization algorithm for θ. The experiment was performed for
blurred images B0.25, B0.5, B0.75.
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(a) θ reconstructed from B0.25 (b) θ reconstructed from B0.5 (c) θ reconstructed from B0.75

Figure 5.3: The details of image reconstructed from blurred images B0.25, B0.5, B0.75.

ω ‖I0 −B‖2,h ‖I0 − θ‖2,h

0.25 10.85 0.84

0.5 15.7 3.23

0.75 18.67 6.54

Table 5.1: The norm of difference of the original image I0, the blurred image B and the
reconstructed image θ. The experiment was performed for three levels of the blur controlled by
the diffusion coefficient ω.

5.6 Conclusions
The adjoint formulation can be used to solve the inverse diffusion equation. First, the adjoint
equation was derived. Subsequently, the algorithm for the solution of the inverse heat equation,
which utilizes the solution of the adjoint equation, was presented.

The proposed approach was successfully used in the problem of image deblurring. In the
future, the differences between the presented method and existing approaches for image deblurring
should be investigated. This might lead to finding a context in which is approach might be
advantageous.

Personal contribution
The author derived the adjoint problem for the diffusion equation, implemented the solver
and performed the presented experiment on blurred images.





Estimation of T1 relaxation
time from cardiac MRI data 6

6.1 Introduction

In this study, we propose a two-stage approach to tissue parameter estimation based on MRI
data that attempts to address some of the problems outlined in Section 1. We illustrate the
proposed method on the problem of estimating the T1 relaxation time from cardiac MR image
series acquired by the standard Modified Look-Locker Inversion recovery technique (MOLLI)
[53] and demonstrate some advantages of such a combined approach.

This Chapter starts with Section 6.1.2 in which the mathematical models with different levels
of complexity used for T1 relaxation time estimation are introduced. Subsequently, we describe
how some aspects of the previously published models are combined in the proposed method.

In Section 6.2, the building blocks of the proposed method are described in detail. First, the
mathematical model of the MOLLI sequence based on Bloch equations is described in Subsection
6.2.1. In Subsection 6.2.3, we describe the use of the imaging model in the training of NN, used in
the first stage of the estimation process. In Subsection 6.2.2, we describe how the generic model of
the MOLLI sequence is turned into a patient- and measurement-specific model used in the second
stage of T1 estimation, which is described in Subsection 6.2.4. Finally, the incorporation of the
regularization term is described in Subsection 6.2.5. In Section 6.3, we provide the parameters of
the synthetic, phantom, and in-vivo MRI data used to validate the proposed method. Finally,
the results of the proposed method on the three types of data are presented in Section 6.2.5.

6.1.1 Tissue magnetization

We start this section with a simplified introduction to the main principles of nuclear magnetic
resonance (NMR). NMR utilizes the magnetic properties of atomic nuclei and their interaction
with an external magnetic field. Nuclei with different numbers of protons and neutrons, such as
hydrogen nuclei, exhibit magnetic momentum mi. In a volume of tissue containing hydrogen
atoms, the macroscopic magnetic momentum can be defined as a sum of contributions of all
nuclei in that volume: M =

∑
i mi.

Under normal conditions, the orientation of mi is random, and therefore the macroscopic
magnetization M = 0. In an external homogeneous magnetic field with strength B0, individual
momenta mi align to direction parallel or antiparallel with B0. The parallel orientation represents
a lower energy state. Therefore, the majority of momenta take this orientation. Cumulatively,
this aligning creates a non-zero macroscopic magnetization vector M . A diagram of the alignment
of mi in normal conditions and in an external magnetic field is shown in Figure 6.1.

We denote the component of M parallel with B0 by M‖ (longitudinal magnetization) and the
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Figure 6.1: Diagram of macroscopic magnetization of given volume under normal conditions
and in external magnetic field B.

component perpendicular to B0 by M⊥ (transverse magnetization), i.e. M = M‖ + M⊥. Only
the transverse component M⊥ generates a detectable signal. The imaging process, therefore,
requires manipulation with M that would result in non-zero M⊥. The manipulation typically
involves the application of an energy pulse – radiofrequency pulse (RF). In the macroscopic point
of view, the effect of such a pulse is a rotation of M away from the direction parallel with B0
and therefore formation of non-zero M⊥ and reduction of M‖.

After the excitation, the magnetization vector re-aligns with B0 in a process called relaxation.
During the relaxation, the magnitude of M‖ increases to its original value, while the magnitude
of M⊥ decreases to 0. Both processes are described by the following equations:

‖M‖(t)‖ = M0(1− e−
t

T1 ), (6.1)

‖M⊥(t)‖ = M0e
− t

T2 , (6.2)

where M0 is the initial magnitude of vector M . The T1 relaxation time controls the rate at
which the magnitude of longitudinal magnetization M‖ returns to initial (equilibrium) value
M0. Similarly, the T2 relaxation time controls the rate at which the magnitude of M⊥ decreases
to zero. The diagram of M in the initial state, after excitation by RF pulse and during the
relaxation process, is shown in Figure 6.2.

Figure 6.2: Diagram of magnetization vector M in the initial orientation (aligned with B)
after excitation and during the relaxation.

In magnetic resonance imaging (MRI), the intensity of the given pixel is given by the
magnitude of M⊥. In order to create an image, the signal also needs to be localized in space.
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This is done by superimposing magnetic field gradients on the uniform magnetic field B0. The
steps of excitation and signal detection are repeated until a sufficient amount of information is
collected.

6.1.2 Background to T1 estimation

The process of longitudinal tissue relaxation in nuclear magnetic resonance, introduced in
the previous section, can be described by a phenomenological model based on an exponential
function with the time constant T1:

w(t) = A−Be−
t

T1 .

The applicability of this model in cardiac MRI is limited due to several factors. In particular,
cardiac MRI applications require the repetition time (TR) being significantly lower than the
actual longitudinal relaxation of the myocardium due to acquisition in breath-hold. This results
in incomplete recovery of longitudinal magnetization. The relaxation curve is also corrupted by
the manipulation of the magnetization vector during the acquisition. These factors lead to an
underestimation of the T1 relaxation time. Therefore, a two-step estimation of T1 is typically
used. First, the apparent relaxation time T ?1 is estimated using the standard three-parameter
fitting of the function A−Be

− t
T ?

1 . Then, the actual relaxation time T1, T1 > T ?1 , is computed
according to the correction formula

T1 =
(
B

A
− 1

)
T ?1 , (6.3)

designed with the assumption of a continuous FLASH (fast low-angle shot) gradient echo readout
[19].

Sampling and fitting the exponential curve is a fast and efficient way of estimating T1. However,
the result may be influenced by a number of factors, which are not completely considered in the
phenomenological model even when adding the correction step. These may be for instance the
type of readout or non-constant TR due to varying heart rate. Furthermore, the FLASH-sequence-
derived correction formula (6.3) applied for the MOLLI data (with balanced steady-state free
precession readout) introduces yet another bias.

Several alternatives to this phenomenological model are presented in the following section.

6.1.3 Alternative approaches to T1 estimation

Alternatively to the phenomenological models, a biophysical approach can be employed. In our
problem, this would be the application of the mathematical model of the relaxation process
described by the Bloch equations – Bloch simulator [6]. Recently, several ways of integrating a
mathematical model of the MOLLI imaging sequence have been pursued. We now list several
methods relevant to our own approach, which we describe at the end of this section.

• In [27], the use of the Bloch simulator to generate synthetic data that would mimic the
measured data of phantoms and human volunteers, was examined. The standard two-
step estimation of the relaxation time T1 by fitting the phenomenological exponential T ?1
and applying the correction formula (6.3) was to estimate T1 from the measured data
and from the synthetic data generated by the Bloch simulator. The work showed the
equivalency of the parameters estimated from the real and synthetic data. Furthermore,
it was demonstrated that the Bloch equation-based simulations can be used to analyze
various effects in the standard two-step estimation of T1, e.g. varying flip angle, maximal
inversion time or the actual encoding schemes for data acquisition.



52 6. Estimation of T1 relaxation time from cardiac MRI data

• In [85] the three-parameter fit was avoided altogether. In phantom and in vivo study, the
authors showed that the estimation of T1 from a series of MOLLI images can be improved
by comparing the signals with a large set of possible measurement results generated by
Bloch simulations with different tissue parameters.

• In study,[73] the two types of estimation methods were compared. The representative of the
first approach was the standard three-parameter fit in its modified version named Inversion
Group (IG) fitting [79]. In the IG fitting, the three parameters were allowed to vary for
each “inversion group” – signals acquired between two subsequent inversion pulses. The
second approach was based on estimating T1 by pixel-wise matching the simulated signal
to the measured signal using the least squares algorithm.

• The comparison on phantoms by [73] demonstrated that estimating T1 by directly matching
the measured and generated signal has superior accuracy compared to the three-parameter-
fit methods. However, in some cases, these methods showed a lower precision. The authors
speculate that this might be caused by a higher sensitivity to noise. The best approach found
in [73] was based on BLESSPC (Bloch equation simulation with slice profile correction)
and a subsequent inversion of the model by minimizing the mean square error between the
simulated and measured signal for each pixel.

• In BLESSPC [75], the minimization was performed by using the Levenberg-Marquardt
algorithm The method was shown to suffer from a long computation time in some cases.
Therefore, [72] presented an approach incorporating the original BLESSPC method with
NN. In this work, a deep convolutional NN with an input layer containing the measured
signal and the acquisition time stamps were used. The T1 relaxation time was predicted
pixel-wise. It was shown that the NN trained on synthetic data obtained similar estimations
as the original method in a much shorter time.

• The presented approaches also differ in the used variants of Bloch simulators. The set of
free parameters that need to be optimized, besides the T1, therefore also differ. For instance,
[74] in the method InSiL (Instantaneous Signal Loss simulation) additionally estimated
the initial magnetization M0 and the factor of instantaneous signal loss in longitudinal
magnetization. In [75], method BLESSPC was used to estimate the initial magnetization
M0 together with an apparent flip angle, to give some examples.

In the present work, we combine ML with biophysical modeling to benefit from both. Similarly
to [72], a mathematical model of the MOLLI sequence is used to generate a sufficient amount
of synthetic datasets for training an NN. It is trained by using various combinations of cardiac
cycle durations, inversion times, flip angles, tissue relaxation parameters, etc. The NN is not
fully specific for a single patient and a single type of acquisition, and can therefore be trained
beforehand. It is used as a black-box model that produces a fast first-stage estimate of the
parameters of T1, T2 relaxation times, tissue magnetization M0 and the actual value of flip
angle α in the tissue. Then, the parameters of the given measurement are substituted into the
mathematical model of MOLLI. This “patient- and measurement-specific” model is used for
the final fine-tuning of the estimated parameters by NO while using the NN-based first-stage
estimate as an initial guess. The second-stage of parameter estimation can additionally include
various regularization constraints (e.g. spatial, physical, or physiological). The diagram of the
proposed approach is shown in Figure 6.3.
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Figure 6.3: Diagram of the proposed two-stage approach to T1 relaxation time estimation.

6.2 The proposed two-stage method

In this work, the estimation of T1 relaxation time from the conventional 5-3-3 MOLLI MR images
(see [53] and schematics in Figure 6.4) is formulated as an inversion problem. The MOLLI
sequence provides an image series, where n values of intensity (n = 11 for the 5-3-3 MOLLI
sequence) are available for each pixel. These values may be represented by an n-dimensional
vector s. Let us consider a mathematical model F of this imaging sequence, which simulates
the signal ŝ, i.e.

F (c,p) = ŝ, (6.4)

where vector c consists of the fixed parameters (typically given by the imaging sequence) and
vector p is composed of the free parameters (representing the characteristics of the imaged tissue,
one of them being the relaxation time T1).

In order to estimate p, we formulate the following minimization problem

min
p
l(F (c,p), s), (6.5)

where l is a loss function used to evaluate the difference between the measured values s and the
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values ŝ generated by the model F . Next, the model of imaging sequence F , the loss function l,
and the minimization method are described.

6.2.1 Mathematical model of the imaging sequence

The mathematical model of the 5-3-3 MOLLI sequence is based on an analytical solution of the
Bloch equations [7], solving for tissue magnetization vector M(t) = (Mx(t),My(t),Mz(t)):

d Mx(t)
dt = γ(M(t)×B(t))x −

Mx(t)
T2

, (6.6)

d My(t)
dt = γ(M(t)×B(t))y −

My(t)
T2

,

d Mz(t)
dt = γ(M(t)×B(t))z −

Mz(t)−M0
T1

.

The set of equations (6.6) describes the relaxation process of a magnetization vector M
with the tissue characteristics T1, T2 corresponding to the time constants of the longitudinal
(z) and transverse (xy) component relaxation, γ being the gyromagnetic ratio of 1H nuclei
(ω0 = γB0 being the Larmor frequency). Under the assumption of a static external magnetic
field B(t) = (0, 0, B0), the system (6.6) is simplified to following system of ODEs:

d Mx(t)
dt = ω0My(t)−

Mx(t)
T2

, (6.7)

d My(t)
dt = −ω0Mx(t) − My(t)

T2
,

d Mz(t)
dt = −Mz(t)−M0

T1
,

which has an analytical solution [58]:

M(t+ ∆t) =


e−

∆t
T2 0 0

0 e−
∆t
T2 0

0 0 e−
∆t
T1




cos(ω0∆t) sin(ω0∆t) 0

−sin(ω0∆t) cos(ω0∆t) 0

0 0 1

M(t)+


0

0

M0

(
1− e−

∆t
T1

)
 (6.8)

We remark that the acquired signal – represented by the output of F in the Equation (6.5) –
is associated with the magnitude of the projection of M onto the transverse (xy) plane. The
rotation around the z-axis, given by the ω0∆t term, is not simulated as it has no effect on the
magnitude of the transverse component of M .

In the image acquisition model, the relaxation process follows each manipulation with the
magnetization vector M by the MRI sequence. The manipulation of the magnetization is governed
by the specific sequence parameters incorporated in the model. In general, the manipulation
with magnetization vector by a single radiofrequency (RF) pulse with given flip angle alpha φ
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and duration ∆t is simulated as a rotation of M around x-axis:

M(t+ ∆t) =


1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)

M(t). (6.9)

As explained above, the imaging sequence model F (6.4) operates with two types of parameters
c and p. The measurement-specific parameters c are as follows: Echo Time (TE); 11 values of
Inversion Time (IT ); 11 values of RR (time period between consecutive R-waves in ECG, i.e.
cardiac cycle duration reciprocal to the heart rate); Base Resolution (BR); Reference Lines of
parallel imaging (RL); Phase Partial Fourier (PPF); and Percent Phase Field Of View (PPW).
From these, the remaining sequence parameters can be computed based on the sequence structure,
known from the source code provided by the vendor within the IDEA environment.

Based on the sequence-specific parameters, two additional parameters which control the
timing of the imaging sequence are computed:

Lt =1
2(BR · PPW +RL)− 1

2(1− PPF ) ·BR · PPW,

Lc =1
2BR · PPW −

1
4(BR · PPW −RL)− 1

2(1− PPF ) · BR · PPW.

The tissue-specific parameters (vector p) are in our problem represented by: T1 and T2
relaxation times; and initial tissue magnetization M0. Furthermore, while the target flip angle α
is a parameter of the MRI sequence, the actual tilting of M is not uniform in the imaged domain.
In real acquisitions, the effective value of the flip angle is unevenly distributed around this target
value. The actual flip angle α in the tissue can therefore be considered as an additional tissue
characteristic and the value of α is becoming one of the estimated parameters.

The mathematical model of image acquisition consists of three consecutive main blocks, each
containing either 5 or 3 inner units (see Figure 6.4 for details). Each main block starts with an
inversion pulse which is followed by 5 or 3 inner units, each consisting of a period of relaxation,
five preparatory radiofrequency (RF) pulses, the signal readout, and relaxation. In the first main
block, the magnetization vector starts from the initial value M(0) = (0, 0,M0). In the following
blocks, the final M from the previous block is used as a starting value.

As shown in 6.4, the timing of the signal readouts is given primarily by the 11 values of
Inversion Time. The cardiac-cycle duration RR is only needed to compute the duration of the
3-cardiac-cycles long relaxation between the three main blocks of the sequence. The duration of
these cardiac cycles is however not measured and therefore a mean duration RR is used. The
mean length of the cardiac cycle RR is computed as the average of all RR values.

The mathematical model also includes one signal-corrupting effect – the effect of an uneven
distribution of flip angle α throughout the slice thickness (excitation profile). The thickness of
each imaged voxel is significantly larger than its other two dimensions. For the diagram of the 3D
imaged volume and the final 2D image, see Figure 6.5. The effective flip angle is known not to be
uniform across a slice thickness [82]. In our work, the flip angle variation is modeled by dividing
the virtual volume of imaged tissue into 9 sublayers and assuming the normal distribution of flip
angle α with variance σ2, the original value being in the middle layer. The distribution of the
flip angle across the thickness of the imaged layer is shown in Figure 6.5. Similar slice profile
correction was used also in [18] and [75]. The simulations are performed for each angle separately
and the simulated signal is then averaged.
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inversion pulse
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Figure 6.4: The simulation of the MOLLI sequence consists of 3 blocks. Each block consists
of 5 or 3 inner units, followed by relaxation (of the duration of 3 cardiac cycles). Each block
starts with an inversion pulse, which is simulated by flipping the magnetization vector M by
180◦ around the x-axis. Each inner unit consists of three steps – relaxation, preparation pulses,
and signal acquisition. The timing in i-th inner unit depends on the i-th value of InversionTime
and the value of TE. The signal acquisition process consists of Lt radiofrequency (RF) pulses
with flip angle ±α, where the signal is generated as the magnitude of the transverse component
of M after the Lc-th pulse. This moment needs to correspond to the i-th value of InversionTime
(ITi). Therefore the acquisition starts at time ITi−Lc ·TE. The five preparation RF pulses with
flip angles 1/10α,−3/10α, 5/10α,−7/10α, 9/10α (each simulated as a rotation by given angle
around the x-axis) start at time ITi − (5 + Lc) · TE. The remaining time before the preparation
pulses is filled with relaxation.

Figure 6.5: Diagram of distribution of the flip angle α in the imaged volume.

6.2.2 Patient- and measurement-specific model

The generic model F of the MOLLI sequence is turned into the patient- and measurement-specific
regime F̃ by inputting the known parameter values. Specifically, the values of TE, 11 values
of Inversion Time, mean RR, Lc, Lt are substituted into the model F . This specified model,
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with reduces the number of free parameters, is denoted by F̃ (p). The variance of the flip angle
through the slice thickness (σ2), used for signal corruption in the training dataset, is set to zero
in model F̃ . The impact on the simulated signal s̃ is covered by the remaining free parameters,
particularly M0. The tissue characteristics T1, T2, and M0 and the tissue distribution of flip
angle α are the only free parameters of the resulting model F̃ (p).

6.2.3 Neural network trained on the synthetic data

The initial estimation of the free parameters p = (T1, T2,M0, α) is obtained by using an NN
trained on the model-generated data.

The NN consists of an input layer with 11 neurons, with the values of 11 sampling points
of MOLLI sequence; 6 convolution layers with 3 × 1 kernel and 32 channels; 2 × 1 maximum
pooling layer and two dense layers with 160 and 40 neurons; and the output layers consisting of
4 neurons. Exponential Linear Unit (ELU) activation function [16] was used in all layers.

The ELU activation function ELU(x) =
{
x if x > 0
(ex − 1) if x ≤ 0

provides nonlinearity to the

NN.
Compared to the frequently used Rectified Linear Unit (ReLU) activation function, ELU

takes also negative values, which may lead to a faster convergence, as was shown by [16].
To deal with the different orders of magnitude in the estimated parameters, the following

loss function was used to evaluate the difference between the true (p) and predicted parameters
(p̂) in a relative sense:

l =
4∑
i=1

(
pi − p̂i

pi

)2
. (6.10)

The NN was trained on 1.6 · 106 samples of synthetic MOLLI sequences using the ADAM
optimizer [41]. The batch of training samples was generated in each iteration by the model of the
MOLLI sequence using a set of parameters randomly generated in the ranges listed in Table 6.1.

6.2.4 Parameter estimation approach combining neural network and
numerical optimization

In the first stage, the NN is used to generate the first estimate of p. In the second stage, p is
optimized to minimize the difference between the measured signal and the signal generated by
the model F̃ . This leads to a reduced minimization problem

min
p
l(F̃ (p), s), (6.11)

with s being the measured signal.
The optimization problem is not well posed, as a similar relaxation curve can be obtained by

different combinations of the free parameters. Examples of such relaxation curves generated by
the Bloch simulator are shown in Figure 6.6, using the same set of parameters c and different
sets of parameter p = (T1, T2,M0, α). Therefore, optimizing all components of p in the second
stage may not increase the accuracy of T1.

The selection of the loss function l may also affect the accuracy of the estimation. In this
work, four types of loss functions were evaluated.

First, the quadratic loss function

l2(s, s̃) =
11∑
i=1

(si − s̃i)2, (6.12)
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Table 6.1: The ranges of parameter values were determined with respect to the range of typical
values in human tissues and the setting of the scanner used for the validation measurements.
The first InversionTime IT1 was generated randomly in the given range, the other inversion
times were computed based on delay ∆d, RR and errors ei as follow: [IT1, IT1 + ∆d+ e2, IT1 +
2∆d+ e3, IT1 +RR+ e4, IT1 + ∆d+RR+ e5, IT1 + 2∆d+RR+ e6, IT1 + 2RR+ e6, IT1 +
∆d+ 2RR+ e7, IT1 + 2∆d+ 2RR+ e8, IT1 + 3RR+ e9, IT1 + 4RR+ e10]. The errors ei are
introduced to simulate the non-constant value of RR in real measurements and thus increase
the robustness of the neural network. The effect of non-even distribution was included in the
training dataset for the same reason.

Parameter Values / Ranges Description

α 25− 45 [◦] flip angle

TE 1 - 2 [ms] Echo Time

RR 600 - 1200 [ms] mean duration of the 11 accepted heart beats

RL 36 [.] Reference Lines of parallel imaging

PPF 7/8 [.] Phase Partial Fourier

PPW 0.8 - 0.95 [.] Percent Phase Field Of View

IT1 (5 + Lc) · TE + (30 - 50 )[ms] first Inversion Time

∆d 80 [ms] Inversion Time delay

ei (-10) - 10 [ms] error in i-th Inversion Time, i = 2 : 11

T1 180 - 2200 [ms] relaxation time

T2 20 - 300 [ms] relaxation time

M0 0.025 - 0.95 [.] z-component of initial magnetization

σ 1.63 - 20 [◦] standard deviation of flip angle distribution

Figure 6.6: Example of three relaxation curves generated by the Bloch simulator.

was used.
Another option is to evaluate the difference between the measured and generated signal in a
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relative manner, using the loss function

lrel(s, s̃) =
11∑
i=1

(
si − s̃i
si

)2
, (6.13)

where the difference between the signals is normalized by the value of the measured signal.
Contrary to l2, which does not takes into account the difference in the order of magnitude
between the values in MOLLI sampling points, lrel does not penalize the mismatch in the
sampling points with lower signal values less than the mismatch in the sampling points with
higher signal values.

The uneven penalization of misalignment between the sampling points on the exponential
relaxation curve may also be limited by using the logarithmic loss function

llog(s, s̃) =
11∑
i=1

(log(si)− log(s̃i))2, (6.14)

Last, a loss function assigning different weights to the MOLLI sampling points was used

lw(s, s̃) = λ

( 2∑
i=1

(si − s̃i)2 +
11∑
i=7

(si − s̃i)2
)

+
6∑
i=3

(si − s̃i)2. (6.15)

In this loss function, 7 values sampled at the beginning and the end of the relaxation curve
are assigned with lower weights, compared to the 4 signal values sampled in the middle of the
relaxation curve, in order to compensate for the highest level of the signal.

6.2.5 Regularization terms

The variational formulation of problem (6.11) allows to the inclusion of a number of regularization
terms.

This leads to the following minimization problem:

min
p

(
l(F̃ (p), s) + r(p)

)
, (6.16)

where l is a loss function defined in Section 6.2.4 and r is the regularization term. In our problem,
we consider two types of regularisation terms.

A regularization term ensuring the smoothness of the resulting T1 map

r(T1) = λ1

∫
Ω
‖∇T1‖2dx, (6.17)

is considered, where Ω denotes the domain of the T1 map. Incorporating this term prevents the
spatial gradient from getting a very high value, which would likely indicate a non-physiological
sudden change of the estimated tissue characteristics.

6.3 Synthetic and real MRI data

6.3.1 Synthetic data

A dataset of 10,000 synthetic MOLLI image series was generated using combinations of parameter
values randomly chosen from the ranges provided in Table 6.1. This dataset was used to compare
various optimization approaches.
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First, the impact of the second-stage estimation – NO – on the accuracy of the T1 estimate
was evaluated. Specifically, NN was used in the first stage of the estimation to obtain the values
of T1, T2,M0, and α. The accuracy of the second stage was evaluated for estimating various
combinations of p components (while the remaining components were kept as given by the
first-stage NN) and the loss functions (6.12) – (6.15).

The NO stage can be also run without the initialization by NN. In such a case, the initial
guess for the parameters T1, T2,M0, α can be based on prior knowledge. In our work, the mean
values of the corresponding ranges in Table 6.1 were used. The accuracy of T1 estimation after
the NO initialized by the mean value is compared to the estimate with the initialization given by
NN. The final test with the synthetic data is the assessment of the accuracy of T1 estimate when
using the input data corrupted by normally distributed noise.

6.3.2 Phantoms

To validate the proposed T1 estimation approach, eight phantoms with a wide range of T1
values were used. The T1 relaxation values obtained by the inversion recovery turbo spin echo
(IR-TSE) sequence were used as the pseudo-ground truth (pGT) values. The results of the
proposed two-stage approach were compared with the T1 estimation from the same MOLLI
dataset provided directly by the scanner console and evaluated against the pGT values.

The phantoms were fabricated using a water solution of agar (mass fraction 4.5%) and sodium
azide (0.2%). Agar constrains diffusion and azide protects against bacterial decay. This base
mixture was filled into eight 50 mL cylindrical test tubes and mixed with a small volume of
10 mmol/L gadolinium contrast agent solution (ProHance, Bracco Imaging Deutschland GmbH,
Germany). Thus, a series of phantoms was obtained with the following concentrations of contrast
agent: 0.0000, 0.0456, 0.0842, 0.1228, 0.1806, 0.2771, 0.4700 and 1.0487 mmol/L, so as to produce
intended T1 times of: 200, 400, 600, 800, 1000, 1200, 1500 and 2130 ms.

The phantoms were imaged on a 3T MRI scanner (MAGNETOM Vida, Siemens Healthineers,
Germany) and on a 1.5T MRI scanner (MAGNETOM Avanto fit, Siemens Healthineers, Germany)
using a head coil. All parameters of the measurement are provided in Appendix A.1.

6.3.3 In vivo data

Datasets of 15 patients indicated for a cardiac MRI exam were used in this study. The datasets
were acquired under the ethical approval number G-14-08-11, in conformance with the 1975
Declaration of Helsinki. All patients signed an informed consent approved by the institution’s
ethical committee. The MRI acquisition were performed on a 3T MRI scanner (MAGNETOM
Vida, Siemens Healthineers, Germany) and on a 1.5T MRI scanner (MAGNETOM Avanto fit,
Siemens Healthineers, Germany).

All parameters of the measurement are provided in Appendix A.2. The values of Inversion
time and RR in the pre-contrast and post-contrast scan for each subject are shown in Table A2
and Table A3.

The MOLLI data were acquired prior to and approximately 10 minutes after administering
a 1 mmol/ml solution of gadobutrol (0.15 ml/kg according to patient’s weight).

6.4 Results

6.4.1 Synthetic data study

In the synthetic data study, the accuracy of the estimate can be evaluated against the known
true values of the parameters, used to generate the dataset. True values of parameters
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are denoted by TGT1 , TGT2 ,MGT
0 , αGT ; the first-stage estimations obtained by NN are de-

noted TNN1 , TNN2 ,MNN
0 , αNN ; and the second-stage estimations obtained by NO are denoted

TNO1 , TNO2 ,MNO
0 , αNO.

We investigate three problems:

1. which loss function should be used and which parameters should be optimized in the second
stage in order to obtain the highest accuracy in T1 estimation,

2. how the initialization by the NN effects the second stage,

3. how are the results effected by noise in the input data.

Selection of loss function and parameters optimized in the second stage

In order to evaluate the accuracy of T1 estimation on the synthetic dataset, we define the following
mean relative loss function:

lestim = 1
N

N∑
i=1

∣∣∣TGT1,i − T estim
1,i

∣∣∣
TGT1,i

, (6.18)

where the subscript i, denotes the i-th item of the dataset, N denotes the total number of items
in the dataset and estim stands for NN or NO.

The impact of the second-stage estimation – NO stage – on the accuracy of the T1-estimate
was evaluated for 6 combinations of the optimized parameters and loss functions l2, lw, lrel
and lln. The weighted loss function was used with λ = 0.25 The problem (6.11) was solved
by the limited memory BFGS method for large-scale optimization, l-BFGS [47]. The initial
guess for the NO was given by the result of first-stage NN estimation in all cases. The accuracy
of estimated values with respect to ground truth TGT1 is assessed using loss function l. The
percentage decrease of mean relative loss function l, after the second stage with respect to the
accuracy of the first stage is shown in Table 6.2.

Table 6.2: The table shows the percentage decrease of the mean relative error (6.18) between
the first and second stage of estimation, that is 100 · (lNN − lNO)/(lNN). The second stage of
optimization was performed for 6 groups of optimized parameters and loss functions l2, lw, lrel
and lln

Loss function used in the second stage

Optimised parameters l2 lw lrel lln

T1 15.47 27.02 40.88 34.81

T1, T2 43.63 30.97 33.45 30.23

T1,M0 73.18 62.00 50.13 48.18

T1, α 0.01 0.00 0.32 34.81

T1, T2,M0 86.32 86.14 65.53 63.48

T1, T2,M0, α 0.04 0.09 0.26 0.74
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The largest decrease of mean relative error in the T1 estimate after NO was achieved when
optimizing the combination of parameters T1, T2,M0 using the quadratic loss function l2. A
similar decrease was obtained when using the weighted loss function lw and the same set of
parameters. Optimizing the parameter α in the second stage is generally the least beneficial for
the accuracy of the T1 estimate.

Figure 6.7: The range of T1 values (180 - 2200 ms) is divided into 6 sub-intervals. The mean
relative error in the T1 estimation (6.18) is evaluated in each sub-interval. The three compared
estimations are: prediction of the NN (denoted NN), the result of the NO optimization using
loss function l2 (denoted NN, NO(l2)), the result of the NO optimization using loss function lw
(denoted NN, NO(lw)).

The mean relative error lNO in the two most effective settings – i.e. T1, T2,M0 optimized
using either the quadratic or the weighted loss function – is in addition evaluated in 6 intervals
of T1 values. Figure 6.7 shows that incorporating the second-stage estimation based on NO
decreases the mean estimation error in the whole range of T1. The largest error in NN prediction
is obtained for the T1 values in the range 180-300 ms. The largest error in the NO stage is
obtained in the range 180-300 ms for l2 and 301-600 ms for lw.

Conclusion
Largest decrease in T1 estimation error was achieved when:

• parameters T1, T2,M0 are optimized

• α is fixed on the value estimate in the first stage

• loss functions l2 and lw are used

Selection of initialization for the second stage

The NO stage of estimation in this setting is further evaluated with respect to various initial-
izations: (A) all parameters initialized by the NN prediction; (B) by the mean values based
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on Table 6.1, i.e. T1 = 1190.0, T2 = 160.0, M0 = 0.4875, α = 35.0; (C) a combined type of
initialization (T1, T2,M0 initialized by the NN and α by the mean value 35.0).

The mean error in T1 estimation and the mean number of iterations needed to reach the
convergence criterion (gradient magnitude < 10−10) are shown in Table 6.3. Initializing all
parameters by the NN prediction was shown to be the most efficient. The initialization by mean
values provided significantly larger errors than the NN-initialization. The combined initialization
led to an almost identical number of iterations and a slightly higher error in T1 estimation than
if fully initialized by NN.

Table 6.3: Mean relative error l evaluated on the dataset of 10,000 synthetic samples of MOLLI.
The parameters T1, T2,M0 are estimated in the NO phase, using the quadratic and weighted loss
functions (l2, lw), while the parameter α remains fixed. In the NO, the parameters are initialized
by:
Setting A: TNN1 , TNN2 , MNN

0 ; α = αNN ;
Setting B: T1 = 1190.0, T2 = 160.0, M0 = 0.4875; α = 35.0 (mean values);
Setting C: TNN1 , TNN2 ,MNN

0 ; α = 35.0.
The mean number of iterations indicates how many iterations of the NO method were needed to
reach the convergence criterion.

Loss function
used in NO

Mean relative
error l

Mean number of
iterations

Setting A
l2 6.29 · 10−3 38.57

lw 6.37 · 10−3 36.43

Setting B
l2 1.43 · 10−1 53.03

lw 2.67 · 10−1 52.28

Setting C
l2 7.20 · 10−3 38.95

lw 7.41 · 10−3 36.62

The scatter plots of the predicted and true values for the three settings are shown in Figure
6.8. Similarly to Table 6.3, the figure shows that the NN initialization is superior to the mean
value initialization. Especially for T1 values below 500 ms, the NO stage does not provide correct
results when initialized by the mean values. The figure also shows that on the synthetic datasets,
the loss function l2 provides higher accuracy than lw (particularly for short T1 relaxation times).

Conclusion
It was shown that the use of NN as the initialization for the second stage:

• increases the accuracy of T1 estimation

• decreases the number of iterations needed to reach the convergence in
the second stage
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(a) Setting A, loss function l2 (b) Setting B, loss function l2 (c) Setting C, loss function l2

(d) Setting A, loss function lw (e) Setting B, loss function lw (f) Setting C, loss function lw

Figure 6.8: A comparison of the true and estimated values of T1 was performed on the dataset of
10,000 synthetic samples of MOLLI. The first stage refers to the prediction of the neural network
(NN), or the mean value of T1 = 1190.0. The second stage refers to the result of numerical
optimization (NO) of parameters T1, T2,M0. Three settings of the NO stage initialization are
evaluated:
Setting A) Initialization by the NN predictions: TNN1 , TNN2 ,MNN

0 ; α = αNN

Setting B) Initialization by the mean values: T1 = 1190.0, T2 = 160.0,M0 = 0.4875; α = 35.0
Setting C) Combined initialization: TNN1 , TNN2 ,MNN

0 ; α = 35.0
All variants were performed for quadratic loss function l2 and weighted loss function lw.

Sensitivity to noise in input data

The numerical optimization of T1, T2,M0, initialized by the NN prediction, using l2 and lw
loss functions were also evaluated on the data with added normally distributed noise with the
standard deviations of 2 · 10−3, 5 · 10−4, 10−3. The mean relative error of the NN prediction of
T1 and the second stage estimation are shown in Table 6.4. The mean relative error in the T1
estimated by the NN grows with the increasing standard deviation of the added noise. In the
NO stage, the mean error is decreased in all cases. NO performed better when using the l2 loss
function.

Conclusion
When normally distributed noise is added to the input data:

• the accuracy of both the first ad second stage decreases

• the accuracy of the second stage estimation is still higher compared to
the first stage
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Table 6.4: Mean relative error (6.18) of the first- and second-stage T1 estimation – lNN and lNO
was evaluated on a synthetic dataset corrupted by normally distributed noise with four values of
a standard deviation – 10−4, 5 · 10−4 and 10−3. The NO stage was performed using loss functions
l2 and lw.

Types of added noise

Loss function N(0, 10−4) N(0, 5 · 10−4) N(0, 10−3)

lNN - 4.66 · 10−2 5.75 · 10−2 7.79 · 10−2

lNO
l2 6.81 · 10−3 1.11 · 10−2 1.90 · 10−2

lw 6.99 · 10−3 1.25 · 10−2 2.22 · 10−2

6.4.2 Phantom study

In the phantom study, the compared values of T1 are denoted by: T pGT1 for the pseudo-ground
truth value obtained from IR-TSE sequence; T scanner1 for the scanner-provided estimate from
the MOLLI sequence; TNN1 for the first-stage estimate obtained from MOLLI measurement by
NN; TNN,NO(l2)

1 second-stage estimate (NO) from MOLLI data initialized by NN and using loss
function l2; and TNN,NO(lw)

1 second-stage estimate (NO) initialized by NN using loss function lw.
The problem (6.11) is solved by the l-BFGS method. The initial estimation of T1, T2,M0

used in NO is based on the NN prediction in all cases. Two different values of flip angle are
available – αNN (predicted by NN) and the target value α = 35◦ (as set up in the MR sequence).
The value αNN is used in the NO stage if it does not differ from the expected value (in our case
35◦) by more than 10◦. Otherwise, the NN-predicted value is considered to be unrealistic and
the value α = 35◦ is used instead.

Magnetic field 3 T

The mean T1 value of the 8 phantoms was estimated in 5 slices measured by the MOLLI and
IR-TSE sequence, respectively. The maps of T pGT1 , T scanner1 , TNN1 and TNN,NO(lw)

1 in the middle
slice are shown in Figure 6.9. The mean values and standard deviations of the estimated T1,
averaged over the 5 slices, are shown in Table 6.5. For the mean values and standard deviations
evaluated in each slice, see Tables A4 and A5 in the Appendix.

The difference between the absolute values of percentage errors of TNN,NO(lw)
1 and T scanner1 ,

with respect to T pGT1 , was shown to be statistically significant (the hypothesis of equal means
was rejected in Welch’s t-test [84] with 95% confidence interval, p value = 0.036).

In the 8 phantoms, TNN,NO(lw)
1 estimations differs from the pseudo-ground truth T pGT1 in

average by 9.3%. TNN,NO(lw)
1 estimations are closer to T pGT1 than T scanner1 in 7 out of the 8

phantoms. T scanner1 estimation is more accurate in Phantom 3, where its percentage error related
to T pGT1 is approximately 7.7%, while it is 9% in T

NN,NO(lw)
1 . Incorporating the NO stage

increased the accuracy of the TNN1 estimation in most phantoms (Phantom 1, 5, 6, 7, and 8).
The pseudo-ground truth T pGT1 exhibits the lowest standard deviation. The NO stage

decreased the standard deviation by more than 50% in all phantoms, except Phantom 1 and 8.
The resulting standard deviations after the NO stage are still higher, compared to T scanner1 .

T
NN,NO(lw)
1 estimations are closer to T pGT1 than T

NN,NO(l2)
1 in all phantoms, except for

Phantom 1 and 8.
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(a) T pGT
1 (b) T scanner

1

(c) TNN
1 (d) TNN,NO(lw)

1

Figure 6.9: Maps of the pseudo-ground truth T pGT1 , scanner estimation T scanner1 , NN estimation
TNN1 and NO estimation TNN,NO(lw)

1 . The NO stage was performed only for pixels in regions of
interest marked with by a line.

Magnetic field 1.5T

The mean values and standard deviations of the estimated T1, averaged over 6 slices, are shown
in Table 6.6. For the mean values and standard deviations evaluated in each slice, see Tables A6
and A7 in the Appendix.

The difference between the absolute values of percentage errors of TNN,NO(lw)
1 and T scanner1 ,

with respect to T pGT1 , was shown not to be statistically significant (evaluated by Welch’s t-test
with 95% confidence interval, p value = 0.231).

The phantom experiment on data from 3T MRI scanner showed, that the proposed two-
stage estimation method, using loss function lw, is superior to the standard estimation method
implemented on the scanner. In the experiment on 1.5T MRI scanner, the average percentage
error of both estimations was significantly lower than in the experiment performed on 3T scanner.
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Table 6.5: Parameters of T1 estimations in phantoms (Ph. 1-8) acquired on 3T MRI scanner.
The mean values and standard deviations of T1 are averaged over the 5 slices measured by the
MOLLI and IR-SE sequence, respectively. The percentage error is computed as a difference
between the MOLLI-based T1 estimations and the ground-truth value.

Mean values

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T pGT1 197.94 394.43 598.26 796.22 997.43 1194.15 1483.68 2065.34

T scanner1 177.62 371.70 552.33 665.15 856.48 1011.31 1185.88 1419.85

TNN1 226.56 407.87 647.35 857.66 1245.89 1473.56 1777.75 2596.16

T
NN,NO(l2)
1 209.54 359.07 537.79 685.81 857.15 1008.37 1199.05 1872.09

T
NN,NO(lw)
1 211.41 375.44 544.62 699.16 880.89 1037.96 1250.78 1761.88

Standard deviations

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T pGT1 2.40 4.76 6.54 6.45 7.78 11.05 13.70 25.85

T scanner1 13.69 8.54 12.55 45.52 30.01 15.09 18.86 28.31

TNN1 33.28 49.61 86.93 98.69 105.24 104.87 94.23 107.80

T
NN,NO(l2)
1 45.11 11.09 13.36 51.61 46.74 45.45 55.16 695.21

T
NN,NO(lw)
1 53.69 21.55 15.30 41.21 35.35 27.49 37.37 198.65

Percentage error with respect to T pGT1

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T scanner1 10.27 5.76 7.68 16.46 14.13 15.31 20.07 31.25

TNN1 -14.46 -3.41 -8.20 -7.72 -24.91 -23.40 -19.82 -25.70

T
NN,NO(l2)
1 -5.86 8.96 10.11 13.87 14.06 15.56 19.18 9.36

T
NN,NO(lw)
1 -6.80 4.81 8.97 12.19 11.68 13.08 15.70 14.69

6.4.3 In vivo data study

In the case of in vivo data, we only compare the scanner estimation from the MOLLI data
T scanner1 and the results of the proposed method TNN1 and TNN,NO1 , since the long acquisition
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Table 6.6: Parameters of T1 estimations in phantoms (Ph. 1-8) acquired on 1.5T MRI scanner.
The mean values and standard deviations of the T1 are averaged over the 5 slices measured by
the MOLLI and IR-SE sequence, respectively. The percentage error is computed as a difference
between the MOLLI-based T1 estimations and the ground-truth value.

Mean values

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T pGT1 161.88 316.23 479.32 640.99 796.26 953.85 1190.17 1637.50

T scanner1 151.29 307.09 465.15 610.12 758.90 893.08 1095.97 1449.50

TNN1 206.44 329.31 509.36 652.76 795.18 985.58 1206.09 1669.73

T
NN,NO(l2)
1 166.16 298.50 445.55 591.57 743.83 883.76 1107.72 1562.37

T
NN,NO(lw)
1 166.25 302.13 450.41 597.31 749.11 888.78 1114.46 1571.76

Standard deviations

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T pGT1 5.34 5.71 7.64 6.81 9.94 24.24 34.40 27.44

T scanner1 3.29 2.90 2.92 4.64 5.27 8.32 8.96 8.45

TNN1 4.49 13.56 21.29 25.65 29.86 53.68 73.58 53.25

T
NN,NO(l2)
1 3.10 4.25 2.97 6.08 7.37 10.01 13.55 16.61

T
NN,NO(lw)
1 3.27 3.77 3.39 6.02 7.68 10.88 16.02 17.65

Percentage error with respect to T pGT1

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T scanner1 6.54 2.89 2.95 4.80 4.69 6.37 7.91 11.45

TNN1 -27.53 -4.14 -6.27 -1.85 0.13 -3.32 -1.34 -2.00

T
NN,NO(l2)
1 -2.65 5.60 7.04 7.71 6.58 7.35 6.93 4.58

T
NN,NO(lw)
1 -2.70 4.46 6.03 6.81 5.92 6.82 6.36 4.01

time does not allow to acquire the IR-TSE sequence within a breath-hold. The weighted loss
function lw is used in the NO stage.

The problem (6.11) is solved by the l-BFGS method. Problem (6.16) with regularization
term (6.17) is solved using the gradient descent method. The initial estimation of T1, T2,M0
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Table 6.7: T1 estimation in the in vivo data acquired on 1.5T MRI scanner. Estimated
pre-contrast T1 relaxation time in blood and myocardium (in ms) in 12 patients.

T scanner1 TNN1 T
NN,NO(lw)
1

Blood Myoc. Blood Myoc. Blood Myoc.

Subject 1 1679.62 1038.11 1560.92 1002.88 1706.98 1040.33

Subject 2 1434.97 1042.29 1795.10 1227.71 1495.21 1047.60

Subject 3 1641.16 1066.08 1985.48 1181.34 1733.55 1073.89

Subject 4 1509.47 1087.52 2011.17 1249.89 1651.59 1098.12

Subject 5 1633.87 998.07 1251.67 858.19 1718.34 1019.01

Subject 6 1521.37 1048.03 1642.95 1113.31 1542.41 1061.85

Subject 7 1460.51 1073.14 1741.55 1231.36 1551.21 1097.41

Subject 8 1669.61 1062.34 2169.43 1243.69 1808.20 1090.13

Subject 9 1552.87 1078.71 1833.85 1223.40 1586.91 1071.57

Subject 10 1436.81 1040.10 1771.03 1178.81 1429.03 1048.66

Subject 11 1539.98 1013.48 1557.20 1058.74 1565.40 1004.15

Subject 12 1668.04 1058.65 2103.05 1118.87 1761.15 1073.35

used in the numerical optimization is based on the NN prediction in all cases. The value αNN is
used in the NO stage if it does not differ from the expected value by more than 10 degrees. The
expected α = 35◦ value is used otherwise.

Magnetic field 1.5T

The mean pre- and post-contrast T1 in the myocardium and blood are shown in Tables 6.7 and
6.8, respectively.

The mean difference in the pre-contrast TNN,NO(lw)
1 and T scanner1 was 12 ms for the my-

ocardium and 68 ms for the blood. In the post-contrast cases, where T1 is shorter, the mean
difference in TNN,NO(lw)

1 and T scanner1 remained similar – 16 ms for the myocardium and 45 ms
for the blood. In the pre-contrast cases, the blood TNN,NO(lw)

1 was higher than T scanner1 in 11
subjects, and the myocardial T1 was higher in 10 subjects. In the post-contrast cases, the blood
T
NN,NO(lw)
1 was higher than T scanner1 in all subjects. The post-contrast myocardial TNN,NO(lw)

1
was higher than T scanner1 in half of the subjects.

The effect of incorporating the spatial regularization term (6.17) in the NO stage is illustrated
in Subject 4. The regularization term was included with the weight λ = 5.0 · 10−9. Four
T1 maps – T scanner1 , TNN1 , TNN,NO(lw)

1 and T
NN,NO(lw,regul.)
1 – are displayed in Figure 6.10.

The NN provides T1 map with higher values than T scanner1 and significantly more noise. The
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Table 6.8: T1 estimation in the in vivo data acquired on 1.5T MRI scanner. Estimated
post-contrast T1 relaxation time in blood and myocardium (in ms) in 12 patients.

T scanner1 TNN1 T
NN,NO(lw)
1

Blood Myoc. Blood Myoc. Blood Myoc.

Subject 1 234.03 391.45 249.94 435.60 243.63 386.03

Subject 2 201.92 323.64 236.10 357.49 218.32 361.60

Subject 3 274.18 407.91 308.53 482.67 277.90 401.58

Subject 4 232.51 404.67 283.03 291.59 235.39 371.91

Subject 5 184.53 349.29 195.96 370.01 195.88 373.85

Subject 6 280.50 423.67 310.86 419.82 310.33 408.47

Subject 7 274.14 423.38 329.19 559.35 371.08 426.26

Subject 8 278.61 441.69 303.55 472.47 315.70 429.55

Subject 9 220.66 356.88 268.08 424.10 228.02 388.65

Subject 10 213.21 340.61 238.30 430.78 219.83 365.63

Subject 11 225.25 396.61 296.04 448.60 264.27 404.24

Subject 12 251.93 419.41 280.24 467.90 291.63 418.55

map of TNN,NO(lw)
1 has lower values of blood T1 and significantly less noise. In the map of

T
NN,NO(lw,regul.)
1 , the noise is reduced to a level similar to T scanner1 .

Magnetic field 3T

The mean pre- and post-contrast T1 in the myocardium and blood of 3 subjects are shown in
Tables 6.9 and 6.10, respectively.

In the pre-contrast cases, the values of TNN,NO(lw)
1 in blood and myocardium are higher

than T scanner1 . The average difference is 81ms in blood and 177ms in the myocardium. In the
post-contracts cases, the values of T scanner1 are higher in the myocardium in all subjects, on
average by 44ms. The difference in post-contrast blood T1 is 2ms.

6.5 Discussion

In this chapter, we presented a parameter estimation method that combines machine learning
and numerical optimization. This approach was demonstrated on the problem of estimating the
T1 relaxation time from the image data of the MRI MOLLI sequence.

The incorporation of the ML proved beneficial in both accelerating the numerical optimization
and obtaining more accurate results, as shown in Table 6.3. This may be due to the fact that
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(a) T scanner
1 (b) TNN

1

(c) TNN,NO(lw)
1 (d) TNN,NO(lw,regul.)

1

Figure 6.10: The effect of spatial regularization on T1 map in Subject 4. Figures (a) and (b)
show the T1 maps obtained by the scanner and NN, respectively. Figure (c) and (d) show the
results of the NO stage, without regularization and with regularization term (6.17), respectively.

in some cases we avoid finding the local minimum, however, we note that the global minimum
is still not guaranteed. The numerical optimization is needed as it considerably decreases the
NN-initialized values of T1 in both synthetic (Figure 6.7) and in vitro data. In the in vivo
data, the NN tends to overestimate the T1 values consistently. This behavior could be caused
by the ill-posedness of the problem, as the training dataset may contain similar relaxation
curves generated by different combinations of parameters. In the NO stage, the number of free
parameters is significantly decreased by substituting the known parameters of the actual MOLLI
sequence.

When applied to phantom data, better results were obtained using the loss function lw. We
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Table 6.9: T1 estimation in the in vivo data acquired on 3T MRI scanner. Estimated pre-contrast
T1 relaxation time in blood and myocardium (in ms) in 3 patients.

T scanner1 TNN1 T
NN,NO(lw)
1

Blood Myoc. Blood Myoc. Blood Myoc.

Subject 1 1748.97 1188.61 2302.02 1375.18 1817.35 1337.40

Subject 2 1783.30 1236.83 2331.35 1505.52 1859.02 1378.64

Subject 3 1891.98 1277.73 2746.37 1933.13 1993.10 1519.63

Table 6.10: T1 estimation in the in vivo data acquired on 3T MRI scanner. Estimated
post-contrast T1 relaxation time in blood and myocardium (in ms) in 3 patients.

T scanner1 TNN1 T
NN,NO(lw)
1

Blood Myoc. Blood Myoc. Blood Myoc.

Subject 1 257.92 481.77 268.24 365.89 253.05 427.34

Subject 2 363.17 600.68 417.79 732.71 365.61 592.55

Subject 3 311.90 512.25 320.85 420.71 320.18 441.99

may conclude, that assigning a higher weight to certain sampling points is suitable for data
corrupted by noise and other artifacts, not considered in the simplified mathematical model. In
the synthetic data experiment, where no such effects are present, using the weighted loss function
was shown to be counterproductive and better accuracy was obtained using loss function l2.

The synthetic data study also showed (Table 6.2) that the choice of the optimized parameters
has a great influence on the accuracy of the resulting estimate of T1. The most accurate results
were obtained by optimizing T1, T2,M0 in the second stage while keeping α fixed on the value
predicted by the NN.

On the data from the 1.5T scanner, contrary to the 3T scanner, the difference in the accuracy
of T scanner1 and T

NN,NO(lw)
1 was shown not to be statistically significant. On both phantom

datasets, the increase of percentage error of TNN,NO(lw)
1 with the increasing values of T1 is not

as significant as in T scanner1 , which suggests more robust estimates throughout a wide interval of
relaxation times.

The observed difference between the estimation using the 1.5T and 3T phantom measurements
might be caused by a lower value of SNR that was observed in the MOLLI series measured on a
3T MRI scanner. The relative standard deviation of the measured MOLLI signal, averaged over
all phantoms and all sampling points, was approximately twice as high in the case of the signal
measured on the 3T scanner. The reason for a lower apparent SNR in 3T phantom measurements
could be attributed to the RF interference resulting in uneven distribution of the flip angle
throughout the scanning volume.

Furthermore, we observe that the relaxation time provided by the scanner is underestimated
in all samples, i.e. in the T1 range of approximately 190-2000 ms. We may argue that this trend
would also hold for in vivo measurements with a similar range of values.
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On the in vivo study, the estimates T scanner1 , TNN1 and TNN,NO(lw)
1 in blood and myocardium

were compared on data from 1.5T and 3T MRI scanner. The ground-truth values are not
available, but given our observation on the phantom study, we may assume our estimates would
be higher than T scanner1 . On the data from the 1.5T scanner, this was indeed observed in most
cases for pre-contrast and for the blood pool post-contrast. On the data from the 3T scanner,
this holds for most cases except for post-contrast myocardium. A similar trend was observed in
the 3T phantom study, where TNN,NO(lw)

1 was lower than T scanner1 only in the phantom with the
T1 close to the post-contrast myocardium T1.

We remark the training phase of NN used in the first stage of estimation only needs to be
performed once for each type of imaging sequence. Therefore, imaging models with various
signal-corrupting effects could be employed in this stage, without increasing the final estimation
time. This could increase the robustness of the NN prediction.

Thanks to its variational formulation, the second stage may contain additional constraints,
e.g. regularization terms that incorporate some a priori knowledge or additional requirements on
the parameter maps. In the present work, we considered a term ensuring the spatial smoothness
of the maps. When incorporating the spatial regularization term on the in vivo data, the noise
in T1 map was reduced, while all structures in the maps remained distinct.

6.5.1 Limitations

We acknowledge that more effects and MR artifacts could have been taken into account in the
simulator. The simplicity of the current model (and the consequent modeling errors) may be the
reason for some differences we observed between the synthetic and real data studies. We remark,
that the pseudo-ground truth used for phantom validation, may also be affected by artifacts,
especially for very short and very long T1 relaxation times. The studied population is too small
to drive complete conclusions about the superiority of the proposed method for the MOLLI data.
However, even when using such a simplified model with synthetic data, a specially-designed
phantom, and in vivo data, we were still able to demonstrate a concept, feasibility, and some
advantages of the combined NN and numerical optimization two-stage parameter estimation.

6.6 Conclusions

Estimating parameters in complex biophysical models is a known problem. It often leads to
computationally intensive calculations, which tend to fail if wrongly initialized. The initialization
by NN predictions has the potential to substantially increase the efficiency of the subsequent
optimization problem, particularly if the NN is trained beforehand and not for individual patients.

We remark that the method of in silico assessment could be directly employed in designing
and evaluating new imaging sequences, e.g. different or a lower number of sampling points in
the MOLLI, and possibly could be useful also in other types of exams (such as perfusion MRI).
This has the potential to accelerate the exam while controlling the level of the expected error.

While demonstrating the proposed two-stage estimation method on an illustrative problem
of estimating the T1 relaxation time and creating the T1 map, the method could be applicable
for a number of other problems of coupling between magnetic resonance and modeling (including
biomechanics or MR fingerprinting methods), particularly when estimating tissue and functional
parameters of physiological and clinical interest.
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Each chapter of this thesis contains the conclusions of the work presented. Within each chapter,
the results, advantages, and limitations of specific methods were discussed.

In this chapter, we summarize the main achievements presented in this thesis and draw more
general conclusions. Finally, potential topics for future research are suggested in each area.

Medical image registration

Accomplished work

In this work, two approaches to medical image registration were presented. In Chapter 2, an
optical flow-based method was proposed to register myocardium in images from the MOLLI
image series. The MOLLI image series exhibit varying image intensity, which needs to be taken
into account in the registration. After the preparatory steps, comprising automatic segmentation
of the myocardium and calculation of the signed distance function in both the source and target
images, the displacement is determined for each pixel of the source image. Thus, the dimensions
of the displacement field are directly related to the dimensions of the images.

This is the main difference between this optical flow approach and the second approach,
referred to as mechanical, which was used in Chapters 3 and 4. In the mechanical approach, the
registered object is discretized using an independent mesh, instead of a pixel grid of the image.
The displacement is then calculated for each point of this mesh. The registered image is obtained
by projecting the deformed mesh onto the image domain. While the number of pixels occupied
by the object in the image may change significantly as the object deforms, the number of nodes
of the mesh remains constant. Each node of the mesh can be tracked in time. This approach is
therefore more suitable for the analysis of the deformation field. This is shown in Chapter 4,
where the torsion of the left ventricle is determined based on the deformation field extracted
from the MRI images series.

In the application described in Chapter 4, the deformed image is generated based on the
deformed mesh and image intensity of the input image. In Chapter 3, an alternative approach
is proposed, where the imaging model is used to generate the image intensity. The method is
tested on synthetic tagged MRI images only.

Perspectives

In the future, the versions of the mechanical approach – the alternative one described in Chapter
3 and the original one used in Chapter 4 should be compared on real tagged MRI data.

In Chapters 3 and 4, only the images with constant intensity were considered. However,
with a suitable imaging model, the mechanical approach could be applicable also to images with

75
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varying intensity, such as the MOLLI images. The design of such an imaging model could be
considered in future work.

When the optical flow-based method is applied to the distance function, the displacement field
is determined only by the shape of the segmented objects. Therefore, no imaging model is needed
to cope with the changes in intensity. This approach, however, requires performing segmentation
in both the source and target image. The segmentation of the myocardium is done by detecting
its inner and outer contours. In the current state, the parameters of the level-set method for edge
detection need to be adjusted for each image. Therefore, a more robust segmentation method,
possibly including some machine learning components, should be considered in the future.

Image deblurring

Accomplished work

In Chapter 5, the problem of image deblurring was formulated as a PDE constrained minimization
problem. It was described, how the solution of the adjoint problem can be used in the minimization.
Specifically, the direct computation of the derivative of the solution with respect to the optimized
parameters can be avoided. The minimization problem is then solved iteratively by the gradient
descent method with the primary and adjoint problem being solved in each iteration.

The use of the method was illustrated on several images with different levels of added blur.
The original image was reconstructed in all cases. However, in the case of stronger blurring, some
artifacts were present in the reconstructed image.

Perspectives

Comparison with the existing methods for image deblurring has not been performed at present.
It can be expected that in general image deblurring the proposed method will not provide better
results than the current state of the art machine learning-based methods. However, further
analysis might show that the method is suitable for certain types of images.

Also, the presented adjoint formulation can be used to solve other inverse problems, such as
finding the initial conditions of mean curvature flow or solving the inverse phase field equation.

Estimation of T1 relaxation time

Accomplished work

In Chapter 6, the method for T1 relaxation time estimation based on the MOLLI image series
was presented. The proposed method utilized a mathematical model of the MOLLI sequence.
The T1 relaxation time was one of the parameters of the model. The model parameters were
optimized to minimize the difference between the signal measured by MRI and generated using
the model. The parameter optimization was performed in two stages – using the neural network
and numerical optimization. The l-BFGS method and standard gradient descent were used in
the second stage.

The method was validated on the synthetic, phantom, and in vivo data. The study on
synthetic data was used to investigate the effect of the first stage of estimation on the accuracy of
the second stage, to examine the sensitivity to noise, and to determine the most efficient setting
of the second stage. In a phantom study, the results of the proposed method and the estimate
from the MRI scanner were compared with the pseudo-truth values of T1. The comparison with
the MRI scanner estimate was also performed for the in vivo data.
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Perspectives

Currently, there are two open problems. Firstly, in a phantom experiment on 3T MRI scanner
data, the proposed method provided a more accurate estimate of T1 than the MRI scanner.
However, the average error was approximately twice as high as that of the 1.5T MRI scanner
data. Secondly, for some phantoms, the second stage optimization reduced the variance of T1
but also reduced the accuracy compared to the neural network. Both problems may be to some
extent attributed to the fact that only local minima are found in the second stage. In the future,
we should investigate whether using different optimization methods would eliminate the issues
mentioned above. We could try more advanced variants of the gradient descent method, such as
ADAM.

We could also consider incorporating additional regularization terms in the second stage. For
example, terms that would contain prior knowledge about the expected values of the other tissue
parameters. Further validation on MRI data could also lead to a better understanding of the
limitations of our model and the adjustments that need to be made to make the simulations
more realistic.
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Additional details on
phantom and in-vivo study A

A.1 Parameters of the phantom measurements
The phantoms were imaged on a 3T MRI scanner (MAGNETOM Vida, Siemens Healthineers,
Germany) and on a 1.5T MRI scanner (MAGNETOM Avanto fit, Siemens Healthineers, Germany)
using head coil. The parameters on 3T system of the spoiled IR-TSE sequence were: turbo
factor = 6; slice thickness = 4 mm; TE = 9 ms; TR = 8000 ms; BR = 256; RL = 31; PPF = 1;
PPW = 100; FOV = 211 x 211 mm2; spatial resolution = 0.82 mm (row and column directions);
transversal slice orientation; TI = [100, 200, 400, 600, 800, 1000, 1400, 2000, 3510] ms. The
parameters of the 5-3-3 MOLLI sequence were: slice thickness = 4 mm; flip angle α = 35◦, TE
= 1.3 ms; TI = [104, 184, 264, 1004, 1084, 1164, 1904, 1984, 2064, 2804, 3704] ms; RR = 900 ms;
BR = 240; RL = 36; PPF = 7/8; PPW = 77.5; FOV = 163 x 210 mm2; spatial resolution =
0.44 mm (row and column directions); transversal slice orientation; Lc = 44; Lt = 99; RR =
900 ms.

The parameters on 1.5T system of the spoiled IR-TSE sequence were: turbo factor = 6; slice
thickness = 4 mm; TE = 8.7 ms; TR = 800 ms; BR = 256; RL = 31; PPF = 1 ; PPW = 90.625;
FOV = 191 x 211 mm2; spatial resolution = 0.82 mm (row and column directions); transversal
slice orientation; TI = [100, 200, 400, 600, 800, 1000, 1400, 2000, 3510] ms. The parameters of
the 5-3-3 MOLLI sequence were: slice thickness = 8 mm; flip angle α = 35◦, TE = 1.13 ms; TI
= [100, 180, 260, 1000, 1080, 1160, 1900, 1980, 2060, 2800, 3700] ms; RR = 900 ms; BR = 256;
RL = 36, PPF = 1; PPW = 85.15625; FOV = 306 x 360 mm2; spatial resolution = 1.4 mm (row
and column directions); transversal slice orientation; Lc = 50; Lt = 113; RR = 900 ms.

A.2 Parameters of the in vivo measurements
The parameters of the MOLLI sequence on 1.5T system (12 patients) were: slice thickness =
8 mm; α = 35◦; TE = 1.13 ms; BR = 256; RL = 36; PPF = 7/8; PPW = 85.15625; FOV = 306
x 360 mm2; spatial resolution = 1.4 mm (row and column directions); slice orientation: short
axis of heart; Lc = 50; Lt = 113.

The parameters of the MOLLI sequence on 3T system (3 patients) were: slice thickness =
8 mm; α = 35◦; TE = 1.06 ms; BR = 256; RL = 36; PPF = 7/8; PPW = 78.125; FOV = 306 x
360 mm2; spatial resolution = 0.703 mm (row and column directions); slice orientation: short
axis of heart; Lc = 46; Lt = 106.
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Table A1: Parameters of the in-vivo data acquired on the 1.5T MRI scanner – Inversion times
(IT ) and RRs [ms] of the pre- and post-contrast MOLLI measurements of the subject 1 - 6. The
values of RR in the dataset vary from approximately 400 to 2000ms.

Subject 1

pre
RR 1195 1230 1305 1200 1265 1305 1187 1277 1280 1220 1222
IT 100 180 260 1295 1410 1565 2495 2675 2870 3682 4902

post
RR 1157 1107 1077 1192 1117 1085 1125 1110 1175 1157 1155
IT 100 180 260 1258 1287 1338 2405 2423 2450 3623 4780

Subject 2

pre
RR 845 785 785 887 782 782 785 787 867 855 847
IT 100 180 260 945 965 1045 1747 1827 1833 2700 3555

post
RR 767 720 767 775 750 735 762 747 747 732 745
IT 100 180 260 868 1027 1628 1643 1777 2405 3085 3153

Subject 3

pre
RR 845 845 862 867 850 860 872 840 850 867 870
IT 100 180 260 945 1025 1122 1813 1875 1982 2685 3553

post
RR 845 875 875 877 852 895 887 857 900 890 897
IT 100 180 260 945 1055 1135 1822 1908 2033 2710 3600

Subject 4

pre
RR 647 692 722 667 702 737 690 712 1437 680 672
IT 100 180 260 747 872 982 1415 1575 1720 2105 2785

post
RR 627 407 630 647 630 610 650 647 605 645 645
IT 100 180 260 728 890 935 1375 1520 2018 2025 2670

Subject 5

pre
RR 527 1037 390 907 1102 832 1057 912 1012 852 962
IT 108 188 268 1198 1325 1845 2428 2986 3485 3508 4498

post
RR 537 455 497 1010 972 1162 1050 1022 1177 1167 1127
IT 108 188 268 1258 1305 1333 2268 2278 2495 3673 4840

Subject 6

pre
RR 815 817 807 835 812 842 805 830 842 817 850
IT 100 180 260 915 998 1750 1810 1875 2592 2707 3435

post
RR 1592 815 802 815 815 807 1605 815 835 817 817
IT 100 180 260 995 1693 1810 1860 3305 3465 4928 5745
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Table A2: Parameters of the in-vivo data acquired on the 1.5T MRI scanner – Inversion times
(IT ) and RRs [ms] of the pre- and post-contrast MOLLI measurements of the subjects 7 - 12.
The values of RR in the dataset vary from approximately 400 to 2000ms.

Subject 7

pre
RR 807 835 845 815 840 842 822 832 845 830 830
IT 100 180 260 908 1015 1105 1723 1855 1947 2545 3375

post
RR 847 832 825 857 830 822 857 827 827 857 850
IT 100 180 260 948 1013 1085 1805 1843 1907 2660 3518

Subject 8

pre
RR 797 877 855 815 877 855 825 872 850 850 857
IT 100 180 260 898 1057 1115 1713 1935 1970 2538 3388

post
RR 837 907 887 852 910 880 877 905 880 890 900
IT 100 180 260 938 1088 1148 1790 1998 2028 2668 3558

Subject 9

pre
RR 995 982 935 1025 967 932 1025 932 960 1020 1020
IT 100 180 260 1095 1163 1195 2120 2127 2130 3145 4165

post
RR 1875 950 917 945 997 940 912 970 915 972 977
IT 100 180 260 1130 1975 2075 2093 2972 3920 3942 4915

Subject 10

pre
RR 745 622 565 615 745 555 600 732 722 545 715
IT 100 180 260 802 845 1395 1417 1590 2323 2510 3045

post
RR 712 642 592 695 627 587 585 617 695 695 695
IT 100 180 260 813 823 853 1440 1450 1508 2203 2898

Subject 11

pre
RR 1117 1232 1195 1170 1217 1130 1137 1130 1227 2090 1217
IT 100 180 260 1217 1412 1455 2387 2585 2630 3525 5615

post
RR 975 1022 1817 917 1002 992 1947 1785 855 1045 1047
IT 100 180 260 1075 1203 2205 2957 2998 4783 5835 6880

Subject 12

pre
RR 937 1012 1025 965 1020 1020 970 1025 1010 977 985
IT 100 180 260 1038 1193 1285 2003 2213 2305 2973 3950

post
RR 950 1015 977 987 1015 955 990 927 997 995 997
IT 100 180 260 1050 1195 1238 2038 2193 2210 3028 4023
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Table A3: Parameters of the in-vivo data acquired on the 3T MRI scanner – Inversion times
and RRs [ms] of the pre- and post-contrast MOLLI measurements of 3 the subject (denoted S.1 -
S. 3). The values of RR in the dataset vary from approximately 400 to 600 ms.

Subject 1

pre
RR 807 710 655 690 820 652 650 685 797 772 745
IT 100 180 260 890 908 915 1568 1580 1728 2525 3298

post
RR 727 692 632 760 680 625 675 767 755 617 732
IT 100 180 260 828 872 1532 1552 1588 2355 2782 3110

Subject 2

pre
RR 930 855 845 920 850 847 855 892 855 875 850
IT 100 180 260 1030 1035 1105 1885 1950 1952 2842 3717

post
RR 872 825 845 870 820 832 817 862 835 862 842
IT 100 180 260 973 1005 1105 1825 1843 1938 2705 3568

Subject 3

pre
RR 782 782 752 792 772 752 787 740 747 807 807
IT 100 180 260 882 963 1013 1675 1735 1765 2462 3270

post
RR 897 765 747 882 752 742 865 845 740 740 832
IT 100 180 260 997 1728 1748 1880 2745 3235 3238 3590
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A.3 Additional results

Table A4: Mean values of the estimated T1 in phantoms (Ph. 1-8) on 3T MRI. The mean values
of the T1 are evaluated in each of the 5 slices measured by the MOLLI and IR-SE sequence,
respectively.

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T
p
G
T

1

Slice 1 199.63 396.21 601.83 803.06 1002.82 1195.04 1489.21 2098.31

Slice 2 198.13 395.54 600.75 800.12 1005.04 1204.61 1498.57 2090.36

Slice 3 198.28 394.18 599.57 796.05 997.00 1187.85 1480.76 2069.55

Slice 4 197.06 394.43 597.26 793.52 995.09 1197.53 1483.43 2052.83

Slice 5 196.62 391.77 591.91 788.36 987.23 1185.72 1466.43 2015.66

T
sc
a
n
n
er

1

Slice 185.17 372.93 555.35 730.01 880.89 987.46 1151.54 1428.67

Slice 2 186.92 373.31 554.27 717.02 881.85 999.83 1168.40 1418.27

Slice 3 187.46 374.37 556.36 709.10 874.34 1000.25 1161.40 1415.42

Slice 4 185.43 373.92 556.17 709.22 879.19 1003.46 1166.01 1423.75

Slice 5 143.14 363.94 539.52 460.40 766.14 1065.57 1282.07 1413.15

T
N
N

1

Slice 1 221.89 411.75 642.20 895.66 1357.66 1561.44 1858.42 2766.36

Slice 2 210.56 413.85 654.71 881.10 1380.45 1538.59 1856.40 2648.32

Slice 3 216.08 420.88 640.56 922.15 1203.59 1530.59 1846.07 2700.64

Slice 4 211.20 416.40 639.45 872.35 1266.48 1544.41 1860.94 2770.22

Slice 5 259.80 378.11 585.43 767.62 1060.34 1201.62 1496.78 2091.51

T
N
N
,N
O

(l
2
)

1

Slice 1 197.53 358.21 537.55 712.31 866.72 979.16 1148.69 1988.09

Slice 2 200.10 358.24 535.20 700.37 866.13 987.98 1161.52 1470.27

Slice 3 202.21 358.71 536.91 691.77 858.27 988.44 1153.36 1784.14

Slice 4 200.33 359.98 537.18 697.71 860.52 991.34 1158.49 2116.48

Slice 5 247.50 360.20 542.11 626.87 834.13 1094.94 1373.20 2001.45

T
N
N
,N
O

(l
w

)
1

Slice 1 199.84 374.87 545.76 721.34 892.38 1018.55 1215.86 1727.20

Slice 2 200.40 372.98 541.82 717.18 890.22 1020.97 1227.76 1637.87

Slice 3 202.10 375.34 544.19 708.99 880.57 1023.80 1215.98 1675.87

Slice 4 200.95 375.58 543.39 711.37 880.95 1026.22 1222.99 1654.79

Slice 5 253.75 378.44 547.93 636.94 860.34 1100.24 1371.30 2113.68
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Table A5: Standard deviation of the estimated T1 in phantoms (Ph. 1-8) on 3T MRI. The
standard deviations of the T1 estimations are evaluated in each of the 5 slices measured by the
MOLLI and IR-SE sequence, respectively.

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T
p
G
T

1

Slice 1 2.30 4.82 6.79 6.76 6.89 10.13 12.88 25.45

Slice 2 2.20 5.31 6.70 5.69 7.54 12.08 13.88 27.91

Slice 3 2.43 4.48 6.76 6.57 9.12 10.22 13.17 25.06

Slice 4 2.30 4.56 5.93 6.73 7.53 11.68 14.14 26.44

Slice 5 2.79 4.64 6.52 6.50 7.85 11.13 14.43 24.40

T
sc
a
n
n
er

1

Slice 1 4.50 8.45 13.69 7.69 9.92 14.90 18.58 14.63

Slice 2 5.46 8.01 14.45 7.87 9.61 13.66 18.24 16.19

Slice 3 5.30 8.93 12.06 7.99 10.05 14.64 19.15 15.75

Slice 4 4.44 8.38 10.61 5.76 10.31 15.28 19.33 18.28

Slice 5 48.74 8.95 11.94 198.29 110.13 16.97 19.01 76.69

T
N
N

1

Slice 1 17.40 53.07 97.09 62.06 85.37 99.67 87.72 117.85

Slice 2 23.64 56.02 99.06 84.64 78.62 121.79 77.05 84.52

Slice 3 20.49 54.92 93.01 73.31 82.49 108.92 77.88 114.10

Slice 4 18.17 50.23 89.61 66.23 79.00 108.71 100.29 107.97

Slice 5 86.68 33.78 55.89 207.22 200.73 85.26 128.21 114.57

T
N
N
,N
O

(l
2
)

1

Slice 1 7.08 11.24 14.39 19.20 32.47 47.64 58.43 1043.29

Slice 2 7.13 10.07 15.05 18.84 35.25 47.95 55.43 332.07

Slice 3 7.21 10.30 11.96 17.11 22.59 53.22 59.02 863.09

Slice 4 7.02 12.33 11.90 20.29 15.07 50.35 58.68 1099.50

Slice 5 197.13 11.49 13.49 182.63 128.30 28.09 44.25 138.08

T
N
N
,N
O

(l
w

)
1

Slice 1 6.78 20.50 17.05 10.24 13.24 50.20 49.30 313.39

Slice 2 7.12 20.41 16.59 11.47 11.83 20.40 33.17 127.27

Slice 3 7.16 17.14 14.72 10.59 12.04 19.01 25.02 134.77

Slice 4 6.49 17.07 14.30 9.65 13.67 18.94 32.88 190.76

Slice 5 240.90 32.64 13.82 164.12 125.95 28.92 46.46 227.05
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Table A6: Mean values of the estimated T1 in phantoms (Ph. 1-8) on 1.5T MRI. The mean
values of the T1 are evaluated in each of the 6 slices measured by the MOLLI and IR-SE sequence,
respectively.

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T
p
G
T

1

Slice 1 163.65 322.35 487.17 652.26 809.72 963.80 1201.39 1685.72

Slice 2 162.92 317.34 481.89 645.09 799.94 955.51 1194.57 1654.17

Slice 3 162.25 316.09 478.61 638.95 795.81 953.30 1191.13 1635.60

Slice 4 161.10 314.72 476.28 637.22 791.87 949.36 1187.73 1622.59

Slice 5 160.74 313.74 475.71 634.93 789.93 948.39 1180.92 1611.78

Slice 6 160.61 313.17 476.24 637.47 790.30 952.74 1185.26 1615.12

T
sc
a
n
n
er

1

Slice 1 151.38 308.52 467.43 607.04 758.89 895.23 1102.00 1431.11

Slice 2 151.38 308.52 467.43 607.04 758.89 895.23 1102.53 1431.11

Slice 3 150.76 307.89 465.88 612.24 763.39 896.00 1094.84 1464.67

Slice 4 150.98 306.39 463.53 610.57 756.78 890.66 1093.33 1455.93

Slice 5 150.98 306.39 463.53 611.55 756.78 890.66 1093.33 1455.93

Slice 6 152.23 304.84 463.12 612.29 758.68 890.73 1089.81 1458.24

T
N
N

1

Slice 1 210.00 329.40 511.53 645.48 797.31 1004.48 1213.58 1657.33

Slice 2 210.00 329.40 511.53 645.48 797.31 1004.48 1209.00 1657.33

Slice 3 204.01 325.54 508.05 647.53 814.29 981.90 1204.60 1662.64

Slice 4 205.62 332.53 512.05 660.97 784.71 971.09 1216.04 1690.83

Slice 5 205.62 332.53 512.05 661.03 784.71 971.09 1216.04 1690.83

Slice 6 203.41 326.45 500.94 656.09 792.76 980.46 1177.27 1659.42

T
N
N
,N
O

(l
2
)

1

Slice 1 165.10 302.82 448.54 597.62 752.43 889.98 1122.62 1605.79

Slice 2 166.85 297.78 446.91 593.27 744.51 885.95 1113.33 1569.33

Slice 3 167.64 297.95 445.60 590.59 746.08 886.10 1105.21 1560.84

Slice 4 166.92 297.63 443.54 588.81 740.72 880.24 1102.77 1549.74

Slice 5 166.03 297.01 445.82 588.47 738.75 881.42 1104.52 1536.42

Slice 6 164.43 297.81 442.90 590.68 740.53 878.87 1097.89 1552.08

T
N
N
,N
O

(l
w

)
1

Slice 1 165.85 306.48 454.47 603.12 756.47 893.07 1132.31 1616.44

Slice 2 167.25 301.98 451.67 598.86 750.34 891.58 1118.60 1578.49

Slice 3 168.03 301.58 450.91 596.29 752.78 890.44 1111.40 1568.29

Slice 4 166.62 301.49 448.53 595.37 744.89 884.26 1109.20 1560.79

Slice 5 165.47 300.36 449.62 594.20 744.19 888.40 1111.57 1546.95

Slice 6 164.28 300.91 447.28 596.04 746.01 884.92 1103.65 1559.62
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Table A7: Standard deviations of the estimated T1 in phantoms (Ph. 1-8) on 1.5T MRI. The
standard deviations of the T1 are evaluated in each of the 6 slices measured by the MOLLI and
IR-SE sequence, respectively.

Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 Ph. 7 Ph. 8

T
p
G
T

1

Slice 1 18.10 5.60 7.84 7.23 10.70 24.13 34.29 30.03

Slice 2 3.03 5.79 7.90 7.25 9.28 26.04 37.83 26.55

Slice 3 2.51 5.45 7.02 6.11 10.33 24.99 35.27 26.55

Slice 4 2.89 5.89 7.73 6.53 9.50 24.17 33.31 27.23

Slice 5 2.75 5.59 7.59 6.92 9.85 22.84 33.13 27.48

Slice 6 2.73 5.92 7.79 6.82 10.00 23.28 32.58 26.81

T
sc
a
n
n
er

1

Slice 1 3.47 2.53 3.00 6.64 5.27 7.52 7.61 10.75

Slice 2 3.47 2.53 3.00 6.64 5.27 7.52 7.94 10.75

Slice 3 4.03 3.57 3.05 3.56 6.00 7.99 10.16 8.21

Slice 4 2.73 3.04 2.68 3.52 5.36 9.58 9.26 7.13

Slice 5 2.73 3.04 2.68 3.96 5.36 9.58 9.26 7.13

Slice 6 3.29 2.69 3.10 3.53 4.35 7.72 9.53 6.73

T
N
N

1

Slice 1 4.15 15.16 21.88 20.57 31.53 57.93 64.48 55.93

Slice 2 4.15 15.16 21.88 20.57 31.53 57.93 64.66 55.93

Slice 3 5.38 12.71 22.10 26.99 33.32 64.97 80.30 54.28

Slice 4 3.97 12.65 20.99 28.13 25.92 46.95 80.73 53.98

Slice 5 3.97 12.65 20.99 28.77 25.92 46.95 80.73 53.98

Slice 6 5.30 13.05 19.93 28.90 30.94 47.37 70.59 45.42

T
N
N
,N
O

(l
2
)

1

Slice 1 6.03 5.00 3.74 12.71 15.90 10.86 15.19 35.76

Slice 2 2.34 3.00 2.65 9.15 5.84 9.35 10.19 15.27

Slice 3 3.57 3.79 2.85 3.50 6.61 9.27 15.21 13.66

Slice 4 2.36 3.93 2.49 3.24 6.26 12.34 13.57 12.92

Slice 5 2.03 3.81 3.21 3.76 5.10 9.55 13.83 10.91

Slice 6 2.29 6.00 2.85 4.10 4.52 8.69 13.30 11.11

T
N
N
,N
O

(l
w

)
1

Slice 1 5.74 4.64 3.82 11.22 14.93 11.49 17.78 39.19

Slice 2 2.51 3.09 3.45 8.24 6.24 11.35 12.53 15.77

Slice 3 4.46 3.58 3.19 4.46 7.82 9.24 17.03 13.55

Slice 4 2.50 3.61 3.12 3.96 6.35 12.47 14.65 14.18

Slice 5 2.18 3.50 3.38 4.40 5.56 11.02 17.81 11.07

Slice 6 2.21 4.16 3.36 3.85 5.17 9.74 16.35 12.16
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