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Abstract

Abstrakt:

Vznik vzork̊u v biologických systémech je předmětem intenzivńıho mezioborového výzkumu.
Jedńım z nejslavněǰśıch mechanismů, které mohou vést ke vzniku vzork̊u v chemických, biolo-
gických a daľśıch systémech, je Turingova nestabilita. Ta může vést ke vzniku prostorovch struktur
v systémech se dvěma komponentami. Na druhou stranu je ale nutné předpokládat, že rychlost
difúze jedné chemikálie je výrazně rychleǰśı než rychlost difúze té druhé, což je častým terčem
kritiky tohoto mechanismu. Neumožňuje ani snadno modelovat nepravidelné vzory a vysvětlit
některé jevy, jako např. agregaci melaninu na hřbetu kožichu královského geparda. Některé
z těchto problémů řeš́ı přidáńı určitých vyrovnávaćıch mechanismů do rovnic, v našem př́ıpadě
jednostranných člen̊u. Tato práce se proto věnuje analýze systémů dvou rovnic reakce-difúze, u
kterých docháźı k Turingově nestabilitě a které jsou následně doplněny tzv. jednostrannými členy.
Existence bifurkačńıch bod̊u, a tedy i existence vzork̊u, jsou analyticky dokázány pro systémy, kde
poměr difúźı obou chemikálíı je bĺıže jedné. Jsou analyzovány jak systémy s Dirichletovými nebo
smı́̌senými, tak s Neumannovými okrajovými podmı́nkami. Stacionárńı řešeńı těchto systémů jsou
pro vybrané systémy numericky aproximována, což napov́ıdá, jak by mohly vzorky vypadat. Také
je použit́ım numerických metod aproximována poloha bifurkačńıch bod̊u vybraných systémů s
jednostrannými zdroji.

Abstract:

The pattern formation in biological systems is being a subject of intensive research in interdis-
ciplinary sciences. One of the most famous mechanism, which could lead to a formation of pattern
in chemical, biological and other systems is Turing instability. It can lead to the formation of
spatial structures in systems with two components. However, it supposes that the diffusivity of
one chemical must be significantly different from the other one, which is often a target of criticism
of such systems. It also cannot in a simple way model irregular patterns and it cannot explain e.g.
an aggregation of melanin on king cheetah coat back. To bypass these problems, addition of some
regulatory mechanisms (unilateral terms) to the equations has been proposed. This dissertation
thesis therefore concerns with systems of two reaction-diffusion equations which exhibit Turing
Instability, and are supplemented with the so-called unilateral terms. The existence of bifurc-
ation points, and hence the existence of patterns, is proved analytically for systems, where the
diffusivenesses are less distinct. The systems with Dirichlet or mixed, as well as with Neumann
boundary conditions are analyzed. The stationary solutions of selected systems are numerically
computed and that gives a hint, which patterns could form in such systems. Moreover, the location
of bifurcation points is approximated for particular systems with unilateral terms numerically as
well.
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Chapter 1

Introduction

1.1 Short excursion into history

Formation of patterns plays an essential role not only in biology, but also in other scientific
fields like chemistry, physics and even geology, and it is an important phenomenon studied in
the interdisciplinary research. However, up to the end of 19th century there was not known any
mechanism which could lead to the formation of such patterns. One of the essential question in
this area was how the pattern is created during the development of the embryo. The effort of
many researchers at the beginning of 20th century was aiming to find the explanation for this
process. Although the genes play here the key role, they cannot explain the mechanisms by which
the ingredients mix together and assembly a coherent pattern. Nevertheless, the study of genetic
influence on animal coat patterns was a predominant direction of research and this dominance was
strengthen by the Watson’s and Crick’s discovery of the structure of DNA.

This was the reason why the pioneering paper of A. Turing [53], published in 1952, did not
attach much attention during the first decades after its publication. In his paper Turing concerned
with a system of two reaction-diffusion equations defined on a ring with a diameter ρ. By making
the stability analysis of a linear problem

∂X

∂t
= a(X − h) + b(Y − k) +

µ′

ρ2

∂2X

∂θ2
,

∂Y

∂t
= c(X − h) + d(Y − k) +

ν′

ρ2

∂2Y

∂θ2
,

where θ is a polar coordinate, X,Y are concentrations, µ′, ν′ are diffusibilities, a–d are reaction
rates and h, k are steady state concentrations, Turing was able to show that under additional
assumptions the diffusion can destabilize the steady state and this instability caused by diffusion
can lead to the growth of a structure at a particular wavelength. The resulting non-homogeneous
structure can be interpreted as a pattern. This mechanism could explain the creation of animal
coat pattern. This was an original and unconventional approach – the diffusion was considered as
a stabilizing element of physical systems and the idea of the existence of heterogeneous steady-
states in such system seemed to be counter-intuitive. The pattern formation in chemical systems
has already been known since the mid-19th century, but nobody before him gave such clear and
simple explanation how a very simple mechanism can explain the formation of patterns during the
embryogenesis. Unfortunately, the described mechanism can work only in systems, where the two
chemicals have significantly different diffusion, which is often criticized as not realistic assumption.
Despite the lukewarm reception his paper became later very famous and up to these days (2018)
it has more than eleven thousand citations.

In 1972, A. Gierer and H. Meinhardt published a paper [20], where they tried to solve the same
question as Turing – how it happens that almost homogeneous tissue develops into a heterogeneous
tissue structure. Similarly to Turing, they considered two reacting and diffusing chemicals –
activator and inhibitor and proposed an idea of short-range activation and long-range inhibition,

1



1.1. Short excursion into history

it means that the structures can appear only in a system where the diffusion of inhibitor is much
faster than the diffusion of activator. Their model had a form

∂a

∂t
=
ρa2

h
− µa+Da

∂2a

∂x2
,

∂h

∂t
= ρa2 − νh+Dh

∂2a

∂x2
.

In addition, the turnover of an inhibitor must be more rapid than the turnover of activator, i.e.
ν > µ, [39].

The theoretical forecasts were verified against the experimental results of hydra regeneration.
In 1994, Gierer and Meinhardt reviewed the application of this system to biological pattern form-
ation of complex structures.

In 1979, Schnackenberg published his simple model based on a reaction

X
k1−−⇀↽−−−
k−1

A, B
k1−−→ Y, 2 X + Y

k3−−→ 3 X.

A system with this reaction is called Schnackenberg system and due to its simplicity it is extensively
explored and often used as a reference example in many papers. It will of course appear also in
this dissertation thesis in Section 5.2.

The Thomas model [51] from 1976 is of a so-called type substrate depletion and was designed
to model a real chemical reaction between the substrate oxygen and uric acid reacting in presence
of enzyme urinase. The outcomes were experimentally verified [51].

Legyel and Epstein proposed in their paper [34] from 1990 a model to simulate the behavior
of CIMA reaction (chlorine/iodicide/mallonic acid system). The theoretical forecasts were for
CIMA reaction verified experimentally, the modeled and observed 1D patterns can be seen in [34].
Another example of patterns in CIMA reaction is in Fig. 1.1.

Figure 1.1: Patterns in CIMA reaction, [25]

The above mentioned papers have had a very strong influence on research concerning pattern
formation in reaction-systems. There are many more interesting and excellent papers related to
this topic. For example – the pattern formation on animal coat [56] has been already mentioned,
other applications are in ecology [24], control of infectious diseases [50], carcinogenesis, angiogenesis
[43], morphogenesis [53] and even social sciences [49]. The pattern formation has been studied for
systems with receptors [37], on a growing domain [6], manifolds, etc. This shows the generality of
this concept and importance for the understanding of fundamental biological processes.

2



1.2. Motivation, methods and recent results for reaction-diffusion systems with unilateral terms

1.2 Motivation, methods and recent results for reaction-diffusion systems
with unilateral terms

The main interest of this dissertation thesis are reaction-diffusion equations with unilateral source
and sink, further referred to as unilateral terms. As a motivation for this equations, we can use
the king cheetah coat pattern. The chemical substance responsible for a black color on its coat
is called melanin. The irregularity of its pattern is hard to explain using classical models like
e.g. Schnackenberg. One proposal how to describe this pattern was written in [56]. The system
has a certain feedback, which prohibits the decrease of level of chemicals under some level. This
feedback can be modeled by unilateral terms in the equations, i.e. by the terms of a type (u−u)−,
where u is an actual concentration of given chemical, u is a steady-state concentration and minus
is here for the negative part. In this dissertation thesis we will consider a more general models,
where the feedback reacts also on deviations of chemical concentration in opposite direction. This
is expressed by the terms of a type (u− u)+ in the equations.

It is necessary to emphasize that even though there is a lot of chemical processes involved in
the formation of coat pattern during embryogenesis, it is supposed that there are two significant
reactions which in the end determine the shape of pattern.

The application of unilateral terms are not limited to king cheetah coat patterning. Another
application can be in ecology, where are two dominant species and a farmer. The farmer does not
affect the diffusion or interaction between these two species, but controls a part of the area of the
ecosystem a level of one species. If there is a lack of it, he plants it. If there is an excess of it, he
harvests it. The main question is the concentration distribution of these two species in the whole
ecosystem – the results in the paper [56] suggest that the influence of unilateral terms on the final
pattern is significant, and numerical results in Section 5 of this dissertation thesis this suggestion
supports as well.

Figure 1.2: Pattern in a system with Schnackenberg reaction and without unilateral regulations on
the left, with unilateral regulations on the right. Both systems had the same diffusion paramaters
and Neumann b.c.

It will be seen later that the conditions on the so-called diffusion driven instability, for the
first time described by Turing in [53], excludes the systems having the energy functional, and this
means a use of the variational techniques. One of the tricks in a study of a bifurcation in these
systems is to rewrite them as one operator equation now with symmetric linear operator perturbed
by positively homogeneous potential operator and a smooth perturbation. The idea of reduction
to one equation is not new and was already introduced in the paper [31].

In some particular cases this equation has a potential (energy functional), which allows to use
the methods of Calculus of Variations, and Section 3.2 is devoted to abstract results in this field.
The heuristic considerations can also predict the shape of pattern [38], but it is not the subject
of this dissertation thesis. When the sources have an infinite strength, the whole problem can be
modeled by the systems with obstacles. In particular, this was of an interest of two recent papers
[14], [5].

Another method is in a use of Implicit Function Theorem, which allows to treat a very gen-
eral class of reaction-diffusion systems. These methods have already been applied to standard
reaction-diffusion systems (e.g. [42]). We will present a generalization of Crandall-Rabinowitz

3



1.3. Structure of the dissertation thesis

Theorem for equations perturbed with lipschitz continuous operator, and this generalization will
be consequently applied to our particular systems.

The existence global bifurcation points will be proved by using a Topological Degree theory.
This is a content of Section 3.3, and Theorem 8 is a main result of this Section. There are recent
papers [30], [33], [27], [14], [13], [16], concerned with the reaction-diffusion systems with obstacles.
There is also a paper [10], which contains the bifurcation results for the problems with the terms
of a type u+, u−, v+, v−.

The majority of the papers mentioned above is concerned with the reaction-diffusion systems
with unilateral obstacles. It will be discussed later that these obstacles are not suitable for describ-
ing the regulatory mechanisms in biological systems. Therefore this dissertation thesis is purely
focused on systems containing the terms with a negative and positive parts of concentrations,
which are more reliable.

1.3 Structure of the dissertation thesis

The dissertation thesis is organized into 7 chapters as follows:

1. Introduction: Introduces the reader to the topic and gives a basic overview of reaction-
diffusion systems with unilateral sources. It also explains the main contributions of this
dissertation thesis. The results are less formal here.

2. Abstract Formulation: Introduces the reader to an abstract formulation of stationary reaction-
diffusion equations and explains all necessary steps in the reduction of this system to one
operator equation. The conditions under which the one operator equation has the potential
are stated.

3. General results about positively homogeneous problems: Together with the subsequent chapter
constitutes the core of this dissertation thesis. It mostly contains new results about eigen-
values and bifurcation of equations with positively homogeneous operators on an abstract
Hilbert space.

The largest eigenvalue of equation with positively homogeneous operator is characterized
by a variational formula. The existence of bifurcation points of equations with positively
homogeneous operators is proved by using three basic methods - variational approach, to-
pological degree and implicit function theorem. Each method has different assumptions and
gives different conclusions about the bifurcation points.

4. Application to reaction-diffusion equations: General results from the previous chapter are
applied to reaction-diffusion systems with unilateral sources, giving the existence of bifurc-
ation points for these problems in an area, where bifurcation points of the problem without
unilateral terms are not present. Systems with Dirichlet/mixed boundary conditions and
Neumann boundary conditions are studied.

5. Numerical results for real-world system: The achieved results are demonstrated on selected
specific system from the literature, patterns are found numerically.

6. Conclusions: Contains the summary of the results and contributions of this dissertation
thesis, and concluding remarks.

7. Appendix : Covers the necessary minimal theoretical background for this dissertation thesis.

1.4 Systems of two reaction-diffusion equations

The pattern formation will be studied in systems with two reacting and diffusing components.
The components can be e.g. chemical compounds, populations or granular materials, depending

4



1.4. Systems of two reaction-diffusion equations

on a specific system. The system is described by two coupled partial differential equations

∂u

∂t
= d1∆u+ f(u, v)

∂v

∂t
= d2∆v + g(u, v)

in Ω× [0,∞), (1.1)

with the boundary and initial conditions

∂u

∂~n
=
∂v

∂~n
= 0 on ΓN ,

u = u, v = v on ΓD,
(1.2)

u(0) = u0, v(0) = v0, (1.3)

where Ω ⊂ R is a bounded domain with Lipschitz boundary, d1, d2 ∈ R are diffusion coefficients,
f, g : R × R → R are nonlinear real functions, u0, v0 : Ω → R are real functions and u, v are
constants. The sets ΓD and ΓN are pairwise disjoint subsets of the boundary, ΓN is open, and
ΓD∪ΓN = ∂Ω. In chemical systems the variables u, v represent the concentrations of components,
in population models the density of population, etc. The functions f, g represent the reaction
kinetics of the system. The explicit form of these functions can be found e.g. from Law of Mass
Action, by heuristic considerations, or from experiments. The kinetic functions f, g are supposed
to satisfy

f(ū, v̄) = 0, g(ū, v̄) = 0, (1.4)

in order to ensure that (u, v) is a (homogeneous) solution of (1.1), (1.2).
Doing a formal Taylor series expansion of f, g at the point (u, v) and neglecting higher-order

terms lead to the so-called linearized system

∂u

∂t
= d1∆u+ b11(u− u) + b12(v − v),

∂v

∂t
= d2∆v + b21(u− u) + b22(v − v),

(1.5)

where

b11 =
∂f

∂u
(u, v), b12 =

∂f

∂v
(u, v), b21 =

∂g

∂u
(u, v), b22 =

∂g

∂v
(u, v). (1.6)

An Ansatz (u(x, t), v(x, t)) = (exp(λt)ũ(x) + u, exp(λt)ṽ(x) + v) gives an eigenvalue problem

λũ = d1∆ũ+ b11ũ+ b12ṽ,

λṽ = d2∆ṽ + b21ũ+ b22ṽ.
(1.7)

Definition 1. If there exists ξ < 0 such that all eigenvalues λ of (1.7), (1.2) satisfy Re(λ) < ξ,
the solution (u, v) of (1.1), (1.2) is called linearly stable. If there exists at least one eigenvalue
with the real part being positive, the solution (u, v) is called linearly unstable.

Definition 2. The system (1.1), (1.2) exhibits the diffusion driven instability (DDI) if for d1 =
d2 = 0 its solution (u, v) is linearly stable as a solution of a system of ODE’s and for diffusion
coefficients from a certain nonempty set DU ⊂ R2

+ its solution (u, v) is linearly unstable.

The detailed linear stability analysis of (1.1), (1.2) can be found in [40], Chap. 2.3. It shows
that DDI is not present for an arbitrary system. The constants bij defined in (1.6) have to satisfy
the sign conditions

b11 > 0, b22 < 0, b12b21 < 0,

b11b22 − b12b21 > 0, b11 + b22 < 0.
(1.8)
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1.5. Systems of reaction-diffusion equations with unilateral sources

If b21 < 0, the system (1.1) is of the so-called substrate-depletion type, and if b12 < 0, the system
(1.1) is of the type activator-inhibitor.

The conditions (1.8) explicitly exclude the case d2 = d1 and in general the diffusion coefficients
must be significantly different. This is used in a criticism of these systems, because some authors
consider the assumption on significantly different diffusion coefficients as not biological. Therefore
the question motivating this dissertation thesis has been whether there are models giving patterns
for diffusion coefficients closer to the line d2 = d1, d1 ∈ R+.

It is common for simplicity to shift the initial homogeneous steady state to zero, i.e. to relabel
u ≡ u− u, v ≡ v − v. Since the pattern is a stationary solution of a reaction-diffusion system, it
has to satisfy after this shift the equations

d1∆u+ b11u+ b12v + n1(u, v) = 0

d2∆v + b21u+ b22v + n2(u, v) = 0
in Ω, (1.9)

∂u

∂~n
=
∂v

∂~n
= 0 on ΓN ,

u = 0, v = 0 on ΓD,
(1.10)

where

n1(u, v) := f(u, v)− b11u− b12v,

n2(u, v) := g(u, v)− b21u− b22v.

The functions n1, n2, if smooth enough, satisfy

n1(0, 0) = n2(0, 0) = 0, n′1(0, 0) = n′2(0, 0) = 0, (1.11)

where the prime denotes the derivative. The respective linearized problem is

d1∆u+ b11u+ b12v = 0
d2∆v + b21u+ b22v = 0

in Ω, (1.12)

with the b.c. (1.10).

1.5 Systems of reaction-diffusion equations with unilateral sources

The system of reaction-diffusion equations with unilateral terms is

∂u

∂t
= d1∆u+ b11u+ b12v + n1(u, v)

∂v

∂t
= d2∆v + b21u+ b22v + n2(u, v) + ĝ−(x, v−)− ĝ+(x, v+)

in Ω, (1.13)

with the boundary conditions (1.10) and certain initial conditions. The symbols v+ and v−

denote the positive and the negative part of the function v respectively and ĝ−, ĝ+ : Ω × R → R
are nonlinear real functions representing the source and the sink respectively. To save some space
we will often use notation ĝ± for ĝ+, ĝ− and to emphasize the spatial dependence of ĝ± we write
ĝ±(x, v±). It will be supposed

ĝ±(x, 0) ≡ 0, for all x ∈ Ω,

in order to be (0, 0) a solution of (1.13), (1.10).
The unilateral sources should work in a following way. If the value of v decreases below zero

at a point in the area where the unilateral source ĝ− is present, the environment activates the
mechanisms, which, in accordance with the principle of homeostasis, start to increase the value
of v at this point. If the value of v reaches the steady-state level at this point, the mechanism

6



1.6. Main contributions of this dissertation thesis

deactivates. And vice versa for the values of v above zero in the area where the source ĝ+ is
present. Therefore it is natural to assume that ĝ±(x, v±) is nonnegative at any point x and for
any function v.

These sources are a weaker form of strict obstacles, which in the respective areas does not
allow the value of v to increase above zero or decrease below zero. It is a very strict condition and
in biology unreliable. The environment has often a limited possibility to regulate an unfavorable
concentrations of chemicals, and the unilateral sources can be used to describe it more reliably,
for example by using a saturation function

ĝ±(x, ξ) =
s±(x)ξ

1 + ξ
,

with s± : Ω→ R+.
The assumption of positivity of ĝ± mentioned above will be weaken in this dissertation thesis to

an assumption of positivity of s±, see (2.21).
This dissertation thesis is mainly interested in stationary solutions of the above systems, hence,

we will work with the problem

d1∆u+ b11u+ b12v + n1(u, v) = 0

d2∆v + b21u+ b22v + n2(u, v) + ĝ−(x, v−)− ĝ+(x, v+) = 0
in Ω, (1.14)

having the b.c. (1.10).
The majority of results in the dissertation thesis is for systems having the boundary conditions

(1.10), however, in Sections 2.4, 4.5 some minor results for systems with unilateral sources on the
boundary will be placed.

1.6 Main contributions of this dissertation thesis

1.6.1 Preliminary

The main task of this dissertation thesis is to prove the existence of bifurcation points of the
problem (1.14), (1.10). Stationary states exist for the diffusion parameters close to a bifurcation
point and for this reason the location of bifurcation points is valuable information.

Before summarizing the main results of this dissertation thesisit is necessary to introduce some
definitions. It is useful to remind here that Ω is the bounded domain in Rm with the Lipschitz
boundary.

The negative part of v ∈W 1,2(Ω) is defined by

v−(x) =

{
0 for a.a. x ∈ Ω for which v(x) > 0
−v(x) for a.a. x ∈ Ω for which v(x) ≤ 0.

and the positive part by

v+(x) =
1

2
(|v(x)| − v−(x)) for a.a. x ∈ Ω.

It is |v|, v−, v+ ∈W 1,2(Ω) for any v ∈W 1,2(Ω), see e.g. [62].

Definition 3. For µm−1(ΓD) > 0, where µm−1 is the m − 1 dimensional Lebesgue measure, a
space W 1,2

D (Ω) is defined by

W 1,2
D (Ω) :=

{
v ∈W 1,2(Ω)

∣∣ v|ΓD
= 0
}
.

7



1.6. Main contributions of this dissertation thesis

Definition 4. The couple (u, v) ∈ W 1,2
D (Ω) × W 1,2

D (Ω) is called a weak solution of the system
(1.14), (1.10) if it satisfies∫

Ω

d1∇u · ∇ϕ− b11uϕ− b12vϕ− n1(u, v)ϕ dx = 0∫
Ω

d2∇v · ∇ϕ− b21uϕ− b22vϕ− n2(u, v)ϕ− ĝ−(x, v−)ϕ+ ĝ+(x, v+)ϕ dx = 0,

for all ϕ ∈W 1,2
0 (Ω).

(1.15)

By a solution of a system (1.14), (1.10) we will always mean a weak solution.

A prominent type of (1.14) is the so-called homogenized system

d1∆u+ b11u+ b12v = 0
d2∆v + b21u+ b22v + s−(x)v− − s+(x)v+ = 0

in Ω, (1.16)

with the b.c. (1.10), where

s±(x) :=
∂ĝ±
∂ξ

(x, ξ)

∣∣∣∣∣
ξ=0

.

The weak formulation of (1.16) , (1.10) is defined by taking n1, n2 ≡ 0, ĝ±(x, v±) := s±(x)v± in
(1.15). The weak formulation of (1.12), (1.10) and (1.9), (1.10) is defined by taking ĝ±(x, v±) ≡ 0,
n1, n2 ≡ 0 and ĝ±(x, v±) ≡ 0 in (1.15) respectively.

The following definition (cf. Definitions 15, 16) will appear throughout this dissertation thesis.

Definition 5. Let d1 ∈ R be fixed. A point d2 ∈ R is a critical point of the problem (1.16), (1.10)
with fixed d1 if there exists a solution (u, v) ∈W 1,2

D (Ω)×W 1,2
D (Ω), (u, v) 6= 0 of this system.

Let d1 ∈ R be fixed. A point d2 ∈ R is a bifurcation point of (1.14), (1.10) with fixed d1 if in
any neighborhood of (d2, 0, 0) in R ×W 1,2

D (Ω) ×W 1,2
D (Ω) there exists a triple (d̃2, u, v) such that

(u, v) 6= 0 is a solution of (1.14), (1.10) with d2 replaced by d̃2.

Remark 1. Although there are two parameters in the equations (1.14), (1.16), in the applications
d1 will be always fixed and d2 a bifurcation parameter. The presence of only one bifurcation
parameter will allow us to reduce the analysis of the system to an analysis of one equation with
one parameter. Since it may not be clear on a first sight how to apply Definitions 15, 16 in our
systems, we decided to write it separately as Definition 5.

Remark 2. Since every bifurcation point of (1.14), (1.10) is simultaneously a critical point of
(1.16), (1.10), as will be proved later, the existence and location of critical points is valuable
information.

1.6.2 Outcomes of this dissertation thesis

The main theoretical results concerning reaction-diffusion systems are contained in Theorems 11–
21 in Chapter 4. We will always assume here that bij satisfy (1.8). However, in order to explain
the main ideas of these results, we will not place here the exact assumptions and mention only
the crucial ones (e.g. we will omit the growth conditions (2.4), (2.7), smoothness of the domain,
etc.). The following remark contains information which is crucial for understanding of the main
outcomes of this dissertation thesis.

Remark 3. It is well-known that for any d1 ∈ R all respective d2 ∈ R for which the problem
(1.12), (1.10) has a nontrivial solution can be expressed in a form

d2 =
1

κk

(
b12b21

d1κk − b11
+ b22

)
,

8



1.6. Main contributions of this dissertation thesis

where k ∈ N and κk are the eigenvalues of the Laplacian with the b.c. (1.10) and d1 6= b11/κk.
Let us introduce a set C as

C =

∞⋃
k=1

Ck, Ck =

{
d = (d1, d2) ∈ R2

+

∣∣∣∣ d2 :=
1

κk

(
b12b21

d1κk − b11
+ b22

)
, d1 6=

b11

κk
for all k ∈ N

}
.

If we plot this set in R2
+, with d1 on horizontal axis and d2 on vertical axis, we would obtain

infinitely many hyperbola segments with asymptotes yk = b11/κk. If κk 6= κj, the hyperbolas Ck
and Cj intersect in exactly one point [15].

There are no segments to the right from the vertical line d1 = b11/κ1. At the line d1 = 0 the
ends of these segments accumulates at the point d2 = 0.

The sketch can be found in Fig. 1.3. The domain to the left from the envelope CE of these
hyperbolas is called domain of instability, and denoted by DU and to the right from the envelope
of these hyperbolas is called domain of stability, denoted by DS. By definition there is no critical
point of (1.12), (1.10) with fixed d1 > 0 in DS.

More details will be given in Section 2.5.

Figure 1.3: The black lines are the sets C1, · · · , C4, vertical lines y1 · · · y4 are asymptotes of the
corresponding hyperbolas. Grey background marks the domain of instability, white background
the domain of stability. Red line marks the envelope of the hyperbolas. The point (d1, d2) is lying
on the hyperbola C2 and therefore d2 is a critical point of (1.12), (1.10) with fixed d1.

Systems (1.16), (1.10) and (1.14), (1.10) with Dirichlet or mixed b.c. Assume that
measm−1(ΓD) > 0, then the systems (1.16), (1.10) and (1.14), (1.10) have Dirichlet or mixed
boundary conditions. Denote d0

2,max the largest critical point of (1.12), (1.10) with a fixed

d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
. The number d0

2,max is always lying on a hyperbola segment.
The situation from Theorem 11 on pg. 63 is sketched in Fig. 1.4. For any d1 ∈ (y2, y1)

this theorem gives the existence of the largest critical points dm2 of (1.16), (1.10) with fixed d1,
located in the dark gray area in DS , provided that s± have nonzero supports. Furthermore, for
any d1 ∈ (0, y2)\{y3, ...} the largest critical points dm2 of (1.16), (1.10) with fixed d1 are bounded
from above by d0

2,max and from below by the r.h.s. of (4.3). These bounds are sketched by the

9



1.6. Main contributions of this dissertation thesis

dashed lines in Fig. 1.4. All of these critical points are characterized by the variational formula
(4.4). The main assumption is that ‖s±‖L∞ are not very large, or for some particular values of d1

they can even have arbitrary size – this is a content of Corollary 4 and Lemma 20. As s± → 0,
the dashed lines merge with the hyperbolas and dark gray area shrinks to the empty set.

Theorem 12 on pg. 64 gives that the critical points found in Theorem 11 can be bifurcation
points under the assumption on skew-symmetry of the reaction kinetics, see also condition (2.31)
on pg. 20.

Theorem 13 on pg. 65 says that for systems with ‖s±‖L∞ sufficiently small there are global
bifurcation points of (1.14), (1.10) in the dark gray area, which is a subset of DS . Furthermore,
for any d1 ∈ (0, y2)\{y3, · · · }, under some additional assumptions, there is a global bifurcation
point of (1.14), (1.10) with fixed d1 in a neighborhood below d2. Theorem 19 is an analogue of
Theorems 11–13 for systems with unilateral terms on the boundary.

Finally, Theorem 14 gives for any d1 the existence of two distinct critical points d+
2 , d

−
2 of

(1.16), (1.10) with fixed d1 such that (d1, d
+
2 ), (d1, d

−
2 ) ∈ DS . The main assumptions are that

‖s±‖L∞ are sufficiently small, and the system (1.12), (1.10) with (d1, d2) ∈ CE must have unique
solution up to multiples. Moreover, d±2 → d2 as ‖s±‖L∞ → 0. These critical points are also
bifurcation points of (1.14), (1.10) with fixed d1.

Figure 1.4: Points generating black lines are positive critical points of system (1.9), dotted lines
are lower bounds on critical points of (1.16), (1.10) and the dark grey area contains the bifurcation
points of (1.14), (1.10) located in DS , cf. also Fig. 1.3

Systems (1.16) and (1.14) with Neumann b.c. The situation is more complicated for
the systems (1.14) and (1.16), both with Neumann boundary conditions. This occurs when
measm−1(ΓD) = 0.

If the unilateral terms are sufficiently large, which is expressed by the condition (4.16) on
pg. 4.16, and under some restrictions on the area size of the source and sink Theorem 15 gives
the existence of d0

1 > 0 such that for any d1 > d0
1 there exists a critical point dm2 of (1.16) with

Neumann b.c. with fixed d1, provided that ‖s±‖L1 are sufficiently large. Clearly (d1, d
m
2 ) ∈ DS .

Theorem 16 says that the branch of critical points with d1 > d0
1 is bounded from below and

above by some constants Cm, CM , independent of d1. And finally, for skew symmetric systems,
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1.6. Main contributions of this dissertation thesis

see (2.31), all of these critical points are bifurcation points of (1.14) with Neumann boundary
conditions and fixed d1, see Theorem 17. Again, similar conclusions can be done for systems with
unilateral sources on the boundary, which is a content of Theorem 20 . The bifurcation results
are only local, i.e. the existence of branches of bifurcating solutions is known only for a certain
neighborhood of zero. The situation is sketched in the Fig. 1.5.

Figure 1.5: —Sketch of hyperbola segments for the problem with unilateral terms and Neumann
boundary conditions. Besides the solutions in DU which are above the hyperbolas Ck, there is
a new line of critical points in DS , bounded from above and below by constants ĈM and Cm
respectively. For skew-symmetric systems these points are bifurcation points.

Theorem 18 is an analogue of Theorem 14 for systems (1.14) with Neumann b.c.
is an analogue of Theorems 15–13 for systems with unilateral terms on the boundary.
Theorem 21 is significantly distinct in the assumptions in comparison to the previous ones. It

assumes the C1,1 smoothness of the domain Ω and therefore the solution of (1.14) with Neumann
b.c. has a higher regularity and it allows on the other hands to relax some other assumptions (e.g.
it is not necessary to assume the so-called growth conditions (2.4), (2.7)). The assertions of this
Theorem are similar to the ones in Theorem 18.

Numerical results Theorems 11–21 are giving the existence and location of bifurcation points
of the problem (1.14), (1.10). However, they are not giving a qualitative answer about the cor-
responding bifurcating solutions. In particular, it is not certain whether the solutions bifurcating
from zero are attracting, whether it is possible to find them numerically and how does they look
like. To partially fill this gap we did several numerical experiments on a problem (1.14) having a
Schnackenberg kinetics and (homogeneous) Dirichlet b.c. and (homogeneous) Neumann b.c. To
have a comparison, we did at first several numerical experiments on a system (1.9), (1.10) with
Schnackenberg kinetics. The value of d1 was fixed to a selected value. The norm of solutions was
decreasing to zero as (d1, d2) has been approaching CE , and the shape of solutions was and more
similar to the solution of linear problem (1.12), (1.10), which suggests that we were close to a
bifurcation point. The most important conclusion is - the solver, chosen numeric scheme and its
implementation seems to give correct results in this case. Then we did some experiments on the
system with unilateral terms. Again, we fixed the value of d1 and varied the value of d2. The
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norm of these solutions was decreasing to zero in observed experiments as the parameter d2 was
approaching certain value, so we feel confident enough to conclude that we were able to numeric-
ally find these bifurcating solutions. The shape of solutions is influenced by unilateral terms. See
also Fig. 5.4.

Unfortunately, we have not succeed in finding the solutions with d1 > d0
1 from Theorem 17.

In conclusion, we were able to find solutions in DS for selected values d1 < y1 and locate a
bifurcation point – as the value of d2 was closer to bifurcation point, the W 1,2(Ω) norm of the
solutions was mostly decreasing, which suggest that it should be bifurcating solutions predicted
by Theorem 14 for a problem with Dirichlet b.c., and by Theorem 18 for a problem with Neumann
b.c. and the resulting shape of solutions, and consequently patterns, are strongly affected by the
presence of unilateral terms.
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Chapter 2

Abstract formulation of reaction-diffusion
systems with unilateral terms

It will be necessary to rigorously formulate the problem before doing the analysis of reaction-
diffusion systems with unilateral terms. For this purpose the weak formulation of the problem
(1.14), (1.10) has been introduced in Definition 4. A usual procedure is to rewrite the weak
formulation of the problem (1.14), (1.10) as a system of two operator equations on W 1,2(Ω). This
will be done in Section 2.2. This formulation significantly simplifies the analysis of this system.
However, variational methods used for an analysis of nonlinear problems require certain symmetry
of the problem. Therefore the next step is a fixing of d1 and reducing the system of two coupled
operator equation to a single equation with a symmetric linear compact operator. This will be
done in the Sections 2.2.2, 2.3.2.

Although it is possible to do an analysis of the system (1.14) with Dirichlet, mixed and Neu-
mann boundary conditions at once, for clarity the systems with Dirichlet and mixed b.c., and
Neumann b.c. will be handled separately. However, before doing all of the described steps it will
be necessary to place some assumptions and definitions.

2.1 Basic definitions and assumptions

As a first step, we will fix some assumptions and notations. We will be using a universal symbol
C for various constants. The set Ω ⊂ Rm is a bounded domain with a Lipschitz boundary,
ΓN ,ΓD ⊂ ∂Ω are relatively open and disjoint, and ∂Ω\(ΓN ∪ΓD) is having the m− 1 dimensional
Lebesgue measure zero. The elements bij ∈ R of the matrix B ∈ R2,2 satisfy

b11 > 0, b22 < 0, b12b21 < 0, (2.1)

b11b22 − b12b21 = det B > 0, b11 + b22 = Tr B < 0. (2.2)

The nonlinear functions n1, n2 : R× R→ R satisfy

ni(0, 0) = 0, ∂xi
nj(0, 0) = 0 for all i, j ∈ {1, 2}, (2.3)

and the following growth conditions:

there exists C > 0 such that:

|n1(χ, ξ) + |n2(χ, ξ)| ≤ C(1 + |ξ|p−1 + |χ|p−1) for all ξ, χ ∈ R,
(2.4)

for some p bounded by

p > 2 for m ≤ 2 or 2 < p <
2m

m− 2
for m > 2. (2.5)

The functions ĝ−, ĝ+ : Ω× R→ R satisfy

ĝ+(x, 0) = ĝ−(x, 0) = 0 for a.a. x ∈ Ω, (2.6)
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2.2. System with Dirichlet or mixed boundary conditions

Carathéodory conditions, the growth conditions

there exists C > 0 such that:

|ĝ−(x, ξ)|+ |ĝ+(x, ξ)| ≤ C(1 + |ξ|p−1) for a.a. x ∈ Ω, for all ξ ∈ R, for some p from (2.5),

(2.7)

and have the derivative at zero w.r.t. real variable. Let us define the functions s+, s− : Ω→ R as

s±(x) :=
∂ĝ±
∂ξ

(x, ξ)

∣∣∣∣∣
ξ=0

. (2.8)

Moreover, we will assume

s±(x) ∈ L∞(Ω). (2.9)

All of these assumptions will appear throughout this dissertation thesis.

2.2 System with Dirichlet or mixed boundary conditions

This section concerns with the weak formulation of the reaction-diffusion systems with the uni-
lateral terms and with Dirichlet/mixed or Neumann b.c. Among other things, it contains several
simple lemmas which will be used to prove the main theorems in Section 4.

2.2.1 Weak and operator formulation of the problem

Let

µm−1 (ΓD) > 0, (2.10)

in the whole Section (2.2). If µm−1(ΓN ) = 0, then (1.14), (1.10) is a system with Dirichlet
boundary conditions, otherwise it is a system with mixed boundary conditions. We will extensively
use here the space W 1,2

D (Ω) from Definition 3 on pg. 7.

To simplify some calculations, we will consider a different scalar product on W 1,2
D (Ω).

Definition 6. The space W 1,2
D (Ω) will be equipped with the scalar product and norm

〈v, ϕ〉 =

∫
Ω

∇v · ∇ϕ, ‖v‖1,2 =

(∫
Ω

|∇v|2
) 1

2

for all v, ϕ ∈W 1,2
D (Ω). (2.11)

Under the assumption (2.10) the norm (2.11) is equivalent to the standard norm onW 1,2(Ω), see
also formula (7.1) in Appendix. Let us remind here Definition 19 from Appendix of an (algebraic)
multiplicity of an eigenvalue of a compact operator. As usual, if the multiplicity of an eigenvalue
is equal to one, we will call the eigenvalue simple. Since we are going to work with symmetric
linear operators, the algebraic multiplicity of an eigenvalue is equal to its geometric multiplicity,
and therefore it is not necessary to distinguish between them.

Notation 1. The eigenvalues of the Laplacian with Dirichlet/mixed b.c. will be denoted by κk,
and will be ordered as

0 < κ1 < κ2 ≤ · · · → ∞, (2.12)

see also Remark 28 and formula (7.5) in Appendix.
An orthonormal base {ek}k∈N is chosen in a way that for any k ∈ N, ek is an eigenfunction

corresponding to κk. The eigenvalue κ1 is simple and the eigenfunction e1 does not change its
sign in Ω, see [22].
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2.2. System with Dirichlet or mixed boundary conditions

Lemma 1. The operator A : W 1,2
D (Ω)→W 1,2

D (Ω) defined by

〈Av, ϕ〉 =

∫
Ω

vϕ dx, for all v, ϕ ∈W 1,2
D (Ω),

is a symmetric linear compact operator. Moreover

σ(A) =

{
κ−1
k

∣∣∣∣ k ∈ N
}
∪ {0}, (2.13)

and v is an eigenfunction of the Laplacian corresponding to the eigenvalue κk if and only if v is
an eigenfunction of A corresponding to the eigenvalue κ−1

k . The largest eigenvalue of the operator
A is simple and a corresponding eigenfunction does not change sign in Ω. Furthermore, {κ−1

k }k∈N
is a decreasing sequence with limk→∞ κ−1

k = 0 (see (2.12)) and zero is the only accumulation point
of σ(A).

Proof. First step is to show that A is well-defined. We use Hölder inequality to find

〈Av, ϕ〉 =

∫
Ω

vϕ dx ≤ ‖v‖2‖ϕ‖2 <∞,

and according to Riesz Representation Theorem, ϕ→ 〈Av, ϕ〉 is for any v ∈W 1,2
D (Ω) well-defined

linear functional and can be represented by a vector w ∈ H, w = Av. Thus A is well-defined. The
linearity follows directly from the definition. Let vn ⇀ v. Since W 1,2

D (Ω) ↪→c L2(Ω), the sequence
vn converges strongly to v in L2(Ω). Then

‖Avn −Av‖ = sup
ϕ∈W 1,2

D (Ω)
‖ϕ‖≤1

〈Avn −Av, ϕ〉 = sup
ϕ∈W 1,2

D (Ω)
‖ϕ‖≤1

∫
Ω

(vn − v)ϕ ≤ ‖vn − v‖2 → 0,

it means A is compact. Let κ be an eigenvalue of Laplacian and v be a corresponding eigenfunction.
Then

〈Av, ϕ〉 =

∫
Ω

vϕ dx = κ−1

∫
Ω

∇v · ∇ϕ dx = κ−1〈v, ϕ〉 for all ϕ ∈W 1,2
D (Ω), (2.14)

which means κ−1 is an eigenvalue of A and v is a corresponding eigenfunction. Conversely, if κ−1

is an eigenvalue of A with an eigenvector v, then clearly from (2.14) a number κ is an eigenvalue
of Laplacian and v is a corresponding eigenvector.

The largest eigenvalue of A is κ−1
k , which is simple and the corresponding eigenvector with

unit norm is e1, which does not change its sign in Ω. Since κk is increasing sequence, κ−1
k is a

decreasing sequence. Operator A is compact therefore 0 is an accumulation point of the set of all
eigenvalues.

Now we formally define the operators

〈N1(u, v), ϕ〉 =

∫
Ω

n1(u, v)ϕ dx for all u, v, ϕ ∈W 1,2
D (Ω), (2.15)

〈N2(u, v), ϕ〉 =

∫
Ω

n2(u, v)ϕ dx for all u, v, ϕ ∈W 1,2
D (Ω). (2.16)

The basic properties of these operators are subject of the following lemma, let us remind that
(2.3), (2.4) are supposed for n1, n2.

Lemma 2. The operators N1, N2 are well-defined, continuous and compact operators from
W 1,2
D (Ω)×W 1,2

D (Ω) to W 1,2
D (Ω). Furthermore,

lim
u,v→0

N1(u, v)

‖u‖+ ‖v‖
= 0, lim

u,v→0

N2(u, v)

‖u‖+ ‖v‖
= 0. (2.17)
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2.2. System with Dirichlet or mixed boundary conditions

Proof. The first step is to show that N1 : W 1,2
D (Ω)×W 1,2

D (Ω)→W 1,2
D (Ω) is a well defined operator.

The growth condition (2.4), embedding of W 1,2
D (Ω) into Lp(Ω) for p given by (2.5) and Continuity

of Nemyckii operator give that n1 is a continuous operator from W 1,2
D (Ω)×W 1,2

D (Ω) to Lp
′
. The

Hölder inequality and the growth condition (2.4) give an estimate

〈N1(u, v), ϕ〉 =

∫
Ω

n1(u, v)ϕ dx ≤
(∫

Ω

|n1(u, v) |p
′
) 1

p′
(∫

Ω

|ϕ|p
) 1

p

≤

≤ C (1 + ‖u‖pLp + ‖v‖pLp)
1
p′ ≤ C(1 + ‖u‖+ ‖v‖)p−1,

for all u, v, ϕ ∈W 1,2
D (Ω),

(2.18)

where p′ = p/(p − 1) and C is used for various constants. Riesz Representation Theorem and
Continuity of Nemyckii operator gives thatN1 is a well-defined continuous operator formW 1,2

D (Ω)×
W 1,2
D (Ω) to W 1,2

D (Ω).

Let (un, vn) ⇀ (u, v) in W 1,2
D (Ω). The compact embedding W 1,2

D (Ω) ↪→ Lp(Ω) for p given by
(2.5) and continuity of Nemyckii operator n1 give

‖N1(un, vn)−N1(u, v)‖ ≤ max
ϕ∈W 1,2(Ω)
‖ϕ‖≤1

(∫
Ω

|n1(u, v)− n1(u0, v0)‖p
′
) 1

p′

≤ ‖n1(un, vn)− n1(u, v)‖Lp′ → 0,

(2.19)

which means that N1 is compact.
The proof for N2 is analogous. The formula (2.17) can be obtained by using (2.3), (2.4), the

proof can be found e.g. in Appendix A.1. in [30].

The operators β+, β− will be formally defined by

〈β−(v), ϕ〉 = −
∫

Ω

s−(x)v−ϕ dx for all v, ϕ ∈W 1,2
D (Ω),

〈β+(v), ϕ〉 =

∫
Ω

s+(x)v+ϕ dx for all v, ϕ ∈W 1,2
D (Ω),

(2.20)

and the operators Ĝ+, Ĝ− by

〈Ĝ−(v), ϕ〉 = −
∫

Ω

ĝ−(x, v−)ϕ dx for all v, ϕ ∈W 1,2
D (Ω),

〈Ĝ+(v), ϕ〉 =

∫
Ω

ĝ−(x, v+)ϕ dx for all v, ϕ ∈W 1,2
D (Ω).

Before writing the following lemma, let us remind here that (2.7) and (2.9) are assumed for ĝ±
and s± respectively.

Lemma 3. The operators Ĝ+, Ĝ− are well-defined operators from W 1,2
D (Ω) to W 1,2

D (Ω). If vn ⇀ v

in W 1,2
D (Ω), then Ĝ±(vn)→ Ĝ±(v). In particular, β+, β− are well-defined operators from W 1,2

D (Ω)

to W 1,2
D (Ω) and if vn ⇀ v in W 1,2

D (Ω), then β±(vn)→ β±(v). If vn → 0, vn/‖vn‖⇀ w in W 1,2
D (Ω),

then
Ĝ±(vn)

‖vn‖
→ β±(w).

The operators β± are Lipschitz continuous. If

s+(x) ≥ 0 for a.a. x ∈ Ω and s−(x) ≥ 0 for a.a. x ∈ Ω (2.21)

then

〈β+(v), v〉 ≥ 0 for all v ∈W 1,2
D (Ω) and 〈β−(v), v〉 ≥ 0 for all v ∈W 1,2

D (Ω), (2.22)

respectively.
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2.2. System with Dirichlet or mixed boundary conditions

Proof. Using the conditions (2.7) and Hölder inequality yield

sup
ϕ∈W 1,2

D (Ω),‖ϕ‖=1

〈Ĝ−(v), ϕ〉 = sup
ϕ∈W 1,2

D (Ω),‖ϕ‖=1

−
∫

Ω

ĝ−(x, v)ϕ ≤ C‖ĝ−(x, v−)‖Lp′‖ϕ‖Lp ≤

≤ C(1 + ‖v‖Lp)p−1‖ϕ‖Lp <∞, for all v ∈W 1,2
D (Ω),

where p′ = p/(p − 1). The application of Riesz Theorem gives the well definition of Ĝ− as an
operator from W 1,2

D (Ω) to W 1,2
D (Ω). Let vn ⇀ v. The growth condition (2.7), the compact

embedding W 1,2
D (Ω) into Lp(Ω), for p given by (2.5) and continuity of Nemyckii operator give∥∥∥Ĝ− (vn)− Ĝ−(v)

∥∥∥ = sup
ϕ∈W 1,2

D (Ω),‖ϕ‖=1

−
∫

Ω

(
ĝ−(x, vn

−)− ĝ−(x, v−)
)
ϕ dx ≤

≤ C‖ĝ−(x, vn
−)− ĝ−(x, v−)‖Lp′ → 0.

(2.23)

Hence Ĝ− (vn)→ Ĝ−(v). Since β− is a special case of Ĝ− with ĝ−(x, v−) = s−(x)v−, it also gives
the well-definition of β− and β−(vn)→ β−(v).

Let us define the operator G : W 1,2
D (Ω)→W 1,2

D (Ω) by

〈G(v), ϕ〉 = −
∫

Ω

(ĝ−(x, v)− s−(x)v)ϕ dx for all v, ϕ ∈W 1,2
D (Ω).

The definition (2.8) and the assumption (2.6) implies

lim
ξ→0

ĝ−(x, ξ)− s−(x)ξ

ξ
= 0 for a.a. x ∈ Ω,

and this together with (2.7) lead to

lim
v→0

G(v)

‖v‖
= 0,

see Proposition 3.2 from [11]. If vn → 0, then also v−n → 0, and the choice v := v−n yields

lim
n→∞

‖Ĝ−(vn)− β−(vn)‖
‖vn‖

= lim
n→∞

‖G(v−n )‖
‖vn‖

≤ lim
n→∞

‖G(v−n )‖
‖v−n ‖

= 0. (2.24)

If vn/‖vn‖ ⇀ w, then this together with the positive homogeneity of β− and (2.23) with vn
replaced by vn/‖vn‖ and v replaced by w give

Ĝ−(vn)

‖vn‖
→ β−(w).

The Lipschitz continuity follows from

‖β−(u)− β−(v)‖ = sup
ϕ∈H,‖ϕ‖=1

〈β−(u)− β−(v), ϕ〉 =

∫
Ω

s−(x)(u− − v−)ϕ dx ≤

≤ ‖s−‖L∞‖u− − v−‖L2 ≤ ‖s−‖L∞‖u− v‖L2 ≤ ‖s−‖L∞κ−1
1 ‖u− v‖,

where in the last step we used the relation

min
v∈H,v 6=0

‖v‖
‖v‖L2

= min
v∈H,v 6=0

〈v, v〉
〈Av, v〉

= κ1,

see Lemma 1 on pg. 15 and Remark 31 on pg. 112 in Appendix.
Clearly

〈β−(v), v〉 =

∫
Ω

s−(x)
(
v−
)2

dx,

and (2.21) gives (2.22). The proof for β+, Ĝ+ is analogous.
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2.2. System with Dirichlet or mixed boundary conditions

Remark 4. Using the definitions of the operators A, N1, N2 and Ĝ−, Ĝ+ the system (1.15) can
be rewritten as

〈d1u− b11Au− b12Av −N1(u, v), ϕ〉 = 0,

〈d2v − b21Au− b22Av −N2(u, v) + Ĝ−(v) + Ĝ+(v), ϕ〉 = 0 for all ϕ ∈W 1,2
D (Ω),

which is equivalent to a system of operator equations

d1u− b11Au− b12Av −N1(u, v) = 0, (2.25)

d2v − b21Au− b22Av −N2(u, v) + Ĝ−(v) + Ĝ+(v) = 0.

For further purposes let us also consider the homogenized problem

d1u− b11Au− b12Av = 0, (2.26)

d2v − b21Au− b22Av + β−(v) + β+(v) = 0,

which is equivalent to the weak formulation of (1.16), (1.10).
To sum up, the couple (u, v) ∈ W 1,2

D (Ω) is a (weak) solution of (1.14), (1.10) if and only it is

a solution of (2.25). And the couple (u, v) ∈W 1,2
D (Ω) is a (weak) solution of (1.16), (1.10) if and

only if it is a solution of (2.26).

Potentiality of Ĝ±, N1, N2 This paragraph contains auxiliary results about operators having
potential. To prove them, it will be necessary to strengthen the assumptions on the functions
n1, n2. The following lemma will be essential for the proof of Lemma 5 and Theorem 1.

Lemma 4. Let n1 satisfy in addition to basic assumptions given in Section 2.1 also that

n1 ∈ C1(R× R,R) and

there exists C > 0 : |∂ξn1(χ, ξ)|+ |∂χn1(χ, ξ)| ≤ C(1 + |ξ|p−2 + |χ|p−2) for all ξ, χ ∈ R,
(2.27)

with some p from (2.5). Then the operator N1 defined in (2.15) satisfies N1 ∈ C1(W 1,2
D (Ω) ×

W 1,2
D (Ω),W 1,2

D (Ω)) and its Fréchet derivative is given by

〈N ′1(u, v)(h1, h2), ϕ〉 =

∫
Ω

n′1(u, v)(h1, h2) · ϕ dx =

∫
Ω

(∂un1(u, v)h1 + ∂vn1(u, v)h2)ϕ dx

for all u, v, ϕ, h1, h2 ∈W 1,2
D (Ω).

(2.28)

And analogously, if n2 satisfies the basic assumptions and

n2 ∈ C1(R× R,R) and

there exists C > 0 : |∂ξn2(χ, ξ)|+ |∂χn2(χ, ξ)| ≤ C(1 + |ξ|p−2 + |χ|p−2) for all ξ, χ ∈ R,
(2.29)

with some p from (2.5), then N2 from (2.16) satisfies N2 ∈ C1(W 1,2
D (Ω)×W 1,2

D (Ω),W 1,2
D (Ω)) and

its Fréchet derivative is given by

〈N ′2(u, v)(h1, h2), ϕ〉 =

∫
Ω

n′2(u, v)(h1, h2) · ϕ dx =

∫
Ω

(∂un2(u, v)h1 + ∂vn2(u, v)h2)ϕ dx

for all u, v, ϕ, h1, h2 ∈W 1,2
D (Ω).

Proof. Under the assumptions (2.4), (2.27), Nemyckii operators (u, v) → ∂un1(u, v), (u, v) →
∂vn1(u, v) map Lp(Ω) × Lp(Ω) into L

p
p−2 . Hence, using the embedding W 1,2

D (Ω) ↪→ Lp(Ω), for

any u, v, h1, h2 ∈W 1,2
D (Ω) we can define N ′1(u, v)(h1, h2) ∈W 1,2

D (Ω) by (2.28). We will show that
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2.2. System with Dirichlet or mixed boundary conditions

N ′1(u, v)(h1, h2) is a directional derivative of N1 at the point (u, v) and in the direction (h1, h2).
Let B1 ⊂W 1,2

D (Ω) be the unit ball centered at the origin. Using Hölder inequality we get

lim
t→0

∥∥∥∥N1((u, v) + t(h1, h2))−N1(u, v)

t
−N ′1(u, v)(h1, h2)

∥∥∥∥ =

= lim
t→0

sup
ϕ∈B1

∫
Ω

(
n1((u, v) + t(h1, h2))− n1(u, v)

t
− n′1(u, v)(h1, h2)

)
ϕ dx ≤

≤ C lim
t→0

(∫
Ω

∣∣∣∣n1((u, v) + t(h1, h2))− n1(u, v)

t
− n′1(u, v)(h1, h2)

∣∣∣∣p′ dx

) 1
p′

,

where p′ = p/(p − 1), p is from (2.4). We want to apply Dominated Convergence Theorem to
exchange limit and integral, hence, we have to find an integrable majorant. We use Mean Value
Theorem to get∣∣∣∣n1((u, v) + t(h1, h2))− n1(u, v)

t
− n′1(u, v)(h1, h2)

∣∣∣∣ = |(n′1((u, v) + tθ(h1, h2))− n′1(u, v))(h1, h2)|

for a.a. x ∈ Ω,

where θ(x) ∈ [0, 1] for a.a. x ∈ Ω. From now we will use one universal symbol C for various
constants. We use the triangle inequality and condition (2.27) to get the existence of C > 0 such
that

|n′1((u, v) + θt(h1,h2))(h1, h2)| ≤
∣∣∣∣∂n1

∂u
(u+ θth1, v + θth2)

∣∣∣∣ |h1|+
∣∣∣∣∂n1

∂v
(u+ θth1, v + θth2)

∣∣∣∣ |h2| ≤

≤ C
(
1 + |u+ θth1|p−2 + |v + θth1|p−2

)
(|h1|+ |h2|).

(2.30)

The Young inequality with (p− 1)/(p− 2) and (p− 1) implies

|u+ θth1|p−2|h1| ≤ C(|u|p−2|h1|+ (θt)p−2|h1|p−1) ≤ C(|u|p−1 + (1 + (θt)p−2)|h1|p−1).

Analogous estimates can be done for the other terms in (2.30). Using all these estimates together
with the embedding W 1,2

D (Ω) ↪→ Lp(Ω) we get for sufficiently small t that

|(n′1((u, v) + tθ(h1, h2))− n′1(u, v))(h1, h2)| ≤

≤C
(
|u|p−1 + |v|p−1 + |h1|p−1 + |h2|p−1

)
∈ Lp

′
for any u, v, h1, h2 ∈W 1,2

D (Ω).

Summarizing, we obtain∣∣∣∣n1((u, v) + t(h1, h2))− n1(u, v)

t
− n′1(u, v)(h1, h2)

∣∣∣∣p′ ≤
≤ C

(
|u|p−1 + |v|p−1 + |h1|p−1 + |h2|p−1

)p′ ∈ L1,

and Dominated Convergence Theorem gives

lim
t→0

∥∥∥∥N1((u, v) + t(h1, h2))−N1(u, v)

t
−N ′1(u, v)(h1, h2)

∥∥∥∥ = 0.

Hence, N ′1(u, v)(h1, h2) is a directional derivative of N1(u, v) in an arbitrary direction (h1, h2).
Let (u, v) ∈ W 1,2

D (Ω) × W 1,2
D (Ω) be arbitrary fixed. It is clear that the operator N ′1(u, v) :

(h1, h2) 7→ N ′1(u, v)(h1, h2) from (2.28) is linear. Using the generalized Hölder inequality and
(2.27) we get

‖N ′1(u, v)(h1, h2)‖ = sup
ϕ∈B1

∫
Ω

n′1(u, v)(h1, h2)ϕ dx ≤

≤ C(1 + ‖u‖Lp + ‖v‖Lp)(‖h1‖Lp + ‖h2‖Lp) ≤ C(‖h1‖+ ‖h2‖).
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2.2. System with Dirichlet or mixed boundary conditions

Hence, the linear operator N ′1(u, v) is bounded and therefore it is a Gâteaux derivative.
Let (u0, v0) ∈W 1,2

D (Ω)×W 1,2
D (Ω) be arbitrary. Then

lim
(u,v)→(u0,v0)

‖N ′1(u, v)−N ′1(u0, v0)‖L (W 1,2
D (Ω)×W 1,2

D (Ω),W 1,2
D (Ω)×W 1,2

D (Ω)) =

= lim
(u,v)→(u0,v0)

sup
ϕ∈B1

sup
(h1,h2)∈B1×B1

∫
Ω

(n′1(u, v)− n′1(u0, v0)) (h1, h2) · ϕ dx.

The growth conditions (2.27) and the generalized Hölder inequality lead to∫
Ω

(n′1(u, v)− n′1(u0, v0)) (h1, h2) · ϕ ≤

≤
∥∥∥∥∂n1

∂u
(u, v)− ∂n1

∂u
(u0, v0)

∥∥∥∥
L

p
p−2

‖h1‖Lp‖ϕ‖Lp +

∥∥∥∥∂n1

∂v
(u, v)− ∂n1

∂v
(u0, v0)

∥∥∥∥
L

p
p−2

‖h2‖Lp‖ϕ‖Lp .

Nemyckii operators (u, v) → ∂un1(u, v), (u, v) → ∂vn1(u, v) are under the conditions (2.27) con-

tinuous from Lp(Ω)× Lp(Ω) into L
p

p−2 (Ω). Hence,

lim
(u,v)→(u0,v0)

∥∥∥∥∂n1

∂u
(u, v)− ∂n1

∂u
(u0, v0)

∥∥∥∥
L

p
p−2

= 0, lim
(u,v)→(u0,v0)

∥∥∥∥∂n1

∂v
(u, v)− ∂n1

∂v
(u0, v0)

∥∥∥∥
L

p
p−2

= 0,

and

lim
(u,v)→(u0,v0)

‖N ′1(u, v)−N ′1(u0, v0)‖L (W 1,2
D (Ω)×W 1,2

D (Ω),W 1,2
D (Ω)×W 1,2

D (Ω)) = 0,

i.e. the map (u, v)→ N ′(u, v) from W 1,2
D (Ω)×W 1,2

D (Ω) into L (W 1,2
D (Ω)×W 1,2

D (Ω)) is continuous
and therefore it is a Fréchet derivative, see e.g. Proposition 3.2.15 in [9]. The proof for N2 is
analogous.

Remark 5. The proof of the Lemma 4 has been inspired by [9], Exercise 3.2.41.

Remark 6. We note that for m = 2 there is p < ∞ and for m = 3 there is p < 6 in (2.27),
(2.29).

In Chapter 3.2.2 we will prove one bifurcation theorem for skew-symmetric problems with
potentials. For this reason will be useful to have some result about potentiality of the operators
Ĝ±, N1, N2.

Lemma 5. The operators Ĝ± have potentials ΦĜ± : W 1,2
D (Ω)→ R in a form

ΦĜ+
(v) : =

∫
Ω

∫ v(x)

0

ĝ+(x, ξ+)dξ dx,

ΦĜ−(v) : = −
∫

Ω

∫ v(x)

0

ĝ−(x, ξ−)dξ dx.

In particular, the operators β± have potentials. If in addition to the basic assumptions from Section
2.1 also (2.27), (2.29) and

∂χn1(ξ, χ) = −∂ξn2(ξ, χ), for all ξ, χ ∈ R, (2.31)

are true, the operator N := (−N1, N2) has a potential ΦN : W 1,2
D (Ω)×W 1,2

D (Ω)→ R in a form

ΦN(u, v) =

∫ 1

0

(∫
Ω

−n1(tu(x), tv(x))u(x) + n2(tu(x), tv(x))v(x) dx

)
dt. (2.32)
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2.2. System with Dirichlet or mixed boundary conditions

Proof. Since Ω is a bounded domain and ĝ± satisfy the growth condition (2.7), the first assertion
follows directly from [61], Proposition 41.10.

The assumptions (2.4) and (2.27), (2.29) guarantee that

N1, N2 ∈ C1(W 1,2
D (Ω)×W 1,2

D (Ω),W 1,2
D (Ω)),

see Lemma 4. According to Corollary 3.2.20 from [9] the operator N = (−N1, N2) has the Fréchet
derivative. The assumption (2.31) gives

〈N′(u, v)w,z〉W 1,2
D (Ω)×W 1,2

D (Ω) = 〈w,N′(u, v)z〉W 1,2
D (Ω)×W 1,2

D (Ω)

for all u, v ∈W 1,2
D (Ω),w, z ∈W 1,2

D (Ω)×W 1,2
D (Ω),

where prime denotes as usual Fréchet derivative and therefore N has the potential

ΦN(w) =

∫ 1

0

〈N(tw),w〉W 1,2
D (Ω)×W 1,2

D (Ω)dt for all w ∈W 1,2
D (Ω)×W 1,2

D (Ω),

see Proposition 41.5 in [61].

Remark 7. A potential to (−N1, N2) can be written in more practical form

ΦN(u, v) =

∫
Ω

∫ u(x)

0

−n1(ξ, v(x))dξ dx +

∫
Ω

∫ v(x)

0

n2(0, ξ)dξ dx, (2.33)

cf. with ΦĜ± . We will not prove it here rigorously, but a formal differentiation of (2.33) gives

Φ′N(u, v)(h1, h2) =

∫
Ω

−n1(u(x), v(x))h1(x) dx−
∫

Ω

∫ u(x)

0

∂vn1(ξ, v(x))h2(x) dξ

+

∫
Ω

n2(0, v(x))h2(x) dx =

=

∫
Ω

−n1(u(x), v(x))h1(x) dx +

∫
Ω

∫ u(x)

0

∂un2(ξ, v(x))h2(x)dξ dx

+

∫
Ω

n2(0, v(x))h2(x) dx =

=

∫
Ω

−n1(u(x), v(x))h1(x) dx +

∫
Ω

n2(u(x), v(x))h2(x) dξ dx−
∫

Ω

n2(0, v(x))h2(x) dx

+

∫
Ω

n2(0, v(x))h2(x) dx =

=

∫
Ω

(−n1(u(x), v(x)), n2(u(x), v(x))) · (h1(x), h2(x)) dx = 〈N(u, v), (h1, h2)〉W 1,2
D (Ω)×W 1,2

D (Ω)

for all u, v, h1, h2 ∈W 1,2
D (Ω), which suggest that (2.33) is indeed the potential to (−N1, N2). The

rigorous proof is quite long, as well as finding a transformation between (2.32) and (2.33) and
therefore we will not do it here.

Nice examples are unilateral terms with a saturation

ĝ+(x, v+) = s+(x)
v+

1 + (v+)2
, ĝ−(x, v−) = s−(x)

v−

1 + (v−)2
,

where the respective Ĝ± are having the potentials

ΦĜ+
(v) =

1

2

∫
Ω

s+(x)
(
ln(1 + (v+)2)

)
dx.

ΦĜ−(v) = −1

2

∫
Ω

s−(x)
(
ln(1 + (v−)2)

)
dx.

21



2.2. System with Dirichlet or mixed boundary conditions

The potentials for β+, β− are

Φβ+(v) :=
1

2

∫
Ω

s+(v+)2 dx, Φβ−(v) :=
1

2

∫
Ω

s−(v−)2 dx.

In general, let f : Ω × R → R be a function satisfying Carathéodory conditions and the growth
conditions (2.4) with ĝ± replaced by f . The potential

Φf (v) := ‖v‖2
∫

Ω

f

(
x,

v2

‖v‖2

)
dx

generates a positively homogeneous operator. For the operators β± the generating function is
f(x, ξ) := s±(x)(ξ−).

2.2.2 Reduction of the Dirichlet/mixed problem to one equation

From now we will always consider that d1 > 0 is arbitrary fixed. The aim of this section
is to reduce the system (2.25) to one operator equation and then show its basic properties.

Let us remind here that κk denotes the eigenvalue of the Laplacian with the Dirichlet or mixed
b.c., and ek the corresponding eigenvector. For further purposes let us define yk := b11/κk, for
any k ∈ N.

2.2.2.1 Linear reaction-diffusion system

Let ĝ+, ĝ−, n1, n2 ≡ 0, then
Ĝ−, Ĝ+, N1, N2 ≡ 0,

and (2.25) has the form

d1u− b11Au− b12Av = 0,

d2v − b21Au− b22Av = 0.
(2.34)

This is equivalent to the weak formulation of the problem (1.12), (1.10). The first equation of
(2.34) can be rewritten as

(d1I − b11A)u = b12Av.

Under the assumption d1 6= yj for all j ∈ N, the operator (d1I − b11A) is invertible, as follows
from Fredholm Alternative. Therefore it is possible to multiply this equation by (d1I − b11A)−1

and insert u into the second equation of (2.34) to obtain the system

u = b12(d1I − b11A)−1Av,

d2v − b12b21A(d1I − b11A)−1Av − b22Av = 0.
(2.35)

An operator S : W 1,2
D (Ω)→W 1,2

D (Ω) will be defined for any fixed d1 > 0, d1 6= yj for all j ∈ N by

S := b12b21A(d1I − b11A)−1A+ b22A, (2.36)

and the second equation in (2.35) has the form

d2v = Sv. (2.37)

Since (2.35) is equivalent to the weak formulation of (1.12), (1.10) it is possible to make conclusions
summarized in the following remark.

Remark 8. Let d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
be fixed. A point d2 ∈ R is a critical point of

(1.12), (1.10) with fixed d1 (and simultaneously of (2.34) with fixed d1) if it is an eigenvalue of
the operator S.

A pair (b12(d1I−b11A)−1v0, v0) is a solution of (1.12), (1.10) with fixed d1 (and simultaneously
of (2.34) with fixed d1) if d2 is an eigenvalue of the operator S with the corresponding eigenvector
v0.
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2.2. System with Dirichlet or mixed boundary conditions

Lemma 6. The operator S is linear, compact and symmteric.

Proof. The operator S is linear because it is a composition of linear operators. The operators A
and (d1I − b11A) commute and are symmetric which means that S is symmetric. The operator A
is compact and (d1I − b11A) is continuous, therefore the operator S is compact.

Due to the compactness, the spectrum of S is discrete, countable and with the only accumulation
point at zero. Let ek be an eigenvector of A. Then

Sek = b12b21A(d1I − b11A)−1Aek + b22Aek =
b12b21

κ2
k

(
d1 − b11

1

κk

) ek +
b22

κk
ek =

=
1

κk

(
b12b21

d1κk − b11
+ b22

)
ek = λSk ek,

(2.38)

it means ek is an eigenvector of S with the corresponding eigenvalue λSk . Since ek is an orthonormal

base in W 1,2
D (Ω), all eigenvalues λSk of S can be expressed in a form

λSk =
1

κk

(
b12b21

d1κk − b11
+ b22

)
, k = 1, 2, 3, · · · , (2.39)

and if ek is an eigenfunction of the Laplacian respective to the eigenvalue κk then ek is an eigen-
function of S respective to λSk . The largest eigenvalue of S will be denoted by λSmax. Since every
eigenvalue of the operator S is simultaneously a critical point of the problem (1.12), (1.10) with
fixed d1, see Remark 8, we will introduce a notation

d0
2,k :=

1

κk

(
b12b21

d1κk − b11
+ b22

)
, k = 1, 2, 3, · · · , (2.40)

for these critical points. The largest critical point of this problem will be denoted by d0
2,max and

is equal to λSmax. Let us note that in systems with Neumann b.c., d0
2,k and λSk are different in

general, see (2.60) and (2.61) on pg. 30.
The operator S is in general not positive and can be even negative for some values of d1, as

will be proved in following two lemmas.

Lemma 7. The operator S is negative for any d1 > y1.

Proof. Since d1κk > d1κ1 > b11 for any k ∈ N, k ≥ 2, see (2.12), the expression d1κk − b11 is
positive, and because b12b21 < 0 and b22 < 0, see (2.1), (2.2), it is true that(

b12b21

d1κk − b11
+ b22

)
=
−det B + κkb22d1

d1κk − b11
< 0 for all k ∈ N,

i.e. all eigenvalues of the operator S are negative and therefore S is negative operator.

The situation for d1 ∈ (0, y1) is more complicated.

Lemma 8. Let yj 6= yj+1 and let d1 ∈ (yj+1, yj) for given j ∈ N. Then λSk > 0 for any k ≤ j and
λSk < 0 for any k > j.

Proof. First we rewrite

λSkκk =

(
b12b21

d1κk − b11
+ b22

)
=
b22d1κk − detB

d1κk − b11
. (2.41)

Due to (2.2) there is b22d1κk − detB < 0 for all d1 > 0. Since d1 ∈ (yj+1, yj) we get by using
(2.12) that d1κk − b11 < 0 for any k ≤ j and d1κk − b11 > 0 for any k > j. The assertion now
follows from (2.41).
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2.2. System with Dirichlet or mixed boundary conditions

Remark 9. Especially for d1 ∈ (y1, y2) the operator S has only one positive eigenvalue λS1 .
The eigenvalue is simple, because κ1 is simple, and the corresponding eigenfunction is e1. The
eigenfunction has the constant sign in Ω.

Let us also note that the eigenvalues λSj are not monotone w.r.t. index j.
We will be interested in diffusion constants which are positive therefore the case d1 > y1 will

not be of our interest in the Dirichlet case. However, the case d1 > y1 will be relevant for systems
with Neumann boundary conditions.

If d1 ∈ (0, y1)\{yj | j ≥ 2}, then λSmax is positive, see Lemma 8, and it is possible to express it
through Rayleigh quotient by

λSmax = max
v∈W 1,2

D (Ω),v 6=0

〈Sv, v〉
‖v‖2

= max
v∈W 1,2

D (Ω),‖v‖=1
〈Sv, v〉 > 0. (2.42)

The other positive eigenvalues can be obtained recursively using Rayleigh quotient over comple-
ments of eigenspaces, see (7.19) in Appendix.

2.2.2.2 System with nonlinear operators N1(u, v), N2(u, v), Ĝ±(v)

This section concerns with the reduction of the system (2.25) with nontrivial nonlinear operators.
We will prove that there is a neighborhood of the point 0 ∈ W 1,2

D (Ω) ×W 1,2
D (Ω) in which it is

possible to express the variable u as a function of the variable v. In contrast to linear system,
the reduction is in general not true in the whole W 1,2

D (Ω) ×W 1,2
D (Ω). The main tools here will

be Implicit Function Theorem and Mean Value Theorem. Also the existence of potential for the
reduced problem will be discussed.

Theorem 1. Let d1 > 0 be fixed such that d1 6= yj for all j ∈ N, let n1 ∈ C1(R×R) and (2.27) be

true. Then there exists a neighborhood U×V ⊂W 1,2
D (Ω)×W 1,2

D (Ω) of zero such that (u, v) ∈ U×V
satisfy (2.25) if and only if

v ∈ V : d2v − Sv −N(v) + β+(v) + β−(v) = 0,

u = F (v),
(2.43)

where F : V → U is a C1−continuous map, S := b12b21A(d1I − b11A)−1A + b22A is a linear,
compact and symmetric operator and N : V → H is a compact and continuous nonlinear operator
satisfying

lim
v→0

N(v)

‖v‖
= 0. (2.44)

Proof. We will show that assumption of Implicit Function Theorem, see pg. 107 in Appendix, are
fulfilled for a map

T1(u, v) := d1u− b11Au− b12Av −N1(u, v). (2.45)

As N1(0, 0) = 0 it apparently holds T1(0, 0) = 0. The operator N1 is continuously differentiable due
to (2.27) and Lemma 4, and the operator A is linear, hence, T1 ∈ C1(W 1,2

D (Ω)×W 1,2
D (Ω),W 1,2

D (Ω)).
BecauseN ′1(0, 0) = 0 and because of the assumption d1 6= b11/κj for all j ∈ N, the partial derivative

∂uT1(0, 0) = d1I − b11A− (∂uN1)(0, 0) = d1I − b11A

is an isomorphism of the space W 1,2
D (Ω). According to Implicit Function Theorem neighborhoods

U, V of 0 in W 1,2
D (Ω) and a map F : V → U exist, so that

T1(F (v), v) = 0 for all v ∈ V
T1(u, v) = 0 if and only if u = F (v) for all (u, v) ∈ U × V.
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2.2. System with Dirichlet or mixed boundary conditions

Moreover, F (0) = 0 and F ∈ C1(V ). In particular, F (v) ≤ C‖v‖ for all v ∈ V and for some
constant C. We calculate the partial derivative

∂vT1(0, 0) = −b12A− (∂vN1)(0, 0) = −b12A,

and the derivative of F at zero can be found as

F ′(0) = b12A (d1I − b11A)
−1
,

see again Implicit Function Theorem an in particular (7.8). By using the relation u = F (v) the
second equation in (2.25) can be rewritten as

d2v − Sv −N(v) + β−(v) + β+(v) = 0,

with

S := b21AF
′(0) + b22A = b12b21A (d1I − b11A)

−1
A+ b22A,

N(v) := b21A(F (v)− F ′(0)v) +N2(F (v), v)− Ĝ+(v) + β+(v)− Ĝ−(v) + β−(v), for all v ∈ V.
(2.46)

The assertions concerning S were proven in Lemma 6 and therefore it remains to prove that N
is compact and satisfies (2.44). The operators A,N1, N2, Ĝ±, β

± are continuous and compact,
therefore N is compact. It remains to prove (2.44).

Mean Value Theorem, see pg. 108 in Appendix, gives

‖F (v)− F ′(0)v‖ ≤ sup
t∈[0,1]

‖F ′((1− t)v)(v)− F ′(0)(v)‖.

The r.h.s satisfies

lim
v→0

supt∈[0,1] ‖F ′(tv)(v)− F ′(0)(v)‖
‖v‖

=

= lim
v→0

sup
t∈[0,1]

∥∥∥∥F ′(tv)

(
v

‖v‖

)
− F ′(0)

(
v

‖v‖

)∥∥∥∥ .
Suppose that

lim
v→0

sup
t∈[0,1]

∥∥∥∥F ′(tv)

(
v

‖v‖

)
− F ′(0)

(
v

‖v‖

)∥∥∥∥ 6= 0.

Then there exist ε > 0 and sequences tn ∈ [0, 1] and vn ∈W 1,2
D (Ω) such that vn → 0 and

for all n ∈ N : sup
t∈[0,1]

∥∥∥∥F ′(tv)

(
vn
‖vn‖

)
− F ′(0)

(
vn
‖vn‖

)∥∥∥∥ > ε.

However, using the continuity of F ′ gives

lim
t→0

∥∥∥∥F ′(tvn)

(
vn
‖vn‖

)
− F ′(0)

(
vn
‖vn‖

)∥∥∥∥ = 0,

which is a contradiction and therefore

lim
v→0

supt∈[0,1] ‖F ′(tv)(v)− F ′(0)(v)‖
‖v‖

= 0. (2.47)

The formula (2.17) implies

lim
v→0

N2(F (v), v)

‖v‖
= lim
v→0

N2(F (v), v)

‖F (v)‖+ ‖v‖
‖F (v)‖+ ‖v‖

‖v‖
= 0. (2.48)

By using (2.24) which holds for any vn → 0, its analogue for Ĝ+, β
+, (2.47) and (2.48) we get

(2.44).
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2.2. System with Dirichlet or mixed boundary conditions

It is clear from the previous theorem that we will be mostly concerned with the single equation

v ∈ V : d2v − Sv −N(v) + β−(v) + β+(v) = 0. (2.49)

A necessary part of this problem will be also an analysis of the equation

d2v − Sv + β−(v) + β+(v) = 0, (2.50)

as will be suggested by the following remark. Let us point out here Definition 15 of critical point
and Definition 16 of bifurcation point in Appendix.

Remark 10. Let d1 > 0, d1 6= yj for all j ∈ N. In Chapter 3 we will prove one Lemma which
applied to the problems (2.49) and (2.50) will give the following conclusion:
Any bifurcation point of (2.49) is simultaneously a critical point of the problem (2.50).

Since the equation (2.50) is a generalization of eigenvalue problem, it is usual to call the critical
points of problems of a type (2.50) as eigenvalues. In Section 3 we will be using this concept, see
Definition 3.6 and Remark 2.

Corollary 1 (Corollary of Theorem 1 and Remarks 4, 10). Let d1 ∈ (0, y1) be fixed.
A number d2 > 0 is a critical point of (1.16), (1.10) with fixed d1 if d2 is a critical point of the

problem (2.50). A number d2 > 0 is a bifurcation point of the system (1.14), (1.10) with fixed d1

if and only if d2 is a bifurcation point of the equation (2.49).
In particular, d2 > 0 is a critical point of (1.12), (1.10) with fixed d1 if d2 is an eigenvalue of

the operator S. And d2 > 0 is a bifurcation point of the system (1.9), (1.10) with fixed d1, if and
only if d2 is a bifurcation point of (2.49) with β± ≡ 0 and N = b21A(F (v)− F ′(0)) +N2(F (v), v)
(see (2.46)), respectively.

And finally, any bifurcation point of (1.14), (1.10) with fixed d1 is simultaneously a critical
point of (1.16), (1.10) with fixed d1.

A special class of the reaction-diffusion systems are the so-called skew symmetric systems.
These systems have a potential, and we will prove now that consequently also the operator N in
(2.49) has the potential. It will be crucial for the proof of Theorems 12, 17 in Section 4.

Lemma 9. Let V be the set from Theorem 1, let b12 = −b21. If (2.27), (2.29), (2.31) are true,
the operator N from Theorem 1 has on the set V a potential.

Proof. The proof has been inspired by [26] and is based on Lyapunov-Schmidt reduction.
According to Theorem 1 the system (2.25) can on V reduced to the problem (2.43). The

operator N̂ := (−N1, N2) has the potential ΦN̂ , according to Lemma 5. Let us define a map

Φ(u, v) :=
1

2
(d1‖u‖2 − b11〈Au, u〉 − b12〈Av, u〉) + ΦN̂ (u, v)+

+
1

2
(b21〈Au, v〉+ b22〈Av, v〉)− ΦĜ−(v)− ΦĜ+

(v), for all u, v ∈W 1,2
D (Ω),

where ΦĜ± are from Lemma 5. To simplify calculations, let us define two operators T1, T2 :

W 1,2
D (Ω)×W 1,2

D (Ω)→W 1,2
D (Ω) by

T1(u, v) := d1u− b11Au− b12Av −N1(u, v),

T2(u, v) := b21Au+ b22Av +N2(u, v)− Ĝ−(v)− Ĝ+(v).

It is possible to verify by direct calculation with using b21 = −b12 that ∂uΦ = T1, ∂vΦ = T2.
Moreover, Theorem 1 gives T1(F (v), v) = 0 for all v ∈ V .

Let S,N be from Theorem 1. The goal will be to show that a functional ΦS+N−β+−β− : V → R
defined by

ΦS+N−β+−β−(v) = Φ(F (v), v) for all u, v ∈ V,
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2.3. Systems with Neumann boundary conditions

is a potential of the operator S + N − β+ − β−. The potential to N then will be equal to
ΦS+N−β+−β−−ΦS−Φβ+−Φβ− , where ΦS ,Φβ+ ,Φβ− are the potentials to S, β+, β−, respectively.

Lemma 5 gives Φ ∈ C1(W 1,2
D (Ω)×W 1,2

D (Ω),R). The derivative of ΦS+N−β+−β− is

Φ′S+N−β+−β−(v) =

(
∂

∂F (v)
Φ(F (v), v)

)
F ′(v) +

∂

∂v
Φ(F (v), v) =

= T1(F (v), v)F ′(v) + T2(F (v), v) = (Sv +N(v)− β+(v)− β−(v))

for all v ∈ V,

where we used the definitions of S, N from (2.46). Hence, ΦS+N−β+−β− is the potential to
S +N − β+ − β− and consequently N has the potential.

Remark 11. The violation of the assumption (2.31) does not necessarily mean that the system
(2.25) and consequently the operator N does not have potential. Let us demonstrate it on a
particular example. Let us consider a system

d1∆u+ u− 2v + 4vu2 = 0

d2∆v +
1

2
u−

3

8
v −

1

3
u3 + ĝ−(x, v−)− ĝ+(x, v+) = 0.

in Ω× [0,∞),

This system is neither skew-symmetric, nor satisfying the assumptions (2.2). However, if we
multiply the first equation by b21 = 1/2 and the second equation by −b12 = 2, we get the formulation

d1

2
∆u+

1

2
u− v + 2vu2 = 0

2d2∆v + u−
3

4
v −

2

3
u3 + 2ĝ−(x, v−)− 2ĝ+(x, v+) = 0

in Ω× [0,∞),

which is skew-symmetric and satisfy (2.1), (2.2).

Remark 12. As examples of skew-symmetric systems can serve the Fitz-Hugh Nagumo model,
having the form

ut = d1∆u+ f(u)− v
vt = d2∆v + ε(u− γv) + ĝ−(x, v−)− ĝ+(x, v+)

in Ω× [0,∞), (2.51)

where ε > 0, f ′(0) > 0 and γ ≥ 0, and regularized Gierer-Meinhardt model

ut = d1∆u+ u+
up

q(ε+ v)q
+ σ

vt = d2∆v − v +
up+1

(p+ 1)(ε+ v)q+1
− ĝ−(x, v−)− ĝ+(x, v+)

in Ω× [0,∞), (2.52)

where p > 1, ε > 0, q > 0, σ ≥ 0 and u, v denote the absolute values of concentrations, cf. also
[59].

2.3 Systems with Neumann boundary conditions

2.3.1 Weak and operator formulation of the problem

The rewriting of the reaction diffusion system (1.14) with Neumann boundary conditions as op-
erator equations is similar to the Dirichlet/mixed case. However, boundary conditions have a
significant impact on the behavior of the problem, as will be seen later.
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2.3. Systems with Neumann boundary conditions

Suppose now
µm−1(ΓD) = 0.

The space W 1,2
D (Ω) = W 1,2(Ω) is equipped with the scalar product and norm

〈v, ϕ〉 =

∫
Ω

∇v · ∇ϕ+ vϕ dx,

‖v‖1,2 =

(∫
Ω

|∇v|2 + v2 dx

) 1
2

for all v, ϕ ∈W 1,2(Ω).

(2.53)

See also the definitions (7.3), (7.1). We will not use the symbol W 1,2
D (Ω) for W 1,2(Ω) here, in

order to better distinguish Neumann and Dirichlet/mixed case.

Notation 2. The eigenvalues of the Laplacian with Neumann b.c. will be denoted by κk, and will
be ordered as

0 = κ0 < κ1 ≤ κ2 ≤ · · · → ∞,

see also Remark 28 and formula (7.6) in Appendix.
An orthonormal base {ek}k∈N0

is chosen in a way that for any k ∈ N0, ek is an eigenfunction
corresponding to κk. The eigenvalue κ0 = 0 is simple and an eigenfunction e0 is constant in Ω.
We will fix it to be positive with ‖e0‖ = 1. Since e0 is orthogonal to all ek, k ∈ N, there is no
other eigenfunction having constant sign in Ω.

Lemma 10. The operator A : W 1,2
D (Ω)→W 1,2

D (Ω) defined by

〈Av, ϕ〉 =

∫
Ω

vϕ dx, for all v, ϕ ∈W 1,2
D (Ω),

is a symmetric linear compact operator. Moreover

σ(A) =

{
1

1 + κk

∣∣∣∣ k ∈ N0

}
∪ {0}, (2.54)

and v is an eigenfunction of the Laplacian corresponding to the eigenvalue κk if and only if v is
an eigenfunction of A corresponding to the eigenvalue (1 + κk)−1. The largest eigenvalue of the
operator A is equal to one, it is simple and a corresponding eigenfunction does not change sign in
Ω. Furthermore, {(1 +κk)−1}k∈N0 is a decreasing sequence with limk→∞ κ−1

k = 0 (see (2.12)) and
zero is the only accumulation point of σ(A).

Proof. The assertions are either analogous to the ones in Lemma 1 or follows directly from (2.54)
and Notation 2 and therefore the proof will be skipped.

It is necessary to emphasize that zero is an eigenvalue of Laplacian with Neumann boundary
condition, which means 1 ∈ σ(A). The respective eigenfunction for the eigenvalue one is any
nonzero function constant on Ω.

Observation 1. From (2.54) and Notation 2 follows immediately that σ(A) ⊂ [0, 1] and since A
is symmetric and compact, it satisfies

〈(I −A)v, v〉 ∈ [0, 1) for all v ∈W 1,2(Ω), ‖v‖ = 1.

Because (I −A) is symmetric and positive definite, 〈(I −A)v, v〉 = 0 if and only if v ∈ Span{e0}.
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2.3. Systems with Neumann boundary conditions

Using the conditions (2.4), (2.7) the operators N1, N2 : (W 1,2(Ω))2 → W 1,2(Ω) and Ĝ+, Ĝ−,
β−, β+ : W 1,2(Ω)→W 1,2(Ω) can be defined by the relations

〈N1(u, v), ϕ〉 =

∫
Ω

n1(u, v)ϕ dx for all u, v, ϕ ∈W 1,2(Ω),

〈N2(u, v), ϕ〉 =

∫
Ω

n2(u, v)ϕ dx for all u, v, ϕ ∈W 1,2(Ω),

〈Ĝ−(v), ϕ〉 = −
∫

Ω

ĝ−(x, v−)ϕ dx for all v, ϕ ∈W 1,2(Ω),

〈Ĝ+(v), ϕ〉 =

∫
Ω

ĝ+(x, v+)ϕ dx for all v, ϕ ∈W 1,2(Ω),

〈β−(v), ϕ〉 = −
∫

Ω

s−(x)v−ϕ dx for all v, ϕ ∈W 1,2(Ω),

〈β+(v), ϕ〉 =

∫
Ω

s+(x)v+ϕ dx for all v, ϕ ∈W 1,2(Ω).

(2.55)

The formulas defining the operators have the same form as for the system with Dirichlet/mixed
b.c., however, the operators are defined here on the whole W 1,2(Ω). It is possible to prove an
analogue of Lemmas 2, 3.

Remark 13. The weak formulation (1.15) of (1.14) with Neumann b.c. is equivalent to operator
equations

d1(I −A)u− b11Au− b12Av −N1(u, v) = 0, (2.56)

d2(I −A)v − b21Au− b22Av −N2(u, v) + Ĝ−(v) + Ĝ+(v) = 0.

The weak formulation of (1.16) with Neumann b.c. is equivalent to

d1(I −A)u− b11Au− b12Av = 0, (2.57)

d2(I −A)v − b21Au− b22Av + β−(v) + β+(v) = 0.

The main difference against Dirichlet/mixed problem is the presence of the non-invertible
operator I − A next to d1, d2. This will cause complications in the application of variational
methods.

2.3.2 Reduction of the Neumann problem to one equation

The main ideas of the reduction of the system (2.56) to one equation is similar to the problem
with Dirichlet boundary conditions discussed in Section 2.2.2 and for this reason the reduction will
be not discussed in detail. Let us remind that κk will denote an eigenvalue of the Laplacian with
(homogeneous) Neumann b.c., ek will be the corresponding eigenfunction. For further purposes
we will again introduce a notation yk := b11/κk for all k ∈ N.

2.3.2.1 Linear reaction-diffusion system with Neumann b.c.

Let d1 > 0 be fixed. The first studied problem will be a simple linear equation

d1(I −A)u− b11Au− b12Av = 0,

d2(I −A)v − b21Au− b22Av = 0.
(2.58)

This is equivalent the problem (1.12) with (homogeneous) Neumann b.c. Under the assumption
d1 6= yk := b11/κk for all k ∈ N, the operator d1(I − A) − b11A is invertible due to Fredholm
Alternative, and it is possible to rewrite (2.58) as

u = b12(d1I − (d1 + b11)A)−1Av,

d2(I −A)v − b21b12A(d1I − (d1 + b11)A)−1Av + b22Av = 0.
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2.3. Systems with Neumann boundary conditions

We define an operator S : W 1,2(Ω)→W 1,2(Ω) by

S := b12b21A(d1I − (d1 + b11)A)−1A+ b22A,

and the second equation then has a form

d2(I −A)v − Sv = 0. (2.59)

The eigenvalues of the operator S can be calculated as

λSk =
1

1 + κk

(
b12b21

d1κk − b11
+ b22

)
for k ∈ N0. (2.60)

The zeroth eigenvalue is λS0 = −b12b21/b11 + b22 = detB/b11 > 0. However, d2(I − A)e0 = 0 and
therefore the function e0 is not a solution of (2.59). On the other hand, for any k ∈ N the function
ek is a solution of (2.59) respective to the critical point

d0
2,k :=

1

κk

(
b12b21

d1κk − b11
+ b22

)
. (2.61)

This is formally the same formula as (2.39). The largest critical point will be again denoted as
d0

2,max.
It is possible to characterize d0

2,k by using a variational formula. However, mindless modification

of the Dirichlet case will fail here, because 〈Se0, e0〉 = λS0 > 0, 〈(I−A)e0, e0〉 = 0 and consequently

sup
v∈H,‖v‖=1

〈Sv, v〉
〈(I −A)v, v〉

=∞,

see also Remark 31 at the end of Appendix. It is necessary to get rid of the constant function. For
d1 ∈ (0, y1)\

{
yj
∣∣ j = 2, 3, · · ·

}
the largest eigenvalue of (2.59) is characterized by the following

formula:

d0
2,max = max

v∈{e0}⊥
〈Sv, v〉

〈(I −A)v, v〉
,

the orthogonal complement is w.r.t. W 1,2(Ω). The value d0
2,max is now finite and positive. The

other positive critical points can be again found through iterative formula, see (7.20) in Appendix.
It is easy to modify Lemmas 7, 8 to this particular situation.

Lemma 11. Let d1 > y1. Then all critical points of (2.59) are negative.

Lemma 12. Let yj := b11/κj and let d1 ∈ (yj+1, yj), j ∈ N. Then d0
2,k > 0 for any k ≤ j and

d0
2,k < 0 for any k > j.

2.3.2.2 Nonlinear reaction-diffusion system with Neumann b.c.

An analogue of Theorem 1 for the case of Neumann boundary conditions can be proved.

Theorem 2. Let d1 be fixed such that d1 6= yj for all j ∈ N. Then it exists a neighborhood

U × V ⊂ W 1,2
D (Ω) ×W 1,2

D (Ω) of zero such that the system (2.57) is on U × V equivalent to the
problem

v ∈ V : d2(I −A)v − Sv −N(v) + β+(v) + β−(v) = 0,

u = F (v),
(2.62)

where F : V → U is C1−continuous map, S := b12b21A(d1(I −A)− b11A)−1A+ b22A is a linear,
compact and symmetric operator and N : W 1,2

D (Ω) → W 1,2
D (Ω) is a compact and continuous

nonlinear operator satisfying

lim
v→0

N(v)

‖v‖
= 0. (2.63)
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2.4. Systems with unilateral terms on the boundary

Proof. Define the operator T1 : W 1,2(Ω)×W 1,2(Ω)→W 1,2(Ω) by

T1(u, v) := d1(I −A)u− b11Au− b12Av −N1(u, v).

The assumption d1 6= yj for all j ∈ N excludes that d1 is an eigenvalue of the operator

∂uT1(0, 0) = d1(I −A)− b11A,

and according to Fredholm Alternative the operator ∂uT1(0, 0) is invertible. The rest of the proof
is an analogue of the proof of Theorem 1.

Similarly to Dirichlet case, our main interest will be the equation

d2(I −A)v − Sv −N(v) + β+(v) + β−(v) = 0. (2.64)

It will be necessary to also analyze the homogenized problem

d2(I −A)v − Sv + β+(v) + β−(v) = 0. (2.65)

as the following remark explains.

Remark 14. Let d1 > 0, d1 6= yj for all j ∈ N. In Chapter 3 we will prove one lemma which
applied to the problems (2.64) and (2.65) will give a following conclusion:
Any bifurcation point of (2.64) is simultaneously a critical point of the problem (2.65).

The analogous version of Corollary 1 applies here as well.

Corollary 2 (Corollary of Theorem 2 and Remark 13). Let d1 > 0 be fixed and d1 6= yj for all
j ∈ N.

A number d2 > 0 is a critical point of (1.16) with Neumann b.c. and with fixed d1 if and only
if d2 is a critical point of the problem (2.65). A number d2 > 0 is a bifurcation point of the system
(1.14) with Neumann b.c. and with fixed d1 if and only if d2 is a bifurcation point of the equation
(2.64).

In particular, d2 > 0 is a critical point of (1.12) with Neumann b.c. and with fixed d1 if and
only if d2 is a critical point of the equation (2.59). And d2 > 0 is a bifurcation point of the system
(1.9), with Neumann b.c. and with fixed d1, if and only if d2 is a bifurcation point of the equation
(2.64) with β± ≡ 0 and N = b21A(F (v)− F ′(0)) +N2(F (v), v) (cf. (2.46)), respectively.

And also it is possible to find an analogue of Lemma 9.

Lemma 13. Let V be the set form Theorem 2. If (2.27), (2.29), (2.31) are true, the operator
S +N − β+ − β− from the problem (2.62) has on the set V a potential.

Proof. The proof is analogous to the proof of Lemma 9 and therefore will be skipped.

2.4 Systems with unilateral terms on the boundary

At the end of this section the problem with unilateral sources on the boundary will be discussed.
The abstract formulation is analogous to previous cases and therefore will be only briefly com-
mented.

Since the problem will change, we will assume here only (2.1)–(2.5) and drop the assumption
(2.6)–(2.9).
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2.4. Systems with unilateral terms on the boundary

Mixed problem with unilateral sources on the boundary Suppose (2.10). Consider the
system

d1∆u+ b11u+ b12v + n1(u, v) = 0

d2∆v + b21u+ b22v + n2(u, v) = 0
in Ω, (2.66)

with boundary conditions

u = v = 0 on ΓD,
∂u

∂~n
= 0 on ΓN ,

∂v

∂~n
= s−(x)v− − s+(x)v+ on ΓN ,

(2.67)

where

s± ∈ L∞(ΓN ), (2.68)

and

ess supp(s−) ∩ ess supp(s+) = ∅. (2.69)

The boundary conditions are considered in a sense of traces. Since s−(x)v−− s+(x)v+ ∈ L2(ΓN ),
the boundary conditions are well-defined, see e.g. [2]. The system (2.66), (2.67) has for v three
types of boundary conditions: Dirichlet b.c. on the set ΓD, the unilateral conditions on the set
ess supp(s−(x))∪ess supp(s+(x)) and Neumann b.c. on the set ΓN\(ess supp(s−)∪ess supp(s+)).
The space of solutions will be W 1,2

D (Ω).

We define the operators β±U : W 1,2
D (Ω)→W 1,2

D (Ω) for unilateral terms by

〈β−U (v), ϕ〉 = −
∫

ΓN

s−(x)v−ϕ dS for all v, ϕ ∈W 1,2
D (Ω),

〈β+
U (v), ϕ〉 =

∫
ΓN

s+(x)v+ϕ dS for all v, ϕ ∈W 1,2
D (Ω).

The derivation of the operator equations from (2.66), (2.67) is similar to Section 2.2.1 giving

d1u− b11Au− b12Av −N1(u, v) = 0,

d2v − b21Au− b22Av −N2(u, v) + β−U (v) + β+
U (v) = 0,

(2.70)

The weak form of the linear problem

d1∆u+ b11u+ b12v = 0

d2∆v + b21u+ b22v = 0
in Ω, (2.71)

with the b.c. (2.67) leads to a system of operator equations

d1u− b11Au− b12Av = 0,

d2v − b21Au− b22Av + β−U (v) + β+
U (v) = 0.

(2.72)

An analogue of Theorem 1 can be proved to get that a system in a form

d2v − Sv −N(v) + β−U (v) + β+
U (v) = 0,

u = F (v)
(2.73)

is equivalent on a neighborhood of the origin with (2.70). Since the upper equation in (2.70) is
the same as (2.25), the operators F, S in (2.73) are also the same as F, S in Theorem 1 and N is
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2.4. Systems with unilateral terms on the boundary

a nonlinear compact perturbation satisfying (2.44). This leads us to the following conclusions (cf.
Corollary 1).

Any critical point of
d2v − Sv + β−U (v) + β+

U (v) = 0,

is simultaneously a critical point of (2.71), (2.67) with fixed d1 and vice versa. Any bifurcation
point of (2.70) is a bifurcation point of (2.66), (2.67) with fixed d1 and vice versa.

To avoid some technical complications arising from the presence of the set ΓD, we have not
included general nonlinear terms ĝ± in the boundary conditions like in Neumann case below.
However, it is technically feasible to extend the results also for this systems with these functions
in boundary condition.

Neumann problem with unilateral sources on the boundary Now consider a system
(2.66) with b.c.

∂u

∂~n
= 0 on ∂Ω,

∂v

∂~n
= ĝ−(x, v−)− ĝ+(x, v+) on ∂Ω, (2.74)

where ĝ± : ∂Ω × R → R satisfy Carathéodory conditions and v± in the boundary conditions are
considered in the sense of traces. Moreover, suppose that ĝ±(x, 0) = 0 for a.a x ∈ ∂Ω and ĝ±

satisfy the growth conditions

there exists C > 0 such that: (2.75)

|ĝ−(x, ξ)|+ |ĝ+(x, ξ)| ≤ C(1 + |ξ|p−1), for a.a. x ∈ ∂Ω, for all ξ ∈ R, (2.76)

for some p satisfying

p > 2 for m ≤ 2 or 2 < p <
2(m− 1)

m− 2
for m > 2, (2.77)

cf. (2.5). Denote

s±(x) :=
∂ĝ±
∂ξ

(x, ξ)
∣∣
ξ=0

,

and assume that s± ∈ L∞(∂Ω), s±(x) ≥ 0 for a.a. x ∈ ∂Ω, and

ess supp(s−) ∩ ess supp(s+) = ∅.

The abstract formulation of Neumann problem is similar to the mixed case. We define the
operators Ĝ±U : W 1,2

D (Ω)→W 1,2
D (Ω) and β±U : W 1,2

D (Ω)→W 1,2
D (Ω) by

〈Ĝ−U (v), ϕ〉 = −
∫
∂Ω

ĝ−(x, v−)ϕ dS for all v, ϕ ∈W 1,2
D (Ω),

〈Ĝ+
U (v), ϕ〉 =

∫
∂Ω

ĝ+(x, v+)ϕ dS for all v, ϕ ∈W 1,2
D (Ω),

〈β−U (v), ϕ〉 = −
∫
∂Ω

s−(x)v−ϕ dS for all v, ϕ ∈W 1,2
D (Ω),

〈β+
U (v), ϕ〉 =

∫
∂Ω

s+(x)v+ϕ dS for all v, ϕ ∈W 1,2
D (Ω).

The well-definition of Ĝ±U is maybe not clear at the first sight. However, one has to employ the

assumption (2.76) and embedding W
1
2 ,2(∂Ω) ↪→ Lp0(∂Ω) with p0 ∈ [1, (2m − 2)/(m − 2)), see

Theorem 23. Furthermore, the operators β±U are homogenizations of Ĝ±U , in the sense of Lemma
3. The proofs are analogous to the proof of Lemma 3. The homogenized boundary conditions are
then

∂u

∂~n
= 0 on ∂Ω,

∂v

∂~n
= s−(x)v− − s+(x)v+ on ∂Ω. (2.78)
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2.5. Sets of critical points of reaction diffusion systems

Procedure analogous to the one from Section 2.3 gives the weak formulation of (2.66), (2.74)
as

d1(I −A)u− b11Au− b12Av −N1(u, v) = 0,

d2(I −A)v − b21Au− b22Av −N2(u, v) + Ĝ−U (v) + Ĝ+
U (v) = 0,

(2.79)

and the weak formulation of (2.71), (2.78) as

d1(I −A)u− b11Au− b12Av = 0,

d2(I −A)v − b21Au− b22Av + β−U (v) + β+
U (v) = 0.

(2.80)

An analogue of Theorem 1 can be proved to get that a system in the form

d2(I −A)v − Sv −N(v) + β−U (v) + β+
U (v) = 0,

u = F (v),
(2.81)

is equivalent in a neighborhood of the origin with (2.79). For both problems the operators F, S
are again the same as in Theorem 1, and N is a nonlinear compact perturbation satisfying (2.44).

The conclusions analogue to Corollary 1 can be found here.
Any critical point the equation

d2(I −A)v − Sv + β−U (v) + β+
U (v) = 0,

is simultaneously a critical point of (2.71), (2.78) with fixed d1 and vice versa. Any bifurcation
point of (2.79) is a bifurcation point of (2.66), (2.74) with fixed d1 and vice versa.

2.5 Sets of critical points of reaction diffusion systems

This section is intended as an extension of Remark 3 from Section 1.6. The explicit formulae
(2.39) and (2.61) for the eigenvalues λSk of (2.37) and the critical points d0

2,k of (2.59), respectively,
are the same. Therefore the discussion about their interpretation can be done for both problems
at once. Assume d1, d2 ∈ R, and besides the assumptions from Section 2.1, suppose also (2.21),
(2.27).

Since all eigenvalues of (2.37) and critical points of (2.59) are simultaneously the critical points
of (1.12) with Dirichlet/mixed and Neumann boundary conditions respectively and with fixed d1,
the set of all couples (d1, d2) for which these equations have solutions can be written as

C̃ =

∞⋃
k=1

C̃k

where the sets C̃k are

C̃k =

{
d = (d1, d2) ∈ R2

∣∣∣∣ d2 :=
1

κk

(
b12b21

d1κk − b11
+ b22

)}
.

Because the diffusion coefficients are supposed to be positive, it is useful to introduce a sets Ck
which are the parts of C̃k lying in the positive quadrant of R2, i.e.

Ck =

{
d = (d1, d2) ∈ R2

+

∣∣∣∣ d2 :=
1

κk

(
b12b21

d1κk − b11
+ b22

)}
.

The envelope of the sets Cj will be denoted by

CE =

{(
dE1 , d

E
2

)
∈ R2

+ |
(
dE1 , d

E
2

)
= min

k
{(d1, d2(κk)) ∈ Ck}

}
.
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2.5. Sets of critical points of reaction diffusion systems

The sets C̃k, Ck and CE have a nice geometrical interpretation. If one plots C̃k in the space R2,
he finds that each of them consists of of two hyperbolas with an asymptote

yk :=
b11

κk
. (2.82)

First hyperbola is in the quadrant (0,∞)×(−∞, 0), the second one lies in the remaining quadrants.
The part of the second hyperbola being in the quadrant R2

+ is the set Ck. The envelope of all
hyperbolas Ck is the set CE . The whole situation is sketched at the Fig. 2.1

Figure 2.1: Space of parameters, dotted lines are asymptotes yi

It is common to define two sets of parameters DU and DS

DU =
{

(d1, d2) ∈ R2
+ | d lies to the left from at least one Cj , j ∈ N

}
,

DS =
{

(d1, d2) ∈ R2
+ | d lies to the right from all Cj , j ∈ N

}
.

The sets DS resp. DU are called the domain of stability resp. domain of instability, the origin of
this name is explained by the following remark.

Remark 15. Let us consider an eigenvalue problem

d14u+ b11u+ b12v = λu,

d24v + b21u+ b22v = λv.

If d ∈ DS then there exists ε > 0 such that Re λ < −ε < 0 for all eigenvalues of the system, or if
d ∈ DU there exists at least one positive eigenvalue λ > 0 of the system.
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Chapter 3

Abstract results about positively
homogeneous problems

This part of dissertation thesis contains results about equations with positively homogeneous
operators. It is designed as a stand-alone section therefore it is possible to read it independently
on other sections. For this reason the notation introduced here is valid only for this chapter and
has no relation to objects stated before. The studied equations are however formulated in a way
which allows a straightforward application of achieved results to reaction-diffusion systems with
unilateral terms.

This chapter will be divided into four main sections. The notation is introduced in the first
one, and also some introductory remarks and general assumptions are given there. The second
one contains the results concerning eigenvalues of positively homogeneous operators, and also a
bifurcation result. All results therein are achieved by a use of the variational methods. The
third section contains the results obtained by the topological degree methods and the last one is
containing two bifurcation theorems proved by application of the Implicit Function Theorem. The
second theorem, very general, stated without proof, is a result of Lutz Recke and Martin Väth
[47].

All of these results will be used in the forthcoming sections in order to study the existence of
critical and bifurcation points of reaction-diffusion systems with unilateral terms.

3.1 Basic notation and assumptions

The following basic notation and assumptions will be used throughout this chapter.

(i) H will denote a real Hilbert space with a scalar product 〈·, ·〉 and a norm ‖ · ‖ induced by it,
I will be the identity operator on H.

(ii) B : H→ H will be a positively homogeneous operator of the degree one, i.e.

B(tv) = tB(v) for all t ≥ 0,

and will satisfy
vn ⇀ v ⇒ B(vn)→ B(v), (3.1)

and
〈B(v), v〉 ≥ 0 for all v ∈ H. (3.2)

(iii) Let us denote
|B| := max

v∈H,‖v‖=1
‖B(v)‖. (3.3)

The assumption (3.1) guarantees the existence of the maximum in (3.3).

36



3.1. Basic notation and assumptions

(iv) λ ∈ R will be a parameter.

(v) A : H → H will be a linear positive compact operator with σ(A) ⊂ [0, 1], and having the
largest eigenvalue simple. If 1 ∈ σ(A), then e0 ∈ H, ‖e0‖ = 1 will denote the corresponding
eigenvector.

(vi) S : H→ H will be a linear symmetric compact operator. Its maximal eigenvalue, if it exists,
will be denoted by λSmax.

(vii) If 1 ∈ σ(A), we will assume

〈Se0 − B(e0), e0〉 6= 0, 〈S(−e0)− B(−e0),−e0〉 6= 0. (3.4)

(viii) N : H × R → H will be a small compact nonlinear perturbation, i.e. N is a continuous
compact nonlinear operator satisfying

lim
v→0

N (λ, v)

‖v‖
= 0, uniformly on λ - compact intervals. (3.5)

Definition 7. If there exists v ∈ H, v 6= 0 such that

λ(I − A)v − Sv + B(v) = 0, (3.6)

for some λ ∈ R, then v is called an eigenvector and λ the eigenvalue of (3.6).

Observation 2. If v is an eigenvector of (3.6) corresponding to an eigenvalue λ, then for any
α > 0 the vector αv is also an eigenvector of this equation corresponding to λ. This is a consequence
of the positive homogeneity of B.

Besides eigenvalues of (3.6) we are going to study bifurcation points of a related nonlinear
problem.

Definition 8. A number λb ∈ R is a (local) bifurcation point of

λ(I − A)v − Sv −N (λ, v) + B(v) = 0. (3.7)

if in any neighborhood of (λb, 0) in R× X a nontrivial solution (λ, v) ∈ R× X of (3.7) exists.

In the forthcoming chapters we will work with the equation (3.6) and also with a special case
of this equation with A ≡ 0. In such a case the equation (3.6) becomes an eigenvalue problem for
positively homogeneous operator S − B:

λv − Sv + B(v) = 0. (3.8)

The nonlinear problem (3.7) with A ≡ 0 has the form

λv − Sv −N (λ, v) + B(v) = 0. (3.9)

Remark 16. The equations (3.6) and (3.8) are generalizations of the abstract formulations (2.65)
and (2.50) respectively, to a general Hilbert space. The problems (3.7) and (3.9) are generalizations
of (2.62) and (2.49), respectively.

Observation 3. It follows immediately from the symmetry of A and σ(A) ⊂ [0, 1] that

〈(I − A)v, v〉 ∈ [0, 1] for all v ∈ H, ‖v‖ = 1. (3.10)

If 1 /∈ σ(A), then
inf

v∈H,‖v‖=1
〈(I − A)v, v〉 > 0. (3.11)

If 1 ∈ σ(A), then Ker(I − A) = Span{e0} and

〈Av, v〉 = ‖v‖2 if and only if v ∈ Ker(I − A). (3.12)
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3.2. Variational methods

3.2 Variational methods

This section will be divided into two parts. The first one contains abstract results concerning
the eigenvalues of a positively homogeneous equations. The second one is devoted to existence of
bifurcation from the largest eigenvalue of a positively homogeneous equation.

3.2.1 Eigenvalues of equations with positively homogeneous operators

Notation 3. The basic notation from Section 3.1 will be supplemented with the following one:

(I) K ⊂ H will denote a closed convex cone defined by

K := {v ∈ H | B(v) = 0}.

(II) The second largest eigenvalue of A will be denoted as λA2 .

In addition, we will often use in this section the following assumptions:

〈B(v), v)〉 > 0 for all v /∈ K , (3.13)

and

if 1 ∈ σ(A), the vector e0 satisfies: e0 /∈ K ∪ (−K ). (3.14)

The assumptions (3.13), (3.14) imply 〈B(e0), e0〉 > 0, 〈B(−e0),−e0〉 > 0. The assumption
(3.4) excludes e0 and −e0 as eigenvectors of (3.6). According to Observation 3 any eigenvector v
of (3.6) satisfies 〈(I −A)v, v〉 > 0.

Since this subsection is about eigenvalues, the operator N will not appear here.

Theorem 3. Let v0 ∈ H satisfy

lim
t→0

1

t

(
1

2
〈B(v0 + th), v0 + th〉 − 1

2
〈B(v0), v0〉

)
= 〈B(v0), h〉, for all h ∈ H, (3.15)

and let the maximum

λmax := max
v∈H

v/∈Ker(I−A)

〈Sv − B(v), v〉
〈(I − A)v, v〉

(3.16)

exist with v0 being its maximizer. Then λmax is the largest eigenvalue of the problem (3.6) and v0

is a corresponding eigenvector.
Let (3.15) be fulfilled for any v ∈ H and let the largest eigenvalue of (3.6) exist with v0 ∈ H

being an eigenvector respective to it. Then the largest eigenvalue is equal to λmax and v0 is a
maximizer of (3.16).

It is easy to see that the maximum (3.16) does not always exist – for example if B is the zero
operator and S is a negative operator with an infinite-dimensional range, the assumption (3.15) is
fulfilled trivially and the supremum over the argument in (3.16) is equal to zero. If the maximum
existed, the number zero would be the largest eigenvalue of the compact operator S with the
infinite dimensional range, which is not possible and therefore the maximum does not exists. We
are going to give some criteria for the existence of maximum in Theorem 4 on pg. 40 below.

Notation 4. We will be using the notation λmax for the largest eigenvalue of (3.6), whenever the
maximum (3.16) exists and (3.15) is true.

Proof of Theorem 3. Let (3.15) be fulfilled. We have to prove that λmax is the largest eigenvalue of
the equation (3.6). Since v0 /∈ Ker(I−A), there exists t0 > 0 such that 〈(I−A)(v0+th), (v0+th)〉 >
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0 for all t ∈ (0, t0) and for all h ∈ H, ‖h‖ = 1. The vector v0 is a maximizer of (3.16), hence, any
such v0 + th satisfies

〈S(v0 + th)− B(v0 + th), v0 + th〉
〈(I − A)(v0 + th), v0 + th〉

≤ 〈Sv0 − B(v0), v0〉
〈(I − A)v0, v0〉

. (3.17)

We will write the expression (3.17) as(
〈Sv0, v0〉+ 2t〈Sv0, h〉+ t2〈Sh, h〉 − 〈B(v0 + th), v0 + th〉

)
〈(I − A)v0, v0〉 ≤

≤ 〈Sv0 − B(v0), v0〉
(
〈(I − A)v0, v0〉+ 2t〈(I − A)v0, h〉+ t2〈(I − A)h, h〉

)
.

Dividing by 〈(I − A)v0, v0〉 and using the notation

λmax =
〈Sv0 − B(v0), v0〉
〈(I − A)v0, v0〉

,

yields (
2t〈Sv0, h〉+ t2〈Sh, h〉 − 〈B(v0 + th), v0 + th〉+ B(v0), v0〉

)
≤

≤ 〈λmax

(
〈2t〈(I − A)v0, h〉+ t2〈(I − A)h, h〉

)
.

After dividing by 2t and evaluating the limits t → 0+, t → 0− we obtain by using (3.15) two
inequalities:

〈Sv0, h〉 − 〈B(v0), h〉 ≤ λmax〈(I − A)v0, h〉,
〈Sv0, h〉 − 〈B(v0), h〉 ≥ λmax〈(I − A)v0, h〉.

This implies

〈Sv0, h〉 − 〈B(v0), h〉 = λmax〈(I − A)v0, h〉 for all h ∈ H, ‖h‖ = 1,

and finally
Sv0 − B(v0) = λmax(I − A)v0,

which means that λmax is an eigenvalue of the equation (3.6) with the corresponding nontrivial
solution v0. Let λ1 > 0 be another eigenvalue of this equation and v1 be a corresponding nontrivial
solution. Then

λ1(I − A)v1 = Sv1 − B(v1). (3.18)

Because e0 cannot be the eigenvector, see (3.4), multiplication of this equation by v1 and dividing
by 〈(I − A)v1, v1〉 gives

λ1 =
〈Sv1 − B(v1), v1〉
〈(I − A)v1, v1〉

≤ 〈Sv0 − B(v0), v0〉
〈(I − A)v0, v0〉

= λmax. (3.19)

Hence, λmax is the largest eigenvalue of the equation (3.6).
Let v0 ∈ H be an eigenvector to the largest eigenvalue of (3.6) and assume that v0 is not

maximizing (3.16). Let us denote here the largest eigenvalue as λm. Multiplying the equation

λm(I −A)v0 − Sv0 +B(v0) = 0

by v0 and dividing it by 〈(I −A)v0, v0〉 give

λm =
〈Sv0 − B(v0), v0〉
〈(I − A)v0, v0〉

< λmax.

Since (3.15) is assumed for all v ∈ H, any maximizer of (3.16) satisfies this condition and according
to the first statement of this theorem it is an eigenvector to (3.6) corresponding to λmax. So λmax

is an eigenvalue larger than the largest eigenvalues λm which is a contradiction. Hence, v0 must
the maximizer of (3.16) and λm = λmax.
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Remark 17. If (3.15) is fulfilled for any v0 ∈ H, the operator B has a potential (see Definition
20 in Appendix) defied by ΦB(v) := 2−1〈B(v), v〉 for all v ∈ H.

Observation 4. Let A ≡ 0. It is easy to see from (3.3), (3.2) that if λmax exists, then

λSmax = max
v∈H,‖v‖=1

〈Sv, v〉 ≥ max
v∈H,‖v‖=1

〈Sv, v〉 − 〈B(v), v〉) = λmax ≥

≥ max
v∈H,‖v‖=1

〈Sv, v〉 − max
v∈H,‖v‖=1

〈B(v), v〉 ≥ λSmax − |B|.

These inequalities will play an essential role in estimating the critical points of the reaction-
diffusion systems.

The following example is inspired by the Example 1 in [32]. It demonstrates that violation of
(3.15) can lead to the non-existence of the largest eigenvalue of (3.8).

Remark 18. Let H := R3, A = 0 and let B,S be defined by matrices

B :=

0 0 0
0 a

2 a
0 −a a

2

 , S :=

1 0 0
0 3a

2 0
0 0 3a

2

 ,

with a > 0 being a parameter. Then

S − B :=

1 0 0
0 a −a
0 a a

 .

Since
〈B(v), v〉 =

a

2
(‖v2‖2 + ‖v3‖2) ≥ 0 for all v := (v1, v2, v3) ∈ R3,

condition (3.2) is fulfilled. Due to the finite dimension of the problem the operators S and B are
compact, S is clearly symmetric. The eigenvalues of (3.8) are λmax = 1, λ2 = a(1 + i), λ3 =
a(1− i). If a = 1, then

〈Sv − Bv, v〉 = ‖v‖2, for all v ∈ R3,

and the maximum in (3.16) is 1. However, only the maximizer v := (1, 0, 0) and its multiples
satisfy the condition (3.15) and v,−v are the only eigenvectors with unit norm corresponding to
the eigenvalue λmax. If a = 2, then the maximum in (3.16) is 2, no maximizer satisfies (3.15)
and the largest eigenvalue of the equation is not characterized by the formula (3.16).

Two assumptions will play a crucial role in the following theorem. The first one is that

there exists v ∈ H such that
〈Sv, v〉 − 〈B(v), v〉
〈(I − A)v, v〉

∈ (0,∞). (3.20)

This assumption can be difficult to verify (because it contains a nonlinear operator) therefore in
practice we will be sometimes checking the following stronger assumption:

there exists ϕ ∈ K satisfying
〈Sϕ,ϕ〉

〈(I − A)ϕ,ϕ〉
∈ (0,∞). (3.21)

Theorem 4. Let 1 /∈ σ(A) and (3.20) be true. Then the maximum in (3.16) exists and is positive.
Let 1 ∈ σ(A) and (3.13), (3.14), (3.20) be true. Under the condition

max

{
〈Se0, e0〉
〈B(e0), e0〉

,
〈Se0, e0〉

〈B(−e0),−e0〉
, 0

}
< 1, (3.22)

the maximum in (3.16) exists and is positive.
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Proof. The proof of first statement follows directly from (3.20), (3.11), (3.1) and compactness of
S and A.

Let 1 ∈ σ(A). Due to the assumptions (3.1), (3.2), (3.22) and because S is continuous, there
exists a neighborhood V of e0 such that

〈Sv, v〉 − 〈B(v), v〉 < 0, for all v ∈ V ∪ (−V ). (3.23)

There also exists a sequence vn, ‖vn‖ = 1 such that

lim
n→∞

〈Svn, vn〉 − 〈B(vn), vn〉
〈(I − A)vn, vn〉

= sup
v∈H,v 6=0

〈Sv, v〉 − 〈B(v), v〉
〈(I − A)v, v〉

.

Due to the assumption (3.20) this supremum is positive. Because H is a Hilbert space, we can
assume without loss of generality that vn ⇀ v0. Let us suppose that

lim
n→∞

〈Svn, vn〉 − 〈B(vn), vn〉
〈(I − A)vn, vn〉

= +∞. (3.24)

Because of (3.2) we have 〈B(vn), vn〉 ≥ 0 for all n ∈ N and consequently

〈Svn, vn〉 − 〈B(vn), vn〉 ≤ 〈Svn, vn〉 ≤ |S|,

thus the l.h.s of this inequality is uniformly bounded from above and it means that (3.24) can be
satisfied only if

〈(I − A), vn, vn〉 = 1− 〈Avn, vn〉 → 0.

Because the operator A is linear and compact we have

lim
n→∞

〈Avn, vn〉 = 〈Av0, v0〉,

which implies
〈Av0, v0〉 = 1.

We will prove that ‖v0‖ = 1 which will due to the (3.12) imply that v = ±e0. The norm is weakly
lower semicontinous, i.e. ‖v0‖ ≤ 1 and obviously ‖v0‖ > 0. If it were 0 < ‖v0‖ < 1, then we would
have 〈

A
(

v0

‖v0‖

)
,
v0

‖v0‖

〉
=

1

‖v0‖2
> 1,

which contradicts σ(A) ⊂ (0, 1]. Hence, ‖v0‖ = 1 and we conclude that v0 = ±e0. As S and B
are compact and continuous the formula (3.23) gives the existence of n0 such that

〈Svn, vn〉 − 〈B(vn), vn〉 < 0, for all n > n0.

This together with (3.10) gives

lim
n→∞

〈Svn, vn〉 − 〈B(vn), vn〉
〈(I − A)vn, vn〉

= −∞,

which is a contradiction with the assumption (3.24). Hence,

sup
v∈H,v 6=0

〈Sv, v〉 − 〈B(v), v〉
〈(I − A)v, v〉

<∞.

Use of vn ⇀ v0, (3.1) and the compactness of S, A give

Svn → Sv0, Avn → Av0, B(vn)→ B(v0),

and this together with (3.20) lead to

sup
v∈H,v 6=0

〈Sv, v〉 − 〈B(v), v〉
〈(I − A)v, v〉

=
〈Sv0, v0〉 − 〈B(v0), v0〉
〈(I − A)v0, v0〉

∈ (0,∞).
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Corollary 3. Assume (3.15), (3.20). If either 1 /∈ σ(A) or alternatively 1 ∈ σ(A), (3.13), (3.14),
(3.22), then the number λmax from Theorem 3 is the largest eigenvalue of the problem (3.6).

Remark 19. The assumption (3.22) is fulfilled if either 〈Se0, e0〉 < 0 or

max{〈B(e0), e0〉, 〈B(−e0),−e0〉}

is sufficiently large.
In terms of applications, the latter case will mean that the sources and sinks in reaction-

diffusion system, represented by the operators β± defined in Section 2.2, are sufficiently strong.
See also Theorem 15 on pg. 70.

It is crucial to mention that the number λmax can diverge to infinity as the l.h.s of (3.22)
approaches one. The violation of (3.22) gives the non-existence of maximum on the r.h.s. of
(3.16), and the supremum of its argument is then equal to plus infinity.

The next lemma gives a behavior of the largest eigenvalue of the equation with positively
homogeneous operator τB as τ →∞, where τ is a real parameter.

Lemma 14. Under the assumptions (3.13), (3.14), (3.21) the maxima satisfy

lim
τ→∞

max
v∈H

v/∈Ker(I−A)

〈Sv, v〉 − τ〈B(v), v〉
〈(I − A)v, v〉

= max
v∈K ,v 6=0

〈Sv, v〉
〈(I − A)v, v〉

> 0.

Proof. We will prove this Lemma by a contradiction. Let us suppose that there exist ε > 0 and
sequences τn →∞, vn ⊂ H\Ker(I − A), ‖vn‖ = 1 satisfying

〈Svn − τnB(vn), vn〉
〈(I − A)vn, vn〉

≥ max
ϕ∈K ,ϕ6=0

〈Sϕ,ϕ〉
〈(I − A)ϕ,ϕ〉

+ ε for all n ∈ N. (3.25)

Let us note that the maximum over the cone is due to the assumption (3.21) positive. The space
H is reflexive, hence, without loss of generality vn ⇀ v0, v0 ∈ H. Let us suppose that v0 = 0.
Then using (3.2) gives

lim
n→∞

〈Svn, vn〉 − τn〈B(vn), vn〉
〈(I − A)vn, vn〉

≤ lim
n→∞

〈Svn, vn〉
1− 〈Avn, vn〉

= 0,

which contradicts (3.25), thus v0 6= 0.
Suppose that v0 /∈ K . Then the assumption (3.13) gives 〈B(v0), v0〉 > 0 and (3.1) gives the

existence of n0 ∈ N such that

〈B(vn), vn〉 >
〈B(v0), v0〉

2
for all n > n0.

Moreover, the operator S is bounded and τn →∞ therefore

〈Svn, vn〉 − τn〈B(vn), vn〉 < 〈Svn, vn〉 − τn
〈B(v0), v0〉

2
≤ ‖S‖ − τn

〈B(v0), v0〉
2

→ −∞.

By using the property (3.10) we obtain

lim
n→∞

〈Svn, vn〉 − τn〈B(vn), vn〉
〈(I − A)vn, vn〉

= −∞,

which is in a contradiction with (3.25). Hence, v0 ∈ K . As v0 ∈ K \{0} and because of (3.11) if
1 /∈ σ(A) and (3.10), (3.13), (3.14) if 1 ∈ σ(A), we have that

〈(I − A)v0, v0〉 > 0.
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Use of (3.2), (3.10) leads to

lim sup
n→∞

〈Svn, vn〉 − τn〈B(vn), vn〉
〈(I − A)vn, vn〉

≤ lim
n→∞

〈Svn, vn〉
〈(I − A)vn, vn〉

=

=
〈Sv0, v0〉

〈(I − A)v0, v0〉
≤ max
ϕ∈K ,ϕ6=0

〈Sϕ,ϕ〉
〈(I − A)ϕ,ϕ〉

,

which contradicts (3.25) and

lim
τ→∞

max
v∈H

v/∈Ker(I−A)

〈Sv, v〉 − τ〈B(v), v〉
〈(I − A)v, v〉

≤ max
ϕ∈K ,ϕ6=0

〈Sϕ,ϕ〉
〈(I − A)ϕ,ϕ〉

.

But also

max
ϕ∈K ,ϕ6=0

〈Sϕ,ϕ〉
〈(I − A)ϕ,ϕ〉

≤ max
v∈H

v/∈Ker(I−A)

〈Sw − τB(w), w〉
〈(I − A)w,w〉

for all τ > τ0, (3.26)

which gives that

lim
τ→∞

max
v∈H

v/∈Ker(I−A)

〈Sw − τB(w), w〉
〈(I − A)w,w〉

= max
ϕ∈K ,ϕ6=0

〈Sϕ,ϕ〉
〈(I − A)ϕ,ϕ〉

<∞.

The following theorem gives an estimate of the largest eigenvalue of (3.6).

Theorem 5. Let 1 ∈ σ(A), let (3.13), (3.14), (3.20), (3.22) be true, let v0 be a maximizer from

Theorem 3, let v0 satisfy (3.15). Finally, let there exist a constant Ĉ > 0 such that∣∣∣∣12 〈B(e0 + h), e0 + h〉 − 1

2
〈B(e0), e0〉 − 〈B(e0), h〉

∣∣∣∣ ≤ Ĉ‖h‖2 for all h ∈ H. (3.27)

Then

λmax = max
v∈H

v/∈Ker(I−A)

〈Sv, v〉 − 〈B(v), v〉
〈(I − A)v, v〉

≤
(

1 +
1

ε2
0

)
λSmax

1− λA2
, (3.28)

where

ε0 =
−(|S|+ |B|) +

(
(|S|+ |B|)2 + C(Ĉ + |S|)

) 1
2

(Ĉ + |S|)
,

where C is defined as

C = −max {〈Se0, e0〉 − 〈B(e0), e0〉, 〈Se0, e0〉 − 〈B(−e0),−e0〉} , (3.29)

and |S| is the norm of the operator S.

Let us give some comments to the theorem before we prove it. If C → 0, then ε → 0. The
assumption (3.27) implies (3.15).

The theorem will be used to estimate λmax in situation when S is depending on some parameter
andA,B are fixed. It changes the task to find an estimate independent of parameter for a maximum
depending on parameter to find an estimate independent of the parameter for the largest eigenvalue
of S.

To be more specific, the application of it will be in Chapter 4. The constants C and Ĉ will be
explicitly found for the reaction-diffusion systems (1.16) with the Neumann boundary conditions.
The theorem will be afterwards applied to the proof of Theorem 16, giving an upper bound for a
certain set of critical points.
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This theorem is concerned only with the case 1 ∈ σ(A). The case 1 /∈ σ(A) is much easier, and
if λSmax exists and is positive, it is possible to find an estimate analogous to (3.28):

λmax ≤
λSmax

1− λAmax

,

where λAmax ∈ [0, 1) is the largest eigenvalue of the operator A.

Proof of Theorem 5. Suppose that B, S and e0 are satisfying

〈Se0, e0〉 − 〈B(−e0),−e0〉 < 〈Se0, e0〉 − 〈B(e0), e0〉 = −C, (3.30)

and a maximzer v0 of l.h.s. of (3.28) satisfies v0 /∈ {e0}⊥. The situation of the opposite inequality
can be treated by interchanging e0 with −e0. The case v0 ∈ {e0}⊥ will be discussed at the end of
the proof.

The key step is to find ε0 > 0 such that for any v1 ∈ {e0}⊥ satisfying ‖v1‖ < ε0 the inequality

〈S(e0 + v1)− B(e0 + v1), e0 + v1〉 ≤ 0 (3.31)

is fulfilled. Such ε0 can be always found, see (3.23). Because of (3.20), (3.10), the vector e0 + v1

with ‖v1‖ < ε0 cannot be a maximizer of (3.16).
The l.h.s. of (3.31) can be estimated as

〈S(e0 + v1)− B(e0 + v1), e0 + v1〉 =

= 〈Se0, e0〉+ 2〈Sv1, e0〉+ 〈Sv1, v1〉 − 〈B(e0 + v1), e0 + v1〉 =

= 〈Se0, e0〉 − 〈B(e0), e0〉+ 〈B(e0), e0〉+ 2〈Sv1, e0〉+ 〈Sv1, v1〉 − 〈B(e0 + v1), e0 + v1〉 ≤
≤ −C + 〈B(e0), e0〉 − 〈B(e0 + v1), e0 + v1〉+ 2|S|‖e0‖‖v1‖+ |S|‖v1‖2. (3.32)

The assumption (3.27) with h := v1 inserted in (3.32) gives

〈S(e0 + v1)− B(e0 + v1), e0 + v1〉 ≤

≤ −C + Ĉ‖v1‖2 + 2‖B(e0)‖‖v1‖+ 2|S|‖v1‖+ |S|‖v1‖2 =

≤ −C + (2|S|+ 2‖B(e0)‖)‖v1‖+ (|S|+ Ĉ)‖v1‖2.

Use of (3.3) gives
‖B(e0)‖ ≤ |B|‖e0‖ ≤ |B|.

Now we assume ‖v1‖ < ε0, which leads to an inequality

〈S(e0 + v1)− B(e0 + v1), e0 + v1〉 < −C + (2|S|+ 2|B|)ε0 + (|S|+ Ĉ)ε2
0

The r.h.s of this inequality has two roots

ε1,2 =
−(2|S|+ 2|B|)±

(
(2|S|+ 2|B|)2 + 4C(Ĉ + |S|)

) 1
2

2(Ĉ + |S|)
,

but only the positive one is relevant. Thus the inequality (3.31) is true when

‖v1‖ ≤ ε0 :=
−(|S|+ |B|) +

(
(|S|+ |B|)2 + C(Ĉ + |S|)

) 1
2

(Ĉ + |S|)
.

The conclusion after all these calculation is that the maximizer of (3.16) is of a form v0 = e0+v1,
where ‖v1‖ > ε0 or of a form v0 = −e0 + v1, with ‖v1‖ > ε0.
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Now we will prove the estimate (3.28). Assume from now that ‖v1‖ > ε0. First, let us focus
on the denominator in (3.16). Since (I − A)e0 = 0 we have

〈(I − A)(e0 + v1), e0 + v1〉 = 〈(I − A)v1, v1〉 = ‖v1‖2 − 〈Av1, v1〉.

The formula

max
v∈{e0}⊥

〈Av, v〉
‖v‖2

= λA2 ,

gives
〈Av1, v1〉 ≤ λA2 ‖v1‖2.

Hence,

‖v1‖2 − 〈Av1, v1〉 ≥ (1− λA2 )‖v1‖2,

and

〈(I − A)v1, v1〉
‖e0 + v1‖2

=
‖v1‖2 − 〈Av1, v1〉
‖e0 + v1‖2

=
‖v1‖2 − 〈Av1, v1〉

1 + ‖v1‖2
≥

(1− λA2 )

1 +
1

‖v1‖2

≥
1

1 +
1

ε2
0

(1− λA2 ).

Using the last inequality we obtain

0 < max
v∈H,v 6=0

〈Sv, v〉 − 〈B(v), v〉
〈(I − A)v, v〉

≤ max
v∈H,v 6=0

〈
S

(
v

‖v‖

)
,
v

‖v‖

〉
〈(I − A)v1, v1〉
‖e0 + v1‖2

≤

≤ max
v∈H,‖v‖=1

(
1 +

1

ε2
0

)
〈Sv, v〉

(1− λA2 )
=

(
1 +

1

ε2
0

)
λSmax

(1− λA2 )
,

and it is the estimate (3.28).
The last case to discuss is v0 ⊥ e0. Here we have even a better inequality

max
v∈H

〈Sv, v〉 − 〈B(v), v〉
〈(I − A)v, v〉

=
〈Sv0, v0〉 − 〈B(v0), v0〉
〈(I − A)v0, v0〉

≤ λSmax

1− λA2
<

(
1 +

1

ε2
0

)
λSmax

(1− λA2 )
.

Equivalence of (3.6) and (3.8) In some cases it is possible to find a simple transformation
between (3.6) and (3.8), which conserves the properties of A, B and S, as we will show now.

The operator (I − A) is symmetric, positive operator and isomorphism on Ker(I − A)⊥,
therefore

(I − A)−
1
2 : Ker(I − A)⊥ → Ker(I − A)⊥

is an isomorphism which is symmetric and positive. Assume that S(Ker(I−A)⊥) ⊆ Ker(I−A)⊥,
i.e. Ker(I − A) is an invariant subspace of S and 〈Sv, v〉 > 0 for some v ∈ Ker(I − A)⊥. Then

max
v∈Ker(I−A)⊥

〈Sv, v〉
〈(I − A)v, v〉

= max
v∈Ker(I−A)⊥

〈Sv, v〉
〈(I − A)

1
2 v, (I − A)

1
2 v〉

=

= max
v∈Ker(I−A)⊥

〈S(I − A)−
1
2 v, (I − A)−

1
2 v〉

〈v, v〉
=

= max
v∈Ker(I−A)⊥

〈(I − A)−
1
2S(I − A)−

1
2 v, v〉

〈v, v〉
.

(3.33)
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Therefore the number

λ̃Smax := max
v∈Ker(I−A)⊥

〈Sv, v〉
〈(I − A)v, v〉

(3.34)

is the largest eigenvalue of a symmetric compact operator

(I − A)−
1
2S(I − A)−

1
2 : Ker(I − A)⊥ → Ker(I − A)⊥,

and that means it is the largest eigenvalue of the equation

v ∈ Ker(I − A)⊥ : λv − (I − A)−
1
2S(I − A)−

1
2 v = 0,

as follows from (3.33) and Remark 31 on pg. 31.
If 1 /∈ σ(A), then Ker(I −A)⊥ = {0}⊥ = H and the equation (3.6) can be reduced by defining

λ̃ := λ, S̃ := (I − A)−
1
2S(I − A)−

1
2 , B̃ := (I − A)−

1
2B(I − A)−

1
2 , ṽ := (I − A)

1
2 v,

to a simple form

λ̃ṽ − S̃ ṽ + B̃(ṽ) = 0. (3.35)

This equation is the same as (3.8). It is possible to show that all of the properties of the operators
S,B from Section 3.1 are valid even for S̃, B̃. If S, B, A fulfill (3.20), then 〈S̃ ṽ, ṽ〉 − 〈B̃(ṽ), ṽ〉 > 0,

where ṽ := (I −A)
1
2 v, with v from (3.20). If v0 is a maximizer of (3.16) then ṽ0 := (I −A)

1
2 v0 is

a maximizer of

λ̃max := max
ṽ∈H,v 6=0

〈S̃ ṽ − B̃(ṽ), ṽ〉
‖ṽ‖2

, (3.36)

and vice versa. Finally, it is possible to verify that B̃ and ṽ0 satisfy (3.15), provided that B and
v0 satisfy this condition. Therefore Theorem 3 with S̃, B̃ and with Ã ≡ 0 can be applied to (3.35)
to get that its largest eigenvalue λ̃max is characterized by the formula (3.36).

Let us note that if 1 /∈ σ(A), then Ker(I − A) = {0} and the assumption S(Ker(I − A)⊥) ⊆
Ker(I − A)⊥ is fulfilled.

3.2.2 Bifurcation Theorem

The aim of this Section is to prove a bifurcation theorem for the problem of a type

λ(I − A)v − Sv + B(v)−N (v) = 0. (3.37)

Theorem 6. Let B have a potential on H and N have a potential on a neighborhood of zero and
let the largest eigenvalue λmax of the problem (3.6) exists and be positive. Then the number λmax

is the largest bifurcation point of the problem (3.37).

Remark 20. Theorem 6 uses variational methods to get the bifurcation, like Krasnoselskii Poten-
tial Bifurcation Theorem, see Appendix. The main difference between the equation in Theorem 6
and the equation in Krasnoselskii Theorem is in the presence of positively homogeneous perturba-
tion B, which is not differentiable. In contrast to Krasnoselskii Theorem, Theorem 6 is not solving
the question if eigenvalues of (3.6) which are not the largest one, are bifurcation points.

Proof of Theorem 6. Let ΦB ,ΦS ,ΦN : H → R be potentials to B,S,N respectively and let us
define a functional Φ : H→ R by

Φ(v) := ΦB(v) + ΦS + ΦN (v). (3.38)
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Outline: The goal is to construct a suitable set of sets {Br}r>0 and show that solutions of the
problem

for any sufficiently small r > 0 find vr such that: λ(r) :=
1

r2
max
v∈Br

Φ(v) =
1

r2
Φ(vr),

lim
r→0

λ(r) = λmax,

satisfy

λ(r)(I − A)vr − Svr + B(vr)−N (vr) = 0

〈(I − A)vr, vr〉 = r2.

The sets {Br}r>0 will be constructed in a way that vr → 0 as r → 0 and consequently λmax will
be the largest bifurcation point of (3.37), with vr being bifurcating solutions.

The first step will be a construction of the sets Br. Since v0 /∈ Ker(I − A), as follows from
(3.4), well define a class of sets

Hα := {v ∈ H|‖v − αv0‖ ≤ αη} for any α ≥ 0,

where 0 < η < dist(Ker(I − A), v0) is fixed and we also define a set

H :=
⋃
α≥0

Hα.

In particular, 0 ∈ H . The sketch of the set H is in the Fig. 3.1. If v ∈ H ∩ Ker(I − A) and
v 6= 0, then v ∈Hα for some α > 0, v/α ∈ Ker(I − A) and∥∥∥ v

α
− v0

∥∥∥ ≤ η < dist(Ker(I − A), v0),

which is contradiction. Therefore H ∩Ker(I − A) = {0}.

Figure 3.1: Sketch of the set H , delimited by dashed lines and of the sets H1/2, H1 (dotted lines).

Proposition 1. The set H is closed, convex and there exists c, C > 0 such that

c‖v‖2 ≤ 〈(I − A)v, v〉 ≤ C‖v‖2 for all v ∈H . (3.39)

Proof. We will show that the set H is closed in H. Let vn ⊂H be a sequence, vn → v ∈ H. The
goal is to show that v ∈H . If v = 0 then it is true. Let v 6= 0. Then for any vn with n sufficiently
large it can be found αn for which vn ∈Hαn

. Let αn →∞. Then

‖v0‖ −
∥∥∥∥ vnαn

∥∥∥∥ ≤ ∥∥∥∥ vnαn − v0

∥∥∥∥ ≤ η,
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and it is possible only if ‖vn‖ → ∞, which contradicts the convergence of vn in H. Therefore the
sequence αn is bounded and it is possible to find a subsequence αnk

→ α. Then ‖vnk
− αnk

v0‖ ≤
αnk

η → dα and v ∈Hα which means that v ∈H . Therefore H is closed.
Now the convexity. Let u,w ∈H . The situation when at least one of the vectors u,w is zero

is easy to handle. Therefore let u,w 6= 0. There exists αu, αw > 0 for which u ∈ Hαu , w ∈ Hαw .
Let ξt := tαu + (1− t)αw, t ∈ [0, 1]. Then

‖tu+ (1− t)w − ξtv0‖ = ‖t(u− αuv0) + (1− t)(w − αyw0)‖ ≤
≤ t‖(u− αuv0)‖+ (1− t)‖(w − αwv0)‖ ≤ η(tαu + (1− t)αw) = ηξt,

therefore tu + (1 − t)w ∈ Hξ(t) for any t ∈ [0, 1] and H is convex. In particular, H is weakly
closed.

Since A is bounded, the choice C := supv∈H,‖v‖=1 ‖(I −A)v‖, gives the upper inequality. The
lower inequality will be proved by a contradiction. Let there exist vn ∈H , vn ⇀ w with ‖vn‖ = 1
for which

〈(I − A)vn, vn〉 → 0.

Since H is weakly closed, w ∈H . The operator A is compact therefore

0 = lim
n→∞

〈(I − A)vn, vn〉 = 1− lim
n→∞

〈Avn, vn〉 = 1− 〈Aw,w〉.

This means 〈Aw,w〉 = 1. Clearly w 6= 0 and if it were 0 < ‖w‖ < 1, then we would have〈
A
(

w

‖w‖

)
,
w

‖w‖

〉
=

1

‖w‖2
> 1, (3.40)

which contradicts σ(A) ⊂ (0, 1] therefore ‖w‖ = 1 and in particular, w = ±e0 /∈ H , see (3.12).
This contradicts w ∈H .

Let r > 0. The sets Br will be defined as

Br := {v ∈H |〈(I − A)v, v〉 ≤ r2}.

The Proposition 1 gives that any set Br is closed, convex and bounded.

Proposition 2. The functional Φ defined by (3.38) is on a neighborhood of zero weakly sequentially
continuous.

Proof. The assumptions (3.1) gives that ΦB is weakly sequentially continuous on H. The operator
ΦN has the compact Fréchet derivative on a neighborhood of zero and according to [61][Theorem
41.9] it is weakly sequentially continuous. The functional ΦS(v) = 2−1〈Sv, v〉 is weakly continuous
because S is compact. Therefore the functional Φ is weakly continuous on Br for any sufficiently
small r.

Proposition 3. For any sufficiently small r > 0 the functional Φ attains on Br its maximum.

Proof. The statement follows directly from Theorem 38.A in [61] with the map F := −Φ. However,
we will write it for the sake of completeness in a detail. Let r > 0 be so small that N have the
potential on Br and

λr = sup
v∈Br

Φ(v).

There exists a sequence vn such that Φ(vn)→ λr. According to Proposition 1 the set Br is convex,
closed and bounded and this means that Br is weakly compact. Therefore there exists vr ∈ Br
and a subsequence vnk

⇀ vr. The functional Φ is according to Proposition 2 weakly continuous,
which leads to

λr = lim
k→∞

Φ (vnk
) = Φ(vr) ≤ λr.

Hence, λr = Φ(vr) for sufficiently small r > 0 and the maximum exists.
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Now let r0 > 0 be sufficiently small and define a map λ : (0, r0)→ R by λ(r) := λr.

Proposition 4. There exists r0 > 0 such that for any r ∈ (0, r0) any maximizer from Proposition
3 satisfies vr ∈ Sr, where Sr := {v ∈H |〈(I − A)v, v〉 = r2}.

Proof. Let us define Φ0 := ΦS + ΦB and put

λ(0) :=
1

r2
max
v∈Br

Φ0(v) = max
v∈B1

Φ0(v).

Therefore λ(0) ≥ λmax = Φ0(v0) > 0. Since

lim
r→0

sup
v∈Br

|ΦN (v)|
r2

= 0,

as follows from (3.5), (3.39), ΦN (0) = 0 and Mean Value Theorem, there must be

lim
r→0

λ(r) = λ(0) > 0. (3.41)

In particular, this means r−2Φ0(vr) > 0 for any sufficiently small r > 0. Let vr /∈ Sr for infinitely
many rn → 0. Then for any r = rn there exist t > 0 such that Φ(vr(1 + t)) ≤ Φ(vr). Dividing by
t gives

Φ(vr(1 + t))− Φ(vr)

t
≤ 0,

which after the limit t→ 0 and using Riesz Theorem yields 〈Φ′(vr), vr〉 ≤ 0. Since

lim
r→0

sup
v∈Br

〈N(v), v〉
r2

= 0,

as follows from (3.5) and (3.39), we get

lim
r→0

1

r2
〈Φ′(vr), vr〉 = lim

r→0

1

r2
〈S(vr)−B(vr)−N(vr), vr〉 =

= lim
r→0

1

r2
〈S(vr)−B(vr), vr〉 − lim

r→0

〈N(vr), vr〉
r2

=

= lim
r→0

1

r2
〈S(vr)−B(vr), vr〉 ≤ 0,

which contradicts (3.41). Hence, vr ∈ Sr for any sufficiently small r.

Proposition 5. For any r ∈ (0, r0) the number λ(r) and any maximizer vr satisfy

λ(r)(I − A)vr − Svr − B(vr)−N (vr) = 0.

Proof. The proof is based on Lagrange Multiplier method. For any r ∈ (0, r0) set U(v0) := H ,

G(v) := 〈(I − A)v, v〉 − r2,

and F (v) := Φ(v). Since F,G have continuous derivatives and G′(v0) = (I−A)v0 6= 0, Proposition
43.6 in [61] gives the claim, see also text below the proof.

The last step is show that limr→0 λ(r) = λmax. It was mentioned above that λ(0) > λmax.
Applying the Proposition 5 on the problem with N ≡ 0 gives that λ(0) is a critical point of the
problem (3.6). However, λmax is supposed to be the largest critical point of the equation (3.6),
which implies

max
v∈B1

Φ0(v) = λmax.

The formula (3.41) now gives the claim.
It remains to prove the non-existence of a bifurcation point larger than λmax.
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Lemma 15. Let {λn} be a sequence of real numbers such that λn → λ 6= 0, let {vn} be a sequence
in H satisfying vn → 0, vn/‖vn‖⇀ w and

λn(I −A)vn − Svn + B(vn)−N (λn, vn) = 0. (3.42)

Then
vn
‖vn‖

→ w, ‖w‖ = 1 and λw − Sw + B(w) = 0.

Proof. Dividing (3.42) by ‖vn‖ gives

λn(I −A)
vn
‖vn‖

= S
(

vn
‖vn‖

)
− B

(
vn
‖vn‖

)
+
N (λn, vn)

‖vn‖
. (3.43)

The operators S, A are compact and linear, the operator B satisfies (3.1) and the nonlinear
operator N satisfies (3.5), therefore the r.h.s. of the equation (3.43) converges strongly. Since
λn → λ 6= 0, it implies that vn/‖vn‖ converges strongly and the only possible limit is the vector
w, ‖w‖ = 1. Providing the limit in the equation (3.43) and using (3.5) yields

λ(I −A)w = Sw − B (w) .

Applied to our problem, every bifurcation point of (3.37) is also the critical point of (3.6) and
therefore λmax is the largest bifurcation point.

The crucial step of the proof of this theorem was a use of the Lagrange Multiplier Method.
We used the formulation from Proposition 43.6 in [61] which could be for our purposes rewritten
as follows. Let u0 ∈ H and let U(u0) be its neighborhood. If F,G : U(u0)→ R are C1 functionals
then there exists a real number λ0 such that the equation

F ′(u0)− λ0G
′(u0) = 0 (3.44)

holds, when the two following conditions are satisfied:

1. F has at u0 a local maximum w.r.t. the side condition M := {u ∈ U(u0)| G(u) = 0},

2. G′(u0) 6= 0.

The non-emptiness of the set M is guaranteed in the proof by Proposition 4.

Remark 21. By changing the signs and respective inequalities it is straightforward to modify the
previous results to getting the smallest eigenvalue of the problem (3.6). It is possible to see from
the proof that the assumption on the simplicity of 1 ∈ A is here superfluous.
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3.3 Topological Methods

3.3.1 Abstract Global Bifurcation Theorem

Exceptionally, we will be concerned with a problem different from (3.9), (3.7).

Notation 5. The space X will be a real Banach space with a norm ‖·‖, λ ∈ R will be a bifurcation
parameter, B : X→ X will be a positively homogeneous operator satisfying (3.1), L : X→ X will be
a linear compact operator, and N : R×X→ X will be a compact and continuous nonlinear operator
satisfying (3.5), where the limit is considered in X. The symbol deg will denote Leray-Schauder
degree, see Appendix.

The following global bifurcation theorem is a special case of abstract Theorem 7 in [55].

Theorem 7. Consider the problem

λv − Lv + B(v)−N (λ, v) = 0, (3.45)

on X. For any B, let S be defined by

S (B) = {(λ, v) ∈ (0,∞)× X | v 6= 0, (λ, v) satisfies (3.45)}.

Let us assume that positive λ1 < λ2 are not eigenvalues of the operator L − B and

deg

(
I − 1

λ1
(L − B), Br, 0

)
6= deg

(
I − 1

λ2
(L − B), Br, 0

)
for all r > 0. (3.46)

Then there exists λb ∈ [λ1, λ2] such that the connected component Sλb
of the set S (B) containing

the point (λb, 0) satisfies at least one of the following conditions:

1. Sλb
is unbounded,

2. there exists v ∈ X, v 6= 0 such that (0, v) ∈ Sλb
,

3. there exists an eigenvalue λc ∈ (0,+∞)\[λ1, λ2] of the operator L−B such that (λc, 0) ∈ Sλb
.

Proof. To obtain the assertion we use the abstract Theorem 7 in [55], where we set

Λ = (0,∞), Ω = X, Ω0 = Br, r > 0 small enough,

F = I, φ(λ, v) = λ−1(Lv − B(v) +N (λ, v)), x0 = 0

and B = B0 can be the system of all bounded subsets of Λ× Ω, see also remarks below Lemma
8 in [55]. The assumptions (7), (8) in that theorem and (a),(b) on the top of the p. 217 can be
written in our particular situation as the following conditions:

zero is an isolated solution of (3.45) for any λ in a neighbourhood of λ1 and λ2, (3.47)

deg

(
I − 1

λ1
(L − B +N ), Br, 0

)
6= deg

(
I − 1

λ2
(L − B +N ), Br, 0

)
for r > 0 small enough,

(3.48)

the set of all (λ, v) satisfying (3.45) is closed in (0,∞)× X, (3.49)

any closed and bounded set of (λ, v) satisfying (3.45) is compact. (3.50)

Let us verify these conditions. If (3.47) were not true then λn, vn satisfying (3.45) would exist
such that λn → λj , j = 1 or j = 2, vn → 0. Dividing (3.45) by ‖vn‖ and using the compactness
of L and B and the condition (3.5) we get a subsequence of vn satisfying vnk

/‖vnk
‖ → w with

some w ∈ X and λjw = Lw − B(w). Therefore λj is an eigenvalue of the operator L − B, and it
is a contradiction with the assumptions. The condition (3.48) for sufficiently small r > 0 follows
easily from (3.46) by the homotopy invariance of the degree (see also remark above Proposition
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14) by using the homotopy H(t, v) = v − 1
λj

(Lv − Bv + tN (λj , v)), t ∈ [0, 1] and the assumption

(3.5). The condition (3.49) is clearly fulfilled due to continuity of our maps. The condition (3.50)
follows from the compactness of the operator L − B +N .

Now, the assertion of Theorem 7 in [55] translated to our particular situation gives the assertion
of our Theorem 7. Let us only recall that we have chosen B0 as the system of all bounded subsets
of (0,∞) × X and therefore our case (3) coincides with the condition (i) in Theorem from [55]
stating that Sb is not contained in a set from B0.

3.3.2 Global bifurcation theorem for the problem (3.9)

Now we return back to the notation from Section 3.1. We are going to prove a global
bifurcation result for the problem (3.9), which has a form

λv − Sv + B(v)−N (λ, v) = 0, (3.51)

using the theorem proved in the previous section.

Theorem 8. Let λSmax be positive, let its multiplicity be odd, let λS2 denote the second largest
eigenvalue of S. Then for any ε ∈ (0,min{(λSmax − λS2 )/2, λSmax}) there exists τ0 > 0 such that
the following assertion is true. If B satisfies |B| ≤ τ0 and S − B fulfills (3.15) with v0 being a
maximizer of (3.16) with A ≡ 0, then λSmax − ε < λmax and there is a global bifurcation point
λb ∈ [λSmax − ε, λmax] of the problem (3.51) in the following sense. The connected component Sλb

of S (B) containing the point (λb, 0) ∈ R×H satisfies at least one of the following conditions:

(i) Sλb
is unbounded,

(ii) there exists v ∈ H, v 6= 0 such that (0, v) ∈ Sλb
,

(iii) there exists an eigenvalue λc /∈ [λSmax−ε, λmax] of the operator S−B such that (λc, 0) ∈ Sλb
.

Remark 22. Consider now B ≡ 0 and assume that all assumptions of Theorem 8 are fulfilled.
Then it is well-known that λb = λSmax, as follows from Rabinowitz Theorem. However, Rabinowitz
Theorem cannot be applied to the problem (3.51), because of the presence of the positively homo-
geneous operator B. For this reason Theorem 8 can be considered as a modification of Rabinowitz
Theorem for the problems (3.51), but in contrast to it, our theorem does not give any assertion
for any other eigenvalues than the largest one.

For the proof of this Theorem we will need an auxiliary lemma.

Lemma 16. For any ε > 0 there exists τ0 > 0 such that

deg

(
I − 1

λ
(S − B), Br, 0

)
= deg

(
I − 1

λ
S, Br, 0

)
for any λ ∈ R\{0} satisfying dist(λ, σ(S)) > ε, any B with |B| ≤ τ0, and all r > 0.

Proof. Due to a homotopy invariance of the degree it suffices to prove that for any ε > 0 there is
τ0 > 0 such that

v − 1

λ
(Sv − tB(v)) 6= 0 for all λ,B from the assumptions, t ∈ [0, 1], ‖v‖ = 1.

Let us suppose that it is not true. Then there exist ε > 0, tn ∈ [0, 1], λn with dist(λn, σ(S)) > ε,
Bn and vn with ‖vn‖ = 1 for all n ∈ N, satisfying

λn → λ, vn ⇀ v, ‖Bn(vn)‖ → 0, (3.52)
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and
λnvn − Svn + tnBn(vn) = 0. (3.53)

Since dist(λn, σ(S)) > ε we have |λn| > ε for all n ∈ N. The compactness of S together with
(3.52), (3.53) gives vn → v, ‖v‖ = 1. Providing the limit in the equation (3.53) leads to

λv − Sv = 0,

but simultaneously dist(λ, σ(S)) > ε which is a contradiction.

Proof of Theorem 8. Due to Leray-Schauder Index Formula, see pg. 109 in Appendix, and the
assumed odd multiplicity of λSmax we have

deg

(
I − 1

λ
S, Br, 0

)
= 1 for all λ > λSmax, r > 0

deg

(
I − 1

λ
S, Br, 0

)
= −1 for all λ ∈ (λS2 , λ

S
max), r > 0,

where λS2 is the second largest eigenvalue of S. Lemma 16 gives that for any ε from the assumptions
there exists τ0 > 0 such that for B satisfying |B| ≤ τ0

deg

(
I − 1

λ
(S − B), Br, 0

)
= deg

(
I − 1

λ
S, Br, 0

)
= 1 for all λ > λSmax + ε, r > 0

deg

(
I − 1

λ
(S − B), Br, 0

)
= deg

(
I − 1

λ
S, Br, 0

)
= −1 for all λ ∈ (λS2 + ε, λSmax − ε), r > 0.

We take τ0 smaller, if necessary, to ensure that λmax exists and is positive, see the estimate in
Observation 4. It follows from Theorem 7 that there exists λb ∈ [λSmax− ε, λSmax + ε] such that the
closure of a connected component Sλb

of S (B) containing the point (λb, 0) satisfies at least one
of the alternatives (i)–(iii) of Theorem 7.

According to Theorem 4 with A ≡ 0 the largest eigenvalue λmax of S − B exists. Observation
4 gives that λSmax − ε < λmax, if τ0 is small enough.

According to Lemma 15, there is no bifurcation point larger than the largest critical point
λmax and the number λb must be in the interval [λSmax− ε, λmax] and at least one of the conditions
(i)–(iii) of Theorem 7 must be fulfilled.
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3.4 Results based on Implicit Function Theorem

Notation 6. The notation from Section 3.1 will be supplemented with the following three assump-
tions.

(A) B is Lipschitz continuous with a Lipschitz constant L.

(B) N has the continuous Fréchet derivative N ′ and the derivative of N w.r.t. v satisfy
∂vN (λ, 0) = 0 for all λ ∈ R.

(C) If 1 ∈ σ(A), the operator S satisfy Se0 6= 0.

The aim of this section is to study Crandall-Rabinowitz type bifurcation, see Theorem 25 in
Appendix, for nonlinear equations of a type

λ(I − A)v − Sv + B(v)−N (λ, v) = 0, (3.54)

from eigenvalues of positively homogeneous equations

λ(I − A)v − Sv + B(v) = 0. (3.55)

A special role will play here also a linear equation

λ(I − A)v − Sv = 0. (3.56)

Observation 5. Let 1 ∈ σ(A). Since 0 is not an eigenvalue of S by the assumption (C), e0 cannot
be an eigenvector of (3.56). For this reason the scalar product 〈(I − A)v, v〉 is positive for any
eigenvector of (3.56). And even more, since A is compact, zero is an isolated eigenvalue of (I−A),
and therefore there does not exist a sequence of eigenvectors of (3.56) satisfying 〈(I −A)vn, vn〉 →
0. If dim Im(S) = +∞, the assumption (C) follows directly from the compactness of S.

Theorem 9. Let λS be a simple eigenvalue of the problem (3.56), not necessarily the largest one,
and vs be the respective eigenvector. There exist R > 0, L0 > 0, δ > 0 such that for any B with the
Lipschitz constant L < L0 there exist four Lipschitz continuous maps v+, v− : [0, R]→ H, λ+, λ− :
[0, R]→ R for which the following is true:

(a) a pair (λ, v) ∈ R × H with ‖v‖ + |λ − λS | ≤ δ is a solution of (3.54) if and only if there
exists r ∈ (0, R] such that either (λ, v) = (λ+(r), rv+(r)) or (λ, v) = (λ−(r), rv−(r)). A pair
(λ, v) is a solution of (3.55) with |λ − λS | < δ if and only if either (λ, v) = (λ+(0), v+(0) or
(λ, v) = (λ−(0), v−(0)), up to positive multiples of v±(0).

(b) if B(vs) 6= −B(−vs), then (λ+(0), v+(0)) 6= (λ−(0), v−(0)),

(c) for any ε > 0 a constant L1 ∈ (0, L0) exists such that for any B with the Lipschitz constant
L < L1 it is true that

|λ+(0)− λS | < ε, |λ−(0)− λS | < ε, |v+(0)− vs| < ε, |v−(0) + vs| < ε,

(d) if 〈B(vs), vs〉 > 0, then λ+(0) < λS, if 〈B(−vs),−vs〉 > 0, then λ−(0) < λS.

Proof. The pair (λS , vs) satisfies
λS(I − A)vs = Svs. (3.57)

We let ‖vs‖ = 1 without loss of generality. Since λS is a simple eigenvalue of (3.56), its eigenspace
is Span{vs}. We write λ and v in (3.54) as

λ = λS + λ̂, (3.58)

v = r(vs + v̂), (3.59)
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with r > 0, v̂ ∈ {vs}⊥, λ̂ ∈ R. Then the equation (3.54) has a form

(λS + λ̂)(I − A)(r(vs + v̂))− S(r(vs + v̂)) + B(r(vs + v̂))−

−N (λS + λ̂, r(vs + v̂)) = 0.

Use of (3.57) gives

λS(I − A)(rv̂) + λ̂(I − A)(rvs)− S(rv̂) = −λ̂(I − A)(rv̂)− B(r(vs + v̂)) +N (λS + λ̂, r(vs + v̂)).

We define a map J : R× {vs}⊥ → H by

J (µ, ŵ) := λS(I − A)ŵ + µ(I − A)vs − Sŵ, for all µ ∈ R, ŵ ∈ {vs}⊥,

and rewrite the last equation as

J (rλ̂, rv̂) = −λ̂(I − A)rv̂ − B(r(vs + v̂)) +N (λS + λ̂, r(vs + v̂)). (3.60)

Lemma 17. The map J is an isomorphism.

Proof. Any w ∈ H can be uniquely written as w = µ(I − A)vs + ŵ, where µ ∈ R, ŵ ∈ {vs}⊥; if
1 /∈ σ(A) this is clear from the invertibility of (I −A), if 1 ∈ σ(A), this follows from the fact that
vs 6= ±e0, see also Observation 5. According to Fredholm Alternative, the operator λS(I −A)−S
is injective on {vs}⊥. As the inverse operator J−1(w) := (µ, (λS(I − A) − S)−1ŵ) is defined on
R×{vs}⊥, the operator J is a bijection. The linearity of J follows directly from the definition.

For given r > 0 we define a nonlinear map Q+
r : R× {vs}⊥ → R× {vs}⊥ by

Q+
r (λ̂, v̂) :=

1

r
J−1

(
−λ̂(I − A)(rv̂)− B(r(vs + v̂)) +N (λS + λ̂, r(vs + v̂))

)
(3.61)

and rewrite (3.60) as

(λ̂, v̂) = Q+
r (λ̂, v̂). (3.62)

The equation (3.54) is now rewritten as a fixed-point problem. As N satisfies (3.5), it is suitable
to define the map Q+

0 by

Q+
0 (λ̂, v̂) = J−1

(
−λ̂(I − A)v̂ − B(vs + v̂)

)
.

The space R× {vs}⊥ will be equipped with the norm

‖(µ, v)‖2 :=
(
|µ|2 + ‖v‖2

) 1
2 for all (µ, v) ∈ R× {vs}⊥.

The norm of J−1 will be defined as

|J−1| := sup
v∈H,‖v‖=1

‖J−1(v)‖2

For further purposes we also define a norm of operator I − A by

|I − A| = sup
v∈H,‖v‖=1

‖(I − A)v‖.

Lemma 18. There exists Lb > 0, Rb > 0, Cb > 0 such that for any operator B with L < Lb and
any r ∈ [0, Rb] the map Q+

r maps the ball BCb
(0) ⊂ R× {vs}⊥ into itself.
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Proof. Let λ̂ ∈ R, v̂ ∈ {vs}⊥. Then

‖Q+
r (λ̂, v̂)‖22 =

∥∥∥∥∥J−1

(
−λ̂(I − A)v̂ − B(vs + v̂) +

N (λS + λ̂, r(vs + v̂))

r

)∥∥∥∥∥
2

2

≤

≤ |J−1|2
(
|λ̂||I − A|‖v̂‖+ ‖B((vs + v̂))− B(0)‖+

∥∥∥∥∥N (λS + λ̂, r(vs + v̂))

r

∥∥∥∥∥
)2

≤

≤ |J−1|2
(
|λ̂||I − A|‖v̂‖+ Lb(1 + ‖v̂‖) + C(r)(1 + ‖v̂‖)

)2

≤

≤ |J−1|2 (Λb|I − A|nb + (C(Rb) + Lb) (1 + nb))
2
,

where C(r)→ 0 as r → 0, see also (3.5), and nb,Λb, Rb are yet unknown bounds on ‖v̂‖, λ̂, r. We
also used that ‖vs‖ = 1. Now we use the Young inequality to get

|J−1|2 ((C(Rb) + Lb) (1 + nb) + Λb|I − A|nb)2 ≤

≤ 3

2
|J−1|2Λ2

b |I − A|2n2
b +

3

2
|J−1|2 (Lb + C(Rb))

2
(1 + nb)

2.

It remains to find Λb, nb, Lb, Rb for which

3

2
|J−1|2Λ2

b |I − A|2n2
b +

3

2
|J−1|2 (Lb + C(Rb))

2
(1 + nb)

2 ≤ n2
b + Λ2

b . (3.63)

Dividing (3.63) by Λ2
b , n

2
b gives

3

2

|J−1|2 (C(Rb) + Lb)
2

(1 + nb)
2

Λ2
bn

2
b

+ |J−1|2|I − A|2 ≤ 1

Λ2
b

+
1

n2
b

.

The r.h.s. can be done larger than |J−1|2|I − A|2 by a choice of Λb, nb, and then Lb, Rb must be
found accordingly small in order to fulfill this inequality.

In sum, it is possible to find Λb, nb, Rb and Lb so small that if L < Lb, r ∈ (0, Rb] then

‖Q+
r (λ̂, v̂)‖2 ≤

√
n2
b + Λ2

b , for any λ̂, v̂ with |λ̂| < Λb, ‖v̂‖ < nb.

Define Cb :=
√
n2
b + Λ2

b . Then for any λ̂, v̂, ‖(λ̂, v̂)‖2 ≤ Cb we have

‖Q+
r (λ̂, v̂)‖2 ≤ Cb.

and therefore Q+
r maps the ball BCb

into itself.

Lemma 19. There exists Lc > 0, Rc > 0, Cc > 0 so that for any B with L < Lc and any
r ∈ [0, Rc], the map Q+

r is a contraction on BCc
.

Proof. Let λ̂1, λ̂2 ∈ R and v̂1, v̂2 ∈ {vs}⊥. Use Lemma 18 to get Lb, Rb, Cb. Since N ∈ C1(R×H),
the Mean Value Theorem gives∥∥∥∥∥N (λS + λ̂1, r(vs + v̂1))

r
− N (λS + λ̂2, r(vs + v̂2))

r

∥∥∥∥∥
2

≤

≤ sup
(µ,w)∈BRc

‖N ′(µ,w)‖2
(
|λ̂2 − λ̂1|2 + ‖v̂1 − v̂2‖2

)
.
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Then

‖Q+
r (λ̂1, v̂1)−Q+

r (λ̂2, v̂2)‖22 =

=
∥∥∥J−1

(
− λ̂1(I − A)v̂1 − B(vs + v̂1) +

N (λS + λ̂1, r(vs + v̂1))

r
+

+ λ̂2(I − A)v̂2 + B(vs + v̂2)− N (λS + λ̂2, r(vs + v̂2))

r

)∥∥∥2

2
≤

≤ |J−1|2
∥∥∥(λ̂2 − λ̂1)(I − A)v̂1 − λ̂2(I − A)(v̂1 − v̂2)−

− B(vs + v̂1) + B(vs + v̂2) +
N (λS + λ̂1, r(vs + v̂1))

r
− N (λS + λ̂2, r(vs + v̂2))

r

∥∥∥2

≤

≤ |J−1|2
(
|I − A|2|λ̂2 − λ̂1|2‖v1‖2 + |λ̂2|2‖I − A‖2‖v̂1 − v̂2‖2 + L2

c‖v̂1 − v̂2‖2+

+ sup
(µ,w)∈BRc

‖N ′(µ,w)‖2(|λ̂2 − λ̂1|2 + ‖v̂1 − v̂2‖2)
)
≤

≤ K
(
|(λ̂1 − λ̂2)|2 + ‖v̂1 − v̂2‖2

)
= K‖(λ̂1, v1)− (λ̂2, v2)‖22, for all ‖v̂1,2‖ ≤ nc, λ̂1,2 < Λc

where BRc
is a the smallest ball with the center at (λS + λ̂1, r(vs + v̂1)) containing the point

(λS + λ̂2, r(vs + v̂2)) and Lc, nc,Λc are bounds to be determined and

K := |J−1|2 max

{
|I − A|2n2

c + sup
(µ,w)∈BRc

‖N ′(µ,w)‖2,

Λ2
c |I − A|2 + L2

c + sup
(µ,w)∈BRc

‖N ′(µ,w)‖2
}
.

(3.64)

It is possible to choose Lc ≤ Lb, Cc ≤ min{Λc, nc, Cb}, Rc ≤ Rb so small that for any B with

L < Lc, for any r ≤ Rc and any λ̂1, λ̂2, v̂1, v̂2 ∈ BCc
the constant K satisfy K ∈ (0, 1), and

Lemma 18 gives the assertion.

Alternatively, we can choose in (3.58) vector −vs and do the whole procedure again to get a
problem

(λ̂, v̂) = Q−r (λ̂, v̂), (3.65)

where

Q−r (λ̂, v̂) :=
1

r
J−1

(
−λ̂(I − A)(rv̂)− B(r(−vs + v̂)) +N (λS + λ̂, r(−vs + v̂))

)
. (3.66)

Analogously, the map Q−0 will be defined by

Q−0 (λ̂, v̂) = J−1
(
−λ̂(I − A)v̂ − B((−vs + v̂))

)
.

Application of Lemma 19 on Q−r yield a set of constants L̃c, R̃c, C̃c for Q−r .
Let the Lipschitz constant L of B satisfy L < L0 := min{Lc, L̃c} and put R := min{Rc, R̃c}.

Define the closed balls
B+ := BCc

, B− := BC̃c
(0).

Since (B+, ‖ · ‖) is a complete metric space, the equation (3.62) has for any r ∈ (0.Rc) a solution
according to the Fixed Point Theorem and thus also (3.54) has a solution. Moreover, this solution
is unique in the closed ball B+. Define the maps

λ+(r) := λS + λ̂r, v+(r) := v̂r,
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where for any r ∈ [0, R], (λ̂r, v̂r) is a fixed point of (3.62). Similar procedure will be done for the
negative case – there is the unique fixed point of (3.65) in the set B−, and therefore the maps
λ−(r), v̂−(r) and consequently the maps (λ−(r), v−(r) can be defined.

The continuity and linearity of J together with (3.5) give

lim
r→0
Q+
r (λ, v) = lim

r→0
J−1

(
−λ̂(I − A)(v̂)− B((vs + v̂)) +

N (λS + λ̂, r(vs + v̂))

r‖vs + v̂‖
‖vs + v̂‖

)
=

= Q+
0 (λ, v), for all (λ, v) ∈ R× {vs}⊥,

and therefore the fixed point problem

(λ̂, v̂) = Q+
0 (λ̂, v̂), (3.67)

is equivalent to (3.55). There is a unique fixed point (λ̂0, v̂0) of (3.67) in B+. Define

λ+(0) := λS + λ̂0, v+(0) = v̂0.

Similarly for the case with the negative sign. The values λ±(0) are eigenvalues of (3.55) with
the respective eigenvectors v±(0). Since these points are unique, there are no other eigenvalues
and eigenvectors in the sets B±. As the problem (3.55) is positively homogeneous, any positive
multiple of v±(0) is also a solution of this equation with λ = λ±(0).

The map Qr is Lipschitz continuous w.r.t. (λ, v), see (A) and C1-continuous w.r.t parameter
r, see (B) in Notation 6 and (3.5), and therefore the fixed points determining maps v±(r), λ±(r)
are Lipschitz continuous in [0, R] w.r.t r as well, see [60][§ 1.2].

Now it remains to choose δ ≤ min{nc, ñc,Λc, Λ̃c} sufficiently small such that (a) is true.
Assume B(vs) 6= −B(−vs), then the mappings Q+

0 and Q−0 satisfy Q+
0 (0, 0) 6= Q−0 (0, 0). As

Q±0 are continuous w.r.t. λ̂, v̂, it is possible to take L,R, nc, ñc,Λc, Λ̃c smaller if necessary such
that Q+

0 (B+) ∩ Q−0 (B−) = ∅. Then the fixed points of the problems (3.62), (3.65) with Q+
0 and

Q−0 are different, which leads to (λ+(0), v+(0)) 6= (λ−(0), v−(0)). This gives (b). See also Fig 3.2.

Figure 3.2: The sketch of the sets Q+
0 (B+), Q−0 (B−). Since Q+

0 (0, 0) 6= Q−0 (0, 0), and Q±0 are
continuous, the sketched sets are disjoint for small B±.

If |B| → 0, then Q+
r (λ̂, v̂) and Q−r (λ̂, v̂) converge to

Q+
r (λ̂, v̂) = J−1

(
−λ̂(I − A)v̂ +

N (λ̂, r(vs + v̂)

r

)
,

Q−r (λ̂, v̂) = J−1

(
−λ̂(I − A)v̂ +

N (λ̂, r(−vs + v̂)

r

)
,
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for all (λ̂, v̂) ∈ R× {vs}⊥. The maps Q+
0 ,Q

−
0 are

Q+
0 (λ̂, v̂) = J−1

(
−λ̂(I − A)v̂

)
,

Q−0 (λ̂, v̂) = J−1
(
−λ̂(I − A)v̂

)
,

and since λS is, as an eigenvalue of compact operator, isolated and the fixed point problem is
equivalent to (3.56), the only fixed points of both of them in sufficiently small ball are zeros, i.e.
λ+(0) = λ−(0) = λS , v̂ = 0, therefore v+(0) = vs, v−(0) = −vs. Since L→ 0 implies |B| → 0, (c)
is proven.

It remains to prove (d). A couple (λ+(0), v+(0)) satisfy

λ+(0)(I − A)v+(0)− Sv+(0) + B(v+(0)) = 0.

Multiplying it by vs, multiplying (3.57) by v+(0) , subtracting the results and using the symmetry
of S give

(λ+(0)− λS(0))〈(I − A)v+(0), vs〉+ 〈B(v+(0), vs〉 = 0.

Since 〈(I −A)v+(0), vs〉 > 0 for B with sufficiently small Lipschitz constant L, see (c) and Obser-
vations 3, 5, this can be rewritten as

λ+(0)− λS(0) = − 〈B(v+(0)), vs〉
〈(I − A)v+(0), vs〉

.

The r.h.s. is negative due to the assumption 〈B(vs), vs〉 > 0, (c) and continuity of B. Hence,
λ+(0)−λS(0) < 0 for B with sufficiently small Lipschitz constant L. The proof for 〈B(−vs),−vs〉 >
0 is similar.

Remark 23. Let us give a few comments to the previous theorem.
The assertion (c) can be roughly formulated that λ+(0), λ−(0)→ λS, v+(0)→ vs, v−(0)→ −vs

as the Lipschitz constant of B converges to zero.
If one considers the operator B := τ B̃, where τ ∈ R and B̃ is an operator satisfying assumptions

on B independent of τ , then for any sufficiently small τ the assertion of Theorem 9 is true. In
this case, the maps λ±, v± are depending on τ , and it is possible to prove that there exists τ0 such
that for any τ < τ0 the maps v±, λ± are Lipschitz continuous w.r.t. τ . To prove this it suffices
to realize that the mappings Q± defined in (3.61), (3.66) are then Lipschitz continuous w.r.t. τ .
Similar argument as in the proof of Lipschitz continuity of λ±, v± gives the Lipschitz continuity
of fixed points w.r.t. τ .

However, the dependence B := τ B̃ is in general not true for the problems (1.14), (1.10), cf.
also Remark 26 on pg. 65.

The next paragraph contains a bifurcation result which is similar to conclusions of Theorem 9.
This one, developed by Lutz Recke and Martin Väth, in [47] is applicable for much more general
problems, as can be immediately seen from the equation (3.68). On the other hand, the operator
G is depending on a real parameter τ , which is not present in the problem (1.14), (1.10), i.e. this
result is in general not applicable to our problems, see also Remark 23.

General result concerning homogenizable equations For further purposes we will place
here the general result from the paper [47], which has been developed by Lutz Recke and Martin
Väth.

The studied problem will be now more general:

F(λ, u) = τG(τ, λ, u), (3.68)
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where F : R× X→ Y and G : R2 × X→ Y are maps, X,Y are Banach spaces, and

F(λ, 0) = G(τ, λ, 0) = 0 for all τ, λ ∈ R. (3.69)

Hence, for all τ and λ there exists the so-called trivial solution u = 0 to (3.68), and we are going to
describe local bifurcation of nontrivial solutions to (3.68) from the trivial solution. Let us suppose
that the map F is C2-smooth and that

∂uF(0, 0) is a Fredholm operator of index zero from X into Y,

Ker ∂uF(0, 0) = Span{u0}, ∂λ∂uF(0, 0)u0 /∈ Im ∂uF(0, 0).
(3.70)

The assumption (3.70) gives that ∂uF(0, 0) is a subspace of codimension one in Y and hence,
there exists a functional v?0 ∈ Y∗, such that

Im ∂uF(0, 0) = {u ∈ H|〈v?0 , u〉 = 0}.

Then clearly

κ := 〈v∗0 , ∂u∂λF(0, 0)u0〉 6= 0. (3.71)

Unlike to F there will be not assumed that G in (3.68) is differentiable. Instead, we assume that

there exists a map G0 : R2 × X→ Y such that

lim
r↘0

1

r
G(τ, λ, ru) = G0(τ, λ, u) for all τ, λ ∈ R and u ∈ X.

(3.72)

Moreover, we suppose that the map G1 : [0,∞)× R2 × X→ Y, defined by

G1(r, τ, λ, u) :=

{
1
rG(τ, λ, ru) for r > 0,

G0(τ, λ, u) for r = 0,
(3.73)

is Lipschitz continuous on sufficiently small bounded sets, i.e. there exist c > 0 and L > 0 such
that

‖G1(r1, τ1, λ1, u1)− G1(r2, τ2, λ2, u2)‖ ≤ L (|r1 − r2|+ |τ1 − τ2|+ |λ1 − λ2|+ ‖u2 − u2‖)
for all rj ∈ [0, c], τj , λj ∈ [−c, c], uj ∈ X, ‖uj‖ ≤ c, j = 1, 2.

(3.74)

Theorem 10. Suppose (3.69), (3.70), (3.72) and (3.74). Under above given assumptions there

exist ε > 0, δ > 0 and Lipschitz continuous maps λ̂+, λ̂− : [0, ε] × [−ε, ε] → R and û+, û− :
[0, ε]× [−ε, ε]→ X such that the following is true:

(i) (τ, λ, u) is a solution to (3.68) with |τ |+ |λ|+ ‖u‖ ≤ δ and u 6= 0 if and only if for certain

r ∈ (0, ε] it holds λ = λ̂+(r, τ), u = rû+(r, τ) or λ = λ̂−(r, τ), u = rû−(r, τ).

(ii) λ̂+(0, 0) = λ̂−(0, 0) = 0, û+(0, 0) = u0, û−(0, 0) = −u0 and

lim
τ→0

λ̂+(0, τ)

τ
=
〈v∗0 ,G0(0, 0, u0)〉
〈v∗0 , ∂λ∂uF(0, 0)u0〉

, (3.75)

lim
τ→0

λ̂−(0, τ)

τ
= − 〈v

∗
0 ,G0(0, 0,−u0)〉

〈v∗0 , ∂λ∂uF(0, 0)u0〉
. (3.76)

(iii) Suppose

ρ := −〈v
∗
0 , ∂

2
uF(0, 0)(u0, u0)〉

2〈v∗0 , ∂λ∂uF(0, 0)u0〉
6= 0. (3.77)

Then for all r ∈ [0, ε] and τ ∈ [−ε, ε] we have

λ̂+(r, τ)− λ̂+(0, τ) ≥ ρr,
λ̂−(r, τ)− λ̂−(0, τ) ≤ −ρr,

}
if ρ > 0
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and
λ̂+(r, τ)− λ̂+(0, τ) ≤ ρr,
λ̂−(r, τ)− λ̂−(0, τ) ≥ −ρr,

}
if ρ < 0.

Proof. For the proof see [47].

Observation 6. Putting F := λ(I − A)− S, G := −τ B̃ leads to an equation

λ(I − A)− S + τ B̃ = 0,

which is a special case of (3.54), with the operator B := τ B̃. However, as mentioned in Remark
23, this abstract equation is in general not applicable on the systems (1.14), (1.10).

Remark 24. If G ≡ 0 in (3.68), it can be seen that the assumptions and conclusions of Theorem
10 are even stronger that the one of Crandall-Rabinowitz Theorem. Therefore Theorem 10 is a
generalization of Crandall-Rabinowitz Theorem for more general problems (3.68).
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Chapter 4

Application to reaction-diffusion systems

4.1 Introductory remarks

The following chapter is the essential part of the dissertation thesis, because it contains the
results about the existence of stationary solutions of reaction-diffusion systems with unilateral
terms. The goal of this chapter will be to apply theorems from Chapter 3 to the first equations
in (2.49) and (2.64), and consequently get the critical and bifurcation points of the problems
(1.14) with (homogeneous) Dirichlet/mixed b.c. and (1.14) with the (homogeneous) Neumann
b.c., respectively. We will also present some results for the problems (2.66), (2.67) and (2.66),
(2.74) with the unilateral sources on the boundary and one result for a problem with nonlinear
functions n1, n2 satisfying (2.31).

4.2 Systems with Dirichlet or mixed boundary conditions

Before going to theorems about critical and bifurcation points of reaction-diffusion systems with
unilateral sources, it will be suitable to summarize the content of the previous chapters. In
Section 2.2.1 the reaction-diffusion system (1.14) having the unilateral terms and Dirichlet/mixed
boundary conditions was rewritten as a system of two operator equations (2.25) on the Hilbert
space W 1,2

D (Ω) × W 1,2
D (Ω). Afterwards, in Section 2.2.2 this system was rewritten to the form

(2.43), where the first equation with the symmetric compact operator S is depending only on one
variable and two parameters, with the first one, denoted as d1, being fixed and the second one,
denoted as d2, being a bifurcation parameter. The eigenvalues of S are simultaneously critical
points of the linear problem (1.12) with fixed d1, Dirichlet/mixed b.c.

In Section 2.4 the problem with unilateral terms on the boundary was formulated.

Notation 7. We will use in this section the notation and the assumptions from Section 2.1. The
assumptions (2.1) – (2.9) are supposed to be true in the whole chapter. Under the term solution
we will always mean the weak solution. The numbers κk are eigenvalues of the Laplacian with
(homogeneous) Dirichlet/mixed boundary conditions ordered in a growing sequence, see (2.12).
The eigenvalues of the operator S are denoted by λSk and were found explicitly in the formula
(2.39). The critical points of (1.12) with fixed d1 and Dirichlet/mixed b.c. are denoted by d0

2,k, see

(2.40), the largest critical point is denoted by d0
2,max. For the definitions of critical and bifurcation

points see Definition 5 on page 8.
Finally, let us emphasize that s± denote the derivatives of ĝ± w.r.t. ξ at zero, see (2.8).
For further purposes we define here a set

K := {v ∈ H | β+(v) + β−(v) = 0},

cf. also Notation 3 on pg 38.
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In some of the theorems in this section we will use the following assumption:

ess supp(s+) ∩ ess supp(s−) = ∅. (4.1)

The empty intersection of the essential supports of s± will guarantee that K is a closed convex
cone.

Theorem 11. Assume (2.10), (2.21), (4.1) and fixed d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
. The number

dm2 defined by

dm2 := sup
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
Ω

( ∞∑
k=1

ξkek

)−
s−(x)−

( ∞∑
k=1

ξkek

)+

s+(x)

 ej dx

∞∑
j=1

ξ2
j

(4.2)

can be estimated by

d0
2,max ≥ dm2 ≥ max

sup
j∈N

(
λSj −

‖s−‖L∞ + ‖s+‖L∞
κj

)
, sup
{ξj}∈`2\{0}∑

ξjej∈K

∞∑
j=1

λSj ξ
2
j∑∞

i=1 ξ
2
i

 . (4.3)

If dm2 is positive, then the supremum in (4.2) is maximum, i.e.

dm2 = max
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
Ω

( ∞∑
k=1

ξkek

)−
s−(x)−

( ∞∑
k=1

ξkek

)+

s+(x)

 ej dx

∞∑
j=1

ξ2
j

, (4.4)

and it is the largest critical point of the system (1.16), (1.10) with fixed d1. If d1 ∈ (y2, y1),
‖s−‖L∞ > 0, ‖s+‖L∞ > 0 and dm2 > 0, then (d1, d

m
2 ) ∈ DS.

The proof is postponed to the next section. Let us note that if the first supremum in (4.3) is
positive, then it is the maximum. Similarly, if the supremum over K in (4.3) is positive, then it is
the maximum, see Theorem 3.2 in [5].

Corollary 4. If ‖s±‖L∞ are sufficiently small, then dm2 from (4.2) is positive. If, d1 ∈ (y2, y1)
and ‖s±‖L∞ are both positive and sufficiently small, then dm2 is a critical point of (1.16), (1.10)
with fixed d1 and (d1, d

m
2 ) ∈ DS.

This first assertion of the corollary follows directly from the fact that λSmax > 0 for d1 ∈
(0, y1)\

{
yj
∣∣ j = 2, 3, · · ·

}
and from (4.3). The second statement is a consequence of two last

assertions of Theorem 11.
The following lemma is about the maximum over the cone K in (4.3).

Lemma 20. Let ess sup(s+), ess sup(s−) have nonempty interiors. There exists ε > 0 such that
for any d1 ∈ [y1 − ε, y1) the supremum over K in (4.3) is positive. Hence, dm2 in (4.2) is positive
and d1 ∈ [y1 − ε, y1) then (d1, d

m
2 ) ∈ DS.

Proof. The assumptions (2.10), (2.21), (4.1) guarantee that K is a closed convex cone. The only
assumption for application of Remark 3.4 in [5] is an existence of v ∈ K with 〈v, e1〉 6= 0. Since
essential supports of s± have nonempty interiors, any v positive on Ω+ or on Ω− and zero elsewhere
satisfies this condition because

〈v, e1〉 =

∫
Ω

∇v∇e1 dx = κ−1
1

∫
Ω

ve1 dx 6= 0,

and because of (2.21). Remark 3.4 in [5] gives the claim of the first assertion. The second statement
follows from the last assertion of Theorem 11
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4.2. Systems with Dirichlet or mixed boundary conditions

Analogous lemma can be proved for d1 ∈ (yk+1, yk), k ≥ 2. In such a case however (d1, d
m
2 ) ∈ DU ,

which is not of our interest.
Although for the Dirichlet or mixed problem it is only considered d1 ∈ (0, y1), Theorem 11

can be easily modified for the cases d1 < 0 and d1 > y1. However, in these cases it is not fulfilled
(d1, d

m
2 ) ∈ R2

+ and therefore are not interesting for us.
It should be emphasized that the bounds in (4.3) can be found explicitly for particular systems.

Remark 25. In the proof of the last assertion of Theorem 11 we will use the fact that the first
eigenvalue κ1 of Laplacian is simple and the eigenfunction e1 does not change its sign in Ω. Under
a more general assumption

e /∈ K for all eigenfunctions e corresponding to the eigenvalues κj0 , (4.5)

where j0 is such an index that d0
2,max = λSj0 , the proof of Theorem 11 can be modified to get the

statement dm2 < d0
2,max. However, in the case k > 1 it does not imply (d1, d

m
2 ) ∈ DS because the

point (d1, d
0
2,max) can lie above the hyperbolas Cj with j ≤ j0, see Lemma 8 on pg. 23. Therefore

the case j0 > 1 is not included in the last statements of Theorems 11, 13.

The situation for small ‖s±‖L∞ is sketched in Fig. 4.1. Full black lines are the curves Cj .

Figure 4.1: Sketch of hyperbolas for Dirichlet/mixed problem with unilateral terms.

Dashed black lines are lower bounds to the largest critical points of the system (1.16), (1.10) given
by the expressions in (4.3), which depend continuous on d1 except the points d1 = yj , for all j ∈ N.
Grey filling marks an area in DS containing critical and bifurcation points of the problem (1.16),
(1.10) and (1.14), (1.10), respectively, see Corollary 4 Lemma 20 and Theorem 13 below.

Theorem 12. Let d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
and let (2.10), (2.21), (2.27), (2.29), (2.31),

(4.1) be fulfilled. If the point dm2 from Theorem 11 is positive, then it is the largest bifurcation
point of the problem (1.14), (1.10).
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4.2. Systems with Dirichlet or mixed boundary conditions

Let use denote

S = {(d2, u, v) ∈ R×W 1,2
D (Ω)×W 1,2

D (Ω) | (u, v) 6= 0 is solution of (1.14), (1.10) with fixed d1}.

Theorem 13. Let d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
, let (2.10), (2.21), (2.27), (4.1) be true and

let the multiplicity of the critical point d0
2,max be odd. Then for any sufficiently small ε > 0 there

exists τs > 0 such that if ‖s±‖L∞ ∈ [0, τs) then d0
2,max − ε < dm2 and there is a global bifurcation

point db2 ∈ [d0
2,max − ε, dm2 ] of the system (1.14), (1.10) with fixed d1 in the following sense. The

connected component Sdb2
of S containing the point (db2, 0) satisfies at least one of the following

conditions:

1. Sdb2
is unbounded,

2. there exists (u, v) ∈W 1,2
D (Ω)×W 1,2

D (Ω), (u, v) 6= (0, 0) such that (0, u, v) ∈ Sdb2
,

3. there exists a critical point dc2 /∈ [d0
2,max − ε, dm2 ] of (1.16), (1.10) with fixed d1 such that

(dc2, 0, 0) ∈ Sdb2
.

If, moreover, d1 ∈ (y2, y1), ‖s+‖L∞ > 0, ‖s−‖L∞ > 0 then (d1, d
b
2) ∈ DS.

Proof is postponed to next section. It will be seen from it that “sufficiently small ε” means
ε ∈ (0,min(d0

2,max, (d
0
2,max − d0

2,k0
)/2)), where k0 is such an index, that d0

2,k0
is the second largest

critical point of the system (1.12), (1.10) with fixed d1. Especially if d1 ∈ (y2, y1), then d0
2,k0

< 0

and therefore (d0
2,max − d0

2,k0
)/2 > d0

2,max/2. Thus ε can be taken from the interval (0, d0
2,k0

/2).
See also Fig. 4.1 and the comment below the formula (2.39).

If s± ≡ 0, then it is known that the global bifurcation is exactly at the point dm2 = d0
2,max, as

can be proved by using Rabinowitz Theorem (see Appendix).
To summarize, Theorem 12 gives a local bifurcation from the point dm2 for skew-symmetric

systems. Theorem 13 gives for systems with general nonlinearities with small ‖s±‖L∞ a global
bifurcation from a bifurcation point located in the interval [d0

2,max − ε, dm2 ], where ε is sufficiently
small and it is neither excluded nor guaranteed that the bifurcation is in the point dm2 . Let us
note that there is no explicit assumption of the size of ‖s±‖L∞ in Theorem 12.

The following Theorem is an application of Theorem 9 to the system (1.14), (1.10).

Theorem 14. Let d1 ∈ (0, y1), let (2.27), (2.29) be fulfilled. Assume that ĝ±(x, v±) ≡ s±(x)v±(x)
with some s± ∈ L∞(Ω). Let ds2 > 0 be a simple critical point of (1.12), (1.10) with fixed d1. There
exist τ0 > 0, R > 0, δ > 0, neighborhoods U, V ⊂W 1,2

D (Ω) of zero and a map F : V → U such that
for any s± with ‖s±‖L∞ < τ0, ‖s+‖L∞ + ‖s−‖L∞ > 0 the following assertions are true:

(a) There exist four Lipschitz continuous maps d+
2 , d

−
2 : [0, R] → R+, v+, v− : [0, R] → V , for

which the following holds:

A pair (u, v) ∈ U × V is a solution of (1.14), (1.10) with d2 ∈ (ds2 − δ, ds2] and with fixed d1

if and only if u = F (v) and v = rv+(r), d2 = d+
2 (r) or v = rv−(r), d2 = d−2 (r) for some

r ∈ (0, R]. The numbers d+
2 (0), d−2 (0) are the only critical points of (1.16), (1.10) with fixed

d1 in (ds2 − δ, ds2], the respective eigenvectors are v+(0), v−(0). Moreover, (d+
2 (0), v+(0)) 6=

(d−2 (0), v−(0)).

(b) d+
2 (0), d−2 (0) converge to ds2 as ‖s+‖L∞ + ‖s−‖L∞ → 0.

(c) Let (d1, d
s
2) ∈ CE and let (2.21) be true. If ‖s+‖L∞ > 0, then (d1, d

+
2 ) ∈ DS, if ‖s−‖L∞ > 0

then (d1, d
−
2 ) ∈ DS.

Remark 26. This theorem gives an existence of bifurcation points for the system (1.14), (1.10)
with unilateral terms s± having sufficiently small L∞(Ω) norm and with the parameters d1, d2

close to a simple critical point (d1, d
s
2) of a system (1.12), (1.10). For given nontrivial s±, the

branches of parameters and bifurcating solutions are Lipschitz continuous, isolated and separated

65



4.2. Systems with Dirichlet or mixed boundary conditions

(the separation follows from the assertion (a) of this theorem). If one assumes the unilateral
terms s±(τ)(x) := τ s̃±(x), with sufficiently small positive parameter τ and with s̃± given functions
independent of τ , then it would be possible to prove even the Lipschitz continuity of the points d±2
w.r.t. parameter τ , see Remark 23.

The main distinction against previous two theorems is in the assumption of simplicity of
(d1, d

s
2), and on the other hand there is no requirement on the maximality of ds2. Therefore

the theorem can be applied also on the simple critical points of (1.12), (1.10) with fixed d1 ∈
(0, y2)\{y3, · · · } lying on CE, giving the critical points of (1.16), (1.10) in DS. The existence of
stationary solutions in DS will be verified by numerical computation in Section 5.

Note also that the assumption d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
is here weaken to d1 ∈ (0, y1).

4.2.1 Proofs of Theorems 11 – 14

Let us begin the proofs with the essential lemma about the operators β± defined in (2.20).

Lemma 21. The operator B := β+ + β− is positively homogeneous, Lipschitz continuous and
satisfies (3.1). If (2.21) is true, the operator β+ + β− satifies (3.2). The operator β+ + β−

satisfies (3.15) for any v0 ∈W 1,2
D (Ω), ‖v0‖ = 1.

Proof. The positive homogeneity follows from the definition and the condition (3.2) for β± follows
directly from the definition and (2.21). The condition (3.1) and Lipschitz continuity of β± were
proven in Lemma 3. The first assertion of this Lemma now follows from it.

We will show (3.15) for the operator β− and for any v ∈ H. The proof for the operator β+ can
be done similarly.

Let t ∈ R and v, h ∈ W 1,2
D (Ω) be arbitrary. We introduce the sets Ωth,Ω

+
th,Ω

−
th, such that

Ωth ∪ Ω+
th ∪ Ω−th = Ω and

|v(x)| ≤ |th(x)| for a.a. x ∈ Ωth,

|th(x)| ≤ v(x) for a.a. x ∈ Ω+
th,

v(x) ≤ −|th(x)| for a.a. x ∈ Ω−th.

(4.6)

Then

v−(x) = 0 for a.a. x ∈ Ω+
th, v−(x) = −v(x) for a.a. x ∈ Ω−th,

(v + th)−(x) = 0 for a.a. x ∈ Ω+
th, (v + th)−(x) = −(v(x) + th(x)) for a.a. x ∈ Ω−th,[

(v(x) + th(x))−
]2 ≤ (v(x) + th(x))

2 ≤ 4t2h(x)2 for a.a. x ∈ Ωth.

(4.7)

Hence,

〈β−(v), v〉 = −
∫

Ω

s−(x)v−v dx =

∫
Ω−th

s−(x)v2 dx +

∫
Ωth

s−(x)(v−)2 dx.

and

〈β−(v + th), v + th〉 =

∫
Ω

s−(x)
[
(v + th)−

]2
dx =

=

∫
Ω−th

s−(x)(v + th)2 dx +

∫
Ωth

s−(x)
[
(v + th)−

]2
dx =

=

∫
Ω−th

s−(x)v2 dx + 2t

∫
Ω−th

s−(x)vh dx + t2
∫

Ω−th

s−(x)h2 dx +

∫
Ωth

s−(x)
[
(v + th)−

]2
dx.
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4.2. Systems with Dirichlet or mixed boundary conditions

This means

〈β−(v + th), v + th〉 − 〈β−(v), v〉 =

= 2t

∫
Ω−th

s−(x)vh dx + t2
∫

Ω−th

s−(x)h2 dx +

∫
Ωth

s−(x)
[
(v + th)−

]2
dx−

∫
Ωth

s−(x)(v−)2 dx =

= −2t

∫
Ω

s−(x)v−h dx−
∫

Ωth

s−(x)(v−)2 dx + t2
∫

Ω−th

s−(x)h2 dx+

+

∫
Ωth

s−(x)
[
(v + th)−

]2
dx + 2t

∫
Ωth

s−(x)v−h dx = 2t〈β(v), h〉+ Φ0(h, t),

where

Φ0(h, t) := t2
∫

Ω−th

s−(x)h2 dx +

∫
Ωth

s−(x)
([

(v + th)−
]2 − (v−)2 + 2tv−h

)
dx. (4.8)

To finish the proof we will show that

−3C2
H‖s−‖L∞‖h‖2t2 ≤ Φ0(h, t) ≤ 7C2

H‖s−‖L∞‖h‖2t2, for all t ∈ R, (4.9)

where CH is a constant from embeddingW 1,2
D (Ω) ↪→ L2(Ω), from this follows limt→0 Φ0(h, t)/t = 0.

Using (4.6) and (4.7), the individual terms in Φ0 can be estimated

0 ≤ t2
∫

Ω−th

s−(x)h2 dx ≤ C2
Ht

2‖s−‖L∞‖h‖2,

0 ≤
∫

Ωth

s−(x)
[
(v + th)−

]2
dx ≤ 4t2‖s−‖L∞

∫
Ωth

h2 dx ≤ 4C2
Ht

2‖s−‖L∞‖h‖2,

− t2C2
H‖s−‖L∞‖h‖2 ≤ −

∫
Ωth

s−(x)(v)2 dx ≤ 0,

− 2t2C2
H‖s−‖L∞‖h‖2 ≤ 2t

∫
Ωth

s−(x)v−h dx ≤ 2t2C2
H‖s−‖L∞‖h‖2.

Addition of these inequalities gives (4.9). Hence, β− fulfill (3.15).

Proof of Theorem 11. Since {ek}k∈N is an orthonormal base in W 1,2
D (Ω), see Notation 1, for any

v ∈W 1,2
D (Ω) there exists {ξi} ∈ `2 such that

v =

∞∑
i=1

ξiei.

As Sek = λSk ek by (2.38) we get

sup
v∈W 1,2

D (Ω),‖v‖=1

〈Sv − β−(v)− β+(v), v〉 =

= sup
{ξj}∈`2\{0}

〈
S

( ∞∑
k=1

ξkek

)
,
∞∑
j=1

ξjej

〉
−

〈
β−
( ∞∑
k=1

ξkek

)
+ β+

( ∞∑
k=1

ξkek

)
,
∞∑
j=1

ξjej

〉
∥∥∥∥∥ ∞∑j=1

ξjej

∥∥∥∥∥
2 =

= sup
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
Ω

( ∞∑
k=1

ξkek

)−
s− −

( ∞∑
k=1

ξkek

)+

s+

 ej dx

∞∑
j=1

ξ2
j

= dm2

(4.10)
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Now we will prove the estimate (4.3). Due to (2.21) we have

−〈β−(v), v〉 =

∫
Ω

s−(x)v−v ≥ −‖s−‖L∞
∫

Ω

v2 = −‖s−‖L∞〈Av, v〉,

−〈β+(v), v〉 = −
∫

Ω

s+(x)(v+)2 ≥ −‖s+‖L∞
∫

Ω

v2 = −‖s+‖L∞〈Av, v〉
(4.11)

for all v ∈W 1,2
D (Ω). The eigenvalues of the operator S − ‖s−‖L∞A− ‖s+‖L∞A are

λSk −
‖s+‖L∞ + ‖s−‖L∞

κk
,

cf. (2.38) and Lemma 1. By use of (7.18) with S := S − ‖s−‖L∞A− ‖s+‖L∞A we get

sup
v∈W 1,2

D (Ω),‖v‖=1

〈Sv − ‖s−‖L∞Av − ‖s+‖L∞Av, v〉 = sup
j∈N

(
λSj −

‖s−‖L∞ + ‖s+‖L∞
κj

)
. (4.12)

If the last supremum is positive, then it is the maximum. If it is equal to zero, then no maximizer
exists, cf. Remark 31. The first statement of Lemma 21 and the formulae (4.10)– (4.12) give

d0
2,max = max

j∈N
λSj = λSmax = max

v∈W 1,2
D (Ω),‖w‖=1

〈Sv, v〉 ≥ sup
v∈W 1,2

D (Ω),‖v‖=1

〈Sv − β−(v)− β+(v), v〉 =

=dm2 ≥ sup
v∈W 1,2

D (Ω),‖v‖=1

〈Sv − (‖s−‖L∞ + ‖s+‖L∞)Av, v〉 =

= sup
j∈N

(
λSj −

‖s−‖L∞ + ‖s+‖L∞
κj

)
. (4.13)

Hence, the upper estimate of dm2 and a part of the lower estimate in (4.3) is proved. Due to the
definition of K and (4.10) we see that

dm2 = sup
v∈W 1,2

D (Ω),‖v‖=1

〈Sv − β−(v)− β+(v), v〉 ≥ sup
v∈K,‖w‖=1

〈Sv − β−(v)− β+(v), v〉 =

= sup
v∈K,‖w‖=1

〈Sv, v〉 = sup
ξj∈`2\{0}∑
ξjej∈K

∞∑
j=1

λSj ξ
2
j

∞∑
i=1

ξ2
i

,

which finishes the proof of (4.3).
We will verify that the assumptions of Theorems 3, 4 are fulfilled the positively homogeneous

operator B := β− + β+ and the operators S := S, A ≡ 0, N ≡ 0. The assumptions (i)–(vi) from
Section 3.1 were already verified, see Lemmas 3, 6, 21. The assumption (viii) is fulfilled trivially.
The equality (4.10) together with assumed positiveness of dm2 yield

sup
v∈W 1,2

D (Ω),‖v‖=1

〈Sv − β−(v)− β+(v), v〉 > 0,

i.e. 3.20 is fulfilled and according to Theorem 4 the maximum in (3.16) exists and is positive.
Lemma 21 guarantees that (3.15) is fulfilled for any v0 ∈W 1,2

D (Ω). Theorem 3 gives the existence
of v0, ‖v0‖ = 1 such that

λS−β
−−β+

max = max
v∈W 1,2

D (Ω),‖v‖=1
〈Sv − β−(v)− β+(v), v〉 = 〈Sv0 − β−(v0)− β+(v0), v0〉 > 0 (4.14)

is the largest eigenvalue of the operator S − β+ − β−. Now it follows from (4.10) and (4.14) that
the supremum in (4.2) is maximum, i.e. (4.4) is proved. Due to Corollary 1 from pg. 26, the point

dm2 = λS−β
−−β+

max is the largest critical point of the system (1.16), (1.10) with fixed d1.
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If d1 ∈ (y2, y1) then λSmax = λS1 , λSmax is simple and the corresponding eigenfunction of S is
e1. Since e1 has a constant sign in Ω, see Lemma 1 on pg. 15, we get under the assumption
‖s+‖L∞ > 0 and ‖s−‖L∞ > 0 that

〈β+(e1) + β−(e1), e1〉 =

∫
Ω

s+(x)(e+
1 )2 + s−(x)(e−1 )2 dx > 0.

Let v0 be from (4.14). If v0 6= e1 then 〈Sv0, v0〉 < λSmax by Remark 31 and

〈Sv0, v0〉 − 〈β−(v0) + β+(v0), v0〉 < λSmax.

If v0 = e1 then 〈Sv0, v0〉 = λSmax, 〈β−(v0) + β+(v0), v0〉 > 0 and therefore

〈Sv0, v0〉 − 〈β−(v0) + β+(v0), v0〉 < λSmax.

Summarizing, we get

dm2 = max
v∈H,‖v‖=1

〈Sv − β−(v)− β+(v), v〉 < λSmax = d0
2,

which together with the assumption dm2 > 0 implies (d1, d
m
2 ) ∈ DS .

Proof of Theorem 13. The assumptions (i)–(viii) from Section 3.1 were already verified, see Lem-
mas 2, 3, 6, 21, Theorem 1.

We have

〈β−(v), ϕ〉 = −
∫

Ω

s−(x)v−ϕ dx ≤ ‖s−‖L∞‖v−‖L2‖ϕ‖L2 ≤ 1

κ1
‖s−‖L∞‖v‖‖ϕ‖.

This implies

‖β−(v)‖ = sup
ϕ∈W 1,2

D (Ω),‖ϕ‖=1

〈β−(v), ϕ〉 ≤ 1

κ1
‖s−‖L∞‖v‖.

Similarly for β+ and therefore

‖
(
β− + β+

)
(v)‖ ≤ 1

κ1
(‖s−‖L∞ + ‖s+‖L∞) ‖v‖.

We assume that d0
2,max has an odd multiplicity. Let us remind here the definition of λS−β

−−β+

max

from (4.14). The eigenvalue λSmax = d0
2,max has an odd multiplicity, see Remark 8, and therefore

it follows from Theorem 8 and Observation 4 with B := β− + β+,N := N,S := S that for any
ε ∈ (0,min{λSmax, (λ

S
max−λS2 )/2) there exists τ0 > 0 such that if ‖s−‖L∞ , ‖s+‖L∞ < τs := τ0/(2κ1),

then λSmax − ε < λS−β
−−β+

max and there is a global bifurcation point λb ∈ [λSmax − ε, λS−β
−−β+

max ] of
the equation

λv − Sv −N(v) + β+(v) + β−(v) = 0

in the sense of Theorem 8. The formulae (4.10) and (4.14) imply that λS−β
−−β+

max = dm2 . Due to

Theorem 1 and Corollary 1, db2 = λb ∈ [d0
2,max− ε, dm2 ] = [λSmax− ε, λS−β

−−β+

max ] is simultaneously a
global bifurcation point of the system (1.16), (1.10) with fixed d1 in the sense of Theorem 13.

Proof of Theorem 12. The proof of this Theorem is an analogue of the proof of Theorem 17 with
A = 0 on pg. 72 and therefore it will be skipped.

Proof of Theorem 14. The proof of this Theorem is based on application of Theorem 9 to the
equation

d2v − Sv + β+(v) + β−(v)−N(v) = 0. (4.15)
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4.3. Systems with Neumann boundary conditions

Then, according to Theorem 1, the conclusions for this equation will be true also for the problem
(1.14), (1.10).

Let d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
be fixed. To apply Theorem 9 it is necessary to verify its

assumptions. The assumptions (i)–(viii) from Section 3.1 were already verified, see Lemmas 2, 3,
6, 21. According to Lemma 21 and Theorem 1 the operator β := β− + β+ is Lipschitz continuous
with a Lipschitz constant L ≤ κ−1

1 (‖s+‖L∞ + ‖s−‖L∞), which gives (A) from Notation 6 and
according to Lemma 4, N is C1 operator with N ′(0) = 0, which gives (B) from Notation 6. Since
1 /∈ σ(A), the assumption (C) from Notation 6 is not applicable here.

The point ds2 is simultaneously a simple eigenvalue of S, see Remark 8. The assertion (a) of
Theorem 9 now gives the maps d±2 , v±, which are Lipschitz continuous.

The C1−continuous map F and sets U, V can be obtained from Theorem 1 and if necessary,
we will take the sets U, V smaller. According to Theorem 1, pairs (F (rv±(r)), rv±(r)) are the only
solutions of (1.14), (1.10) with d2 = d±2 (r) and with fixed d1 in U × V .

If ‖s−‖L∞ 6= 0, then clearly β−(vs) 6= β−(−vs) and if ‖s+‖L∞ 6= 0, then β+(vs) 6= β+(−vs).
In conclusion, because at least one of s± has a positive L∞ norm, we get β(vs) 6= β(−vs), and in
particular, (d+

2 (0), v+(0) 6= (d−2 (0), v−(0)). This finishes the proof of (a).
Since |β| → 0 as ‖s+‖L∞+‖s−‖L∞ → 0 and norm of β is smaller than its Lipschitz constant L,

the point (c) from Theorem 9 now gives (b). The assertion (c) is a consequence of (d) of Theorem
9.

4.3 Systems with Neumann boundary conditions

Analogously to Dirichlet case the problem (1.14) with Neumann b.c. was rewritten as a system
of two operator equations (2.56) on W 1,2(Ω)×W 1,2(Ω), see Section 2.3, and in Section 2.3.2 this
system was reduced to (2.62), where the first equation with the symmetric linear compact operator
S has again only on one variable, one fixed parameter d1 and one bifurcation parameter d2. The
eigenvalues of the linear equation (2.59) were found explicitly in (2.61), and these eigenvalues are
simultaneously critical points of (1.12) with fixed d1 and Neumann b.c. The situation is more
complicated here, because the operator (I − A) at the bifurcation parameter d2 in (2.59) is not
isomorphism.

Notation 8. In this section we will use the notation and assumption from Section 2.1. In addition,
κk are the eigenvalues of the Laplacian with Neumann boundary conditions. The eigenvalues of the
operator S are denoted by λSk , and were found explicitly in the formula (2.60). The critical points
of (1.12) with fixed d1 and Neumann b.c., are denoted by d0

2,k, see (2.61), the largest critical point

is denoted by d0
2,max. For the definitions of critical and bifurcation points see again Definition 5

on page 8. We will assume in the whole section that ΓD = ∅, i.e. the system (1.14) has Neumann
b.c. Under the term solution we will always mean the weak solution.

By analogy with Dirichlet case, we define here a set

K := {v ∈ H | β+(v) + β−(v) = 0}.

Theorem 15. Let d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
and assume (2.21), (4.1) and

1 > max

{
µm(Ω) detB

b11‖s−‖L1

,
µm(Ω) detB

b11‖s+‖L1

}
. (4.16)

Then the maximum

dm2 := max
{ξj}∈`2\{0}

∞∑
j=0

λSj ξ
2
j +

∫
Ω

( ∞∑
k=0

ξkek

)−
s− −

( ∞∑
k=0

ξkek

)+

s+

 ej dx

∞∑
j=0

κj

1 + κj
ξ2
j

∈ (0,∞), (4.17)
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4.3. Systems with Neumann boundary conditions

exists and is positive, and it is the largest critical point of (1.16) with Neumann b.c. and with
fixed d1.

If d1 > y1, (4.16) holds true and

min(µm(ess supp(s+)), µm(ess supp(s−)))

µm(Ω)
<

(
1 +

∣∣∣∣b11b22

detB

∣∣∣∣)−1

, (4.18)

then there exists d0
1 > y1 such that (4.17) is true also for d1 > d0

1 and dm2 is the largest critical
point of (1.16) with Neumann b.c. and with fixed d1. Moreover, (d1, d

m
2 ) ∈ DS and dm2 depends

continuously on d1.

Let us shortly comment this theorem. The operator S has for all d1 ∈ R the eigenvalue

λS0 = 〈Se0, e0〉 = −b12b21

b11
+ b22 =

b11b22 − b12b21

b11
=

detB

b11
> 0, (4.19)

as can be seen from (2.1), (2.2), (2.60). This is in a contrast to Dirichlet/mixed problem, where
for d1 > y1 the operator S has no positive eigenvalue. The respective eigenfunction to λS0 is e0.

If the largest critical point dm2 of (1.16) with Neumann b.c. exists and is positive, any corres-
ponding eigenvector v0 satisfies

dm2 =
〈Sv0 − β−(v0)− β+(v0), v0〉

〈(I −A)v0, v0〉
. (4.20)

Let
u0 := b12A(d1I − (d1 + b11)A)−1v0.

Then it is easy to see that (u0, v0) is a solution of (1.16) with Neumann b.c. and parameters
(d1, d

m
2 ).

It should be emphasized that for the linear problem (1.12) with Neumann b.c., without unilat-
eral sources and with d1 > y1 there is always dm2 = +∞ and all other critical points are negative
and therefore there is no critical point in a set (y1,∞)× (0,∞), see 7 on pg. 7 which is true also
for Neumann problem. However, as the theorem demonstrated, it is no more true for a problem
with unilateral sources and there are systems (1.16) with Neumann b.c. having positive critical
points even for d1 > y1.

The proofs of some assertions of this and the next theorem are based on results of paper [14].
This paper concerns with the variational inequalities. The authors work with the convex cone

K := {v ∈W 1,2(Ω)| v = 0 a.e. in Ω+ ⊂ Ω, v = 0 a.e. in Ω− ⊂ Ω}.

Under the assumption e0 /∈ K ∪ (−K) and d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
the number

dm,K2 = max
v∈K,v 6=0

〈Sv, v〉
〈(I −A)v, v〉

,

where the operators S,A are the same as in our text, is the largest bifurcation point of the following
variational inequality with fixed d1:

find u ∈ H, v ∈ K :

d1

∫
Ω

∇u · ∇φ− b11uφ− b12vφ = 0,

d2

∫
Ω

∇v · ∇(ϕ− v)− b21u(ϕ− v)− b22v(ϕ− v)− n(v)(ϕ− v) ≥ 0 for all ϕ ∈ K,φ ∈ H,

(4.21)

with n(v) satisfying the growth condition (2.4). The assumption (4.16) is there formally fulfilled,
since ‖s±‖L1 are formally equal to plus infinity.
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4.3. Systems with Neumann boundary conditions

The assumption (4.16) is a requirement on sufficiently large unilateral terms, more precisely it
is expressed by the ‖s±‖L1 in the denominator. This goes against the assumptions of Theorems 13,
14 from Dirichlet/mixed problem, which require unilateral terms with small ‖s±‖L∞ norm and for
this reason some of the results for Dirichlet/mixed problems are significantly different compared
to Neumann problem.

The assumption (4.18) is taken also from the paper [14], it is a requirement on s±, which
should have sufficiently small essential supports. A theorem about the existence of a branch of
bifurcation points for d1 > y1 is proved there and the statement in following Theorem 15 is an
analogy of it for our systems. However, in the discussed paper [14] a monotonicity of the branch
w.r.t. d1 is proved, but the attempts to modify it to our problems have been not successful, due
to the nonlinear terms represented by β±.

Theorem 16. Let (2.21), (4.1), (4.16), (4.18) be true. There exist d0
1 > y1 and constants

Cm, CM > 0 independent of d1 such that for any d1 > d0
1 the point dm2 from Theorem 15 satisfies

Cm < dm2 < CM . (4.22)

Theorem 17. If (2.27), (2.29), (2.31) are true and dm2 from Theorem 15 exists, then it is the
largest bifurcation point of (1.14) with Neumann boundary conditions and with fixed d1.

The situation from Theorem 17 is visualized in the Fig. 4.2. There exists a continuous curve
of bifurcation points to the right from all hyperbolas deep in the set DS .

Figure 4.2: A sketch of first four hyperbola segments in R2
+ for Neumann problem and sketch

of the branch of bifurcation points from Theorem 17 and bounds Cm, CM from Theorem 16.The
critical and bifurcation points in DS from Theorems 16, 17 are painted by the blue line.

The following theorem is an analogue of Theorem 14.

Theorem 18. Let d1 ∈ (0, y1), let (2.27) and (2.29). Assume that ĝ±(x, v±) ≡ s±(x)v±(x) for
some s± ∈ L∞(Ω). Let ds2 > 0 be a simple critical point of (1.12), (1.10) with fixed d1. There
exist τ0 > 0, R > 0, δ > 0, neighborhoods U, V ⊂W 1,2

D (Ω) of zero and a map F : V → U such that
for any s± with ‖s±‖L∞ < τ0, ‖s+‖L∞ + ‖s−‖L∞ > 0 the following assertions are true:

(a) There exist four Lipschitz continuous maps d+
2 , d

−
2 : [0, R] → R+, v+, v− : [0, R] → V , for

which the following holds:

A pair (u, v) ∈ U × V is a solution of (1.14), (1.10) with d2 ∈ (ds2 − δ, ds2] and with fixed d1

if and only if u = F (v) and v = rv+(r), d2 = d+
2 (r) or v = rv−(r), d2 = d−2 (r) for some
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4.4. Proof of Theorems 15–18

r ∈ (0, R]. The numbers d+
2 (0), d−2 (0) are the only critical points of (1.16), (1.10) with fixed

d1 in (ds2 − δ, ds2], the respective eigenvectors are v+(0), v−(0). Moreover, (d+
2 (0), v+(0)) 6=

(d−2 (0), v−(0)).

(b) d+
2 (0), d−2 (0) converge to ds2 as ‖s+‖L∞ + ‖s−‖L∞ → 0.

(c) Let (d1, d
s
2) ∈ CE and let (2.21) be true. If ‖s+‖L∞ > 0, then (d1, d

+
2 ) ∈ DS, if ‖s−‖L∞ > 0

then (d1, d
−
2 ) ∈ DS.

4.4 Proof of Theorems 15–18

This section will begin with the analogue of Lemma 21 for the operators β± defined in (2.55).

Lemma 22. The operator B := β+ + β− is positively homogeneous, Lipschitz continuous and
satisfies (3.1). If (2.21) is true, the operator β+ + β− satifies (3.2). The operator B satisfies
satisfies (3.15) for any v0 ∈W 1,2

D (Ω), ‖v0‖ = 1. The operator S satisfy (3.4).

Proof. The proof is the same as the proof of Lemma 21 therefore will be skipped.

Proof of Theorem 15. To apply Theorems 3, 4 it is necessary to check their assumptions. The
assumptions (i)–(iv) from Section 3.1 were already verified, see Lemmas 2, 3, 6 (which can be
easily modified for the operators on W 1,2(Ω)) and Lemma 22, Theorem 2.

The operator A is a linear symmetric compact operator with σ(A) ⊂ [0, 1] and 1 ∈ σ(A) is a
simple eigenvalue with the eigenfunction e0, which is constant. Since we have fixed e0 > 0, ‖e0‖ =
1, value of e0 is (µm(Ω))−1/2 in the whole Ω. Therefore A is compliant with (v) from Section 3.1.
Set B ≡ β := β+ + β−. Use of the definition of e0 leads to

〈β(e0), e0〉 =
1

µm(Ω)

∫
Ω

s+(x) dx =
‖s+‖1
µm(Ω)

, 〈β(−e0),−e0〉 =
1

µm(Ω)

∫
Ω

s−(x) dx =
‖s−‖1
µm(Ω)

,

(4.23)
which implies e0 /∈ K ∪ (−K), otherwise (4.23) would not be true. The assumption (3.4) will be
verified later in the proof.

Now we will check the assumptions of Theorem 4. Since

〈Se0, e0〉 =
detB

b11
,

see (4.19), the assumption (3.22) is fulfilled when

1 > max

{
detB

b11〈β(e0), e0〉
,

detB

b11〈β(−e0),−e0〉

}
. (4.24)

By using the (4.23) the assumption (4.24) can be rewritten as

1 > max

{
µm(Ω) detB

b11‖s−‖1
,
µm(Ω) detB

b11‖s+‖1

}
,

which is (4.16). As (4.16) is equivalent to (3.22), the assumption (3.4) is true. Similarly to the
proof of Theorem 11

dm2 = sup
v∈H,v 6=0

〈Sv − β(v), v〉
〈(I −A)v, v〉

=

= sup
{ξj}∈`2\{0}

∞∑
j=0

λSj ξj +

∫
Ω

( ∞∑
k=0

ξkek

)−
s− −

( ∞∑
k=0

ξkek

)+

s+

 ej dx

∞∑
j=0

κj

1 + κj
ξ2
j

.
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4.4. Proof of Theorems 15–18

When d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
, Lemma 4.1 [14] gives the existence of ϕ ∈ K for which the

assumption (3.21) is fulfilled, and therefore (3.20) is fulfilled as well. Let d1 > y1. It follows from
[14], Section 4.2, that under the assumption (4.18) there exists d0

1 such that for any d1 > d0
1 the

assumption (3.21) is fulfilled and therefore (3.20) is fulfilled.
The operator β satisfies (3.15); see Lemma 22. Theorems 3, 4 now give the claim.
The proof of continuous dependence of dm2 on d1 is analogous to the proof of Proposition 5.3

in [14].

Proof of Theorem 16. The assumptions (4.16), (4.18) guarantee the existence and positivity of dm2
for any d1 > d0

1. The proof of the existence of CM is based on the Theorem 5. As a first step it is

necessary to find the constant C, Ĉ for the operator B ≡ β := β+ +β−. Since the proof of Lemma
22 is the same as the proof of Lemma 21, the constant Ĉ can be chosen

Ĉ := 14CH(‖s−‖L∞ + ‖s+‖L∞),

where CH is a constant of the embedding W 1,2(Ω) ↪→ L2(Ω), as follows from (4.9) applied to
β = β+ + β−. The constant C can be computed from its definition (3.29) as

C = −max

{
detB

b11
− ‖s−‖1
µm(Ω)

,
detB

b11
− ‖s+‖1
µm(Ω)

}
.

The constants C, Ĉ are independent of d1. It should be reminded that (4.16) is supposed to be
fulfilled and therefore dm2 is finite. Let us use a symbol S(d1) to emphasize the dependence of the
operator S on the parameter d1 and make a limit d1 →∞. Then

lim
d1→+∞

|S(d1)| = lim
d1→+∞

max
k∈N0

∣∣λSk (d1)
∣∣ = lim

d1→+∞
max
k∈N0

∣∣∣∣ 1

1 + κk

(
b12b21

d1κk − b11
+ b22

)∣∣∣∣ =

= lim
d1→+∞

max
k∈N0

1

1 + κk

∣∣∣∣ − detB

d1κk − b11
+

b22d1κk
d1κk − b11

∣∣∣∣ ≤
≤detB

b11
+ |b22| = λS0 + |b22| =: C0 > 0.

(4.25)

Now we have to find a constant C̃ > 0 such that for the function

f(d1) := 1 +

−(|S(d1)|+ |β|) +
(

(|S(d1)|+ |β|)2 + C(Ĉ + |S(d1)|)
) 1

2

(Ĉ + |S(d1)|)


−2

, (4.26)

where |β|, Ĉ, C are independent of d1, holds

lim
d1→∞

f(d1) ≤ C̃.

Since f is continuous, it will be possible to find suitable C̃0 and d0
1 such that f(d1) ≤ C̃0 for all

d1 > d0
1. The function 1 + x−2 is decreasing on the set [0,∞). Hence, it suffices to find a suitable

lower bound for ε0. Using (4.25) it can be estimated

ε0 =
−(|S(d1)|+ |β|) +

(
(|S(d1)|+ |β|)2 + C(Ĉ + |S(d1)|)

) 1
2

Ĉ + |S(d1)|
=

=
|S(d1)|+ |β|
Ĉ + |S(d1)|

−1 +

(
1 +

C(Ĉ + |S(d1)|)
(|S(d1)|+ |β|)2

) 1
2

 ≥ |β|
Ĉ + C0

−1 +

(
1 +

CĈ

C0 + |β|

) 1
2

 =

=: C̃1 > 0.
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4.5. Problems with unilateral terms on the boundary

This estimate does not depend on d1, hence, (4.26) is fulfilled for C̃ := 1 + C̃−2
1 . Since the second

largest eigenvalue of A is 1− (1 + κ2)−1 = κ2/(1 + κ2), the final form of the estimate is

lim
d1→∞

max
v∈H\Span{e0}

〈S(d1)v, v〉 − 〈β(v), v〉
〈(I −A)v, v〉

≤ C̃ κ2

1 + κ2
(λS0 + |b22|).

Since the r.h.s. of the last expression is independent of d1, it is possible to find d0
1 > y1 and

constant CM such that for any d1 > d0
1 the number dm2 satisfy dm2 < CM . This is the upper bound

for dm2 . Lower bound can be obtained under the assumption (4.18) by choosing a suitable v ∈ K,
see formula (4.7) in Section 4.2 in [14].

Proof of Theorem 17. In order to use Theorem 8 it is necessary to verify all of its assumptions.
The points (i)–(v) from Section 3.1 were verified already in the proof of Theorem 15, the point
(viii) follows from (2.3), (2.4), cf. Lemma 2.

The reaction-diffusion system (2.56) can be reduced to an equation

d2(I −A)v − Sv + β(v)−N(v) = 0,

and since (2.27), (2.29) and (2.31) are supposed, the operator N has the potential ΦN , see
Lemma 13. The operator B has potential due to Lemma 5. The operator S has the po-
tential because it is symmetric. Since N, S are compact and β satisfy (3.1), the functional
Φ(v) = 1

2 (〈Sv, v〉+ 〈β(v), v〉) + ΦN (v) is weakly continuous. Since 〈(I − A)v0, v0〉 > 0, where v0

is an eigenvector to dm2 , see (4.20), clearly v0 /∈ Ker(I −A). The statement that dm2 is the largest
bifurcation point of (1.14) with Neumann b.c. and with fixed d1 follows now from Theorem 8.

Proof of Theorem 18. First step is to rewrite the weak formulation of the system (1.14), (1.10) as
one operator equation

d2(I −A)v − Sv + β+(v) + β−(v)−N(v) = 0, (4.27)

using Theorem 2.
Since Se0 = λS0 e0, where λS0 > 0, see (4.19), the assumption (C) from Section 6 is fulfilled.

Now the rest of the proof is the same as the proof of Theorem 14.

4.5 Problems with unilateral terms on the boundary

In this section, we will always assume (2.1)–(2.4), (2.68), (2.69). We will also use the operators
β±U , Ĝ

±
U from Section 2.4 and because the essential supports of s± are disjoint, we can define the

following cone.

Definition 9. A closed convex cone KU will be defined by

KU = {ϕ ∈ H | β+
U (ϕ) + β−U (ϕ) = 0}.

The following theorem is an analogue of Theorems 11, 12, 13.

Theorem 19. Let d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
and (2.10), (2.21) be true. The estimate (4.3)

with dm2 , K and ‖s±‖L∞ replaced by

d̃m2 := sup
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
ΓU

( ∞∑
k=1

ξkek

)−
s− −

( ∞∑
k=1

ξkek

)+

s+

 ej dS

∞∑
j=1

ξ2
j

. (4.28)
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4.5. Problems with unilateral terms on the boundary

and KU and CT ‖s±‖L∞(ΓU ), respectively, is valid, where CT is a constant from the embedding

W 1,2
D (Ω) ↪→ L2(∂Ω).

If d̃m2 is positive, then the supremum in (4.28) is maximum and d̃m2 is the largest critical point
of the system (2.71), (2.67) with fixed d1.

If (2.27), (2.29), (2.31) is true, then d̃m2 is the largest bifurcation point of (2.66), (2.67).
Let (2.27) be true and let the multiplicity of d0

2 be odd. Then for any sufficiently small ε > 0
there exists τs > 0 such that if s−, s+ ∈ L∞(ΓN ), ‖s±‖L∞(ΓN ) ∈ [0, τs) then d0

2−ε < d̃m2 and there

is a global bifurcation point d̃b2 ∈ [d0
2 − ε, d̃m2 ] of the system (2.66), (2.67) in the sense of Theorem

13. If d1 ∈ (y2, y1), ‖s−‖L∞(ΓN ), ‖s+‖L∞(ΓN ) ∈ (0, τ0) then (d1, d̃
b
2) ∈ DS.

Theorem 20. Let d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
∪ (y1,∞), let µm−1(ΓD) = 0 and let

1 > max

{
µm−1(∂Ω) det B

b11‖s−‖L1(∂Ω)
,
µm−1(∂Ω) det B

b11‖s+‖L1(∂Ω)

}
. (4.29)

The point

dm2 := max
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
∂Ω

( ∞∑
k=1

ξkek

)−
s− −

( ∞∑
k=1

ξkek

)+

s+

 ej dS

∞∑
j=1

ξ2
j

. (4.30)

is positive and it is the largest critical point of the problem (2.71), (2.78). Assume (2.76), (2.77).
If (2.31) is true, then it is the largest bifurcation point of the problem (2.66), (2.74).

Moreover, there exist Cm, CM , d
0
1 > 0 such that for any d1 > d0

1 the point dm2 defined formally
by (4.30) satisfy

Cm < dm2 < CM ,

and if (2.27), (2.29) are (2.31) is true, it is the largest bifurcation point of (2.66), (2.74).

An analogue of Remark 4 applies here as well. Let us remind the Section 2.4 which contains
a guide to abstract formulation of these type of problems.

4.5.1 Proofs of Theorems 19,20

Proof of Theorem 19. An analogue of Lemma 21 can be proved. The operator B := β+
U + β−U

fulfills (3.1) due to the compact embedding W 1,2
D (Ω) ↪→↪→ L2(∂Ω). For the proof of (3.15) with

B := β−U we introduce sets Γ+
th,Γ

−
th,Γ

+
0 ,Γ

−
0 such that ΓN = Γ+

th ∪ Γ−th = Γ+
0 ∪ Γ−0 ,

(v0 + th)(x) < 0 for a.a. x ∈ Γ−th, (v0 + th)(x) ≥ 0 for a.a. x ∈ Γ+
th,

v0(x) < 0 for a.a. x ∈ Γ−0 , v0(x) ≥ 0 for a.a. x ∈ Γ+
0 ,

and Γth1,Γth2,Γth3 such that Γ−th = Γth1 ∪ Γth2, Γ−0 = Γth1 ∪ Γth3,

v0(x) < −th(x) and v0(x) < 0 for a.a. x ∈ Γth1,

v0(x) < −th(x) and v0(x) ≥ 0 for a.a. x ∈ Γth2,

v0(x) ≥ −th(x) and v0(x) < 0 for a.a. x ∈ Γth3.

Similarly for the operator β+
U . Then we can follow the proof of Lemma 21. The proof of the first

part of Theorem 19 is now almost the same as the proof of Theorem 11. To prove the second part
of Theorem 19, we will use Theorem 8 in the same way as in the proof of Theorem 13.

Proof of Theorem 20. The proof is an analogue to the proof of Theorem 15. It can be verified
that the condition (4.29) is equivalent to (4.16). According to [14], Lemma 4.1, the assumption
(3.20) is true for any d1 ∈ (0, y1)\

{
yj
∣∣ j = 2, 3, · · ·

}
∪ (y1,∞). The remaining assertions can be

checked in a way similar to the proof of Theorem 15.
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4.6. Systems with Neumann boundary conditions on C1,1 domain

4.6 Systems with Neumann boundary conditions on C1,1 domain

At the end of this chapter we are going to give a practical application of the Theorem 10. Since
the assumptions and notation are significantly different from the standard ones, this application
is considered as a stand-alone Section.

Let Ω ⊂ Rn be a bounded domain with a C1,1 boundary ∂Ω. We will study stationary states
of a system

d1∆u1 + b11u1 + b12u2 + n1(u1, u2) = 0 in Ω,

d2∆u2 + b21u1 + b22u2 + n2(u1, u2) = τ
(
[g+(x, u2)u2]+ − [g−(x, u2)u2]−

)
in Ω,

(4.31)

∂u1

∂ν
=
∂u2

∂ν
= 0 on ∂Ω, (4.32)

where τ ≥ 0 is a parameter. We assume that

(i) n1, n2 : R2 → R are C2 functions and n1(0, 0) = n2(0, 0) = 0, ∂inj(0, 0) = 0 for all i, j ∈
{1, 2},

(ii) g±(·, u) are measurable for all u ∈ R, g±(·, 0) ∈ L∞(Ω), and for any c > 0 there exists L > 0
such that |g±(x, u) − g±(x, v)| ≤ L|u − v| for all x ∈ Ω and u, v ∈ [−c, c] and g±(x, u) ≥ 0
for all x ∈ Ω and for all u ∈ R.

Let us fix some p > n. Recalling that W 2,p(Ω) ↪→ C1(Ω), see Theorem 22 in Appendix, we can
define Banach spaces

U := {(u1, u2) ∈ [W 2,p(Ω)]2 | (4.32) holds}

and
V := [Lp(Ω)]2.

We say that U = (u1, u2) is a solution of the problem (4.31) with the boundary conditions
(4.32) if and only if U ∈ U satisfies the equations (4.31) almost everywhere in Ω. We will suppose
that

(iii) (d0
1, d

0
2) ∈ R2 are such parameters that the linear problem

d1∆u1 + b11u1 + b12u2 = 0,

d2∆u2 + b21u1 + b22u2 = 0
(4.33)

with the boundary conditions (4.32) and (d1, d2) = (d0
1, d

0
2) has up to scalar multiples unique

nontrivial solution U0 = (u10, u20) ∈ U .

Remark 27. For a good physical interpretation, let us assume again (2.1), (2.2). Then hypo-
thesis (iii) holds if and only if there is a unique j such that (d0

1, d
0
2) belong to the hyperbola

Cj = {(d1, d2) ∈ R2 | (κjd1 − b11)(κjd2 − b22) = b12b21}.

This means that (d0
1, d

0
2) does not lie on an intersection point of two different hyperbolas Cj,

and the eigenvalue κj of −∆ is simple. In this case, u20 is a corresponding eigenfunction and
u10 = b12

d01κj−b11u20. In fact, the last assertion hold also if we relax the assumption (2.1), (2.2) to

b12b21 6= 0, detB = b11b22 − b12b21 6= 0. (4.34)

The proof is almost the same. Consequently, also in Theorem 21 it is possible to replace (2.1),
(2.2) by (4.34).

Theorem 21. Let d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
be fixed. Under the assumptions (i)–(iii) there

exist ε > 0, δ > 0 and Lipschitz continous maps d̂+
2 , d̂

−
2 : [0, ε]→ R and Û+, Û− : [0, ε]→ U such

that the following is true.
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4.6. Systems with Neumann boundary conditions on C1,1 domain

1. (τ, d2, (u1, u2)) is a solution to (4.31) with |τ |+ |d2−d0
2|+‖(u1, u2)‖[W 2,p(Ω)]2 ≤ δ and u 6= 0

if and only if d2 = d0
2 + d̂+

2 (r, τ), u = rû+(r, τ) or d2 = d0
2 + d̂−2 (r, τ), u = rû−(r, τ) for some

r ∈ (0, ε].

2. d̂+
2 (0, 0) = d̂−2 (0, 0) = 0, Û+(0, 0) = U0, Û−(0, 0) = −U0.

3. Assume (2.1), (2.2). If

µm{x ∈ Ω | u20(x) > 0, g+(x, 0) > 0} > 0 or µm{x ∈ Ω | u20(x) < 0, g−(x, 0) > 0} > 0
(4.35)

then

lim
τ→0

d̂+
2 (0, τ)

τ
< 0

and if

µm{x ∈ Ω | u20(x) > 0, g−(x, 0) > 0} > 0 or µm{x ∈ Ω | u20(x) < 0, g+(x, 0) > 0} > 0
(4.36)

then

lim
τ→0

d̂−2 (0, τ)

τ
< 0.

4. Assuming (2.1), (2.2) let us introduce the numbers α1 = b12(d0
1κj − b11)−1, α2 = 1, β1 =

b21(d0
1κj − b11)−1, and β2 = 1 with κj from Remark 27. If at least one of (4.35) or (4.36) is

true, then ρ from (3.77) satisfies

sgn(ρ) = sgn
(∫

Ω

u20(x)3 dx

2∑
i,j,k=1

βkαiαj∂ui
∂uj

nk(0, 0)
)

.

Proof of Theorem 21. Let us introduce the operators F : U → V and G : U → V as

[F (d̂2,U)](x) = d̂2J∆U(x) +D∆U(x) +BU(x) +N(U(x)),

[G(U)](x) = [g+(x, u2)u2]+ − [g−(x, u2)u2]−,

with

J =

(
0 0
0 1

)
, B =

(
b11 b12

b21 b22

)
, D =

(
d0

1 0
0 d0

2

)
and N : U → V defined by N(U)(x) = (n1(U(x)), n2(U(x))), the problem 4.31 can be written as

F (d̂2,U) = τG(U)

which corresponds to (3.68). Clearly, we have F ∈ C2(U, V ). The operator G is Lipschitz continu-
ous on bounded sets. We recall that linear compact perturbations of isomorphisms are Fredholm
operators of index zero. If we choose µ /∈ {κ0, κ1, . . . } then the map U 7→ D∆U + µDU is
an isomorphism of U onto V due to [23, Theorem 2.4.2.7]. We write ∂uF (0, 0) = D∆ + B =
(D∆ + µD) + (−µD + B). The operator in the second parenthesis is compact, and therefore
∂uF (0, 0) is a Fredholm operator of index zero. It is easy to see that V∗0 = (v∗10, v

∗
20) is a solution

of the formally adjoint problem

d0
1∆v∗1 + b11v

∗
1 + b21v

∗
2 = 0,

d0
2∆v∗2 + b12v

∗
1 + b22v

∗
2 = 0

if and only if V∗0 = (v∗10, v
∗
20) = (b−1

12 b21u10, u20), where u10, u20 is a solution of (4.33), (4.32). We
have ∂d̂2∂UF (0, 0) = J and if we interpret V∗0 as the linear functional 〈v∗0 , u〉 =

∫
Ω

(v∗10u1+v∗20u2) dx
for all u ∈ U , then 3.71 has the form

κ = 〈V∗0, J∆U0〉 = −
∫

Ω

∇v∗20(x)∇u20(x) dx = −
∫

Ω

(∇u20(x))
2

dx < 0,
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4.6. Systems with Neumann boundary conditions on C1,1 domain

which implies that (3.70) holds. We have

lim
r→0

1

r

(
[g−(x, ru2)ru2]− − [g+(x, ru2)ru2]+

)
= lim
r→0

τ
(
[g−(x, ru2)u2]− − [g+(x, ru2)u2]+

)
= [g−(x, 0)u2]− − [g+(x, 0)u2]+ =: G0(τ,U)

and therefore the assumption (3.72) is satisfied. The assumption (3.74) is fulfilled due to ii. Hence,
all of the assumptions of Theorem 10 are verified. The relations (3.75) and (3.76) take the form

lim
τ→0

d̂+
2 (0, τ)

τ
=
−1

κ

∫
Ω

(
g−(x, 0)u−20(x)v∗20(x)− g+(x, 0)u+

20(x)v∗20(x)
)

dx

=
1

κ

∫
Ω

(
g−(x, 0)

(
[u20(x)]−

)2
+ g+(x, 0)

(
[u20(x)]+

)2)
dx,

lim
τ→0

d̂−2 (0, τ)

τ
=

1

κ

∫
Ω

(
g−(x, 0)(−u20(x))−v∗20(x)− g+(x, 0)(−u20(x))−v∗20(x)

)
dx

=
1

κ

∫
Ω

(
g−(x, 0)

(
[u20(x)]+

)2
+ g+(x, 0)

(
[u20(x)]−

)2)
dx.

From these relations 3. follows. To prove 4. we use the C2-smoothness of N . Let us denote

σ =

∫
Ω

(v∗10(x), v∗20(x))∂2
UN(0, 0)

[(
u10(x)
u20(x)

)
,

(
u10(x)
u20(x)

)]
dx,

with ∂2
UN(0, 0) denoting the bilinear map corresponding to the second derivative. Using the

relation between u0 and v∗0 find that

σ =

∫
Ω

(β1u20(x), β2u20(x))

2∑
i,j

(
αiαj∂ui∂uj

(
n1(0, 0)
n2(0, 0)

))
u20(x)2 dx

=

∫
Ω

2∑
i,j,k=1

βkαiαj(∂ui∂ujnk(0, 0))u20(x)3 dx.

Now we note that ρ = −σ/(2κ) and κ < 0.
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Chapter 5

Analysis of Schnackenberg system

The last step in the study of reaction-diffusion systems with unilateral terms is an analysis of one
specific system with two types of boundary conditions - either Dirichlet or Neumann boundary
conditions. The aim of this section is to show how to apply the theorems from Section 4 to a
specific problem, namely to Schnackenberg system with homogeneous Dirichlet/Neumann b.c.,
and how to qualitatively study the patterns which result from the problem. The information of
pattern shape and size is significant for deciding whether the patterns have a biological meaning.
In particular, the knowledge of how the patterns are affected by the presence of the unilateral
terms could be helpful for investigation which systems in nature could potentially contain feedback
mechanisms that can be described by these unilateral terms. Since there are not rigorous assertions
about evolution and shape of patterns, the only possibility to study them is to approximate the
solutions of a specific problem by a suitable numerical method. This chapter is organized as
follows. The first section concerns with the critical points for linearized/homogenized Schackenberg
problem without/with unilateral terms and in the first subsection with homogeneous Dirichlet
boundary conditions, in the second subsection with homogeneous Neumann boundary conditions.
The conditions on Turing instability, plot of hyperbolas and explicit solutions for the problem
without unilateral terms are presented. The next section contains numerical solutions of the
nonlinear problem (5.1) with (d1, d2) close to CE . Since the set CE is depending on the choice of
the boundary conditions, some of the critical points are chosen to capture this distinction. More
precisely, the point (d1, d2) ∈ CE with given d1 has a different value of d2 regarding to whether
we have chosen Dirichlet or Neumann b.c., see Tabs. 5.3–5.14. Also the influence of unilateral
sources on the shape of patterns is studied. All results are discussed at the end of the chapter and
conclusions are made.

5.1 Setting the problem

In this section a problem which to be studied in the forthcoming sections will be introduced. We
have chosen the set Ω := (0, L1)× (0, L2) with L1 = 15, L2 = 10 for our experiments. The set Ω is
a bounded domain with the Lipschitz boundary. Schnackenberg model with unilateral sources is

∂u

∂t
= d1∆u+ a− u+ u2v,

∂v

∂t
= d2∆v + b− u2v + s−(x)(v − v)− − s+(x)(v − v)+,

(5.1)

with a, b being positive parameters and

(u, v) =

(
a+ b,

b

(a+ b)2

)
(5.2)

being the steady state of this system. The parameters have been set to a = 0.1, b = 0.85. For
this particular choice the constant steady state (5.2) is approx. (u, v) ≈ (0.95, 0.94). The source
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5.1. Setting the problem

functions s± are chosen as

s−(x1, x2) = τ(exp
(
−0.25[(x1 − 12)2 + (x2 − 7)2]

)
− exp(−0.25× 2.25))χB1.5(12,7)(x1, x2)

s+(x1, x2) = τ(exp
(
−0.25[(x1 − 3)2 + (x2 − 3)2]

)
− exp(−0.25× 2.25))χB1.5(3,3)(x1, x2)

,

(5.3)

where τ ∈ R+ is a parameter. The symbol χ denotes the characteristic function of the set in
the subscript and τ measures the strength of the source. The reason for such choice is practical
- the supports of s± are not active the entire domain and the source and sink have a symmetry
w.r.t. point reflections. Moreover, this function is continuous in Ω. The interpolated plot of the
functions s± can be found in Fig. 5.1. The source functions are continuous in R2.

Figure 5.1: Plot of function s+ + s− with τ = 1.

We shift the constant steady state to zero. Then the stationary solutions of (5.1) have to
satisfy

d1∆u+

(
−1 +

2b

a+ b

)
u+ (a+ b)2v + 2(a+ b)uv +

(
b

(a+ b)2
+ v

)
u2 = 0,

d2∆v − 2b

a+ b
u− (a+ b)2v − 2(a+ b)uv −

(
b

(a+ b)2
+ v

)
u2 + s−(x)v− − s+(x)v+ = 0,

(5.4)

supplemented with the zero Dirichlet/Neumann b.c. and random initial condition (u0, v0) satis-
fying ‖(u0 − u, v0 − v)‖L∞(Ω)×L∞(Ω) ≤ 0.2. The homogenization of (5.4) results in the problem

d1∆u+

(
−1 +

2b

a+ b

)
u+ (a+ b)2v = 0,

d2∆v − 2b

a+ b
u− (a+ b)2v + s−(x)(v)− − s+(x)(v)+ = 0,

(5.5)

again with the homogeneous Dirichlet/Neumann b.c. Everything is prepared to verify that the
assumptions form Section 2.1 are fulfilled for our particular system.

Proposition 6. Under the assumption b− a < (b+ a)3 the system (5.5) satisfies (2.1), (2.2).

Proof. The conditions

b11 =

(
b− a
a+ b

)
> 0, b22 = −(a+ b)2 < 0, b12b21 = −2b(a+ b) < 0,

Tr B = b11 + b22 =
b− a− (a+ b)3

(a+ b)
< 0, det B = (a+ b)2 > 0,
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5.2. Critical points and asymptotes of hyperbolas

are fulfilled if and only if b− a < (b+ a)3.

For the particular choice a = 0.1, b = 0.85 the assumption b − a < (b + a)3 means 0.75 < 0.857,
which is true. The nonlinear part of the kinetics is

n1(u, v) = 1.9uv +

(
0.85

0.952
+ v

)
u2,

n2(u, v) = −1.9uv −
(

0.85

0.952
+ v

)
u2.

(5.6)

Proposition 7. The functions n1, n2 defined by (5.6) satisfy the conditions (2.3) and (2.4).

Proof. The condition (2.3) follows directly form the definition. The conditions (2.4) are satisfied
by choosing p = 4.

Proposition 8. The functions s± from (5.3) satisfy assumptions (2.21) and (4.1).

Proof. The first statement follows from the fact that supports of s± are open circles which do not
intersect. The second statement follows from ‖s±‖ ∈ L∞(Ω) and the positivity of the exponential
function.

5.2 Critical points and asymptotes of hyperbolas

5.2.1 Dirichlet boundary conditions

We are going to study a problem (5.4) with homogeneous Dirichlet b.c., altogether it is

d1∆u+
(
−1 + 2b

a+b

)
u+ (a+ b)2v + 2(a+ b)uv +

(
b

(a+b)2 + v
)
u2 = 0,

d2∆v − 2b
a+bu− (a+ b)2v − 2(a+ b)uv −

(
b

(a+b)2 + v
)
u2 + s−(x)v− − s+(x)v+ = 0,

in Ω,

u = v = 0 on ∂Ω. (5.7)

For this problem the assumption (2.10) is fulfilled. The eigenvalues of the Laplacian in our set
Ω = (0, 15)× (0, 10) with homogeneous Dirichlet b.c. are

κm,n =
(πm

15

)2

+
(πn

10

)2

, m, n ∈ N,

and the corresponding eigenfunctions are

φm,n = sin
(mπx

15

)
sin
(mπx

10

)
, m, n ∈ N.

We rearrange the eigenvalues κm,n of the Laplacian to a growing sequence with κ1 < κ2 <
κ3 · · · → ∞, see (7.6). The critical points of the system (5.5) with the homogeneous Dirichlet b.c.
and with τ = 0 have the form

d2,k(d1) = λSk (d1) =
1

κk

(
− 2b

d1κk(a+ b) + a− b
− 1

)
(a+ b)2, k = 1, 2, 3, · · ·

where k counts the eigenvalues from the smallest w.r.t. their size, see (2.39) and Remark 8 and
d1 6= b11/κk for all k ∈ N. Let us remind that a = 0.1, b = 0.85. The function d0

2,k is for any k ∈ N
a hyperbola with the domain of definition (−∞, yk) ∪ (yk,+∞).

The asymptotes of the hyperbolas are

yk =
1

κk

(
b− a
a+ b

)
, (5.8)
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5.2. Critical points and asymptotes of hyperbolas

indexing κi indexing κm,n value yi multiplicity
κ1 κ1,1 0.1426 5.62 1
κ2 κ1,2 0.2742 2.92 1
κ3 κ2,1 0.4386 1.82 1
κ4 κ1,3 0.4935 1.62 1
κ5 κ2,2 0.5702 1.40 1
κ6 κ3,1 0.9321 0.86 1

Table 5.1: First six eigenvalues of the Laplacian with zero Dirichlet b.c. and first six asymptotes
yi

see (2.82).
If d1 6= yk for all k ∈ N, all assumptions of Theorem 11 are fulfilled. First six eigenvalues κi,

the corresponding counterparts κm,n and the corresponding asymptotes are in Tab. 5.1.
The following proposition has been proved by numerical computation, therefore we are not

giving the proof here.

Proposition 9. For any d1 ∈ {0.02, 0.12, 0.5, 1.1, 1.6, 4.0} there exists unique d2 > 0 for which
(d1, d2) ∈ CE. Moreover, the point d2 of (5.5) with homogeneous Dirichlet b.c. and fixed d1 is
simple.

According to Theorem 11 the largest critical point of the system (5.5) with fixed d1, homogen-
eous Dirichlet b.c. and with the sources (5.3) can be estimated by

max
k∈N

1

κk

(
−1.8

d1κk − 0.8
− 1

)
≥ dm2 ≥ max

k∈N

1

κk

(
−1.8

d1κk − 0.8
− (1 + 2τ)

)
. (5.9)

The first six hyperbola segments in R2
+ are plotted in Fig. 5.2. Full lines represent upper

bounds from (5.9), i.e. the couples (d1, d2) for which our system with s± ≡ 0 has nontrivial
solution, dotted lines are lower bounds from (5.9) with τ = 1. It can be computed that for
d1 ∈ (y2, y1) and τ < 0.625 the lower bound in (4.3) is positive and as a consequence dm2 is
positive, and (d1, d

m
2 ) ∈ DS .

Since each κk is associated with a given κm,n, we can also introduce a notation Cm,n for the
hyperbola Ck. We will use this notation later in Tabs. 5.3–5.8, because it is not so simple to find
for a couple (m,n) the respective k.

5.2.2 Neumann boundary conditions

Now let the system (5.4) in Ω := (0, 15)× (0, 10) be supplemented with (homogeneous) Neumann
b.c. The eigenvalues of the Laplacian on Ω with homogeneous Neumann b.c. are

κm,n =
(πm

15

)2

+
(πn

10

)2

, m, n ∈ N0,

and the eigenfunctions are

φm,n = cos
(mπx

15

)
cos
(mπx

10

)
, m, n ∈ N0.

Let us emphasize that the indexes m,n attain a value zero, which is a difference against Dirichlet
problem. Again, the eigenvalues will be rearranged to a growing sequence with 0 = κ0 < κ1 <
κ2 < κ3 · · · → ∞. The eigenvalues κi,j for i, j ∈ N are the same as for the Dirichlet case. However,
there are additional eigenvalues - κ0, κ0,j , κj,0, j ∈ N. The critical points of the system (5.5) with
s± ≡ 0 and fixed d1 have the form

d2,k(d1) =
1

κk

(
− 2b

d1κk(a+ b) + a− b
− 1

)
(a+ b)2, k = 1, 2, 3, · · · .
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5.2. Critical points and asymptotes of hyperbolas

Figure 5.2: The upper figure contains plot of first six hyperbola segments (full lines) and lower
(dashed lines) bounds from (4.3), with τ := 1 for Schnackenberg system with homogeneous Di-
richlet b.c. The lower figure contains plots of hyperbolas segments around 0.02. The hyperbola
segments are very dense in the selection, which explains why we were not successful in finding
solutions bifurcating from (d1, d2) ∈ CE of system (5.4) with fixed d1 = 0.02, see Fig. 5.8.
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5.2. Critical points and asymptotes of hyperbolas

Let us emphasize that d2,0 is not defined. The function d2,k is a hyperbola with the asymptote
(5.8). The following assertion is analogous to problem with zero Dirichlet b.c. and has been again
proved by using numerical computation.

Proposition 10. For any d1 ∈ {0.02, 0.12, 0.5, 1.1, 1.6, 4.0} there exists unique d2 > 0 for which
(d1, d2) ∈ CE. Moreover, the point d2 of (5.5) with homogeneous Neumann b.c. and fixed d1 is
simple.

The hyperbolas C1, C2, C4, C6 are specific for Neumann problem, the hyperbolas C3, C5, C7

coincide with hyperbolas C1, C2, C3 from the Dirichlet case, respectively. The plot of hyperbolas
can be found in Fig. 5.3. A hyperbola C0 is not defined. The first seven eigenvalues of the
Laplacian and first six asymptotes of Ck are summarized in Tab. 5.2. Similarly to Dirichlet case,
we will introduce a notation Cm,n for the hyperbola Ck. We will use this notation later in Tabs.
5.9–5.14. In systems with τ = 0 there is no positive critical point d2 of (5.5) with fixed d1 > y1.
On the other hand, in a system with unilateral terms with sufficiently large norm it is possible to
apply Theorem 15 to get the positive critical points d2 even for systems with d1 > y1.

Proposition 11. If d1 ∈ (0, y1)\
{
yj
∣∣ j = 2, 3, · · ·

}
and

1 > max

{
300

0.8 ‖s−‖L1

,
300

0.8 ‖s+‖L1

}
=

{
306.8

τ
,

306.8

τ

}
, (5.10)

then the largest critical point of (5.5) with homogeneous Neumann b.c. is finite. Let (5.10) be
fulfilled and d1 > y1 be fixed. For the system (5.5) with a = 0.1, b = 0.85 and Neumann b.c.
the assumption (4.18) is fulfilled as well and the point dm2 from (4.17) exists and it is the largest
critical point of (5.5) with Neumann b.c. and fixed d1.

Proof. The condition (5.10) is clearly equivalent to (4.16). It can be computed that this condition
is true for τ > 306.9. The l.h.s. of (4.18) is equal to 1.256, the r.h.s is equal to 1.8 and the
inequality is true. The assumptions of Theorem 15 are fulfilled, and from this Theorem directly
follows the assertions of this Proposition.

The bound CM can be found for τ = 1000 explicitly as 2970.5. Since the area of the sources
is relatively small, they have to be very strong in order to fulfill (4.18). It appears that although
the inequality (3.28) had a crucial role in the proof of Theorem 16 on pg. 72, the practical
computations shows that the inequality is not optimal.

The hyperbolas are plot in Fig. 5.3.

index κi index κm,n num. value yi multiplicity
κ0 κ0,0 0 — 1
κ1 κ0,1 0.04386 18.24 1
κ2 κ1,0 0.09870 8.11 1
κ3 κ1,1 0.1426 1.62 1
κ4 κ1,3 0.2742 5.61 1
κ5 κ2,2 0.4386 2.81 1
κ6 κ3,1 0.4935 1.82 1

Table 5.2: First seven eigenvalues of the Laplacian with Neumann b.c. and first six asymptotes
yi = b11/κi
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5.2. Critical points and asymptotes of hyperbolas

Figure 5.3: The upper figure contains plot of first six hyperbola segments d2,k (full lines) and
lower (dashed lines) bounds from (4.3), with τ := 1 for Schnackenberg system with homogeneous
Neumann b.c. The lower figure contains plots of hyperbolas segments around 0.02. The hyperbola
segments are very dense in the selection, which explains why we were not successful in finding
solutions bifurcating from (d1, d2) ∈ CE of system (5.4) with fixed d1 = 0.02, see Fig. 5.14. 86



5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

5.3 Numerical solutions of Schnackenberg system with Dirichlet and Neu-
mann b.c.

The nonlinear problem (5.4) is

d1∆u+ 0.8u+ v + 1.9uv +

(
0.85

0.952
+ v

)
u2 = 0,

d2∆v − 1.8u− v − 1.9uv −
(

0.85

0.952
+ v

)
u2 + s−(x)v− − s+(x)v+ = 0,

and we supplement it with the homogeneous Dirichlet b.c. and homogeneous Neumann b.c.

Proposition 12. Let τ be sufficiently small. For any d1 ∈ {0.02, 0.12, 0.5, 1.1, 1.6, 4.0} there exists
a bifurcation point db2 of (5.4) with Dirichlet b.c. and fixed d1 such that (d1, d

b
2) ∈ DS.

Proof. Since s± from (5.3) have ‖s±‖L∞ = τ , the assertion follows for sufficiently small τ from
Theorem 14 and Proposition 9.

Analogous statement can be proved also for Neumann problem.

Proposition 13. Let τ be sufficiently small. For any d1 ∈ {0.02, 0.12, 0.5, 1.1, 1.6, 4.0} there exists
a bifurcation point db2 of (5.4) with Neumann b.c. and fixed d1 such that (d1, d

b
2) ∈ DS.

Previous propositions prove the existence of stationary solutions of (5.1) with either Dirichlet
or Neumann boundary conditions in the domain of stability.

The aim of the numerical experiments was to answer the three questions:

◦ Are the solutions of the system (5.4) with Dirichlet/Neumann b.c. and with (d1, d2) close
to some bifurcation points numerically stable?

◦ How is the shape of the solutions influenced by the presence of the unilateral terms?

◦ How the solution of the homogenized system approximately look like?

To find numerical steady states (patterns) of the chosen problem, the problem has been dis-
cretized in time by using the Crank-Nicolson scheme with the time-step adaptation and in space
using the first-order Lagrange elements. The mesh adaptation has been not used in order to make
the computation faster.

The starting point is a weak formulation∫
Ω

∂u

∂t
ϕ dx +

∫
Ω

∂v

∂t
ψ dx =

∫
Ω

−d1∇u · ∇ϕ+ b11uϕ+ b12vϕ+ n1(u, v)ϕ dx+∫
Ω

−d2∇u · ∇ψ + b21uψ + b22vψ + n2(u, v)ψ + s−(x, v−)ψ − s+(x, v+)ψ dx,

for all ϕ,ψ ∈W 1,2
D (Ω),

(5.11)

of the system (1.14), (1.10). This can be written as〈
∂u

∂t
, ϕ

〉
W 1,2

D (Ω)

+

〈
∂v

∂t
, ψ

〉
W 1,2

D (Ω)

= F1(d1, x, u, v, ϕ) + F2(d2, x, u, v, ψ), for all ϕ ∈W 1,2(Ω)

with the functionals F1, F2 derived from (5.11) and 〈·, ·〉W 1,2
D (Ω) being the duality pairing between

W 1,2
D (Ω) and (W 1,2

D (Ω))?. Denote un(·, t) := u(·, n∆t), ∆t ∈ R+n ∈ N. Now the Crank-Nicolson
scheme [52] for a semi-discretized problem is∫

Ω

un+1 − un
∆t

ϕ+

∫
Ω

vn+1 − vn
∆t

ψ =

=
1

2

[
Fn+1

1 (d1, x, u, v, ϕ) + Fn+1
2 (d2, x, u, v, ψ) + Fn1 (d1, x, u, v, ϕ) + Fn+1

2 (d1, x, u, v, ψ)
]
.

The essential part is a suitable choice of ∆t. This has been done by the following algorithm [52]:
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

1. in the first step set integer m and floats TOL, TOL?, TOL+,

2. having approximation un(·, tn) and time step ∆tn and step m find un+1(·, tn +m∆tn),

3. do the m small time steps and find um+n(·, tn +m∆tn),

4. compute the error e = ‖um+n(·, tn +m∆tn)− un+1(·, tn +m∆tn)‖,

5. compute the value

∆t? = ∆tn

√
TOL(m2 − 1)

‖um+n(·, t+m∆tn)− un+1(·, t+m∆tn)‖
,

6. if ∆t? < 10−2∆tn, take m− 1 and repeat the previous step,

7. if n > 21 and ‖un−20(·, tn−20)−un(·, tn)‖ < TOL? and ∆tn > TOL+ break and save results.

This scheme was implemented in FENICS using the Python API1. The solver had started up with
a random initial condition and with prescribed values m, TOL, TOL?, TOL+. For some diffusion
coefficients, the computation has been run again on finer mesh, in order to realize whether the
result is not significantly changed by to choice of the mesh.

It has happened that the system with given diffusion parameters has produced various patterns
for different initial conditions, see [58]. Although we have observed this phenomenon as well, we
have been not concerned with it.

We have run several test with several parameters. The first set of tests was aiming on verify
numerically the existence of solutions of (5.4) with parameter (d1, d2) ∈ DS , which is predicted by
Theorems 11, 14, 18, and discuss how the presence of unilateral terms influences a shape of the
solutions.

The results are summarized in Tabs. 5.3–5.15. The values of d1 have been at first chosen in the
intervals, where the envelope CE is different for problems with Neumann and Dirichlet b.c. More
precisely, it has been the values d1 = 4.0, 1.6, 0.5, 0.12. These values of d1 were supplemented with
the values d1 = 1.1, 0.5, 0.02. For these values of d1, the critical points of (1.12), (1.10) with fixed
d1, for which (d1, d2) ∈ CE , are simple.

For the problem without unilateral terms, i.e. with s± ≡ 0, and with given fixed d1 the values
of d2 has been chosen in a following way. The couple (d1, d2) is in DU , the second one is very
close to CE . For the problem with sources with τ = 1.0 the values of d2 has been chosen in a
slightly different way. The largest one is the same as for the system without unilateral terms,
then the second one is in the bifurcation point of the problem without sources, and the last one
is the lowest one for which we have been able to find nontrivial solutions of our problem. All of
this together with L∞(Ω) and W 1,2

D (Ω) norm of the v component of the solution is summarized in
Tabs. 5.3–5.14.

The numerical computations are in accordance with the conclusions of Theorem 14 for the
Dirichlet problem and similar conclusions for Neumann problem that there are critical and bi-
furcation points of (1.12), (1.10) and (1.16), (1.10) respectively, in DS . The shape of patterns is
influenced by unilateral sources and the influence grows with d1 being smaller. The L∞(Ω) and
W 1,2
D (Ω) norms of the solutions are usually getting smaller as the diffusion coefficients approach

CE , which is again in accordance with theoretical predictions. And finally, it is possible to see
that the shapes of solutions are quite similar to solutions of systems with (d1, d2) very close to CE .
The only exception is the value d1 = 0.02. It is probably caused by presence of many hyperbolas
around d1 = 0.02, see Fig. 5.2, 5.3, and therefore the solution is probably attracted to critical
point which is not on CE .

There is one interesting point - for the problem with Dirichlet boundary conditions and d1 =
4.0 there are patterns in the system without sources even below CE . According to Crandall-
Rabinowitz Theorem there are two bifurcation branches originating from one bifurcation point.

1The source code of the implementation for the particular system used here is freely available on page
http://github.com/Josef-Navratil/RD-system
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

However, since the v-component of solution has constant negative sign for values (4.0, 48) which are
above CE and values (4.0, 38) which are below CE , it (probably) cannot be solutions on different
bifurcation branches. The reason for this behavior is therefore not known but since the value of
bifurcation point is changing with mesh refinement, there is probably some issue connected with
the discretization.

The influence of unilateral terms on the shape of patterns was tested on one particular choice
of diffusion coefficients d1 = 0.02, d2 = 0.2. The value of τ has been increased from 0.0 up to 4.0.
The computed solutions are found in Tab. 5.15.

5.3.1 Results of numerical experiments with system having Dirichlet and Neumann
boundary conditions

Experiment Nr. 1 Experiment Nr. 2 Experiment Nr. 3*
d1 = 4.0 d1 = 4.0 d1 = 4.0
d2 = 48.0 d2 = 38.61 d2 = 45.34
‖v‖L∞(Ω) = 0.525 ‖v‖L∞(Ω) = 0.335 ‖v‖L∞(Ω) = 1.0
‖v‖ = 16.619 ‖v‖ = 8.104 ‖v‖ = 2.312
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 4 Experiment Nr. 5 Experiment Nr. 6
d1 = 4.0 d1 = 4.0 d1 = 4.0
d2 = 48.0 d2 = 45.34 d2 = 37.69
‖v‖L∞(Ω) = 0.538 ‖v‖L∞(Ω) = 0.502 ‖v‖L∞(Ω) = 0.336
‖v‖ = 17.487 ‖v‖ = 15.198 ‖v‖ = 8.144
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.3: Solution of the Schnackenberg system with homogeneous Dirichlet b.c., having fixed
d1 = 4.0 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 3∗ shows a plot of the explicit solution (d1, d2) =
(4.0, 45.34) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C1,1. System had zero Dirichlet b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 7 Experiment Nr. 8 Experiment Nr. 9*
d1 = 1.6 d1 = 1.6 d1 = 1.6
d2 = 13.90 d2 = 13.50 d2 = 13.499
‖v‖L∞(Ω) = 0.0680 ‖v‖L∞(Ω) = 6.26e− 4 ‖v‖L∞(Ω) = 1.0
‖v‖ = 0.936 ‖v‖ = 0.0118 ‖v‖ = 3.206
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 10 Experiment Nr. 11 Experiment Nr. 12
d1 = 1.6 d1 = 1.6 d1 = 1.6
d2 = 13.90 d2 = 13.499 d2 = 12.13
‖v‖L∞(Ω) = 0.203 ‖v‖L∞(Ω) = 0.173 ‖v‖L∞(Ω) = 0.00534
‖v‖ = 2.843 ‖v‖ = 2.367 ‖v‖ = 0.069
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.4: Solution of the Schnackenberg system with homogeneous Dirichlet b.c., having fixed
d1 = 1.6 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 9∗ shows a plot of the explicit solution (d1, d2) =
(1.6, 13.499) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C2,1. System had zero Dirichlet b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 13 Experiment Nr. 14 Experiment Nr. 15*
d1 = 1.1 d1 = 1.1 d1 = 1.1
d2 = 9.50 d2 = 8.78 d2 = 8.78
‖v‖L∞(Ω) = 0.262 ‖v‖L∞(Ω) = 0.375 ‖v‖L∞(Ω) = 1.0
‖v‖ = 3.260 ‖v‖ = 0.511 ‖v‖ = 3.206
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 16 Experiment Nr. 17 Experiment Nr. 18
d1 = 1.1 d1 = 1.1 d1 = 1.1
d2 = 9.50 d2 = 8.78 d2 = 7.52
‖v‖L∞(Ω)0.262 ‖v‖L∞(Ω) = 0.226 ‖v‖L∞(Ω) = 5.67e− 4
‖v‖ = 4.439 ‖v‖ = 3.685 ‖v‖ = 0.00785
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.5: Solution of the Schnackenberg system with homogeneous Dirichlet b.c., having fixed
d1 = 1.1 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 15∗ shows a plot of the explicit solution (d1, d2) =
(1.1, 8.782) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C2,1. System had zero Dirichlet b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 19 Experiment Nr. 20 Experiment Nr. 21*
d1 = 0.5 d1 = 0.5 d1 = 0.5
d2 = 4.50 d2 = 4.03 d2 = 4.03
‖v‖L∞(Ω) = 0.253 ‖v‖L∞(Ω) = 0.174 ‖v‖L∞(Ω) = 1.0
‖v‖ = 3.916 ‖v‖ = 2.195 ‖v‖ = 4.624
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 22 Experiment Nr. 23 Experiment Nr. 24
d1 = 0.5 d1 = 0.5 d1 = 0.5
d2 = 4.50 d2 = 4.03 d2 = 3.53
‖v‖L∞(Ω) = 0.238 ‖v‖L∞(Ω) = 0.169 ‖v‖L∞(Ω) = 2.77e− 5
‖v‖ = 3.991 ‖v‖ = 1.168 ‖v‖ = 0.000239
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.6: Solution of the Schnackenberg system with homogeneous Dirichlet b.c., having fixed
d1 = 0.5 and selected values of d2. The upper images are for systems with τ = 0, the lower ones are
for systems with τ = 1.0. The figure 21∗ shows a plot of the explicit solution (d1, d2) = (0.5, 4.03) ∈
CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the Schnackenberg system
and lies on the hyperbola C2,2. System had zero Dirichlet b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 25 Experiment Nr. 26 Experiment Nr. 27*
d1 = 0.12 d1 = 0.12 d1 = 0.12
d2 = 1.1 d2 = 0.95 d2 = 0.95
‖v‖L∞(Ω) = 0.232 ‖v‖L∞(Ω) = 0.164 ‖v‖L∞(Ω) = 1.0
‖v‖ = 7.302 ‖v‖ = 0.00445 ‖v‖ = 10.360
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 28 Experiment Nr. 29 Experiment Nr. 30
d1 = 0.12 d1 = 0.12 d1 = 0.12
d2 = 1.1 d2 = 0.95 d2 = 0.67
‖v‖L∞(Ω) = 0.340 ‖v‖L∞(Ω) = 0.215 ‖v‖L∞(Ω) = 0.374
‖v‖ = 8.144 ‖v‖ = 4.614 ‖v‖ = 2.178
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.7: Solution of the Schnackenberg system with homogeneous Dirichlet b.c., having fixed
d1 = 0.12 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 30∗ shows a plot of the explicit solution (d1, d2) =
(0.12, 0.95) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C3,5. System had zero Dirichlet b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 31 Experiment Nr. 32 Experiment Nr. 33*
d1 = 0.02 d1 = 0.02 d1 = 0.02
d2 = 0.20 d2 = 0.16 d2 = 0.16
‖v‖L∞(Ω) = 0.315 ‖v‖L∞(Ω) = 0.0470 ‖v‖L∞(Ω) = 1.0
‖v‖ = 20.019 ‖v‖ = 2.949 ‖v‖ = 35.410
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 34 Experiment Nr. 35 Experiment Nr. 36
d1 = 0.02 d1 = 0.02 d1 = 0.02
d2 = 0.20 d2 = 0.16 d2 = 0.08
‖v‖L∞(Ω) = 0.315 ‖v‖L∞(Ω) = 0.0470 ‖v‖L∞(Ω) = 0.374
‖v‖ = 0.327 ‖v‖ = 0.222 ‖v‖ = 0.812
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.8: Solution of the Schnackenberg system with homogeneous Dirichlet b.c., having fixed
d1 = 0.02 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 33∗ shows a plot of the explicit solution (d1, d2) =
(0.02, 0.16) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C16,15. System had zero Dirichlet b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 1 Experiment Nr. 2 Experiment Nr. 3*
d1 = 4.0 d1 = 4.0 d1 = 4.0
d2 = 33.5 d2 = 32.32 d2 = 32.31
‖v‖L∞(Ω) = 0.0843 ‖v‖L∞(Ω) = 0.00157 ‖v‖L∞(Ω) = 1.0
‖v‖ = 1.941 ‖v‖ = 0.0355 ‖v‖ = 6.387
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 4 Experiment Nr. 5 Experiment Nr. 6
d1 = 4.0 d1 = 4.0 d1 = 4.0
d2 = 33.50 d2 = 32.31 d2 = 30.93
‖v‖L∞(Ω) = 0.338 ‖v‖L∞(Ω) = 0.102 ‖v‖L∞(Ω) = 0.0118
‖v‖ = 2.652 ‖v‖ = −− ‖v‖ = 0.204
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.9: Solution of the Schnackenberg system with homogeneous Neumann b.c., having fixed
d1 = 4.0 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 3∗ shows a plot of the explicit solution (d1, d2) =
(4.0, 32.31) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C0,1. System had zero Neumann b.c. Note that
the bifurcation point has a different value compared to the Dirichlet case
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 7 Experiment Nr. 8 Experiment Nr. 9*
d1 = 1.6 d1 = 1.6 d1 = 1.6
d2 = 13.50 d2 = 12.95 d2 = 12.95
‖v‖L∞(Ω) = 0.144 ‖v‖L∞(Ω) = 0.00433 ‖v‖L∞(Ω) = 1.0
‖v‖ = 3.059 ‖v‖ = 0.0830 ‖v‖ = 7.118
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 10 Experiment Nr. 11 Experiment Nr. 12
d1 = 1.6 d1 = 1.6 d1 = 1.6
d2 = 13.50 d2 = 12.95 d2 = 12.32
‖v‖L∞(Ω) = 0.203 ‖v‖L∞(Ω) = 0.173 ‖v‖L∞(Ω) = 0.00534
‖v‖ = 3.923 ‖v‖ = 3.434 ‖v‖ = 2.581
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.10: Solution of the Schnackenberg system with homogeneous Neumann b.c., having fixed
d1 = 1.6 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 9∗ shows a plot of the explicit solution (d1, d2) =
(1.6, 12.95) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C2,0. System had zero Neumann b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 13 Experiment Nr. 14 Experiment Nr. 15*
d1 = 1.1 d1 = 1.1 d1 = 1.1
d2 = 9.50 d2 = 8.78 d2 = 8.78
‖v‖L∞(Ω) = 0.202 ‖v‖L∞(Ω) = 2.85e− 4 ‖v‖L∞(Ω) = 1.0
‖v‖ = 3.260 ‖v‖ = 0.511 ‖v‖ = 3.206
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 16 Experiment Nr. 17 Experiment Nr. 18
d1 = 1.1 d1 = 1.1 d1 = 1.1
d2 = 9.50 d2 = 8.78 d2 = 8.66
‖v‖L∞(Ω) = 0.304 ‖v‖L∞(Ω) = 0.0568 ‖v‖L∞(Ω) = 0.0124
‖v‖ = 3.125 ‖v‖ = 1.124 ‖v‖ = 0.149
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.11: Solution of the Schnackenberg system with homogeneous Neumann b.c., having fixed
d1 = 1.1 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 15∗ shows a plot of the explicit solution (d1, d2) =
(1.1, 8.782) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C2,1. System had zero Neumann b.c. Here the
bifurcation point is the same as in the Dirichlet case.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 19 Experiment Nr. 20 Experiment Nr. 21*
d1 = 0.5 d1 = 0.5 d1 = 0.5
d2 = 4.50 d2 = 3.96 d2 = 3.96
‖v‖L∞(Ω) = 0.169 ‖v‖L∞(Ω) = 0.00212 ‖v‖L∞(Ω) = 1.0
‖v‖ = 4.757 ‖v‖ = 0.0548 ‖v‖ = 9.494
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 22 Experiment Nr. 23 Experiment Nr. 24
d1 = 0.5 d1 = 0.5 d1 = 0.5
d2 = 4.50 d2 = 3.96 d2 = 3.52
‖v‖L∞(Ω) = 0.385 ‖v‖L∞(Ω) = 0.222 ‖v‖L∞(Ω) = 8.877e− 5
‖v‖ = 4.801 ‖v‖ = 2.960 ‖v‖ = 0.000856
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.12: Solution of the Schnackenberg system with homogeneous Neumann b.c., having fixed
d1 = 0.5 and selected values of d2. The upper images are for systems with τ = 0, the lower ones are
for systems with τ = 1.0. The figure 21∗ shows a plot of the explicit solution (d1, d2) = (0.5, 3.96) ∈
CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the Schnackenberg system
and lies on the hyperbola C4,0. System had zero Neumann b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 25 Experiment Nr. 26 Experiment Nr. 27*
d1 = 0.12 d1 = 0.12 d1 = 0.12
d2 = 1.1 d2 = 0.95 d2 = 0.95
‖v‖L∞(Ω) = 0.186 ‖v‖L∞(Ω) = 0.00192 ‖v‖L∞(Ω) = 1.0
‖v‖ = 7.783 ‖v‖ = 0.0720 ‖v‖ = 15.750
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 28 Experiment Nr. 29 Experiment Nr. 30
d1 = 0.12 d1 = 0.12 d1 = 0.12
d2 = 1.1 d2 = 0.95 d2 = 0.68
‖v‖L∞(Ω) = 0.442 ‖v‖L∞(Ω) = 0.480 ‖v‖L∞(Ω) = 0.458
‖v‖ = 7.799 ‖v‖ = 4.926 ‖v‖ = 2.635
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.13: Solution of the Schnackenberg system with homogeneous Neumann b.c., having fixed
d1 = 0.12 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 27∗ shows a plot of the explicit solution (d1, d2) =
(0.12, 0.95) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C8,0. System had zero Neumann b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 31 Experiment Nr. 32 Experiment Nr. 33*
d1 = 0.02 d1 = 0.02 d1 = 0.02
d2 = 0.20 d2 = 0.16 d2 = 0.16
‖v‖L∞(Ω) = 0.308 ‖v‖L∞(Ω) = 0.0918 ‖v‖L∞(Ω) = 1.0
‖v‖ = 19.886 ‖v‖ = 3.021 ‖v‖ = 35.935
τ = 0.0 τ = 0.0 τ = 0.0

Experiment Nr. 34 Experiment Nr. 35 Experiment Nr. 36
d1 = 0.02 d1 = 0.02 d1 = 0.02
d2 = 0.20 d2 = 0.16 d2 = 0.08
‖v‖L∞(Ω) = 0.533 ‖v‖L∞(Ω) = 0.422 ‖v‖L∞(Ω) = 0.817
‖v‖ = 20.616 ‖v‖ = 9.094 ‖v‖ = 3.677
τ = 1.0 τ = 1.0 τ = 1.0

Table 5.14: Solution of the Schnackenberg system with homogeneous Neumann b.c., having fixed
d1 = 0.02 and selected values of d2. The upper images are for systems with τ = 0, the lower
ones are for systems with τ = 1.0. The figure 33∗ shows a plot of the explicit solution (d1, d2) =
(0.10, 0.16) ∈ CE of the system (5.5) with τ = 0.0. This point is a bifurcation point of the
Schnackenberg system and lies on the hyperbola C16,15. System had zero Neumann b.c.
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5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Experiment Nr. 1 Experiment Nr. 2 Experiment Nr. 3
d1 = 0.02 d1 = 0.02 d1 = 0.02
d2 = 0.20 d2 = 0.20 d2 = 0.20
‖v‖L∞(Ω) = 0.308 ‖v‖L∞(Ω) = 0.821 ‖v‖L∞(Ω) = 0.355
‖v‖ = 8.124 ‖v‖ = 19.864 ‖v‖ = 20.124
τ = 0.00 τ = 0.25 τ = 0.50

Experiment Nr. 4 Experiment Nr. 5
d1 = 0.02 d1 = 0.02
d2 = 0.20 d2 = 0.20

‖v‖L∞(Ω) = 0.381 ‖v‖L∞(Ω) = 0.533
‖v‖ = 20.578 ‖v‖ = 19.754
τ = 0.75 τ = 1.00

Experiment Nr. 6 Experiment Nr. 7 Experiment Nr. 8
d1 = 0.02 d1 = 0.02 d1 = 0.02
d2 = 0.20 d2 = 0.16 d2 = 0.08
‖v‖L∞(Ω) = 0.401 ‖v‖L∞(Ω) = 0.925 ‖v‖L∞(Ω) = 0.595
‖v‖ = 8.078 ‖v‖ = 20.259 ‖v‖ = 7.546
τ = 1.50 τ = 2.00 τ = 4.00

Table 5.15: Solution of the Schnackenberg system with homogeneous Neumann b. c., having fixed
d1 = 0.02 d2 = 0.2 and selected values of τ , which increases from 0.0 for 4.0.

101



5.3. Numerical solutions of Schnackenberg system with Dirichlet and Neumann b.c.

Figure 5.4: The norm of v (of numerically stationary solutions) w.r.t. parameter d2. The para-
meter d1 = 0.5 is fixed.
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Chapter 6

Conclusions

The main purpose of this dissertation thesis, to study the systems of reaction-diffusion equations
with unilateral terms, was fulfilled. The analysis was divided into two categories – systems with
Dirichlet/mixed b.c. and with Neumann boundary conditions, because the boundary conditions
affect the existence and location of critical and bifurcation points of the problem. The main tools
were Variational methods, Topological Degree methods and methods based on Implicit Function
Theorem.

A short introduction to history and motivation to the research of pattern formation, together
with summary of contributions to it achieved in this dissertation thesis was given in the first
section.

The technique how to rewrite the reaction diffusion systems with unilateral terms to an operator
equation with positively homogeneous operator on the space W 1,2(Ω) is described in Section 2.
All necessary details are given there, including some supplementary results about skew-symmetric
systems which lead to the problem that has a potential. The conservation of potential under the
Lyapunov-Schmidt reduction is proved as well. The abstract formulation of the problem with the
unilateral terms on the boundary is also introduced.

The general results concerning eigenvalues of positively homogeneous operators and bifurcation
in equations with positively homogeneous operators perturbed by a small nonlinear perturbation
are contained in Theorems 3–10 in Section 3. These results are discussed and compared with
well-known theorems for equations with differentiable operators – Krasnoselskii, Rabinowitz and
Crandall-Rabinowitz. Of course all theorems are supplemented with explanatory remarks and
useful hints. Also some examples are given there. One very general theorem about the bifurcation
in the equations with positively homogeneous operators, which was developed by Lutz Recke and
Martin Väth, is stated there without the proof.

Afterwards these general theorems are applied to reaction-diffusion systems with unilateral
terms, which is a content of Theorems 11–21. Reaction-diffusion systems with Dirichlet/mixed
conditions and unilateral terms behave differently than the systems with Neumann b.c. and
therefore the results for them are in general different. However, one theorem has same conclusions
for both problems. The main contribution is the proof of the existence of bifurcation points of
our systems with unilateral terms having diffusion parameters, for which no bifurcation point of
reaction diffusion systems without unilateral terms exists. Also it contains two theorems about
systems with skew-symmetric reaction kinetics, which is a class of reactions that has not been
studied before for systems with unilateral terms. Two theorems for systems with unilateral terms
on the boundary are also formulated, giving again bifurcation points for parameters, for which no
bifurcation point of the systems without unilateral terms exists. Finally, one theorem for systems
defined on the domain with C1,1-continuous boundary is proved. The domain with the smoother
boundary leads to a better regularity of the solution.

In Section 5 these conclusions are verified on a particular problem – Schnackenberg system
with homogeneous Dirichlet boundary conditions and Schnackenberg system with homogeneous
Neumann boundary conditions. The patterns in the systems with unilateral terms are found for
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diffusion rates, for which in the systems without unilateral terms no patterns formed. Moreover,
the location of bifurcation points is approximated as well, which gives a hint how the solutions of
the so-called homogenized system should look like. The source code of the implementation of the
numerical scheme is freely available on GitHub, the address can be found in Section 5.

Finally, the necessary theoretical background is summarized in Appendix. It is of course not
complete, but contains all important theorems and concepts that from the point of view of the
author of this dissertation thesis could help the reader to understand the content of the thesis.

To sum up, the presence of unilateral sources has a significant impact on the location of critical
and bifurcation points of reaction-diffusion systems, which can be found even for diffusion rates,
for which no critical or bifurcation point in systems without unilateral terms exists. The presence
of the unilateral terms has also an impact on the shape of patterns.
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Chapter 7

Appendix

7.1 Sobolev spaces

Sobolev spaces The first part of the appendix is devoted to a summary of basic properties of
Sobolev spaces. Proofs of two theorems mentioned here can be found in classical books like [17]
or [48].

For k ∈ N and p ∈ [1,∞] the Sobolev space W k,p(Ω) is defined by

W k,p(Ω) :=
{
v ∈ Lp(Ω)

∣∣ Dαv ∈ Lp(Ω) for all |α| ≤ k
}
,

where the derivatives are considered in the weak sense and Lp(Ω) is, as usual, the Lebesgue space.
For p ∈ [1,∞] the Lebesgue norm on Lp(Ω) will be denoted by ‖·‖Lp . The Sobolev space W k,p(Ω)
equipped with the norm

‖v‖k,p =

∑
|α|≤k

‖Dαv‖pLp

 1
p

for all v ∈W k,p(Ω) if p <∞, (7.1)

‖v‖k,∞ = max
|α|≤k

‖Dαv‖L∞ for all v ∈W k,∞(Ω), (7.2)

is a Banach space. For p ∈ (1,∞) these spaces are separable and reflexive. The space W k,2(Ω)
with a scalar product

〈u, v〉k,2 =

k∑
n=1

∫
Ω

∇nu · ∇nv dx for all u, v ∈W k,2(Ω), (7.3)

is a Hilbert space for any k ≥ 1 The space W 1,2(Ω) will be the most often used space in this
dissertation thesis. However, in Section 4.6 the space W 2,p with p > 2 is used.

The significant properties of W k,p(Ω) are continuous and compact embeddings into Lq(Ω) and
C1,α(Ω) spaces.

Theorem 22. Let Ω ∈ C0,1, i.e. a bounded domain in Rm with a Lipschitz boundary. Let
k, l ∈ N0, k ≥ l and let 1 ≤ p < q <∞ be two real numbers such that

k − m

p
≥ l − m

q
. (7.4)

Then
W k,p(Ω) ↪→W l,q(Ω).

If the inequality (7.4) is strict, the embedding is completely continuous (compact).
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7.1. Sobolev spaces

Let m < p, let α ∈ (0, 1] and k, r be integers satisfying

(k − r − α)

m
=

1

p
.

Then
W k,p(Ω) ↪→ Cr,α(Ω).

For m = 2 it is W 1,2(Ω) ↪→c Lq(Ω) for any 1 ≤ q <∞. When m > 2, then W 1,2
D (Ω) ↪→ Lp(Ω)

with

p =
2m

m− 2
.

For 1 ≤ p < 2m/(m−2) the embedding is compact. Another important special case is m = 2, k =
2, p > 2, for which W 2,p(Ω) ↪→c C1,α(Ω), with α = 1−m/p. All of these embeddings will be used
in this dissertation thesis.

Theorem 23 (Trace Theorem). Let Ω ∈ C0,1 and p ∈ [1,∞). Let p0 = (mp− p)/(m− p). Then
there exists a unique bounded linear operator T : W 1,p(Ω)→ Lq(∂Ω), where q ∈ [1, p0], satisfying

Tv = v|∂Ω, for all v ∈ C∞(Ω).

The operator T is compact for q ∈ [1, p0). Moreover, if p = m then T compact from W 1,p(Ω)
to Lq(∂Ω) for any q ∈ [1,∞). If p > m, then T is compact from W 1,p(Ω) to Lq(∂Ω) for any
q ∈ [1,∞].

It is common to drop the symbol for trace operator and write simply v|∂Ω. A prominent
subspace of W 1,p(Ω) is a space of functions with the zero trace.

Definition 10. Let Ω ∈ C0,1. The space W 1,p
0 (Ω) ⊂W 1,p(Ω) is defined by

W 1,p
0 (Ω) := {v ∈W 1,p | v|∂Ω = 0}.

For our purposes we define a space of functions having the zero trace only on a part of the
boundary.

Definition 11. Let Ω ∈ C0,1 and ΓD ⊂ ∂Ω. The space W 1,2
D (Ω) ⊂W 1,2(Ω) is defined by

W 1,2
D (Ω) =

{
v ∈W 1,2(Ω)

∣∣ v|ΓD
= 0
}
.

Since Ω is a set with a Lipschitz boundary, the space W 1,2
D (Ω) is a Hilbert space, as can be

proved using Trace Theorem. If µm−1(ΓD) = 0, then W 1,2
D (Ω) = W 1,2(Ω) and if ΓD = ∂Ω, then

W 1,2
D (Ω) = W 1,2

0 (Ω).

Remark 28. Let us consider an eigenvalue problem for the Laplacian

∆v + κv = 0 in Ω

v
∣∣
ΓD

= 0,
∂v

∂~n

∣∣∣∣
ΓN

= 0.

The weak formulation of this equation is∫
Ω

∇v · ∇ϕ− κvϕ dx = 0, for all v ∈W 1,2
D (Ω).

If the problem has a Dirichlet or mixed boundary conditions, then smallest eigenvalue is positive.
The problem with Neumann boundary conditions has the smallest eigenvalue equal to zero.

For the Dirichlet/mixed case it is common to order the eigenvalues of the Laplacian in a
monotonous sequence

0 < κ1 < κ2 ≤ · · · → ∞, (7.5)
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7.2. Nonlinear analysis

counted according to their multiplicity.
The eigenvalues of the Laplacian with Neumann b.c. can be ordered in a sequence

0 = κ0 < κ1 ≤ κ2 ≤ · · · → ∞. (7.6)

It will be always assumed in this dissertation thesis that the eigenvalues of the Laplacian are
ordered either as (7.5), or (7.6), depending on the prescribed b.c.

7.2 Nonlinear analysis

The second part of this section contains a necessary minimum from the nonlinear analysis. The
symbols X and H will denote here a real Banach and a real Hilbert space respectively. The proofs
of the theorems can be found in books [9] and [1].

Definition 12. Let (M, ρ) be a complete metric space. A map Q : M → M is called contraction
if there exists a constant K ∈ (0, 1) such that

ρ(Q(x),Q(y)) ≤ Kρ(x, y) for all x, y ∈M.

Fixed Point Theorem. Let (M, ρ) be a nonempty complete metric space and Q : M → M be a
contraction. Then there exists the unique w ∈M satisfying Q(w) = w.

Definition 13. Let N : X→ X be a nonlinear operator. The operator N is called compact if the
image of every bounded set in X is a relatively compact set in X.

Definition 14. Let Ω ⊂ Rm be a domain and let f : Ω×Rm → R be a real function. We say that
f satisfies Carathéodory conditions if

1. f(·, ξ) is measurable for all ξ ∈ Rm,

2. f(x, ·) is continuous for a.a. x ∈ Ω.

Continuity of Nemyckii operator. Let Ω ⊂ Rm be a bounded domain, let p, q < ∞ and
f : Ω× Rm → R satisfy Caratheodory conditions and

|f(x, v)| ≤ g1(x) + c(x)

m∑
i=1

|vi|
p
q for all v ∈ Rm, for a.a. x ∈ Ω, (7.7)

where vi are components of v, g1(x) ∈ Lq(Ω) and c ∈ L∞(Ω). Then the Nemyckii operator

[F(v)](x) := f(x, v(x)) for a.a. x ∈ Ω for all v ∈ Lp(Ω),

is a well defined and continuous from Lp(Ω) to Lq(Ω).

Implicit Function Theorem. Let X,Y,Z be Banach spaces, Φ : X×Y→ Z. Let (a, b) ∈ X×Y
be such a point that

Φ(a, b) = 0.

Let V be an open set in X × Y containing the point (a, b). Let Φ ∈ C1(V ) and let the partial
derivative ∂xΦ(x, y)|x=a,y=b be an isomorphism of X onto Z. Then there are neighbourhoods U of
a and V of b such that for any v ∈ V there exists a unique u ∈ U for which

Φ(u, v) = 0.

Denote this u by F(v). Then F ∈ C1(V,U). Moreover,

F ′(v) = −
[
∂xΦ(x, y)|x=F(v),y=v

]−1
∂yΦ(x, y)x=F(v),y=v, for all v ∈ V. (7.8)

Let us note that the uniqueness of u in U implies Φ(u, v) = 0 if and only if u = F(v).
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7.2. Nonlinear analysis

Mean Value Theorem. Let X,Y be Banach spaces and let F : X→ Y. If the Gǎteaux derivative
DF(u1 + t(u2 − u1))−DF(u1)(u2 − u1) exists for given u1, u2 and for all t ∈ [0, 1], then

‖F(u2)−F(u1)−DF(u1)(u2−u1)‖Y ≤ sup
t∈[0,1]

‖DF(u1 +t(u2−u1))(u2−u1)−DF(u1)(u2−u1)‖Y.

Let us consider an abstract problem

F(λ, v) = 0, (7.9)

where X is a real Banach space and F : Λ × X → X, with Λ ⊂ R being an open set. The
homogenization of (7.9) is

F0(λ, v) = 0, (7.10)

where

F0(λ, v) = lim
r→0

F(λ, rv)

r
,

assuming that the limit exists. It is clear from the definition that F0 is positively homogeneous
of the degree one in the vriable v, i.e. F(λ, tv) = tF(λ, v) for all t ≥ 0, v ∈ X, λ ∈ Λ. If
F ∈ C1(Λ× X,X), then F0 is a linear operator.

Definition 15. A critical point of the problem (7.10) is a number λ0 ∈ Λ for which there exists
v ∈ H, v 6= 0 satisfying

F0(λ0, v) = 0. (7.11)

Let use define a set

S := {(λ, v) ∈ Λ× X | v 6= 0, (λ, v) solves (7.9)}. (7.12)

Definition 16. A number λb ∈ Λ is a (local) bifurcation point of (7.9) if it exists in any neigh-
borhood of (λb, 0) in Λ× X a solution (λ, v) ∈ Λ× X of (7.9) with v 6= 0.

A parameter λb ∈ Λ is called a global bifurcation point of the problem (7.9) if at least one of
the following cases occurs:

◦ a connected component S0 of S containing (λb, 0, 0) is unbounded

◦ there exists a critical point λc of (7.11) so that (λc, 0, 0) ∈ S0 and λb 6= λc

◦ there exists an element λ ∈ ∂Λ and v ∈ X, v 6= 0 such that (λ, v) ∈ S0.

In our applications the set Λ will be mostly the interval (0,∞).

Definition 17 (Brouwer degree). Let Ω ⊂ Rm be open and bounded, let F ∈ C(Ω,Rm) ∩
C1(Ω,Rm). Assume that y0 ∈ Rm\F (∂Ω) and y0 is a regular value of F . Then the Brouwer
degree of F w.r.t. Ω and y0 is defined as

deg(F,Ω, y0) =
∑

x∈F−1(y0)∩Ω

sgn JF (x),

where JF denotes the Jacobi matrix of F at the point x.

One of the significant properties of the degree is the homotopy invariance: if F : [0, 1]×Ω→ Rm
is continuous and y0 /∈ ∪t∈[0,1]F (t, ∂Ω), then deg(F,Ω, y0) does not depend on t.

It is well-known that any compact operator on an infinite-dimensional Banach space can be
approximated by a sequence of operators with the finite-dimensional range. The symbol Cf (V ,X)
will denote a set of compact operators from V to X with a finite dimensional range.
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7.2. Nonlinear analysis

Definition 18 (Leray-Schauder degree). Let X be a real Banach space, V be an open bounded set
in X, F : X → X be a compact operator, 0 ∈ X\(I − F)(∂V ) and Fn ∈ Cf (V ,X) be a sequence
which converges uniformly to F in V . Denote

Xn = span Fn(V ), Vn = V ∩ Xn,
Gn(x) = x−Fn(x) for all x ∈ Vn.

Then the Leray-Schauder degree of I − F with respect to V and 0 is defined by

deg(I − F , V, 0) := lim
n→∞

deg(Gn, Vn, 0).

The justification of this definition (e.g. independence of the choice of sequence, existence of
deg(Gn, Vn, 0), etc.) can be found in [9], Chapter 5.2. Similarly to Brouwer degree, Leray-Schauder
degree is invariant w.r.t. the homotopy. By the term “degree” we will be always meaning the
Leray-Schauder degree.

Proposition 14. Let X be a real Banach space, let Λ be an interval in R and let F : R×X→ X
be a compact operator in the neighborhood V of 0 for all λ ∈ Λ. Let zero be an isolated solution of

v −F(λ, v) = 0 in V, for all λ ∈ Λ\{λ0}. (7.13)

Let

lim
λ→λ0−

deg (I − F(λ, ·), V, 0) 6= lim
λ→λ0+

deg (I − F(λ, ·), V, 0) .

Then (λ0, 0) is a bifurcation point of (7.13).

Remark 29. Let F : X→ X be a linear compact operator and let λ ∈ σ(F), λ 6= 0. There exists
k ∈ N such that

X = Ker(I − λ−1F)k ⊕ Im(I − λ−1F)k.

Moreover, dim Ker(I − λ−1F)k <∞.

Definition 19. Let F be from the previous remark. The number dim Ker(I − λ−1F)k < ∞ will
be called the (algebraic) multiplicity of λ.

When talking about multiplicity of an eigenvalue, we will be always meaning its algebraic
multiplicity. It is also possible to define so-called geometric multiplicity, which is equal to
dim Ker(I − λ−1F). In the Chapters 2–5 we worked with symmetric linear operators, where the
algebraic and geometric multiplicity are the same therefore we will not distinguish between them.

Leray-Schauder Index Formula. Let V be an open bounded set in a real Banach space X and
let F ∈ C1(V ,X) be compact. Let v0 ∈ V be a unique solution in V of the equation

v = F(v).

Assume that I −F ′(v0) is continously invertible. Then

deg(I − F , V, v0) = (−1)α, α =
∑

λ∈σ(F ′(v0))∩R,λ>1

m(λ), (7.14)

where m(λ) is the multiplicity of the eigenvalue λ of the operator F ′(v0).
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7.3. Three famous bifurcation theorems

Remark 30. Let F : X → X be a continuously differentiable and compact operator on a real
Banach space X, assume that λ1 > 0 is the largest eigenvalue of F ′(0) with odd multiplicity. The
Leray-Schauder index formula gives

deg

(
I − 1

λ
F , Br(0), 0

)
= (−1)α, for all λ 6= 0, for α from (7.14),

and for any sufficiently small r > 0. There are no eigenvalues of the operator F ′(0) larger than
λ1. Hence, for all λ > λ1 we have α = 0 and consequently

deg

(
I − 1

λ
F , Br(0), 0

)
= 1, (7.15)

for any sufficiently small r > 0. Assume that λ2 > 0 is the second largest eigenvalue of the
operator F ′(0). Because the eigenvalue λ1 has an odd multiplicity, then for all λ ∈ (λ2, λ1), λ 6= 0
the number α from (7.14) is odd and (−1)α = −1, which implies

deg

(
I − 1

λ
F , Br(0), 0

)
= −1. (7.16)

for any sufficiently small r > 0. In sum, there is

deg

(
I − 1

λa
F , Br(0), 0

)
6= deg

(
I − 1

λb
F , Br(0), 0

)
,

for any λa > λ1 and λb ∈ (λ1, λ2) and sufficiently small r > 0. According to Proposition 14 the
point λ1 is a bifurcation point of the equation λv = F(v). This procedure can be simply modified
for other eigenvalues. We will use it in the proof of Theorem 8 on pg. 52.

Definition 20. Let H be a real Hilbert space. We say that an operator F : H→ H has a potential
on the set V ⊂ H if there exists a functional ΦF : V → R such that

〈Φ′F (v), u〉 = 〈F(v), u〉 for all v ∈ V, u ∈ H,

where prime denotes the Fréchet derivative. If an operator has a potential on the whole H, we will
call it potential operator.

It will be assumed without loss of generality that ΦF (0) = 0.

Observation 7. Any symmetric linear operator S : H→ H has the potential defined by

ΦS(v) :=
1

2
〈Sv, v〉 for all v ∈ H.

7.3 Three famous bifurcation theorems

Theorem 24 (Rabinowitz Global Bifurcation Theorem). Let M ⊂ R be an open set in R×X, let
(λ0, 0) ∈M and λ0 6= 0, let L : X→ X be a linear compact operator having 1/λ0 as an eigenvalue
of an odd multiplicity and let N : M → X be a small nonlinear compact perturbation, i.e. N is
compact and

for any bounded set Λ ⊂ {λ ∈ R | (λ, 0) ∈M } :

lim
v→0

N (λ, v)

‖v‖
= 0, uniformly for any λ ∈ Λ.

Then the set

S = {(λ, v) ∈M | v 6= 0, (λ, v) and v − λLv −N (λ, v) = 0}.

contains the point (λ0, 0). Let S0 be a component of S which contains (λ0, 0). Then at least one
of the following holds:
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(i) S0 is not a compact set in M .

(ii) S0 contains an even number of points (λ, 0), where 1/λ is an eigenvalue of L of odd multi-
plicity.

Then λ0 is a global bifurcation point of the equation

λv − Lv −N (λ, v) = 0,

in the sense of Definition 16.

Later we will use a modification of this theorem developed by Martin Väth, see Theorem 7 on
pg. 51, to prove a bifurcation theorem suitable for our systems.

Theorem 25 (Crandall-Rabinowitz Theorem). Let X,Y be real Banach spaces and let F : R×X→
Y be C2 in a neighborhood of (0, 0). Let F satisfy the assumptions

(i) F(λ, 0) = 0 for all λ ∈ (−δ, δ) for some δ > 0,

(ii) dim Ker ∂vF(0, 0) = codim Im ∂vF(0, 0) = 1,

(iii) if ∂vF(0, 0)v0 = 0, v0 6= 0, then ∂λ∂vF(0, 0) /∈ Im ∂vF(0, 0).

Denote by X1 a topological complement of Ker ∂vF(0, 0) in X. Then there is a C1-curve (λ̂, v̂) :
(−ε, ε)→ R× X1 (for some ε > 0) such that

λ̂(0) = 0, v̂(0) = 0, F(λ̂(t), t(v0 + v̂(t))) = 0.

Moreover, there is a neighborhood V of (0, 0) in R× X such that

F(λ, v) = 0, for (λ, v) ∈ V

if and only if either v = 0 or λ = λ̂(t), v = t(v0 + v̂(t)) for a certain t.

An analogue of this Theorem will be proved in the Section 3.4.

Theorem 26 (Krasnoselskii Potential Bifurcation Theorem). Denote L (H) the set of all bounded
linear operators on H. Let ΦF be a (nonlinear) functional on H. Assume that ΦF is twice differenti-
able in a certain neighborhood V of 0, F = Φ′F : V → H is compact on V and S = Φ′′F : V → L (H)
is continuous at 0. Then (λS , 0), where λS 6= 0, is a bifurcation point of

λv −F(v) = 0, (7.17)

if and only if λS is an eigenvalue of the operator S.

One theorem giving a bifurcation in systems containing positively homogeneous perturbation
and having potential is proved in Section 3.2.2.

The common assumption of the previous theorems is the Fréchet differentiability of the oper-
ators F and N . The aim of the Section 3 is to relax this assumption so that it will be possible to
find their analogues for the equations of a type (3.6), where the positively homogeneous operator
B is in general not differentiable.
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7.4. Eigenvalues of symmetric linear operators

7.4 Eigenvalues of symmetric linear operators

Remark 31. Let S : H→ H be a linear symmetric compact operator. Assume that S has infinitely
many eigenvalues. The largest eigenvalue of S can be found, under the assumption that S is not
negative, by maximizing the so-called Rayleigh quotient:

λSmax := max
v∈H,‖v‖=1

〈Sv, v〉 = max
v∈H,v 6=0

〈Sv, v〉
‖v‖2

. (7.18)

A vector emax with ‖emax‖ = 1 is a maximizer of 〈Sv, v〉 if and only if it is an eigenvector of S
respective to λSmax.

Denote by λSmax,i the i-th largest eigenvalue of S. Assume that S has n ≥ 2 positive eigen-
values, and denote Hi the space generated by the eigenvectors corresponding to the eigenvalues
λSmax, ..., λ

S
max,i. For i ∈ {1, · · · , n− 1} the eigenvalue λSi+1 can be found by iterations

λSi+1 := max
v∈H⊥i ,v 6=0

〈Sv, v〉
‖v‖2

. (7.19)

However, it is not always possible to get all eigenvalues by using this iterative formula. Let S have
infinite dimensional range and n positive eigenvalues. If i = n, then

sup
v∈H⊥n ,v 6=0

〈Sv, v〉
‖v‖2

= 0.

It is well known that 0 is in the continuous spectrum of S and therefore the iterative formula (7.19)
is not true for i ≥ n.

Similar approach can be used to find the eigenvalues of a generalized eigenvalue problem

λ(I − A)v − Sv = 0,

where A : H → H is a linear, symmetric, compact operator with σ(A) ⊂ [0, 1]. If 1 /∈ σ(A), this

problem is equivalent to an eigenvalue problem for a symmetric operator (I − A)−
1
2S(I − A)−

1
2 ,

and its positive eigenvalues can be characterized by (7.18), (7.19), which are equivalent to

λSmax := max
v∈H,v 6=0

〈(I − A)−
1
2S(I − A)−

1
2 v, v〉

‖v‖2
= max
v∈H,v 6=0

〈Sv, v〉
〈(I − A)v, v〉

,

λSmax,i+1 = max
v∈H⊥i ,v 6=0

〈(I − A)−
1
2S(I − A)−

1
2 v, v〉

‖v‖2
= max
v∈H⊥i ,v 6=0

〈Sv, v〉
〈(I − A)v, v〉

.

(7.20)

Let 1 ∈ σ(A) and e0 be a corresponding eigenvector. If 〈Se0, e0〉 > 0, then

sup
v∈∈H,v 6=0

〈Sv, v〉
〈(I − A)v, v〉

= +∞.

Denote H0 the complement to the eigenspace of 1 ∈ σ(A). On this space, 1 /∈ σ(A), and positive
eigenvalues can be found through the iterative formula (7.20). More information can be found in
e.g. [28], paragraph 14.8.8.
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[12] Eisner, J., Kučera, M., & Väth, M. (2009). Global Bifurcation for a Reaction-Diffusion
System with Inclusions. Zeitschrift Für Analysis Und Ihre Anwendungen, 373409. doi:
10.4171/zaa/1390
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[33] Kučera, M., & Väth, M. (2012). Bifurcation for a reactiondiffusion system with unilateral
and Neumann boundary conditions. Journal of Differential Equations, 252(4), 29512982. doi:
10.1016/j.jde.2011.10.016

[34] Lengyel, I., & Epstein, I. R. (1991). Modeling of Turing Structures in the Chlorite–
Iodide–Malonic Acid–Starch Reaction System. Science, 251(4994), 650652. doi: 10.1126/sci-
ence.251.4994.650

[35] Liu, R. T., Liaw, S. S., & Maini, P. K. (2006). Two-stage Turing model for gen-
erating pigment patterns on the leopard and the jaguar. Physical Review E, 74(1).
doi:10.1103/physreve.74.011914

[36] Maini, P. K., Painter, K. J., & Chau, H. N. P. (1997). Spatial pattern formation in chem-
ical and biological systems. Journal of the Chemical Society, Faraday Transactions, 93(20),
36013610. doi: 10.1039/a702602a

[37] Marciniak-Czochra, A., & Kimmel, M. (2005). Mathematical model of tumor invasion along
linear or tubular structures. Mathematical and Computer Modelling, 41(10), 1097-1108.
doi:10.1016/j.mcm.2005.05.005

[38] Marquez-Lago, T. T., & Padilla, P. (2014). A selection criterion for patterns in reactiondiffu-
sion systems. Theoretical Biology and Medical Modelling, 11(1), 7. doi:10.1186/1742-4682-11-7

[39] Meinhardt, H. (2008). Models of Biological Pattern Formation: From Elementary Steps to
the Organization of Embryonic Axes. Current Topics in Developmental Biology Multiscale
Modeling of Developmental Systems, 163. doi: 10.1016/s0070-2153(07)81001-5

[40] Murray, J. D. (2014). Mathematical Biology Ii: Spatial Models and Biomedical Applications.
New York: Springer-Verlag New York Inc.
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[58] Vejchodský, T., & Rybář, V. (2014). Variability of Turing patterns in reaction-diffusion sys-
tems. Proceedings of the SNA’14, 87-90.

[59] Yanagida, E. (2002). Mini-Maximizers for Reaction-Diffusion Systems with Skew-Gradient
Structure. Journal of Differential Equations, 179(1), 311-335. doi:10.1006/jdeq.2001.4028

[60] Zeidler, E. (2011). Nonlinear Functional Analysis and its Applications: I: Fixed-Point The-
orems. New York: Springer-Verlag New York Inc.

[61] Zeidler, E. (1985). Nonlinear function analysis and its applications III: variational methods
and optimization. New York: Springer.

[62] Ziemer, W. P. (2005). Weakly differentiable functions: Sobolev spaces and functions of
bounded variation. New York: Springer Science Business Media.

116



Reviewed Publications of the Author
Relevant to the Thesis
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