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Towards characterizing locally common graphs∗

Robert Hancock† Daniel Král’‡ Matjaž Krnc§ Jan Volec¶

Abstract

A graph H is common if the number of monochromatic copies of H
in a 2-edge-coloring of the complete graph is asymptotically minimized by
the random coloring. The classification of common graphs is one of the
most intriguing problems in extremal graph theory. We study the notion
of weakly locally common graphs considered by Csóka, Hubai and Lovász
[arXiv:1912.02926], where the graph is required to be the minimizer with
respect to perturbations of the random 2-edge-coloring. We give a complete
analysis of the 12 initial terms in the Taylor series determining the number
of monochromatic copies of H in such perturbations and classify graphs H
based on this analysis into three categories:

• graphs of Class I are weakly locally common,

• graphs of Class II are not weakly locally common, and

• graphs of Class III cannot be determined to be weakly locally common
or not based on the initial 12 terms.

As a corollary, we obtain new necessary conditions on a graph to be com-
mon and new sufficient conditions on a graph to be not common.
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1 Introduction

Ramsey’s theorem states that, for any graph H , every 2-edge-coloring of the
complete graph Kn contains a monochromatic copy of H , provided that n is
sufficiently large. The natural quantitative question stemming from this classi-
cal theorem is the following: What is the minimum number of monochromatic

copies of H contained in a 2-edge-coloring of Kn? In particular, is the minimum

achieved by the random 2-edge-coloring of Kn? Our main result is a complete
analysis of the initial 12 terms of the polynomial determining the number of
monochromatic copies of H in a perturbation of the random 2-edge-coloring of
Kn.

We next put our results in a broader context. A graph H is common if the
number of monochromatic copies ofH is asymptotically minimized by the random
2-edge-coloring of Kn. The notion of common graphs originated in the 1980s but
can be traced to even older results. Indeed, the classical result of Goodman [15]
implies that the graph K3 is common, which led Erdős [8] to conjecture that
every complete graph is common; this conjecture was extended by Burr and
Rosta [1] to all graphs. Sidorenko [28] disproved the Burr–Rosta Conjecture by
showing that a triangle with a pendant edge is not common, and around the same
time, Thomason [32] disproved the original conjecture of Erdős by establishing
that Kp is not common for any p ≥ 4. Several additional constructions showing
that Kp is not common for p ≥ 4 have since been found [12, 13, 33], and more
generally, Jagger, Št’ov́ıček and Thomason [18] showed that no graph containing
a copy of K4 is common. Determining the asymptotics of the minimum number
of monochromatic copies of K4 remains an open problem despite many partial
results [14, 24, 30].

A characterization of common graphs is one of the most intriguing problems in
extremal graph theory; there is not even a conjecture for a possible characteriza-
tion of common graphs. On one hand, common graphs include odd cycles [28] and
even wheels [18], and additional examples of common graphs can be obtained by
certain gluing operations [18,27]. Only recently, an example of a common graph
with chromatic number larger than 3 was identified: the 5-wheel was shown to
be common in [17] using Razborov’s flag algebra method introduced in [25]. On
the negative side, Fox [10] proved that every (connected) non-bipartite graph is
a subgraph of a connected graph that is not common. We also refer the reader
to [7, 19] for results on the analogous concept involving more colors.

Common graphs are very closely linked to Sidorenko graphs. A graph H is
Sidorenko if the number of copies of H in any graph G is asymptotically bounded
from below by the number of copies ofH in the random graph of the same density
as G. It easily follows that every Sidorenko graph is bipartite and a convexity
argument yields that every Sidorenko graph is common. A well known conjecture
of Sidorenko [26, 29], which is equivalent to an earlier conjecture of Erdős and
Simonovits [9], asserts that in fact every bipartite graph is Sidorenko. So, if true,
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then every bipartite graph would be common. Many families of bipartite graphs
are known to be Sidorenko [2–5,16,20,31], however, the complete solution of the
conjecture seems to be out of reach.

Sidorenko’s Conjecture is well-understood in the local setting, i.e., when
perturbations of the random graph with a given edge density are considered.
Lovász [21] showed that no fixed perturbation decreases the number of copies of
a graph H if and only if H is a tree or its girth is even. In the language of theory
of graph limits, which we introduce in Section 2, this result asserts that for every
such graph H and every kernel U with t(K2, U) = 0, there exists ε0 > 0 such
that

t(H, 1/2) ≤ t(H, 1/2 + εU) for every ε ∈ (0, ε0).

Fox and Wei [11] strengthened the result of Lovász and proved the following: for
every such graph H , there exists ε0 > 0 such that t(H, 1/2) ≤ t(H, 1/2 + U)
for every U with t(K2, U) = 0, ‖U‖� ≤ ε0 and ‖U‖∞ ≤ 1/2. In other words,
any large graph close to a random graph has at least the same density of H as a
random graph.

1.1 Locally common graphs

We study the local version of the notion of common graphs, which has recently
been introduced by Csóka, Hubai and Lovász [6]. As in the case of Sidorenko’s
Conjecture, several notions of locally common graphs can be considered. The one
that we study here is the following notion, which is referred to as weakly locally
common in [6] and which we simply refer to as to locally common for brevity
throughout the paper: a graph H is locally common if for every kernel U , there
exists ε0 > 0 such that

2t(H, 1/2) ≤ t(H, 1/2 + εU) + t(H, 1/2− εU) for every ε ∈ (0, ε0).

Csóka et al. [6] showed that every graph containing K4 is locally common in this
sense. In the sense analogous to that considered by Fox and Wei [11], the result
of Franek and Rödl [13] yields that K4 is not locally common and Csóka et al. [6]
established that in fact any graph containing K4 is not locally common in this
stronger sense.

We provide a strong partial characterization of locally common graphs, which
also suggests that the characterization of common graphs is likely to be very
complex. To be more precise, for every graph H and kernel U , we analyze the
function t(H, 1/2 + εU) + t(H, 1/2 − εU), which is a polynomial of ε, and give
a complete characterization of its possible coefficients up to the term of ε12 (in-
clusively). This characterization is presented in Theorems 18, 23 and 33. In
particular, we split graphs H into three classes:

• graphs of Class I are locally common,
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• graphs of Class II are not locally common, and

• graphs of Class III admit a kernel U such that the coefficients of the initial
twelve terms in t(H, 1/2 + εU) + t(H, 1/2 − εU) are zero and there is no
kernel U that witnesses that H is not locally common based on one of the
initial twelve terms.

In other words, if H is of Class III, then it is not possible to decide whether
H is locally common or not solely by analyzing the initial twelve terms in the
expression t(H, 1/2 + εU) + t(H, 1/2 − εU). To establish the classification, in
Section 4, we develop techniques for constructing kernels U with strong control
of the change of the number odd cycles passing through given vertices. We believe
that these techniques will be useful to the further study of locally common graphs
and common graphs in general.

While the actual characterization given in Theorems 18, 23 and 33 is complex,
which is caused by the involved nature of the problem, we state some of the
corollaries here. Let Ck ⊕ Cℓ be the graph obtained by identifying one vertex of
Ck and one vertex of Cℓ. The following sufficient conditions on a graph H to be
locally common are implied by our characterization:

• H contains C4 or C6.

• H contains C8 and C3 ⊕ C3.

• H contains C8 and two edge-disjoint C3’s but it does not contain C3 ⊕ C5.

We remark that the first condition was already established by Csóka et al. [6,
Theorem 4.1] who proved the following: if H is a graph with even girth g that
does not contain two cycles of different odd lengths ℓ1 and ℓ2 sharing at most one
vertex such that ℓ1+ ℓ2 ≤ g and also does not contain two cycles of the same odd
length ℓ sharing at most one vertex such that 2ℓ < g, then H is locally common.
On the negative side, Csóka et al. [6] showed that the graph C3⊕C5 is not locally
common. More generally, we show that the following are sufficient conditions on
a graph H to be not locally common:

• H contains C3 ⊕ C5 but does not contain C4, C6 or C3 ⊕ C3.

• H contains vertex disjoint C3 and C5 but it does not contain C4, C6 or two
edge-disjoint C3’s.

The examples above may suggest that whether the graph H is locally common
or not is determined by the presence or the absence of particular subgraphs. While
this is indeed the case for subgraphs with at most eight edges, the situation
already becomes more involved when 10-edge subgraphs are considered. For
example, suppose that a graph H does not contain C4, C6, C8, C3⊕C3, C3⊕C5,
C3⊕C7, or C3⊕P2⊕C3 (the last graph is depicted in Figure 4), H does contain two
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edge-disjoint C3’s and C10, and let s33, s35 and s55 be the numbers of subgraphs
of H isomorphic to the graphs C3 ⊕ P4 ⊕ C3, C3 ⊕ P2 ⊕ C5 and C5 ⊕ C5 (see
Figure 6), respectively. Theorem 23 yields that H is locally common if and only
if 4s33s55 ≥ (s35)

2.
This paper is structured as follows. In Section 2, we introduce the notation

and basic terminology from the theory of graph limits, and in Section 3, we
prove auxiliary number theory results required to develop our tools presented in
Section 4. In Sections 5, 6 and 7 we provide classifications of locally common
graphs with respect to subgraphs with 8, 10 and 12 edges, respectively, and
we describe which graphs can be concluded to be locally common (Class I),
which to be not locally common (Class II), and which belong to neither of the
two classes (Class III). We finish with presenting two open questions concerning
locally common graphs suggested by our work in Section 8.

2 Preliminaries

In this section, we fix notation used throughout the paper. We start with some
basic notation and introduce more specialized notation in subsections. The set
of the first n positive integers is denoted by [n]. All graphs considered here are
finite and simple. If G is a graph, then V (G) and E(G) is the vertex set and
the edge set of G. The order of G, i.e., its number of vertices, is denoted by |G|,
and its size, i.e., its number of edges, by ‖G‖. The complete graph of order n is
denoted by Kn, the n-vertex cycle by Cn and the n-edge path by Pn. If G and
H are two graphs, then G ∪ H is the graph obtained as a disjoint union of G
and H . If G and H are two vertex transitive graphs, then G ⊕ H is the graph
obtained from G ∪ H by identifying one vertex of G with one vertex of H , and
G⊕Pn⊕H is the graph obtained from G∪Pn∪H by identifying one vertex of G
with one end-vertex of the path Pn and one vertex of H with the other end-vertex
of Pn. We will also use the notation G⊕H when one or both G and H are not
vertex transitive if the vertex of G and the vertex of H to be identified are clear
from the context. A homomorphism from a graph H to a graph G is a function
f : V (H) → V (G) such that f(u)f(v) ∈ E(G) for every edge uv ∈ E(H), and the
homomorphism density of H in G, which is denoted by t(H,G), is the probability
that a random function from V (H) to V (G) is a homomorphism, i.e., it is the
number of homomorphisms from H to G divided by |G||H|.

2.1 Decks

In this subsection, we introduce notation related to decks of graphs, which play a
crucial role in determining whether a graph is locally common or not. An ℓ-deck
is any multiset of ℓ-edge graphs, and the ℓ-deck of a graph G, which is denoted
by G[ℓ], is the multiset of all ℓ-edge subgraphs of G. If D is an ℓ-deck and H is
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an ℓ-edge graph, we write sD(H) for the number of copies of H that D contains.
More generally, we can define sD(H) for a graph H with less than ℓ edges as
the number of ‖H‖-edge subgraphs of the graphs in D that are isomorphic to
H . We next define an ℓ′-deck D′ of an ℓ-deck D for ℓ′ ≤ ℓ: it is simply a union
of all ℓ′-decks of graphs contained in D (with their multiplicities). Note that
sD′(H) = sD(H) for every ℓ′-edge graph H . Observe that if D′ is the ℓ′-deck of
the ℓ-deck G[ℓ] of a graph G on m edges, then

sD′(H) =

(

m− ℓ′

ℓ− ℓ′

)

sG[ℓ′](H)

for every ℓ′-edge graph H , i.e., the multiplicities of graphs in G[ℓ′] and the ℓ′-deck
of G[ℓ] differ by the multiplicative constant independent of H . We will later recall
that the ℓ-th coefficient in the polynomial t(G, 1/2+ εU) is a linear combination
of sG[ℓ](H) for ℓ-edge graphs H , i.e., its sign is the same regardless of whether we
consider it directly with the ℓ-deck of G or with the ℓ-deck of another deck of G.

2.2 Graphons and kernels

In this part of Section 2, we introduce basic terminology from the theory of graph
limits. A graphon is a measurable function W : [0, 1]2 → [0, 1] that is symmetric,
i.e., W (x, y) = W (y, x) for all (x, y) ∈ [0, 1]2. Intuitively (and quite imprecisely),
a graphon can be thought of as a continuous variant of the adjacency matrix of a
graph. The graphon that is equal to p ∈ [0, 1] everywhere is called the p-constant
graphon; when there will be no confusion, we will just use p to denote such a
graphon. The notion of homomorphism density extends to graphons by setting

t(H,W ) :=

∫

[0,1]V (H)

∏

uv∈E(H)

W (xu, xv) dxV (H) (1)

for a graph H and graphon W , and we define the density of a graphon W to be
t(K2,W ).

The quantity t(H,W ) has a natural interpretation in terms of sampling a
random graph according to W : a W -random graph of order n ∈ N, which is
denoted by Gn,W , is obtained by sampling n independent uniform random points
x1, . . . , xn from the interval [0, 1] and joining the i-th and j-th vertices of G by
an edge with probability W (xi, xj). It can be shown that the following holds for
every graph H with probability one:

lim
n→∞

t(H,Gn,W ) = t(H,W ).

A sequence (Gi)i∈N of graphs is convergent if the sequence (t(H,Gi))i∈N con-
verges for every graph H . A simple diagonalization argument implies that every
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sequence of graphs has a convergent subsequence. We say that a graphon W is a
limit of a convergent sequence (Gi)i∈N of graphs if

lim
i→∞

t(H,Gi) = t(H,W )

for every graph H . One of the crucial results in graph limits, due to Lovász and
Szegedy [23], is that every convergent sequence of graphs has a limit. Hence, a
graph H is Sidorenko if and only if t(H,W ) ≥ t(K2,W )‖H‖ for every graphon
W , and H is common if and only if t(H,W ) + t(H, 1 − W ) ≥ 21−‖H‖ for every
graphon W .

A perturbation of a graphon can be described by a kernel. Formally, a kernel

is a bounded measurable symmetric function U : [0, 1]2 → R, and we define the
homomorphism density of H in U as in (1), i.e.,

t(H,U) :=

∫

[0,1]V (H)

∏

uv∈E(H)

U(xu, xv) dxV (H). (2)

If W is a graphon and U is a kernel, then it holds that

t(H, p+ εU) = p‖H‖ +
∑

k∈[‖H‖]

p‖H‖−kεk
∑

H′∈H[k]

t(H ′, U) (3)

for every p ∈ (0, 1), see [21, 28] and also [22, proof of Proposition 16.27]. In
particular, the k-term in (3) depends on the k-deck of H and the kernel U only,
which we discuss in more detail in Subsection 2.3.

The next proposition is implied by [22, Equation (7.22)]. In particular, if U
is a kernel, then t(Ck, U) = 0 if and only if U is zero.

Proposition 1. It holds that t(Ck, U) > 0 for any even cycle Ck and any non-

zero kernel U .

We will need an extension of homomorphic densities to rooted graphs. If H is
a graph with a distinguished vertex w (the root), then the homomorphic density

of H in U is the function tHU : [0, 1] → R defined as

tHU (z) =

∫

[0,1]V (H)\{w}

∏

uw∈E(H)

U(xu, z)
∏

uv∈E(H)
u,v 6=w

U(xu, xv) dxV (H)\{w};

we will omit displaying the choice of w in the notation as it will always be clear
from the context. In particular, if H is vertex transitive, the choice of the vertex
w is irrelevant, and we can write tHU without any danger of confusion. If H is
vertex transitive, then H⊕Pn is the rooted graph obtained by identifying a vertex
of H with one end vertex of the path Pn and choosing the other end of the path
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to be the root. A kernel U can be viewed as an operator, i.e., if f : [0, 1] → R is
a measurable function, then Uf is the function defined as

(Uf)(z) =

∫

[0,1]

U(z, x)f(x) dx.

Observe that tH⊕Pn
U = UntHU , in particular, tH⊕P1 = UtHU .

The following clearly holds for every graph H :

t(H,U) =

∫

[0,1]

tHU (x) dx;

the choice of the root for the definition of tHU (x) is irrelevant for the above identity
to hold. In addition, if H1 and H2 are two rooted graphs and H1⊕H2 is obtained
by identifying their roots, it holds that

t(H1 ⊕H2, U) =

∫

[0,1]

tH1
U (x)tH2

U (x) dx. (4)

In particular, if H is a vertex-transitive graph, then t(H ⊕ H,U) ≥ 0 and the
equality holds if and only if tHU (x) = 0 for almost every x ∈ [0, 1]. We say that a
kernel U is balanced if tP1

U (x) = 0 for almost every x ∈ [0, 1], i.e., the perturbation
determined by U does not change the degrees of the vertices of a graphon. The
identity (4) implies the following.

Proposition 2. If a kernel U is balanced and a graph H has a vertex of degree

one, then t(H,U) = 0.

We conclude this subsection with the following proposition on balanced ker-
nels.

Proposition 3. Let U be a balanced kernel. It holds that
∫

[0,1]

(Uf)(x) dx = 0

for every f ∈ L2[0, 1].

Proof. Since U viewed as an operator on L2[0, 1] is self-adjoint and compact (as
all Hilbert-Schmidt integral operators are), there exists a finite or countable set
I, non-zero reals λi and orthonormal functions fi ∈ L2[0, 1] such that

U(x, y) =
∑

i∈I

λifi(x)fi(y).

Let h ∈ L2[0, 1] be the function equal to one everywhere on [0, 1]. Since U
is balanced, it holds that Uh is equal to zero almost everywhere. Hence, the
following holds for every i ∈ I:

0 =

∫

[0,1]

fi(x)(Uh)(x) dx = λi

∫

[0,1]

fi(x)h(x) dx,

i.e., fi and h are orthogonal. It follows that Uf is orthogonal to h for every
f ∈ L2[0, 1] and the proposition follows.
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2.3 Perturbations

We next analyze the dependence of the density of G in 1/2 + εU on a kernel U
and ε. First observe that if U is a kernel, then it holds by (3) that

t(G, 1/2 + εU) + t(G, 1/2− εU)

= 2−‖G‖+1 +
∑

ℓ∈[‖G‖]

2−‖G‖+ℓ





∑

H∈G[ℓ]

t(H,U) + t(H,−U)



 εℓ. (5)

If the number of edges of a graph H is odd, then t(H,U) = −t(H,−U). In
particular, the coefficients at odd powers of ε in (5) are equal to zero. Hence, we
set

cGU,ℓ =
∑

H∈G[ℓ]

t(H,U)

for a kernel U , a graph G and an (even) integer ℓ, and observe that

t(G, 1/2 + εU) + t(G, 1/2− εU) = 2−‖G‖+1









1 +
∑

ℓ∈[‖G‖]

ℓ even

2ℓcGU,ℓε
ℓ









. (6)

We emphasize that the coefficient cGU,ℓ depends on a kernel U and the ℓ-deck D
of G only. Hence, we define

cDU,ℓ′ =
∑

H∈D

∑

H′∈H[ℓ′]

t(H ′, U)

for an ℓ-deck D and an even positive integer ℓ′ ≤ ℓ. Observe that if D is the
ℓ-deck of a graph G, then the coefficients cGU,ℓ′ and cDU,ℓ′ have the same sign for all

ℓ′ = 2, 4, . . . , ℓ. Also observe that the value of cDU,ℓ is determined by sD(H) for all
ℓ-edge graphs H , i.e., it holds that

cDU,ℓ′ =
∑

H,‖H‖=ℓ′

sD(H)t(H,U) (7)

for every ℓ-deck D and every even positive integer ℓ′ ≤ ℓ.
The above leads to the following classification of ℓ-decks, which we have al-

ready mentioned in Section 1. Let ℓ be an even integer. An ℓ-deck D is of

Class I if for every non-zero kernel U , not all of the coefficients cDU,2, . . ., c
D
U,ℓ are

zero and the first non-zero coefficient among cDU,2, . . ., c
D
U,ℓ is positive;

Class II if there exists a (non-zero) kernel U such that not all of the coefficients
cDU,2, . . ., c

D
U,ℓ are zero and the first non-zero coefficient among cDU,2, . . ., c

D
U,ℓ

is negative;
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Class III if there exists a non-zero kernel U such that all the coefficients cDU,2, . . .,
cDU,ℓ are zero, and for every (non-zero) kernel U , it holds that either all the
coefficients cDU,2, . . ., cDU,ℓ are zero or the first non-zero coefficient among
cDU,2, . . ., c

D
U,ℓ is positive.

In particular, the following holds for every graph G with m edges and every
ℓ ≤ m: every graph G such that its ℓ-deck is of Class I is locally common, every
graph G such that its ℓ-deck is of Class II is not locally common, and every graph
G such that its ℓ-deck is of Class III and ℓ ∈ {m − 1, m} is locally common; in
particular our results give a full characterization of graphs with up to 13 edges
into Class I or Class II. If the ℓ-deck is of Class III and ℓ < m − 1, then it
cannot be decided based on the ℓ-deck whether G is locally common or not; in
particular if a 12-deck is of Class III and m > 13, then G is of Class III in the
sense defined in Section 1. We remark that in our analysis above we have used
that the multiplicities of ℓ′-edge graphs H in the ℓ′-deck of G and in the ℓ′-deck
of G[ℓ] differ by the same multiplicative constant independent of H . Also observe
that if the ℓ′-deck of an ℓ-deck D, ℓ′ ≤ ℓ, is of Class I, then D is also of Class I,
and if the ℓ′-deck of D is of Class II, then D is also of Class II.

Proposition 4. It holds that cDU,2 ≥ 0 for every ℓ-deck D and every kernel U .

Moreover, if sD(P2) > 0, then cDU,2 = 0 if and only if the kernel U is balanced.

Proof. The definition of the coefficient cDU,2 yields that

cDU,2 = sD(P1 ∪ P1)

(
∫

[0,1]

tP1
U (x) dx

)2

+ sD(P2)

∫

[0,1]

tP1
U (x)2 dx.

It follows that the coefficient cDU,2 is always non-negative.
It remains to prove the second part of the proposition. So, suppose that

sD(P2) > 0. If the kernel U is balanced, then both integrals above are zero. On
the other hand, if cDU,2 = 0, then the second integral above must be zero, which is

possible only if tP1
U (x) = 0 for almost every x ∈ [0, 1]. We conclude that cDU,2 = 0

if and only if the kernel U is balanced.

Proposition 2 and the characterization results obtained in Theorems 18, 23
and 33 lead us to the definition of a principal graph:

Definition 5. A graph H is principal if either H is an even cycle or H has

minimum degree two and every block of H is an odd cycle or an edge.

Principal graphs with four, six, eight, ten and twelve edges are listed in Fig-
ures 2, 3, 4, 6 and 8, respectively. For a deck D with sD(P2) > 0, let g be the
length of the shortest even cycle that a graph in D contains, and let D′ be the
g′-deck D, where g′ ≤ g is even. Then the frequencies of principal graphs of D′

determine its class. Indeed, consider a non-zero kernel U . Since sD(P2) > 0, it
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holds that cUD,2 > 0 by Proposition 4 unless U is balanced. If U is balanced, then
t(H,U) = 0 for every graph H with vertex of degree one by Proposition 2, i.e.,
the non-zero contribution to the sum (7) defining cUD,4, . . . , c

U
D,g′ comes only from

subgraphs with minimum degree two. Since all graphs of D′ that have minimum
degree two are principal, the class of D′ is determined by its principal graphs.

3 Sums of powers

In order to present our main tool (Lemma 9) in Section 4, we need to state some
number-theoretic results. The main result of this section is Lemma 8, the proof
of which follows from Lemmas 6 and 7.

Lemma 6. For every pair of odd integers k0 and k such that 3 ≤ k0 ≤ k, there
exists an integer m and reals ω1, . . . , ωm such that

∑

i∈[m]

ωℓ
i = 0

for every odd integer ℓ 6= k0, 3 ≤ ℓ ≤ k, and
∑

i∈[m]

ωk0
i > 0.

Proof. Consider the square matrix A of order (k− 1)/2 such that Aij = j2i+1 for
i, j ∈ [(k−1)/2] and the square matrix B of the same order such that Bij = j2i−2

for i, j ∈ [(k − 1)/2]. The matrix B is a Vandermonde matrix and so it is full
rank. Since the matrix A can be obtained from the matrix B by multiplying its
j-th column by j3, the matrix A is also full rank. It follows that there exists
a rational vector z ∈ R

(k−1)/2 such that the vector Az is the (k0 − 1)/2-th unit
vector, i.e., (Az)(k0−1)/2 = 1 and (Az)i = 0 for i 6= (k0− 1)/2. Hence, there exists
an integer vector z′ ∈ Z

(k−1)/2 such that (Az′)(k0−1)/2 > 0 and (Az′)i = 0 for
i 6= (k0 − 1)/2. We set m = |z′1|+ · · ·+ |z′(k−1)/2| and consider the multiset of m
reals that contains j with multiplicity z′j if z′j ≥ 0 and −j with multiplicity −z′j
if z′j < 0 for each j ∈ [(k − 1)/2]. Setting ω1, . . . , ωm to be the elements of this
multiset yields the statement of the lemma.

Lemma 7. For every pair of odd integers k0 and k such that 3 ≤ k0 ≤ k and

every positive real δ > 0, there exists an integer m and reals ω1, . . . , ωm such that

∑

i∈[m]

ωℓ
i = 0

for every odd integer ℓ 6= k0, 3 ≤ ℓ ≤ k, and
∑

i∈[m]

ωk0
i = 1 and

∑

i∈[m]

ωk+1
i ≤ δ.

11



Proof. Apply Lemma 6 with k0 and k to obtain ω1, . . . , ωm′ such that

∑

i∈[m′]

ωℓ
i = 0

for every odd integer ℓ 6= k0, 3 ≤ ℓ ≤ k, and

∑

i∈[m′]

ωk0
i = Ω > 0.

For an integer n ∈ N , consider a multiset A of m = 2nk0m′ numbers that contains
each of the numbers ωiΩ

−1/k02−n, i ∈ [m′], with multiplicity 2nk0. Clearly, the
sum of the k0-th powers of the numbers in A is equal to one and the sum of the
ℓ-th powers for odd ℓ 6= k0, 3 ≤ ℓ ≤ k, is equal to zero. The sum of the (k+1)-th
powers can be bounded as follows:

∑

ω∈A

ωk+1 =
2nk0

Ω(k+1)/k02n(k+1)

∑

i∈[m′]

ωk+1
i ≤ 1

Ω(k+1)/k02n

∑

i∈[m′]

ωk+1
i .

Hence, there exists n ∈ N such that the sum is at most δ and the lemma holds
for the multiset A for such a choice of n.

Lemma 8. For every odd integer k ≥ 3, all reals s3, s5, . . . , sk and every positive

real δ > 0, there exists an integer m and reals ω1, . . . , ωm such that

∑

i∈[m]

ωℓ
i = sℓ

for every odd integer ℓ, 3 ≤ ℓ ≤ k, and

∑

i∈[m]

ωk+1
i ≤ δ.

Proof. For ℓ = 3, 5, . . . , k, if sℓ 6= 0, we apply Lemma 7 with δ

ks
(k+1)/ℓ
ℓ

to get mℓ

and ωℓ,1, . . . , ωℓ,mℓ
such that

∑

i∈[mℓ]

ωj
ℓ,i = 0

for every odd integer j 6= ℓ, 3 ≤ j ≤ k, and

∑

i∈[mℓ]

ωℓ
ℓ,i = 1 and

∑

i∈[mℓ]

ωk+1
ℓ,i ≤ δ

ks
(k+1)/ℓ
ℓ

.

If sℓ = 0, we set mℓ = 0.

12



We set m = m3 + · · · + mk and consider the multiset of m reals ω1, . . . , ωm

that consists of ωℓ,is
1/ℓ
ℓ for ℓ = 3, . . . , k and i ∈ [mℓ]. Observe that for every

ℓ = 3, . . . , k, it holds that

∑

i∈[m]

ωℓ
i =

∑

i∈[mℓ]

(

ωℓ,is
1/ℓ
ℓ

)ℓ

= sℓ
∑

i∈[mℓ]

ωℓ
ℓ,i = sℓ.

In addition, it holds that

∑

i∈[m]

ωk+1
i =

∑

ℓ=3,5,...,k

s
(k+1)/ℓ
ℓ

∑

i∈[mℓ]

ωk+1
ℓ,i ≤

∑

ℓ=3,5,...,k

δ

k
≤ δ.

The lemma follows.

4 Constructing balanced perturbations

In this section we construct a special family of perturbations and determine the
corresponding densities of key principal graphs. The construction is presented in
the following lemma.

Lemma 9. Let k ≥ 3 be an odd integer, let δ ∈ (0, 1) be a positive real, let m be

a non-negative integer, and let σi, γℓ and τi,ℓ, i ∈ [m] and ℓ = 3, 5, . . . , k, be any

reals such that σk+1
1 + · · ·+ σk+1

m ≤ δ/2. There exists a non-zero balanced kernel

U , orthonormal functions f1, . . . , fm ∈ L2[0, 1] and g3, . . . , gk ∈ L2[0, 1] and a

real γ > 0 such that fi, i ∈ [m], is an eigenfunction of U associated with σi, i.e.,

Ufi = σifi, and
∫

[0,1]

fi(x) dx = 0

for every i ∈ [m], the functions gℓ, ℓ = 3, 5, . . . , k, belong to the kernel of U , and

∫

[0,1]

gℓ(x) dx = γ

for every ℓ = 3, 5, . . . , k, and

tCℓ
U (x) =

γℓ
γ
gℓ(x) +

∑

i∈[m]

τi,ℓfi(x)

for every odd integer ℓ, 3 ≤ ℓ ≤ k, and t(Ck+1, U) ≤ δ.

Proof. We can assume that at least one of the values σi, γℓ and τi,ℓ is non-zero;
if this is not the case, we will prove the lemma for k + 2 and the additional
values set as γk+2 = δ/2 and τi,k+2 = 0, i ∈ [m]. Let αi = i

m+(k−1)/2
for i =

13
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1,2
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1,1
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1,2

f+
2,1
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2,1

f+
3,1

f−

3,1

Figure 1: The signs of the functions from the proof of Lemma 9 when k = 5 and
m = 1.

0, . . . , m + (k − 1)/2; note that the intervals [αi−1, αi), i ∈ [m + (k − 1)/2],
partition the interval [0, 1). For ℓ = 3, 5, . . . , k, we define

gℓ(x) =

{

(m+ (k − 1)/2)1/2 if αm+(ℓ−3)/2 ≤ x < αm+(ℓ−1)/2,

0 otherwise.

For i = 1, . . . , m, we define

fi(x) =











(m+ (k − 1)/2)1/2 if αi−1 ≤ x < αi−1+αi

2
,

−(m+ (k − 1)/2)1/2 if αi−1+αi

2
≤ x < αi,

0 otherwise.

Note that the functions g3, . . . , gk and f1, . . . , fm form an orthonormal system of
functions such that

∫

[0,1]

gℓ(x) dx = γ and

∫

[0,1]

fi(x) dx = 0

for every ℓ = 3, 5, . . . , k and for every i ∈ [m], where γ = (m+ (k − 1)/2)−1/2.
We next construct the kernel U . We start with defining functions hj : [0, 1] →

R, j ∈ N, as

hj(x) =

{

+(2m+ k − 1)1/2 if ⌊2jx⌋ is even, and

−(2m+ k − 1)1/2 otherwise.

14



For i = 1, . . . , m+ (k − 1)/2 and j ∈ N, we define a function f+
i,j : [0, 1] → R as

f+
i,j(x) =

{

hj ((2m+ k − 1)(x− αi−1)) if αi−1 ≤ x < αi−1+αi

2
, and

0 otherwise,

and a function f−
i,j : [0, 1] → R as

f−
i,j(x) =

{

hj

(

(2m+ k − 1)
(

x− αi−1+αi

2

))

if αi−1+αi

2
≤ x < αi, and

0 otherwise.

See Figure 1 for an illustration.

For i = 1, . . . , m, we apply Lemma 8 with k, sj =
τi,j

2(m+(k−1)/2)1/2
− σj

i

2
for

j = 3, . . . , k, and δ
2(2m+k−1)

, to get ω+
i,1, . . . , ω

+

i,m+
i

such that the sum of their j-th

powers is equal to sj =
τi,j

2(m+(k−1)/2)1/2
− σj

i

2
and the sum of their (k+1)-th powers

is at most δ
2(2m+k−1)

. We next apply Lemma 8 with k, sj =
−τi,j

2(m+(k−1)/2)1/2
− σj

i

2

for j = 3, . . . , k, and δ
2(2m+k−1)

, to get ω−
i,1, . . . , ω

−

i,m−
i

such that the sum of their

j-th powers is equal to sj =
−τi,j

2(m+(k−1)/2)1/2
− σj

i

2
and the sum of their (k + 1)-

th powers is at most δ
2(2m+k−1)

. For i = 1, . . . , (k − 1)/2, we apply Lemma 8

with k, s2i+1 = γ2i+1

2γ(m+(k−1)/2)1/2
and sj = 0 for j 6= 2i + 1, and δ

2(2m+k−1)
, to get

ωm+i,1 . . . , ωm+i,mm+i
such that the sum of their j-th powers is equal to 0 unless

j = 2i + 1 and it is equal to γ2i+1

2γ(m+(k−1)/2)1/2
if j = 2i + 1, and the sum of their

(k + 1)-th powers is at most δ
2(2m+k−1)

. We define the kernel U as

U(x, y) =
∑

i∈[m]

σifi(x)fi(y)+

+
∑

i∈[m]

∑

j∈[m+
i ]

ω+
i,jf

+
i,j(x)f

+
i,j(y) +

∑

i∈[m]

∑

j∈[m−
i ]

ω−
i,jf

−
i,j(x)f

−
i,j(y)

+
∑

i∈[(k−1)/2]

∑

j∈[mm+i]

ωm+i,j(f
+
m+i,j(x)f

+
m+i,j(y)− f−

m+i,j(x)f
−
m+i,j(y)).

Since the integral of each of the functions fi for i ∈ [m], f+
i,j for i ∈ [m] and

j ∈ [m+
i ], f

−
i,j for i ∈ [m] and j ∈ [m−

i ], and f+
m+i,j and f−

m+i,j for i ∈ [(k − 1)/2]
and j ∈ [mm+i] over [0, 1] is zero, it follows that the kernel U is balanced. Next
observe that

t(Ck+1, U) =
∑

i∈[m]

σk+1
i +

∑

i∈[m]

∑

j∈[mi]

(

ω+
i,j

)k+1
+
∑

i∈[m]

∑

j∈[m−
i ]

(

ω−
i,j

)k+1

+ 2
∑

i∈[(k−1)/2]

∑

j∈[mm+i]

ωk+1
m+i,j

≤ δ

2
+m · δ

2m+ k − 1
+

k − 1

2
· δ

2m+ k − 1
= δ.
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For ℓ = 3, . . . , k, we obtain that

tCℓ
U (x) =

∑

i∈[m]

σℓ
ifi(x)

2 +
∑

i∈[m]

∑

j∈[mi]

(

ω+
i,j

)ℓ
f+
i,j(x)

2 +
∑

i∈[m]

∑

j∈[m−
i ]

(

ω−
i,j

)ℓ
f−
i,j(x)

2

+
∑

i∈[(k−1)/2]

∑

j∈[mm+i]

ωℓ
m+i,j

(

f+
m+i,j(x)

2 + f−
m+i,j(x)

2
)

=
∑

i∈[m]

τi,ℓfi(x) +
γℓ
γ
gℓ(x).

This concludes the proof of the lemma.

The next lemma summarizes key properties of kernels obtained by applying
Lemma 9.

Lemma 10. Let U be the kernel obtained by applying Lemma 9 with k, δ, m, γ,
σi, γℓ and τi,ℓ, with i ∈ [m] and ℓ = 3, 5, . . . , k. It holds that

t(Cℓ, U) = γℓ and t(Cℓ ⊕ Cℓ, U) =
γ2
ℓ

γ2
+
∑

i∈[m]

τ 2i,ℓ

for every ℓ = 3, 5, . . . , k. Moreover, if ℓ and ℓ′ are odd integers between 3 and k
and n is a non-negative integer such that ℓ 6= ℓ′ or n > 0, then it holds that

t(Cℓ ⊕ Pn ⊕ Cℓ′, U) =
∑

i∈[m]

σn
i τi,ℓτi,ℓ′;

we interpret 00 in the sum above as 1.

An immediate corollary of Lemmas 9 and 10 is the following.

Lemma 11. For every odd integer k ≥ 3, there exists a non-zero balanced kernel

U such that tCℓ
U (x) = 0 for every odd integer ℓ, 3 ≤ ℓ ≤ k, and every x ∈ [0, 1].

In particular, t(Cℓ, U) = 0 for every odd integer ℓ, 3 ≤ ℓ ≤ k.

A less straightforward corollary of Lemma 9 is the following.

Lemma 12. Let D be a deck and k an even integer such that no graph in D
contains an even cycle of length at most k. There exists a non-zero kernel U
such that cUD,2 = · · · = cUD,k = 0.

Proof. Apply Lemma 9 with k − 1, δ = 1, m = 0 and γ3 = · · · = γk−1 = 0
to get a non-zero balanced kernel U with the properties given in the statements
of Lemmas 9 and 10. Since U is balanced, it follows that cUD,2 = 0. Since

tCℓ
U (x) = 0 for every ℓ = 3, . . . , k − 1 and almost every x ∈ [0, 1] and every
principal graph H with at most k edges contains an end-block that is an odd
cycle, it holds that t(H,U) = 0 for every principal graph H . Hence, it also holds
that cUD,4 = · · · = cUD,k = 0.
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C4

Figure 2: The only principal 4-edge graph.

C6 C3 ∪ C3 C3 ⊕ C3

Figure 3: Principal 6-edge graphs.

5 Decks with at most eight edges

In this section we prove Theorem 18, which determines which class a deck of size
up to 8 belongs to; the characterization is visualized in Figure 5 and Table 1. We
start with Lemmas 13 and 14, which deal with decks of size 4 and 6, respectively.

Lemma 13. A 4-deck D with sD(P2) > 0 is of Class I if and only if sD(C4) > 0;
otherwise, D is of Class III.

Proof. Fix a 4-deck D with sD(P2) > 0. Assume that sD(C4) > 0 and consider
a non-zero kernel U . If U is not balanced, then cUD,2 > 0 by Proposition 4. If U
is balanced, then cUD,2 = 0 by Proposition 4 and cUD,4 = sD(C4)t(C4, U) > 0 by
Proposition 1. It follows that the deck D is of Class I.

Assume that sD(C4) = 0 and consider any non-zero kernel U . It follows that
cUD,2 ≥ 0 by Proposition 4 and the equality holds only if the kernel U is balanced.
If the kernel U is balanced, then t(H,U) = 0 for any 4-edge graph that is not
principal and thus cUD,4 = sD(C4)t(C4, U) = 0. Lemma 12 implies the existence
of a non-zero kernel U such that cUD,2 = cUD,4 = 0, which implies that the deck D
is of Class III.

Lemma 14. A 6-deck D with sD(P2) > 0 is of Class I if and only if sD(C4) > 0
or sD(C6) > 0; otherwise, D is of Class III.

Proof. Fix a 6-deck D with sD(P2) > 0. If the 4-deck of D is of Class I, then the
6-deck D is also of Class I. Hence, we can assume that sD(C4) = 0 by Lemma 13.

We first consider the case that sD(C6) > 0. Consider a non-zero kernel U . If
U is not balanced, then cUD,2 > 0 by Proposition 4. If U is balanced, then cUD,2 = 0
by Proposition 4 and t(H,U) = 0 for any non-principal 4-edge or 6-edge graph
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C8 C3 ∪ C5 C3 ⊕ C5 C3 ⊕ P2 ⊕ C3

Figure 4: Principal 8-edge graphs.

H ; the three principal 6-edge graphs are listed in Figure 3. Hence, it holds that
cUD,4 = sD(C4)t(C4, U) = 0 and

cUD,6 = sD(C6)t(C6, U) + sD(C3 ⊕ C3)t(C3 ⊕ C3, U) + sD(C3 ∪ C3)t(C3 ∪ C3, U).

Since t(C3 ∪ C3, U) = t(C3, U)2 ≥ 0 and

t(C3 ⊕ C3, U) =

∫

[0,1]

tC3
U (x)2 dx ≥ 0,

it follows that cUD,6 ≥ sD(C6)t(C6, U), which is positive by Proposition 1. We
conclude that the deck D is of Class I.

It remains to consider the case that sD(C6) = 0. We first show that there is
no kernel U such that the first non-zero coefficient among cUD,2, c

U
D,4 and cUD,6 (if

such a coefficient exists) is negative. Let U be a kernel. If U is not balanced, then
cUD,2 > 0 by Proposition 4, and otherwise, cUD,2 = 0 and t(H,U) = 0 for any non-
principal 4-edge or 6-edge graph H . Hence, it holds that cUD,4 = sD(C4)t(C4, U) =
0 and

cUD,6 = sD(C3 ⊕ C3)t(C3 ⊕ C3, U) + sD(C3 ∪ C3)t(C3 ∪ C3, U) ≥ 0.

The existence of a non-zero kernel U such that cUD,2 = cUD,4 = cUD,6 = 0 follows
from Lemma 12 applied with k = 6. We conclude that the deck D is of Class
III.

Lemmas 15, 16, and 17 describe when a given 8-deck is of Class III, Class I,
or Class II, respectively.

Lemma 15. An 8-deck D with sD(P2) > 0 is of Class III if the 6-deck of D is of

Class III, sD(C8) = 0 and at least one of the following holds:

• sD(C3 ⊕ C3) > 0,

• sD(C3 ⊕ C5) = 0, sD(C3 ∪ C3) > 0, or

• sD(C3 ⊕ C5) = sD(C3 ∪ C5) = 0.
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Proof. Fix an 8-deck D with sD(P2) > 0 such that its 6-deck is of Class III and
that satisfies the assumption of the lemma, i.e., sD(C8) = 0 and (at least) one
of the three choices in the statement of the lemma holds. Note that sD(C4) =
sD(C6) = 0 by Lemmas 13 and 14. Lemma 12 applied with k = 8 yields that
there exists a non-zero balanced kernel U such that cUD,2 = cUD,4 = cUD,6 = cUD,8 = 0.
This implies that the 8-deck D is not of Class I.

To establish the statement of the lemma, we fix a kernel U and show that the
first non-zero coefficient among cUD,2, c

U
D,4, c

U
D,6 and cUD,8 is positive or does not

exist. If U is not balanced, then cUD,2 > 0 by Proposition 4. So, we will assume
that U is balanced, which implies that t(H,U) = 0 for any graph H with at most
eight edges that is not principal. In particular, it holds that cUD,2 = cUD,4 = 0 and

cUD,6 = sD(C3 ⊕ C3)

∫

[0,1]

tC3
U (x)2 dx+ sD(C3 ∪ C3)t(C3, U)2.

Note that the coefficient cUD,6 is always non-negative.

If sD(C3⊕C3) > 0, then cUD,6 > 0 unless tC3
U (x) = 0 for almost every x ∈ [0, 1].

However, if tC3
U (x) = 0 for almost every x ∈ [0, 1], we obtain that t(C3 ∪C5, U) =

t(C3 ⊕ C5, U) = t(C3 ⊕ P2 ⊕ C3) = 0, i.e., the densities of all principal 8-edge
graphs in U are zero with the exception of C8. It follows that c

U
D,8 = 0.

We next consider the case when sD(C3⊕C5) = 0 and sD(C3∪C3) > 0. Observe
that cUD,6 > 0 unless t(C3, U) = 0, in which case t(C3∪C5, U) = t(C3, U)t(C5, U) =
0. It follows that

cUD,8 = sD(C3 ⊕ P2 ⊕ C3)

∫

[0,1]

tC3⊕P1
U (x)2 dx ≥ 0.

We conclude that if the coefficient cUD,6 is zero, then cUD,8 is non-negative.
The final case given in the statement is that sD(C3 ⊕C5) = sD(C3 ∪C5) = 0.

We obtain that

cUD,8 = sD(C3 ⊕ P2 ⊕ C3)

∫

[0,1]

tC3⊕P1
U (x)2 dx ≥ 0

without any assumptions on the coefficient cUD,6. In particular, the coefficient cUD,8

is always non-negative. Hence, the first non-zero coefficient, if it exists, is either
cUD,6 or cUD,8 and is positive. This concludes the proof of the lemma.

Lemma 16. An 8-deck D with sD(P2) > 0 is of Class I if either the 6-deck of D
is of Class I, or the 6-deck of D is of Class III, sD(C8) > 0 and at least one of

the following holds:

• sD(C3 ⊕ C3) > 0,

• sD(C3 ⊕ C5) = 0, sD(C3 ∪ C3) > 0, or
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• sD(C3 ⊕ C5) = sD(C3 ∪ C5) = 0.

Proof. If the 6-deck of D is of Class I, then the 8-deck D is also of Class I. We
next assume that the 6-deck of D is of Class III. Let D′ be the 8-deck obtained
from D by removing all cycles of length eight. Since the 8-deck D′ satisfies the
assumptions of Lemma 15, the 8-deck D′ is of Class III. It follows that for any
non-zero kernel U , all the coefficients cUD′,2, . . . , c

U
D′,8 are zero or the first non-

zero among these coefficients is positive. Since cUD,ℓ = cUD′,ℓ for ℓ = 2, 4, 6 and

cUD,8 = cUD′,8 + sD(C8)t(C8, U), we obtain using Proposition 1 that at least one

of the coefficients cUD,2, . . . , c
U
D,8 is non-zero and the first non-zero among these

coefficients is positive. We conclude that the 8-deck D is of Class I.

Lemma 17. An 8-deck D with sD(P2) > 0 is of Class II if the 6-deck of D is of

Class III and at least one of the following holds:

• sD(C3 ⊕ C3) = 0 and sD(C3 ⊕ C5) > 0, or

• sD(C3 ⊕ C3) = sD(C3 ∪ C3) = 0 and sD(C3 ∪ C5) > 0.

Proof. For each of the two cases described in the statement of the lemma, we will
find a non-zero kernel U such that not all of the coefficients cUD,2, . . . , c

U
D,8 are zero

and the first non-zero coefficient among them is negative. Since the 6-deck of D
is of Class III, we obtain that sD(C4) = sD(C6) = 0 by Lemma 14.

If sD(C3 ⊕C3) = 0 and sD(C3 ⊕C5) > 0, apply Lemma 9 with k = 7, m = 1,
any δ ∈ (0, 1) such that sD(C8)δ ≤ 1/2, γ3 = γ5 = γ7 = 0, σ1 = τ1,7 = 0,
τ1,3 = 1 and τ1,5 = −1 to get a balanced kernel U with the properties given in the
statement of Lemma 9. Lemma 10 yields that t(C3, U) = t(C3⊕P2⊕C3, U) = 0,
t(C3 ⊕ C5, U) = −1 and t(C8, U) ≤ δ. Hence, we obtain that cUD,4 = 0, cUD,6 = 0
and

cUD,8 = sD(C8)t(C8, U) + sD(C3 ⊕ C5)t(C3 ⊕ C5, U) ≤ −1/2.

We conclude that D is of Class II.
We next consider the case when sD(C3 ⊕C3) = sD(C3 ∪C3) = 0 and sD(C3 ∪

C5) > 0. We apply Lemma 9 with k = 7, m = 0, any δ ∈ (0, 1) such that
sD(C8)δ ≤ 1/2, γ3 = 1, γ5 = −1, and γ7 = 0. Observe that t(C3 ∪ C5, U) =
t(C3, U)t(C5, U) = −1 and t(C3 ⊕ C5, U) = t(C3 ⊕ P2 ⊕ C3, U) = 0. Hence, the
coefficients cUD,4 = 0 and cUD,6 = 0, and

cUD,8 = sD(C8)t(C8, U) + sD(C3 ∪ C5)t(C3 ∪ C5, U) ≤ −1/2.

We conclude that D is of Class II in this case, too.

Lemmas 13–17 imply the following theorem. In addition to the diagram in
Figure 5, we also provide the classification in Table 1.

Theorem 18. Let D be an 8-deck with sD(P2) > 0. The deck D is of Class I,

Class II or Class III as determined in the diagram in Figure 5.
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sD(·) C4 C6 C3 ∪ C3 C3 ⊕ C3 C8 C3 ∪ C5 C3 ⊕ C5 C3 ⊕ P2 ⊕ C3

Class I > 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Class I 0 > 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Class I 0 0 ⋆ > 0 > 0 ⋆ ⋆ ⋆
Class II 0 0 ⋆ 0 > 0 ⋆ > 0 ⋆
Class I 0 0 > 0 0 > 0 ⋆ 0 ⋆
Class II 0 0 0 0 > 0 > 0 0 (0)
Class I 0 0 0 0 > 0 0 0 (0)
Class III 0 0 ⋆ > 0 0 ⋆ ⋆ ⋆
Class II 0 0 ⋆ 0 0 ⋆ > 0 ⋆
Class III 0 0 > 0 0 0 ⋆ 0 ⋆
Class II 0 0 0 0 0 > 0 0 (0)
Class III 0 0 0 0 0 0 0 (0)

Table 1: The classification of 8-decks D with sD(P2) > 0. An entry ⋆ means
arbitrary multiplicity, and an entry (0) represents that other columns of the
same row imply that sD(·) is 0.

Proof. The proof follows by inspecting the diagram in Figure 5 and verifying
that every path leading to the label Class I corresponds to the assumptions of
Lemma 16, every path leading to the label Class II corresponds to the assumptions
of Lemma 17, and every path leading to the label Class III corresponds to the
assumptions of Lemma 15.

Theorem 18 yields the following corollary.

Corollary 19. Every 8-deck D with sD(P2) > 0 that is of Class III satisfies that

sD(C4) = sD(C6) = sD(C8) = 0 and exactly one of the following:

• sD(C3 ⊕ C3) > 0,

• sD(C3 ⊕ C3) = sD(C3 ⊕ C5) = 0, sD(C3 ∪ C3) > 0, or

• sD(C3 ⊕ C3) = sD(C3 ⊕ C5) = sD(C3 ∪ C3) = sD(C3 ∪ C5) = 0.

6 Decks with ten edges

In this section we prove Theorem 23, which determines classes of 10-decks; the
statement is illustrated in Figure 7. Lemmas 20, 21, and 22 describe when a
given 10-deck is of Class III, Class I, or Class II, respectively.

Lemma 20. A 10-deck D is of Class III if the 8-deck of D is of Class III,

sD(C10) = 0 and at least one of the following holds:

• sD(C3 ⊕ C3) > 0,
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s(C4)
> 0

Class I

= 0

s(C6)
> 0

Class I

= 0

s(C3 ⊕ C3)
> 0

= 0

s(C3 ⊕ C5)
> 0

Class II

= 0

s(C3 ∪ C3)
> 0

= 0

s(C3 ∪ C5)
> 0

Class II

= 0
s(C8)

> 0
Class I

= 0

Class III

Figure 5: The classification of 8-decks D with sD(P2) > 0; we omit the subscript
D in the diagram.

C10 C3 ∪ C7 C5 ∪ C5

C3 ⊕ P4 ⊕ C3 C3 ⊕ P2 ⊕ C5 C3 ⊕ C7 C5 ⊕ C5

Figure 6: Principal 10-edge graphs.
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• sD(C3 ∪ C3) > 0, sD(C3 ⊕ C7) = 0 and sD(C3 ⊕ P2 ⊕ C3) > 0,

• sD(C3 ∪ C3) > 0, sD(C3 ⊕ C7) = 0 and 4sD(C3 ⊕ P4 ⊕ C3)sD(C5 ⊕ C5) ≥
sD(C3 ⊕ P2 ⊕ C5)

2, or

• sD(C3 ⊕ C3) = sD(C3 ∪ C3) = sD(C3 ⊕ C7) = sD(C3 ∪ C7) = 0.

Proof. Fix a 10-deck D such that the 8-deck of D is of Class III, sD(C10) = 0 and
that satisfies at least one of the four cases given in the statement of the lemma.
By Corollary 19, it holds that sD(Cℓ) = 0 for ℓ = 2, 4, 6, 8. Hence, Lemma 12
yields that there exists a non-zero kernel U such that cUD,2 = · · · = cUD,10 = 0.

We next fix a non-zero kernel U and show that either all the coefficients
cUD,2, . . . , c

U
D,10 are zero or at least one of them is non-zero and the first non-zero

among them is positive. If U is not balanced, then cUD,2 > 0 by Proposition 4.
Otherwise, t(H,U) = 0 for every graph H with at most ten edges that is not
principal. This yields that cUD,2 = 0 and cUD,4 = 0.

We first assume that sD(C3 ⊕ C3) > 0. As in the proof of Lemma 15, we
observe that the coefficient cUD,6 is positive unless tC3

U (x) = 0 for almost every
x ∈ [0, 1]. In the latter case, t(H,U) = 0 for every principal graph H with at
most ten edges unless H is an even cycle, H = C5 ∪ C5 or H = C5 ⊕ C5. Since
t(C5∪C5, U) ≥ 0 and t(C5⊕C5, U) ≥ 0, we conclude that the 10-deck D is indeed
of Class III.

We assume in the rest of the proof that sD(C3 ⊕C3) = 0 (otherwise, the first
case of the lemma applies); Corollary 19 implies that sD(C3 ⊕ C5) = 0. Since all
the three remaining cases also include the assumption that sD(C3 ⊕ C7) = 0, we
will also assume that sD(C3⊕C7) = 0. In addition, it holds that sD(C3⊕P2⊕C3) >
0 in the second case that we consider. The same arguments as presented in the
proof of Lemma 15 yields that the coefficient cUD,6 = sD(C3 ∪C3)t(C3, U)2 is non-
negative and it is equal to zero if and only if t(C3, U) = 0. If t(C3, U) = 0, then
cUD,8 = sD(C3⊕P2⊕C3)t(C3⊕P2⊕C3, U), which implies that cUD,8 is non-negative

and it is equal to zero if and only if tC3⊕P1
U (x) = 0 for almost every x ∈ [0, 1].

Hence, cUD,6 = 0 and cUD,8 = 0 if and only if t(C3, U) = 0 and tC3⊕P1
U (x) = 0 for

almost every x ∈ [0, 1]; otherwise, the first non-zero of these two coefficients is
positive. If t(C3, U) = 0 and tC3⊕P1

U (x) = 0 for almost every x ∈ [0, 1], then the
coefficient cUD,10 is equal to

cUD,10 = sD(C5 ∪ C5)t(C5 ∪ C5, U) + sD(C5 ⊕ C5)t(C5 ⊕ C5, U),

i.e., cUD,10 is non-negative. This concludes the analysis of the case when sD(C3 ⊕
P2 ⊕ C3) > 0.

We assume in the rest of the proof that sD(C3 ⊕ P2 ⊕ C3) = 0 in addition
to sD(C3 ⊕ C3) = sD(C3 ⊕ C5) = sD(C3 ⊕ C7) = 0. In the third case, it holds
that sD(C3 ∪ C3) > 0 and 4sD(C3 ⊕ P4 ⊕ C3)sD(C5 ⊕ C5) ≥ sD(C3 ⊕ P2 ⊕ C5)

2.
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Since cUD,6 = sD(C3 ∪ C3)t(C3, U)2, we conclude that either cUD,6 is positive or
t(C3, U) = 0. In the latter case, it holds that

cUD,8 = sD(C3 ⊕ P2 ⊕ C3)t(C3 ⊕ P2 ⊕ C3, U) ≥ 0

and

cUD,10 =sD(C3 ⊕ P4 ⊕ C3)t(C3 ⊕ P4 ⊕ C3, U)+

sD(C3 ⊕ P2 ⊕ C5)t(C3 ⊕ P2 ⊕ C5, U)+

sD(C5 ⊕ C5)t(C5 ⊕ C5, U) + sD(C5 ∪ C5)t(C5 ∪ C5, U).

Since it holds that t(C5 ∪ C5, U) = t(C5, U)2 ≥ 0, it follows that

cUD,10 ≥
∫

[0,1]

(

tC3⊕P2
U (x)

tC5
U (x)

)T
(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

(

tC3⊕P2
U (x)

tC5
U (x)

)

dx.

The assumption that 4sD(C3⊕P4⊕C3)sD(C5⊕C5) ≥ sD(C3⊕P2⊕C5)
2 implies

that the matrix
(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

is positive semidefinite, which yields that the product in the integral above is
non-negative for every x ∈ [0, 1]. It follows that cUD,10 ≥ 0. This concludes the
analysis of the third case of the lemma.

It remains to analyze the final case. In this case, it holds that sD(C3∪C3) = 0
and sD(C3 ⊕ C3) = 0, which yields that sD(C3 ∪ C5) = 0 by Corollary 19. It
follows that cUD,2 = cUD,4 = cUD,6 = cUD,8 = 0 and sD(H) can be non-zero only for the
following 10-edge principal graphs H : C5 ∪C5, C5 ⊕C5 and C3 ⊕ P4 ⊕C3. Since
t(H,U) ≥ 0 for each of these graphs H , we obtain that cUD,10 is non-negative.
Hence, the 10-deck D is of Class III.

Lemma 21. A 10-deck D is of Class I if either the 8-deck of D is of Class I

or the 8-deck of D is of Class III, sD(C10) > 0 and at least one of the following

holds:

• sD(C3 ⊕ C3) > 0,

• sD(C3 ∪ C3) > 0, sD(C3 ⊕ C7) = 0 and sD(C3 ⊕ P2 ⊕ C3) > 0,

• sD(C3 ∪ C3) > 0, sD(C3 ⊕ C7) = 0 and 4sD(C3 ⊕ P4 ⊕ C3)sD(C5 ⊕ C5) ≥
sD(C3 ⊕ P2 ⊕ C5)

2, or

• sD(C3 ⊕ C3) = sD(C3 ∪ C3) = sD(C3 ⊕ C7) = sD(C3 ∪ C7) = 0.
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Proof. If the 8-deck of D is of Class I, then the 10-deck D is also of Class I. We
next assume that the 8-deck of D is of Class III. Let D′ be the 10-deck obtained
from D by removing all cycles of length ten. Since the 10-deck D′ satisfies the
assumptions of Lemma 20, the 10-deck D′ is of Class III. It follows that for any
non-zero kernel U , all the coefficients cUD′,2, . . . , c

U
D′,10 are zero or the first non-

zero among these coefficients is positive. Since cUD,ℓ = cUD′,ℓ for ℓ = 2, 4, 6, 8 and

cUD,10 = cUD′,10 + sD(C10)t(C10, U), we obtain using Proposition 1 that at least one

of the coefficients cUD,2, . . . , c
U
D,10 is non-zero and the first non-zero among these

coefficients is positive. This implies that the 10-deck D is of Class I.

Lemma 22. A 10-deck D is of Class II if either the 8-deck of D is of Class II

or the 8-deck of D is of Class III and at least one of the following holds:

• sD(C3 ⊕ C3) = 0 and sD(C3 ⊕ C7) > 0,

• sD(C3 ⊕ C3) = sD(C3 ∪ C3) = 0 and sD(C3 ∪ C7) > 0, or

• sD(C3 ⊕C3) = sD(C3 ⊕P2 ⊕C3) = 0 and 4sD(C3 ⊕P4 ⊕C3)sD(C5 ⊕C5) <
sD(C3 ⊕ P2 ⊕ C5)

2.

Proof. Fix a 10-deck D. If the 8-deck of D is of Class I or II, then there is nothing
to prove. Hence, we assume that the 8-deck of D is of Class III and analyze each
of the three cases listed in the statement of the lemma separately. Note that
sD(Cℓ) = 0 for ℓ = 2, 4, 6, 8.

In the first case, we apply Lemma 9 with k = 9, m = 1, any δ ∈ (0, 1) such
that sD(C10)δ ≤ 1/2, γ3 = γ5 = γ7 = γ9 = 0, σ1 = 0, τ1,3 = 1, τ1,5 = τ1,9 = 0 and
τ1,7 = −1 to get a balanced kernel U with the properties given in the statement
of Lemma 9. Note that t(H,U) = 0 for all principal graphs with at most 10 edges
with the exception of H being an even cycle, C3 ⊕C3 or C3 ⊕C7. It follows that
cUD,ℓ = 0 for ℓ = 2, 4, 6, 8 and

cUD,10 = sD(C10)t(C10, U) + sD(C3 ⊕ C7)t(C3 ⊕ C7, U) ≤ −1/2.

Hence, the 10-deck D is of Class II.
In the second case, we apply Lemma 9 with k = 9, m = 0, any δ ∈ (0, 1) such

that sD(C10)δ ≤ 1/2, γ3 = 1, γ5 = γ9 = 0 and γ7 = −1 to get a balanced kernel
U . Note that t(H,U) = 0 for all principal graphs with at most 10 edges with the
exception of H being an even cycle, C3 ∪C3, C3 ⊕C3 or C3 ∪C7. It follows that
cUD,ℓ = 0 for ℓ = 2, 4, 6, 8 and

cUD,10 = sD(C10)t(C10, U) + sD(C3 ∪ C7)t(C3 ∪ C7, U) ≤ −1/2.

Hence, the 10-deck D is of Class II in this case, too.
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It remains to consider the final case given in the statement of the lemma.
Since 4sD(C3 ⊕P4 ⊕C3)sD(C5 ⊕C5)− sD(C3 ⊕P2 ⊕C5)

2 is negative, the matrix

(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

has a negative eigenvalue, i.e., there exists a vector (z3, z5) ∈ R
2 such that

(

z3
z5

)T
(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

(

z3
z5

)

= −1.

We next apply Lemma 9 with k = 9, m = 1, any δ ∈ (0, 1) such that sD(C10)δ ≤
1/2, γ3 = γ5 = γ7 = γ9 = 0, σ1 = δ/2, τ1,3 = 4z3/δ

2, τ1,5 = z5 and τ1,7 =
τ1,9 = 0 to get a balanced kernel U with the properties given in the statement
of Lemma 9; let f1 be the eigenfunction from the statement of Lemma 9. Note
that t(C3, U) = t(C5, U) = t(C7, U) = 0. Since sD(C3 ⊕ C3) = 0, it holds that
sD(C3 ⊕ C5) = 0 by Corollary 19. It follows that cUD,ℓ = 0 for ℓ = 2, 4, 6, 8. For
every 10-edge principal graph H , it holds that sD(H) = 0 or t(H,U) = 0 unless
H is C3 ⊕ P4 ⊕ C3, C3 ⊕ P2 ⊕ C5 or C5 ⊕ C5 (here, we use that sD(H) = 0 for
every h containing C3 ⊕ C3 as sD(C3 ⊕ C3) = 0). It follows that

cUD,10 =sD(C10)t(C10, U) + sD(C3 ⊕ P4 ⊕ C3)t(C3 ⊕ P4 ⊕ C3, U)+

sD(C3 ⊕ P2 ⊕ C5)t(C3 ⊕ P2 ⊕ C5, U) + sD(C5 ⊕ C5)t(C5 ⊕ C5, U)

which can be rewritten as

cUD,10 =sD(C10)t(C10, U)+
∫

[0,1]

(

tC3⊕P2
U (x)

tC5
U (x)

)T
(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

(

tC3⊕P2
U (x)

tC5
U (x)

)

dx.

Since tC3⊕P2
U (x) = σ2

1τ1,3f1(x) = z3f1(x) and tC5
U (x) = τ1,5f1(x) = z5f1(x), we

obtain that

cUD,10 =sD(C10)t(C10, U)+
∫

[0,1]

(

z3
z5

)T
(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

(

z3
z5

)

f1(x)
2 dx.

Since the integral is equal to −1 as the L2-norm of f1 is one, it follows that
cUD,10 ≤ −1/2. We conclude that the 10-deck D is of Class II.

We are now ready to state the main theorem of this section.
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s(C3 ⊕ C3)
> 0

= 0

s(C3 ⊕ C7)
> 0

Class II

= 0

s(C3 ∪ C3)
= 0

> 0

s(C3 ∪ C7)
= 0

> 0

Class II

s(C3 ⊕ P2 ⊕ C3)
> 0

= 0

4s(C3 ⊕ P4 ⊕ C3)s(C5 ⊕ C5)− s(C3 ⊕ P2 ⊕ C5)
2 ≥ 0

< 0

Class II s(C10)
> 0

Class I

= 0

Class III

Figure 7: The classification of 10-decks D with sD(P2) > 0 whose 8-decks is of
Class III; we omit the subscript D in the diagram.
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Theorem 23. Let D be a 10-deck with sD(P2) > 0. If the 8-deck of D is of

Class I or of Class II, then D is of Class I or of Class II, respectively. Otherwise,

the deck D is of Class I, Class II or Class III as determined in the diagram in

Figure 7.

Proof. The proof follows by inspecting the diagram in Figure 7 and verifying
that every path leading to the label Class I corresponds to the assumptions of
Lemma 21, every path leading to the label Class II corresponds to the assumptions
of Lemma 22, and every path leading to the label Class III corresponds to the
assumptions of Lemma 20.

Theorem 23 yields the following corollary.

Corollary 24. Every 10-deck D of Class III satisfies that sD(P2) > 0, sD(C4) =
sD(C6) = sD(C8) = sD(C10) = 0 and exactly one of the following:

• sD(C3 ⊕ C3) > 0,

• sD(C3⊕C3) = sD(C3 ⊕C5) = sD(C3 ⊕C7) = sD(C3 ∪C3) = sD(C3 ∪C5) =
sD(C3 ∪ C7) = 0,

• sD(C3 ⊕ C3) = sD(C3 ⊕ C5) = sD(C3 ⊕ C7) = 0, sD(C3 ∪ C3) > 0 and

sD(C3 ⊕ P2 ⊕ C3) > 0, or

• sD(C3 ⊕ C3) = sD(C3 ⊕ C5) = sD(C3 ⊕ C7) = sD(C3 ⊕ P2 ⊕ C3) = 0,
sD(C3 ∪ C3) > 0 and 4sD(C3 ⊕ P4 ⊕ C3)sD(C5 ⊕ C5) ≥ sD(C3 ⊕ P2 ⊕ C5)

2.

7 Decks with twelve edges

In this section, we analyze 12-decks such that their 10-decks are of Class III
(Lemmas 25–32) and prove our main result, Theorem 33; the statement of the
theorem is illustrated in Figure 11. The first three lemmas cover the first three
cases described in Corollary 24 respectively.

Lemma 25. Let D be a 12-deck such that its 10-deck is of Class III, sD(P2) > 0
and sD(C3 ⊕ C3) > 0. If

• sD(C5 ⊕ C5) = 0 and sD(C5 ⊕ C7) > 0, or

• sD(C5 ⊕ C5) = sD(C5 ∪ C5) = 0 and sD(C5 ∪ C7) > 0,

then D is of Class II. Otherwise, D is of Class I if sD(C12) > 0 and of Class III

if sD(C12) = 0.
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C12

C3 ∪ C9

C5 ∪ C7 C3 ⊕ P6 ⊕ C3

C3 ⊕ P4 ⊕ C5 C3 ⊕ P2 ⊕ C7 C3 ⊕ C9 C5 ⊕ P2 ⊕ C5

C5 ⊕ C7

Figure 8: Principal 12-edge graphs.

29



Proof. Let D be a 12-deck D such that its 10-deck is of Class III, sD(P2) > 0
and sD(C3 ⊕ C3) > 0. Note that sD(Cℓ) = 0 for ℓ = 4, 6, 8, 10 by Corollary 24.
We first show that if D satisfies one of the two conditions in the statement of the
lemma, then D is of Class II. The first case to consider is when sD(C5 ⊕C5) = 0
and sD(C5⊕C7) > 0. We apply Lemma 9 with k = 11, m = 1, any δ ∈ (0, 1) such
that sD(C12)δ ≤ 1/2, γ3 = γ5 = γ7 = γ9 = γ11 = 0, σ1 = 0, τ1,3 = τ1,9 = τ1,11 = 0,
τ1,5 = 1 and τ1,7 = −1 to get a non-zero kernel U with the properties given in
Lemmas 9 and 10. It holds that t(H,U) = 0 for all principal subgraphs with
at most twelve edges with the exception of H being an even cycle, C5 ⊕ C5 or
C5 ⊕ C7. It follows that c

U
D,2 = · · · = cUD,10 = 0 and

cUD,12 = sD(C12)t(C12, U) + sD(C5 ⊕ C7)t(C5 ⊕ C7, U) ≤ −1/2.

Hence, the deck D is of Class II.
The second case is when sD(C5⊕C5) = sD(C5∪C5) = 0 and sD(C5∪C7) > 0.

We apply Lemma 9 with k = 11, m = 0, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2,
γ3 = γ9 = γ11 = 0, γ5 = 1 and γ7 = −1 to get a non-zero kernel U with the
properties given in Lemmas 9 and 10. It holds that t(H,U) = 0 for all principal
subgraphs with at most twelve edges with the exception of H being an even cycle,
C5 ⊕ C5, C5 ∪ C5 or C5 ∪ C7. Hence, it holds that c

U
D,2 = · · · = cUD,10 = 0 and

cUD,12 = sD(C12)t(C12, U) + sD(C5 ∪ C7)t(C5 ∪ C7, U) ≤ −1/2,

which yields that the deck D is of Class II.
We now prove that if the deck D does not satisfy any of the two conditions in

the statement of the lemma, then it is of Class I or Class III. Following the line of
arguments presented in the proofs of Lemmas 16 and 21, it is enough to establish
that the deck D is of Class III when sD(C12) = 0; note that if sD(C12) = 0, then
the deck D is not of Class I by Lemma 12.

Let U be an arbitrary non-zero kernel. The coefficient cUD,2 is positive unless
U is balanced. Hence, we can assume that U is balanced. Since sD(C4) = 0,
we obtain that cUD,4 = 0. Since all t(C6, U), t(C3 ⊕ C3, U) and t(C3 ∪ C3, U) are
non-negative, we obtain that cUD,6 ≥ sD(C3⊕C3)t(C3⊕C3, U). It follows that cUD,6

is positive unless tC3
U (x) = 0 for almost every x ∈ [0, 1]. Hence, we can further

assume that tC3
U (x) = 0 for almost every x ∈ [0, 1]. This implies that t(H,U) = 0

for all principal graphs with eight or ten edges with the exception of H being C8,
C10, C5 ∪ C5 or C5 ⊕ C5. Hence, the coefficient cUD,8 is zero and the coefficient
cUD,10 is non-negative.

If sD(C5 ⊕ C5) > 0, then cUD,10 is positive unless tC5
U (x) = 0 for almost every

x ∈ [0, 1]; in the latter case, t(H,U) = 0 for every principal 12-edge graph H
with the exception of C12, which yields that cUD,12 = 0. If sD(C5 ⊕ C5) = 0 and
sD(C5 ∪ C5) > 0, then cUD,10 is positive unless t(C5, U) = 0; if t(C5, U) = 0, then
sD(H) = 0 or t(H,U) = 0 for every principal 12-edge graph H with the exception
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of C12, C5⊕P2 ⊕C5 and C5⊕C7. In particular, unless the first case described in
the statement of the lemma applies, the coefficient cUD,12 is non-negative. Finally,
if sD(C5 ⊕ C5) = sD(C5 ∪ C5) = 0, then sD(H) = 0 or t(H,U) = 0 for every
principal 12-edge graph H with the exception of C12, C5 ⊕ P2 ⊕C5, C5 ⊕C7 and
C5 ∪C7, and cUD,12 is non-negative unless the second case in the statement of the
lemma applies. We conclude that D is of Class III in either of the three cases
distinguished in this paragraph.

Lemma 26. Let D be a 12-deck such that its 10-deck is of Class III, sD(P2) > 0,
sD(C3 ⊕ C3) = sD(C3 ∪ C3) = 0. If

• sD(C3 ⊕ C9) > 0,

• sD(C3 ∪ C9) > 0,

• sD(C5 ⊕ C5) = 0 and sD(C5 ⊕ C7) > 0, or

• sD(C5 ⊕ C5) = sD(C5 ∪ C5) = 0 and sD(C5 ∪ C7) > 0,

then D is of Class II. Otherwise, D is of Class I if sD(C12) > 0 and of Class III

if sD(C12) = 0.

Proof. Let D be a 12-deck D such that its 10-deck is of Class III, sD(P2) > 0
and sD(C3 ⊕C3) = sD(C3 ∪C3) = 0. Note that sD(Cℓ) = 0 for ℓ = 4, 6, 8, 10 and
sD(C3⊕Cℓ) = sD(C3∪Cℓ) = 0 for ℓ = 5, 7 by Corollary 24. Note that sD(H) can
be positive only for the following principal graphs H with at most twelve edges:
C5 ∪ C5, C5 ⊕ C5, C12, C3 ∪ C9, C3 ⊕ C9, C5 ⊕ P2 ⊕ C5, C5 ∪ C7 and C5 ⊕ C7.

We first show that if D satisfies one of the four conditions in the statement
of the lemma, then D is of Class II. In the first two cases, we apply Lemma 9
with k = 11, m = 1, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2, γ3 = 1, γ9 = −1,
γ5 = γ7 = γ11 = 0, σ1 = 0, τ1,3 = 1, τ1,9 = −1 and τ1,5 = τ1,7 = τ1,11 = 0, and
we get a non-zero kernel U that satisfies the properties listed in Lemma 9. Since
t(C5 ∪C5, U), t(C5 ⊕C5, U), t(C5 ⊕ P2 ⊕C5, U), t(C5 ∪C7, U) and t(C5 ⊕C7, U)
are equal to zero, it follows that cUD,2 = · · · = cUD,10 = 0 and

cUD,12 = sD(C12)t(C12, U) + sD(C3 ⊕ C9)t(C3 ⊕ C9, U)

+ sD(C3 ∪ C9)t(C3 ∪ C9, U)

≤ sD(C12)t(C12, U)− 1 ≤ −1/2.

Hence, the deck D is of Class II.
We next consider the case that sD(C5 ⊕ C5) = 0 and sD(C5 ⊕ C7) > 0. In

this case, we apply Lemma 9 with k = 11, m = 1, any δ ∈ (0, 1) such that
sD(C12)δ ≤ 1/2, γ3 = γ5 = γ7 = γ9 = γ11 = 0, σ1 = 0, τ1,5 = 1, τ1,7 = −1 and
τ1,3 = τ1,9 = τ1,11 = 0 to get a non-zero kernel U . Similarly to the previous case,
it holds that cUD,2 = · · · = cUD,10 = 0 and

cUD,12 = sD(C12)t(C12, U) + sD(C5 ⊕ C7)t(C5 ⊕ C7, U) ≤ −1/2.
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In the final case when sD(C5 ⊕ C5) = sD(C5 ∪ C5) = 0 and sD(C5 ∪ C7) > 0, we
apply Lemma 9 with k = 11, m = 0, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2,
γ5 = 1, γ7 = −1 and γ3 = γ9 = γ11 = 0. We obtain a non-zero kernel U such that
cUD,2 = · · · = cUD,10 = 0 and

cUD,12 = sD(C12)t(C12, U) + sD(C5 ∪ C7)t(C5 ∪ C7, U) ≤ −1/2.

In both cases, we conclude that the deck D is of Class II.
We now prove that if the deck D does not satisfy any of the four conditions in

the statement of the lemma, then it is of Class I or Class III. Following the line of
arguments presented in the proofs of Lemmas 16 and 21, it is enough to establish
that the deck D is of Class III when sD(C12) = 0; note that if sD(C12) = 0, then
the deck D is not of Class I by Lemma 12.

Let U be an arbitrary non-zero kernel. The coefficient cUD,2 is positive unless
U is balanced. Hence, we can assume that U is balanced, which implies that
cUD,2 = · · · = cUD,8 = 0, since we already deduced that sD(H) = 0 for every
principal graph H with at most eight edges. In addition, cUD,10 ≥ 0 and the
equality holds only in the following three cases: both sD(C5∪C5) and sD(C5⊕C5)
are zero, or sD(C5 ⊕ C5) is zero and t(C5, U) = 0, or tC5

U (x) = 0 for almost every
x ∈ [0, 1]. It is now straightforward to verify that if cUD,10 = 0 and none of the
cases given in the statement of the lemma applies, then

cUD,12 = sD(C5 ⊕ P2 ⊕ C5)t(C5 ⊕ P2 ⊕ C5)

=

∫

[0,1]

tC5⊕P1
U (x)2 dx ≥ 0.

We can now conclude that the deck D is of Class III.

Lemma 27. Let D be a 12-deck such that its 10-deck is of Class III, sD(P2) > 0,
sD(C3 ⊕ C3) = 0, sD(C3 ∪ C3) > 0 and sD(C3 ⊕ P2 ⊕ C3) > 0. If

• sD(C3 ⊕ C9) > 0,

• sD(C5 ⊕ C5) = 0 and sD(C5 ⊕ C7) > 0, or

• sD(C5 ⊕ C5) = sD(C5 ∪ C5) = 0 and sD(C5 ∪ C7) > 0,

then D is of Class II. Otherwise, D is of Class I if sD(C12) > 0 and of Class III

if sD(C12) = 0.

Proof. Let D be a 12-deck D such that its 10-deck is of Class III, sD(P2) > 0,
sD(C3⊕C3) = 0, sD(C3∪C3) > 0 and sD(C3⊕P2⊕C3) > 0. Note that sD(Cℓ) = 0
for ℓ = 4, 6, 8, 10 and sD(C3 ⊕ Cℓ) = 0 for ℓ = 5, 7 by Corollary 24.

We first show that if D satisfies one of the three conditions in the statement of
the lemma, then D is of Class II. In the first case, we apply Lemma 9 with k = 11,
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m = 1, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2, γ3 = γ5 = γ7 = γ9 = γ11 = 0,
σ1 = 0, τ1,3 = 1, τ1,9 = −1 and τ1,5 = τ1,7 = τ1,11 = 0 to get a non-zero kernel
U that satisfies the properties listed in Lemma 9. Observe that sD(H) = 0 or
t(H,U) = 0 for a principal graph H with at most twelve edges unless H is an
even cycle or H = C3 ⊕ C9. In the second case, we apply Lemma 9 with k = 11,
m = 1, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2, γ3 = γ5 = γ7 = γ9 = γ11 = 0,
σ1 = 0, τ1,5 = 1, τ1,7 = −1 and τ1,3 = τ1,9 = τ1,11 = 0 and get a non-zero kernel U
such that that sD(H) = 0 or t(H,U) = 0 for a principal graph H with at most
twelve edges unless H is an even cycle or H = C5⊕C7. Finally, in the third case,
we apply Lemma 9 with k = 11, m = 0, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2,
γ5 = 1, γ7 = −1 and γ3 = γ9 = γ11 = 0 and obtain a non-zero kernel U such that
that sD(H) = 0 or t(H,U) = 0 for a principal graph H with at most twelve edges
unless H is an even cycle or H = C5 ∪ C7. In each of the three cases, it holds
that cUD,2 = · · · = cUD,10 = 0 and cUD,12 ≤ −1/2, i.e., the deck D is of Class II.

We now prove that if the deck D does not satisfy any of the three conditions in
the statement of the lemma, then it is of Class I or Class III. Following the line of
arguments presented in the proofs of Lemmas 16 and 21, it is enough to establish
that the deck D is of Class III when sD(C12) = 0; note that if sD(C12) = 0, then
the deck D is not of Class I by Lemma 12.

Let U be an arbitrary non-zero kernel. The coefficient cUD,2 is positive unless
U is balanced. Hence, we can assume that U is balanced. This implies that
cUD,4 = 0, cUD,6 ≥ 0 and the inequality is strict unless t(C3, U) = 0. If t(C3, U) = 0,

then cUD,8 ≥ 0 and the inequality is strict unless tC3⊕P1
U (x) = 0 for almost every

x ∈ [0, 1]. We next assume that cUD,6 = 0 and cUD,8 = 0 and observe that sD(H) = 0
or t(H,U) = 0 for every principal graph H possibly with the following exceptions:
C5∪C5, C5⊕C5, C5⊕P2⊕C5, C5∪C7 and C5⊕C7 (note that sD(C3⊕C9) = 0;
otherwise, the first case in the statement of the lemma applies). It follows that
cUD,10 ≥ 0 and the equality holds only in the following three cases: both sD(C5∪C5)

and sD(C5 ⊕C5) are zero, or sD(C5 ⊕C5) is zero and t(C5, U) = 0, or tC5
U (x) = 0

for almost every x ∈ [0, 1]. It is now straightforward to verify that if cUD,10 = 0
and none of the last two cases given in the statement of the lemma applies, then
cUD,12 = sD(C5 ⊕ P2 ⊕ C5)t(C5 ⊕ P2 ⊕ C5) ≥ 0. We conclude that the deck D is
indeed of Class III.

The final five lemmas concern the last case described in Corollary 24; each
deals with one of the four cases based on which of the two quantities sD(C3 ⊕
P4 ⊕ C3) and sD(C5 ⊕ C5) are zero or positive; the final two lemmas deal with
the case when both quantities are positive.

Lemma 28. Let D be a 12-deck such that its 10-deck is of Class III, sD(P2) > 0,
sD(C3 ⊕C3) = sD(C3 ⊕ P2 ⊕C3) = 0 and sD(C3 ∪C3) > 0. Further suppose that

sD(C3 ⊕ P4 ⊕ C3) = sD(C5 ⊕ C5) = sD(C3 ⊕ P2 ⊕ C5) = 0. If

• sD(C3 ⊕ C9) > 0,
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C3 ∪ C3 C3 ∪ C5 C3 ∪ C7 C5 ∪ C5

C3 ∪ C3 ⊕ P1 ⊕ C3 C12

C3 ∪ C9 C5 ∪ C7

C3 ⊕ P6 ⊕ C3 C3 ⊕ P4 ⊕ C5 C3 ⊕ P2 ⊕ C7 C3 ⊕ C9

C5 ⊕ P2 ⊕ C5 C5 ⊕ C7

Figure 9: The exceptional graphs in the proof of Lemma 28.

• sD(C3 ⊕ P2 ⊕ C7) > 0,

• 4sD(C3 ⊕ P6 ⊕ C3)sD(C5 ⊕ P2 ⊕ C5) < sD(C3 ⊕ P4 ⊕ C5)
2,

• sD(C5 ⊕ C7) > 0,

• sD(C5 ∪ C5) = 0 and sD(C5 ∪ C3 ⊕ P1 ⊕ C3) > 0, or

• sD(C5 ∪ C5) = 0 and sD(C5 ∪ C7) > 0,

then D is of Class II. Otherwise, D is of Class I if sD(C12) > 0 and of Class III

if sD(C12) = 0.

Proof. Fix a 12-deck D with the properties as supposed in the statement of the
lemma. Note that sD(Cℓ) = 0 for ℓ = 4, 6, 8, 10 and sD(C3 ⊕ Cℓ) = 0 for ℓ = 5, 7
by Corollary 24. This together with the assumptions of the lemma implies that
sD(H) = 0 for all principal graphs H with at most twelve edges with the following
exceptions: C3∪C3, C3∪C5, C3∪C7, C5∪C5, C3∪C3⊕P1⊕C3, C12, C3∪C3∪C3∪C3,
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C3 ∪ C3 ⊕ P3 ⊕ C3, C3 ∪ C3 ⊕ P1 ⊕ C5, C3 ∪ C9, C5 ∪ C3 ⊕ P1 ⊕ C3, C5 ∪ C7,
C3 ⊕ P6 ⊕ C3, C3 ⊕ P4 ⊕ C5, C3 ⊕ P2 ⊕ C7, C3 ⊕ C9, C5 ⊕ P2 ⊕ C5 and C5 ⊕ C7.
The graphs are depicted in Figure 9.

We first show that if the deck D satisfies one of the six conditions in the
statement of the lemma, then D is of Class II. We will construct four different
kernels using Lemma 9. First, we apply Lemma 9 with k = 11, m = 1, any
δ ∈ (0, 1/2) such that sD(C12)δ ≤ 1/2, γ3 = γ5 = γ7 = γ9 = γ11 = 0, σ1 =

√
δ

(note that σ12
1 ≤ δ/2), τ1,3 = 1, τ1,7 = τ1,9 = −(1+sD(C12)+sD(C3⊕P6⊕C3))δ

−1

and τ1,5 = τ1,11 = 0 to obtain a non-zero kernel U with the properties given in
Lemma 9. Observe that t(H,U) = 0 for the graphs depicted in Figure 9 unless H
is C12, C3⊕P6⊕C3, C3⊕P2⊕C7 or C3⊕C9. It follows that c

U
D,2 = · · · = cUD,10 = 0

and,

cUD,12 =
∑

H,‖H‖=12

sD(H)t(H,U)

≤ σ6
1τ

2
1,3sD(C3 ⊕ P6 ⊕ C3) + σ2

1τ1,3τ1,7sD(C3 ⊕ P2 ⊕ C7)

+ τ1,3τ1,9sD(C3 ⊕ C9) + δsD(C12)

≤ sD(C3 ⊕ P6 ⊕ C3)− (1 + sD(C12) + sD(C3 ⊕ P6 ⊕ C3)) + sD(C12)

≤ −1 .

Hence, the deck D is of Class II if the first or second condition in the statement
applies.

We next analyze the case when the third condition applies. If 4sD(C3 ⊕ P6 ⊕
C3)sD(C5⊕P2⊕C5) < sD(C3⊕P4⊕C5)

2, then there exists a vector (z3, z5) ∈ R
2

such that
(

z3
z5

)T
(

sD(C3 ⊕ P6 ⊕ C3)
sD(C3⊕P4⊕C5)

2
sD(C3⊕P4⊕C5)

2
sD(C5 ⊕ P2 ⊕ C5)

)

(

z3
z5

)

= −1.

We apply Lemma 9 with k = 11, m = 1, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2,
γ3 = γ5 = γ7 = γ9 = γ11 = 0, σ1 = δ/2, τ1,3 = 8z3/δ

3, τ1,5 = 2z5/δ and
τ1,7 = τ1,9 = τ1,11 = 0 to get a non-zero kernel U with the properties given in
Lemma 9. Let f1 be the eigenfunction associated with the eigenvalue σ1 and note
that tC3⊕P3

U (x) = σ3
1τ1,3f1(x) = z3f1(x) and tC5⊕P1

U (x) = σ1τ1,5f1(x) = z5f1(x).
Observe that t(H,U) = 0 for the graphs depicted in Figure 9 unless H is C12,
C3⊕P6⊕C3, C3⊕P4⊕C5 or C5⊕P2⊕C5. It follows that c

U
D,2 = · · · = cUD,10 = 0

and

cUD,12 =sD(C12)t(C12, U)+
∫

[0,1]

(

z3
z5

)T
(

sD(C3 ⊕ P6 ⊕ C3)
sD(C3⊕P4⊕C5)

2
sD(C3⊕P4⊕C5)

2
sD(C5 ⊕ P2 ⊕ C5)

)

(

z3
z5

)

f1(x)
2 dx,

which is at most −1/2. Hence, the deck D is of Class II.
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If the fourth condition in the statement holds, we apply Lemma 9 with k = 11,
m = 1, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2, γ3 = γ5 = γ7 = γ9 = γ11 = 0,
σ1 = 0, τ1,3 = τ1,9 = τ1,11 = 0, τ1,5 = 1 and τ1,7 = −1 to obtain a non-zero
kernel U with the properties given in Lemma 9. Observe that t(H,U) = 0 for
the graphs depicted in Figure 9 unless H is C12 or C5 ⊕ C7. It follows that
cUD,2 = · · · = cUD,10 = 0, and cUD,12 ≤ −1/2, so we again conclude that the 12-deck
D is of Class II.

It remains to analyze the last two conditions given in the statement of the
lemma. We apply Lemma 9 with k = 11, m = 1, any δ ∈ (0, 1/2) such that
sD(C12)δ ≤ 1/2, γ3 = γ9 = γ11 = 0, γ5 = −(1 + sD(C12) + sD(C3 ⊕ P6 ⊕ C3))δ

−1,
γ7 = 1, σ1 = δ, τ1,3 = 1 and τ1,5 = τ1,7 = τ1,9 = τ1,11 = 0 to get a non-zero
kernel U with the properties given in Lemma 9. Observe that t(H,U) = 0 for the
graphs depicted in Figure 9 unless H is C12, C5 ∪C5, C5 ∪C3 ⊕P1 ⊕C3, C5 ∪C7

or C3⊕P6⊕C3. It follows that c
U
D,2 = · · · = cUD,10 = 0 (note that sD(C5∪C5) = 0)

and,

cUD,12 =
∑

H,‖H‖=12

sD(H)t(H,U)

≤ σ6
1τ

2
1,3sD(C3 ⊕ P6 ⊕ C3) + σ1γ5τ

2
1,3sD(C5 ∪ C3 ⊕ P1 ⊕ C3)

+ γ5γ7sD(C5 ∪ C7) + δsD(C12)

≤ sD(C3 ⊕ P6 ⊕ C3)− (1 + sD(C12) + sD(C3 ⊕ P6 ⊕ C3)) + sD(C12)

≤ −1 .

We conclude that the deck D is of Class II.
We now prove that if the deck D does not satisfy any of the six conditions in

the statement of the lemma, then it is of Class I or Class III. Following the line of
arguments presented in the proofs of Lemmas 16 and 21, it is enough to establish
that the deck D is of Class III when sD(C12) = 0; note that if sD(C12) = 0, then
the deck D is not of Class I by Lemma 12.

Let U be an arbitrary non-zero kernel. The coefficient cUD,2 is positive unless
U is balanced. Hence, we can assume that U is balanced. Inspecting the graphs
in Figure 9, we obtain that cUD,4 = 0 and cUD,6 ≥ 0, and the equality holds only if
t(C3 ∪C3, U) = t(C3, U)2 = 0 since sD(C3 ∪C3) > 0. Hence, we can assume that
t(C3, U) = 0 in the rest. We next obtain, again inspecting the graphs in Figure 9,
that cUD,8 = 0 and cUD,10 ≥ 0, and the equality can hold only if sD(C5 ∪C5) = 0 or
t(C5, U) = 0; if sD(C5 ∪ C5) = 0 or t(C5, U) = 0, it holds that sD(H)t(H,U) = 0
if H is C5 ∪ C3 ⊕ P1 ⊕ C3 or C5 ∪ C7 (here, we use that D does not satisfy the
last two conditions in the statement of the lemma). In particular, if cUD,10 = 0,
then sD(H)t(H,U) can be non-zero only for the following three principal 12-edge
graphs: C3 ⊕ P6 ⊕ C3, C3 ⊕ P4 ⊕ C5 and C5 ⊕ P2 ⊕ C5. It follows that

cUD,12 =

∫

[0,1]

(

tC3⊕P3
U (x)

tC5⊕P1
U (x)

)T
(

sD(C3 ⊕ P6 ⊕ C3)
sD(C3⊕P4⊕C5)

2
sD(C3⊕P4⊕C5)

2
sD(C5 ⊕ P2 ⊕ C5)

)

(

tC3⊕P3
U (x)

tC5⊕P1
U (x)

)

dx,
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which is non-negative since the matrix is positive semidefinite (here, we use that
4sD(C3 ⊕P6⊕C3)sD(C5⊕P2 ⊕C5) ≥ sD(C3 ⊕P4⊕C5)

2). We conclude that the
deck D is of Class III.

Lemma 29. Let D be a 12-deck such that its 10-deck is of Class III, sD(P2) > 0,
sD(C3 ⊕C3) = sD(C3 ⊕ P2 ⊕C3) = 0 and sD(C3 ∪C3) > 0. Further suppose that

sD(C3⊕P4⊕C3) = sD(C3⊕P2⊕C5) = 0 and sD(C5⊕C5) > 0. If sD(C3⊕C9) > 0
or sD(C3 ⊕ P2 ⊕ C7) > 0, then D is of Class II. Otherwise, D is of Class I if

sD(C12) > 0 and of Class III if sD(C12) = 0.

Proof. Fix a 12-deck D with the properties as supposed in the statement of the
lemma. Note that sD(Cℓ) = 0 for ℓ = 4, 6, 8, 10 and sD(C3 ⊕ Cℓ) = 0 for ℓ = 5, 7
by Corollary 24. We first show that if sD(C3 ⊕C9) > 0 or sD(C3 ⊕P2 ⊕C7) > 0,
then D is of Class II. We use the same application of Lemma 9 as we did in
the proof of Lemma 28 with one of the first two conditions, that is we apply
Lemma 9 with k = 11, m = 1, any δ ∈ (0, 1/2) such that sD(C12)δ ≤ 1/2,
γ3 = γ5 = γ7 = γ9 = γ11 = 0, σ1 =

√
δ (note that σ12

1 ≤ δ/2), τ1,3 = 1,
τ1,7 = τ1,9 = −(1 + sD(C12) + sD(C3 ⊕ P6 ⊕ C3))δ

−1 and τ1,5 = τ1,11 = 0. The
same calculations prove that the 12-deck D is of Class II if sD(C3 ⊕ C9) > 0 or
sD(C3 ⊕ P2 ⊕ C7) > 0.

We now prove that if sD(C3 ⊕ C9) = 0 and sD(C3 ⊕ P2 ⊕ C7) = 0, then
the deck D satisfying the assumptions of the lemma is of Class I or Class III.
Following the line of arguments presented in the proofs of Lemmas 16 and 21,
it is enough to establish that the deck D is of Class III when sD(C12) = 0; note
that if sD(C12) = 0, then the deck D is not of Class I by Lemma 12.

Let U be an arbitrary non-zero kernel. The coefficient cUD,2 is positive unless U
is balanced. Hence, we can assume that U is balanced. It follows that cUD,4 = 0 and
cUD,6 = sD(C3 ∪C3)t(C3, U)2. In particular, either cUD,6 is positive or t(C3, U) = 0;
we focus on the latter case in the rest of the proof. Observe that every principal
graph H with at most ten edges satisfies that sD(H) = 0 or t(H,U) = 0 unless H
is C5∪C5 or C5⊕C5. It follows that c

U
D,8 = 0 and cUD,10 ≥ sD(C5⊕C5)t(C5⊕C5, U).

In particular, the coefficient cUD,10 is positive unless tC5
U (x) = 0 for almost every

x ∈ [0, 1]. If tC5
U (x) = 0 for almost every x ∈ [0, 1], then sD(H) = 0 or t(H,U) = 0

for every 12-edge principal graph H different from C3 ⊕ P6 ⊕ C3. It follows that
if cUD,10 = 0, then cUD,12 = sD(C3 ⊕ P6 ⊕ C3)t(C3 ⊕ P6 ⊕ C3, U) ≥ 0. We conclude
that the 12-deck D is of Class III.

Lemma 30. Let D be a 12-deck such that its 10-deck is of Class III, sD(P2) > 0,
sD(C3 ⊕C3) = sD(C3 ⊕ P2 ⊕C3) = 0 and sD(C3 ∪C3) > 0. Further suppose that

sD(C5 ⊕ C5) = sD(C3 ⊕ P2 ⊕ C5) = 0 and sD(C3 ⊕ P4 ⊕ C3) > 0. If

• sD(C3 ⊕ C9) > 0,

• sD(C5 ⊕ C7) > 0, or
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• sD(C5 ∪ C5) = 0 and sD(C5 ∪ C7) > 0,

then D is of Class II. Otherwise, D is of Class I if sD(C12) > 0 and of Class III

if sD(C12) = 0.

Proof. Fix a 12-deck D with the properties as supposed in the statement of the
lemma. Note that sD(Cℓ) = 0 for ℓ = 4, 6, 8, 10 and sD(C3 ⊕ Cℓ) = 0 for ℓ = 5, 7
by Corollary 24. We first show that if sD(C3 ⊕ C9) > 0 or sD(C5 ⊕ C7) > 0,
then D is of Class II. Apply Lemma 9 with k = 11, m = 1, any δ ∈ (0, 1) such
that sD(C12)δ ≤ 1/2, γ3 = γ5 = γ7 = γ9 = γ11 = 0, σ1 = 0, τ1,3 = τ1,5 = 1,
τ1,7 = τ1,9 = −1 and τ1,11 = 0, to get a non-zero kernel U with the properties
listed in Lemma 9. Every principal graph H with at most twelve edges satisfies
that sD(H) = 0 or t(H,U) = 0 unless H is C12, C3 ⊕ C9 or C5 ⊕ C7. Hence, it
holds that cUD,2 = · · · = cUD,10 = 0 and cUD,12 ≤ −1/2, which yields that the 12-deck
D is of Class II.

We next show that if sD(C5 ∪ C5) = 0 and sD(C5 ∪ C7) > 0, then D is also
of Class II. Apply Lemma 9 with k = 11, m = 0, any δ ∈ (0, 1) such that
sD(C12)δ ≤ 1/2, γ5 = 1, γ7 = −1, γ3 = γ9 = γ11 = 0, to get a non-zero kernel
U with the properties listed in Lemma 9. Every principal graph H with at most
twelve edges satisfies that sD(H) = 0 or t(H,U) = 0 unless H is C12 or C5 ∪ C7.
It follows that cUD,2 = · · · = cUD,10 = 0 and cUD,12 ≤ −1/2 and we again conclude
that the 12-deck D is of Class II.

We now prove that if the deck D does not satisfy any of the three conditions in
the statement of the lemma, then it is of Class I or Class III. Following the line of
arguments presented in the proofs of Lemmas 16 and 21, it is enough to establish
that the deck D is of Class III when sD(C12) = 0; note that if sD(C12) = 0, then
the deck D is not of Class I by Lemma 12.

Let U be an arbitrary non-zero kernel. The coefficient cUD,2 is positive unless
U is balanced. So, we can assume that U is balanced. It follows that cUD,4 = 0 and
cUD,6 = sD(C3 ∪ C3)t(C3 ∪ C3, U) ≥ 0 and the equality holds only if t(C3, U) = 0.
Hence, we assume that t(C3, U) = 0 in the rest of the proof. It follows that
cUD,8 = 0 and

cUD,10 = sD(C5 ∪ C5)t(C5 ∪ C5, U) + sD(C3 ⊕ P4 ⊕ C3)t(C3 ⊕ P4 ⊕ C3, U).

In particular, cUD,10 is non-negative and if cUD,10 = 0, then tC3⊕P2
U (x) = 0 for almost

every x ∈ [0, 1] and either sD(C5 ∪ C5) = 0 or t(C5, U) = 0 or both. Since
tC3⊕P2
U = U2tC3

U and tC3⊕P1
U = UtC3

U , it follows that tC3⊕P1
U (x) = 0 for almost every

x ∈ [0, 1]. Hence, if cUD,10 = 0 and none of the three conditions in the statement
of the lemma applies, we get that sD(H) = 0 or t(H,U) = 0 for every 12-edge
principal graph H unless H is C5 ⊕ P2 ⊕C5. It follows that c

U
D,12 ≥ 0 and so the

12-deck D is of Class III.

The final two lemmas analyze the case when the quantity 4sD(C3 ⊕ P4 ⊕
C3)sD(C5 ⊕C5)− sD(C3 ⊕ P2 ⊕C5)

2 is non-negative and both sD(C3 ⊕ P4 ⊕C3)
and sD(C5 ⊕ C5) are positive.
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Lemma 31. Let D be a 12-deck such that its 10-deck is of Class III, sD(P2) > 0,
sD(C3 ⊕C3) = sD(C3 ⊕ P2 ⊕C3) = 0 and sD(C3 ∪C3) > 0. Further suppose that

sD(C3 ⊕ P4 ⊕ C3) > 0, sD(C5 ⊕ C5) > 0 and 4sD(C3 ⊕ P4 ⊕ C3)sD(C5 ⊕ C5) =
sD(C3 ⊕ P2 ⊕ C5)

2. If

• sD(C3 ⊕ C9) > 0,

• A =
(

−2sD(C5 ⊕ C5)
sD(C3 ⊕ P2 ⊕ C5)

)T
(

sD(C3 ⊕ P6 ⊕ C3)
sD(C3⊕P4⊕C5)

2
sD(C3⊕P4⊕C5)

2
sD(C5 ⊕ P2 ⊕ C5)

)

(

−2sD(C5 ⊕ C5)
sD(C3 ⊕ P2 ⊕ C5)

)

< 0, or

• −2sD(C3 ⊕ P2 ⊕ C7)sD(C5 ⊕ C5) + sD(C5 ⊕ C7)sD(C3 ⊕ P2 ⊕ C5) 6= 0,

then D is of Class II. Otherwise, D is of Class I if sD(C12) > 0 and of Class III

if sD(C12) = 0.

Proof. Fix a 12-deck D with the properties as supposed in the statement of the
lemma. Note that sD(Cℓ) = 0 for ℓ = 4, 6, 8, 10 and sD(C3 ⊕ Cℓ) = 0 for ℓ = 5, 7
by Corollary 24. This together with the assumptions of the lemma implies that
sD(H) = 0 for all principal graphs H with at most twelve edges with the following
exceptions: C3 ∪C3, C3 ∪C5, C3 ∪C7, C5 ∪C5, C3 ∪C3 ⊕P1 ⊕C3, C3 ⊕P4 ⊕C3,
C3⊕P2⊕C5, C5⊕C5, C12, C3∪C3∪C3∪C3, C3∪C3⊕P3⊕C3, C3∪C3⊕P1⊕C5,
C3 ∪C9, C5 ∪C3 ⊕ P1 ⊕C3, C5 ∪C7, C3 ⊕ P6 ⊕C3, C3 ⊕ P4 ⊕C5, C3 ⊕ P2 ⊕C7,
C3 ⊕C9, C5 ⊕ P2 ⊕C5 and C5 ⊕C7. The graphs are depicted in Figure 10. Also
note that the matrix

(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

has rank one and so there exists a non-zero vector (z3, z5) ∈ R
2 such that

(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

(

z3
z5

)

=

(

0
0

)

.

Note that the vectors (z3, z5) and
(

−sD(C5 ⊕ C5),
sD(C3⊕P2⊕C5)

2

)

are non-zero

multiples of each other, in particular, both z3 6= 0 and z5 6= 0. By multiplying
(z3, z5) by a suitable constant, we may assume without loss of generality that

(

z3
z5

)T
(

sD(C3 ⊕ P6 ⊕ C3)
sD(C3⊕P4⊕C5)

2
sD(C3⊕P4⊕C5)

2
sD(C5 ⊕ P2 ⊕ C5)

)

(

z3
z5

)

is equal to −1, 0 or +1.
We first show that if sD(C3 ⊕C9) > 0, then D is of Class II. Apply Lemma 9

with k = 11, m = 1, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2, γ3 = γ5 = γ7 =
γ9 = γ11 = 0, σ1 = 0, τ1,3 = 1, τ1,5 = τ1,7 = τ1,11 = 0 and τ1,9 = −1 to get a
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C3 ∪ C3 C3 ∪ C5 C3 ∪ C7 C5 ∪ C5

C3 ∪ C3 ⊕ P1 ⊕ C3 C3 ⊕ P4 ⊕ C3 C3 ⊕ P2 ⊕ C5 C5 ⊕ C5

C12

C3 ∪ C9 C5 ∪ C7

C3 ⊕ P6 ⊕ C3 C3 ⊕ P4 ⊕ C5 C3 ⊕ P2 ⊕ C7 C3 ⊕ C9

C5 ⊕ P2 ⊕ C5 C5 ⊕ C7

Figure 10: The exceptional graphs in the proof of Lemma 31.
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non-zero kernel U with the properties listed in Lemma 9. Every principal graph
H with at most twelve edges satisfies that sD(H) = 0 or t(H,U) = 0 unless H is
C12 or C3 ⊕ C9. Hence, it holds that cUD,2 = · · · = cUD,10 = 0 and cUD,12 ≤ −1/2,
which yields that the 12-deck D is of Class II.

In the second and third cases described in the statement of the lemma, we
apply Lemma 9 with k = 11, m = 1, any δ ∈ (0, 1/2) such that sD(C12)δ ≤
1/2, γ3 = γ5 = γ7 = γ9 = γ11 = 0, σ1 = δ1/4, τ1,3 = z3/δ

1/2, τ1,5 = z5,
τ1,9 = τ1,11 = 0, and τ1,7 = −2δ1/2(z3sD(C3 ⊕ P2 ⊕ C7) + z5sD(C5 ⊕ C7))

−1 if
z3sD(C3 ⊕ P2 ⊕ C7) + z5sD(C5 ⊕ C7) is non-zero, and τ1,7 = 0, otherwise, to
get a non-zero kernel U with the properties listed in Lemma 9. Let f1 be the
eigenfunction of U associated with σ1. Every principal graph H with at most
twelve edges satisfies that sD(H) = 0 or t(H,U) = 0 unless H is C3 ⊕ P4 ⊕ C3,
C3⊕P2⊕C5, C5⊕C5, C12, C3⊕P6⊕C3, C3⊕P4⊕C5, C5⊕P2⊕C5, C3⊕P2⊕C7

and C5 ⊕ C7. It follows that c
U
D,2 = · · · = cUD,8 = 0 and

cUD,10 =

∫

[0,1]

(

tC3⊕P2
U (x)

tC5
U (x)

)T
(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

(

tC3⊕P2
U (x)

tC5
U (x)

)

dx

=

∫

[0,1]

(

z3
z5

)T
(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

(

z3
z5

)

f1(x)
2 dx = 0.

We next analyze the coefficient cUD,12. First note that the sum of the terms
sD(H)t(H,U) for H being one of the graphs C3 ⊕ P6 ⊕ C3, C3 ⊕ P4 ⊕ C5 and
C5 ⊕ P2 ⊕ C5 is equal to

B1 =

∫

[0,1]

(

z3
z5

)T
(

sD(C3 ⊕ P6 ⊕ C3)
sD(C3⊕P4⊕C5)

2
sD(C3⊕P4⊕C5)

2
sD(C5 ⊕ P2 ⊕ C5)

)

(

z3
z5

)

σ2
1f1(x)

2 dx.

Observe that B1 = δ1/2 if A > 0, B1 = 0 if A = 0 and B1 = −δ1/2 if A < 0. The
sum of the terms sD(H)t(H,U) for H being C3⊕P2⊕C7 and C5⊕C7 is equal to

B2 =

∫

[0,1]

(sD(C3 ⊕ P2 ⊕ C7)z3 + sD(C5 ⊕ C7)z5)τ1,7f1(x)
2 dx.

If z3sD(C3 ⊕ P2 ⊕C7) + z5sD(C5 ⊕C7) is non-zero, then B2 = −2δ1/2; otherwise,
B2 = 0. Since sD(C12)t(C12, U) ≤ δ, it follows that cUD,12 ≤ B1 + B2 + δ ≤
−δ1/2 + δ < 0 and so the 12-deck D is of Class II.

We now prove that if the deck D does not satisfy any of the three conditions in
the statement of the lemma, then it is of Class I or Class III. Following the line of
arguments presented in the proofs of Lemmas 16 and 21, it is enough to establish
that the deck D is of Class III when sD(C12) = 0; note that if sD(C12) = 0, then
the deck D is not of Class I by Lemma 12.

Let U be an arbitrary non-zero kernel. The coefficient cUD,2 is positive unless
U is balanced. So, we can assume that U is balanced. It follows that cUD,4 = 0 and
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cUD,6 = sD(C3 ∪ C3)t(C3 ∪ C3, U) ≥ 0 and the equality holds only if t(C3, U) = 0.
Hence, we assume that t(C3, U) = 0 in the rest of the proof. This implies that
cUD,8 = 0. Observe next that

cUD,10 = sD(C5 ∪ C5)t(C5 ∪ C5, U)

+

∫

[0,1]

(

tC3⊕P2
U (x)

tC5
U (x)

)T
(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

(

tC3⊕P2
U (x)

tC5
U (x)

)

dx.

It follows that cUD,10 ≥ 0 and the equality holds only if sD(C5∪C5)t(C5∪C5, U) = 0

and tC3⊕P2
U (x) = z3

z5
tC5
U (x) for almost every x ∈ [0, 1]. In the rest, we assume that

cUD,10 = 0.

Since cUD,10 = 0, it holds that tC3⊕P2
U (x) = z3

z5
tC5
U (x) for almost every x ∈ [0, 1].

As tC3⊕P2
U = U2tC3

U , Proposition 3 implies that the integral of tC5
U over [0, 1] is zero,

i.e., t(C5, U) = 0. It follows that t(H,U) = 0 for every 12-edge graph depicted in
Figure 10 except for C12, C3⊕P6⊕C3, C3⊕P4⊕C5, C5⊕P2⊕C5, C3⊕P2⊕C7 and
C5 ⊕ C7. Since it holds that A ≥ 0, i.e., the second condition of the lemma does

not apply, and the vectors (z3, z5) and
(

−sD(C5 ⊕ C5),
sD(C3⊕P2⊕C5)

2

)

are non-

zero multiples of each other, we obtain that the sum of the terms sD(H)t(H,U)
for H being one of the graphs C3 ⊕ P6 ⊕ C3, C3 ⊕ P4 ⊕ C5 and C5 ⊕ P2 ⊕ C5 is
equal to

∫

[0,1]

(

UtC3⊕P2
U (x)

UtC5
U (x)

)T
(

sD(C3 ⊕ P6 ⊕ C3)
sD(C3⊕P4⊕C5)

2
sD(C3⊕P4⊕C5)

2
sD(C5 ⊕ P2 ⊕ C5)

)

(

UtC3⊕P2
U (x)

UtC5
U (x)

)

dx

=

∫

[0,1]

(

z3
z5
UtC5

U (x)

UtC5
U (x)

)T
(

sD(C3 ⊕ P6 ⊕ C3)
sD(C3⊕P4⊕C5)

2
sD(C3⊕P4⊕C5)

2
sD(C5 ⊕ P2 ⊕ C5)

)

(

z3
z5
UtC5

U (x)

UtC5
U (x)

)

dx

=

∫

[0,1]

(

z3
z5

)T
(

sD(C3 ⊕ P6 ⊕ C3)
sD(C3⊕P4⊕C5)

2
sD(C3⊕P4⊕C5)

2
sD(C5 ⊕ P2 ⊕ C5)

)

(

z3
z5

)

UtC5
U (x)2

z25
dx ≥ 0.

Since the vectors (z3, z5) and
(

−sD(C5 ⊕ C5),
sD(C3⊕P2⊕C5)

2

)

are multiples of each

other and the third condition of the lemma does not apply, the sum of terms
sD(H)t(H,U) for H being C3 ⊕ P2 ⊕ C7 and C5 ⊕ C7 is equal to

∫

[0,1]

(

sD(C3 ⊕ P2 ⊕ C7)t
C3⊕P2
U (x) + sD(C5 ⊕ C7)t

C5
U (x)

)

tC7
U (x) dx

=
1

z5

∫

[0,1]

(sD(C3 ⊕ P2 ⊕ C7)z3 + sD(C5 ⊕ C7)z5) t
C5
U (x)tC7

U (x) dx = 0.

We conclude that cUD,12 ≥ 0 and so the deck D is of Class III.

Lemma 32. Let D be a 12-deck such that its 10-deck is of Class III, sD(P2) > 0,
sD(C3 ⊕C3) = sD(C3 ⊕ P2 ⊕C3) = 0 and sD(C3 ∪C3) > 0. Further suppose that
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4sD(C3 ⊕ P4 ⊕ C3)sD(C5 ⊕ C5) > sD(C3 ⊕ P2 ⊕ C5)
2. If sD(C3 ⊕ C9) > 0, then

D is of Class II. Otherwise, D is of Class I if and only if sD(C12) > 0, i.e., if
sD(C12) = sD(C3 ⊕ C9) = 0, then D is of Class III.

Proof. Fix a 12-deck D with the properties as supposed in the statement of the
lemma. Note that sD(Cℓ) = 0 for ℓ = 4, 6, 8, 10 and sD(C3 ⊕ Cℓ) = 0 for ℓ = 5, 7
by Corollary 24. We first show that if sD(C3 ⊕ C9) > 0, then D is of Class II.
Apply Lemma 9 with k = 11, m = 1, any δ ∈ (0, 1) such that sD(C12)δ ≤ 1/2,
γ3 = γ5 = γ7 = γ9 = γ11 = 0, σ1 = 0, τ1,3 = 1, τ1,5 = τ1,7 = τ1,11 = 0 and
τ1,9 = −1, to get a non-zero kernel U with the properties listed in Lemma 9.
Every principal graph H with at most twelve edges satisfies that sD(H) = 0
or t(H,U) = 0 unless H is C12 or C3 ⊕ C9. Since cUD,2 = · · · = cUD,10 = 0 and
cUD,12 ≤ −1/2, the 12-deck D is of Class II.

We now prove that if sD(C3 ⊕ C9) = 0, then D is of Class I or Class III.
Following the line of arguments presented in the proofs of Lemmas 16 and 21,
it is enough to establish that the deck D is of Class III when sD(C12) = 0; note
that if sD(C12) = 0, then the deck D is not of Class I by Lemma 12.

Let U be an arbitrary non-zero kernel. The coefficient cUD,2 is positive unless
U is balanced. So, we can assume that U is balanced. It follows that cUD,4 = 0 and
cUD,6 = sD(C3 ∪ C3)t(C3 ∪ C3, U) ≥ 0 and the equality holds only if t(C3, U) = 0.
Hence, we assume that t(C3, U) = 0 in the rest of the proof. It follows that
cUD,8 = 0 and

cUD,10 = sD(C5 ∪ C5)t(C5, U)2

+

∫

[0,1]

(

tC3⊕P2
U (x)

tC5
U (x)

)T
(

sD(C3 ⊕ P4 ⊕ C3)
sD(C3⊕P2⊕C5)

2
sD(C3⊕P2⊕C5)

2
sD(C5 ⊕ C5)

)

(

tC3⊕P2
U (x)

tC5
U (x)

)

dx.

Since the matrix in the integral above has both eigenvalues positive (as 4sD(C3⊕
P4 ⊕ C3)sD(C5 ⊕ C5) > sD(C3 ⊕ P2 ⊕ C5)

2), we conclude that cUD,10 ≥ 0 and the

equality holds only if tC3⊕P2
U (x) = tC5

U (x) = 0 for almost every x ∈ [0, 1]. Hence,
if cUD,10 = 0, then sD(H,U) = 0 or t(H,U) = 0 for every 12-edge principal graph
H . It follows that if if cUD,10 = 0, then cUD,12 = 0. We conclude that the 12-deck D
is of Class III.

We are now ready to state the main theorem of this section.

Theorem 33. Let D be a 12-deck with sD(P2) > 0. If the 10-deck of D is of

Class I or of Class II, then D is of Class I or of Class II, respectively. Otherwise,

the deck D is of Class I, Class II or Class III as determined in the diagram in

Figure 11.

Proof. The proof follows by inspecting the diagram in Figure 11 and verifying
that every path leading to the label Class I, Class II and Class III is in line with
the description given in Lemmas 25–32.
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s(C3 ⊕ C3)
> 0

= 0

s(C3 ⊕ C9)
> 0

Class II

= 0

s(C3 ∪ C3)
= 0

> 0

s(C3 ∪ C9)
= 0

> 0

Class II

s(C3 ⊕ P2 ⊕ C3)
> 0

= 0

4s(C3 ⊕ P4 ⊕ C3)s(C5 ⊕ C5)− s(C3 ⊕ P2 ⊕ C5)
2

= 0

> 0

s(C3 ⊕ P4 ⊕ C3)
> 0

= 0

s(C3 ⊕ P2 ⊕ C7)
> 0

Class II

= 0

s(C5 ⊕ C5)
= 0> 0

4s(C3 ⊕ P6 ⊕ C3)s(C5 ⊕ P2 ⊕ C5)− s(C3 ⊕ P4 ⊕ C5)
2

< 0

Class II

≥ 0

s(C5 ∪ C5) = 0
> 0

s(C5 ∪ C3 ⊕ P1 ⊕ C3)
> 0

= 0

s(C5 ⊕ C5)
= 0

> 0

(

−2s(C5 ⊕ C5)
s(C3 ⊕ P2 ⊕ C5)

)T
(

s(C3 ⊕ P6 ⊕ C3)
s(C3⊕P4⊕C5)

2
s(C3⊕P4⊕C5)

2 s(C5 ⊕ P2 ⊕ C5)

)

(

−2s(C5 ⊕ C5)
s(C3 ⊕ P2 ⊕ C5)

)

< 0

Class II

≥ 0

−2s(C3 ⊕ P2 ⊕ C7)s(C5 ⊕ C5) + s(C5 ⊕ C7)s(C3 ⊕ P2 ⊕ C5)

= 0 6= 0

Class II

s(C5 ⊕ C5)
> 0

= 0

s(C5 ⊕ C7)
> 0

Class II

= 0

s(C5 ∪ C5)
> 0

= 0

s(C5 ∪ C7)
> 0

Class II

= 0

s(C12)
> 0

Class I

= 0

Class III

Figure 11: The classification of 12-decks with sD(P2) > 0 whose 10-deck is of
Class III; we omit the subscript D in the diagram.
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8 Conclusion

Our characterization of the possible behavior of the initial twelve terms of the
polynomial t(H, 1/2+ εU)+ t(H, 1/2− εU) indicates that a complete characteri-
zation of locally common graphs would be complex. Still, our results suggest the
following two problems that could shed more light on a possible characterization
of locally common graphs.

Problem 1. Is it true that if two graphs H and H ′ have the same length g of

the shortest even cycle and the same counts of principal graphs in their g-decks,
then both H and H ′ are either locally common or not locally common? In other

words, can it be determined whether H is locally common based on the frequencies

of principal graphs in the g-deck of H, where g is the length of the shortest even

cycle in H?

Problem 1 would follow from establishing that every deck containing an even
cycle is of Class I or II; we believe this to be the case but we were not able to
find a short argument. However, we do not have a suspected answer to offer to
the next problem, although Theorems 18, 23 and 33 suggests that the answer
could also be positive. In order to state the problem, we need to introduce a
definition: a graph G is basic if every component of G is a cycle or isomorphic to
Cℓ ⊕ Pn ⊕ Cℓ′ for a non-negative integer n and some odd numbers ℓ and ℓ′ (the
value of ℓ, ℓ′ and n can be different for different components of G).

Problem 2. Is it true that if two graphs H and H ′ have the same length g of the

shortest even cycle and the same counts of basic graphs in their g-decks, then both

H and H ′ are either locally common or not locally common? In other words, can

it be determined whether H is locally common based on the frequencies of basic

graphs in the g-deck of H, where g is the length of the shortest even cycle in H?
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[6] E. Csóka, T. Hubai and L. Lovász: Locally common graphs (2019), preprint
arXiv:1912.02926.

[7] J. Cummings and M. Young: Graphs containing triangles are not 3-common,
J. Comb. 2 (2011), 1–14.
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[17] H. Hatami, J. Hladký, D. Král’, S. Norine and A. Razborov: Non-three-

colourable common graphs exist, Combin. Probab. Comput. 21 (2012), 734–
742.
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