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Abstract

Artistic style transfer and stylization have a rich and well-established history in the
field of computer graphics, and have enjoyed broad popularity, especially as digital art
becomes ever more prevalent. The aim of methods implementing automatic artistic style
transfer or stylization is to take a source image, typically a photograph, and transform it
in accordance with artists’ vision, which is commonly expressed via a hand-painted style
exemplar image. These techniques allow for the application of unique or personalized
visual styles to new content or in other contexts, resulting in visually appealing effects
that would be too time-consuming and impractical to recreate by hand. Thanks to the
focus on aesthetics, the field has been uniquely popular among non-technical audiences,
despite relatively high technical difficulty.

The field has undergone a remarkable fundamental paradigm shift in recent times –
previously, state-of-the-art relied on tailored procedural solutions. However, the emer-
gence of powerful large machine learning models, particularly in the field of computer
vision, has prompted academic researchers to rethink the approaches to stylization tasks,
and has allowed newer methods to become more data-driven, for example through the use
of pretrained models. The shift brings significant advantages, individual contributions
no longer need to be limited to a specific medium or visual style, and do not require
specialized guidance designs. On top of that, they provide novel and stunning visual
effects that have stronger impact on users. Since the early days of neural-based style
transfer, the field has continued to advance, and today, many have started to notice that
some computer-generated art can be indistinguishable from real artworks.

In this thesis, we focus on some of the ways machine learning, and deep learning specif-
ically, can be leveraged towards style transfer and stylization. More precisely, we propose
several methods for example-based style transfer, as well as touching on photorealistic
stylization task, we discuss the applications and state-of-the-art solutions. In particular,
we developed: (1) a method for distilling patch-based style transfer into a neural model,
(2) a method for algorithmic refinement and upsampling of neural style transfer meth-
ods, (3) real-time technique for interactive video style transfer, (4) method to improve
generalization on video style transfer tasks with emphasis on long-term correspondences;
and (5) a system for photorealistic stylization and editing of real images. Finally, we
look at possible future directions stemming from our work.

The thesis is presented as a collection of five research papers that were published in
respected journals and presented at prestigious conferences.

Keywords
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style transfer, painterly style transfer, neural style transfer, nonphotorealistic rendering,
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Abstrakt

Vzestup digitálńıho zpracováńı obrazu přinesl mnoho vylepšeńı, která dnešńı umělci
považuj́ı za nezbytná, nicméně automatizace přenosu výtvarného stylu po dlouhá léta
z̊ustávala těžko dosažitelným ćılem. Jej́ı snahou je změnit vizuálńı formu vstupńıho ob-
razu tak, aby byl zachován charakter p̊uvodńı výtvarné předlohy. Často se jedná o přenos
osobitého vizuálńıho stylu na jiný ćılový, typicky fotorealistický, materiál. Manuálně je
tento proces časově velmi náročný a pracný.

Toto odvětv́ı v posledńı době procháźı kompletńı změnou paradigmatu—dř́ıvěǰśı
př́ıstupy využ́ıvaly předevš́ım na mı́ru šitá algoritmická řešeńı, která byla omezena kon-
textem dané ćılové domény. Po objevu hlubokých neuronových śıt́ı se však ukázalo, že
předtrénované modely z oblasti poč́ıtačového viděńı mohou být velmi dobrým nástrojem i
v oblasti stylizace obrazu. V posledńıch letech se literatura začala ub́ırat téměř výhradně
t́ımto novým směrem. Metody vyvinuté za pomoci strojového učeńı již často nejsou li-
mitované konkrétńım výtvarným médiem nebo stylem a zač́ınaj́ı vykazovat schopnost
generalizace. Dı́ky této charakteristice je lze využ́ıt i jako zdroj umělecké inspirace.
Od nedávných prvńıch vlaštovek se odvětv́ı stylizace pomoćı strojového učeńı posu-
nulo dopředu, a dnes už si i laická veřejnost zač́ıná vš́ımat, že automaticky vygenerovaná
umělecká d́ıla mohou být k nerozeznáńı od tvorby reálných umělc̊u.

V této disertačńı práci představujeme soubor nových algoritmů, které demonstruj́ı
možnosti využit́ı hlubokého strojového učeńı a neuronových śıt́ı pro automatický přenos
výtvarné předlohy a stylizaci. Konkrétně ukážeme navržené nástroje pro: (1) destilaci
chováńı algoritmické stylizačńı metody za použit́ı neuronové śıtě, (2) přenos výtvarného
stylu ve vysokém rozlǐseńı, (3) interaktivńı přenos uměleckého stylu do videosekvenćı v
reálném čase, (4) state-of-the-art metoda pro přenosu výtvarného stylu do videosekvenci
kladoućı d̊uraz na specifikaci menš́ıho počtu kĺıčových sńımk̊u, a (5) realistickou stylizaci
skutečných fotografiı.

Tato práce je koncipována jako soubor pěti článk̊u popisuj́ıćıch navržené př́ıstupy, které
byly publikovány v uznávaných časopisech a prezentovány na prestižńıch konferenćıch.

Kĺıčová slova

poč́ıtačová grafika, strojové učeńı, přenos výtvarného stylu, stylizace, styl podle předlohy,
ručně kreslené předlohy, neuronové śıtě, nefotorealistické vykreslováńı, digitálńı tvorba,
přenos stylu na video, generativńı modely, projekce do latentńıho prostoru
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outperforms other concurrent neural-based techniques (Liao et al. [Liao
et al. 2017], Selim et al. [Selim et al. 2016], and Gatys et al. [Gatys et al.
2016]). Style exemplar: © Graciela Bombalova-Bogra. . . . . . . . . . . 33
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4.1 An example of stylizing an extremely high-resolution image using our pro-
posed method: (a) style exemplar of 26400× 13100 px, (b) content image
of the same resolution, (c) low resolution result of [Gatys et al. 2016]
enhanced and enlarged by our method to the mentioned resolution. To
the right, zoom-in patches of different parts of (c) up to zoom of 128×
are shown; see all the individual brush strokes and its sharp boundaries.
Also, notice how the structure of the original canvas and little cracks of
the painting are preserved. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 An example of enhancing the result of neural-based approach using our
method: (a) target photograph, (b) style exemplar of the same size, (c) 6×
zoom-in to the style exemplar, (d) the output of neural-based method
DeepArt [Gatys et al. 2016] is capable to perform convincing stylization;
nevertheless, the image contains artifacts caused by the parametric nature
of the used neural network. High-frequency details like the structure of
strokes and canvas are largely lost, sacrificing the visual quality of the
original artistic medium. In contrast, our method (e) brings significant
quality improvement, it restores the individual brush strokes and bound-
aries between them faithfully, the result better reproduces the used artistic
medium as well as canvas’ structure. Note how the cracks of the original
artwork are preserved; although zoom-in patches are shown, we encourage
the reader to zoom-in even further. . . . . . . . . . . . . . . . . . . . . . 38

4.3 Simplified scheme of a patch-based, neural-based, and our hybrid style
transfer method: The left column shows a patch-based approach [Fǐser
et al. 2016] with guidance based on blurred grayscale images as proposed
in the original Image Analogies method [Hertzmann et al. 2001]. The
resulting image has high texture quality and preserves artistic attributes
and canvas structure well; however, the result does not properly respect the
content semantics, causing water to become brown. The middle column
shows a neural-based approach [Gatys et al. 2016], no guidance channels
are needed and global style properties and image semantic are preserved
well. However, the resulting image lacks high-frequency details of the
original style exemplar, contains artifacts, and colors that are not present
in the original style. The right column represents our method where low-
resolution neural transfer result is used as a guidance channel for patch-
based style transfer. Our result attenuates the neural artifacts and restores
the original color and texture of the style exemplar. . . . . . . . . . . . . 39
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4.4 Proposed pipeline: (a) style exemplar and (b) content image are both sub-
sampled α–times and processed by a neural-based style transfer method
(Sec. 4.3.1) which results in low resolution image (c) where fine details
are missing and artifacts are apparent (see green and purple checker-
board artifacts). Next, low resolution result (c) from the previous step,
style image (a) in the same resolution as (c), and β–times subsampled
style image (a) are used as an input to a patch-based synthesis algo-
rithm (Sec. 4.3.2) which outputs dense nearest neighbor field (NNF) (f)
from which the corresponding image (d) can be produced using voting
step [Wexler et al. 2007]. Finally, in NNF upscaling step (Sec. 4.3.3) the
low-resolution NNF (f) is upscaled β–times to the original resolution (g).
Patch coordinates in NNF (f) and (g) are encoded as red and green color
levels. Note subtle color gradients in (f), which indicate the presence of
fine patch coordinates in upscaled NNF that points to the patches in the
original high-resolution style exemplar (a). Given the upscaled NNF (g)
and the style exemplar in its original resolution (a), high-resolution, and
a perfectly sharp final result is created using voting step (e). . . . . . . . 40

4.5 An overview of our VGG-guided style transfer pipeline: we start with a tar-
get image and a style exemplar, extract their VGG-19 features, normalize
them, reduce their dimensionality using PCA, and use these as guidance
for subsequent patch-based synthesis. Even though the proposed pipeline
is straightforward, it yields convincing output. . . . . . . . . . . . . . . . 40

4.6 Demonstration of the problem when patch-based synthesis has to rely on
ambiguous color guidance: (a) style exemplar, (b) target image, (c) output
of Gu et al. [2018], (d) output of our basic algorithm with color-based
guidance, (e) output of our style transfer algorithm with neural guidance.
Note how our VGG-guided algorithm better preserves the semantics of the
target photo, cf. details in (f) and (g). . . . . . . . . . . . . . . . . . . . 44

4.7 An example result from our VGG-guided style transfer algorithm: (a) tar-
get image, (b) style exemplar, corresponding compressed VGG-responses
of low- (c, d) and high-level (e, f) features used as a guide for patch-based
synthesis, (g) output of Liao et al. [2017], (h) output of our style trans-
fer framework with neural guidance, note how our method can deliver
comparable visual quality, cf. details in (i) and (j). . . . . . . . . . . . . . 45

4.8 Portrait on a wall: (a) target content of resolution 4000×3000 px, (b) style
exemplar of a painting on a wall having the same resolution, (c) 10x
zoom-in to the (b) to show fine artistic attributes and structure of the
canvas–wall/plaster. Our method is entirely independent of the used artis-
tic medium as well of a canvas the style exemplar is presented on. The
results are presented in the same fashion as in Fig. 4.9. . . . . . . . . . . 46
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4.9 Our method enhancing the results of five different neural-based ap-
proaches: The leftmost column–content images and style exemplars (with
zoomed patches). Next, left-to-right, are the result of DeepArt [Gatys
et al. 2016], DeepDream, Gu et al. [2018], Liao et al. [2017], and Li et
al. [2017]. The top-left triangle shows the result of the underlying neural-
based approach (bicubically up-sampled from a typical size of 600 × 400
px to the target resolution), while the bottom-right shows result enhanced
by our method (top row–entire stylized images, bottom row–zoom-in).
Our results not only have significantly higher resolution but also better
preserve the original colors and canvas structure as well as brush strokes
visible in the exemplar painting. Various artifacts caused by the neural
approach are significantly suppressed. All images shown in this figure are
of resolution ranging from 4000× 2200 to 6000× 4000 px. . . . . . . . . 47

4.10 Performance of our method (full pipeline–Fig. 4.4, excluding the neural
part) on images ranging from resolution of 1Mpx, (i.e. 1000× 1000 px) to
extremely large resolution of 256Mpix (i.e., 16000 × 16000 px). Orange,
yellow, and green lines show a case where the parameter β was set such
that the patch-based method was run on a resolution of 1Mpix, 4Mpix,
and 8Mpix respectively. The measurement was done on a mid-range laptop
with NVIDIA GTX 1050 graphics card. . . . . . . . . . . . . . . . . . . . 48

4.11 Results produced by our VGG-guided style transfer algorithm (from left
to right): style exemplar, target image, and our result. Our method works
well namely in cases when style and target images depict similar content,
i.e., when they have compatible VGG activations. . . . . . . . . . . . . . 49

4.12 A screenshot of our method running in Adobe Photoshop: (a) zoom of
a target layer, (b) zoom of a style layer; the visible layer is the result of
DeepDream enhanced by our method. . . . . . . . . . . . . . . . . . . . . 50

4.13 Additional results produced by our VGG-guided style transfer algorithm
(from left to right): style exemplar, target image, and our result. . . . . . 51

4.14 A limitation common to neural-based approaches: (a-b) content image, (c-
d) style exemplar, (e-f) result of [Li et al. 2017] enhanced by our method.
The content of the original image is not preserved well. In the first case, the
similar mixture of colors is used to paint bushes, house, and also the sky. In
the second case, all colors appearing in the style exemplar are used to styl-
ize the target regardless of its content. However, high-frequency content
is reproduced well. To address this limitation, we propose to incorporate
a neural network trained for image segmentation into our pipeline. . . . 52

4.15 Large-scale artifact limitation: (a) content image, (b) style exemplar,
(c) result of Gatys et al., distortions in eye region are visible, (d) ours,
colors and high-frequency details are reproduced well; however, in our
current pipeline, large-scale artifacts produced by the underlying neural
approach are not fixed. Thus distortion in the eye region is still apparent. 52
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5.1 An example of a sequence stylized using our approach. One frame from
the original sequence is selected as a keyframe (a) and an artist stylizes it
with acrylic paint (b). We use this single style exemplar as the only data to
train a network. After 16 seconds of training, the network can stylize the
entire sequence in real-time (c-d) while maintaining the state-of-the-art
visual quality and temporal coherence. See the zoom-in views (e-g); even
after 2 seconds of training, important structures already start to show up.
Video frames (a, c) and style exemplar (b) courtesy of © Zuzana Studená. 56

5.2 The setting of video stylization with keyframes. The first row shows an
input video sequence I. There are two keyframes painted by the user, one
keyframe is painted fully (Sk

1 ) and the other is painted only partially (Sk
70).

MaskMk
1 denotes that the entire keyframe is used; maskMk

70 specifies only
the head region. Our task is to stylize all frames of the input sequence I
while preserving the artistic style of the keyframes. The sequence O in the
bottom row shows the result of our method. Video frames (I) and style
exemplars (S) courtesy of © Zuzana Studená. . . . . . . . . . . . . . . . 59

5.3 Comparison of full-frame training vs. our patch-based approach: the orig-
inal frames from the input sequence I are marked in blue and details of
their stylized counterparts O are marked in red. The full-frame training
scheme of Futschik et al. [2019] (a) as well as our patch-based approach (b)
closely reproduce the frame on which the training was performed (see the
frame Sk

1 in Fig. 5.6). Both stylized frames (a, b) look nearly identical,
although the training loss is lower for the full-frame scheme. Neverthe-
less, the situation changes dramatically when the two networks are used
to stylize another frame from the same sequence (here frame I5). The net-
work which was trained using the full-frame scheme produces images that
are very noisy and have fuzzy structure (c). This is due to the fact that
the full-frame training causes the network to overfit the keyframe. The
network is then unable to generalize to other frames in the sequence even
though they structurally resemble the original keyframe. The network
which was trained using our patch-based scheme retains the fidelity and
preserves the important artistic details of the original style exemplar (d).
This is thanks to the fact that our patch-based scheme better encour-
ages the network to generalize to unseen video frames. Video frames (I)
courtesy of © Zuzana Studená. . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Training strategy: we randomly sample a set of small patches from the
masked area of the original keyframe (a). These patches are then prop-
agated through the network in a single batch to produce their stylized
counterparts (b). We then compute the loss of these stylized counter-
parts (b) with respect to the co-located patches sampled from the stylized
keyframe (c) and back-propagate the error. Such a training scheme is not
limited to any particular loss function; in this paper, we use a combination
of L1 loss, adversarial loss, and VGG loss as described in [Futschik et al.
2019]. Video frame (left) and style exemplar (right) courtesy of © Zuzana
Studená. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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5.5 Inference: thanks to the fully convolutional nature of the network, we can
perform the inference on entire video frames, even though the training is
done on small patches only. Since the inference does not depend on other
stylized frames, all video frames can be stylized in parallel or in random
order. This allows us to pass many or even all of the input frames (a)
through the network in a single batch and get all output frames (b) at
once. Video frames (left) courtesy of © Zuzana Studená. . . . . . . . . . 62

5.6 To fine-tune critical hyperparameters of our network, we propose the fol-
lowing optimization scheme. We tune batch sizeNb, patch sizeWp, number
of ResNet blocks Nr, and learning rate α. Using the grid search method we
sample 4-dimensional space given by these hyperparameters and for every
hyperparameter setting we (1) perform a training for a given amount of
time, (2) do inference on unseen frames, and (3) compute the loss between
inferred frames (O4) and result of [Jamrǐska et al. 2019] (GT4) - which we
consider to be ground truth. The objective is to minimize this loss. Note
that the loss in step (1) and the loss in step (3) are both the same. Video
frames (I) and style exemplar (S) courtesy of © Zuzana Studená. . . . . 63

5.7 To suppress visual ambiguity of the dark mostly homogeneous T-shirt
in (a) an auxiliary input layer is provided that contains a mixture of ran-
domly distributed and colored Gaussians (b). The translation network
is trained on patches of which input pixels contain those additional color
components. The aim is to reproduce the stylized counterpart (c). Once
the network is trained a different frame from the sequence can be styl-
ized (d) using adopted version of the auxiliary input layer (e). The result-
ing sequence of stylized frames (f) has notably better temporal stability
(cf. our supplementary video at 2:40). Video frames (a, d) courtesy of
© Zuzana Studená and style exemplar (b) courtesy of © Pavla Sýkorová. 64

5.8 Influence of important hyperparameters on visual quality of results. The
loss, y-axes, is computed w.r.t. the output of Jamrǐska et al. [2019]. The
best setting for each hyperparameter is highlighted in red: (a) The loss
curve for the batch size Nb—the number of patches in one training batch
(other hyperparameters are fixed). As can be seen, increasing Nb deteri-
orates visual quality significantly; it indicates that there exists an ideal
amount of data to pass through the network during the back-propagation
step. (b) The loss curve for the patch size Wp. The optimal size of a patch
is around 36x36 pixels. This fact indicates that smaller patches may not
provide sufficient context while larger ones could make the network less ro-
bust to deformation changes. (c) The loss curve for the number of ResNet
blocks Nr that corresponds to the capacity of the network. As can be
seen, settings with 7 ResNet blocks is slightly better than other results;
however, this hyperparameter does have major impact on the quality of
results. For additional experiments with hyperparameter setting, refer to
our supplementary text. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



LIST OF FIGURES xix

5.9 To deal with the overfitting caused by a minimal amount of training data,
we tried several commonly used techniques to enforce regularization. In
all cases shown in this figure, we trained the network on the first frame;
the shown results are zoomed details of the fifth frame. (a) is a result
of the original full-frame training. (b-h) are results of full-frame training
with some data augmentation. (i) is a result of our patch-based training
strategy—see how our technique can deliver much sharper and signifi-
cantly better visual quality results, please, zoom into the figure to better
appreciate the difference. In case of (b-c), Gaussian noise was used to
augment the data; (d) some pixels were randomly set to black; (e-f) some
parts of the image were occluded; (g) dropout of entire 2D feature maps;
(h) dropout of individual pixels before each convolution layer. . . . . . . 67

5.10 When the target subject undergoes a substantial appearance change, the
results of both Jamrǐska et al. [2019] (b) and our method (c) exhibit no-
ticeable artifacts. The parts that were not present in the keyframe are
reconstructed poorly—see the face and hair regions where [Jamrǐska et al.
2019] produces large flat areas, while our approach does not reproduce the
color of the face well. Video frames (insets of a–c) and style exemplars (a)
courtesy of © Zuzana Studená. . . . . . . . . . . . . . . . . . . . . . . . 68

5.11 Given one keyframe (a) and a video sequence (in blue), our method pro-
duces the stylized result (b). Video frames (insets of a, b) courtesy of
© Adam Finkelstein and style exemplars (a) courtesy of © Pavla Sýkorová. 68

5.12 For the state-of-the-art algorithm of [Jamrǐska et al. 2019], contour based
styles (a) present a particular challenge (b). Using our approach (c), the
contours are transferred with finer detail and remain sharp even as the
sequence undergoes transformations. Video frames (insets of a–c) and
style exemplar (a) courtesy of © Štěpánka Sýkorová. . . . . . . . . . . . 69

5.13 The Lynx sequence stylized using two keyframes (a, d). Notice how our
method produces seamless transition between the keyframes while pre-
serving fine texture of the style (b, c). Watch our supplementary video
(at 1:22) to see the sequence in motion. Style exemplars (a, d) courtesy
of © Jakub Javora. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.14 Keyframes (a, f) were used to stylize the sequence of 154 frames. See
the qualitative difference between Jamrǐska et al. [2019] (b) and our re-
sult (c). Focusing mainly on zoom-in views, our approach better preserves
contour lines around the nose and chin; moreover, the method of Jamrǐska
et al. suffers from blending artifacts—the face is blended into the hair re-
gion. On the other hand, comparison on a different frame from the same
sequence shows that the result of Jamrǐska et al. (d) is qualitatively su-
perior to our result (e) on this particular frame. See the corresponding
zoom-in views where the approach of Jamrǐska et al. produces cleaner re-
sults. Video frames (insets of a–f) and style exemplars (a, f) courtesy of
© Muchalogy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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5.15 A complex input sequence (the first row) with seven keyframes, three
of them are shown in (a, d, g). Here we compare our approach to the
approach of Jamrǐska et al. [2019]. See our result (b) and theirs (h) along
with the close-ups (b’, h’); due to their explicit handling of temporal
coherence, the texture of the fur leaks into the box (h’). Next, compare
our result (c) to theirs (i); our approach better reconstructs the bag (c’,
i’). Their issue with texture leakage manifests itself again on the shoulder
in (j, j’), notice how our approach (e, e’) produces a clean result. Lastly,
see how our result (f, f’) is sharper and the face is better pronounced
compared to the result of Jamrǐska et al. [2019] (k, k’), which suffers from
artifacts caused by their explicit merging of keyframes. Video frames (top
row) and style exemplars (a, d, g) courtesy of © MAUR film. . . . . . . 70

5.16 An example sequence of 228 video frames (in blue) as stylized from two
keyframes (a, d). Results of our method (b, c) stay true to style exemplars
over the course of the sequence. Video frames (insets of a–d) and style
exemplars (a, d) courtesy of © Muchalogy. . . . . . . . . . . . . . . . . 70

6.1 An example of style transfer with limited auxiliary pairing—an artist pre-
pares a stylized version (source style) of a selected video frame (source
frame). Then an image-to-image translation network is trained to trans-
fer artist’s style to other video frames (target frames). During the training
phase a subset of target frames as well as the source frame and its styl-
ized counterpart are taken into account. Once the network is trained, the
entire sequence can be stylized in real-time (our approach). In contrast
to current state-of-the-art in example-based video stylzation (Jamrǐska
et al. [Jamrǐska et al. 2019] and Texler et al. [Texler et al. 2020b]) our
approach better preserves important visual characteristics of the style ex-
emplar even though the scene structure changed considerably (head rota-
tion). The advantage of having an auxiliary stylized pair is also visible in
comparison with the output of Deep Image Analogies of Liao et al. [Liao
et al. 2017]. Although the style’s texture is preserved reasonably well, the
transfer is not semantically meaningful. . . . . . . . . . . . . . . . . . . . 73

6.2 An overview of our approach—we optimize weights θ of a translation net-
work F which accepts images from a source domain X or Z and produces
output images O with a similar appearance as those in the target do-
main Y . The high-frequency details are preserved well, thanks to the L1

loss computed on the artist-created style images Y which have the same
structure as the input images X, while the style consistency on other
images Z is enforced due to the VGG loss. Source style © Graciela
Bombalova-Bogra, used with permission. . . . . . . . . . . . . . . . . . . 77

6.3 A network architecture used for our model F : input layer (green), one 7×
7 and two 3 × 3 convolution blocks (blue), nine 3 × 3 residual blocks
(yellow), two 3 × 3 upsampling blocks (red), and one additional block
with 7×7 convolutions (blue). Skip connections (black) are used to connect
downsampling and upsampling layers. . . . . . . . . . . . . . . . . . . . . 78



LIST OF FIGURES xxi

6.4 An ablation study demonstrating the importance of individual terms in
our objective function (6.1)—a stylized pair (X1, Y1) (source photo, source
style) is used together with Z1 (target photo) to optimize weights of
model F . When only VGG loss is used, the identity of a person in
the target photo deteriorates. On the other hand when only L1 loss is
used during optimization source, style is not preserved well. By combin-
ing L1 loss and VGG loss in (6.1) we get the result which produces a good
balance between identity and style preservation. Source style © Graciela
Bombalova-Bogra, used with permission. . . . . . . . . . . . . . . . . . . 78

6.5 An illustration of a wash-out effect caused by adding an explicit content
loss term [Kolkin et al. 2019] into our objective function (6.1). Target ren-
der stylized using model F optimized on a stylized pair from Fig. 6.9 with
low, medium, and high content loss weight. Note how style details deteri-
orate gradually with the increasing content loss. Source style © Štěpánka
Sýkorová, used with permission. . . . . . . . . . . . . . . . . . . . . . . . 79

6.6 Video stylization results—in each video sequence (rows) a selected frame (source
frame) is stylized using different artistic media (source style). The net-
work is then trained using this stylized pair and a subset of frames from the
entire video sequence (target frame). The results of our method (our ap-
proach) are compared with the output of concurrent techniques: Jamrǐska
et al. [2019] and Texler et al. [2020b]. Note how our method better pre-
serves important style details and visual features of the target frames.
Previous style transfer techniques tend to produce wash out artifacts
due to significant structural changes with respect to the source frame.
Video frames and style (top row) © Zuzana Studená, and (bottom row)
© Štěpánka Sýkorová, used with permission. . . . . . . . . . . . . . . . . 80

6.7 Example of video stylization with multiple keyframes—two keyframesK1 =
(X1, Y1) and K2 = (X2, Y2) were created by painting over the input video
frames X1 & X2 to get their stylized counterparts Y1 & Y2. First, our net-
work F was trained using only single keyframe K1 and applied to stylize
input video frames Z1 & Z2 to produce O1 & O2 (with K1). Note, how
closed mouth in Z2 was not stylized properly in O2 (with K1). By adding
K2 to the list of keyframes used during training phase, open and closed
mouth is stylized better, see O1 & O2 (with K1 & K2). Frames X1, X2,
Y1, Y2, Z1 & Z2 © Muchalogy, used with permission. . . . . . . . . . . . 81

6.8 A different sampling strategy for a selection of frames in Z—a source frame
from a sequence V (a) and its stylized counterpart (b) are used asK. Then
weights of F are optimized with K and Z, where Z contains all frames
from V (d), 10% of uniformly sampled frames from V (e), and 10% of
adaptivelly sampled frames from V (f). Note how dense sampling tends
to produce distortion artifacts on a rare hand pose (c) due to overfitting
on a different pose that is more frequent in the sequence V (a) whereas
sparse sampling generalizes better. Source video frames (a, c) and style (b)
© Štěpánka Sýkorová, used with permission. . . . . . . . . . . . . . . . . 82
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6.9 Stylization of 3D renders—a colored 3D model enhanced with an artifi-
cial noisy texture to avoid large flat regions (source render) is stylized
at a selected viewpoint by an artist (source style). The network is then
trained using the stylized pair and a set of additional renders of the same
model viewed from a different direction (target render). The trained net-
work can then be used to stylize the rendered 3D model from a different
user-specified position in real-time (our approach). When compared to
other concurrent style transfer techniques (Jamrǐska et al. [2019], Texler
et al. [2020b], Gatys et al. [2016], and Kolkin et al. [2019]) our approach
better preserves important high-frequency details of the original style ex-
emplar while being able to adapt to a new pose in a semantically mean-
ingful way. Source style © Štěpánka Sýkorová, used with permission. . . 83

6.10 Stylization of 3D renders (cont.)—a colored 3D model enhanced by a
noisy texture (source render) is stylized by hand using various artistic me-
dia (style #1–#5). The resulting image translation network F is then used
to stylize the same 3D model (output #1–#5) rendered from a different
viewpoint (target render) in real-time. Source styles (#1–#5) © Štěpánka
Sýkorová, used with permission. . . . . . . . . . . . . . . . . . . . . . . . 83

6.11 Panorama stylization results—a photo (source photo) is selected from a
set of shots taken around the same location by rotating a camera (target
panorama) and stylized using different artistic media (source style). The
network is then trained using the stylized pair and a subset of photos of the
panoramic image (target panorama). Finally, the network is used to stylize
each shot, and the entire panorama is stitched together (our approach). In
contrast to previous techniques (Liao et al. [2017] and Kolkin et al. [2019])
our approach better preserves essential artistic features and transfers them
into appropriate semantically meaningful locations. See also results with
additional styles in Fig. 6.12. Source style © Štěpánka Sýkorová, used
with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.12 Panorama stylization results (cont.)—two additional artistic styles (source
style) used to stylize the panorama shown in Fig. 6.11. Note how our
approach (stylized panorama) handles also a higher level of abstraction
(first row). Source style (top row) © Jolana Sýkorová, used with permission. 84

6.13 Stylization of portraits—a portrait photo (source photo) taken from a set
of portraits captured under similar lighting conditions is stylized by an
artist (source style). The network is then trained on the stylized pair
and other portraits from the original set (target photo). Once trained the
network can be used to stylize the other portraits (our approach). Even
in this more challenging scenario our method produces a reasonable com-
promise between style and identity preservation whereas concurrent tech-
niques suffer either from loosing important high-frequency details (Gatys
et al. [2016] and Kolkin et al. [2019]) or have difficulties to retain iden-
tity (Fǐser et al. [2017]). Source style (top row) © Graciela Bombalova-
Bogra and style (bottom row) © Adrian Morgan, used with permission. 85
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6.14 Real-time stylization of video calls—a frame from a training sequence (source
frame) is stylized by an artist (source style). The network weights are then
optimized using this stylized pair and remaining frames from the training
sequence. The final image translation model can be used for real-time
stylization of a new video conference call that contains the same person
and have similar lightihg conditions (target frames). Note that in con-
trast to the method of Texler et al. [2020b] our approach better preserves
style details and keeps the stylization more consistent in time (see also our
supplementary video). Video frames and source style © Zuzana Studená,
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Chapter 1

Introduction

Since time long before written history, humankind has been fascinated with visual forms
of art. Going as far back as the age of the earliest cave wall paintings or simple carvings,
these depictions tend to be abstract, simplifying and subjective in their nature – at
first, this fact likely came about as an artifact of attempts to accurately represent the
world around us. Even though in modern age we possess the technical ability to readily
and very accurately capture and reproduce how our primary sense presents the material
world to us, we continue to embrace the subjective, artistic form of expression and, in
fact, pursue it with the purpose of “feeding the soul”. The craft of creating pleasing
imagery has lead to such artistic directions as cubism, impressionism, expressionism or
informalism, which almost seem to aim to produce works that are as far from physical
reality as possible. As it stands, visual forms of art remain as appealing and interesting
as ever, and more people than ever before dedicate their time, or entire lives to creation
of new works and directions.

For most of history, the access to methods of both serious art production and consump-
tion remained limited; sometimes admiration of era-defining, iconic works was afforded
only to the wealthiest members of society. It is clear that traditional visual art media
have distinct character and allure, but are naturally uneconomical for widespread usage.
On the other hand, ubiquitous adoption of computer image processing democratized the
creation and distribution of visual art to a very significant extent, completely trans-
forming the discipline, and granting unprecedented numbers of participants the ability
to contribute. Not only that, many artists also quickly found that experimentation be-
came easier when incorporating computers into their creative process, and digital editing
opened up avenues for new, wonderful directions which would be otherwise very tedious,
expensive, or near impossible to achieve without digital tools. Today, just three decades
after the first release of the legendary Adobe Photoshop, traditional artists are seemingly
harder to find than ones specializing in digital creation. Over those three decades, the
field of digital image processing has undergone monumental evolution from the times
of simple pixel-wise operations and hard brush painting, and as the complexity of tools
increases, so do the expectations of users.

Developing new software techniques to provide artists with ever more flexibility and
freedom of expression is thus an area of very active research and continues to present
increasingly intriguing and unique challenges. One of the most difficult but crucial objec-
tives when designing systems with artists in mind is striking the right balance between
ease of use, quality of pleasing outcomes, and freedom of control over how the system
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operates. The difficulty is compounded by the fact that different groups of end-users
have different tolerances for each category. While casual consumers might be very happy
with an automatic system that is easy to use (ideally, everything happens with the press
of a single button!) and produces amusing results, professional artists and advanced
hobbyists generally favor greater control and are willing to give up ease of use if it means
they can, in return, achieve exceptional quality and create distinguished works with their
signature style. Combining such different demands in the same package often results in
friction and confusion for everybody, and therefore, it becomes important to define the
target group of a technique and build the design philosophy around it.

This concern is further complicated by another demanding factor when it comes to
artist-facing algorithms: the broad requirement for interactivity. Instantaneous response
increases artistic productivity and reduces frustration. More importantly, the best results
can only be obtained when the user is given enough freedom to experiment and explore.
Even skilled and experienced artists will find it difficult to effectively use tools that are
fraught with long latency times or lengthy iteration cycles. While general improvements
in the computing capabilities of consumer devices have been able to alleviate many
of these issues, it also seems to perpetuate a cycle of increased capability being met
with correspondingly increased expectations. For example, it is common to require 4K
resolution images today, compared to Full HD just a couple of years ago. Delivering
usable algorithms is as much of an engineering challenge as it is a design and research
one, and breakthroughs in one or the other aspects enable the entire field to move forward.

Recent developments in general availability of computing power and the tremendous
progress in the fields of machine learning and computer vision enabled many novel ap-
proaches to digital image processing. The communal effort to create open sourced, easy
to use ML frameworks like PyTorch [Paszke et al. 2019] and foundational vision models
such as VGG-19 [Simonyan and Zisserman 2014] propelled many research areas forward,
and artist-facing algorithms are no exception. In this thesis, we explore several original
algorithms for artistic digital image processing, more specifically, four of the presented
algorithms provide tools for artistic stylization, which is a unique subcategory of digi-
tal image processing for artistic domain translation. In general terms, it can refer to any
kind of artistic modification to existing work in order to incorporate artistic expression,
but for our purposes, such content creation technique follows outlines of popular creative
process – typically, the goal is to alter a photorealistic visual guide (photos, video) to ex-
hibit attributes closer to a desired artistic style or intention where most of the high-level
structure of the original image is retained. When done by hand, it is called overpainting,
a process during which an artist creates their own rendition of the image by directly
painting over of the visual guide such as shown in Fig. 1.1. Performing stylization brings
many artistic advantages, as it allows the final material to help direct viewer’s atten-
tion, better highlight select features (such as caricature images), abstract away visual
noise or even just feature a more interesting color palette. When we attempt to mimic
the stylization process algorithmically, it can be viewed as a form of non-photorealistic
rendering, since the goal is rarely to translate between photorealistic domains.

Non-photorealistic rendering (NPR) is a distinct and established field of research and
practical application within computer graphics. Although its prominence is compara-
tively diminished in relation to its photorealistic counterpart, NPR seeks to replicate
the intricacies of hand-crafted artwork that were formerly only accessible through man-
made abstractions. Whereas human artists are naturally adept at this process and do
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a) b)

c) d)

Figure 1.1: Examples of overpaint workflow – captured camera footage (a, c) is painted over
frame by frame with stylized content (b, d) by an artist. This workflow is very intuitive and
natural for artists, and usually results in roughly registered images, although it can be style-
dependent. The chosen styles may vary wildly depending on the artists’ intention – some can
be elaborate with lots of textural details, while others simplify many features, as can be seen
in these examples taken from production usage, (a, b) is one frame from the Loving Vincent
movie; example (c, d) is a frame from an animated video produced by channel Joel Haver on
YouTube.

not consider it to be a particularly difficult task, its computational emulation presents a
more loosely defined problem in contrast to photorealistic rendering, for which there is
often a known real-world ground truth example. However, the basic objectives of NPR
are no less important: creating sketches, cartoons, or paintings. We are not limited to
merely emulating the physical media used to create these types of artworks, but also the
abstractions which are commonly employed to construct such images, like larger widths
of strokes in sketch images representing less detailed areas. Style transfer is a higher
level task, in which we often only have a single exemplar to follow, yet we would like to
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reproduce many more images using the same mental and physical processes which were
used to create the style.

In this chapter, we first briefly introduce example-based style transfer and stylization
as a standalone task, its basic and more advanced applications, and describe algorithms
and techniques used to attempt to solve this task and their primary formative ideas.
Furthermore, we define the scope of our research focus, and we concisely cover our
contributions to the field so far, which are then individually described in more depth in
the following chapters.

1.1 Introduction to Example-based Style Transfer

Example Based
Style Transfer

Method

User Inputs

Target Image

Style Exemplar

Generated Result

Figure 1.2: Diagram of example based style transfer. User provides target image and style
exemplar, which the chosen style transfer method then uses to synethesize the result. Some
methods require additional inputs such as guidance channels or have tunable parameter settings
that provide further control over the process.

In the most basic sense, the goal of artistic style transfer is to create images that
resemble artworks which could have been created by a person; in this context, transfer
refers to applying artistic style defined by an existing artwork to an image depicting
different content or belonging to a different image domain. This other image might be
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a photograph or another artistic image, and is commonly referred to as the content or
target image. At the end of this process, we expect to obtain an image that retains
contextually important, structural, or semantic information that comprise the content
image, but assembled out of features extracted from the style image (for visual diagram
of general setup see Fig. 1.2).

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 1.3: Stylizing video sequences. Images (b, d, f, g) represent the sequence to be stylized.
Artist takes one frame from this sequence (b) and creates its stylized version (a). The goal is
then to propagate the artistic style from (a) to the remainder of the sequence (c, e, g).

Naturally, we can extend the definition to video sequences. The ultimate goal is to
propagate a given style from a still image into all frames of a given target video sequence
where the content changes, in order to animate the stylized frame, like shown in Fig. 1.3.
Current methods tend to work well on sequences without significant movement or abrupt
changes, as whenever a part of an object that was not directly represented in the stylized
exemplar appears, the desired outcome is inherently ambiguous. Besides this goal, meth-
ods that aim to map an entire video style guide onto a different video content target also
exist [Jamrǐska et al. 2015; Yang et al. 2021]. This goal is even more ambitious because
of the added difficulty of aligning nad reconciling appearances of different temporal be-
haviors between the input sequences, but less frequently desired by artists as preparing
compatible sequences is a laborious process.

The description we offer is rather open-ended, and much like in most of art itself, it
leaves as purely subjective whether an image successfully captures transferred artistic
style. Style in art is composed of many different concepts, including color palette, low-
level shapes, geometric arrangements, object composition, canvas material, and structure.
With so many ill-defined variables, it is unclear whether an objective metric of style
similarity can be created. Some unmistakable styles exist in the domain of visual art, such
as those of Pablo Picasso or Vincent van Gogh. As we move to lesser-known artworks,
the lines between different styles become blurrier. At the other end of the spectrum are
generic styles without strong and unique features, often seen in digital painting. Ideally,
we aim for such quality of style transfer that most people would agree was created by
the same artist and with the same intention, in the form of Turing test [Salesin 2002].
Evaluating work using such tests is inherently costly and requires considerable effort;
therefore, automated metrics have been proposed but have had limited success [Yeh
et al. 2020].



6 CHAPTER 1. INTRODUCTION

Despite the difficulty in evaluation, style transfer techniques can be used in various
applications and for a myriad of reasons, as the intended effect is automatically making
images more enjoyable and interesting to look at, which is beneficial, for example, for
advertising purposes or product design [Zhao et al. 2021]. Style transfer is also utilized
to mask or hide unwanted artifacts in other computer generated imagery – consider as an
example the task of changing the gaze direction of a person. Attempting full photorealism
has been elusive in similar applications, and easily results in uncanny valley effects. If
combined with a style transfer method to make the entire eye region look more painterly,
it significantly increases the margin of error for most viewers, without stepping away
from the original intention.

As it stands, large part of uses for still image style transfer revolve around facial
stylization in particular, turning portrait photos into more painterly styles or even cari-
catures [Fǐser et al. 2017; Futschik et al. 2019], and with popularity of social networks,
style transfer has been welcomed in generating unconventional profile pictures and other
consumer-facing content where differentiation is important and will no doubt play a big
role in personalization as applications such as “metaverses” become more mainstream.
Some still image style transfer algorithms have already seen conversion into commer-
cial products for creating cheap, computer generated artistic images to use in place of
traditional paintings, such as Deep Art [Gatys et al. 2016]1 or Prisma [Johnson et al.
2016]2.

Though applications for still images are interesting enough on their own, they are
dwarfed by the possibilities when talking about artistic stylization applied to video se-
quences, for example in film production, where creation of traditional hand-drawn ani-
mations can become very labor-intensive, as every single frame of a sequence has to be
individually painted or modified by an artist. To alleviate the effort, we can set up a
scenario where an artist paints over e.g. a coarse 3D animation, such as in the approach
of Bénard et al. [2013]. Some selected frames of the target sequence are painted by hand
and serve as the input content-style mapping pair into a style transfer algorithm. This
algorithm then should propagate the style into the remaining frames according to the
underlying 3D geometry changes.

In similar vein, a common technique used in animation is rotoscoping; a live-action
scene is shot, and artists then trace motion over every frame, creating the final hand-
drawn animation one frame at a time. The more artistic liberty the artist decides to take
during this process, the more laborious it becomes. Interestingly, this technique was
recently used in the production of at least one feature-length film, Loving Vincent3, in
which every single frame was painted by hand. As can be expected for such undertaking,
it took over 100 artists many years to complete the process, and even partial automation
could mean extreme savings in time and resources. With the spread of digital over-
painting, this technique is becoming more popular, for example in the animated series,
Undone4, which still required enormous human effort too. Both works have recognizable
style and received warm reception, indicating that hand-drawn style is very appealing to
the public audiences and can add another layer of emotion into the material. Crucially,
it has been difficult to define efficient professional pipelines that are suitable for creating

1DeepArt: https://www.deeparteffects.com/
2Prisma: https://prisma-ai.com
3Loving Vincent: http://lovingvincent.com
4Undone: https://www.imdb.com/title/tt8101850

https://www.deeparteffects.com/
https://prisma-ai.com
http://lovingvincent.com
https://www.imdb.com/title/tt8101850
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unique-looking products. Consequently, the few pipelines in use produce interchangeable
visuals, significantly limiting the ability of their users to incorporate their artistic expres-
sion. Appropriately applied style transfer techniques (e.g., [Jamrǐska et al. 2019]) could
not only make the production process significantly less time-consuming, freeing artists’
time for more creative tasks, but also allow far more productions to create unique-looking
results. However, propagating the style automatically in the general case is much harder
than in the 3D case, since we have no convenient and precise knowledge of the geometry
in the scene.

(a) (c)(b)

(d) (e)

Figure 1.4: Patch-based synthesis. We aim to transfer the painterly style of (a) onto a
photograph of a person (c) by copying image chunks to produce an analogous image (b). To
define the patch similarity, guidance channels need to be designed (d, e), in this case a version of
distance field based on semantic segmentation. If the teal patches drawn over images (d) and (e)
are nearest neighbors, we would expect the red patch in (b) to be copied from the corresponding
location in (a).

The process of video style transfer also presents a unique challenge in terms of ensuring
temporal consistency, as it requires that neighboring frames be visually seamless with
no perceptual flicker or inconsistencies. Achieving this can be difficult, as many artistic
styles lose their appeal when applied to realistic motion, especially when the goal is to
significantly alter the geometry of objects or exchange materials with vastly different
physical properties, such as their interaction with light or their rigidity. As a result, it
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is necessary to exercise special care when designing video style transfer algorithms to
address these issues. Even state-of-the-art techniques struggle with striking a balance
between maintaining faithfulness to the input style and preserving natural object trans-
formations during camera movement or as objects move in the scene, and it remains an
important open problem.

1.1.1 Approaches to Style Transfer

The process of extracting the style information from the style exemplar and applying
it to the desired target image varies greatly between different methods, but we can
roughly group style transfer methods into three broad categories – (1) Procedural style
transfer, (2) Non-parametric guided or patch-based style transfer and (3) Parametric or
neural style transfer. Although this classification is based on the fundamental implemen-
tation ideas of the methods, it has become increasingly apparent that they each have
unique properties, strengths and weaknesses, which translates into distinct and recog-
nizable visual results. To a lesser extent the distinction is also influenced by historical
factors, though there have been methods which attempt to combine the different ap-
proaches [Futschik et al. 2019; Texler et al. 2020a;b], and this hybrid approach shows
promise as a potential direction for future development.

(a) (b)

Figure 1.5: Early method implementing artistic painterly stylization [Hertzmann 1998]. A
source image (a) depicts the content to be transformed. Image (b) is the result obtained by
algorithmically applying small radius brushes over the source image (a). The brushes are applied
in multiple layers; large brushes are applied first, medium and small brushed follow, thus creating
an illusion of a real painting.

Early attempts at automatic style transfer were based on procedurally compositing the
target style from a set of user-defined elements, e.g., brush-strokes and pens [Hertzmann
et al. 2001; Bénard et al. 2010; Bousseau et al. 2006; Praun et al. 2001; Salisbury et al.
1997; Lu et al. 2013] or filtering kernels created through physical simulation [Curtis
et al. 1997]. Example of an early style transfer result is shown in Fig. 1.5, a photograph
composed exclusively from different brush strokes, while retaining the overall high level
structure. More advanced approach based on the same underlying principles can be
found in Fig. 1.6, where the strokes are no longer static, but given as exemplars and the
algorithm’s job is to use them to synthesize the final result.

An important milestone in digital style transfer was presented in Image Analo-
gies [Hertzmann et al. 2001]; an example-based approach where no specific, predefined
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(c)(b) (d)(a)

Figure 1.6: Result of Lu et al. [2013]. Brush stroke exemplars (a) are used to synthesize a
painting (b). The foreground flower strokes (close-up c), use oil paint exemplars(a–left), while
the background strokes (close-up d), use plasticine exemplars (a–right). The low level image
features imitate real artistic media well.

A BA’ B’

Figure 1.7: Image Analogies [Hertzmann et al. 2001]. An unfiltered image A together with
its filtered–stylized version A′ define a desired transformation. The goal is to perform the same
transformation on an unfiltered image B to obtain its filtered version B′. Besides A, A′, and
B, there is no other input to the framework, the transformation is learned from the pair of A
and A′.

domain is assumed, and the method only expects an example of stylization – original
image and its stylized version. The framework is then able to stylize other images in
the same way as in the given stylization exemplar. Fig. 1.7 shows a typical applica-
tion of this framework. Image A is the original exemplar and image A′ is its stylized
counterpart, and these two images define the transformation. The task is then to apply
this transformation to another image B in order to get image B′ stylized in the same
way the image A′ was changed. While this work was foundational and inspired many
others, it suffers from several shortcomings, namely images A and A′ need to be very
carefully aligned, and the transformation function is only inferred from neighboring pixel
locations, making any high level analogies impossible. Lastly, image B is expected to be
from the same domain distribution as A (e.g. two photographs taken under roughly the
same conditions, or both being a grayscale mask, or segmentation maps), an intuitive
yet sometimes restrictive requirement.

Despite these limitations, the approach and its modifications can be used with great
deal of success in some areas, such as video stylization with an overpaint image [Jamrǐska
et al. 2019]. Methods based on fundamentals originating from the work of Hertzmann et
al. [2001] are often called patch-based synthesis, as they principally function by copying
patches of style source image into the result according to some metric. An advanced
example of usage is shown in Fig. 1.4 which defines an analogy between the guidance
domain (constructed from automatically extracted segmentation map) and the painterly
artistic image. The required alignment between images (a) and (d) in this case is trivially
satisfied, but limits the possible designs of the guidance channels.
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(a) (b)

(c)

Figure 1.8: An example of neural network based approach to the style transfer task [Gatys
et al. 2016]. Resulting image (b) depicts the same semantic content as source photograph (a)
and at all scales appears visually similar to the style exemplar (c).

The boom of deep learning research has opened up new directions for artistic styl-
ization, and has in fact gained significant attention from both the academic and public
spheres. With the emergence of novel methods that generate complex images previously
only attributed to human artists, the subfield has seen a significant surge in popularity.
In 2016, Gatys et al. [2016] proposed a novel approach to style transfer using deep learn-
ing models. While this approach can work well in limited cases, the abstraction of artistic
style into a set of parametric statistics is oversimplifying and difficult to reason about,
sometimes resulting in stylization results that are very far from the exemplars without
any explanation. Compared to state-of-the-art patch-based methods, the results are of
lower visual quality, suffer from blurriness and lack fine artistic details (see Fig. 1.8).
Nonetheless, the work of Gatys et al. opened a completely new path in the field of style
transfer and inspired many other researchers to employ deep learning models. Methods
that rely on learning the probability distribution of the style exemplar instead of directly
reusing it are referred to as neural-based methods.

A particularly promising subsection of neural-based methods revolves around the re-
cent progress achieved in the field of text-driven generative models like Stable Diffu-
sion [Rombach et al. 2021]. Not only do these new models significantly improve the
visual fidelity of images produced by deep learning models, no longer producing the
subpar image quality compared to patch based methods, they also open up the new
possibilities of specifying or narrowing down the style component through textual input
as well as image based one, which can include use cases such as describing a style for
which there is no exemplar or using only certain features of a given exemplar. And
although the legal story of computer generated images is far from decided, it is already
clear that these models are a real game-changer to the mass production of artistic im-
agery, including stylization tasks. Further discussion about related work can be found in
Chapter 2.
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(a) Style Exemplar (b) Target (c) Result

Figure 1.9: General example-based style transfer. The task is to transfer artistic style from
the given style exemplar (a) to the given target (b) while preserving the appearance of (a) and
the content of (b). Example of a possible result in (c).

1.2 Our contributions and structure of the thesis

In our view, artist-facing algorithms must consider several critical aspects, including
freedom of expression, level of control over the output, and interactive response. When
it comes to artistic stylization, two additional factors are particularly important. First,
the algorithm should aim to faithfully replicate the original style of the artist, ensuring
that visual similarities between the exemplar and output images are clear. Second, the
algorithm should demonstrate semantic awareness in its transfer function. For instance,
if the transfer is between a portrait painting and a portrait photograph, to synthesize
eyes or hair the algorithm should construct image features that match the same region
in the exemplar image. Overall, considering these factors is essential for developing
effective artist-facing algorithms that can support the creative process while achieving
high-quality results. Each of our contributions attempt to address these points and come
up with a reasonable trade-off where necessary.

The primary objective of this thesis is to describe innovative algorithms and methods
we developed which help artists, as well as casual users, create richer, more personalized
content, help experiment effectively, and save time by automating repeated tasks. We
further strived to enable experiences closer to hand-drawn workflow in applications where
it was not previously possible, while focusing mainly on example-based style transfer, the
task where an example of the artistic style is given in the form of a digital artwork. A
smaller amount of attention is also given to photorealistic stylization for faces. Following
is a brief description of our contributions to the field of style transfer and stylization,
more in depth description and assessment of each method is then given in respective
chapters.

In the previous section, we placed no restrictions on the kinds of images that can
be used together as target and exemplar. However, this generality is not necessary to
reach goals considered useful. In fact, in many cases, it is beneficial to incorporate some
domain knowledge and limit the set of possible inputs – for example we can impose
a limitation requiring the style exemplar and content image to have similar semantics,
allowing us to increase the robustness and quality of the algorithms. For instance, we
can restrict ourselves to images of human faces and expect results similar to Fig. 1.10.
In such scenarios, we can typically implement methods that fare far better than general
style transfer, by avoiding having to deal with corner cases or using simplified reasoning.

In Chapter 3 we present our proposed solution to the idea of real-time, high quality
facial stylization: FacestyleGAN: Real-Time Patch-Based Stylization of Portraits Us-
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Target photo Our approach FaceStyle Style Target photo Our approach FaceStyle Style

Figure 1.10: Stylization of face photographs using our approach as compared to FaceS-
tyle [Fǐser et al. 2017]. Our approach achieves similar quality while retaining more identity
defining features, better generalization and runs 50 times faster.

ing Generative Adversarial Network [Futschik et al. 2019], which we achieve thanks to
a marriage of patch-based example synthesis and neural-based machine learning style
transfer. First, we use the algorithm of Fǐser et al. [2017] to generate a large dataset
of suitably stylized examples, and subsequently we apply an Image-to-image [Isola et al.
2017] machine learning pipeline to distill the dataset into a neural network model and
generalize to unseen faces. Interestingly, our model learns to correct for certain common
problems produced in the original method, at times even greatly improving the quality
of the baseline style transfer.

However, for the cases where we do want to perform arbitrary, no domain assumed
style transfer, for example as can be seen in Fig. 1.9, where a style from a painting
of landscape is transferred to the photograph of a horse. In this very unconstrained
case, it is usually hard to establish meaningful semantic correspondences between the
style exemplar and target content; thus it is difficult to guide style transfer method in
order produce results matched to the artist’s intention (for instance part of the blue
phone booth curiously appearing on the horse, which may or may not be desirable).
In Chapter 4 we introduce our contribution towards this goal, Arbitrary Style Transfer
Using Neurally-Guided Patch-Based Synthesis [Texler et al. 2020a]. This approach also
combines neural and patch-based style transfer methods. We designed a framework for
existing neural techniques to provide us adequate stylization at the global image feature
level, and then use their output as an intermediate stage for subsequent patch-based
synthesis. Through this combination, our method keeps the high frequencies of the
original artistic media by directly copying patches, thereby dramatically increasing the
fidelity of the resulting stylized imagery, but also receives the opportunity to exploit the
ability of neural methods to semantically guide the stylization without associated work of
creating explicit guidance. Furthermore, we show how to stylize extremely large images
(e.g., 340 Mpix) without the need to perform the synthesis at pixel level, yet retaining
the original high-frequency details, which is a notoriously hard task for neural methods.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.11: Given one keyframe (a) and a video sequence (in blue), our method, Interactive
Video Stylization Using Few-Shot Patch-Based Training, produces the stylized results for the
rest of the frames (b, c, d).

As described previously, extending style transfer into video applications can be quite
tricky due to the necessity of preserving temporal stability. To this end, we offer two novel
methods that contribute to the state-of-the-art in the field of appearance transfer from
stylized keyframe, where meaningful correspondences can be established – and propa-
gated to the rest of the sequence. The first of these methods is Interactive Video Styliza-
tion Using Few-Shot Patch-Based Training [Texler et al. 2020b], described in Chapter 5.
In this work, we again make use of the neural image-to-image paradigm to enable artists
to perform real time stylization of a short video sequence, example of such sequence is
shown in Fig. 1.11. We achieve the quick time-to-frame by training the transfer model on
small image patches rather than entire images. Crucially, the use of our method promotes
artistic experimentation and answers the interactivity problem for video keyframe based
stylization, which was previously an infeasible workflow. Even though the stylization
model offers acceptable results in seconds or minutes, the quality continues to improve
with more iterations.

Though the method has a tremendous number of desirable properties, it can fall short
in some important regards, especially as far as quality of image and longer-term cor-
respondence propagation is concerned. To address some of these issues, we proposed
a more heavy-weight approach in STALP: Style Transfer with Auxiliary Limited Pair-
ing [Futschik et al. 2021a], presented in Chapter 6. Previous state-of-the-art video styl-
ization methods tend to only focus on extracting the transfer function from the provided
aligned correspondence pair (keyframe and stylized counterpart). We note that, despite
not knowing the stylized counterparts, remaining frames of the sequence also contain
valuable information that can improve the transfer function when applied to them. In
fact, this scenario is not limited to just videos, Fig. 1.12 shows a case where we consis-
tently stylize a panorama photo using a single stylized constituent part as exemplar.

While we observe notable improvements in visual quality and in general can stylize
longer sequences with smaller number of input keyframes, we are forced to relax the
real-time requirements in order to do so. However, thanks to the previous work, we can
envision a workflow that utilizes Interactive Video Stylization Using Few-Shot Patch-
Based Training during the experimental phase and then switches to STALP once the
artist is satisfied with the broad features of her work.

Lastly, we take a look at a different angle to artistic stylization. Our previous work
mostly deals with painterly or artistic media examples, thereby providing tools for in-
herently non-photorealistic rendering. In the last presented tool, we empower artists to
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(a) (b)

(c) (d)

Figure 1.12: Stylizing using a limited pairing: (a) and (c) express the desired transforma-
tion, in STALP we train for style consistency across multiple input images, in this case the
constituent photographs used to create (b). The result is a consistent stylization that can be
seamlessly stitched together into a panorama image (d)

photorealistically alter, or stylize, real images. In our work, ChunkyGAN: Real Image
Inversion via Segments, described in Chapter 7, we project real photographs into the
latent space of a generative model and subsequently perform arithmetic operations in-
side the latent space to create plausible local modifications to the input image and use
image space blending to reconstitute the entire image. We show the full power of our
framework on facial images, using the pretrained network of StyleGAN v2 [Karras et al.
2020]. Using this framework, we are able to change a range of facial features, such as
gaze direction, turning neutral pose into a smile or opening closed eyes, while retaining
very close identity resemblance of the original subject and avoiding unnatural effects or
artifacts. These local feature changes can be layered on top of one another, such as
shown in Fig. 1.13.

(a) (b) (c) (d)

Figure 1.13: Using ChunkyGAN allows artists to produce local layered edits, applied in se-
quence on a real photograph (a): changing gaze direction (b), adding smile (c), changing haircut
and nose shape (d).
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Besides, Chapter 8 gives a summary overview of the work and proposes possible di-
rections for future work, Appendix A lists author’s publications along with the full bib-
liography and a list of citations in other publications. Appendix B gives an overview
about author’s contributions to the individual papers used in this thesis. The remaining
appendices contain supplementary material for their respective chapters – Appendix C
shows additional results for Chapter 3, Appendix D contains supporting material for
Chapter 5 and Appendix E consolidates further results and experiments for Chapter 7.
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Chapter 2

Related Work and State-of-the-Art

Chapter 1 already touched on some important concepts and seminal works regarding
stylization and example-based style transfer. In this chapter we describe different style
transfer directions and recent developments in the field, the order in which we present
the selected works is loosely chronological, though for the sake of coherency, there are
exceptions. The earliest methods were largely based on procedurally compositing the
result from a set of hand-crafted static elements (typically brush strokes). From there,
state-of-the-art moved towards patch-based methods that seek to find suitable coherent
image patches to copy from the style exemplar into the resulting image. As learning-based
parametric or neural approaches took off with impressive results, we start seeing a decline
in other directions. Lastly, we introduce emerging techniques, such as combinations of
patch-and-neural based approaches or dataset-driven approaches.

2.1 Procedural Methods

The first and simplest methods to perform what could be classified as style transfer were
akin to automatic painting with a preselected range of brushes and pens, or hand-designed
kernel filters applied as post-processes. Some methods choose to explicitly simulate artis-
tic media, others use brushes defined by images or analytic equations, and the resulting
image would be a composition of many layers of such brush stamps, optionally with
affine transformations applied to them. The composition itself would be performed ac-
cording to the leading image processing principles of the time, along gradient direction
or with edge detecting algorithms. Some devised algorithms include [Hertzmann 1998]
for painterly style using kernel filters, [Salisbury et al. 1997] for pen and ink illustrations
using textures, [Breslav et al. 2007] to use hatching for shading images, [Baxter et al.
2004] and [DiVerdi et al. 2010] to produce images resembling oil paint, or [Bousseau et al.
2006] and [Chu and Tai 2005] for watercolor simulation. Curiously, similar approaches
could also be applied to 3D images with known depth, allowing for more complex de-
cisions, such as automatic implicit layering [Schmid et al. 2011]. Later on, proposed
algorithms would work with assumptions of exemplar brush textures rather than static
ones, such as the work of Lu et al. [2013] (see Fig. 1.6) or Zheng et al. [2017]. The main
strength of these methods is their simplicity – there are no complex parameters to tune,
and their behavior is predictable, plus they can deliver impressive results when used
correctly. However, setting up these methods is laborious, the results are quite limited
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by the expectations adopted by the authors of how composition should work and are
carefully tailored to the specific media or use-case they target, with little hope of easily
extending them to other applications.

2.2 Image Exemplar Based Methods

Consequently, to address the limited nature of media-specific methods, following research
directions shifted towards exemplar artwork based methods that allow usage of a more
feature-rich guide – a full exemplar image. Within the provided image, there are local
neighborhoods where the composition of brushes or other medium-level image features
has already taken place, and we can attempt to reproduce it by directly copying pixels
without having to deal with the problems of composition at all, which is a key advantage
of such approach. However, it also means that decomposition back into e.g. individual
strokes is nearly impossible, and thus we are limited to only the local features already
present in the example image, without the possibility of synthesizing completely new
content, even small deviations from content shown in the exemplar are difficult in prac-
tice.

Image Analogies by Hertzmann et al. [2001] was seminal work that defined a framework
allowing for arbitrary style transfer using patch-based synthesis (see Fig. 1.7). Though
the framework is still widely used today, competing paradigms also emerged, such as The
Lit Sphere by [Sloan et al. 2001], which is a framework based on texture mapping and
taking advantage of provided 3D geometry.

2.2.1 Non-parametric guided synthesis

The Image Analogies framework and its later improvements [Wexler et al. 2007; Kaspar
et al. 2015; Fǐser et al. 2016] rely on a guided process we that is also called patch-based
synthesis. To perform transfer of style from one image to another, the methods directly
copy patches, or chunks of the exemplar image into the resulting image. This process
by construction ensures that the high frequency content from style image, while possibly
scrambled, remains largely intact and recognizable. The area to be copied is optimized
using a patch similarity metric function, commonly sum of squared errors, which is
effectively user-defined by providing a set of guidance images or channels. The guidance
channels spatially encode which patches between the images should be considered similar
for the purposes of the optimization. The approach has been adopted for scenarios, such
as fluid animation [Jamrǐska et al. 2015], 3D renders [Fǐser et al. 2016; Sýkora et al.
2019], facial animations and image style transfer [Fǐser et al. 2017; Bénard et al. 2013],
or video style transfer [Fǐser et al. 2014; Jamrǐska et al. 2019; Dvorožňák et al. 2018]
with explicit temporal coherence.

Results produced by the framework are often of impressive visual quality and stay
truthful to the original exemplar, and have trivially explainable behavior. On the other
hand, these methods share one critical drawback – it is relatively labor-intensive and
conceptually difficult to prepare tailored guidance channels. Some research effort was
directed into deriving these channels automatically in restricted scenarios, through pro-
cedural analysis of the used images [Frigo et al. 2016; Fǐser et al. 2017], for example by
supposing that both the style exemplar and target content image are portrait images.
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The downside of this approach is that it is often non-trivial to design guidance that works
well, even in the domain restricted case.

The patch-based approach works especially well when used on exemplars with ample
high frequency content, where small patch seams are easy to hide. The sizes of copied
chunks depend on the design of the guidance channels, and generally the aim is to keep
them as large as possible. Conversely, when the image features are more structured and
defined, it becomes harder to mosaic large patches into a new shape that preserves those
essential characteristics, and visual quality degrades.

2.2.2 Parametric synthesis

The machine learning revolution spawned a completely different approach to style trans-
fer and artistic image synthesis. Gatys et al. [2016] pioneered use of neural networks
to replace the explicit guidance required by methods based on Image Analogies. The
key advantage of neural methods is addressing the synthesis of completely new content.
Unlike patch-based methods, the parametric nature of the synthesis process allows for
emergence of content not explicitly shown by the style exemplar or perhaps not even
found in the training dataset of the model. The other major advantage is the ability to
automatically synthesize result based on perceived semantics and taking global context
into account, which is notoriously hard with explicit guidance. Whereas patch-based
methods would typically only look at small local pixel neighborhoods (possibly on multi-
ple scales), neural models have comparatively huge receptive fields, and it is not unusual
that they could span the entire input image. On the other hand, a major drawback com-
mon to most parametric techniques is that they are generally unable to exactly preserve
high-frequency details of the style exemplar, producing blurry features and ’washed-out’
look.

The state-of-the-art in parametric style transfer can be broadly split into two cate-
gories: optimization based methods and feed-forward networks. Feed-forward models,
once trained, work in a look-once fashion, where the input image is fed through the net-
work and the stylized result comes out at the end of that process. Optimization based
approaches, on the other hand, extract some state information from the inputs once,
and then carry out a number of optimization steps over some form of objective function.
The optimization algorithm is commonly a variant of stochastic gradient descent, since
backpropagation through the large feature-extracting model is required.

Both categories have pros and cons, perhaps the most obvious trade-off is compute
time versus quality – feed-forward systems tend to be blazing fast, suitable for real-time
applications but suffer from noticeable artifacts. Optimization-based methods are able
to fix a lot of the failure cases presented by feed-forward networks; this is compensated
by being far less interactive, requiring on the order of seconds or minutes per image.
Indeed, it is possible to generate large datasets of images using an optimization method
and train a feed-forward network to approximate the process, but such attempts seem
to be subject to the trade-off nevertheless.

Lastly, a beneficial property of neural-based approaches is the natural extension to
video, especially for feed-forward architectures, although explicit temporal coherence
is required, since out-of-the-box solutions applied on a per-frame basis are prone to
flickering or produce inconsistent results and otherwise unstable sequences. Some works
attempt to include terms for temporal stability in the optimization criterion [Chen et al.
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2017a; Gupta et al. 2017; Sanakoyeu et al. 2018; Ruder et al. 2018], while Blind Video
Temporal Consistency approach of Lai et al. [2018] takes per-frame stylized video as input
and outputs a temporally consistent video, which makes it invaluable as a post-processing
step.

2.2.2.1 Optimization based methods

The optimization based approaches are predicated on using a pretrained feature extrac-
tor to reduce the input images into a set of feature maps, from which an initial state is
produced. Then, the result is materialized by iteratively optimizing a loss function com-
puted on the feature maps of the intermediate state, e.g. comparing statistical moments
of the feature maps between the result and the style or target content features. Opti-
mizing the image requires up to several backward passes through the feature extractor
per iteration, and to get reasonable results, several hundred iterations are needed. This
process is compute intensive, and worse, typically requires large amounts of memory that
scales exponentially with the desired resolution of the images. At the same time, it is
not clear how to meaningfully control these methods, and the results can be quite unpre-
dictable. Initial conditions and optimization schedules are also tricky to tune properly.
However, in many cases these methods produce appealing images, and are relatively easy
to operate once a working setting is discovered.

Gatys et al. [2016] use pre-trained convolutional neural network (VGG-19 [Simonyan
and Zisserman 2014]), trained on image classification task, for feature extraction from
both the style exemplar and the target content images. Then, an optimization process
matches the feature-wise statistics of both images to synthesize the result. Statistics
related to style are extracted from different layers than content and are subject to a
different optimization objective. Gatys et al. further make the observation that trained
neural networks implicitly encode style information as correlation between channels of
feature layers. The authors also further extended their idea to allow control over spatial
location, color information, and scale of features [Gatys et al. 2017], in an attempt to
mimic the explicit guidance offered by patch-based methods.

Gu et al. [2018] explore the possibility of reshuffling spatial locations of feature maps
extracted from the style exemplar to form a structure closer to the content image. This
method trivially minimizes the style loss proposed by Gatys et al. [2016], and they
further observe that constraining the usage of the same feature patch and promoting
feature diversity leads to improved results, an idea previously exploited in patch-based
approaches. The optimization objective is then to invert these reshuffled feature maps
back into an image. Despite directly using the known exemplar features, the inversion is
not a trivial task and the visual quality can vary depending on the exemplar used.

Kolkin et al. [Kolkin et al. 2019] also make use of pretrained VGG features, but
reimagine which operations are suitable for feature matching, opting to use optimal
transport formulation instead of direct correlation matching or reshuffling, and achieve
results of much higher quality. The authors also propose using self-similarity as the
content conserving part of the objective function, which has desirable properties, such
as preserving symmetry im the target image.
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2.2.2.2 Feed-forward methods

Some of the issues observed with optimization methods can be alleviated by designing a
feed-forward process for stylization. Namely, feed-forward networks complete an image
stylization task around two to three orders of magnitude faster, thus enabling real-time
interactive scenarios.

Johnson et al. [2016] noted that the style loss component of Gatys et al. [2016] can be
looped into an image-to-image [Isola et al. 2017] framework to train a special purpose
network to stylize according to a particular style exemplar. While this requires a large
up-front investment and comes with the downside of having to retrain for every desired
style exemplar, the trained model can run at interactive frames per second. This gen-
eral concept was later improved by others, Ulyanov et al. [2016a] significantly improved
the visual quality while keeping the compute requirements low, Dumoulin et al. [2016]
attempt to sidestep the problem of retraining for each style by training a unified model
with an internal dictionary for multiple style exemplars, and Chen et al. [2017a] inves-
tigated which architectures are naturally a good fit for a fully convolutional, real-time
scenarios.

Even though the dictionary approach works well for a limited number of styles, it
does not scale very well. To overcome necessity for additional training, encoder–decoder
scheme was suggested by several authors [Li et al. 2017; Huang and Belongie 2017; Lu
et al. 2017; Kotovenko et al. 2019]. This approach expects the style exemplar to be
fed into the network alongside the target content input, and the feed-forward network
then needs to perform the data-dependent style analysis in its encoder part. While the
architecture of the encoder often builds off of the convolutional layers of VGG [Simonyan
and Zisserman 2014], and is used to represent both the style and content image as two
sets of feature channels, the job of the decoder is subsequently to combine the extracted
features into a singular representation and, ultimately, resulting image. This removes
both requirements of explicit optimization and necessity of additional training for each
style exemplar, but it comes at the price of overall image quality.

2.2.3 Hybrid: Parametric guidance for patch-based synthesis

Given the mutual exclusivity of strengths of patch-based and neural methods, a natural
thought for research direction is to combine them. There have been multiple efforts in
the area, and while the resulting algorithms tend to be more complex, in many cases they
have been shown to deliver superior results to either approach alone. Li et al. [2016b]
search local neighborhoods of feature-space patches of the given style image in hopes of
finding structures similar to ones found in the content image, and are thus able to achieve
better reproduction of local textures than neural approach alone. The seminal work in
this direction, neural version of Image Analogies [Hertzmann et al. 2001], called Deep
Image Analogy [Liao et al. 2017] combines the idea of copying patches from exemplar into
the result, but doing so in the domain of deep neural features and subsequently decoding
the obtained mosaic. Because the network has implicit bias of looking for semantic
information rather than textural structures, the method works best when applied to a
pair of images that depict semantically similar objects, but crucially retains the high
frequency features present in the style exemplar.
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In Chapter 3, we propose a contribution that falls into this category – our work uses
patch-based method of Fǐser et al. [2017] to generate a dataset of stylized portrait pairs
and then train adversarial neural network to perform the style transfer. Our second
contribution into this category is Arbitrary Style Transfer Using Neurally-Guided Patch-
Based Synthesis [Texler et al. 2020a], further described in Chapter 4.

2.3 Dataset Based Methods

A slightly extended version of the image exemplar based methods are dataset based
methods. These approaches, rather than being provided a single image exemplar, expect
the user to provide a dataset of styles which should be used to synthesize new results.
Principally, we could use the Image Analogies framework for this approach by trivially
creating an image mosaic of multiple images from the dataset merged into a single exem-
plar. However, such approach discards instance level information which can be leveraged
for better results and would be computationally infeasible with larger datasets.

This area has become particularly interest in recent years, with many influential works
published. CycleGAN [Zhu et al. 2017c] attempts to match the style between two dataset
domains (e.g. stylized and photograph) by ensuring cycle consistency. In StarGAN [Choi
et al. 2018] this idea is extended by changing it to multiple datasets and ensuring cycle
consistency between each pair of them (e.g. many different styles). Contrastive Learning
for Unpaired Image-to-Image Translation [Park et al. 2020] extracts patch-based statis-
tics from patches across many instances and matches them together, thus producing a
consistent stylization across the entire dataset. Interestingly, the large scale learning
methods enable modes of style transfer which are otherwise very difficult, such as trans-
lating edge images into more photorealistic images or segmentations into paintings, as
shown by Zhan et al. [2022]. The emergent properties of large models therefore seem to
be relevant for stylization.

This large-data driven approach is quickly becoming popular with the advent of text-
conditioned generative models like Stable Diffusion [Rombach et al. 2021]. Channeling
the exceptional power of general purpose generative models into stylization through lim-
ited fine-tuning of the models, shows very early but promising results, for example as
shown by Dreambooth [Ruiz et al. 2022], but this is still an area under active explo-
ration.
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Chapter 3

FacestyleGAN: Real-Time
Patch-Based Stylization of Portraits
Using Generative Adversarial
Network

3.1 Introduction

The stylization of human portraits becomes highly attractive thanks to the massive
popularity of selfie photography and invention of mobile applications such as MSQRD
or Snapchat which use facial landmarks together with CG rendering pipeline to deliver
stylized look. This approach, however, requires professional artists to carefully design
textured 3D models along with custom shaders to achieve the desired look.

This limitation can be alleviated using example-based approaches pioneered by Hertz-
mann et al. [2001]. This technique allows transferring style from a given artistic ex-
emplary image to a target photo. State-of-the-art in this domain uses neural-based
techniques [Selim et al. 2016], patch-based synthesis [Fǐser et al. 2017], and their combi-
nations [Liao et al. 2017] to deliver impressive stylization results. However, a key limi-
tation of those techniques is that they consist of several algoritmic steps each of which

style exemplar target our approach Fǐser et al. Liao et al. Selim et al. Gatys et al.

Figure 3.1: Given an input exemplar and a target portrait photo, we can generate stylized
output with comparable or superior visual quality as compared to several state-of-the-art face
stylization methods (Fǐser et al. [Fǐser et al. 2017], Liao et al. [Liao et al. 2017], Selim et
al. [Selim et al. 2016], and Gatys et al. [Gatys et al. 2016]) while being able to run at interactive
frame rates on a consumer GPU. Style exemplar: © Scary Zara Mary.
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may be a source of potential failure (see Figures 3.5, 3.6, and 3.7, two right columns)
and introduces algoritmic complexity which leads to huge computational overhead.

Generative adversarial networks [Goodfellow et al. 2014] have become a favorite tech-
nique for image-to-image translation tasks [Isola et al. 2017; Wang et al. 2018b;c] recently.
Their principal drawback over classical style transfer techniques which require only a sin-
gle style exemplar image [Gatys et al. 2016] is the necessity of training the network on
a large dataset of paired appearance exemplars. This requirement is prohibitive in the
case of artistic style transfer as tedious manual work is necessary to prepare the train-
ing dataset. Although unpaired alternatives exist [Zhu et al. 2017a;b] they still require
many drawings of a particular style as an input. Another issue is related to the fact that
current image-to-image network architectures have difficulties in reproducing delicate
high-frequency details that are important to retain fidelity of used artistic media.

In this paper, we demonstrate the benefits of combining state-of-the-art high-quality
patch-based synthesis with the power of image-to-image translation networks. Thanks to
the ability of patch-based method of Fǐser et al. [Fǐser et al. 2017] to produce high-quality
results we can generate a dataset which preserves the original artistic style precisely.
We then use this dataset to train a variant of image-to-image translation network with
improved structure that better preserves important high-frequency details. Although
the method of Fǐser et al. is prone to failure in more complex cases, we leverage the fact
that the network can generalize even when the training dataset contains many failure
exemplars. This behavior was recently demonstrated in a different context of generative
models trained from partially observed samples [Bora et al. 2018] or without ground
truth counterparts [Lehtinen et al. 2018]. Thanks to this ability to generalize while
still being able to preserve high-frequency details, we can produce results which are
comparable or sometimes more visually pleasing than the output of the original patch-
based method. Moreover, since the trained network can be evaluated quickly on the
GPU our approach enables real-time style transfer which was unattainable for previous
high-quality techniques.

3.2 Related Work

The stylization of head portraits is a long-standing challenge for non-photorealistic ren-
dering (NPR) research community. In this domain, traditional filtering-based stylization
techniques [Gooch et al. 2004; Tresset and Leymarie 2005; DiPaola 2007; Yang et al. 2010]
have been extensively used to deliver compelling results for simple styles. However, they
do not allow for greater appearance variations.

Example-based techniques can be used to alleviate this limitation. One possible solu-
tion is to compose the final image using a set of stylized facial components prepared by
an artist [Chen et al. 2002a;b; 2004; Meng et al. 2010; Zhang et al. 2014]. Although this
approach provides greater freedom for local regions, it is still challenging to preserve the
identity of the target person due to the inability to adapt the templates to the unique
geometry of target facial features.

To overcome this drawback, researchers further propose to prepare a larger dataset of
photo-style exemplary pairs (e.g., CUHK Face Sketch Database [Wang and Tang 2009]),
and then use multi-scale Markov Random Fields [Wang and Tang 2009; Li et al. 2011;
Zhou et al. 2012; Wang et al. 2013a; 2014] to estimate the stylization for a given target
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face. Although these techniques can deliver better identity adaption, they are highly
impractical since many photo-style exemplars need to be prepared manually for each
new artistic style.

The example-based approach can also be reduced to the level of individual brush
strokes [Zhao and Zhu 2011; Berger et al. 2013; Wang et al. 2013b]. Although these
techniques are compelling at delivering particular artistic looks (e.g., oil paint), they are
difficult to apply on styles where the interaction between individual brush strokes cannot
be modeled merely by blending operations.

Recently, neural network based style transfer becomes very popular thanks to the
seminal work of Gatys et al. [2016]. The success of this method motivated others [Selim
et al. 2016; Lu et al. 2017] to develop custom neural-based stylization techniques for
human portraits. Although those example-based methods can achieve generally com-
pelling results, they usually fail on more complex structured exemplars where preserving
high-frequency details is critical. Recently, patch-based techniques [Fǐser et al. 2017;
Lu et al. 2018] have been proposed that try to address this issue. Nevertheless, these
require additional guiding channels to be prepared, which govern the synthesis process
to transfer patches in a semantically meaningful way between the style exemplary and
the target photo. Although such channels can be created automatically via a series of
algorithmic detectors, this solution makes the system more fragile as an occasional failure
of any individual unit may significantly affect the whole synthesis.

Li et al. [2016a] introduce a combination of neural- and patch-based synthesis. Their
key idea is to use responses of a deep neural network trained on image classification [Si-
monyan and Zisserman 2014] to establish patch-wise correspondences between the style
exemplar and the target image. Liao et al. [2017] and Gu et al. [2018] later extended
this approach to perform patch-based synthesis directly in the domain of latent neural
feature spaces, and then reconstruct the final image using deconvolution. Recently, Cao
et al. [2018] propose to perform geometric exaggeration on top of appearance transfer.
Despite the impressive results, these techniques still suffer from common pixel-level arti-
facts which lead to lower quality of the synthesized imagery as compared to patch-based
methods which can work directly in the image domain and preserve important pixel-level
details.

Our approach bears a resemblance to techniques which can quickly perform certain
image editing operations for which time-consuming algorithmic solutions exists [Xu et al.
2015; Chen et al. 2017b]. By training a feed-forward network on a pre-computed dataset
they can achieve significant speed up as well as a level of generalization that sometimes
outperforms quality of results produced by the original algorithm. A similar technique
was also used in the context of neural-based style transfer by Johnson et al. [2016].
In their approach, the output from Gatys et al.’s algorithm [2016] was used to train
the weights of a feed-forward neural network. However, as Gatys et al.’s method does
not perform semantically meaningful transfer the ability to generalize and increase the
robustness was not as apparent.

The tendency to generalize and improve upon the original training dataset has been
recently reported also in the case where corrupted datasets are used for training [Bora
et al. 2018; Lehtinen et al. 2018]. In these works authors observed the ability of a
generative network to recover from failures and produce comparable or sometimes even
better visual quality as compared to a scenario when a clean dataset is used for training.
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Recently, there were attempts to generalize neural-based stylization [Li et al. 2017;
Huang and Belongie 2017] so that costly training nor optimization is required to perform
fast style transfer from arbitrary exemplar. Nevertheless, those techniques are unable to
perform semantically meaningful transfer and still suffer from visible pixel-level artifacts
which decrease their ability to reproduce important visual characteristics of used artistic
media.

3.3 Our Approach

Our goal is to learn a mapping function F between color images of human faces X, and
their stylized counterparts Y. Since in our case paired data can be produced easily using
the algorithm of Fǐser et al. [2017], we can model the mapping as a direct transformation
F : X → Y.

Given pairs of training samples: (xi, yi)
N
i=1 where xi ∈ X and yi ∈ Y, our objec-

tive to learn F contains three different terms: adversarial loss LGAN for matching the
distribution of generated images to the distribution of the stylized images [Goodfellow
et al. 2014], a color loss calculated directly on the stylized output L1, and finally a per-
ceptual loss LV GG calculated on features extracted by a VGG network pre-trained on
ImageNet [Simonyan and Zisserman 2014]. In the following section we focus on each
loss in more detail and state the final objective function. Then we describe our network
architecture and discuss implementations details.

3.3.1 Training Objective

Adversarial Loss We apply adversarial loss to the output of the mapping function F
and its discriminator DY using the following objective function:

LGAN(F,DY ,X,Y) = Ey∼pdata(y)

[(
DY (y)− 1

)2]
+ Ex∼pdata(x)

[
(DY (F (x))2)

] (3.1)

where instead of traditional binary cross entropy L2 norm is used as the adversarial
criterion. This leads to a more stable training [Mao et al. 2017].

Color Loss While adversarial loss alone could be enough to learn mapping F , we
observed that when an additional L1 loss [Isola et al. 2017] is computed between the
output of the network and the original stylized image we can encourage the generator to
better preserve identity as well as stabilize and speed up the training:

L1(F ) = EX,Y∼p(X,Y )||Y − F (X)||1 (3.2)

Perceptual Loss Additional improvement can be achieved using perceptual loss that
is calculated on feature maps of the VGG-19 model pre-trained on ImageNet at different
depths:

LV GG(F ) =
∑
d∈D

||V GGd(Y )− V GGd(F (X))||2 (3.3)
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where D is the set of depths of VGG-19 which are considered, in our case D = 0, 3, 5, 10.
Similar approach was used also in [Wang et al. 2018b], however, Wang et al. used L1

norm which we found has notably lower impact on the final visual quality as compared
to our L2 norm (see Figures 3.2a and 3.2c).

(a) (b) (c) (d) (e)

Figure 3.2: Ablation study. A demonstration of visual quality improvement achieved
using modified VGG loss and our improved network architecture: (a) result of our net-
work trained without using VGG loss, (b) result generated using all losses, however,
without our improved network architecture, i.e., using the original architecture of John-
son et al. [2016], (c) our result, (d) result generated using FaceStyle algorithm [Fǐser
et al. 2017], (e) style exemplar. Note how our full-fledged approach better reproduces
the original style exemplar (see the avoidance of artificial repetitive patterns on fore-
head as well as sharper details around eyes) and also slightly improve upon the output
of FaceStyle algorithm (c.f. better preservation of important facial features like ears or
nose). Style exemplar: © Matthew Cherry via http://matthewivancherry.com/home.html and
https://www.instagram.com/matthewivancherry.artist (HAT, oil on canvas, 48” x 48”, 2011).

Objective Using all mentioned losses our final objective function is as follows:

L(F,DY , X, Y ) = λ1LGAN + λ2L1 + λ3LV GG (3.4)

where λ1, λ2, λ3 influence the relative importance of the different loss functions.

3.3.2 Network Architecture

For our generator model we use the initial architecture from [Johnson et al. 2016], three
convolution blocks (two of them with stride = 2) which are followed by several residual
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blocks [He et al. 2016], two upsampling blocks and finally a tanh activation. Compared
with Johnson et al.’s solution, we make the following modifications (see Fig. 3.3) which
we observed had a significant impact on the final perceptual quality: we changed the size
of convolutional filters in the very first layer from 9×9 to 7×7 and in the very last layer
of the original architecture from 9 × 9 to 5 × 5. We increased the number of residual
blocks used from five to nine. Next, we added skip connections using concatenation of
feature maps [Ronneberger et al. 2015] to the upsampling layers, which has been shown
to improve gradient propagation, and we replace convolutions with fractional strides
with nearest neighbor upsampling followed by an additional 3 × 3 convolution. Lastly,
we attached two more convolutional layers before the output, which we observed have
positive effect when the skip connections are added. All these modifications helped
to preserve important high-frequency details in the generated image (see visual quality
improvement over the initial generator’s structure in Figures 3.2b and 3.2c).

Input

Convolution

Residual
blocks

Upsample
Johnson et al. our generator

Figure 3.3: The original generator network architecture of Johnson et al. [2016] (left) followed
by our improved architecture (right). Modifications are denoted with black color: added skip
connections, increased the number of residual blocks, two upsampling layers are followed by
additional transposed convolution layer.

For our discriminator model we use PatchGAN model [Isola et al. 2017] using progres-
sively higher number of feature maps with instance normalization proposed by Ulyanov
et al. [2016a] and leaky ReLUs as activation. This helped us to lower the number of
parameters and achieve a more stable gradient propagation.

3.3.3 Implementation Details

We implemented our approach using C++ and the Python framework PyTorch.

For FaceStyle algorithm we used settings recommended in the original paper [Fǐser
et al. 2017]. For each artistic style we produced a training set of 5124 stylized facial
images in a resolution of 512× 512 which is supported by our network architecture. We
used automatic portrait segmentation [Shen et al. 2016] to assure the training algorithm
focus more on important facial parts of the input image. Since we did not pre-filter the
dataset the resulting set of samples contains both successful as well as failure exemplars
(c.f. two right columns in Figures 3.5, 3.6, and 3.7 to see examples of such failures).

For training of our models we used the Adam solver [Kingma and Ba 2014] with a
batch size of 2. In total, our generator model has 14.7 million parameters, and our
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(a) (b) (c) (d)

Figure 3.4: Exemplars of styles used in Figures 3.6, 3.7, and 3.8. See Figures 7.1, 3.2, and 3.9
for the remaining style exemplars. Style exemplars: (a–b) © Adrian Morgan, (c) Viktor
Ivanovich Govorkov, (d) © Will Murray.

discriminator has total number of parameters of 694 thousand. We set λ1 = 0.3, λ2 = 5,
and λ3 = 0.7, which were chosen experimentally via grid search and manual tuning.
Both generator and discriminator networks were trained from scratch with β1 = 0.9,
β2 = 0.999, and lr = 0.0002. During the training phase we found that we could use as
few as 2000 samples without significant loss of quality. Sufficiency of lower number of
training samples can be explained by limited complexity of the appearance changes in
the stylized output. We train our models in 50 epochs. Some styles proved to be more
challenging to learn, and thus we allowed training in 100 epochs. In general, training for
one epoch took around 83 minutes on a single NVIDIA Tesla P100 GPU, making the
total training time for one style slightly shorter than 3 days.

3.4 Results

We trained our network on seven different style exemplars (see Figures 3.1, 3.2, 3.4
and 3.9) and applied it to 24 portraits not included in the training dataset. In Figures 3.1,
3.2, 3.5, 3.6, 3.7, and 3.9 results of our trained network are compared with the original
FaceStyle algorithm [Fǐser et al. 2017].

In the following sections, we discuss potential of our method to perform real-time high-
quality style transfer, we also mention its ability to generalize and increase robustness
over the original FaceStyle algorithm [Fǐser et al. 2017] and describe a perceptual study
we conducted to evaluate visual quality of our approach with respect to the output
generated by FaceStyle algorithm. Finally, we compare our results with current state-of-
the-art.

3.4.1 Interactive Scenario

Thanks to the compactness of our network (47MB) we can perform feed-forward propaga-
tion in real-time (15 frames per second) on currently available consumer graphics cards
(we use GeForce RTX 2080 Ti). This benefit enables us to implement the first high-
quality style transfer on live video streams (please refer to our supplementary video).
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Figure 3.5: Face stylization results. In each group of three images, from left to right, we show
the input image, our stylization result, and the output from FaceStyle [Fǐser et al. 2017]. The
corresponding style exemplars are visible in Figures 7.1 and 3.2.

We can downsize our network architecture to 256 × 256 resolution (along with reduc-
ing the number of filters in each layer) and also achieve interactive response on mobile
devices without significant loss of visual quality.

3.4.2 Generalization

During the training experiments we found that when we deliberately filter out failure
exemplars from the training dataset the overall visual quality does not increase signifi-
cantly, however, the robustness of the resulting trained network decreases. This behavior
bears resemblance to findings reported by Lehtinen et al. [2018] although in our case the
nature of corruption cannot be modelled by zero-mean noise, we can characterize this
tendency as a convergence to an equilibrium which expresses a “mean” of stylized ap-
pearance. Thanks to this behavior the trained network can in practice repair failures of
the original FaceStyle algorithm. In cases when the FaceStyle algorithm produces correct
result our network can deliver stylization which is comparable or sometimes even more
visually pleasing and better preserving the identity of a stylized person (see Figures 3.1,
3.5, 3.6, 3.7, 3.2, and 3.9).

Another important aspect of the equilibrium mentioned above is that it helps to pre-
serve coherent stylization when the target image does not change considerably. This
tendency is essential for achieving temporal coherency. In contrast to FaceStyle algo-
rithm or other video stylization techniques [Chen et al. 2017a; Ruder et al. 2018] that
would require explicit treatment of consistency between adjacent frames our technique
handles temporal coherency implicitly (see accompanying video demo).
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Figure 3.6: Face stylization results (continued). In each group of three images, from left to
right, we show the input image, our stylization result, and the output from FaceStyle [Fǐser
et al. 2017]. The corresponding style exemplars are visible in Figure 3.4.

3.4.3 Perceptual Study

To confirm the quality of results produced by our approach are comparable to those
produced by the original FaceStyle algorithm [Fǐser et al. 2017] we conducted a perceptual
study. The study had the form of an online questionnaire, where we showed each user
the input face, input style, and the output. We asked the user to rate the output in two
categories: how well does the stylization preserve the identity of the stylized person, and
how well does the stylization reproduce the input style. The ratings were from 1 to 10, 1
being the worst and 10 being the best. The questionnaire featured 6 sets of input images
and their outputs for both of the tested methods, making a total of 12 image sets showed
to users, which were all being rated in the 2 categories. We deliberately selected results
which are comparable with no obvious failures. During the time the questionnaire was
open, we have collected 194 responses.

We started with the null hypothesis that there is no statistically significant difference
between the quality of the outputs of both tested methods, which we tried to reject based
on the collected data using the Student’s t-test. In the question of identity preservation,
we can reject the null hypothesis with a probability of only 49%, which means there is
no statistically significant difference between the scores in this category. Our approach
scored an average of 6.76 points and FaceStyle scored an average of 6.87 points, which
totals to approximately 1% difference on the 1 to 10 scale, supporting the conclusion of
both methods being on par with each other. In regard to the style reproduction category,
using the same procedure we can reject the null hypothesis with a probability of 63%,
which once again does not represent a significant statistical difference. Our approach
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Figure 3.7: Face stylization results (continued). In each group of three images, from left to
right, we show the input image, our stylization result, and the output from FaceStyle [Fǐser
et al. 2017]. The corresponding style exemplars are visible in Figures 3.4 and 3.9.

scored an average of 8.28 points and FaceStyle scored an average of 8.55 points, making
only 3% difference. From these results, we can conclude that the outputs of our approach
are on par with the outputs of FaceStyle with only minor differences in the overall quality.

3.4.4 Comparisons

We compared the visual quality of our approach with current state-of-the-art in image-
to-image translation (see Fig. 3.8). For training, we used the same dataset as for our
method and tweak the parameters to get as close as possible to the appearance of the
original style exemplar. Results produced by pix2pix method [Isola et al. 2017] bear a
resemblance to our output concerning the ability to preserve the target person’s identity.
Nevertheless, the network produces several high-frequency artifacts which affect texture
details of the original style exemplar. A part of the problem is caused by the fact that the
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ours pix2pixHD pix2pix starGANours pix2pixHD pix2pix starGAN

Figure 3.8: Comparisons of our approach with current state-of-the-art in image-to-image tran-
sation: pix2pixHD [Wang et al. 2018b], pix2pix [Isola et al. 2017], and starGAN [Choi et al.
2018]. Note, how our combination of losses and a specific network architecture better preserve
the original style exemplar. The corresponding style exemplars are visible in Figures 3.1, 3.2,
3.4, and 3.9.

style exemplar our approach Fǐser et al. Liao et al. Selim et al. Gatys et al.

Figure 3.9: Comparisons of our approach with current state-of-the-art face stylization meth-
ods. Note how our technique can deliver comparable visual quality to the original FaceStyle
algorithm of Fǐser et al. [2017] while significantly outperforms other concurrent neural-based
techniques (Liao et al. [Liao et al. 2017], Selim et al. [Selim et al. 2016], and Gatys et al. [Gatys
et al. 2016]). Style exemplar: © Graciela Bombalova-Bogra.

pix2pix network supports only lower resolution (256× 256), however, more importantly,
the structure of pix2pix generator tends to introduce various uncanny high-frequency
patterns. This issue becomes even more apparent in the case of pix2pixHD [Wang et al.
2018b] which can support 512× 512 resolution, nevertheless, at high frequencies, it still
contains disturbing repetitive patterns which are not present in the original style exem-
plar. The StarGAN method [Choi et al. 2018] roughly preserves basic facial structure,
but it also introduces disturbing high-frequency patterns on top of various low-frequency
anomalies which give rise to soft color transitions that are not visible in the original style
exemplar.

We also compared our approach with concurrent neural-based techniques that do not
require training (see Figures 7.1 and 3.9). From the comparison it is apparent that
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the generic neural-based technique of Gatys et al. [2016] has difficulty in preserving
semantically meaningful transfer. Selim et al. [2016] provide an improvement over Gatys
et al., nevertheless, they still suffer from a loss of critical visual details. Deep image
analogies [Liao et al. 2017] produce compelling results concerning visual details, but
they often fail to keep the consistency of high-level features which affect the identity of
the target subject.

3.5 Limitations and Future work

We demonstrate that our approach brings comparable or even better visual quality within
significantly lower computational overhead when compared to the current state-of-the-
art. However, there are still some limitations that can encourage future work.

One of the critical challenges is the accuracy and smoothness of head and hair segmen-
tation masks. Although our method often outperforms FaceStyle algorithm concerning
the quality of separation of head and hair segments, in general (especially) the outer
hair boundary has some issues with smoothness and shape details (see Figures 3.5, 3.6,
and 3.7). One can mitigate this inaccuracy by preparing a broader set of training exem-
plars containing a greater variety of input photos under different illumination conditions
with more accurately specified head and face masks.

For some styles our method tends to produce repetition artifacts visible principally
on hair segments depending on the overall spatial extent (see Figures 3.5, 3.6, and 3.7).
Although a similar effect is apparent also on the original output from the FaceStyle
algorithm, our solution tends to exaggerate it. Techniques to reduce visible repetition
on the level of patch-based synthesis as well as during the training phase (e.g., using a
specific penalizing loss) would be a promising avenue for future work.

When inspecting results closely on a pixel level (see Figures 3.5, 3.6, and 3.7) our
approach has still a difficulty in preserving the original sharpness of the texture visible
in the original from the FaceStyle algorithm. Such a visual smoothing effect is caused
by the fact that the network has parametric nature while the output from FaceStyle
represents a non-parametric mosaic of patches that represent exact copies of the original
style exemplar. As a future work, we plan to investigate more the possibility to train
pixel mapping instead of color information which can enable the formation of the final
image using an explicit pixel copy-and-paste operation as in patch-based techniques.

Although our approach delivers stable results when the target does not change con-
siderably and enables rough temporal coherency for video sequences it still suffers from
subtle temporal flicker which can be disturbing in some applications. To gain control
over the temporal dynamics an addition of specific temporal smoothness terms simi-
lar to those used in video-to-video transfer approaches [Wang et al. 2018d] need to be
considered.

3.6 Conclusion

We present a novel approach for example-based stylization of facial images. Our key idea
is to combine a state-of-the-art patch-based synthesis algorithm with a new variant of
conditional generative adversarial network. Such a fusion allows us to reach an equilib-
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rium that retains or even improves the visual quality of results produced by the origi-
nal patch-based approach while increasing its robustness. We compared our combined
technique with current state-of-the-art in example-based image stylization as well as in
learning-based image-to-image translation methods and reported a considerable quality
improvement in both domains. Thanks to the ability to upload our trained generative
network into a consumer graphics card we can present the first real-time by-example
stylization engine that reaches the visual quality of state-of-the-art techniques tailored
to offline processing.
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Chapter 4

Arbitrary Style Transfer Using
Neurally-Guided Patch-Based
Synthesis

4.1 Introduction

In recent years, advances in neural style transfer and guided patch-based synthesis made
the field of computer-assisted stylization very popular. Various publicly available software
solutions (see, e.g., Prisma [Johnson et al. 2016], DeepArt [Gatys et al. 2016], StyLit [Fǐser
et al. 2016], FaceStyle [Fǐser et al. 2017]) successfully brought the style transfer concepts
to consumers. These applications enjoy popularity among casual users due to their
novelty factors. However, they are not addressing the needs of professional users who
demand high-resolution, high-quality output accurately preserving the textural details
of the original artistic exemplar.

Though guided patch-based synthesis approaches [Fǐser et al. 2016; 2017] can meticu-
lously preserve fine-grained details, they require preparation of guidance channels. These
guidance channels are important for establishing meaningful correspondences between the
target image and the source style exemplar. Previous work designed guidance channels
for specific use cases such as faces [Fǐser et al. 2017], but designing meaningful guidance
automatically in general case remains a difficult problem. On the other hand, neural-
based style transfer [Gatys et al. 2016; Gu et al. 2018] does not require explicit guidance
to produce good stylization effects at a global level. Nevertheless, due to its convolu-
tional nature, it usually fails to preserve low-level details such as brush strokes or canvas
structure that are important to retain the fidelity of the underlying artistic media.

Neural techniques are also limited to work at lower resolutions (typically below 1K),
which does not suit the need for FullHD, 4K or higher resolution used in real production
settings. A similar limitation also holds for guided patch-based synthesis where the pro-
cessing time grows significantly with increasing output resolution. Neural style transfer
algorithms also have the problem of exhausting GPU memories where going beyond 4K
resolution becomes impossible under current hardware constraints.

In this paper, we propose a straightforward approach which overcomes the aforemen-
tioned limitations by combining neural style transfer, patch-based synthesis, and dense
correspondence field upscale. We first apply neural style transfer to obtain semantically
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Figure 4.1: An example of stylizing an extremely high-resolution image using our proposed
method: (a) style exemplar of 26400 × 13100 px, (b) content image of the same resolution,
(c) low resolution result of [Gatys et al. 2016] enhanced and enlarged by our method to the
mentioned resolution. To the right, zoom-in patches of different parts of (c) up to zoom of
128× are shown; see all the individual brush strokes and its sharp boundaries. Also, notice how
the structure of the original canvas and little cracks of the painting are preserved.

(b)

(a)

(e)(c) (d)

Figure 4.2: An example of enhancing the result of neural-based approach using our method:
(a) target photograph, (b) style exemplar of the same size, (c) 6× zoom-in to the style exemplar,
(d) the output of neural-based method DeepArt [Gatys et al. 2016] is capable to perform convinc-
ing stylization; nevertheless, the image contains artifacts caused by the parametric nature of the
used neural network. High-frequency details like the structure of strokes and canvas are largely
lost, sacrificing the visual quality of the original artistic medium. In contrast, our method (e)
brings significant quality improvement, it restores the individual brush strokes and boundaries
between them faithfully, the result better reproduces the used artistic medium as well as canvas’
structure. Note how the cracks of the original artwork are preserved; although zoom-in patches
are shown, we encourage the reader to zoom-in even further.



4.1. INTRODUCTION 39

Patch-Based Neural-Based Ours

Patch-Based Patch-Based

Neural-Based

Content Style StyleContent

Target Target SourceSource

Style

Figure 4.3: Simplified scheme of a patch-based, neural-based, and our hybrid style transfer
method: The left column shows a patch-based approach [Fǐser et al. 2016] with guidance based
on blurred grayscale images as proposed in the original Image Analogies method [Hertzmann
et al. 2001]. The resulting image has high texture quality and preserves artistic attributes
and canvas structure well; however, the result does not properly respect the content semantics,
causing water to become brown. The middle column shows a neural-based approach [Gatys
et al. 2016], no guidance channels are needed and global style properties and image semantic
are preserved well. However, the resulting image lacks high-frequency details of the original style
exemplar, contains artifacts, and colors that are not present in the original style. The right
column represents our method where low-resolution neural transfer result is used as a guidance
channel for patch-based style transfer. Our result attenuates the neural artifacts and restores
the original color and texture of the style exemplar.

meaningful stylization at a global level without the need of user intervention, and then
use patch-based synthesis to remove low-level artifacts and restore the color and fine
details to retain the fidelity of the original style, see Fig. 4.2. To significantly reduce
computational overhead instead of running patch-based synthesis on the full resolution,
we only upscale the dense correspondence field computed at a lower resolution level.
We demonstrate that such a simple upscaling step can be performed quickly while still
providing comparable visual quality as the full-fledged synthesis. This enables us to
achieve high-quality stylization of extremely large images (see Fig. 4.1 where an image
of 346Mpix is stylized). Our approach is generalized and can utilize any existing neural
stylization method. We demonstrate this generality on a variant of our style transfer
algorithm that directly uses the response of a neural network as a guide for patch-based
synthesis. We developed a prototype of our method in the form of a Photoshop plug-in
and put it into the hands of professional artists.
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4.2 Related Work
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Figure 4.4: Proposed pipeline: (a) style exemplar and (b) content image are both subsampled
α–times and processed by a neural-based style transfer method (Sec. 4.3.1) which results in
low resolution image (c) where fine details are missing and artifacts are apparent (see green
and purple checkerboard artifacts). Next, low resolution result (c) from the previous step, style
image (a) in the same resolution as (c), and β–times subsampled style image (a) are used as an
input to a patch-based synthesis algorithm (Sec. 4.3.2) which outputs dense nearest neighbor field
(NNF) (f) from which the corresponding image (d) can be produced using voting step [Wexler
et al. 2007]. Finally, in NNF upscaling step (Sec. 4.3.3) the low-resolution NNF (f) is upscaled
β–times to the original resolution (g). Patch coordinates in NNF (f) and (g) are encoded as
red and green color levels. Note subtle color gradients in (f), which indicate the presence of fine
patch coordinates in upscaled NNF that points to the patches in the original high-resolution style
exemplar (a). Given the upscaled NNF (g) and the style exemplar in its original resolution (a),
high-resolution, and a perfectly sharp final result is created using voting step (e).

Figure 4.5: An overview of our VGG-guided style transfer pipeline: we start with a target
image and a style exemplar, extract their VGG-19 features, normalize them, reduce their di-
mensionality using PCA, and use these as guidance for subsequent patch-based synthesis. Even
though the proposed pipeline is straightforward, it yields convincing output.
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One of the key tasks of non-photorealistic rendering [Kyprianidis et al. 2013] is to
deliver stylized depictions of photos or synthetic scenes which preserve high-level infor-
mation captured in the scene while on a detail level the resulting image resembles the
artistic look.

Stroke-based approaches were one of the first techniques that enabled generation of
stylized imagery. Rotated and translated brush strokes from a predefined set are placed
according to some guiding information (e.g., the direction of image gradients). This
technique is applicable both in 2D [Hertzmann 1998] and 3D [Schmid et al. 2011] en-
vironment producing quite compelling results. Nevertheless, the main drawback here is
the restriction to a predefined set of strokes, which limit the variety and fidelity of the
stylized output. Such a limitation can partly be alleviated by introducing example-based
brushes [Lu et al. 2013; Zheng et al. 2017]; nevertheless, the final look is still limited to
a subset of styles that can be simulated by a composition of brush strokes.

To address this issue a more robust and general example-based approach called Image
Analogies was pioneered by Hertzmann et al. [2001]. Given an arbitrary style exem-
plar and a set of guidance channels, the stylized image can be produced using guided
patch-based synthesis [Wexler et al. 2007; Kaspar et al. 2015; Fǐser et al. 2016]. This
approach has been successfully applied to various stylization scenarios including fluid
animations [Jamrǐska et al. 2015], 3D renders [Fǐser et al. 2016; Sýkora et al. 2019], facial
animations [Fǐser et al. 2017] or video clips [Jamrǐska et al. 2019]. Nevertheless, a com-
mon drawback of this method is that it requires the preparation of custom-tailored guid-
ance to deliver compelling stylization quality. Furthermore, an extensive computational
overhead at higher resolutions makes those techniques difficult to use in production.

Neural-based style transfer approaches recently became popular due to advances made
by Gatys et al. [2016], they successfully applied the pre-trained convolutional neural net-
work VGG [Simonyan and Zisserman 2014] to the problem of style transfer. The core
idea of their method is to match statistics in the domain of VGG [Simonyan and Zis-
serman 2014] features of both the content and style images. They further extended this
idea in [Gatys et al. 2017] to introduce control over spatial location, color information,
and scale of features. While these techniques produce impressive results for some par-
ticular style exemplars, they usually suffer from loss of high-frequency details of the
style exemplar which is inevitably caused by the convolutional nature of the underly-
ing neural network. Moreover, mentioned neural techniques usually have considerable
computational overhead and memory footprint.

Although a feed-forward network can be pre-trained to speed up the stylization [John-
son et al. 2016; Ulyanov et al. 2016a; Dumoulin et al. 2016; Chen et al. 2017a], every new
style requires additional costly training. Recently, adoption of encoder–decoder scheme
was proposed [Li et al. 2017; Huang and Belongie 2017; Lu et al. 2017] to enable arbitrary
style transfer in a feed-forward fashion. Here the encoder, usually convolution layers of
the VGG, is used to get the feature representations (statistics) of the content and style,
which are then combined, and a pre-trained decoder is used to turn the latent features
back into the image. Nevertheless, all these techniques still suffer from convolutional
artifacts leading to a lower quality of the synthesized imagery at a pixel level.

Recently, attempts to combine patch-based and neural-based techniques were pro-
posed. Li et al. [2016b] search local neural patches from the style image concerning
the structure of a content image, which leads to better reproduction of local textures.
Liao et al. [2017] later extended this idea in their Deep Image Analogy framework which



42 CHAPTER 4. NEURALLY-GUIDED PATCH-BASED SYNTHESIS

adapts the concept of Image Analogies [Hertzmann et al. 2001] in the domain of VGG
features. Gu et al. [2018] recently proposed to perform reshuffle in spirit of [Kaspar et al.
2015] to reduce the overuse of particular features. Futschik et al. [2019] use patch-based
method [Fǐser et al. 2017] to generate a larger dataset of stylized portraits which is then
used to train a generative adversarial network capable of reproducing similar quality re-
sults as those in the underlying dataset. Although these techniques can notably improve
the stylization quality and better preserve high-frequency details, they still heavily rely
on the space of VGG features and do not explicitly enforce textural coherence on a pixel
level in color domain [Wexler et al. 2007] which is essential to retain the fidelity of the
original style exemplar.

4.3 Our Approach

We propose an approach to combine patch-based synthesis with neural style transfer
methods. The proposed pipeline overcomes three crucial obstacles which prevent ex-
isting stylization approaches from being used in real production: first, lower texture
quality of neural-based techniques; second, the necessity of specific guidance for patch-
based methods; and third, the resolution limitation which affects the usability of both
approaches. Our framework allows easy switching to the newest future inventions in
either neural-based or patch-based techniques.

As our first step, given the exemplar Style and the target image Content, we use an
arbitrary neural-based style transfer method to synthesize an initial result (see Fig. 4.3
middle column). The resulting image on its own lacks high-frequency details of the style
exemplar, and contains artifacts such as geometric distortions and colors that are not
present in the original style. Also, the original contrast is usually artificially exaggerated,
and edges are not sharp. However, on the other hand, it nicely preserves global style
properties such as color distribution and respects the image semantics in general.

Our key idea is to use the low-resolution neural style transfer result as a guiding channel
for patch-based synthesis. This enables us to combine the advantages of both techniques
and to address the aforementioned limitations (see Fig. 4.3 right column). In particular, a
pair of guidance channels Source and Target is needed for guided patch-based synthesis.
We use blurred style exemplar as the Source guide and the low-resolution neural style
transfer result as the Target guide. After running the guided patch-based synthesis,
our result (Fig. 4.3 right column, bottom) effectively attenuates the neural artifacts and
restores the color and texture of the original style exemplar.

Fig. 4.4 illustrates our entire pipeline which consists of three main parts: neural-based
style transfer method, guided patch-based synthesis, and nearest neighbor field (NNF)
upscaling method. Those individual steps are described in more detail in the following
sections.

4.3.1 Neural-Based Style Transfer

Both Style (Fig. 4.4a) and Content (Fig. 4.4b) images are first subsampled by a coef-
ficient α. This step is necessary not only to overcome the resolution restrictions but,
more importantly, to suppress various high-frequency artifacts caused by neural-based
techniques (α essentially defines the working resolution of a neural-based method). The
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α–times subsampled neural-based result (Fig. 4.4c) is then used as a guide for the patch-
based synthesis method. Its resolution will be improved later in our pipeline.

4.3.2 Guided Patch-Based Synthesis

The output from the neural method (Fig. 4.4c) is used as a Target guide image in the
patch-based method. Our pipeline does not assume any particular patch-based method;
we used StyLit [Fǐser et al. 2016] algorithm for synthesis, however, we adapt its original
error metric for measuring patch similarity to our needs. Let S be a style exemplar, O
an output image, and GS and GT source and target guides, for matching two patches
p ∈ GS and q ∈ GT ; we use the following error metric:

E(S,O, GS , GT , p, q) =

||S(p)−O(q)||2 + λg||GS(p)−GT (q)||2 (4.1)

where λg is a weighting factor for guiding channel and the first term helps to preserve
texture coherence by directly matching colors in patches of Style to those in the output
image O. Of all the images, only O is iteratively updated during the optimization process
described in StyLit [Fǐser et al. 2016].

To obtain Source guide image, we use the already subsampled style image used in the
previous step (Sec. 4.3.1), and upsample it back to its original resolution. To encourage
the patch-based synthesis to find good correspondences for the style transfer, equivalent
subsampling followed by upsampling needs to be done for both the Source and Target
images. In spirit of Color Me Noisy [Fǐser et al. 2014], an additional low-pass filter can
be applied on the Source image to let the synthesis algorithm deviate more from the
initial solution, thus making the final result more abstract.

In Fig. 4.4d the result of patch-based synthesis is depicted in color for clarity, neverthe-
less, internally in our processing pipeline we use only the resulting nearest neighbor field
(Fig. 4.4f) which is subsequently upsampled (Fig. 4.4g) and turned into a high-resolution
image in the next step.

4.3.3 NNF Upscaling

Given the computed NNF–nearest neighbor field (Fig. 4.4f) and the style exemplar in
its original resolution (Fig. 4.4a), a voting step (c.f. [Wexler et al. 2007]) needs to be
performed in order to reconstruct the final image. To reduce the computational overhead,
we perform the patch-based synthesis (Sec. 4.3.2) at β–times lower resolution than the
original target resolution (thus β essentially defines the working resolution of a patch-
based method). Next, the resulting nnf (Fig. 4.4f) is upscaled by a factor of β to obtain
the NNF (Fig. 4.4g) of the same resolution as the target image as follows:

NNF(x, y) = nnf(x/β, y/β) · β + (x mod β, y mod β) (4.2)

Finally, we perform a voting step using NNF to produce the final high-resolution result
precisely preserving the characteristics of the canvas and the original artistic medium
(Fig. 4.4e).



44 CHAPTER 4. NEURALLY-GUIDED PATCH-BASED SYNTHESIS

4.4 VGG-Based Guidance

(a) (c) (e)

(b) (d) (g)(f)

Figure 4.6: Demonstration of the problem when patch-based synthesis has to rely on ambiguous
color guidance: (a) style exemplar, (b) target image, (c) output of Gu et al. [2018], (d) output
of our basic algorithm with color-based guidance, (e) output of our style transfer algorithm with
neural guidance. Note how our VGG-guided algorithm better preserves the semantics of the
target photo, cf. details in (f) and (g).

One of the limitations of the proposed base algorithm introduced in the previous
section is that it relies on color information to establish correspondences between style
exemplar and the target image. This drawback could lead to an ambiguity that may
introduce visible stylization artifacts (see Fig. 4.6).

In this section, we introduce a variant of our style transfer pipeline that uses features
extracted by the convolutional layers of a classification network for guidance directly
rather than relying on a neural style transfer algorithm to produce initial color domain
stylization. The aforementioned neural responses provide more discriminative guidance
than colors and thus can preserve global semantics of the target while still keeping the
benefits of patch-based optimization.

Our approach is inspired by modern optimization-based neural style transfer tech-
niques of Liao et al. [2017] and Gu et al. [2018] that rely on computationally demanding
global descent through a complicated loss function using an optimizer like L-BFGS. Al-
though this approach is conceptually similar to the patch-based optimization framework,
in our case expensive global descent is approximated by a highly efficient approximate
nearest-neighbor matching.

The algorithm first extracts neural features for both the source and target image in
multiple scales (see Fig. 4.5). Specifically, we run the input images through the neural
network on four resolutions: 1344× 1344, 896× 896, 448× 448 and 224× 224. This set
was chosen to capture a broader range of neural features.

For this purpose, we use VGG-19 network architecture trained on the ImageNet
dataset [Simonyan and Zisserman 2014]. After running a feed-forward pass on the input
image, features are extracted from 6 different layers of the network. The layers used are
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(a) (c) (e) (g) (i)

(b) (d) (f) (h) (j)

Figure 4.7: An example result from our VGG-guided style transfer algorithm: (a) target image,
(b) style exemplar, corresponding compressed VGG-responses of low- (c, d) and high-level (e, f)
features used as a guide for patch-based synthesis, (g) output of Liao et al. [2017], (h) output of
our style transfer framework with neural guidance, note how our method can deliver comparable
visual quality, cf. details in (i) and (j).

conv2 2, conv3 1, conv3 4, conv4 1, conv4 4, and conv5 1. Features are extracted after
applying the ReLU activation.

These neural features capture localized semantic similarities found in both images and
can be used to guide the patch-based synthesis. However, the high dimensionality of
these per-pixel features might significantly compromise both the performance and the
quality of the patch-matching step. To avoid this, we reduce the feature dimension
using PCA [Turk and Pentland 1991]. In particular, we treat each feature vector as
an independent point and process feature maps in groups of the same resolution. The
number of principal components we extract varies by feature map resolution. We use
top 3 components at 1344 × 1344, top 6 components at 896 × 896, and finally top 12
components for the two remaining resolutions. We normalize the resulting values to
[0, 255] interval and resample them to the required resolution using bicubic upsampling.
This can either be lower resolution, typically used in neural techniques, or full resolution
of the target image. Lastly, we run the patch-based synthesis algorithm of Fǐser et
al. [2016] to produce the final stylized image. The output is visually comparable to the
state-of-the-art [Liao et al. 2017; Gu et al. 2018] (see Fig. 4.7).
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4.5 Results

We implemented our method both for CPU and GPU, using C++ and CUDA, respec-
tively.

Gatys et al. DeepDreamInput

(b)

(c)

(a)

Figure 4.8: Portrait on a wall: (a) target content of resolution 4000 × 3000 px, (b) style
exemplar of a painting on a wall having the same resolution, (c) 10x zoom-in to the (b) to
show fine artistic attributes and structure of the canvas–wall/plaster. Our method is entirely
independent of the used artistic medium as well of a canvas the style exemplar is presented on.
The results are presented in the same fashion as in Fig. 4.9.

The parameter α is set to make the input images to the neural-based method ap-
proximately 400–500 pixels wide. In the case when the input images are already of
low-resolution, we set α to be at least 2—to ensure the patch-based synthesis will have
enough freedom to fix some of the artifacts caused by the neural-based approach. The
α—sub-sampling allows us to get the result from a neural-based approach much faster
or use a method that does not support high-resolution input. Moreover, it allows us
to significantly suppress some of the artifacts of neural approaches. The parameter β
allows us to stylize images of size 346Mpix or even larger, and to get the final result much
faster (see an extreme-resolution result in Fig. 4.1 and our supplementary material). We
observed that if the parameter β is in range 1–4, the perceived loss in the quality is
almost negligible. If the parameter β is in range 6–10, when zooming closely, one can
observe some repetition artifacts, however, the image is sharp and the overall quality is
still satisfactory.

We measured run-time and memory performance. For detailed run-time measurement
on mid-range laptop see graph in Fig. 4.10. On a desktop PC, the computational overhead
is even lower, e.g., on NVIDIA Quadro M2000, stylizing the image of size 160Mpix takes
between 3–30 seconds depending on the selection of the parameter β. Increasing the
parameter β causes a linear increase in the computational time, while the number of
pixels grows exponentially. Our method requires a few hundred MBs of RAM/GPU
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Gatys et al. DeepDream Gu et al. Liao et al. Li et al.Input

Figure 4.9: Our method enhancing the results of five different neural-based approaches: The
leftmost column–content images and style exemplars (with zoomed patches). Next, left-to-right,
are the result of DeepArt [Gatys et al. 2016], DeepDream, Gu et al. [2018], Liao et al. [2017],
and Li et al. [2017]. The top-left triangle shows the result of the underlying neural-based ap-
proach (bicubically up-sampled from a typical size of 600×400 px to the target resolution), while
the bottom-right shows result enhanced by our method (top row–entire stylized images, bottom
row–zoom-in). Our results not only have significantly higher resolution but also better preserve
the original colors and canvas structure as well as brush strokes visible in the exemplar painting.
Various artifacts caused by the neural approach are significantly suppressed. All images shown
in this figure are of resolution ranging from 4000× 2200 to 6000× 4000 px.
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Figure 4.10: Performance of our method (full pipeline–Fig. 4.4, excluding the neural part)
on images ranging from resolution of 1Mpx, (i.e. 1000× 1000 px) to extremely large resolution
of 256Mpix (i.e., 16000 × 16000 px). Orange, yellow, and green lines show a case where the
parameter β was set such that the patch-based method was run on a resolution of 1Mpix, 4Mpix,
and 8Mpix respectively. The measurement was done on a mid-range laptop with NVIDIA GTX
1050 graphics card.

memory. The exact amount depends on the resolution of the input images and the value
of the parameter β.

The performance of the neural-based step depends on a particular method. However,
because the input is of very low resolution, 400–500 px wide, the run-time typically
ranges between hundreds of milliseconds and several seconds. Most neural-based ap-
proaches cannot stylize images larger than 4K-by-4K due to GPU memory constraints.
Although there is a possibility to decompose the synthesis into a set of tiles that are
processed separately and stitched together, the resulting image would still suffer from
the convolutional nature of used neural network introducing disturbing high-frequency
artifacts and colors not present in the original style exemplar.

We plugged several different state-of-the-art neural-based style transfer techniques into
our framework (see Fig. 4.9 and 4.8). In all cases, applying patch-based synthesis with
neural transfer output as guidance produces better results than using the neural-based
approach alone. The most noticeable differences are visible in (1) the original colors
(e.g., saturated pixels that do not appear in the original style exemplar are removed),
(2) suppression of checkerboard artifacts caused by deconvolution [Odena et al. 2016], and
(3) results are sharper containing important high-frequency details of the original brush
strokes and underlying canvas structure. Fig. 4.1 demonstrates stylization of a 346Mpix
image. Despite the huge resolution, the result is still perfectly sharp and preserves well
characteristics of the original artistic media.
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Figure 4.11: Results produced by our VGG-guided style transfer algorithm (from left to right):
style exemplar, target image, and our result. Our method works well namely in cases when style
and target images depict similar content, i.e., when they have compatible VGG activations.

To demonstrate the benefit of using the output of the neural approach to guide the
patch-based synthesis, we compared our method to the guidance based only on blurred
grayscale images (Fig. 4.3 left column) as proposed in the original Image Analogies
method [Hertzmann et al. 2001], the result does not properly respect the content seman-
tics, causing trees to become pink.
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In Fig. 4.11 and 4.13, we present additional results of our VGG-guided style transfer
algorithm. These demonstrate the proposed method can produce convincing stylization
without the need to use existing neural techniques as a preprocess.

Finally, in Fig. 4.12, we demonstrate a UI prototype of our method running in Photo-
shop.

(a)

(b)

Figure 4.12: A screenshot of our method running in Adobe Photoshop: (a) zoom of a target
layer, (b) zoom of a style layer; the visible layer is the result of DeepDream enhanced by our
method.

4.6 Limitations and Future Work

Although in most cases, our approach is capable of delivering significantly better and
visually more pleasing results than the underlying neural technique itself, it still relies
on the neural result as the initial solution. Due to this reason, we cannot fix large-scale
artifacts produced by the neural-based method (see Fig. 4.15). In the current pipeline,
only high-frequency artifacts can be suppressed. When zooming in, the improvement in
the texture quality is immediately visible, nevertheless, looking from a distance, high-
resolution image obtained by our method may appear almost identical as the result of
the underlying neural approach.
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Figure 4.13: Additional results produced by our VGG-guided style transfer algorithm (from
left to right): style exemplar, target image, and our result.
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(a) (e)

(c)

(d)

(b) (f)

Figure 4.14: A limitation common to neural-based approaches: (a-b) content image, (c-d) style
exemplar, (e-f) result of [Li et al. 2017] enhanced by our method. The content of the original
image is not preserved well. In the first case, the similar mixture of colors is used to paint
bushes, house, and also the sky. In the second case, all colors appearing in the style exemplar
are used to stylize the target regardless of its content. However, high-frequency content is
reproduced well. To address this limitation, we propose to incorporate a neural network trained
for image segmentation into our pipeline.

(a)

(b) (c) (d)

Figure 4.15: Large-scale artifact limitation: (a) content image, (b) style exemplar, (c) result
of Gatys et al., distortions in eye region are visible, (d) ours, colors and high-frequency details
are reproduced well; however, in our current pipeline, large-scale artifacts produced by the un-
derlying neural approach are not fixed. Thus distortion in the eye region is still apparent.
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As future work, we would like to tackle the issue commonly seen in neural techniques,
i.e., many different colors are mixed together within a single coherent region or when the
same mixture of colors is used to stylize semantically different regions (see an example
in Fig. 4.14). To address this problem, we see two promising solutions. First, extending
our pipeline in a way that patch-based synthesis is guided by a neural network trained
for segmentation on both natural and artistic images to encourage more semantically
correct matching of patches. Second, incorporate mask-based loss function as described
in [Reimann et al. 2019]. Although, this might not be feasible for all neural-network
approaches we use or in a case when it is desired to treat an underlying neural-network
as a black box.

Our technique helps to restore high-frequency details and essential attributes of used
artistic media; however, in some cases, this process might destroy some of the important
content details. We see a promising solution in the work of Calvo [Calvo et al. 2019],
where they introduce a technique to intensify or reduce the stylization strength locally.

Another interesting follow-up of our work could be an extension to videos. This might
seems straightforward, but even if the video delivered by the underlying neural-based
style transfer method is stable in time, randomness in the patch-based step of our pipeline
will most likely introduce disturbing temporal inconsistency. To solve this, one could use
techniques described in [Jamrǐska et al. 2019] or [Fǐser et al. 2017].

Another area for future work worth exploring would be adding interactions to control
the result. Also, some of the neural-based approaches support multiple style exemplars;
we suggest to explore possibilities of using multiple styles in our enhancing scenario.

4.7 Conclusion

We have presented a new approach that combines neural and patch-based style transfer
techniques, and proposed a way to utilize the generality of the former, while achieving the
texture quality of the latter. We introduced a computationally inexpensive algorithm for
upscaling the synthesis output to obtain its high-resolution version and a new approach to
neural-based style transfer that can use responses of the neural network directly as a guide
for patch-based synthesis. Thanks to those advances, we can produce style transfer results
with notably larger resolutions than previous neural-based techniques and significantly
reduce the computational overhead while retaining comparable visual quality. We believe
our method could enable broader applicability of style transfer methods in commercial
practice. To that end, we integrated our approach into Adobe Photoshop in the form of
a plug-in.
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Chapter 5

Interactive Video Stylization Using
Few-Shot Patch-Based Training

5.1 Introduction

Example-based stylization of videos became recently popular thanks to significant ad-
vances made in neural techniques [Ruder et al. 2018; Sanakoyeu et al. 2018; Kotovenko
et al. 2019]. Those extend the seminal approach of Gatys et al. [2016] into the video
domain and improve the quality by adding specific style-aware content losses. Although
these techniques can deliver impressive stylization results on various exemplars, they
still suffer from the key limitation of being difficult to control. This is due to the fact
that they only measure statistical correlations and thus do not guarantee that specific
parts of the video will be stylized according to the artist’s intention, which is an essential
requirement for use in a real production pipeline.

This important aspect is addressed by a concurrent approach—the keyframe-based
video stylization [Bénard et al. 2013; Jamrǐska et al. 2019]. Those techniques employ
guided patch-based synthesis [Hertzmann et al. 2001; Fǐser et al. 2016] to perform a
semantically meaningful transfer from a set of stylized keyframes to the rest of the target
video sequence. The great advantage of a guided scenario is that the user has a full control
over the final appearance, as she can always refine the result by providing additional
keyframes. Despite the clear benefits of this approach, there are still some challenges
that need to be resolved to make the method suitable for a production environment.

One of the key limitations of keyframe-based stylization techniques is that they operate
in a sequential fashion, i.e., their outputs are not seekable. When the user seeks to any
given frame, all the preceding frames have to be processed first, before the desired result
can be displayed. This sequential processing does not fit the mechanism of how frames
are handled in professional video production tools, where random access and parallel
processing are inevitable.

Another important aspect that needs to be addressed is merging, or blending, the
stylized content from two or more (possibly inconsistent) keyframes to form the final
sequence. Although various solutions exist to this problem (e.g., [Shechtman et al. 2010;
Jamrǐska et al. 2019]), the resulting sequences usually suffer from visible clutter or ghost-
ing artifacts. To prevent the issues with merging, the user has to resort to a tedious
incremental workflow, where she starts by processing the whole sequence using only a
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keyframe style other frame after 16s after 16s after 8s after 2s

(a) (b) (c) (d) (e) (f) (g)

Figure 5.1: An example of a sequence stylized using our approach. One frame from the
original sequence is selected as a keyframe (a) and an artist stylizes it with acrylic paint (b).
We use this single style exemplar as the only data to train a network. After 16 seconds of
training, the network can stylize the entire sequence in real-time (c-d) while maintaining the
state-of-the-art visual quality and temporal coherence. See the zoom-in views (e-g); even after
2 seconds of training, important structures already start to show up. Video frames (a, c) and
style exemplar (b) courtesy of © Zuzana Studená.

single keyframe first. Next, she prepares a corrective keyframe by painting over the re-
sult of the previous synthesis run. This requires re-running the synthesis after each new
correction, which leads to additional computational load and slows the overall process
down.

To summarize, it would be highly beneficial to develop a guided style transfer algo-
rithm that would act as a fast image filter. Such a filter would perform a semantically
meaningful transfer on individual frames without the need to access past results, while
still maintaining temporal coherence. In addition, it should also react adaptively to in-
coming user edits and seamlessly integrate them on the fly without having to perform
an explicit merging.

Such a setting resembles the functionality of appearance translation networks [Isola
et al. 2017; Wang et al. 2018a], which can give the desired look to a variety of images
and videos. In these approaches, generalization is achieved by a large training dataset
of aligned appearance exemplars. In our scenario, however, we only have one or a few
stylized examples aligned with the input video frames, and we propagate the style to other
frames with similar content. Although this may seem like a simpler task, we demonstrate
that when existing appearance translation frameworks are applied to it naively, they lead
to disturbing visual artifacts. Those are caused by their tendency to overfit the model
when only a small set of appearance exemplars is available.

Our scenario is also similar to few-shot learning techniques [Liu et al. 2019; Wang et al.
2019b] where an initial model is trained first on a large generic dataset, and then in the
inference time, additional appearance exemplars are provided to modify the target look.
Although those methods deliver convincing results for a great variety of styles, they are
limited only to specific target domains for which large generic training datasets exist
(e.g., human bodies, faces, or street-view videos). Few-shot appearance translation to
generic videos remains an open problem.

In this paper, we present a new appearance translation framework for arbitrary video
sequences that can deliver semantically meaningful style transfer with temporal coherence
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without the need to perform any lengthy domain-specific pre-training. We introduce a
patch-based training mechanism that significantly improves the ability of the image-to-
image translation network to generalize in a setting where larger dataset of exemplars is
not available. Using our approach, even after a couple of seconds of training, the network
can stylize the entire sequence in parallel or a live video stream in real-time.

Our method unlocks a productive workflow, where the artist provides a stylized
keyframe, and after a couple of seconds of training, she can watch the entire video
stylized. Such rapid feedback allows the user to quickly provide localized changes and
instantly see the impact on the stylized video. The artist can even participate in an
interactive session and watch how the progress of her painting affects the target video in
real-time. By replacing the target video with a live camera feed, our method enables an
unprecedented scenario where the artist can stylize an actual live scene. When we point
the camera at the artist’s face, for instance, she can simultaneously paint the keyframe
and watch a stylized video-portrait of herself. Those scenarios would be impossible to
achieve with previous keyframe-based video stylization methods, and our framework thus
opens the potential for new unconventional applications.

5.2 Related Work

A straightforward approach to propagate the stylized content from a painted keyframe to
the rest of the sequence could be to estimate dense correspondences between the painted
keyframe and all other video frames [Wang et al. 2019c; Li et al. 2019] or compute an
optical flow [Chen et al. 2013] between consecutive frames, and use it to propagate the
stylized content from the keyframe. However, as shown in Jamrǐska et al. [2019] this
simple approach may lead to noticeable distortion artifacts as the textural coherence is
not maintained. Moreover, even when the distortion is small the texture advection effect
leads to an unwanted perception that the stylized content is painted on the surface.

A more sophisticated approach to keyframe-based video stylization was pioneered by
Bénard et al. [2013] who use guided patch-based synthesis [Hertzmann et al. 2001] to
maintain textural coherence. In their approach a 3D renderer is used to produce a set of
auxiliary channels, which guides the synthesis. This approach was recently extended to
arbitrary videos by Jamrǐska et al. [2019]. In their framework, guiding channels are recon-
structed automatically from the input video. Jamrǐska et al. also offer a post-processing
step that merges the content stylized from multiple possibly inconsistent keyframes. Al-
though patch-based techniques prove to deliver convincing results, their crucial drawback
is that they can stylize the video only sequentially and require an explicit merging step to
be performed when multiple keyframes are provided. Those limitations hinder random
access, parallel processing, or real-time response, which we would like to preserve in our
video stylization framework.

When considering fast video stylization, appearance translation networks [Isola et al.
2017] could provide a more appropriate solution. Once trained, they can perform seman-
tically meaningful appearance transfer in real-time as recently demonstrated on human
portraits [Futschik et al. 2019]. Nevertheless, a critical drawback here is that to learn
such a translation network a large training dataset is required. That can be hardly ac-
cessible in a generic video stylization scenario, where only a few hand-drawn exemplars
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exist, let alone in the context of video-to-video translation [Wang et al. 2018a; Chan
et al. 2019] which is completely intractable.

Recently, few-shot learning techniques were introduced [Wang et al. 2019a;b] to per-
form appearance translation without the need to have a large dataset of specific style
translation pairs. However, to do that a domain-specific dataset is required (e.g., facial
videos, human bodies in motion, etc.) to pre-train the network. Such a requirement
impedes the usage of previous few-shot methods in a general context where the target
domain is not known beforehand.

In our method, we relax the requirement of domain-specific pre-training and show how
to train the appearance translation network solely on exemplars provided by the user.
Our approach bears resemblance to previous neural texture synthesis techniques [Li and
Wand 2016a; Ulyanov et al. 2016a], which train a network with limited receptive field
on a single exemplar image and then use it to infer larger textures that retain essential
low-level characteristics of the exemplary image. A key idea here is to leverage the fully
convolutional nature of the neural net. Even if the network is trained on smaller patches
it can be used to synthesize larger images.

Recently, the idea of patch-based training was further explored to accelerate train-
ing [Shocher et al. 2018] or to maintain high-level context [Zhou et al. 2018; Shocher
et al. 2019; Shaham et al. 2019]; however, all those techniques deal only with a singe
image scenario and are not directly applicable in our context. Also, they do not use a de-
liberately smaller batch of randomly cropped patches as a means of overfitting avoidance
which is one of our key contributions.

Handling temporal consistency is a central task of video stylization methods. When
individual frames are stylized independently, the resulting stylized animation usually
contains intense temporal flickering. Although this effect is natural for traditional hand-
colored animations [Fǐser et al. 2014] it may become uncomfortable for the observer
when watched for a longer period of time. Due to this reason, previous video styliza-
tion methods, either patch-based [Bénard et al. 2013; Fǐser et al. 2017; Jamrǐska et al.
2019; Frigo et al. 2019] or neural-based [Chen et al. 2017a; Sanakoyeu et al. 2018; Ruder
et al. 2018], try to ensure temporal stability explicitly, e.g., by measuring the consistency
between previous and a newly generated video frame. Alternatively, blind temporal co-
herency [Lai et al. 2018] could be used in the post-processing step. Yet, these approaches
introduce data-dependency to the processing pipeline, which we would like to avoid in
order to enable random access and parallel processing.

Our approach bears also a resemblance to a just-in-time training recently proposed by
Mullapudi et al. [2019]. In their approach, labelling is provided for a subset of frames by
a more accurate predictor and then propagated to the rest of the sequence using a quickly
trained lightweight network. To deliver sufficient quality, a relatively large number of
keyframes is necessary. Also, full-frame training is employed which we demonstrate could
suffer from strong overfitting artifacts and thus is not applicable in our scenario where a
detailed texture needs to be propagated.

5.3 Our Approach

The input to our method is a video sequence I, which consists of N frames. Optionally,
every frame Ii can be accompanied by a mask Mi to delineate the region of interest;
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otherwise, the entire video frame is stylized. Additionally, the user also specifies a set
of keyframes Ik ⊂ I, and for each of them, the user provides stylized keyframes Sk, in
which the original video content is stylized. The user can stylize the entire keyframe or
only a selected subset of pixels. In the latter case, additional keyframe masks Mk are
provided to determine the location of stylized regions (see Fig. 5.2 for details).

Ik1 Ik70I25 I51

Mk
70Mk

1

O1 O70O25 O51

Sk
1 Sk

70

Figure 5.2: The setting of video stylization with keyframes. The first row shows an input video
sequence I. There are two keyframes painted by the user, one keyframe is painted fully (Sk

1 )
and the other is painted only partially (Sk

70). Mask Mk
1 denotes that the entire keyframe is used;

mask Mk
70 specifies only the head region. Our task is to stylize all frames of the input sequence

I while preserving the artistic style of the keyframes. The sequence O in the bottom row shows
the result of our method. Video frames (I) and style exemplars (S) courtesy of © Zuzana
Studená.

Our task is to stylize I in a way that the style from Sk is transferred to the whole of
I in a semantically meaningful way, i.e., the stylization of particular objects in the scene
remains consistent. We denote the output sequence by O. The aim is to achieve visual
quality and temporal consistency comparable to the state-of-the-art in the keyframe-
based video stylization [Jamrǐska et al. 2019]. However, in contrast to this previous
work, we would like to stylize the video frames in random order, possibly in-parallel,
or on-demand in real-time, without the need to wait for previous frames to be stylized
or to perform explicit merging of stylized content from different keyframes. In other
words, we aim to design a translation filter that can quickly learn the style from a
few heterogeneously hand-drawn exemplars Sk and then stylize the entire sequence I in
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(b) patch-based training, Ik1 (d) patch-based training, I5(c) full-frame training, I5

Ik1 I5Ik1 I5

(a) full-frame training, Ik1
O5O1 O5O1

Figure 5.3: Comparison of full-frame training vs. our patch-based approach: the original
frames from the input sequence I are marked in blue and details of their stylized counterparts
O are marked in red. The full-frame training scheme of Futschik et al. [2019] (a) as well as
our patch-based approach (b) closely reproduce the frame on which the training was performed
(see the frame Sk

1 in Fig. 5.6). Both stylized frames (a, b) look nearly identical, although the
training loss is lower for the full-frame scheme. Nevertheless, the situation changes dramatically
when the two networks are used to stylize another frame from the same sequence (here frame
I5). The network which was trained using the full-frame scheme produces images that are very
noisy and have fuzzy structure (c). This is due to the fact that the full-frame training causes the
network to overfit the keyframe. The network is then unable to generalize to other frames in the
sequence even though they structurally resemble the original keyframe. The network which was
trained using our patch-based scheme retains the fidelity and preserves the important artistic
details of the original style exemplar (d). This is thanks to the fact that our patch-based scheme
better encourages the network to generalize to unseen video frames. Video frames (I) courtesy
of © Zuzana Studená.

original keyframe

ENCODER DECODER

stylized keyframeLOSS

(a) (b) (c)

Figure 5.4: Training strategy: we randomly sample a set of small patches from the masked
area of the original keyframe (a). These patches are then propagated through the network in a
single batch to produce their stylized counterparts (b). We then compute the loss of these stylized
counterparts (b) with respect to the co-located patches sampled from the stylized keyframe (c)
and back-propagate the error. Such a training scheme is not limited to any particular loss
function; in this paper, we use a combination of L1 loss, adversarial loss, and VGG loss as
described in [Futschik et al. 2019]. Video frame (left) and style exemplar (right) courtesy of
© Zuzana Studená.

parallel, or any single frame on demand. It would also be beneficial if the learning phase
was fast and incremental so that the stylization of individual video frames could start
immediately, and the stylization quality would progressively improve over time.
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To design such a filter, we adopt the U-net-based image-to-image translation frame-
work of Futschik et al. [2019], which was originally designed for the stylization of faces.
It uses a custom network architecture that can retain important high-frequency details
of the original style exemplar. Although their network can be applied in our scenario
directly, the quality of results it produces is notably inferior as compared to current state-
of-the-art (see Fig. 5.3c and our supplementary video at 2:20). One of the reasons why
this happens is that the original Futschik et al.’s network is trained on a large dataset
of style exemplars produced by FaceStyle algorithm [Fǐser et al. 2017]. Such many
exemplars are not available in our scenario, and thus the network suffers from strong
overfitting. Due to this reason, keyframes can be perfectly reconstructed; however, the
rest of the frames are stylized poorly, even after applying well-known data augmentation
methods. See the detailed comparison in Figures 5.3 and 5.9. Furthermore, the resulting
sequence also contains a disturbing amount of temporal flickering because the original
method does not take into account temporal coherence explicitly.

To address the drawbacks mentioned above, we alter how the network is trained and
formulate an optimization problem that allows fine-tuning the network’s architecture and
its hyperparameters to get the stylization quality comparable to the current state-of-the-
art, even with only a few training exemplars available and within short training time.
Also, we propose a solution to suppress temporal flicker without the need to measure
consistency between individual video frames explicitly. In the following sections, those
improvements are discussed in further detail.

5.3.1 Patch-Based Training Strategy

To avoid network overfitting to the few available keyframes, we adopt a patch-based train-
ing strategy. Instead of feeding the entire exemplar to the network as done in [Futschik
et al. 2019], we randomly sample smaller rectangular patches from all stylized keyframes
Sk (see Fig. 5.4) and train the network to predict a stylized rectangular area of same
size as input. The sampling is performed only within the area of masked pixels Mk.
Note that thanks to the fully convolutional nature of the network, once trained, it can
be directly used to stylize the entire video frame even though the training was performed
on smaller patches (see Fig. 5.5). The key benefit of this explicit cropping and random-
ization step is that it simulates the scenario when a large and diverse dataset is used
for training. It prevents the network from overfitting and generalizes to stylize the other
video frames better. This training strategy is similar to one previously used for texture
synthesis [Zhou et al. 2018].

Although the reconstruction loss measured on keyframes Sk is higher when compared
to full-frame training after comparable amount of time, on the remaining frames of I the
reconstruction loss is considerably lower when comparing to the frames stylized using
state-of-the-art keyframe-based video stylization method of Jamrǐska et al. which we
purposefully consider as a ground truth (cf. supplementary video at 0:08 and 1:08). This
lower loss w.r.t. Jamrǐska et al. translates to much better visual quality.

5.3.2 Hyper-parameter Optimization

Although the patch-based training strategy considerably helps to resolve the overfitting
problem, we find that it is still essential to have a proper setting of critical network hy-
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perparameters, as their naive values could lead to poor inference quality, especially when
the training performance is of great importance in our applications (see Fig. 5.8). Besides
that, we also need to balance the model size to capture the essential characteristics of
the style yet being able to perform the inference in real-time using off-the-shelf graphics
card.

Parallel
Inference

(a) Input Batch (b) Output Batch

Figure 5.5: Inference: thanks to the fully con-
volutional nature of the network, we can per-
form the inference on entire video frames, even
though the training is done on small patches
only. Since the inference does not depend on
other stylized frames, all video frames can be
stylized in parallel or in random order. This
allows us to pass many or even all of the input
frames (a) through the network in a single batch
and get all output frames (b) at once. Video
frames (left) courtesy of © Zuzana Studená.

We formulate an optimization problem
in which we search for an optimal setting
of the following hyperparameters: Wp—
size of a training patch, Nb—number of
patches used in one training batch, α—
learning rate, and Nr—number of ResNet
blocks used in our network architecture.
The aim is to minimize the loss function
used in Futschik et al. [2019] computed
over the frames inferred by our network
and their counterparts stylized using the
method of Jamrǐska et al. [2019]. The min-
imization is performed subject to the fol-
lowing hard constraints: Tt—the time for
which we allow the network to be trained
for and Ti—the inference time for a sin-
gle video frame. Since Tt as well as Ti

are relatively short (in our setting Tt = 30
and Ti = 0.06 seconds) full optimization of
hyperparameters becomes tractable. We
used the grid search method on a GPU
cluster, to find the optimal values (see de-
tailed scheme Fig. 5.6). In-depth elabora-
tion can be found in Section 5.4.

In our experiments, we found that hyperparameter optimization is relatively consistent
when different validation sequences are used. We thus believe the setting we found is
useful for a greater variety of styles and sequences. Note also that the result of Jamrǐska
et al. is used only for fine-tuning of hyperparameters. Once this step is finished, our
framework does not require any guided patch-based synthesis algorithm and can act
fully independently.

5.3.3 Temporal Coherency

Once the translation network with optimized hyperparameters is trained using the pro-
posed patch-based scheme, style transfer to I can be performed in real-time or in parallel
on the off-the-shelf graphics card. Even though such a frame-independent process yields
relatively good temporal coherence on its own (as noted by Futschik et al.), in many
cases, temporal flicker is still apparent. We aim to suppress it while keeping the ability
of the network to perform frame-independent inference. We analyzed the source of the
temporal instability and found two main reasons: (1) temporal noise in the original video
and (2) visual ambiguity of the stylized content. We discuss our solution to those issues
in the following paragraphs.
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Figure 5.6: To fine-tune critical hyperparameters of our network, we propose the following
optimization scheme. We tune batch size Nb, patch size Wp, number of ResNet blocks Nr, and
learning rate α. Using the grid search method we sample 4-dimensional space given by these
hyperparameters and for every hyperparameter setting we (1) perform a training for a given
amount of time, (2) do inference on unseen frames, and (3) compute the loss between inferred
frames (O4) and result of [Jamrǐska et al. 2019] (GT4) - which we consider to be ground truth.
The objective is to minimize this loss. Note that the loss in step (1) and the loss in step (3)
are both the same. Video frames (I) and style exemplar (S) courtesy of © Zuzana Studená.

We observed that the appearance translation network tends to amplify temporal
noise in the input video, i.e., even a small amount of temporal instability in the input
video causes visible flicker in the output sequence. To suppress it, we use the motion-
compensated variant of bilateral filter operating in the temporal domain [Bennett and
McMillan 2005]. See our supplementary video (at 2:40) for the flicker reduction that can
be achieved using this pre-filtering. Although bilateral filter requires nearby frames to
be fetched into the memory, it does not violate our requirement for frame-independent
processing.

Another observation we made is that filtering the input video reduces temporal flicker
only on objects that have distinct and variable texture. Those that lack sufficient discrim-
inatory information (e.g., homogeneous regions) flicker due to the fact that the visual
ambiguity correlates with the network’s ability to recall the desired appearance. To
suppress this phenomenon, one possibility is to prepare the scene to contain only well
distinctive regions. However, such an adjustment may not always be feasible in practice.

Instead, we provide an additional input layer to the network that will improve its
discriminative power explicitly. This layer consists of a sparse set of randomly distributed
2D Gaussians, each of which has a distinct randomly generated color. Their mixture
represents a unique color variation that helps the network to identify local context and
suppress the ambiguity (see Fig. 5.7). To compensate for the motion in the input video,
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Gaussians are treated as points attached to a grid, which is deformed using as-rigid-as-
possible (ARAP) image registration technique [Sýkora et al. 2009]. In this approach,
two steps are iterated: (1) block-matching estimates optimal translation of each point
on the grid, and (2) rigidity is locally enforced using the ARAP deformation model to
regularize the grid structure. As this registration scheme can be applied independently
for each video frame, the condition on frame independence is still satisfied.

: :: :

(a) (b) (c) (d) (e) (f)

Figure 5.7: To suppress visual ambiguity of the dark mostly homogeneous T-shirt in (a) an
auxiliary input layer is provided that contains a mixture of randomly distributed and colored
Gaussians (b). The translation network is trained on patches of which input pixels contain
those additional color components. The aim is to reproduce the stylized counterpart (c). Once
the network is trained a different frame from the sequence can be stylized (d) using adopted
version of the auxiliary input layer (e). The resulting sequence of stylized frames (f) has notably
better temporal stability (cf. our supplementary video at 2:40). Video frames (a, d) courtesy of
© Zuzana Studená and style exemplar (b) courtesy of © Pavla Sýkorová.

The reason why the mixture of Gaussians is used instead of directly encoding pixel
coordinates as done, e.g., in [Liu et al. 2018; Jamrǐska et al. 2019] is the fact that ran-
dom colorization provides better localization and their sparsity, together with rotational
symmetry, reduces the effect of local distortion, which may confuse the network. In our
supplementary video (at 3:20) we, demonstrate the benefit of using the mixture of Gaus-
sians over the layer with color-coded pixel coordinates. In case of extreme non-planar
deformation (e.g., head rotation) or strong occlusion (multiple scene planes), additional
keyframes need to be provided or the scene separated into multiple layers. Each keyframe
or a scene layer has then its own dedicated deformation grid. We demonstrate this sce-
nario in our supplementary video (at 2:56).

5.4 Results

We implemented our approach in C++ and Python with PyTorch, adopting the struc-
ture of the appearance translation network of Futschik et al. [2019] and used their rec-
ommended settings including training loss. Ground truth stylized sequences for hyper-
parameter tuning and comparison were produced using the video stylization method of
Jamrǐska et al. [2019].

We performed fine-tuning of hyperparameters on a selection of frames from our evalu-
ation sequences. We computed their stylized counterparts using the method of Jamrǐska
et al. [2019] and performed optimization using grid search on a cluster with 48 Nvidia
Tesla V100 GPUs in 3 days. We searched over the following intervals: Wp ∈ (12, 188),
Nb ∈ (5, 1000), Nr ∈ (1, 40), α ∈ (0.0002, 0.0032). In total we sampled around
200,000 different settings of those hyperparameters. We found the optimal patch size to
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Figure 5.8: Influence of important hyperparameters on visual quality of results. The loss,
y-axes, is computed w.r.t. the output of Jamrǐska et al. [2019]. The best setting for each
hyperparameter is highlighted in red: (a) The loss curve for the batch size Nb—the number of
patches in one training batch (other hyperparameters are fixed). As can be seen, increasing
Nb deteriorates visual quality significantly; it indicates that there exists an ideal amount of
data to pass through the network during the back-propagation step. (b) The loss curve for the
patch size Wp. The optimal size of a patch is around 36x36 pixels. This fact indicates that
smaller patches may not provide sufficient context while larger ones could make the network
less robust to deformation changes. (c) The loss curve for the number of ResNet blocks Nr

that corresponds to the capacity of the network. As can be seen, settings with 7 ResNet blocks
is slightly better than other results; however, this hyperparameter does have major impact on
the quality of results. For additional experiments with hyperparameter setting, refer to our
supplementary text.

beWp = 36 pixels, the number of patches in one batch Nb = 40, learning rate α = 0.0004,
and the number of ResNet blocks Nr = 7.

See Fig. 5.8 to compare visual quality for different hyperparameter settings. Note
the substantial improvement in visual quality over different settings, which confirms the
necessity of this optimization. An interesting outcome of the proposed hyperparameter
optimization is a relatively small number of patches in one batch Nb = 40 (Fig. 5.8a).
This value interplays with our choice of patch-based training scheme. Although a com-
mon strategy would be to enlarge Nb as much as possible to utilize GPU capability, in
our case, increasing Nb is actually counterproductive as it turns training scheme into a
full-frame scenario that tends to overfit the network on the keyframe and produce poor
results on unseen video frames. A smaller number of randomly selected patches in ev-
ery batch increases the variety of back-propagation gradients and thus encourages the
network to generalize better. From the optimal patch size Wp = 36 (Fig. 5.8b) it is
apparent that smaller patches may not provide sufficient context, while larger patches
may make the network less resistant to appearance changes caused by deformation of the
target object and less sensitive to details. Surprisingly, the number of ResNet blocks Nr

(see Fig. 5.8c) does not have a significant impact on the quality, although there is a subtle
saddle point visible. Similar behavior also holds true for the learning rate parameter α.
In addition, we also examined the influence of the number of network filters on the final
visual quality (see our supplementary material). The measurements confirmed that the
number of filters needs to be balanced as well to capture the stylized content while still
avoid overfitting.
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With all optimized hyperparameters, a video sequence of resolution 640 × 640 with
10% of active pixels (inside the mask Mk) can be stylized in good quality at 17 frames
per second after 16 seconds of training (see Fig. 5.1).

We evaluated our approach on a set of video sequences with different resolutions rang-
ing from 350×350 to 960×540, containing different visual content (faces, human bodies,
animals), and various artistic styles (oil paint, acrylic paint, chalk, color pencil, markers,
and digital image). Simpler sequences were stylized using only one keyframe (see Fig-
ures 5.1, 5.3, 5.7, 5.11, and 5.12) while the more complex ones have multiple (ranging
from two to seven, see Figures 5.14, 5.13, 5.15, and 5.16). Before training, the target
sequence was pre-filtered using the bilateral temporal filter. In case that the sequence
contains regions having ambiguous appearances, we compute an auxiliary input layer
with the mixture of randomly colored Gaussians that follows the motion in the target
sequence. During the training phase, we randomly sample patches inside the mask Mk

from all keyframes k and feed them in batches to the network to compute the loss and
backpropagate the error. Training, as well as inference, were performed on Nvidia RTX
2080 GPU. The training time was set to be proportional to the number of input patches
(number of pixels inside the mask Mk), e.g., 5 minutes for a 512× 512 keyframe with all
pixels inside the mask. After training, the entire sequence can be stylized at the speed
of roughly 17 frames per second. See our supplementary video (at 0:08 and 1:08) for the
resulting stylized sequences.

5.4.1 Comparison

To confirm the importance of our patch-based training strategy, we conducted compar-
isons with other commonly used methods for data-augmentation that can help avoid
overfitting such as adding Gaussian noise to the input, randomly erasing selected pixels,
occluding larger parts of the input image, or performing dropout before each convolution
layer. We found that none of these techniques can achieve comparable visual quality to
our patch-based training strategy (see Fig. 5.9).

We compared our approach with the current state-of-the-art in keyframe-based video
stylization [Jamrǐska et al. 2019]. For the results see Figures 5.10, 5.12, 5.14, 5.15, and
our supplementary video (at 0:08 and 1:08). Note how the overall visual quality, as
well as the temporal coherence, is comparable. In most cases, our approach is better
at preserving important structural details in the target video, whereas the method of
Jamrǐska et al. often more faithfully preserves the texture of the original style exemplar.
This is caused by the fact that the method of Jamrǐska et al. is non-parametric, i.e., it can
copy larger chunks of the style bitmap to the target frame. Our method is parametric,
and thus it can adapt to fine structural details in the target frame, which would otherwise
be difficult to reproduce using bitmap chunks from the original style exemplar.

Regarding the temporal consistency, when our full-fledged flicker compensation based
on the mixture of Gaussians is used our approach achieves comparable coherency in time
to the method of Jamrǐska et al. It is also apparent that when multiple keyframes are
used for stylization, ghosting artifacts mostly vanish in our method, unlike in Jamrǐska
et al. When the original noisy sequence is used, or only the bilateral filtering is ap-
plied, the resulting sequence may flicker a little more when compared to the output of
Jamrǐska et al. However, we argue that the benefits gained from random access and
parallel processing greatly outweigh the slight increase of temporal flicker. Moreover, the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: To deal with the overfitting caused by a minimal amount of training data, we tried
several commonly used techniques to enforce regularization. In all cases shown in this figure,
we trained the network on the first frame; the shown results are zoomed details of the fifth
frame. (a) is a result of the original full-frame training. (b-h) are results of full-frame training
with some data augmentation. (i) is a result of our patch-based training strategy—see how our
technique can deliver much sharper and significantly better visual quality results, please, zoom
into the figure to better appreciate the difference. In case of (b-c), Gaussian noise was used to
augment the data; (d) some pixels were randomly set to black; (e-f) some parts of the image
were occluded; (g) dropout of entire 2D feature maps; (h) dropout of individual pixels before
each convolution layer.

order-independent processing brings also a qualitative improvement over the method of
Jamrǐska et al. that tends to accumulate small errors during the course of the sequence,
and visibly deteriorates after a certain number of frames.

Performance-wise a key benefit of our approach is that once the network is trained,
one can perform stylization of a live video stream in real-time. Even in the offline
setting, when the training phase is taken into account, the overall end-to-end computation
overhead is still competitive. On a 3 GHz quad-core CPU with Nvidia RTX 2080 GPU,
a 512× 512 sequence with 100 frames takes around 5 minutes to train until convergence
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(a) (b) (c)

Figure 5.10: When the target subject undergoes a substantial appearance change, the results
of both Jamrǐska et al. [2019] (b) and our method (c) exhibit noticeable artifacts. The parts
that were not present in the keyframe are reconstructed poorly—see the face and hair regions
where [Jamrǐska et al. 2019] produces large flat areas, while our approach does not reproduce
the color of the face well. Video frames (insets of a–c) and style exemplars (a) courtesy of
© Zuzana Studená.

(a) (b)

Figure 5.11: Given one keyframe (a) and a video sequence (in blue), our method produces
the stylized result (b). Video frames (insets of a, b) courtesy of © Adam Finkelstein and style
exemplars (a) courtesy of © Pavla Sýkorová.

and stylize using our approach, whereas the method of Jamrǐska et al. requires around
15 minutes.

5.4.2 Interactive applications

To evaluate the ideas we presented in practice, we invited artists to work with our
framework. We implement and experiment with three different setups in which the
artists created physical as well as digital drawings. The goal of these sessions was to
stylize one or more video keyframes artistically. Using a workstation PC, we provided the
artists with a version of our framework that implements real-time interactive stylization
of pre-prepared video sequences and stylization of live camera feeds.
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(a) (b) (c)

Figure 5.12: For the state-of-the-art algorithm of [Jamrǐska et al. 2019], contour based
styles (a) present a particular challenge (b). Using our approach (c), the contours are trans-
ferred with finer detail and remain sharp even as the sequence undergoes transformations. Video
frames (insets of a–c) and style exemplar (a) courtesy of © Štěpánka Sýkorová.

(a) (b) (c) (d)

Figure 5.13: The Lynx sequence stylized using two keyframes (a, d). Notice how our method
produces seamless transition between the keyframes while preserving fine texture of the style (b,
c). Watch our supplementary video (at 1:22) to see the sequence in motion. Style exemplars (a,
d) courtesy of © Jakub Javora.

(a) (b) (e)(c) (d) (f)

Figure 5.14: Keyframes (a, f) were used to stylize the sequence of 154 frames. See the
qualitative difference between Jamrǐska et al. [2019] (b) and our result (c). Focusing mainly on
zoom-in views, our approach better preserves contour lines around the nose and chin; moreover,
the method of Jamrǐska et al. suffers from blending artifacts—the face is blended into the hair
region. On the other hand, comparison on a different frame from the same sequence shows that
the result of Jamrǐska et al. (d) is qualitatively superior to our result (e) on this particular frame.
See the corresponding zoom-in views where the approach of Jamrǐska et al. produces cleaner
results. Video frames (insets of a–f) and style exemplars (a, f) courtesy of © Muchalogy.

These applications, all of which rely on and strongly benefit from the near real-time
nature of patch-based training as well as the real-time performance of full-frame inference,
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(a) (b) (c) (d) (e) (f) (g)

(b’) (h’) (h) (i) (j) (k)(e’)

(j’)

(f’)(k’)

(i’)

(c’)

Figure 5.15: A complex input sequence (the first row) with seven keyframes, three of them are
shown in (a, d, g). Here we compare our approach to the approach of Jamrǐska et al. [2019].
See our result (b) and theirs (h) along with the close-ups (b’, h’); due to their explicit handling
of temporal coherence, the texture of the fur leaks into the box (h’). Next, compare our result (c)
to theirs (i); our approach better reconstructs the bag (c’, i’). Their issue with texture leakage
manifests itself again on the shoulder in (j, j’), notice how our approach (e, e’) produces a
clean result. Lastly, see how our result (f, f ’) is sharper and the face is better pronounced
compared to the result of Jamrǐska et al. [2019] (k, k’), which suffers from artifacts caused
by their explicit merging of keyframes. Video frames (top row) and style exemplars (a, d, g)
courtesy of © MAUR film.

(a) (b) (c) (d)

Figure 5.16: An example sequence of 228 video frames (in blue) as stylized from two
keyframes (a, d). Results of our method (b, c) stay true to style exemplars over the course
of the sequence. Video frames (insets of a–d) and style exemplars (a, d) courtesy of © Muchal-
ogy.

naturally lend themselves to fast iteration. The artist is provided with real-time feedback
that approximates what the final result of video stylization might look like, thus reducing
the possibility of running into issues with artifacts that would be difficult to alleviate
later on.

During the sessions, artists especially appreciated seeing video results very quickly, as
it helps steer creative flow and offers the possibility of perceiving the effect of individual
changes in the style exemplar at a glance. The overall experience was described as
incredibly fun and paradigm-changing, with little to no negative feedback. Using this
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system is intuitive and even suitable for children. These different scenarios are described
in detail in the supplementary material.

5.5 Limitations and Future Work

Although our framework brings substantial improvements over the state-of-the-art and
makes keyframe video stylization more flexible and interactive, there are still some limi-
tations that could represent a potential for further research.

Despite the fact our technique uses different computational machinery than current
state-of-the-art [Jamrǐska et al. 2019] (deep convolutional network vs. guided patch-
based synthesis), both approaches share similar difficulties when stylized objects change
their appearance substantially over time, e.g., when the object rotates and thus reveals
some unseen content. Although our approach often resists slightly longer than patch-
based synthesis due to the ability to generalize better, it usually cannot invent consistent
stylization for new features that were not stylized in the original keyframe, see Fig. 5.10.
In this case, the user needs to provide additional keyframes to make the stylization
consistent.

As compared to the method of Jamrǐska et al. our approach may encounter difficul-
ties when processing keyframes at a higher resolution (e.g., 4K) to stylize high-definition
videos. Although the size of patches, as well as the network capacity, can be increased
accordingly, the training may take notably longer time, as a different multi-scale ap-
proach [Wang et al. 2018c] could be necessary. However, the problem of training of
larger models is an active research topic in machine learning, so we believe that soon,
more efficient methods will be developed so that our technique would be applicable also
at higher resolutions.

Although our approach does not require the presence of previous stylized frames to
preserve temporal coherency, the motion-compensated bilateral filter, as well as the cre-
ation of layer with a random mixture of colored Gaussians, requires fetching multiple
video frames. Even though those auxiliary calculations can still be performed in par-
allel, they need additional computation resources. Those may cause difficulties when
considering real-time inference from live video streams. In our prototype, during the
live capture sessions, treatment for improving temporal coherence was not taken into
account. A fruitful avenue for future work would be to implement real-time variants of
the motion-compensated bilateral filter as well as a mixture of colored Gaussians. Also,
different methods could be developed that would enable the network to keep stylized
video temporally coherent without the need to look into other video frames.

5.6 Conclusion

We presented a neural approach to keyframe-based stylization of arbitrary videos. With
our technique, one can stylize the target sequence using only one or a few hand-drawn
keyframes. In contrast to previous neural-based methods, our method does not require
large domain-specific datasets nor lengthy pre-training. Thanks to our patch-based train-
ing scheme, optimized hyperparameters, and handling of temporal coherence, a standard
appearance translation network can be trained on a small set of exemplars. Once trained,
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it can quickly deliver temporally coherent stylized videos with a visual quality compara-
ble to the current state-of-the-art in keyframe-based video stylization, which uses guided
patch-based synthesis. A key benefit of our technique is that it can work in a frame-
independent mode, which is highly beneficial for current professional video editing tools
that rely heavily on random access and parallel processing. It also does not require the
explicit merging of stylized content when slightly inconsistent keyframes are used.

Moreover, since the network in our framework can be trained progressively, and the
inference runs in real-time on off-the-shelf GPUs, we can propose several new video
editing scenarios that were previously difficult to achieve. Those include stylization of
a live video stream using a physical hand-drawn exemplar being created and captured
simultaneously by another video camera. We believe interactive scenarios such as this
will empower the creative potential of artists and inspire them with new creative ideas.
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Chapter 6

STALP: Style Transfer with
Auxiliary Limited Pairing

source frame

source style

Jamrǐska et al. Texler et al.our approachtarget frames Liao et al.

Figure 6.1: An example of style transfer with limited auxiliary pairing—an artist prepares a
stylized version (source style) of a selected video frame (source frame). Then an image-to-image
translation network is trained to transfer artist’s style to other video frames (target frames).
During the training phase a subset of target frames as well as the source frame and its stylized
counterpart are taken into account. Once the network is trained, the entire sequence can be
stylized in real-time (our approach). In contrast to current state-of-the-art in example-based
video stylzation (Jamrǐska et al. [Jamrǐska et al. 2019] and Texler et al. [Texler et al. 2020b])
our approach better preserves important visual characteristics of the style exemplar even though
the scene structure changed considerably (head rotation). The advantage of having an auxiliary
stylized pair is also visible in comparison with the output of Deep Image Analogies of Liao et
al. [Liao et al. 2017]. Although the style’s texture is preserved reasonably well, the transfer is
not semantically meaningful.

6.1 Introduction

In recent years, methods for performing automatic style transfer from an exemplar image
to a target image or a video have gained significant popularity. Although state of the
art in this field progresses quickly and produces ever more believable artistic images,
there are still aspects in which most methods tend to have fundamental shortcomings.
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One such crucial element is defining the semantic intent while still preserving visual
characteristics of the used artistic media.

A seminal work in this direction was the Image Analogies framework introduced by
Hertzmann et al. [2001], which requires the user to provide a set of guidance chan-
nels [Bénard et al. 2013; Fǐser et al. 2016; 2017; Jamrǐska et al. 2019] that encourage the
synthesis algorithm to transfer smaller patches of the style exemplar onto desired spatial
locations in the target image. Those channels, however, need to be prepared explicitly by
the user or generated algorithmically for a limited target domain, e.g., 3D renders [Fǐser
et al. 2016], facial images [Fǐser et al. 2017], or a sequence of video frames close to the
stylized keyframe [Jamrǐska et al. 2019]. Deriving consistent semantically meaningful
guidance in the general case remains an open problem.

Neural approaches to style transfer [Gatys et al. 2016; Li et al. 2017; Kolkin et al. 2019]
rely on the assumption that one can encode semantic similarity using the correspondence
of statistics of neural features extracted from responses of the VGG network [Simonyan
and Zisserman 2014]. Although such an assumption holds in some cases, it is not easy to
amend when it fails. Moreover, in contrast to patch-based methods, neural techniques
tend to produce noticeable visual artifacts due to their statistical nature. One can par-
tially alleviate this drawback by applying patch-based synthesis in the neural domain [Li
and Wand 2016c; Liao et al. 2017]. However, since in this scenario neural features are
transferred explicitly, the requirement of knowledge of accurate correspondences is still
inevitable.

Another possibility of preserving semantically meaningful transfer is using the image-
to-image translation principle pioneered by Isola et al. [2017]. This approach can encode
semantic intent and retain high-quality output. However, it has a fundamental limitation
of requiring a relatively large dataset of image pairs (original image plus its stylized
counterpart), which is rarely easy to obtain when considering artistic applications. Lastly,
a group of unpaired image translation algorithms could be used [Zhu et al. 2017a; Park
et al. 2020], however, since it can be difficult to incorporate intent into these methods,
they are not as suitable for tasks where the artist needs greater control.

In this paper, we present a novel approach to neural style transfer that allows artists
to stylize a set of images with arbitrary yet similar content in a semantically meaningful
way, while preserving the target subjects’ critical structural features. In contrast to
previous neural techniques, in our framework, the user explicitly encodes the semantic
intent by specifying a stylized counterpart for a selected image from the set that needs to
be stylized. Using this single style exemplar, we then train an image-to-image translation
network that stylizes the remaining images. Our approach bears a resemblance to the
recent keyframe-based video stylization framework of Texler et al. [2020b], where a similar
workflow is used. A key difference in our technique is that we consider other frames
from the input sequence during the training phase. This enables us to ensure temporal
stability without explicit guidance and better preserve style when the remaining video
frames deviate from the original keyframe. Moreover, thanks to this increased robustness,
our framework goes beyond video stylization. One can use it also in more challenging
scenarios, including auto-completion of a panorama painting, stylization of 3D renders,
or different portraits captured under similar illumination conditions.
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6.2 Related Work

Despite the renewed interest and broader impact, image stylization algorithms date back
decades. Traditionally, they were based on predefined, hand-designed transformations
limited to a subset of styles, and possibly target domains as well. One example of such
transformation approach was shown by Curtis et al. [1997], running a physical simula-
tion to produce watercolor filter effect. Other research directions focused on composing
images from static or procedurally generated brush strokes or pens [Bénard et al. 2010;
Bousseau et al. 2006; Praun et al. 2001; Salisbury et al. 1997]. These conventional algo-
rithmic approaches can create very appealing results, but they have the added difficulty
of requiring the style filters to be designed on an individual basis. Therefore, the act of
creating a new style or even slight modifications of existing styles tends to necessitate
considerable amounts of effort. These methods do not require a style exemplar, but
instead contain a prior given by the design of the filter.

The framework of Image Analogies proposed by Hertzmann et al. [2001] trades design-
ing elements of the output image directly for designing a set of guidance channels which
form a loss function. Optimizing over pixel locations and directly copying patches of an
exemplar image guarantees that features found in the exemplar will be represented ex-
actly in the resulting image. This framework became the basis of numerous style transfer
methods [Bénard et al. 2013; Fǐser et al. 2016; 2017; Dvorožňák et al. 2018; Jamrǐska
et al. 2019]. A key advantage over traditional algorithmic methods lies the fact that this
framework allows for transfer of arbitrary style.

However, creating the guidance channels is cumbersome, and in some potential ap-
plications it might not be always clear how to design algorithms for obtaining them
automatically, and still, the task of preparing a framework that would work with arbi-
trary images remains seemingly impossible. To sidestep this issue, methods of general
style transfer have been formulated. Frigo et al. [2016] attempts to re-imagine the prob-
lem of guiding channels by splitting the image into partitions and matching these to their
counterparts. More commonly known, Gatys et al. [2016] uses responses of a neural net-
work to generate global style statistics which an optimization process sees to reproduce
in the result while incorporating a content constraint to prevent the overall structure
from diverging too far from the target image. Refining these ideas to a video domain
and employing a more sophisticated loss functions, others [Chen et al. 2017a; Li et al.
2017; Ruder et al. 2018; Kolkin et al. 2019] manage to produce results which are coherent
in time and more faithful to the style. While they produce impressive results on some
inputs, these methods generally take all the control out of the artists’ hands and are
notoriously difficult to steer in different directions, as their mechanisms are non-intuitive
and unpredictable.

A different view of the problem is offered by the image-to-image framework, which
aims to translate images from one domain to another, which is directly applicable to
style transfer. While the original image translation methods [Isola et al. 2017; Johnson
et al. 2016] require relatively large dataset to work reliably, by their combination with
generative adversarial models [Goodfellow et al. 2014; Zhu et al. 2017a], this requirement
can be relaxed. Unlike techniques based on image analogies, these methods tend to
require substantial amount of model training. And although patch-based synthesis [Fǐser
et al. 2017] can be used to generate a large number of image pairs on which one can train
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the image-to-image translation network [Futschik et al. 2019], the problem of having
meaningful guidance remains.

Few-shot learning techniques [Liu et al. 2019; Wang et al. 2019b], as well as approaches
based on deformation transfer [Siarohin et al. 2019a;b] require only a single style exem-
plar. However, they still need pre-training on large dataset of specific target domains
and thus are not applicable in general case. Moreover, these techniques capture only the
target subject’s coarse deformation characteristics; its structure or identity is omitted.
A similar drawback also holds for approaches based on generative adversarial networks
such as StyleGAN v2 [Karras et al. 2020]. In this approach, a massive collection of art-
works is used to train a network that can generate an artistic image for a given input
latent vector. Those vectors can then be predicted and fine-tuned to align the generated
image with the target image’s features. However, this process is inaccurate, leading to
imprecise alignment that hinders the network’s ability to preserve the target subject’s
structure or identity.

6.3 Our Approach

As input to our method, we take pairs of images K = (X, Y ) called keyframes. They
represent a visual translation from a source visual domain of X into a target domain
of Y . For instance X can be a photo and Y its stylized counterpart prepared by an artist
(see Fig. 6.2). Note that our key assumption about K is that it should be as small as
possible, in practice even a single keyframe is usually sufficient. This is in line with our
central motivation to reduce the amount of manual work since the creation of keyframes
is time-consuming and thus prohibitive. In addition to K, the user also provides a set of
unpaired images Z, which they would like to stylize. The images in Z can be arbitrary,
but our method works best if their domain is similar or same as X. For instance Z and X
can be frames from the same video sequence or photos from the same location, etc. If
there is a larger number of images in Z, it is beneficial to prune it as smaller number
of images in Z usually has a positive effect on the resulting quality (see Fig. 6.8). Both
keyframes K as well as unpaired images Z are used during an optimization process
that produces a neural translation model F . Using F one can stylize Z in a semantically
meaningful way, i.e., produce a set of output images O in which important visual features
of artistic style Y are reproduced at appropriate locations.

As F , we use the network architecture design of Futschik et al. [2019] (see Fig. 6.3),
a U-Net-type network, which is particularly suitable for style transfer tasks as it allows
to reproduce important high-frequency details that are crucial for generating believable
artistic styles. In the original method of Futschik et al. F was trained on a large dataset
of K which is intractable in our scenario. Texler et al. [2020b] uses the network architec-
ture of F as well in a similar setting as ours, i.e., small number of keyframes K, however,
their method struggles with larger structural changes in the target images Z.

To address this issue, we leverage the fact that the set of target images Z is known
beforehand and thus we can incorporate this additional knowledge into the optimization
process. To do that, we introduce a different training strategy. The process is a com-
bination of two complementary objectives, illustrated in Fig. 6.2, which we minimize as
we train F :
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Figure 6.2: An overview of our approach—we optimize weights θ of a translation network F
which accepts images from a source domain X or Z and produces output images O with a
similar appearance as those in the target domain Y . The high-frequency details are preserved
well, thanks to the L1 loss computed on the artist-created style images Y which have the same
structure as the input images X, while the style consistency on other images Z is enforced due
to the VGG loss. Source style © Graciela Bombalova-Bogra, used with permission.

• L1 loss on the original translation pairs K, ensuring that keyframes are represented
as closely as possible.

• VGG loss between the images from set Z and set Y , which acts as a regularizer
for the stylized images O.

Combining these two, we obtain the objective function we would like to minimize:∑
i

|F(Xi; θ)− Yi|+ λ
∑
j,k

∑
l

∥Gl(F(Zj; θ))− Gl(Yk)∥2 (6.1)

where θ is a set of weights of F which we would like to optimize, Gl stands for Gram
correlation matrix calculated at layer l ∈ L after extracting VGG network responses [Si-
monyan and Zisserman 2014] of the given image, and λ is a weighting coefficient which
we set to 100/(|Z||L|) for all conducted experiments.

Contrary to previous techniques [Gatys et al. 2016; Johnson et al. 2016] which compute
Gram matrix from a subset of layers we found that evaluating the loss at every layer l ∈ L
of VGG is beneficial in terms of measuring the overall style quality. However, this is
computationally more expensive and thus our method generally requires an order of
magnitude more time to produce the final results. These previous methods use the term
purely as a proxy for style transfer. In our case we use it as regularizer to prevent the
model from overfitting to the keyframes. This effect is visible in Fig. 6.4, where if we
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Input
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Residual
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Figure 6.3: A network architecture used for our model F : input layer (green), one 7× 7 and
two 3 × 3 convolution blocks (blue), nine 3 × 3 residual blocks (yellow), two 3 × 3 upsampling
blocks (red), and one additional block with 7× 7 convolutions (blue). Skip connections (black)
are used to connect downsampling and upsampling layers.

take away the VGG loss, the resulting F is unable to generalize beyond K whereas using
VGG loss only will negatively affect the content.

target photo only VGG loss only L1 loss VGG + L1 losssource photo source style

Figure 6.4: An ablation study demonstrating the importance of individual terms in our objec-
tive function (6.1)—a stylized pair (X1, Y1) (source photo, source style) is used together with Z1

(target photo) to optimize weights of model F . When only VGG loss is used, the identity of a
person in the target photo deteriorates. On the other hand when only L1 loss is used during
optimization source, style is not preserved well. By combining L1 loss and VGG loss in (6.1)
we get the result which produces a good balance between identity and style preservation. Source
style © Graciela Bombalova-Bogra, used with permission.

By minimizing the objective (6.1) we produce a trained model F , which in turn is able
to stylize the images from Z via a feed-forward pass. An important aspect to notice is
that unlike most previous style transfer techniques, our approach does not enforce any
content loss explicitly. We find that content losses found in literature [Gatys et al. 2016;
Kolkin et al. 2019] tend to be detrimental to the quality of style transfer, especially
when higher frequencies are concerned. It causes a particular washed-out look where
important style details are missing (see Fig. 6.5). An objection to our argument could
be that without explicit penalty on the content preservation, the model can resort to
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memorizing the keyframes and return Y regardless the content in target images Z. This
would eventually minimize both the L1 error as well as the VGG loss. The reason why
the optimization process does not end up using this trivial solution is twofold. We argue
that due to the limited receptive field of F , it has to learn an effective encoding of the
input; in addition, since the VGG loss is relatively weak and serves only as a non-linear
regularizer, it makes the trivial solution difficult to find during the optimization process.
Moreover, by optimizing a one-to-one mapping between images of perceptually similar
semantic structure (X to Y ), we posit that this acts as an implicit content preservation
technique.

target render low medium high

Figure 6.5: An illustration of a wash-out effect caused by adding an explicit content loss
term [Kolkin et al. 2019] into our objective function (6.1). Target render stylized using model F
optimized on a stylized pair from Fig. 6.9 with low, medium, and high content loss weight. Note
how style details deteriorate gradually with the increasing content loss. Source style © Štěpánka
Sýkorová, used with permission.

6.4 Results

We implemented our approach using PyTorch [Paszke et al. 2019]. For all experiments,
we use Adam optimizer with learning rate 10−4, β1 = 0.9, β2 = 0.999. We found that
higher rate does not work well when performing many Gram matrix operations that are
prone to producing exploding gradients. For the network model F , we use 9 residual
blocks, which is in line with previous approaches [Futschik et al. 2019; Texler et al.
2020b]. However, since in our optimization batch size is equal to 1 we use instance
normalization [Ulyanov et al. 2016b] instead of batch normalization. All layers used
for Gram matrix computation are post-activated with ReLU to better incorporate non-
linearity. In each experiment, we let the optimization process run for approximately
100k iterations, which translates into roughly 3–6 hours of wall time on a single NVIDIA
V100 GPU, depending on the target resolution. The resolutions we produce range from



80 CHAPTER 6. STALP

512px to 768px as longer side of the image, with the shorter side scaled appropriately to
preserve correct aspect ratio given by the input images.

We evaluated our approach in five different use cases to demonstrate its wider range
of applicability: (1) keyframe-based video stylization, (2) style transfer to 3D mod-
els, (3) autopainting panorama images, (4) example-based stylization of portraits, and
(5) real-time stylization of video calls.

source stylesource frame target frame Jamrǐska et al. Texler et al.our approach

Figure 6.6: Video stylization results—in each video sequence (rows) a selected frame (source
frame) is stylized using different artistic media (source style). The network is then trained
using this stylized pair and a subset of frames from the entire video sequence (target frame).
The results of our method (our approach) are compared with the output of concurrent techniques:
Jamrǐska et al. [2019] and Texler et al. [2020b]. Note how our method better preserves important
style details and visual features of the target frames. Previous style transfer techniques tend to
produce wash out artifacts due to significant structural changes with respect to the source frame.
Video frames and style (top row) © Zuzana Studená, and (bottom row) © Štěpánka Sýkorová,
used with permission.

Video stylization results together with a side-by-side comparison of the output from
previous techniques [Jamrǐska et al. 2019; Texler et al. 2020b] is presented in Figures 6.1
and 6.6 as well as in our supplementary video. In each experiment, we selected a
keyframe X from the input video sequence V which was stylized by an artist to pro-
duce Y . Then a 10% of video frames from V were sampled uniformly to get the set Z.
Using this input, the weights θ of the network F were optimized and used to stylize the
entire sequence V . In Fig. 6.7 we compare the scenario where multiple keyframes K are
used to stylize V . We also considered an option that all frames from V are used as Z,
or instead of using uniform sampling we selected 10% of frames that represent the most
significant changes in the scene. We found that sparse uniform sampling has usually the
best performance (see Fig. 6.8).

As visible from the results and comparisons, our approach can better preserve style
details during a longer time frame even if the scene structure changes considerably with
respect to X. Also, note how the resulting stylized sequence has better temporal stability
implicitly without performing any additional treatment, which contrasts with previous
techniques [Jamrǐska et al. 2019; Texler et al. 2020b] that need to handle temporal
consistency explicitly.



6.4. RESULTS 81

K1 = (X1, ·) K1 = (·, Y1) Z1 O1 (with K1) O1 (with K1 & K2)

K2 = (X2, ·) K2 = (·, Y2) Z2 O2 (with K1) O2 (with K1 & K2)

Figure 6.7: Example of video stylization with multiple keyframes—two keyframes K1 =
(X1, Y1) and K2 = (X2, Y2) were created by painting over the input video frames X1 & X2

to get their stylized counterparts Y1 & Y2. First, our network F was trained using only single
keyframe K1 and applied to stylize input video frames Z1 & Z2 to produce O1 & O2 (with K1).
Note, how closed mouth in Z2 was not stylized properly in O2 (with K1). By adding K2 to the
list of keyframes used during training phase, open and closed mouth is stylized better, see O1

& O2 (with K1 & K2). Frames X1, X2, Y1, Y2, Z1 & Z2 © Muchalogy, used with permission.

Style transfer to 3D models resembles video stylization use case, however, there are
specific features worth separate discussion. In this scenario we let the user select a
camera viewpoint from which a 3D model is rendered to get image X. As the network F
is sensitive to local variations in X, it is important to avoid larger flat regions which
can make the translation ambiguous. Due to this reason we add a noisy texture to the
3D model to alleviate the ambiguity (see source render in Fig. 6.9). An artist then
prepares the stylized counterpart Y and the model is rendered again from a few different
viewpoints to produce Z. Using those inputs, weights θ of the network F are optimized
and the translation network can then be used in an interactive scenario where the user
changes the camera viewpoint, the 3D model is rendered on the fly, and immediately
stylized using F . See Figures 6.9 and 6.10 and our supplementary video for results in
this scenario. As in the video stylization case when compared to other techniques [Gatys
et al. 2016; Kolkin et al. 2019; Jamrǐska et al. 2019; Texler et al. 2020b] our approach
better preserves the style exemplar (c.f. Fig. 6.9) and implicitly maintains temporal
consistency.

In the panorama auto-painting scenario we consider a set of photos P taken from the
same location by rotating the camera around its center of projection. We compute a set
of homographies H between photos in P using the method of Brown et al. [2007]. Then
we let the artist pick one photo from P as X and produce its stylized counterpart Y .
Remaining photos in P are used as Z. After the optimization one can use F to stylize
all photos in P , stitch them together using H, and either produce a cylindrical unwrap
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(a) (b) (c) (d) (e) (f)

Figure 6.8: A different sampling strategy for a selection of frames in Z—a source frame from a
sequence V (a) and its stylized counterpart (b) are used as K. Then weights of F are optimized
with K and Z, where Z contains all frames from V (d), 10% of uniformly sampled frames
from V (e), and 10% of adaptivelly sampled frames from V (f). Note how dense sampling
tends to produce distortion artifacts on a rare hand pose (c) due to overfitting on a different
pose that is more frequent in the sequence V (a) whereas sparse sampling generalizes better.
Source video frames (a, c) and style (b) © Štěpánka Sýkorová, used with permission.

or alternatively use an interactive scenario where the user changes the relative camera
rotation from which a pinhole projection can be computed and stylized in real-time
using F . As visible in Fig. 6.11 and 6.12 from the comparisons with [Liao et al. 2017;
Kolkin et al. 2019] our approach better preserves the original style details as well as
semantic context.

In the example-based portrait stylization use case a set of portraits U is assumed
to be taken under similar lighting conditions. One portrait from U is used as X and
stylized to get Y . The rest of portraits in U is used in Z. Resulting model F can then
be used to stylize all portraits in U . In Fig. 6.13 stylization results for two different
style exemplars are presented. It is apparent that our approach produces a reasonable
compromise between identity and style preservation whereas previous neural methods
such as [Gatys et al. 2016; Kolkin et al. 2019] tend to preserve identity better, but lose
style details. On the other hand, patch-based technique [Fǐser et al. 2017] reproduces
style better, nevertheless, has difficulties retaining identity.

In real-time stylization of video calls we let the user record a short video sequence V
which captures her face during a regular video meet. A most representative frame is
selected from V and used as X. An artist then produces its stylized counterpart Y
and 10% of other frames in V are used as Z. A model F is optimized using those inputs.
Then, during the next video call F is used to stylize captured video frames in real-time.
See Fig. 6.14 and our supplementary video for an example of such interactive stylized
video call. From the comparison with the method of Texler et al. [2020b] it is visible that
our approach not only better preserves the overall style quality but also retains temporal
stability which is difficult to accomplish by the method of Texler et al. in this kind of
interactive scenario.
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source render source style Jamrǐska et al. Texler et al. Gatys et al.target render Kolkin et al.our approach

Figure 6.9: Stylization of 3D renders—a colored 3D model enhanced with an artificial noisy
texture to avoid large flat regions (source render) is stylized at a selected viewpoint by an
artist (source style). The network is then trained using the stylized pair and a set of additional
renders of the same model viewed from a different direction (target render). The trained network
can then be used to stylize the rendered 3D model from a different user-specified position in real-
time (our approach). When compared to other concurrent style transfer techniques (Jamrǐska
et al. [2019], Texler et al. [2020b], Gatys et al. [2016], and Kolkin et al. [2019]) our approach
better preserves important high-frequency details of the original style exemplar while being able
to adapt to a new pose in a semantically meaningful way. Source style © Štěpánka Sýkorová,
used with permission.

source render source renderstyle #1 style #2 style #3 style #4 style #5

target render target renderoutput #1 output #2 output #3 output #4 output #5

Figure 6.10: Stylization of 3D renders (cont.)—a colored 3D model enhanced by a noisy
texture (source render) is stylized by hand using various artistic media (style #1–#5). The
resulting image translation network F is then used to stylize the same 3D model (output #1–
#5) rendered from a different viewpoint (target render) in real-time. Source styles (#1–#5)
© Štěpánka Sýkorová, used with permission.

6.4.1 Perceptual study

In order to qualitatively evaluate our approach, we performed a perception study com-
paring the outputs of our method with the outputs of three state-of-the-art techniques
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source photo target panorama Liao et al.

source style our approach Kolkin et al.
Figure 6.11: Panorama stylization results—a photo (source photo) is selected from a set of
shots taken around the same location by rotating a camera (target panorama) and stylized using
different artistic media (source style). The network is then trained using the stylized pair and
a subset of photos of the panoramic image (target panorama). Finally, the network is used to
stylize each shot, and the entire panorama is stitched together (our approach). In contrast to
previous techniques (Liao et al. [2017] and Kolkin et al. [2019]) our approach better preserves
essential artistic features and transfers them into appropriate semantically meaningful locations.
See also results with additional styles in Fig. 6.12. Source style © Štěpánka Sýkorová, used
with permission.

source style stylized panorama

Figure 6.12: Panorama stylization results (cont.)—two additional artistic styles (source style)
used to stylize the panorama shown in Fig. 6.11. Note how our approach (stylized panorama)
handles also a higher level of abstraction (first row). Source style (top row) © Jolana Sýkorová,
used with permission.

(Jamrǐska et al. [2019], Kolkin et al. [2019], and Texler et al. [2020a] (green points)). In
our experiment we wanted to evaluate how well our method reproduces the given artistic
style and how well it preserves the content of the target image. To perform the evalu-
ation, we collected data via an online survey, where we presented 170 participants with
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source photo source style target photo our appproach Gatys et al. Kolkin et al. Fǐser et al.

Figure 6.13: Stylization of portraits—a portrait photo (source photo) taken from a set of
portraits captured under similar lighting conditions is stylized by an artist (source style). The
network is then trained on the stylized pair and other portraits from the original set (target
photo). Once trained the network can be used to stylize the other portraits (our approach).
Even in this more challenging scenario our method produces a reasonable compromise between
style and identity preservation whereas concurrent techniques suffer either from loosing impor-
tant high-frequency details (Gatys et al. [2016] and Kolkin et al. [2019]) or have difficulties to
retain identity (Fǐser et al. [2017]). Source style (top row) © Graciela Bombalova-Bogra and
style (bottom row) © Adrian Morgan, used with permission.

source frame

stylized frame

target frame our approach Texler et al.

Figure 6.14: Real-time stylization of video calls—a frame from a training sequence (source
frame) is stylized by an artist (source style). The network weights are then optimized using
this stylized pair and remaining frames from the training sequence. The final image translation
model can be used for real-time stylization of a new video conference call that contains the same
person and have similar lightihg conditions (target frames). Note that in contrast to the method
of Texler et al. [2020b] our approach better preserves style details and keeps the stylization more
consistent in time (see also our supplementary video). Video frames and source style © Zuzana
Studená, used with permission.
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a randomized set of comparisons (2AFC) asking to choose which anonymized stylization
reproduces style or preserves content better. In total each participant responded to 28
questions. In each question, an output from a different method was paired with the
output from our technique using the same input data.

The measured preference scores of our method compared to other techniques can be
seen in Fig. 6.17. We set out a null hypothesis that ”there is no statistically significant
difference in the content preservation or style reproduction between the results of our
method and the other methods.” Then we discussed the probability of rejection of the
null hypothesis using the data we collected via Student’s t-test. In the style reproduction
category, we were able to reject the null hypothesis with more than 99% probability in
comparison to all tested methods in favor of our method. In the content preservation
category, we were able to reject the null hypothesis with more than 99% probability, but
only the comparison with the method of Jamrǐska et al. was in favor of our method while
the other two were not.

6.5 Limitations and Future Work

While our approach improves on current state-of-the-art in example-based stylization,
we have observed some limitations in how it can be applied.

The most important limitation as compared to related approaches is notably longer
time frame required to finish the optimization, which might be prohibitive for artist’s
exploration. To alleviate this drawback we envision a combination of fast patch-based
training strategy of Texler et al. [2020b] with the computation of VGG loss which needs
to be performed in a full-frame setting.

Due to the usage of relatively computationally expensive neural network model, the
maximum resolution is limited. While we are able to generate output images with res-
olutions greater than method of Texler et al. (e.g. 768 × 768 vs. 512 × 512), it is still
significantly lower than what patch-based methods [Jamrǐska et al. 2019] are capable
of. As a future work we envision to alleviate this drawback by combining our neural
approach with patch-based technique of [Texler et al. 2020a].

In our proposed workflow an artist is responsible for keyframe selection. While some
rules of thumb can be applied, such as selecting a frame that contains all features that
are descriptive for most other frames, a mechanism which would select the keyframe
automatically would improve ease of use.

A key advantage of our approach over current state-of-the-art in example-based video
stylization [Jamrǐska et al. 2019; Texler et al. 2020b] is greater robustness to structural
discrepancies in the target frames. Even a relatively significant change such as head ro-
tation is handled relatively well (see Fig. 6.1). In this case the network can successfully
reproduce newly appearing content while still being able to preserve the notion of impor-
tant planar structures of the original artistic media. On the other hand, some specific
localized features such as eyes, may remain unchanged (see Fig. 6.15ii). A similar issue
is known from visual attribute transfer approaches such as Deep Image Analogy [Liao
et al. 2017]. As compared to them our method is able to adapt to structural changes
better (see Fig. 6.16).

Most significantly, the method does not seem to generalize very well for completely
generic use cases, for example in Fig. 6.15i, where input images are sampled from different
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target photo target photostylized output stylized output

(i) Limitation on greater appearance change in the
target photo—a key assumption of our method is
that the domain of source and target photos is sim-
ilar, e.g., photos have same content and are taken
under comparable illumination conditions. When
this requirement is not satisfied, the resulting styl-
ization may start to show artifacts as is visible in
those examples of photos taken from the FFHQ
dataset [Karras et al. 2019] where the illumination
conditions are different to those used for the cap-
ture of source photo in Fig. 6.13.

(a) (b) (c) (d)

(e) (f) (g) (h)

(ii) Limitation on generalization—although our ap-
proach usually generalizes better than concurrent
stylization techniques [Jamrǐska et al. 2019; Texler
et al. 2020b], some specific features like eyes (a,
c) that tend to generate strong activation in se-
lected layers of VGG network may bias the VGG
loss and make the network F reproduce their mostly
unchanged copies (f, h) instead of adapting to their
actual geometric distortion (b, d).

Figure 6.15: Illustration of common limitations of our method.

our approachtarget frame Liao et al.

Figure 6.16: The advantage of using style transfer with auxiliary pairing in visual attribute
transfer scenario of Deep Image Analogy [Liao et al. 2017]. Although the style’s texture and
semantics (see source style in Fig. 6.1) are preserved well in both techniques, Deep Image
Analogy (Liao et al.) has difficulties in adapting to certain structural changes. Target video
frame © Zuzana Studená, used with permission.

underlying distributions. Thus, the set of potential applications is limited to groups of
images of visually similar settings created under comparable conditions.

6.6 Conclusion

We presented an approach of semantically meaningful style transfer that can leverage a
limited number of paired exemplars to stylize a broader set of target images having similar
content to the examples. We optimize weights of an existing image-to-image translation
network by minimizing a novel kind of objective function that considers the consistency
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among the provided stylized pairs as well as discrepancy between VGG features of style
exemplars and a subset of stylized target images.

Ours vs. Jamrǐska et al.

Ours vs. Kolkin et al.

Ours vs. Texler et al.
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Figure 6.17: Results of perceptual study—each point represents aggregated votes over a group
of 10 participants. On the x axis we depict the percentage of answers in favor of content
preservation of our method while on the y axis we show the style reproduction percentage.
Comparisons were performed with the method of Jamrǐska et al. [2019] (red points), Kolkin et
al. [2019] (blue points), and Texler et al. [2020a] (green points). From the graph it is visible that
our method is observed to reproduce style notably better than previous works. It also outperforms
the method of Jamrǐska et al. w.r.t. the content preservation, however, Kolkin et al. as well as
Texler et al. are better in content preservation.

Thanks to this combination, our approach can better preserve style details even when
the target images’ content differs significantly from the style exemplar. Moreover, our
method implicitly maintains temporal consistency in the video stylization scenario, which
needs to be treated explicitly in previous techniques. We demonstrated the benefits of
our approach in numerous practical use cases, including style transfer to videos and
faces, auto-painting of panorama images, and real-time stylization of 3D models and
video calls.
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Chapter 7

ChunkyGAN: Real Image Inversion
via Segments

7.1 Introduction

Figure 7.1: Real image manipulation examples created interactively using our method. The
left-most images are the original photographs, the remaining columns show following edits:
changing gaze direction, opening mouth, growing a beard and aging. Source images: Shutter-
stock

The increasing ability of GANs to generate images virtually indistinguishable from real
photographs [Karras et al. 2020; 2021], has created a new paradigm for image editing. In
this paradigm, one first estimates a latent code for the network that best reconstructs the
input image [Karras et al. 2019; Wu et al. 2021], and then manipulates this latent code
in specific ways to create particular variations of the input image. With a knowledge of
which directions in latent space of a particular generator encode which properties of the
output image, it is possible to perform high-level semantic editing of the appearance of
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the input photo while retaining the original visual features, e.g., adding more hair to a
bald person while retaining their identity [Tov et al. 2021; Patashnik et al. 2021].

Due to the nature of adversarial training, a well-trained generator transforms any
latent code drawn from the trained distribution into a plausible output, but mapping of
an arbitrary in-domain image to a latent code might be difficult or even not possible.
Existing methods address this by instead projecting into deeper spaces which makes
accurate reconstruction easier, but weakens the original guarantee that every code maps
to a plausible output, meaning that manipulated results may be out of domain and
visually appear broken. This means there is an inherent trade-off between ease and
accuracy of reconstruction, and quality of edited outputs [Tov et al. 2021], and existing
methods perform on the spectrum of this trade-off. For example in StyleGAN2 [Karras
et al. 2020], the original input code z ∈ R512 is transformed into a latent vector W ∈ R512

which is easy to edit but difficult to reconstruct, whereas Abdal et al. [2019] use W+ ∈
R18×512 that has enough degrees of freedom to provide good reconstruction, but is more
difficult to manipulate.

This issue becomes much more apparent when we examine examples that are in-
domain, but far from typical. For example in the case of StyleGAN trained on a dataset
of faces, we may consider human faces with unique features or accessories that do not
appear in training datasets such as CelebA [Lee et al. 2020] or FFHQ [Karras et al. 2019],
such as bindis, unusual glasses, heavy occlusions, etc. In these cases even techniques that
have greater flexibility such as S-space [Wu et al. 2021] usually fail.

The source of much of these difficulties are two underlying assumptions: that there
exists a single latent code that exactly or almost exactly reconstructs the target image,
and that the manifold of representative images is nearly convex with respect to finding
such a latent code. But because the number of output pixels is much higher than the
number of degrees of freedom in the latent space, we may view the reconstruction problem
as overdetermined, and although the aggregated reconstruction loss has local minima
that can be found, a minimum for the entire image is not necessarily a minimum for all
its regions. In practice, this means that the code retrieval problem is difficult and the
solutions we arrive at are in effect suboptimal. In this paper we propose to resolve this
difficulty by relaxing exactly these assumptions. We search not for a single latent code
to represent the entire image, but rather a vector of latent codes, each corresponding to
a segment of the image, such that when assembled they resemble the original image as
closely as possible (see Fig. 7.2).

Since each latent code is then estimated for a much lower dimensional target, each
of the regional subproblems become less overdetermined, which makes for an easier op-
timization problem. This in turn means that we can achieve much lower total error
and thus more accurate reconstruction of the original. Besides superior accuracy and
greater ability to generalize to the out-of-domain features, the segment-based nature of
our method also allows for strictly localized edits, either based on segmentation gener-
ated automatically as a by-product of our method, or based on user-specified segments.
Thanks to that property, visual content in different segments remains intact and thus
helps retain the fidelity of the original photo. This leads to an interesting novel in-
teractive scenario where the user adaptively applies individual local modifications in
sequence to achieve a desired output that would normally be difficult to obtain using
global manipulation techniques (see examples in Fig. 7.1). We demonstrate the power of
our approach in various use cases that would be difficult to achieve using current state of
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the art. Moreover, a great advantage of our approach is that it does not replace previous
methods but rather serves as a complementary part that, when plugged in, enables even
better results than those produced by the technique applied in isolation.

7.2 Related Work

State-of-the-art approaches to finding suitable latent codes for the input image can be
broadly split into two major categories: direct optimization and encoder-based tech-
niques.

The first category takes into account the fact that the generator network is differen-
tiable function on its own and thus gradient descent can be used to move from a real
image into its latent code [Lipton and Tripathi 2017; Huh et al. 2020; Kang et al. 2021; Xu
et al. 2021]. This typically leads to an inversion which is close to the original, however,
since constraining the optimization to search across the manifold of naturally looking
latent codes is nontrivial, the resulting projection is usually difficult to manipulate.

The other category relies on training an encoder which predicts the specific latent code
given an image, using generated samples as training data [Zhu et al. 2016; Bau et al.
2019]. Tov et al. [2021] show that the encoder can learn to embed the real image into
the natural manifold much closer than optimization methods, it does, however, often
come at the cost of overall reconstruction quality, even considering multi-pass iterative
techniques [Alaluf et al. 2021] or a modulation of StyleGAN weights [Alaluf et al. 2022;
Dinh et al. 2022].

Both of these approaches, therefore, are characterized by an important trade-off be-
tween faithfulness to the original image and the ability to perform editing operations on
the projected latent code. Hybrid approach has also been proposed, such as the one by
Zhu et al. [2020], in which the direct optimization method is initialized by latent code
proposed by a trained encoder, striking a better balance on the trade-off chart, however,
the final result is far from ideal in either axis.

The trade-off itself is also not one dimensional. As the representation of the latent code
turns into the final image via operations inside the generator network, it becomes easier to
invert images into intermediate representations, at the cost of increased dimensionality,
making editing more difficult. Recent work [Zhu et al. 2021; Yao et al. 2022; Kang
et al. 2021] tries to exploit this knowledge by imposing constraints like segmentation on
relatively high-level, spatial representations, leading to solutions that can create high-
quality inversions at the cost of restricting the set of possible edits.

Ling et al. [2021] presented EditGAN that enables to edit images by altering their
segmentation masks. In contrast to our technique EditGAN can only change shape and
relative position of selected regions. There is no control over the content generated
inside the edited area, and it is also challenging to perform global edits. Moreover,
EditGAN uses only a single latent code with lower expressive power while relying on
a pre-trained DatasetGAN model [Zhang et al. 2021] that jointly generates images and
their corresponding semantic segmentations. In our approach, each region have its own
latent code, can be added on the fly at arbitrary locations and subsequently edited.

In StyleFlow, Abdal et al. [2021] use continuous normalizing flows in the latent space
that are conditioned by various attribute features. This enables edit disentanglement
comparable to our approach that is, however, redeemed by lower reconstruction qual-
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ity. Moreover, StyleFlow also requires pre-trained classifiers to find the disentangled
attributes along which the edits are performed.

Roich et al. [2021] propose that it is possible to fine-tune the generator network itself
to improve the reconstruction quality while retaining the editability offered by a natural
latent code. While their technique provides a well-rounded solution to both inversion
accuracy and latent code editability, it requires fitting and storing per-image generator
network, making it more resource-intensive and less suitable for downstream tasks.

In the earlier version of our method [Futschik et al. 2021b], segmentation-based inver-
sion was developed for user-assisted local editing. In this extended version, we introduce
joint optimization framework that enables automatic projection of the entire image while
refining the shape of individual segments.

7.3 Our Approach

Our method accepts a real image I and reconstructs it as a vector of segmentation
masks S = {Si}ni=1, where pixel values range continuously from 0 to represent fully
outside and 1 fully inside, and a vector of corresponding per-segment latent codes XI =
{XI

i }ni=1. The masks are constrained so that they per-pixel sum up to 1. These latent
codes are interpreted as images using a shared image generator GI and the output image
is obtained by pixel-wise linear blending, visualized in Fig. 7.2:

O(XI , S) =
n∑

i=1

GI(XI
i ) · Si. (7.1)

XI
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XS

Map
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S4

GI(XI
4 )

Figure 7.2: ChunkyGAN flowchart—the output image O computed as a weighted combination
of n images generated by a network GI given a set of n latent codes XI . Weights are specified
by a set of n segmentation masks S that can be specified manually or generated automatically
by a segmentation network GS using a latent code XS. Source image: Raimond Spekking /
CC BY-SA 4.0 (via Wikimedia Commons)

This expression is trivially differentiable with respect to both S andX, and is optimized
with respect to some dissimilarity measure between I and the composite O just like in
a single-segment reconstruction scenario. Unless otherwise specified, in this paper we
optimize with respect to the perceptual loss LLPIPS of Zhang et al. [Zhang et al. 2018].

https://commons.wikimedia.org/wiki/File:Besuch_Bundeskanzlerin_Angela_Merkel_im_Rathaus_K\unhbox \voidb@x \bgroup \accent 127o\protect \penalty \@M \hskip \z@skip \egroup ln-09916.jpg
https://commons.wikimedia.org/wiki/File:Besuch_Bundeskanzlerin_Angela_Merkel_im_Rathaus_K\unhbox \voidb@x \bgroup \accent 127o\protect \penalty \@M \hskip \z@skip \egroup ln-09916.jpg
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Because the semantic segmentation is not universal and can vary dramatically between
individual faces, it is necessary to optimize the masks as well. Optimizing them on a
per-pixel basis would be memory intensive and would not take advantage of the domain
knowledge we have for the problem. Therefore, we use a mask generator GS to generate
them from a segment latent code XS, i.e., Si = GS(XS)i. In this work, we use a segment
generator network based on DatasetGAN [Zhang et al. 2021]. It consists of StyleGAN2
generator and a mapping network trained on a modest dataset (a few tens of images)
of randomly generated StyleGAN2 images annotated by example based synthesis [Fǐser
et al. 2017], using a single manually annotated image as exemplar.

To this end, the canonical form of our optimization problem is as follows:

min
XS ,XI

LLPIPS

(
I,

n∑
i=1

GI(XI
i ) ·GS(XS)i

)
+ λreg

n∑
i=1

∥XI
i −XI

µ∥22, (7.2)

where the first term measures reconstruction loss and the second term penalizes dis-
persion among the latent codes, measured as sum of squared deviations from the mean
code XI

µ. Such regularization helps avoid mutually distant latent codes that do not pro-
duce realistic images. This is not typically a problem in the projection step, but during
manipulation distant codes may diverge in appearance more quickly. This is caused by
limitations in visual coherence in the pre-trained editing directions.

Our approach is orthogonal to the choice of the latent space of the X codes. In general,
it can be any combination of common latent spaces that allows compact encoding of
the input image. In the case of StyleGAN [Karras et al. 2019; 2020], we consider W ,
W+ [Abdal et al. 2019], and S-space [Wu et al. 2021], however, any previously published,
potentially newly developed or a mixture of methods can be used. In fact, our method
is a complementary extension that could help achieve better results regardless of the
selected projection method.

In Fig. 7.3, we show an example of the optimization (per Equation 7.2) progression,
starting from mean latent codes until convergence. Note that the segments tend to align
with semantic facial features.

The processing speed of the optimization process relies on the number of segments and
the number of optimization steps. When a joint multi-segment optimization with the
DatasetGAN is performed the projection can take several minutes. However, during the
interactive editing (as seen in our supplementary video), where segments are specified by
the user one-by-one, the method runs at interactive rates on the GPU (a few seconds).

7.4 Evaluation

To validate our approach we performed two quantitatively and qualitatively evaluated
experiments. In the first experiment we validate whether the projections produced by
our method can reproduce target photos with greater fidelity when compared to stan-
dard projection techniques. In the second experiment we demonstrate the ability of our
approach to edit projected images by manipulating estimated latent codes and compare
the fidelity of the resulting edits with standard techniques. Finally, we compare our
approach with current optimization-based and encoder-based projection techniques.
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Figure 7.3: Progression of the optimization. Images and color-coded segmentation maps for
iterations 1, 5, 9, 15, 23, 37, 500. Source image: Adobe Stock

7.4.1 Fidelity of projected images

To quantitatively evaluate fidelity of projected images we took the first 100 images from
CelebA dataset [Lee et al. 2020] excluding blurred images and those with people wearing
additional props such as hats or glasses. We then projected all those images globally
into W , W+, S-space, and also locally using our method. When using W+, we show
both cases, with (λreg = 1) and without (λreg = 0) the regularization. For all projec-
tions we measured the LPIPS, identity (measured as cosine distance between ArcFace
descriptors [Deng et al. 2019]), and L2 loss with respect to the original target photos.

Projection LPIPS Identity L2

W 0.4190 ± 0.0363 0.1745 ± 0.1328 0.0725 ± 0.0699
Ours in W 0.3697 ± 0.0396 0.1384 ± 0.1117 0.0481 ± 0.0289
W+ 0.3675 ± 0.0387 0.1195 ± 0.1047 0.0436 ± 0.0623
Ours in W+ 0.3194 ± 0.0365 0.0937 ± 0.0855 0.0207 ± 0.0151
Ours in W+ reg. 0.3330 ± 0.0350 0.0894 ± 0.074 0.0217 ± 0.0130
S 0.3577 ± 0.0397 0.1070 ± 0.0965 0.0328 ± 0.0188
Ours in S 0.3572 ± 0.0401 0.1053 ± 0.0928 0.0319 ± 0.0187

Table 7.1: Projection fidelity. Losses were measured between the projected and the original
image for each of the projection methods. Each cell reports the loss averaged over the CelebA
subset along with the standard deviation. Our method significantly outperforms the baseline
methods in all latent spaces for all losses.

The resulting numbers are shown in 7.1 which shows losses averaged over all 100 im-
ages with corresponding standard deviations. Those confirm that on average our method
outperforms global projection methods significantly. This fact is visually apparent from
scatter plots shown in Fig. 7.4 where each point corresponds to an image and its coordi-
nates encode the LPIPS losses for the global and the segmented projection respectively.
Red line depicts the margin where losses for both projection methods are equal.

Since the best projection is achieved by our method inW+, we selectW+ as the default
space for our method. The regularization slightly decreases the projection fidelity in
terms of LPIPS, but improves the identity and editability, which is discussed in Sec. 7.4.2.

Because differences between the evaluated methods are difficult to observe in a typical
case, we have for the purposes of qualitative evaluation of projection fidelity deliberately
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Figure 7.4: Projection fidelity – scatter plots. Our method is compared with global projections
(W,W+,S-space). X and Y axis represent the LPIPS loss between the original image and the
image projected globally and projected by our method in W+ respectively. Each point corresponds
to one image from the CelebA subset, in blue and in orange with and without the regularization
respectively. The red line delineates the equal LPIPS losses. Our method improves projection
for all images in all tested latent spaces. The regularization slightly decreases the projection
fidelity, but remains still better than global methods.

pre-selected a subset of hard-to-project images. Specifically, these were images that
contain features uncommon in the standard datasets, e.g. bindis, face masks, asymmetric
glasses, or occluded faces. For those examples all compared methods were initialized
equally (using mean latent vector) and the corresponding projection results are presented
in Figure 7.5. It is apparent that thanks to greater flexibility of our approach, more
realistic projections can be achieved when compared to standard techniques. Moreover,
a workable inversion can be obtained even on out-of-domain images as shown in Fig. 7.5
(two bottom rows).

7.4.2 Editability of projected images

Quantitative evaluation of editability was performed on the same set of CelebA images
used for evaluation of projection fidelity. We pre-selected 4 semantic directions (gender,
smile, age, and beard), changed all latent codes X in the same direction with the same
magnitude, and finally measured the effect of the edits on identity.

Since the effect of unit strength manipulation along a pre-trained semantic direction
can differ among latent spaces and the use of global/local projection, we calibrate the
changes to make sure the effect on the manipulated image is equal. To do that we use
an image classifier for each semantic direction. For each space and method, we measure
image classifier responses while spanning the latent edit strength along a semantic di-
rection for the entire dataset. We use linear regression to find the rate of change of the
classifier response to the edit strength, and adjust the edit strength to be equal for all
tested methods.

Table 7.2 shows a quantitative evaluation of the identity loss between the projected
and edited images. It is apparent that the identity losses are the best for our method with
the regularization engaged since regularization pushes the codes of all segment images
towards latent areas where the linear latent manipulation works better. The results
confirm that our method keeps the identity consistent during editing.

Regarding the reconstruction-editability trade-off [Tov et al. 2021], latent code reg-
ularization is essential in order to perform realistic edits. While our method without
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Figure 7.5: Qualitative assessment of projection fidelity on hard examples. All images were
projected with regularization. For more examples refer to the supplementary material. Source
images: Adobe Stock
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(a) (b)
gender smile age beard gender smile age beard

W 0.169 0.022 0.07 0.279 0.249 0.18 0.191 0.328
W+ 0.209 0.02 0.095 0.296 0.256 0.128 0.171 0.325
Ours in W+ 0.298 0.049 0.151 0.312 0.325 0.125 0.203 0.333
Ours in W+ reg. 0.126 0.018 0.069 0.091 0.169 0.099 0.129 0.144

Table 7.2: Identity preservation during editing. Identity loss was computed between the pro-
jected and the edited images (a), and between the original and the edited images (b). Our
method with regularization outperforms all other methods.

regularization achieves better results in projection fidelity it performs poorly during
editing. By adding the regularization term, projection fidelity slightly deteriorates, but
the identity preservation during edits improves by a large margin. The editability can
be observed during the classifier-based calibration; methods without regularization need
much stronger edits in order to achieve the same editing effect.

For the qualitative evaluation we pre-selected images and directions (age and yaw)
that would cause difficulties to standard techniques, i.e., the identity is not well preserved
during editing. During the yaw manipulation using our method the segmentation masks
were edited as well (the segmentation latent code was manipulated automatically in
the same way as the images) to adjust the segments geometrically. Results are presented
in Fig. 7.6 and 7.7. It is clearly visible that our method keeps the identity better. Fig. 7.7,
a man wearing a mask is especially challenging. The global techniques are unable to
project the image properly. Our method projects the image faithfully and moreover, the
global edits still work. Note that these results were achieved fully automatically, neither
manual adjustment of the segmentation partitioning nor any post-processing were applied
for images in Fig. 7.6 and 7.7.

7.4.3 Comparison with current state-of-the-art

To demonstrate how our approach compares to current state-of-the-art in the optimization-
based and encoder-based techniques we performed various qualitative experiments seen
in Figures 7.7 and 7.8. When compared to current best approaches based on opti-
mization (Pivotal Tuning [Roich et al. 2021] and StyleFlow [Abdal et al. 2021]), our
method achieves better or comparable projection quality while still being able to deliver
compelling edits (c.f. Fig. 7.7). Our method also outperforms encoder-based techniques
(HyperStyle [Alaluf et al. 2022], ReStyle [Alaluf et al. 2021], pSp [Richardson et al. 2021],
and e4e [Tov et al. 2021]) with respect to the projection fidelity namely thanks to its
ability to reproduce small details that are usually omitted by encoders (c.f. Fig. 7.8).

7.5 Applications

Aside from the fully automatic solution proposed in Section 7.3, our framework can also
be extended to allow for interactive step-by-step manipulation in a few different ways.
To facilitate this, we define the notion of a static mask SX which defines an area of the
image which is not changed during the optimization. In terms of our objective function,
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Figure 7.6: Global edits with the same effective strength. For our methods the latent codes
of all segments were manipulated equally. Source images: Mingle Media TV (Kate Winslet),
Neil Grabowsky / Montclair Film (Ethan Hawke)

this creates a mixed composite:

O(XI , S, SX , I) = SX · I + (1− SX) ·
n∑

i=1

GI(XI
i ) · Si (7.3)

In practice, for edits with small spatial extent it is often sufficient to reduce the number
of segments being optimized to one, in which case there is no need to optimize Si.

Using this static mask, instead of generating segment masks automatically, we allow
the user to manually specify the region of interest. The user then runs the projection,
edits the latent code, and produces an intermediate composite O which can then become
a new I for next iteration. This user-driven iterative scheme is shown in Fig. 7.9. Such
a workflow is intuitive for users as they can specify what they want to change, overview
the resulting composition, and then possibly go back and revise their requirements by
making additional changes in different regions.

When making the composite O from edited image, even when edits of X are consis-
tent, continuity around boundaries may no longer be guaranteed. Small discrepancies
are suppressed automatically thanks to blending with soft masks. When the edit pro-
duces more notable global color shift we use Poisson image editing [Pérez et al. 2003]
to alleviate them. In most challenging scenario segment boundaries may start to in-
terfere with newly synthesized salient features. In this case continuity can be enforced
using a slightly modified version of our segmentation-based approach that will act as
semantically meaningful hole-filling as illustrated in Fig. 7.10.

https://www.flickr.com/photos/minglemediatv/13274194543
https://www.flickr.com/photos/montclairfilmfest/41955975762/
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Figure 7.7: Challenging global edits. The first row depicts the original and the projected
images using our approach with and without regularization, Pivotal Tuning [Roich et al. 2021],
StyleFlow [Abdal et al. 2021], W and W+ [Abdal et al. 2019]. The remaining two rows show
resulting global edits of age. Source image: BlochWorld

Suppose we have a photo of a person (Fig. 7.10a) and the aim is to add glasses.
We select a loose region S1 around eyes (Fig. 7.10b) and run the local projection to
get latent code X1 that reproduces the original image within S1 (Fig. 7.10b). Then
we manipulate X1 to add glasses, however, as visible in Fig. 7.10c the shape of S1 is
insufficient to encompass newly added content. To fix this discrepancy we let the user
specify correction mask S2 with two connected components (Fig. 7.10d) and refine X1

to obtain a new code X2 that will match the content within S2 (green region). From
the image generated by X2 we then use the dark part that lies inside S2 to make the
final composite (Fig. 7.10e). The X2 code in fact generates a semantically meaningful
hole-filling that completes the missing part of glasses.

7.6 Limitations

While the multi-segment reconstruction is remarkably robust, and segmented editing
produces superior results for spatially limited edits, we can experience incoherence be-
tween segments for global edits (e.g. age, yaw) with high strength. The reason for this
is that the editing directions are local linear approximations of the property of interest
on the latent manifold, and for higher edit strength this linearity assumption no longer
applies. This issue is present also in single-code editing, where it may cause loss of iden-
tity which may be in some scenarios more tolerable. With multiple segments however,
this is highlighted as a greater change resulting in individual segments to lose identity in
different ways and therefore gives rise to incoherence. It only occurs in editing and not in
reconstruction because in reconstruction the input image provides effective supervision
to maintain coherence between segments.

The incoherence does not usually occur for easy-to-invert images and moderate edits,
as seen in Fig. 7.6, but can be spotted in harder examples with a challenging global

https://uk.blochworld.com/products/bloch-b-safe-adult-face-mask-black
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original our approach HyperStyle ReStyle pSp e4e

Figure 7.8: Projection fidelity of our method with respect to the current state-of-the-art
in encoder-based techniques: HyperStyle [Alaluf et al. 2022], ReStyle [Alaluf et al. 2021],
pSp [Richardson et al. 2021], and e4e [Tov et al. 2021]. Source images: Ayush Kejriwal
(bindi), BlochWorld (face mask)

(a) (b) (c) (d)

Figure 7.9: Examples of local layered edits applied subsequently on a real photograph (a):
changing gaze direction (b), adding smile (c), changing haircut and nose shape (d).

edit, as e.g., in Fig. 7.7 in Age+ of our method with regularization. Nevertheless, the
small artifact on the mask shape, can be interactively removed by the hole-filling method
demonstrated in Fig. 7.10.

As another option, this issue could be addressed by formulating and imposing an
explicit segment coherence measure during editing, which can be done either locally,
by measuring agreement between segments in their regions of overlap, or globally by
e.g. an adversarial loss. Alternatively, instead of linear directions, one might train a
separate model to explicitly encode a higher-order approximation of identity-preserving
edit direction, which has the potential to also benefit vanilla methods under high edit
strength.

7.7 Conclusion

We presented a new technique for image reconstruction and editing based on generative
adversarial networks that subdivides the input image into a set of segments for which the
corresponding latent vectors are retrieved separately. By so decomposing the problem,

https://www.instagram.com/designerayushkejriwal/
https://uk.blochworld.com/products/bloch-b-safe-adult-face-mask-black
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(a) (b) (c) (d) (e)

S1 S2

Figure 7.10: Enforcing continuity of inconsistent edits—a photo of a person to which we would
like to add glasses (a), user-specified segmentation mask S1 with a projection X1 matching the
original image (b), manipulating X1 generates glasses that do not fit the shape of S1 (c), a
new mask S2 is marked encompassing two discontinuous parts (d), a composite with a projected
region S2 where the new latent code X2 is refined from X1 to produce the dark region inside
S2 (e).

we facilitate more accurate reconstructions that better preserve the identity and visual
appearance of facial images, especially in more challenging cases that are difficult to
handle using state-of-the-art techniques.

We demonstrated the utility of this technique for both the base project-and-edit sce-
nario and novel interactive sequential editing applications. As our approach provides
measurable improvements while being easily combined with other techniques, we antici-
pate it will find a place in modern image editing tools.
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Chapter 8

Conclusion

This thesis has introduced five new approaches that push the boundaries of machine
learning in the field of artistic stylization, with a particular emphasis on style transfer.
These approaches serve as fundamental building blocks that make it possible for digital
artists to complete tasks that were previously tedious or even impossible, especially in
real-time video style transfer and realistic face editing. In this chapter, we summarize our
contributions and highlight the key achievements of our work. We also discuss concurrent
work and explore potential directions for future research and development.

8.1 Summary

In Chapter 3, we presented our contribution for real-time facial stylization using a learn-
ing based approach, FacestyleGAN: Real-Time Patch-Based Stylization of Portraits Using
Generative Adversarial Network [Futschik et al. 2019], work we presented as a technical
paper at the Expressive 2019 conference. We have combined several existing techniques
in this work to achieve our results. First, we have selected a large dataset of faces and
automatically generated masks to remove unwanted elements from the images. We then
utilized the method proposed by Fǐser et al. [2017] to transfer texture from selected artis-
tic facial paintings onto extracted face landmarks. This helped us to preserve identity
as a weak prior. In addition, we have developed a state-of-the-art neural framework
to extract the transfer function from the created pairs, which consists of a registered
photo and its stylized counterpart in a given style. Our system runs in real-time and can
achieve sufficient frames per second to be highly interactive. It can be used in various
settings, such as online avatar stylization or as general entertainment.

In the domain of more general style transfer, Chapter 4 presented our work Arbitrary
Style Transfer Using Neurally-Guided Patch-Based Synthesis [Texler et al. 2020a] pub-
lished in Computers & Graphics journal. We have developed a novel approach to artis-
tic stylization by combining the strengths of neural and patch-based methods. Neural
techniques provide high-quality stylization at the global level, which we use as prior in-
formation for subsequent patch-based synthesis. By doing so, we are able to preserve the
high frequencies of the original artistic media, resulting in stylized images with dramat-
ically increased fidelity. Additionally, our method allows for the stylization of extremely
large images with high visual quality, up to 340 Mpix. In our work, we also introduce a
novel algorithm that directly uses responses from a pre-trained neural network to guide
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patch-based synthesis. This approach yields comparable visual quality to state-of-the-art
neural style transfer, but with resolutions previously unachievable using such methods.

In Chapter 5, we introduced our publication Interactive Video Stylization Using Few-
Shot Patch-Based Training [Texler et al. 2020b] presented at the SIGGRAPH 2020 con-
ference and published in ACM Transactions on Graphics journal. In this publication,
we introduce a refined training strategy for image-to-image translation networks, and we
successfully apply it to the problem of keyframe based video stylization. We were able
to develop a framework in which, using a single training pair, the model is trained from
scratch on the order of seconds or minutes on a consumer-grade GPUs, and model infer-
ence runs in real-time. Our framework appears to preserve temporal coherency without
the need to process previous frames, and thus allows for arbitrary order or parallel pro-
cessing. Furthermore, it implicitly handles multiple keyframes and produces consistent
results without any explicit blending operation, unlike previous patch-based approaches.
This allowed us to come up with various interactive scenarios that were not possible
before, e.g., a real-time style transfer to a live video stream that uses an exemplar that
is being simultaneously painted on a captured canvas.

Chapter 6 describes Style Transfer with Limited Auxiliary Pairing, or STALP for
short, presented at Eurographics 2021 and published in Computer Graphics Forum. Our
method addresses the same issue of keyframe based video stylization, but sets out to
achieve two distinct objectives: enhancing the visual quality of style transfer and address-
ing the challenge of temporal stability. As in previous approaches, STALP represents
the style transfer function as a neural network model that is specifically trained from
scratch for each transfer task. However, we introduce a crucial weak loss term during
training, which promotes style consistency across multiple input images. This innovation
allows us to demonstrate remarkable temporal stability in the resulting sequences, even
over complex transformations such as occlusions, rotations, or large-scale changes. Our
method sets a new standard in terms of reducing the number of keyframes required for
consistent stylization of video sequences. Furthermore, we show that our approach has
potential for broader applications, such as consistently stylizing panoramic images or a
dataset of portrait images taken under similar conditions.

Lastly, Chapter 7 presents our most recent work, ChunkyGAN: Real Image Inver-
sion via Segments [Šubrtová et al. 2022], which departs from the painterly focus of our
stylization work, and veers into the world of photorealistic stylization. This work was
presented at the European Conference on Computer Vision 2022, and offers an answer to
the problem of changing localized features in real photographs using pretrained GANs.
We demonstrate this ability on human faces using StyleGAN [Karras et al. 2020]. Com-
pared to similar work, our approach is able to very closely retain the identity of the person
found in the image, thanks to a clever combination of automatic segmentation and image
space blending of per-segment projected parts of the original image, and provides much-
desired localized control for GAN-based editing. Although this approach is not ideal for
large scale edits such as excessive aging, geometric transformations or drastic hairstyle
changes, we argue that artists who make use of such systems are much more likely to
want to have control over more localized changes such as fixing skin imperfections or
slightly changing facial expressions.
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8.2 Concurrent and Future Work

Stylization remains an attractive topic, from the point of view of research and products
alike. It should therefore not be surprising that many novel methods and techniques are
introduced every year. In the domain of general purpose style transfer, the recently pro-
posed method of Kolkin et al. [2022] has shown significant improvements on still images,
most notably in terms of textural quality, achieved by improving the fundamental ideas
of Liao et al. [2017] of replacing neural features of the content image by the features pro-
duced from the style image and then optimizing the result to produce such arrangement
of neural features. Many other works present modifying techniques applicable to exist-
ing methods, in order to, for example, stabilize style transfer [An et al. 2021] through
reversible flows or move the content preservation problem into the feature space of style
transfer models via attention maps [Park and Lee 2019].

The other areas seeing particularly exciting developments concurrently with our work
include, for instance, applications of NeRF-like frameworks for stylization of videos or
complete 3D environments. Even though they rarely preserve the planarity of style
exemplars, the methods produce very appealing results that manage to reconcile the dis-
connect between the reality of our 3D world and artistic renditions, as shown by Nguyen
et al. [2022]. In the work of Huang et al. [2022] the authors show remarkable consistency
in stylizing 3D scenes using such a method, allowing arbitrary user-guided exploration
of artistically stylized spaces. This line of work could e.g., have future applications in
making virtual worlds more approachable to more sensitive users by making any visual
artifacts easier to accept.

Furthermore, text-conditioned image generators like Stable Diffusion [Rombach et al.
2021], Imagen [Saharia et al. 2022] or DALLE-2 [Ramesh et al. 2022] have shown im-
pressive ability to generate countless types of content, and many have noticed tendency
to generate more believable images when the model is conditioned for artistic outputs,
certainly in part due to more forgiving nature of some styles. It is then unsurprising
that a large amount of effort is currently being put into leveraging these general pur-
pose models for artistic stylization, either by finding a conditioning paired with a given
style (trial and error, image inversion, image encoder), or by fine-tuning the model on
a small set of images that are close to the desired style [Ruiz et al. 2022]. Although
it is possible, the approaches using these general generative models will typically have
difficulty applying the chosen style onto an existing image, which is commonly the end
goal for stylization tasks. That is why method of Brooks et al. [2022] combines the
written instructions prompt with the given input image to perform an editing operation
that attempts to preserve the structure of the input image, which is much closer to the
traditional formulation of artistic stylization presented in this thesis.

As past and contemporary efforts illustrate, there is little doubt that future work in
stylization and style transfer will involve leveraging machine learning and incorporat-
ing novel results from other fields such as computer vision – making use of automatic
segmentation, object recognition, or classification to improve results by exploiting enor-
mous datasets that would be difficult to design for stylization specifically. Moreover,
combining the image input with a textual specification is a promising direction, thanks
to the fact that text prompt, unlike image editing, is so convenient and straight-forward
to experiment with if the system runs at interactive speeds.
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At the same time, there are yet untapped possibilities for style transfer and stylization;
as virtual worlds become more common, stylization will unquestionably find its place to
enable user customization and unlock creating unique-looking content material, especially
in the subsection of avatars that aside from representing the values of a user, are meant
to have sentimental value that is more achievable with artistic visuals. Furthermore, as
more features become possible in real-time either through new breakthroughs or hardware
acceleration, style transfer will surely be a natural fit for creating distinctive appearances
for computer games.

In conclusion, stylization has garnered significant attention from both artists and re-
searchers alike, and serves as a remarkable gateway towards computer-assisted or gener-
ated imagery. Our thesis has contributed a set of methods that aid artists in becoming
more efficient, creative, and comfortable with interactive workflows, while also fostering
an environment for experimentation. This field is currently in an exciting state of rapid
progress, and artists are already embracing these tools as an integral part of their creative
process. We believe our contributions further the state-of-the-art in this area, and are
confident in the positive impact it will have on creating future captivating experiences.
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Appendix B

Authorship Contribution Statement

This statement describes the specific contributions of the author of this thesis to the
publications presented therein.

FacestyleGAN: Real-Time Patch-Based Stylization of Portraits Using
Generative Adversarial Network (55%)

For this work, I introduced the image-to-image paradigm and key ideas to make it efficient
and effective at reasonable resolutions. I implemented the training pipeline, complete
with visualizations, custom loss functions and configurable settings. I designed the overall
architecture of the solution and later converted it to run at interactive speeds for real-
time stylization. With the help of my collaborators, I created most of the results shown in
the paper and supplementary material, and helped with preparation of the manuscript.

Arbitrary Style Transfer Using Neurally-Guided Patch-Based
Synthesis (15%)

My main contribution was performing a deep exploration of how guiding the patch-based
synthesis with neural features extracted from VGG network might work, which formed
the basis of the extension we presented in the final paper and that was published as part
of the journal submission. This involved multiple technical subtasks, such as extending
internal framework for patch-based synthesis to work on floating-point data and arbitrary
number of guidance channels, as well as developing a configurable way of extracting and
normalizing the VGG feature responses to convert them into usable guidance channels.
With this setup, I generated all the results we showed for our extension methods and
provided the discussion on it.

Interactive Video Stylization Using Few-Shot Patch-Based Training (25%)

I carried out a series of initial experiments based on the framework I developed and
maintained for previous work, implemented the patch-based sampling and improved ef-
ficiency of the training. Later, I made the system work for the interactive painting
scenario shown in the paper, video and supplementary material. I worked on the design
and implementation for the server-client architecture to run the training job on a remote
machine while the inference ran on edge at the same time, so two distinct machines and



GPUs could be utilized without having to construct a multi-GPU node to provide to the
artist. I also helped prepare and finalize the paper manuscript.

STALP: Style Transfer with Auxiliary Limited Pairing (60%)

For STALP, I designed the method in its entirety, from used architecture, model selection
and specific customizations, to the data pipelines including augmentations, to used loss
function and the technical implementation of the method. I conducted the majority of
the experiments shown in the paper, including fine-tuning hyperparameters to get the
best results, and helped with preparation of the manuscript. I presented this work at
the Eurographics 2021 conference.

ChunkyGAN: Real Image Inversion via Segments (40%)

In this paper, as an equal-contribution (joint first) author, I proposed and explored
the idea of projecting segmented chunks of images in isolation and manipulating them
separately. Later on, I created a proof-of-concept framework incorporating these ideas
with Poisson image-editing based blending, and wrote a draft that formed the basis of
the manuscript. I wrote a significant portion of the final code and produced some of the
results shown in the paper and performed some of the comparisons with related work.
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Appendix C

FacestyleGAN Supplementary
Material

To confirm that the quality of results produced by our approach are comparable to those
produced by the original FaceStyle algorithm [Fǐser et al. 2017] we conducted a perceptual
study. The study had the form of an online questionnaire, where we showed each user
the input face, input style, and the output. We asked the user to rate the output in two
categories: how well does the stylization preserve the identity of the stylized person, and
how well does the stylization reproduce the input style. The ratings were from 1 to 10, 1
being the worst and 10 being the best. The questionnaire featured 6 sets of input images
and their outputs for both of the tested methods, making a total of 12 image sets showed
to users, which were all being rated in the 2 categories. We deliberately selected results
which are comparable at the first glance with no obvious failures on both sides Fig. C.1.
During the time the questionnaire was open, we collected 194 responses for the full 12
question test.

Target photo Our approach FaceStyle Style Target photo Our approach FaceStyle Style

Figure C.1: A selection of results used in the perceptual study. Note that the results are
comparable for both approaches with no obious failures.



We set out with the null hypothesis stating there is no statistically significant difference
between the quality of the output of both tested methods, which we attempt to reject
based on the collected data using the Student’s t-test. In the case of identity preservation,
our data shows we can reject the null hypothesis with a probability of only 49%, which
suggests there is no statistically significant difference between the scores in this category.
Our approach scored an average of 6.76 points and FaceStyle scored an average of 6.87
points, which totals to approximately 1% difference on the 1 to 10 scale, supporting
the conclusion of both methods being on par with one another. Regarding the style
reproduction study, using the same procedure we can reject the null hypothesis with a
probability of 63%, which once again does not represent a significant statistical difference.
Our approach scored an average of 8.28 points and FaceStyle scored an average of 8.55
points, amounting to only 3% difference. From these results, we can conclude that
the outputs of our approach are on par with the outputs of FaceStyle with only minor
differences in the overall quality, as judged by our users.

128



129

Appendix D

Video Stylization Using Few-Shot
Patch-Based Training
Supplementary Material

In this supplementary material we describe the interactive applications of our framework
in more detail, presenting the overall architecture of the solution as well as mentioning
the specific hardware we used. Furthermore, we show example photos of our framework
during real-time stylization sessions with artists (see our supplementary video for live
recordings from those sessions) and discuss feedback we received during our informal user
study. Lastly, we show additional results produced by our framework, and additional
experiments with hyperparameter setting.

D.1 Interactive applications

To demonstrate interactive applications, we provide artists with a setup of our framework
in a few variations. Each scenario involves working with a workstation PC, equipped with
a consumer-grade GPU (we use Nvidia RTX 2080), on which the artists perform a task.
This machine runs our framework executable, which displays visual feedback for the
artist. Training of the model is done off-site on a server with an Nvidia Tesla V100
GPU. The client machine sends necessary training data to this server and the training
server in turn periodically sends back models trained with the new data. The training
data is replaced every time the server receives a new version of a frame. Our training
process quickly adapts the model to the new data.

Trained models are used on the artist’s PC to generate stylized video frames. Our
approach allows us to display an acceptable result in as little as 5 seconds, which improves
with time as better models arrive. In practice, the potentially lengthy process of art
creation amortizes training time, largely masking the downside of this delay.

Note that inference could also be performed on the server but we do it locally to reduce
delay during live-feed stylization.

We devise the following real-time style transfer tasks:



Style drawing
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Figure D.1: Scenario No. 1: an artist is drawing over a stencil of a keyframe using traditional
media. The stencil contains markers that allow us to perfectly align the frames to prevent shift
in images.

Physical object

PC

ClientInput content

Editing SW

Input style

Stylized live video

Training data

Models
Inference

Server

Training

Figure D.2: Scenario No. 2: an artist is stylizing an object as seen by the camera in real-time
using image editing software.
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Figure D.3: Scenario No. 3: an artist is stylizing an object as seen by the camera in real-time
using a physical stencil.

D.1.1 Pre-recorded video + live style capture (traditional)

The artist is provided with (or creates) a pre-recorded video sequence and selects one or
more keyframes which they will paint over. These keyframes are printed in low contrast
on a stencil with markers. These markers allow us to perfectly match and align the
contents of the stencil with the input sequence frames, so as to avoid misalignment
of the training data and achieve the best performance possible. In case of multiple

130



keyframes, we differentiate stencils using additional markers so that the artist is free to
swap between them during the session.

As the artist starts painting the first keyframe, the server recognizes which keyframes
are ready and only uses previously seen keyframes to train on. Unfinished or unseen
parts will likely produce poor visual results which will indicate spots which need to be
fixed in current or other keyframes. The artist may also wish to create masks for each
keyframe, to prevent introducing ambiguity of different appearances for identical content
or to save repetitive work, especially if the keyframes are relatively similar. Diagram for
this setup and an example photograph are shown in Fig. D.1.

D.1.2 Live video capture + live style capture (digital)

This scheme is different from the previous in that there is no pre-recorded video sequence,
instead, we arrange a camera, capturing a scene in real-time. Our framework allows the
artist to export a still image of the scene into image editing software of their choice. This
image can then be edited or painted over to achieve an artistic look. Its modified version
is periodically sent to the training server, where it serves as the current style exemplar
used for training.

During the session, the artist is free to change the scene, while observing the stylization
in real-time. If the scene contains some object, a common modification of the scene would
be rotating or moving the object. Once the artist is satisfied with the result, they can
export additional still images to fix any issues in the scene. This could be, for example,
one image for the front of an object and another image for the back of the object.
Diagram for this scenario and an example photograph of a session are shown in Fig. D.2.

D.1.3 Live video capture + live style capture (traditional)

We design our framework to also let us combine the two previous scenarios. When a still
image of a live scene is exported, it can be printed on a stencil. Artist draws on that
stencil, and we set up a second camera to capture it. The framework automatically aligns
it to the still image and sends it to the training server again. Defining multiple keyframes
is then as simple as printing multiple different stencils with identifying markers.

Although working with a digital image is often faster, this setup is useful due to the
preference of some artists to work with traditional artistic media. Our framework is
well suited for capturing real strokes and stylizing the video frames in a way similar to
traditional animation. This scenario is visually explained in Fig. D.3.

D.1.4 User study

We asked the artists for their comments on using our framework. Although our user study
was informal, we believe it still presents an interesting insight into the contribution of
this work.

One of the very first impressions was the moment of surprise and awe whenever a new
model arrived at the client machine and a better stylization started appearing on the
screen. Thanks to this effect, the artists felt engaged throughout the whole session, some
even asked us for further sessions so they could explore the implications of our framework
more.
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(a) (b) (c) (d)

(e)

Figure D.4: The keyframe (a) was used to produce the sequence of 148 frames. While the body
part is faithfully represented in both [Jamrǐska et al. 2019] (b) and ours (c), our approach better
preserves the facial region; see the zoom-in views [Jamrǐska et al. 2019] (d) and ours (e). Video
frames (insets of a–c) courtesy of © MAUR film and style exemplar (a) courtesy of © Jakub
Javora.

Generally, artists tended to describe the proposed system as a completely new tool
to approaching artistic animation, thanks to the real-time feedback and continuous im-
provement. The other aspect that makes using our framework easy and entertaining,
according to the comments, is using the photo stencils, as painting over a photograph
using brushes is much easier than creating art from scratch. This also makes it suitable
for children, who are largely familiar with using stencils from coloring books.

Lastly, artists appreciated the fact that no explicit masking needs to be done during
the creation process (e.g., background masking). The model we use seems good at
representing identity transformation, thus leaving parts of the image unstylized means
that the original background just propagates to the output.

While the overwhelming majority of the comments we received were positive, the
one negative remark was that the result image quality is somewhat lower than well-
optimized sequence created by Jamrǐska et al. [2019]. However, compared to the inability
of their method to deliver such a real-time experience, we feel our framework makes for
a reasonable trade-off.

D.1.5 Additional Results and Experiments

In this section, we first present an additional result of our approach compared to the
result of Jamrǐska et al. [2019], see Fig. D.4.

Second, as already primarily covered in the main text, we discuss hyperparameter
optimization on one more example. As it is a common practice to reduce the network
size to prevent overfitting, in Fig. D.5, we demonstrate that in the task of style transfer,
certain network capacity is necessary to achieve high-quality results.
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Network Size

0.5 1 3

Figure D.5: Impact of network size on the vi-
sual quality of results. The loss, y-axes, is com-
puted w.r.t. the output of Jamrǐska et al. [2019].
The x-axes shows the network size (i.e., num-
ber of filters) relative to the best setting we
found via hyper-parameter search. Other hyper-
parameters are fixed. The middle image (1) de-
picts the best setting, the left image (0.5) rep-
resents setting with half number of filters, and
the right image (3) represents setting with three
times more filters compared to the middle im-
age. The difference in the visual quality of im-
ages, as well as the loss curve, clearly show that
there exists a saddle point.
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Appendix E

ChunkyGAN Supplementary
Material

Here we present additional experiments that provide further insight and evaluations.
Namely, in Sections 7.4.1 and 7.4.2, we quantitatively compare with additional com-
peting methods: two encoders pSp [Richardson et al. 2021], e4e [Tov et al. 2021], and
Pivotal Tuning [Roich et al. 2021]. We show more challenging examples and qualitative
results of all tested methods. regularization shows the automatic segmentation and
corresponding images for both cases of our method, with and without the regularization.
Finally, in apps we demonstrate additional examples of interactive image editing and
application of our method to the image interpolation task.

E.1 Projection Fidelity

Projection LPIPS Identity L2

W 0.4190 ± 0.0363 0.1745 ± 0.1328 0.0725 ± 0.0699
Ours in W 0.3697 ± 0.0396 0.1384 ± 0.1117 0.0481 ± 0.0289
W+ 0.3675 ± 0.0387 0.1195 ± 0.1047 0.0436 ± 0.0623
Ours in W+ 0.3194 ± 0.0365 0.0937 ± 0.0855 0.0207 ± 0.0151
Ours in W+ reg. 0.3330 ± 0.0350 0.0894 ± 0.074 0.0217 ± 0.0130
S 0.3577 ± 0.0397 0.1070 ± 0.0965 0.0328 ± 0.0188
Ours in S 0.3572 ± 0.0401 0.1053 ± 0.0928 0.0319 ± 0.0187
[Tov et al. 2021] 0.4444 ± 0.0418 0.1912 ± 0.1343 0.0468 ± 0.0165
[Richardson et al. 2021] 0.4433 ± 0.0418 0.1706 ± 0.1182 0.0351 ± 0.0135
[Alaluf et al. 2021] 0.4444 ± 0.0430 0.1900 ± 0.1318 0.0433 ± 0.0162
[Roich et al. 2021] 0.3332 ± 0.0353 0.0936 ± 0.0616 0.0135 ± 0.0071
[Alaluf et al. 2022] 0.4297 ± 0.0404 0.1420 ± 0.1003 0.0247 ± 0.0115

Table E.1: Projection fidelity (extended)—losses were measured between the projected and the
original image for each of the projection methods. Each cell reports the loss averaged over the
CelebA subset along with the standard deviation. Recommended value of 5 iterations was used
for methods of [Alaluf et al. 2021] and [Alaluf et al. 2022].



The experiment measures the average LPIPS, Identity, and L2 losses between the orig-
inal and inverted images on CelebA subset of 100 images. Table E.1 is extended by three
rows with other methods compared to Table 7.1 in the main text. Notably, both fast
encoder-based approaches e4e [Tov et al. 2021] and pSp [Richardson et al. 2021] produce
lower fidelity images. In the case of Pivotal Tuning [Roich et al. 2021] we started refining
the StyleGAN2 model from W+ codes as pivots. Our method performs better when mea-
suring LPIPS and Identity. Pivotal Tuning is superior by a small margin only in the case
of L2 metric, which is known to be uncorrelated with the human perception. Moreover,
the major drawback of Pivotal Tuning is that it requires to store the entire StyleGAN2
model for each image together with the corresponding latent code. See qualitative results
in Fig. E.2–Fig. E.6 to compare differences among the methods visually.

E.2 Editability

(a) (b)
gender smile age beard gender smile age beard

W .169 .022 .07 .279 .249 .18 .191 .328
W+ .209 .02 .095 .296 .256 .128 .171 .325
Ours in W+ .298 .049 .151 .312 .325 .125 .203 .333
Ours in W+ reg. .126 .018 .069 .091 .169 .099 .129 .144
[Tov et al. 2021] .088 .024 .054 .239 .26 .242 .245 .351
[Richardson et al. 2021] .153 .026 .126 .074 .282 .223 .258 .248
[Alaluf et al. 2021] .097 .030 .081 .213 .417 .409 .399 .453
[Roich et al. 2021] .135 .037 .089 .329 .237 .176 .200 .388
[Alaluf et al. 2022] .107 .12 .135 .107 .15 .163 .166 .157

Table E.2: Identity preservation during editing (extended)—identity loss was computed be-
tween the projected and the edited images (a), and between the original and the edited images (b).
Recommended value of 5 iterations was used for methods of [Alaluf et al. 2021] and [Alaluf et al.
2022].

We tested the three extra methods for identity preservation during editing. Table E.2
extends the same table in the main text. The calibrated edits were made and the angular
identity loss was measured. From Table E.2 it is apparent that with regularization our
method compares very favorably when examining the projected and edited images (a).
Nevertheless, it outperforms by a large margin all competitors when comparing the orig-
inal and edited images (b). This is caused by the fact that the projection quality of
previous approaches is not very faithful to the original image as can be seen quantita-
tively in Table 7.1 and qualitatively in Fig. E.9. Pivotal Tuning gives a fair inversion
quality, however, it can be seen that the facial mask of the man is still blurred and the
bindi of the Indian woman was not reconstructed at all, unlike in our methods. The
editing for Pivotal Tuning is rather similar to W+, not very convincing.

Concerning limitations of our method, they occur in case of extreme edits that signifi-
cantly change the geometry, such as yaw. Then segments do not match and visible seam
artifacts are produced, see Fig. E.10. We shortly discussed in the main paper in Section
6 possible future options to resolve the issue.

136



O
ri
gi
n
al

O
u
rs

in
W

+
O
u
rs

in
W

+

w
it
h
re
g

W
W

+
S

P
iv
ot
al

T
u
n
in
g

Figure E.1: Qualitative assessment of projection fidelity on challenging examples -
optimization-based methods. The out-of-domain images are especially hard to project for
the existing methods. The best results are produced by our method. In the case of Pivotal Tuning
the in-domain images are projected faithfully, but for the out-of-domain images are still missing
important features (such as eyes of the mandrill, hand in front of the face, details of the face
mask). Our method is flexible enough to generate the unusual features of the original image.
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Figure E.2: Qualitative assessment of projection fidelity on challenging examples - encoder-
based methods. The out-of-domain images are especially hard to project for the existing
methods. The best results are produced by our method. HyperStyle produces good results for
the in-domain images, but the out-of-domain images contain artifacts. Our method is flexible
enough to generate the unusual features of the original image.
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Figure E.3: Qualitative assessment of projection fidelity on challenging examples -
optimization-based methods. Pivotal Tuning faithfully synthesizes the out-of-domain im-
age in column 3, but the images in column 1 and 2 lack details of the piercings.
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Figure E.4: Qualitative assessment of projection fidelity on challenging examples - encoder-
based methods. Face occlusions are not faithfully inverted by any of the encoder-based meth-
ods. The out-of-domain image in column 3 is hard to project, other methods fail to generate
the tentacles.
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Figure E.5: Further comparison on images which are challenging to invert accurately using
existing methods - optimization-based results. Pivotal Tuning does not faithfully reproduce
features which are far from the domain of the original trained network (toothbrush handle in
columns 1 and 2).
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Figure E.6: Further comparison on images which are challenging to invert accurately using
existing methods - encoder-based methods. Encoder based methods fail to reproduce major
expression features (tongue in columns 3, 4 and 5) and the hands occluding the face in column
6.
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Figure E.7: Qualitative assessment of projection fidelity on challenging examples -
optimization-based methods. The identity is reliably preserved using our method, S-space
inversion, and Pivotal Tuning; however, the Pivotal Tuning does not generate the tattoo in the
first column in great detail, and the S-space inversion produces unrealistically-looking hand in
column 4.
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Figure E.8: Qualitative assessment of projection fidelity on challenging examples - encoder-
based methods. Encoder-based methods all fail to generate the hand in column 4 and the
tattoo in column 1.
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Figure E.9: ***Challenging global edits. The row besides the original image shows inverted
images by all tested methods. Other rows display corresponding edited results along given se-
mantic directions. For our methods, the editing was done simply by manipulating the latent
codes the same for all the segments. The results of the inversion and editing are fully automatic.
No manual adjsustments and no postprocessing were performed.
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Figure E.10: Limitations of using our method to perform edits which change the geometry to
a significant extent. In these examples, segment seams become visible for larger yaw changes
without any explicit treatment of the segments.
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E.3 Regularization

In Table E.2, it is seen that the regularization has a positive impact on the identity
preservation during editing. We believe the reason is that the non-regularized projection
may generate unrealistic images with codes far from the mean. The regularization en-
courages the codes to be closer to the mean, producing in-domain images for which the
editing by latent code manipulation along pre-trained semantic directions works better.
The effect of the regularization is demonstrated in Fig. E.11. In both cases, the composed
image is very faithful to the original, and the composed images are hard to distinguish.
However, the component images are notably more realistic when the regularization is on.
Out-of-domain example is shown in Fig. E.12.

E.4 Additional Applications

Our approach can be used for image interpolation task (see Fig. E.13). In this application
two estimated latent codes in each segment are linearly interpolated to produce partial
inbetween image which is then composed with other inbetween images using Laplacian
pyramid [Burt and Adelson 1983]. Since our method preserves identity better and the
corresponding facial features are naturally mapped on each other due to the interpolation
in the latent space the resulting transition looks convicing.

In Fig. E.14 we present an editing example produced using our method where a Style-
GAN2 model trained on cars was used as a backbone. This example demonstrates that
our approach is agnostic to the domain on which the model was trained. The only re-
quirement for the used model is that it has a sufficient number of pre-trained directions
for latent code manipulation.

As demonstrated in the main paper our method is flexible enough to make a projection
of out-of-domain images, i.e., images that were not considered during the training of
StyleGAN2 model. In Fig. E.15 we edit various famous paintings using our method
with StyleGAN2 model trained exclusively on photographs of real faces. Thanks to the
accurate projection the subsequent edits look like if they were produced by a StyleGAN2
model trained on paintings.
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(a) Regularization on (λreg = 1)

(b) Regularization off (λreg = 0)

Figure E.11: Effect of regularization. The projected (composed) images are on the right. The
left side depicts individual projections with the corresponding segmentation masks underneath.
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(a) Regularization on (λreg = 1)

(b) Regularization off (λreg = 0)

Figure E.12: Effect of regularization - out-of-domain example. The projected (composed)
images are on the right. The left side depicts individual projections with the corresponding
segmentation masks underneath.
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Figure E.13: Interpolation examples—our approach can be used to perform interpolation be-
tween two different identifies. The estimated latent code in each segment is linearly interpolated
and the final image is then composed using Laplacian pyramid. A key advantage here is that in
our method identity is preserved better and thus the transition looks more believable.

(a)

(b) (c)

(d) (e)

Figure E.14: Editing using our method based on StyleGAN2 model trained on photos with
cars—original image (a), detail of the original image (b), local edits of wheel disc design (c–e).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure E.15: Edits performed on famous painting using our approach with StyleGAN2 model
trained on real faces—original Da Vinci’s Mona Lisa (a), more pronounced smile (b), change
in the gaze direction (c), original Botticelli’s The Birth of Venus (d), change in the mouth
expression (e), different shape of eyes (f), original Rembrandt’s Little Self-portrait (g), changing
mouth expression (h), different shape of the nose (i).
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