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Abstract. We analyse nonlinear second-order differential equations in terms of algebraic properties
by reducing a nonlinear partial differential equation to a nonlinear second-order ordinary differential
equation via the point symmetry f(v)∂v. The eight Lie point symmetries obtained for the second-order
ordinary differential equation is of maximal number and a representation of the sl(3, R) algebra. We
extend this analysis to a more general nonlinear second-order differential equation and we obtain similar
interesting algebraic properties.
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1. Introduction
Nonlinear differential equations are ubiquitous in
mathematically orientated scientific fields, such as
physics, engineering, epidemiology etc. Therefore, the
analysis and closed-form solutions of differential equa-
tions are important to understand natural phenomena.
In the search for solutions of differential equations,
one discovers the beauty of the algebraic properties
that the equations possess. Even though closed-form
solutions are the primary objective, one cannot ignore
the interesting properties of the equations [1–6]. In
recent years, one such area in relativistic astrophysics
involves the embedding of a four-dimensional differen-
tiable manifold into a higher dimensional Euclidean
space which gives rise to the so-called Karmarkar
condition for Class I spacetimes [7]. The Karmarkar
condition leads to a quadrature, which reduces the
problem of determinig the gravitational behaviour of
a gravitating system to a single generating function.
This is then used to close the system of field equations
in order to get a full description of the thermodynam-
ical and gravitational evolution of the model. In a re-
cent approach, Nikolaev and Maharaj [8] investigated
the embedding properties of the Vaidya metric [9].
The Vaidya solution is the unique solution of the Ein-
stein field equations describing the exterior spacetime
filled with null radition of a spherical mass distribution
undergoing dissipative gravitational collapse. In their
work, Nikolaev and Maharaj showed that the Vaidya
solution is not Class I embeddable but the generalised
Vaidya metric describing an anisotropic and inhomo-
geneous atmosphere comprising of a mixture of strings
and null radiation gives rise to interesting embedding
properties. Here, we consider the nonlinear partial dif-
ferential equation arising from the generalised Vaidya
metric be of Class I. The governing equation is

2r2mm′′ − r2m′2 − 2rmm′ + 3m2 = 0, (1)

where the prime denotes differentiation of the depen-
dent variable, m(v, r), with respect to the independent
variable, r. Equation (1) is not v-dependent explicitly
and possesses the point symmetry f(v)∂v where f(v)
is an arbitrary function of v only. Using this symmetry,
we obtain the invariants r = x and m = y(x), which re-
duces (1) to a nonlinear nonautonomous second-order
ordinary differential equation

2x2yy′′ − x2y′2 − 2xyy′ + 3y2 = 0, (2)

where y is a function of x only. We use the Lie sym-
metry approach to obtain the solution of (2). Using
the solution of (2), we obtain the solution of (1).

2. Preliminaries
Let (x, y) denote the variables of a two-dimensional
space. Suppose that x is the independent variable
and y is the dependent variable. An infinitesimal
transformation in this space has the form

x̄ = x + ϵξ(x, y) (3)
ȳ = y + ϵη(x, y) (4)

which can be regarded as generated by the differential
operator

Γ = ξ(x, y) ∂

∂x
+ η(x, y) ∂

∂y
. (5)

Since we are concerned with point symmetries in this
paper, ξ and η depend upon x and y only. Under
the infinitesimal transformation (3) and (4), the nth
derivative transform is given by

ζn = η(n) −
n∑

j=1

(
n

j

)
y(n+1−j)ξ(j) (6)

and

Γn = ζn
∂

∂y(n) , (7)
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where the notation η(n), ξ(j) and y(n) denote the
nth, jth and nth derivative of the dependent vari-
able with respect to x. In the case of a function,
f(x, y, y′, ..., y(n)), the infinitesimal transformation is
generated by Γ + Γ1 + Γ2 + ... + Γn which we write as
Γ[n], where [10]

Γ[n] = Γ +
n∑

i=1

[
η(i) −

i∑
j=1

(
i

j

)
y(i+1−j)ξ(j)

]
∂

∂y(i) , (8)

is called the nth extension of Γ.
In the case of an equation

E(x, y, y′, ..., y(n)) = 0 (9)

the equation is a constraint and the condition [11, 12]
Γ a symmetry of the equation

Γ[n]E|E=0 = 0, (10)

i.e. the action of th nth extension of Γ on the function
E is zero when the Equation (9) is taken into account.
We note that E = 0 may be a scalar equation or
a system of equations1.

3. Symmetry analysis
The Lie point symmetries2 of (2) are

Γ1 = x
∂

∂x

Γ2 = y
∂

∂y

Γ3 = x3/2√
y

∂

∂y

Γ4 = √
xy

∂

∂y

Γ5 = 2x
∂

∂x
+ 3y

∂

∂y

Γ6 = x2 ∂

∂x
+ 3xy

∂

∂y

Γ7 =
√

y

x

∂

∂x
+

( y

x

)3/2
∂y

Γ8 = √
xy

∂

∂x
+ 3y3/2

√
x

∂

∂y

which is a maximal number for a second-order ordinary
differential equation and must be a representation of
the sl(3, R) algebra in the Mubarakzyanov Classifi-
cation Scheme [21–24]. Equation (2) is linearisable
to

d2Y

dX2 = 0, (11)

1An interested reader is referred to [13–16].
2The Mathematica add-on package SYM [17–20] was used

to obtain the symmetries.

by means of a point transformation. The solution
of (11) is

Y = AX + B, (12)

while the solution of (2) is not exactly obvious. How-
ever, one can transform (2) to (11). We seek the trans-
formation from (2) to (11) which casts Γ4 = √

xy∂y

into canonical form. Γ4 assumes canonical form pro-
vided

ξ(x, y)∂X

∂x
+ η(x, y)∂X

∂y
= 0 (13)

ξ(x, y)∂Y

∂x
+ η(x, y)∂Y

∂y
= 1, (14)

where ξ = 0 and η = √
xy because (2) possesses

a symmetry of the general form Γ = ξ∂x + η∂y.
When we apply the method of characteristics

for first-order partial differential equations to (13)
and (14), we obtain

dx

0 = dy
√

xy
= dX

0 (15)

dx

0 = dy
√

xy
= dY

1 (16)

for which the solutions are

X = x, Y 2 = 4y

x
. (17)

Under the transformation (17), Equation (2) takes
the form in (11). Hence we may apply (17) to (12) to
obtain the solution to (2), which is

y(x) = 1
4x(Ax + B)2, (18)

where A and B are two constants of integration.
By using the invariants r = x and m = y(x), the

solution of (1) follows from (18) and is

m(v, r) = 1
4r(A(v)r + B(v))2, (19)

where A(v) and B(v) are functions of integration.

4. The general case
We consider a general case by setting y(x) = un, where
u is a function of x in Equation (2), we obtain a more
general second-order equation

2nx2uu′′ + n(n − 2)x2u′2 − 2nxuu′ + 3u2 = 0. (20)

20



vol. 63 no. 1/2023 Linearisation of a second-order nonlinear ordinary differential equation

The Lie point symmetries of (20) are

Λ1 = x
∂

∂x

Λ2 = ∂

∂x
+ u

nx

∂

∂u

Λ3 = 1
n

x3/2u1−n/2 ∂

∂u

Λ4 = 1
n

√
xu1−n/2 ∂

∂u

Λ5 = 2x
∂

∂x
+ 3

n
u

∂

∂u

Λ6 = x2 ∂

∂x
+ 3

n
xu

∂

∂u

Λ7 =
√

un

x

∂

∂x
+ u1+n/2

nx3/2
∂

∂u

Λ8 =
√

xun
∂

∂x
+ 3

n

√
un+2

x

∂

∂u
.

As (20) is a second-order ordinary differential equation
and possesses eight Lie point symmetries, it is related
to the generic second-order equation [25]

d2Y

dX2 = 0. (21)

When we apply the method of characteristics for first-
order partial differential equations to (13) and (14),
and using symmetry Λ4, we obtain

dx

0 = du
1
n

√
xu1−n/2 = dX

0 (22)

dx

0 = du
1
n

√
xu1−n/2 = dY

1 (23)

for which the solutions are

X = x, Y 2 = 4un

x
. (24)

From the solution of (21), by means of the transfor-
mation (24), we obtain the solution of (20) as

u(x) =
(x

4

) 1
n (C1x + C2)

2
n , (25)

where C1 and C2 are constants of integration.

5. Conclusion
Most studies of the algebraic properties of ordinary
differential equations are focused on the first, second
and third order equations, which is most natural since
these are the equations which arise in the modelling of
natural phenomena. In this paper, we performed the
symmetry analysis of Equation (2) and showed that
the equation possesses the sl(3, R) algebra. In turn,
we reported the solution of (2) and thus obtained the
solution of (1). A natural generalisation of (2) followed.
By setting m(v, r) = zn, where z is a function of v and
r in Equation (1), we obtain a more general partial
differential differential

2nr2zz′′ + n(n − 2)r2z′2 − 2nrzz′ + 3z2 = 0, (26)

where the prime denotes differentiation of the depen-
dent variable, z(v, r), with respect to the independent
variable, r. We note that, as in Equation (1), (26)
is not explicitly dependent on v, and therefore pos-
sesses the point symmetry g(v)∂v, where g(v) is an
arbitrary function of v only. We use this symmetry
to obtain the invariants r = x and z = u(x) which re-
duce (26) to the second-order nonlinear Equation (20)
with the solution given by (25). Using (25) and the
invariants mentioned above, we obtain the solution
for Equation (26) to be

z(v, r) =
(r

4

) 1
n (C1(v)r + C2(v))

2
n , (27)

where C1(v) and C2(v) are functions of integration.

This paper demonstrates that the Equations (1),
hence (26), which, at first glance, looks complicated,
has some very interesting properties from the
viewpoint of Symmetry analysis. Using the symmetry
approach we were able to show that these equations
are integrable and have closed-form solutions.
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