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Abstract
This thesis develops a mathematical
model of glucose metabolism and builds
an educational web-page application
where the user can explore di�erent as-
pects of glucose metabolism through sim-
ulation. The model is built primarily on
the work of T. J. Sorensen who proposed a
whole-body glucose metabolism model in
his 1985 dissertation thesis. Other mod-
els are adapted to and combined with the
Sorensen’s model to add intracellular dy-
namics to the model. After discussing
the theory of glucose metabolism and the
equations of the model, parameters are
discussed and estimated. The model is
implemented in Modelica using the object
inheritance approach which enhances the
model’s adaptability. The model is tested
through glucose and insulin infusion ex-
periments and compared with experimen-
tal data. On the qualitative level, the
results agree with the experimentally mea-
sured values. To produce the web page,
an educational concept of showing spe-
cific points of view on glucose metabolism
is proposed. Namely, closed loop of or-
gans, cycling of metabolites, intracellular
reactions, and regulation of homeostasis.
Bodylight.js tools are used for the imple-
mentation of the web page.

Keywords: glucose metabolism,
mathematical modeling, educational
modeling, Modelica, T. J. Sorensen

Supervisor: doc. MUDr. Ji�í Kofránek,
CSc.

Abstrakt
Tato práce navrhuje matematick˝ model
metabolismu glukózy a vytvá�í v˝ukovou
webovou aplikaci, ve které m�ûe uûiva-
tel prost�ednictvím simulace prozkoumat
r�zné aspekty metabolismu glukózy. Mo-
del je postaven p�edevöím na práci T. J.
Sorensena, kter˝ ve své dizerta�ní práci
z roku 1985 navrhl model celot�lového
metabolismu glukózy. Pro popis vnitro-
bun��n˝ch reakcí práce napojuje na So-
renson�v model dalöí modely. Po p�edsta-
vení teorie metabolismu glukózy a rovnic
modelu práce diskutuje odhad a v˝po�et
parametr� modelu. Model je implemento-
ván v jazyce Modelica s vyuûitím d�di�-
nosti objekt�, coû ho �iní snadn�ji pouûi-
teln˝m pro dalöí v˝voj. Model je porovnán
s experimentálními daty, se kter˝mi je na
kvalitativní úrovni v souladu. Struktura
webové stránky je navrûena tak, aby po-
skytla pohled na glukózov˝ metabolismus
z r�zn˝ch úhl� pohledu. Konkrétn� pohled
na orgány jako na uzav�enou smy�ku, na
cyklování metabolit�, na vnitrobun��né
reakce a na regulaci homeostázy. Pro im-
plementaci webové stránky jsou pouûity
nástroje Bodylight.js.

Klí�ová slova: glukózov˝ metabolismus,
matematické modelování, modelování pro
v˝uku, Modelica, T. J. Sorensen

P�eklad názvu: V˝ukov˝ simulátor
glukózové regulace v internetovém
prohlíûe�i
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Chapter 1
Introduction

Human metabolism has many routes and systems highly important both in
health and in disease - one of them being glucose metabolism. Changes in
glucose metabolism can result in severe health complications, like diabetes
mellitus of the second type which a�ects circa 6% of the global population.
[46] Apart from type 2 diabetes, a range of other alternations exist to glucose
metabolism since the human glucose metabolism is broad and complex. Its
e�ects have no clear boundaries, a�ect nearly all tissues in the body, and are
deeply connected to other metabolic cycles, for example, fatty acid or amino
acid metabolism. Even the portion of glucose metabolism related to energetics
is bounded to many other subsystems and is di�cult to grasp as a whole.
Hence understanding glucose metabolism is important, yet complicated. The
human glucose metabolism can be observed in vivo or in vitro, but that is
not always suitable since it often requires special expertise and tools and still
captures only a section of the system as a whole. An alternative to that is to
provide a more complex description of the system through text (with images
and diagrams), but that usually carries with it low levels of adaptability
and visualization potential. This issue represents an obstacle in education
where students have to comprehend large systems before gaining practical
experience. Therefore, the primary motivation of this thesis is to create a
more accessible path to studying and understanding glucose metabolism.

Mathematical modeling is an approach that can make the studying of glucose
metabolism more available. It can help test hypotheses, predict new therapies,
or study the metabolism under conditions that would be di�cult or impossible
to produce in real life. That is why mathematical modeling is used as an
approach to solving the objective of this thesis. However, glucose metabolism
models available in the literature were mostly not developed for educational
purposes, and using them might be nonfunctional. The models in the literature
of glucose metabolism are usually developed with specific motivations; for
example research of diseases and therapies. With that, they are often reduced
to a minimal working system that can represent the studied disease. This
makes their ability to be directly adapted to di�erent scenarios limited - which
is important in modeling for education. Furthermore, these models are not
holistic and provide great detail in certain parts of the body, while neglecting
others. Furthermore, mathematical models often require specific software and
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1. Introduction .....................................
certain technical knowledge to implement them, which might be di�cult to
access for the potential user. To benefit from the advantages of modeling in
education, the objective of this thesis is to provide an educationally tailored
model delivered on an accessible platform.

For the model, the goal is to o�er a complete picture of the body with a
similar level of depth of detail in di�erent tissues. The aim is also to first show
a complete typical metabolism and then change it flexibly to demonstrate
its variations in disease. The approach is to build upon existing glucose
metabolism models of T. J. Sorensen[80], Pratt et al.[71] and Carstensen
et al.[14] and use them to create a whole-body model. This model will be
displayed on a web page simulator. A web page represents a suitable platform
for the model as it is accessible and there is an existing tool chain to convert
models to interactive web page components. The combination of a model and
a web page represents a good fit for education as it combines the interactivity
of the web components with the model’s capacity to visualize processes. To
develop the model and construct the web page, OpenModelica environment,
and Bodylight.js tools will be used.

The selected tissues to be modeled are the brain, liver, adipose tissue, heart,
skeletal muscle, kidneys, and gut. The modeled tissues will contain intracel-
lular processes which will drive the simulated metabolism. The model also
will include hormonal regulation by insulin and glucagon. The model will
simulate a standard 70 kg male glucose metabolism that can be altered to
simulate glucose intolerance or decreased insulin production. How glucose
metabolism behaves can rapidly change depending on the person’s activity;
in a fasted state, shortly after eating, or during exercise. The model will
simulate a basal state after an overnight fast which can be altered by insulin
or glucose infusions. Exercise or food intake will not be modeled.

1.1 State of the art

A very common way of modeling the metabolism of glucose and related
metabolites is through ordinary di�erential equations (ODEs). This approach
has been dominant throughout the last years [4] and models built on ODEs
can be implemented in the language of Modelica in a straightforward way,
for these reasons only ODE models will be considered.

1.1.1 Minimal models

One of the first widely cited models regarding energetic metabolism began to
be formulated in the 70s and 80s as clinical tools for glucose measurements.
The Bergman et al. model[9] aimed to estimate insulin sensitivity for clinical
use by devising a ‘minimal model’ for use during an intravenous glucose
tolerance test (IVGTT). The model contained two di�erential equations
and considered liver and periphery interactions governed by glucose and
insulin.[4] A variety of minimal models followed, for example, Silber et. al
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................................... 1.1. State of the art

(2007) produced a more detailed model using 15 equations describing the
post-IVGTT di�erences between healthy and diabetic people. The model
used several compartments but these were modeled less as organs and more
as functional flows. [77] The response to oral glucose tolerance tests (OGTT)
was also modeled by Silber et. al (2010) and followed a similar approach as
in the 2007 paper. [78] A recent model in this line of research brought a more
detailed description of insulin kinetics by including a pancreas compartment.
[23] Following the success of the Bergman et al. minimal model, Derouich and
Boutayeb edited the model to contain the e�ects of exercise, still described
by two ODEs. [19] However, as the minimal models do not attempt to model
multiple organs as compartments nor do they use more detailed chemistry,
they are not a suitable choice for an educational model.

1.1.2 Whole-body models

Another motivation for the development of metabolic models was the creation
of virtual diabetic patients and insulin delivery algorithm testing. The model
of Dalla Man et al. became truly successful as it even became accepted by
the United States of America Federal Drug Agency as a tool for pre-clinical
diabetes technology trials. The original model consisted of glucose and insulin
as mediators and contained both a healthy person and a diabetic person
model. [18] Later updates included glucagon and focused on developing
a type 1 diabetes mellitus (T1DM) virtual patient population and added
tools for simulating subcutaneous insulin delivery and continuous glucose
measurements. [92] There are also other commercial simulators that are not
discussed here (T1DM PhysioLab, Archimedes).

More detailed kinetic processes of energetic metabolism were modeled for
example by Liu and Tang who developed a more detailed metabolism model
for algorithm testing, including glycogen mechanics in the liver and glucagon
regulation. [54] Other works have focused on including other metabolites,
such as free fatty acids, hence modeling the metabolism more as a whole. Xu
et al. investigated the role of glycogen cycling in metabolism in the liver [94].
Both of these models have a larger amount of detail than the minimal models,
however, Liu et al. split the body only into plasma and intracellular space,
which is still very broad for the purposes of this thesis, and the work of Xu et
al. omitted the kidneys and the brain from their model. Pratt et al. focused
more on the dynamics of lipids but also modeled some glucose metabolites in
the liver. [71] Both the Xu et al. and Pratt et al. models were structured into
adipose tissue, muscle, liver, and blood plasma and didn’t explicitly model
any incretins e�ects. Only the Xu et al. model included glucagon explicitly.

The e�ect of oral glucose ingestion and the e�ect of incretins has been
modeled for example by Toghaw et al. [83] Their model described glucose,
insulin, incretin, and ghrelin dynamics and split the small intestine into three
compartments. However, the main purpose of the model was the simulation of
the e�ects of bariatric surgery, and less the simulation of general metabolism.
Some more complex models were structured hierarchically. Nyman et al.

3



1. Introduction .....................................
integrated a cell-level model of insulin-glucose mechanics in adipocytes into
the model of Dalla Man et al. from 2007. [66] Later, the same research
group made an extension to the model including adding a brain component,
liver glucose intake after meals, and other e�ects. [36] A di�erent branch of
research by Uluseker et. al also extended the Nyman et al. model, focusing
on enhancing the model with ghrelin, leptin, incretin, and glucagon. [85] A
sophisticated model of a whole-body metabolism was constructed by Kurata,
with over 200 metabolites described by di�erential equations spanning all
major organs, including the brain. [49] While these models o�er in-depth
insight into intracellular processes, perhaps an unnecessary amount of detail
for a general educational model is included. In the case of the Nyman et
al. model and the subsequent models, the adipocyte module is very detailed
while the rest is generally put. The work of Kurata is too complex to be
simply visualized and would leave much of the model’s mechanics unused.

A popular whole-body model was developed by Sorensen, based on blood
flows between individual organs, including the brain, which isn’t explicitly
often accounted for. The modeled substances were glucose, insulin, and
glucagon. [80] Recently, Panunzi et al. extended Sorensen’s model to include
a glucose digestion module and corrected its mistakes. [69] Building on
the work of Sorensen, Alvehag, and Martin extended his model to include
incretin dynamics, as a base model for type 2 diabetes mellitus (T2DM)
modeling. [5] Alvehag and Martin’s work was further developed and validated
by Vahidi et al., who also focused on modeling the e�ects of incretin. [87]
Schaller et al. followed the work of Sorensen and produced a whole-body
system with great cellular detail. Each organ is divided into additional sub-
compartments and molecular insulin signaling is modeled. In addition to the
source model, incretin e�ects are also modeled. The model of Schaller et al.
would be possibly suitable but no explicitly written equations were published
in the paper. [74] Very recent pre-print conference paper by Carstensen et al.
expanded the Sorensen model to simulate whole-body metabolism with 16
metabolites related to glucose, lipid, and also amino-acid cycles. [14]
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................................ 1.2. Structure of the thesis

1.2 Structure of the thesis

The thesis is divided into three sections - theory, implementation, and conclu-
sion. In the Theory section, Sorensen’s model is introduced and the biology
of glucose metabolism is described, both from a whole-body and intracel-
lular point of view. The software used for implementation is referenced.
In the Implementation section, the parameters and equations of the model
are discussed, and also the practical implementation in OpenModelica is
explained. The discussion is divided into whole-body constants and then
individual organs, following the approach of Sorensen. The model simulations
are compared with data from the literature. The concept of the web page and
how it’s structured is discussed as the last part of the Implementation section.
In the Conclusion section, the results of the thesis are reviewed, along with
its limitations and further possible developments.
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Chapter 2
Theory

This chapter describes the selected base model (Sorensen’s model) and glucose
metabolism on whole-body and intracellular levels. Glucose intolerance is
introduced and finally, a short list of the used software tools is referenced.

2.1 Sorensen’s model

When searching for a model to work with, the goal was to find a model
containing both insulin and glucagon and most of the major body organs.
The original model of Sorensen was selected as it provides an account of
the whole body and can be expanded in a straightforward way because it
uses common general principles across all modeled tissues and organs. The
limitation of the model for the purposes of this thesis is the lack of intracellular
reactions and the combination of muscle tissue and adipose tissue into one
compartment. These will be solved in the section on implementation. In this
subsection, two important concepts from the work of Sorensen are described;
how metabolites circulate between organs and how to e�ciently model the
e�ects of hormones and other regulators.

2.1.1 Metabolite mass equations

The organs and tissues with which he works are brain, gut, liver, kidney,
heart & lungs and periphery. Some organs have separate interstitium and
vessels, some are simply combined into one space. A simple organ glucose
mass equation is written

V
dG

out

dt
= Q

inp
G

inp ≠ Q
out

G
out ≠ rsink + rsource (2.1)

where V is the sum of the vessel and interstitium volumes, G is glucose
concentration (input or output), Q is the blood flow (input or output), r are
sinks and sources originating from processes in the tissue. The equations for
separated compartments

VV

dGV

dt
= Q

inp
G

inp ≠ Q
out

GV ≠ VI

T
(GV ≠ GI) (2.2)
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2. Theory .......................................

VI

dGI

dt
= VI

T
(GV ≠ GI) ≠ rsink + rsource (2.3)

where the subscript V and I denotes vessels and interstitium and T is the
membrane transport time constant. The two compartment model is used
in scenarios where there is a steep concentration gradient (periphery block,
brain).

Sorensen does not model intracellular processes as it is not necessary in his
model and simply estimates the processes in the extracellular space. Insulin
equations work similarly to the glucose mass equations. The glucagon module
is considered to have a single mixed volume representing the whole body and
does not circulate.

2.1.2 Estimation of sinks and sources

A key principle for Sorensen is that the e�ects of hormones (insulin, glucagon)
and glucose are multiplicative and can be separated. For a metabolic sink or
source, the rate r is expressed as:

r = M
I
M

�
M

G
rB (2.4)

where M are the multiplier functions, depending only on one normalized (with
respect to basal levels) metabolite concentration, and rB is the basal rate of
the sink/source. Sorensen modeled these M functions as tanh functions. An
important feature of this set up is that M functions are always normalized,
hence at basal state they equal to one and hence r = rB ; which is very elegant
and practical. This approach is the corner stone of this thesis’ model too.

Usually, Sorensen would first discuss and determine the basal rates. By using
measurements from various studies, most of the time he was able to discern
individual e�ects and fit on the study data tanh M functions by using the
Levenberg-Marquardt optimization method. In cases where this was not
possible (mainly the liver), the curves were fit to match data from intravenous
glucose tolerance test (IVGTT). Similarly the pancreas release module was
fit to the IVGTT data.

2.2 Glucose metabolism

2.2.1 Whole-body glucose metabolism

During the basal state when there has been no energy substrate intake for
several hours, the body equilibrates and the endogenous glucose production
matches the consumption. The main glucose-consuming organ is the brain
with very limited fluctuation. In case of decreased blood glucose levels,
the brain will always get prioritized. Another tissue that uptakes glucose
in significant amounts is the muscle tissue, which, similarly to the heart,
uses glucose only as a minor substrate. The adipose tissue has low energy

8



..................................2.2. Glucose metabolism

requirements but uses glucose as its main substrate. [25] Interestingly, the
small intestine also clears a portion of glucose but not for energetic purposes
but for the production of other substrates.[60] The liver and the kidney both
uptake glucose for the production of energy, yet also have the capacity to
produce glucose from other substrates or from storage in the case of the
liver. Red blood cells and lungs[68] also uptake significant portions of glucose.
Understanding the basal state is important as that will be the default state
of the model.

After the consumption of a meal, the metabolism switches on multiple levels.
In tissues where fatty acids were the dominant metabolic substrate, glucose is
primarily utilized. Furthermore, in adipose tissue lipid breakdown is reduced
and lipid storage is promoted together with glucose uptake. The liver nearly
stops its glucose production and directs the incoming glucose toward storage
as glycogen. The skeletal muscle also not only utilizes glucose but also stores
it as glycogen. These processes are mediated by changes in insulin, glucagon,
catecholamine, and other control hormone concentrations.[79] Even though
meal ingestion reaction di�ers from simple glucose infusion reaction, the
principle responses remains the same.

2.2.2 Reduced glucose tolerance

Reduction in glucose tolerance can be seen in higher than usual blood glucose
levels or reduced glucose clearance during glucose infusion (or consumption).
Glucose tolerance is considered in the context of type 1 and type 2 diabetes
mellitus. Type 1 is characterized by the destruction of beta-cells which
causes a diminished or absent response of insulin to increased blood glucose
levels. Type 2 can have various forms, but generally includes both insulin
resistance and modified insulin release. The tissues mainly involved in insulin
resistance are skeletal muscles, adipose tissue, and the liver. The resistance
in these tissues can have two parts - receptive and reactive. The receptive
part concerns the availability of insulin receptors - if only receptivity is
reduced, then a su�cient amount of insulin will achieve a similar response
to a non-resistant tissue. The reactivity of tissue to insulin characterizes
dysfunction in the insulin’s signaling cascades. ([80], p. 305-335)1 This
could be caused, at least in type 2 diabetes, by inflammation and reactive
oxygen species. In the adipose tissue, insulin resistance causes high lipolysis
rates which impact the metabolism of other organs. In the liver, insulin
resistance causes insu�cient drive of glucose towards storage and does not
inhibit the glucose-releasing pathways. [27] The conclusion from this section
is that although the intracellular mechanisms leading to insulin resistance and
beta-cell inactivity/death are complicated, in principle there are three general
phenomena; insulin production, insulin receptivity, and insulin reaction;
that are altered. This observation could be useful for designing the glucose

1The page numbers when referencing Sorensen are added even in cases which are not
inline citations so that information could be more easily found since a wide range of pages
is referenced from the thesis.
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2. Theory .......................................
intolerant metabolism later on.

2.2.3 Glycolysis and gluconeogenesis

In the cell, glucose can undergo glycolysis, a process of converting glucose
to pyruvate. Each step in the pathway is catalyzed by a specific enzyme. A
key enzyme is a hexokinase which converts glucose to glucose-6-phosphate.
The next step is catalyzed by phosphofructokinase-1 (PFK-1). After some
additional steps, glyceraldehyde-3-phosphate (G3P) is created. The last
step before pyruvate is created is the formation of phosphoenolpyruvate
(PEP). Hexokinase has di�erent forms, one of them being specifically called
glucokinase, which is localized to the liver. After glycolysis, pyruvate can turn
into lactate or acetyl co-enzyme A (ACoA). ACoA then enters the tricarboxylic
acid cycle to undergo full oxidation. ACoA can also be used to create fatty
acids. G3P can enter the fatty acid metabolism as glycerol-3-phosphate and
become the backbone of a triglyceride. [53]

The formation of glucose from di�erent substrates is termed gluconeogenesis.
The most typical source substrates are lactate, amino acids, and glycerol.
Depending on the substrate, the pathways di�er in the beginning, but all es-
sentially have to go through the tricarboxylic acid cycle before being converted
to PEP. An important enzyme in this process is the phosphoenolpyruvate
carboxylate kinase (PEPCK). Pyruvate by itself cannot be directly converted
to PEP and has to pass through the mitochondria. The final step of con-
version of glucose to G6P is catalyzed by the enzyme G6Pase. [98] These
glycolytic and gluconeogenic paths form the basis of the intracellular scheme
of reactions in the model. Furthermore, knowing the enzymatic breakpoints
is necessary to correctly assign the insulin e�ects to the intracellular reactions
they a�ect.
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2.3 Tools for implementation

The model will be developed in the Modelica programming language. As
the accessibility of the model is important for its intended use, an open
software to convert the model from Modelica to a more suitable environment
is needed. This will be provided by the OpenModelica editor and the tools
of Bodylight.js [76] which convert the model to a web component which can
be visualized in the Bodylight editor. OpenModelica is capable of exporting
the model in the format of functional mock-up unit (FMU) which can be
later converted to a javascript module with the Bodylight editor. For the
estimation of functions based on data, the SciPy library is used, namely the
curve_fit function which implements the Levemberg-Marquardt algorithm.
The library is in language Python.

The versions of the software are the following:
OpenModelica editor 1.19.2 dev.beta1
Bodylight compiler 2.0.37
Bodylight editor 2.0.40
Python 3.8.12
SciPy library 1.10.0
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Chapter 3
Implementation

3.1 Overview of the model

The model builds upon Sorensen’s model - it uses the same mathematics for
metabolite circulation across organs and uses his equations as foundations
for determining other more detailed parameters. The model contains organ
models for the brain, heart, liver, kidneys, gut, adipose tissue, and skeletal
muscle. The lungs and red blood cells are included as metabolic sinks and
sources but are not modeled as organs. Sorensen didn’t model intracellular
processes, only vessel and interstitial ones. The separation between intra-
and extracellular space and metabolite exchange is modeled similarly to his
separation of interstitial and vascular space. To avoid a double membrane
modeling, where possible, vascular and interstitial space is combined into one
extracellular space, except for muscle.

3.1.1 Implicitly modeled tissues

As can be seen from summing the masses of explicitly modeled tissues, it
is clear that a part of the total body mass is unaccounted for. This should
mainly be bones and skin. It is not clear what exactly does the energy
metabolism of bones look like, but it seems that it primarily utilizes glycolysis
since there is little oxygen in the environment.[64] The skin uses glucose as
a primary source of energy with the majority of glucose being converted to
lactate.[65] It is assumed that these tissues should be implicitly captured
in the measurements conducted on the muscle or adipose tissue. In the
model, the bones are combined with skeletal muscle as part of the muscle
tissue module based on their physical proximity. The skin is neighboring the
subcutaneous fat tissue (which is the major fat tissue), and so it is modeled
that the skin is a part of the adipose tissue compartment.

3.1.2 Metabolite circulation

Each organ follows a structure for metabolite exchange. Adapting the work
of Carstensen et al.[14], Sorensen’s function’s have been vectorized. First, all
metabolites inflowing into the organ from other organs are mixed to produce
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3. Implementation....................................
an input mass flow. In the current setting, the circulating metabolites are
glucose, lactate, amino acids (represented by a single metabolite), glycerol,
and insulin. Glucagon is modeled in a more simple system and is not modeled
as circulating.

m
in

i = Q
in

i · C
in

i (3.1)

Where m
in

i
is the mass of the i-th metabolite inflowing the organ (unit/min),

Q
in

i is a vector of blood flow rates from input organs in dl/min, C
in

i is a
vector of concentrations (unit/dl) from input organs. Selected metabolites in
the extracellular space can move across cell membrane, based on gradients.
The exchangeable metabolites are glucose, lactate, amino acids and glycerol.

m
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i ≠ C
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Where m
cell

i
is the mass flow of the i-th metabolite to the cell, ki is the i-th

membrane transport constant (dl/min), Ci is the concentration of the i-th
exchangeable metabolite in the extracellular space (out) or the intracellular
space (cell). The metabolites also actively leave the extracellular space.
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Where m
out

i
is the mass flow of the i-th metabolite out from the organ, Q

out

i

is a scalar output blood flow rate in dl/min, C
out

i
is a scalar extracellular

concentration at the given organ. The sum of input flows is the output flow.

The sum of these three mass flows m
out

i
, m

in

i
, m

cell

i
determines the rate of

accumulation of a metabolite in the extracellular space. In a stable state,
they should sum to zero. Blood flows are assumed constant, like in Sorensen’s
model. The tissues are connected as shown in figure 3.1.

3.1.3 Intracellular reactions

The scheme of Carstensen et al. is adapted and the following intracellular
metabolites are modeled: glucose, glucose-6-phosphate (G6P), glyceraldehyde-
3-phosphate (G3P), pyruvate, lactate, acetyl coenzyme A, glycogen, amino
acids, glycerol. The system of modeled reactions is depicted in the figure 3.2.

Almost all of the function shapes were taken from the work of Pratt et al.
[71]. Most often the reactions are modeled as dependent on normalized
concentrations of metabolites which makes setting up basal rates more clear.
The normalization is by basal mass. The metabolites are modeled as a pool
from which reactions give and take. There two pools in the cell - exchangeable
metabolites (transfer pool) and molecules that do not leave the cell (locked
pool).

After entering the cell, glucose is phosphorylated to G6P. This is modeled as
Michealis-Menten reaction with product inhibition. The liver has one extra
equation to model this reaction, which is described in the section of liver.
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................................ 3.1. Overview of the model

Figure 3.1: Blood flow circulation between modeled organs

r = vmax

Cglu

(Km + Cglu)
1

(1 + Cg6p

Ki
)

(3.5)

Where r is the reaction rate (in mg/min), vmax is the maximum velocity,
Km is the half-saturation constant, C is the concentration of a metabolite
and Ki is the inhibitory constant. The units dependent on whether we use
normalization or not, and they will be specified depending on the context.
The reverse reaction is modeled by a Michealis-Menten equation without
inhibition, because glucose is only a minor inhibitor. [90]

r = vmax

Cg6p

(Km + Cg6p) (3.6)

G6P can be converted into G3P, G3P to pyruvate, and pyruvate to lactate or
ACoA. Amino acids are assumed to be converted directly to pyruvate, and
also lactate can be turned to pyruvate. Glycerol is converted to G3P. All of
these reactions are modeled in the following way

r = kC (3.7)

where k is the basal rate in mg/min and C is the normalized metabolite mass
driving the reaction.

Glycogen synthesis is modeled as r = kC with tanh inhibition representing
reaction inhibition by filling the glycogen stores.

r = k1Cin(1 + tanh(k2(k3 ≠ Coutmax))) (3.8)
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3. Implementation....................................

Figure 3.2: All possible intracellular reactions in the model

Glycogenolysis is modeled as a tanh function which decreases significantly as
glycogen stores get depleted.

r = k1 tanh(k2Cin) (3.9)

The e�ects of insulin, glucagon or glucose are modeled as multiplicative and
are always assumed to equal one in the basal state. As discussed in the
Theory section, this approach is inspired by Sorensen’s work.

rreg = E(X)r (3.10)

Where rreg is the regulated rate, E(X) is the e�ect function depending on the
normalized concentration of a certain regulator (insulin, glucagon or glucose).
There is one exception to this, and that is the ACoA oxidation. In theory
this process should be limited, and therefore the E(X) e�ect is put inside
the tanh argument.

3.1.4 Volumes and Flows

Sorensen provides his estimates of blood flows and volumes for individual
organ compartments on page 36 of his thesis. [80] The peripheral compart-
ment volume and blood flow are calculated as the di�erence of the total
volume/blood flow minus the rest of the organs. The peripheral compartment
combines the volumes of skeletal muscle and adipose tissue. The interstitial
and intracellular volumes of the heart&lungs tissue are also added to the
periphery compartment. However, the heart&lungs block has its own blood
flow and vessel volume. It is important to note, that the peripheral com-
partment volume also includes other residual tissues, for example, bones and
skin. Since one of the goals of this model is to model the skeletal muscle and
adipose tissue separately, this has to be solved. All of the volumes and flows
are in litres and in litres/min.

The peripheral compartment has 1.26 litres in equilibration volume (combined
veins with capillaries), 6.74 litres in interstitial (IS) volume and 19.65 litres in
intracellular (IC) volume. From rat heart studies [7], heart extracellular (EC)
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and intracellular (IC) volumes can be estimated. If we assume the heart mass
to be 310 g [96] and use dry to wet mass ratio of 0.2, then the EC volume is
circa 0.049 litres, and the IC volume is 0.159 litres.

The intracellular volume of Sorensen’s periphery module is circa 0.7 of the
total volume of the compartment. Muscle consists circa 75% of water.[31]
Assuming the same 0.7 ratio for skeletal muscle, for 27 kg of muscles that
would be 6.07 litres in EC and 14.18 litres in IC space (the muscle mass is
estimated in the Skeletal muscle section). The adipose tissue water content is
estimated at 15% [67]. Using 10 kg of adipose tissue mass (as Sorensen) and
the same ratio, that would be 0.45 litres in EC and 1.05 litres in IC space.
The lung water content is circa 80% [59]. The lung mass is 840 grams [63],
and with the same ratio as above that would produce 0.20 litres in EC and
0.47 litres in IC space.

The heart and lungs interstitial volumes are included in the periphery. Sub-
tracting heart and lungs EC volumes from the peripheral interstitium volume
(6.74 litres) should correct for that with little error, and give 6.42 litres. The
equilibration to extracellular volume ratio for the peripheral compartment
is circa 0.16. Applying this ratio to skeletal muscle and adipose tissue gives
5.10 litres of muscle interstitium and 0.38 litres of adipose interstitium. The
remainders are equilibration volumes, that is 0.97 litres for skeletal muscle
and 0.07 litres for adipose tissue.

Summing up the above calculated intracellular spaces, that gives 15.75 litres,
which is 3.9 litres short of the peripheral intracellular volume (19.65 litres).
Interstitial volumes give 5.69 litres, which is 1.05 litres below the periph-
eral interstitium (6.74 litres). Summing skeletal muscle and adipose tissue
equilibration volumes gives 1.04 litres which is 0.22 litres lower than the
peripheral volume (1.26 litres). The reason for not including the heart&lungs
in the equilibration volume sum is that Sorensen assigned the heart&lungs
equilibration volume to the heart&lungs block.

One tissue that is not accounted for is the bone, which contains circa 30%
of water. [59] 15% of the human body mass is the bones, which for a 70 kg
man is 10.5 kg, with water content of 3.15 litres. This can explain 60% of the
missing volume. Another tissue that fills the remaining gap is the skin, with
64% water content [59] and a mass of 3.5 kg [52]. That gives 2.24 litres water
content. Because of their physical proximity, the bone compartment volume
is added to the muscle tissue volume. The skin is added to the adipose tissue.

Using the same ratios as above, the total water mass for bones and skin was
added to the muscle and adipose tissue, respectively. The lungs are modeled
only as a sink and source and not a full organ, so their volume is added to
the Heart compartment. The interstitial and intracellular volumes in litres
are summarized in the table 3.1.

Sorensen’s peripheral blood flow was taken as the remainder of blood flow to
match cardiac output, making it 1.80 l/min. From [21] it is estimated that
skeletal muscle blood flow is circa 0.92 l/min and adipose tissue blood flow is
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Tissue Interstitium Intracellular
Brain 0.45 0.86

Heart and Lungs 0.21 0.63
Liver 0.6 1.15
Gut 0.52 1.01

Kidney 0.09 0.18
Hepatic artery - -

Muscles 5.89 16.39
Adipose 0.94 2.62

Table 3.1: Interstitial and intracellular volumes of the compartments

circa 0.23 l/min. That means circa 0.65 l/min is unallocated. The skin has
blood flow circa 0.07 l/min (2 ml/100 g/min [41], 3.5 kg mass). The bones
have blood flow circa 0.19 l/min (1.8 ml/100 g/min [35], 10.5 kg mass). As
discussed above, the bones are grouped with muscle, and skin is grouped with
adipose tissue. It is uncertain which other tissues does the still unallocated
blood flow perfuse. The ratio between adipose compartment blood flow and
muscle compartment blood flow (with bones and skin added) is circa 0.27.
The remaining blood flow is added to the modules to maintain this ratio.

The equilibration volumes and blood flows have to be corrected for red blood
cell (RBC) volume and if a metabolite can enter them. Sorensen calculated
that if a metabolite can enter RBCs, it can use 84% of the total equilibration
volume or blood flow; if not, 60% is available. Glucose can enter RBCs [80],
and it seems that also lactate [29], glycerol [13] and amino acids [84] can.
Insulin can’t enter a RBC. [80]

Tissue Equilibration volume full RBC perm. RBC imperm.
Brain 0.41 0.35 0.25

Heart and Lungs 1.64 1.38 0.98
Liver 0.9 0.76 0.54
Gut 0.71 0.60 0.43

Kidney 0.68 0.57 0.41
Hepatic artery - - -

Periphery 1.26 1.04 0.75
Muscles 1.12 0.94 0.67
Adipose 0.18 0.15 0.11

Table 3.2: Full, RBC permeable and RBC non-permeable equilibration volumes
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Tissue Blood flow Full RBC perm. RBC imperm.
Brain 0.7 0.59 0.42

Heart and Lungs 5.2 4.37 3.12
Liver 1.5 1.26 0.9
Gut 1.2 1.01 0.72

Kidney 1.2 1.01 0.72
Hepatic artery 0.3 0.25 0.18

Periphery 1.8 1.51 1.08
Muscles 1.4 1.19 0.85
Adipose 0.4 0.32 0.23

Table 3.3: Full, RBC permeable and RBC non-permeable blood flows

3.1.5 Basal concentrations and constants

All metabolites are expressed in glucose equivalents. As Sorensen derived,
plasma concentration is 92.5% of whole-blood concentration and blood con-
centration is 84% of whole-blood concentration ([80], p. 45), which was used
to convert the values found in the literature. For arterial whole-blood concen-
tration (heart compartment): glucose - 97.3 mg/dl ([80], p. 126), lactate 10.7
mg/dl [11], glycerol 0.7 mg/dl [88]. For amino acids, an average of glutamine
and alanine concentrations [57] was taken, 4.6 mg/dl. The arterial plasma
concentration of insulin is set to 1.5 mU/dl.

It was di�cult to find information regarding the intracellular concentration
of metabolites. One helpful piece of information is gradient transport. Most
of the time information was available on whether an uptake was positive or
negative for a metabolite. Since all transport in the model is modeled as
simply by the gradient (enhanced by insulin in the case of glucose), it can at
least be said if the concentration is lower or higher than in the extracellular
space. The negative impact of possibly imprecise intracellular concentrations
is reduced by normalizing all metabolites in the cell by their basal masses.
Still, if a basal mass is assumed too low, the reaction dynamics will be too fast;
and if too high, the reaction dynamics will be too slow. The reason for this is
that a small amount of metabolite will double more quickly and hence swiftly
stimulate all the related reactions. In the model, the basal concentrations
of glucose, lactate, amino acids, and glycerol are usually within the range
of 0.1-10 of their extracellular concentrations which seems physiologically
sensible. Another helpful source was the model by Pratt et al. [71] from
which intracellular liver and muscle concentrations for glucose and G6P were
taken - liver: 8 mmol/l glucose; muscle: 0.5 mmol/l glucose, 0.13 mmol/l G6P.
The pyruvate concentration is set to 0.13 mmol/l [30]. The concentrations of
G3P and ACoA are set to the same level as pyruvate. The glycogen basal
concentration in the liver is estimated to match 50% of the maximum 100
grams. For the muscle, maximum of 400 grams was set, again in basal state
at 50% maximum.
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From knowing the whole-blood concentrations, intracellular concentrations,
blood flows, and basal metabolite flows, the transport constants k can be
calculated. Assuming a steady state, then the net outflow from the tissue
has to equal the net outflow from the cellular membrane. The basal flows are
determined for each tissue separately in the section below. It should be noted
that often only the net inflows for a certain metabolite are known and in case
of reversible reactions (often lactate-pyruvate shu�ing) the base reactions
had to be chosen arbitrarily.

3.1.6 Curve fitting

To fit a tanh curve, at least four data points are needed in theory. The tanh
curves are used to model the e�ects of insulin and glucagon on metabolite flows.
These flows are rarely known directly and most of the time are calculated
based on uptake-release organ functions describing how insulin or glucagon
a�ects organ uptake or release of a metabolite. These calculations are based
on the assumption of a steady state in which metabolite concentrations are
stable and flows sum to zero. This is possible because all of the insulin or
glucagon e�ects are isolated and assume a euglycemic clamp. For calculations,
4-6 insulin or glucagon levels are taken, ranging from hypo- to hyper- states.
These levels are inputted to the uptake-release organ function from which the
steady state for all intracellular metabolites is calculated. Having 4-6 data
points for each flow, the selected flows can be fitted with tanh curves.

3.2 Tissue models

3.2.1 Brain

The brain is one of the most metabolically active organs which utilizes glucose
as its main energy source. Sorensen, based on studies of brain glucose uptake,
modeled it to be 70 mg/min ([80], 53). 8% of the uptaken glucose gets
converted to lactic and pyruvic acid ([80], 51). Van Hall in an review states
that the brain netly releases 5 mg/min of lactate [89]. Sorensen further
assumes that brain glucose uptake is constant under normal physiological
conditions, since ’glucose and oxygen uptake remained essentially unchanged’
in experiments on dogs in the range of 25-245 mg/dl. In humans, ’when
circulating glucose levels fall below ... 40 to 50 mg/dl ... [brain] glucose
uptake begins to decrease’. ([80], 52)

Basal flow rates

The glucose influx during normal glucose levels is su�cient to saturate the
hexokinase reaction. [20]. Hexokinase is saturated while intracellular glucose
is greater than 0.8–1.0 mmol/l. [56] The plasma-brain ratio is circa 0.2 [20]
meaning that interstitial glucose is circa 1 mmol/l at 5 mmol/l of blood
glucose levels. Intracellular glucose should then be similar to the interstitial
levels at a basal state. The Michealis-Menten parameter Km for hexokinase in
the brain is circa 0.05 mmol/l [20]. Resting brain hexokinase activity in brain
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is 5% of its maximum capacity due to its inhibition by glucose-6-phosphate
(G6P). [56] The brain is essentially insensitive to insulin and Sorensen models
it to be free of insulin and glucagon regulation. ([80], 52)

The brain is modeled to pick up 70 mg/min of glucose, oxidizes 65 mg/min to
CO2 and converts 5 mg/min to lactate ([80], 51) which outflows into blood.
Assuming full saturation of the hexokinase

70 = vmax · 0.05 (3.11)

and solving the equation for vmax gives vmax = 1400 mg/min. If we nor-
malize G6P concentration by its basal concentration, then at a steady state
normalized G6P is equal to one, leaving

0.05 = 1
1 + 1

Ki

(3.12)

From here Ki, in normalized units, is 0.056. G6P to G3P and G3P to pyruvate
have basal rates of 70 mg/min. The pyruvate to lactate reaction is set to
a basal rate of 10 mg/min and a counter-reaction of lactate to pyruvate
has reaction rate 5 mg/min. Conversion of pyruvate to acetyl-CoA (ACoA)
has basal rate of 65 mg/min. Oxidation of ACoA is modeled as being at
max 105% of the basal rate (100%), oxidating 65 mg/min of glucose at the
basal ACoA concentration and following the function 65 · 1.05(tanh(1.85C

N )),
where C

N is normalized ACoA concentration.

3.2.2 Heart and arteries

The heart utilizes glucose as a minor energy substrate – most of its energy is
provided by the oxidation of fatty acids. There is also net lactate uptake, which
is driven towards oxidation. 70% of cardiac energy metabolism is provided
by fatty acids [55] and 90% is provided by fatty acids and carbohydrate
metabolism [1]. 50% of the pyruvate oxidized comes from lactate [82]. The
heart has a metabolic rate of 0.093 kcal/min [96]. If we assume 4 kcal/g of
glucose oxidation, that is circa 2.3 mg/min of lactate uptake and glucose
uptake at a basal state, modeled both as 3 mg/min. Lactate oxidation
depends on arterial lactate concentrations and can vary [82]. The hexokinase
parameters and glucose and G6P concentrations are assumed to be the same
as in the muscle.

The e�ect of insulin

The heart tissue is sensitive to insulin, and glucose can become a major
substrate (60-70% of energy demands) after a carbohydrate rich meal [38]. If
we assume 70% energy is covered by glucose after a carbohydrate rich meal,
that is circa 16 mg/min, a circa 5.3-fold rise in uptake would be required.
After such meal, plasma glucose rises circa 1.4-fold and insulin grows circa
8-fold at peak compared to basal levels [58]. Dividing by the e�ect of glucose
(which is non-linearly limited by hexokinase) would leave the insulin multiplier
to be circa 4. The function for the e�ect of insulin on cardiac metabolism
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is assumed to have the same sigmoid shaped curve as in the muscle, scaled
down to multiply uptake at most 4 times.

Euptake(IN ) = 2.5 + 1.62 tanh(0.39(IN ≠ 5.2)) (3.13)

It is assumed that all extra glucose taken up is used for oxidation and that
insulin targets GLUT4 translocation and the same glycolytic reactions in
the heart as in the skeletal muscle – hexokinase and G6P to G3P conversion.
To estimate the e�ect on membrane transport we have to first calculate the
predicted uptake r from

r = EuptakerB (3.14)

where rB is the basal uptake rate. To find the insulin e�ect on membrane
glucose transport, the outflow glucose concentration Cout must be found.

Cout = Cin ≠ r

Q
(3.15)

where Q is the input blood flow. From the calculations (not shown) it could
be seen that due to large blood flow and relatively small glucose uptake,
the interstitial glucose stays almost constant (decrease by 0.2 mg/dl at 8-
fold insulin increase). The e�ect of insulin on membrane transport Eglut4 is
therefore modeled as equalling Euptake. The glucose to G6P and G6P to G3P
reactions are also stimulated with the same Euptake function. Furthermore,
it is assumed that insulin increases glucose oxidation indirectly through
decreasing fatty acid oxidation (as shown for muscle in [21]). This e�ect is
modeled as a direct influence of insulin on pyruvate to ACoA conversion
and ACoA oxidation, taking into account lactate oxidation which is assumed
constant.

Eoxid(IN ) = 1.81 + 0.87 tanh(0.39(IN ≠ 5.2)) (3.16)

The oxidation function has the same slope and shift parameters as the muscle
glucose uptake function. The oxidation of pyruvate is modeled as linearly
increasing up until saturation at 85% of basal energy needs, that is circa 20
mg/min in glucose equivalents.

rACoA = r
B

ACoA3.33 tanh(0.31C
N

ACoA) (3.17)

3.2.3 Liver

The liver can handle glucose in multiple ways. It has modest glycogen stores
(circa 100 g) and also produces glucose through gluconeogenesis. Sorensen
models the basal hepatic glucose production at 155 mg/min ([80], p. 75).
With respect to that, 68% can be estimated to be provided by glycogen
([80], p. 80), hence circa 105 mg/min. The net splanchic glucose release was
measured to be 115 mg/min. Based on dog studies, Sorensen ascribed 20
mg/min of the uptake to the liver and 20 mg/min to the other splanchic
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tissues. ([80], p. 76) The uptaken glucose can be stored, oxidated or converted
to fatty acids (de novo lipogenesis). It is assumed that at basal state, the
uptaken glucose is utilized and not stored. Conversion to fatty acids should
also be relatively small in the basal state. [6] Because of that, the 20 mg/min
uptake is modeled as being entirely oxidated.

After glucose enters the cells it can be phosphorylated not only by the
hexokinase enzyme but also by the glucokinase enzyme which has both
higher maximal rate and a�nity, and isn’t inhibited by glucose-6-phosphate.
Whereas hexokinase follows Michealis-Menten kinetics, glucokinase follows
the Hill equation [42]

r = vmax

1
1 + (Km

C
)n

(3.18)

where vmax is the maximum velocity Km the mid-point, C is the concentration
of the metabolite and n is the Hill coe�cient.

From in vitro data, Stanley et al. estimated glucokinase maximum velocity
to be 1.01 µmol/min per gram of liver tissue [81]. In a textbook, Baynes &
Domynczak use the number 1.5 µmol/min per gram of liver tissue [8]. An
average is taken – 1.25 µmol/min per gram of liver tissue, or 338 mg/min,
assuming 1500 g liver mass ([80], p. 235). Hexokinase maximum velocity
is circa 0.1 µmol/min per gram of liver tissue, or 27 mg/min [8] and Km is
less or equal to 0.1 mmol/l [12], assumed to be 0.1 mmol/l. The inhibition
constant of hexokinase by G6P is assumed to be the same as in the brain
0.2 mmol/l. [86] The glucokinase mid-point saturation is 8 mmol/l and Hill
coe�cient 1.78. [42]

Glycogen synthase is stimulated by glucose-6-phosphate. From in vitro data
it seems that such stimulation is linear up to a saturation threshold [93].
Since the reaction rate of glycogen synthesis is modeled as a product of
G6P concentration and the basal rate, determining glycogen synthesis basal
rate is important for modeling liver glucose uptake. G6P levels could rise
in the event of increased glucose uptake. Sorensen provides a function for
the e�ect of liver plasma glucose on glucose uptake, however, there are big
di�erences in oral glucose test and intravenous glucose test results. The
di�erence is probably caused by the lack of modeling of the e�ect of incretins
[69] which are not included in the Sorensen’s model, nor in the current model.
Furthermore, in a review Hatting et al. say ’hyperglycemia alone suppresses
hepatic glycogenolysis with only minimal e�ects on glycogen storage. Only the
combination of hyperglycemia and hyperinsulinemia has a significant e�ect
on hepatic glycogen synthesis’. ([33], p. 23) It could therefore potentially be
misleading to separate the action of insulin and elevated glucose levels on
glycogen synthase.

Based on Sorensen’s liver glucose uptake and production glucose functions,
net glucose production can be calculated under insulin and glucagon stimula-
tion. A high basal rate for glycogen cycling will require only small nominal
multiplications to achieve the calculated increased (or decreased production).
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This would generally make the glycogen reactions relatively insensitive to
insulin or glucagon. In the context of Hatting et al. it seems more plausible
to assume the other scenario - a low basal glycogen synthesis rate which
would necessitate a high multiplicative e�ect of insulin, which is in line with
’only hyperglycemia and hyperinsulinemia has a significant e�ect on hepatic
glycogen synthesis’. ([33], p. 23) For these reasons, the model assumes a basal
glycogen synthesis rate of 5 mg/min.

As calculated above, net glycogenolysis is 105 mg/min, hence basal glycogenol-
ysis is 5 + 105 = 110 mg/min. Conversion of G6P to G3P and G3P to PYR
has the basal rates of 20 mg/min. PYR to ACoA has also basal rate of 20
mg/min, and ACoA oxidation as well.

Basal gluconeogenesis

Liver gluconeogenesis mainly uses lactate, amino acids and glycerol. Pyruvate
is also a substrate but forms only 4% of gluconeogenesis ([80], p. 81) and
its mass flow is divided between the three named substrates. After such
correction, the percentages for the substrates are; lactate 56%, amino acids
30%, glycerol 14%. The basal flow of lactate to pyruvate is 38 mg/min,
pyruvate to lactate 10 mg/min, amino acids to pyruvate 15 mg/min and
glycerol to G3P 7 mg/min. Pyruvate to G3P basal rate is 43 mg/min, G3P
to G6P is 50 mg/min. The reaction of glucose-6-phosphate to glucose follow
Michealis-Menten kinetics with Km = 2-3 mmol/l, and van Schaftingen states
that G6P levels are in the range of 0.05-1 mmol/l. [90] It is assumed that basal
G6P concentration is 0.45 mmol/l and Km = 2.5 mmol/l. The sum of GLU
to G6P reactions and G6P to GLU has to produce net liver glucose outflow
of 135 mg/min in the basal state. Assuming liver glucose concentration of 8
mmol/l, the maximum velocity of the G6P to GLU reaction is circa 409.5
mg/min.

135 = vmax

0.45
(2 + 0.45) ≠ rgk ≠ rhk (3.19)

where vmax is the maximum velocity of G6P to glucose conversion, and gk

and hk are glucokinase and hexokinase.

The e�ect of insulin

Insulin stimulates glucokinase, glycogen synthesis, glycolysis, lipid synthesis
and inhibits gluconeogenesis, glycogenolysis and fatty acid oxidation. [22] [2]
[32] Sorensen assumed, based on dog studies, that insulin can increase the
basal uptake up to two times after a delay. ([80], p. 117). Glycogen stores
are filled first and in case of excessive carbohydrates will be transformed
to fatty acids. Furthermore, insulin stimulates glycolysis as the part of
committing glucose-6-phosphate to glycolysis. [32] Since insulin inhibits fatty
acid oxidation, carbohydrates have to cover for the di�erence. The liver has
metabolic basal rate of 0.21 kcal/min [96], with 4 kcal/g of glucose oxidation
that is at maximum circa 50 mg/min of glucose oxidation. In the muscle
tissue, glucose oxidation almost replaced fatty acids at circa 7-fold insulin
increase. [45] Because of that, it is assumed that at that level, 70% of the
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energy requirements is provided by glucose. De novo lipogenesis is thought
to be less than 5% of triglycerides released in the liver in the fasted state
which increases by 25% in the fed state. [70] For the basal state, very-low-
density lipoprotein synthesis is thought to be circa 10 mg/min (in fatty acid
equivalents) [34]. Palmitic acid has 16 carbons, which would require 2.67
glucose molecules to synthesize it. 5% of 10 mg/min is 0.5 mg/min, which
in glucose equivalents is circa 1.33 mg/min. It is therefore assumed that it
shouldn’t be a significant route for glucose disposal, at least in a healthy liver.
For the model, it is assumed that all of the additional uptaken glucose above
oxidation is directed towards glycogen synthesis.
Sorensen also estimated a function for the e�ect of insulin on hepatic glucose
production ([80], p. 86). Gastaldelli et al. measured that glycogenolysis is
completely suppressed and gluconeogenesis reduced by 20% in euglycemic
insulin stimulation (circa 74 mU/min infusion) [28]. Since Sorensen’s function
already suppresses hepatic glucose production to circa 20 mg/min from 155
mg/min at 2 normalized liver insulin levels, it is assumed that glycogenolysis
is almost fully suppressed at that level and the rest is attributable to glu-
coneogenesis. Insulin regulates gluconeogenesis through inhibiting pyruvate
kinase [32], which is represented in the model as inhibiting the reaction PYR
to G3P. Insulin also inhibits the G6P to glucose reaction [90] and stimulates
glucokinase [2]. It is assumed that the last two named reactions are a�ected
equally by insulin to produce the calculated net production.
First, the reactions related to pyruvate and G3P are solved. The conversion
of pyruvate to ACoA is modeled as being directly influenced by insulin, even
though the relation is likely indirect through fatty acid modulation, like in
the muscle as described in [21]. Based on the assumptions on oxidation above,
a function of insulin’s e�ect on glucose oxidation is proposed:

E
I

oxid(I) = 0.938 + 0.938 tanh(0.23(IN ≠ 0.7)) (3.20)

The inflow of gluconeogenic substrates has to be considered, since both
lactate and amino acid concentrations change as discussed in the section
on kidneys. Arterial lactate rises, amino acids stay the same, or decrease.
From calculations (not shown) it seems that at assumed basal rates, the
total lactate and amino acid inflow into the liver slightly rises under insulin
stimulation. It is assumed that at 5-fold insulin increase, the sum of lactate
and amino acid inflow rises 1.15 times. This e�ect is modeled as circa linearly
increasing with insulin. Assuming constant G3P and pyruvate levels, the
pyruvate to G3P rate can be calculated.

rlac + raac + 20 = roxid + rpyr≠g3p (3.21)
Where rpyr≠g3p is the insulin-regulated reaction of PYR to G3P and the rest
are reaction rates of pyruvate formation, the constant 20 represents the G3P
to PYR flow. From that the insulin e�ect on PYR to G3P can be found

Epyr≠g3p(IN ) = 0.94 ≠ 0.1 tanh(0.57(IN ≠ 2.18)) (3.22)
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Reduced glycerol inflow is modeled as corresponding to the relative decrease
in its production in the adipose tissue; using the same insulin e�ect function

Elipo(IN ) = 1.13 ≠ 0.63 tanh(0.71(IN ≠ 0.71)) (3.23)

The G3P levels would fall due to reduced G3P inflow from gluconeogensis
and glycerol, but this is modeled as compensated by enhanced G6P to G3P
conversion, which is in line with insulin stimulating glycolysis. [32] G6P levels
are also assumed to be in the basal state.

Eg6p≠g3p(IN ) = 1.08 + 0.45 tanh(0.49(IN ≠ 1.35)) (3.24)

With this, the glycolytic and gluconeogenic path from G6P on is solved.

Second, glycogen synthesis and breakdown together with glucose conversion
to G6P is discussed. Sorensen’s functions describing the insulin e�ect on liver
release (EI

HGP
(I))and uptake (EI

HGU
(IN )) are multiplied by the basal rates

to obtain net outflow of glucose r.

r = 20E
I

HGU (IN ) ≠ 155E
I

HGP (I) (3.25)

After finding net glucose inflows as predicted by Sorensen, liver glucose
extracellular concentration Cout can be found, since Cin is assumed constant
under euglycemia.

Cout = Cout ≠ r

Q
(3.26)

Where Q is the liver output blood flow for glucose. For a stable state, the
flow r has to equal membrane transfer to the cell.

Ccell = Cout ≠ r

k
(3.27)

Where Ccell is the glucose concentration in the cells, k is the glucose membrane
transport constant. Once we know the intracellular glucose concentration
we can calculate the net glucose to G6P flow without insulin stimulation
by summing the hexokinase, glucokinase and G6P to glucose rates. The
di�erence between this flow and the target r net flow is corrected by insulin
modification function on glucokinase and G6P to glucose. It is assumed that
the e�ect is split equally between these two reactions.

Egk(IN ) = 1.28 + 0.96 tanh(1.34(IN ≠ 1.22)) (3.28)

EG6P ase(IN ) = 1.28 + 0.96 tanh(1.34(IN ≠ 1.22)) (3.29)

Where Egk is the e�ect on glucokinase.

Glycogenolysis is completely inhibited during insulin stimulation, which
is in line with Sorensen’s function on hepatic glucose production which
drops sharply even at two-fold insulin increase. It is therefore assumed
that any hepatic glucose production during hyperinsulemnia comes from
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gluconeogenesis. It then follows that the net uptake of glucose plus net
gluconeogenesis has to flow into glycogen stores to maintain stable G6P
levels. During hypoglycemia, glycogen breakdown is stimulated and synthesis
reduced to maximize glucose output from the liver. It is therefore assumed
that under normal or low insulin levels, all gluconeogenesis flows out of the
liver and none to storage. The glycogenolysis during this range of insulin
levels can be calculated as hepatic glucose release (from Sorensen) minus net
gluconeogenesis minus hepatic glucose uptake (from Sorensen). To these rates
of glycogen synthesis and breakdown, the baseline of 5 mg/min was added
and the rates were normalized. The resulting normalized rates for glycogen
synthesis were fitted

Esynth(IN ) = 5.41 + 5.4 tanh(1.79(IN ≠ 1.64)) (3.30)

Glycogenolysis is suppressed not only by insulin, but also by glucose. To
estimate the e�ect of insulin on glycogenolysis, we have to take into account
that during insulin stimulation, liver glucose is lowered and it does not inhibit
liver glycogenolysis as much. To estimate this e�ect, Sorensen’s function for
the inhibition of hepatic glucose production M

G

HGP
(GN

L
) is used with the

calculated C
N
out (= (GN

L
)).

M
G

HGP (GN

L ) = 1.42 ≠ 1.41 tanh(0.62(GN

L ≠ 0.497)) (3.31)

The normalized rate of glycogenolysis is divided by the calculated e�ect of
glucose to correct for the glucose e�ect and an insulin multiplier function for
glycogenolysis is estimated.

Ebreak = 1.8 ≠ 1.8 tanh(1.75(IN ≠ 0.73)) (3.32)

The glucagon e�ect

Glucagon also a�ects liver pathways; stimulating glycogenolysis[80], inhibiting
glycolysis[37], inhibiting glucokinase[17], stimulating G6Pase[32] and stimu-
lating liver protein usage[72]. Sorensen modeled liver glucagon as a�ecting
hepatic glucose production and provided a function for the e�ect. The produc-
tion rises sharply and then the e�ect gradually drops to 0.5 of its above-basal
value. In other words, if the glucagon initially rises glucose production to
rHGP = 2r

B

HGP
, eventually, it will become rHGP = 1.5r

B

HGP
. Sorensen’s

function describing the initial maximum e�ect is:

E
max

HGP (�N ) = 2.7 tanh(0.39�N ) (3.33)

Glucagon’s e�ect on glycolysis is quick with decreasing amplitude while
net gluconeogenesis gets a�ected only gradually. [72] It is assumed that at
time near zero of the glucagon step, the entire e�ect in increased glucose
production is attributable to glycogenolysis, while at stable point circa 16%
of the increased e�ect are provided by gluconeogenesis raising (estimated
from [72]). The glucagon e�ects can therefore be calculated in two scenarios -
near the step increase in glucagon and after stabilization.
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After the glucagon step, hepatic glucose release sharply rises. To obtain such
outflow of glucose at blood euglycemia, extracellular levels have to change:

Cout = Cin + r

Q
(3.34)

where r is the predicted net glucose outflow (from r = E
max

HGP
≠ rHGU ) and

Q is liver blood flow for glucose. From there intracellular glucose Ccell

concentration is

Ccell = Cout + r

k
(3.35)

where k is the membrane transport constant for glucose. The increased
glucose levels a�ect glucokinase. Hexokinase is thought to be constant due
to it’s relatively small role. The G6P to GLU flow can be calculated from
the net outflow plus the glucokinase and hexokinase flows. It is modeled
that G6P concentration remains at basal levels since G6Pase is stimulated by
glucagon [32] and glucokinase activity is reduced [17]. The e�ect of glucagon
is modeled as being split half-half between G6Pase and glucokinase to achieve
the target net outflow of glucose r.

E
max

gk (�N ) = 1.07 ≠ 0.63 tanh(0.42(�N ≠ 0.74)) (3.36)

E
max

G6P ase(�N ) = 0.55 + 0.98 tanh(0.4(�N + 0.25)) (3.37)

Shortly after the glucagon step, there should be no apparent changes in
gluconeogenesis or glycolysis, and these are assumed to be in the basal state.
Since G6P levels are also assumed to be in the basal state, glycogen synthesis
is in the basal state. Glycogenolysis rate has to equal:

rbreak = r ≠ rsynth ≠ rgng (3.38)

where r is the net release of glucose and rgng is the inflow of G6P from
net gluconeogenesis. As discussed in the section on insulin e�ect above,
glycogenolysis is a�ected by glucose too. This means that to obtain an
isolated glucagon e�ect, the normalized glycogenolysis rate has to be divided
by the glucose e�ect. After that, the glucagon e�ect on glycogenolysis is
estimated

Ebreak(�N ) = 0.5 + 3.5 tanh(0.4(�N ≠ 0.64)) (3.39)

When flows stabilize, gluconeogenesis is enhanced through inhibiting pyruvate
kinase [37] (G3P to PYR in the model). It is assumed that glucagon has no
e�ect on glucose oxidation as fatty acid levels should not be suppressed, as in
the case of insulin. Similarly to the deduction above, glucose concentration has
to rise to provide for a certain outflow (half of the maximum e�ect minus basal
uptake). Glucokinase and hexokinase activities can be calculated, and the
glucagon multiplier of the G6Pase and glucokinase can be found. As above, an
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even split of the glucagon e�ect is assumed between glucokinase and G6Pase.
The reduction for these flows in both cases is circa to 0.5 of the maximum
additional e�ect for all glucagon levels. 16% of the extra glucose produced
compared to the basal level is provided by additional gluconeogenesis, the
rest is glycogenolysis. The G6P levels are modeled to stay at basal levels
during glucagon stimulation. Then the rate of additional glycogenolysis is
circa 0.4 of its maximal e�ect.

0.4 = rinf ≠ r
B

rmax ≠ rB
(3.40)

for rmax ”= r
B; where rinf is the glycogenolysis rate at stable state, rmax

is the maximal rate near the beginning of the glucagon stimulation and rB

is the basal rate. It is important to find these stable/spike ratios as these
are the parameters driving how much will the glucagon response eventually
decline.

In the model, glucagon increases gluconeogenesis through inhibiting the
G3P to pyruvate rate. This should raise G3P concentrations and through
it increase net gluconeogenesis, since G6P to G3P should remain constant
because G6P is modeled to be at basal levels. The G3P levels have to rise
until they produce 16% of the late glucagon e�ect. Glucagon increases liver
protein catabolism [72] which is modeled as enhancing the rate of amino acid
conversion to pyruvate. Lactate, glycerol, and amino acid input levels are
assumed (at least initially) as in the basal state. The pyruvate levels are
assumed constant. With increasing net gluconeogenesis, the G3P to PYR
rate has to be reduced proportionately. From this, the glucagon e�ect on
G3P to PYR is estimated

Eg3p≠pyr(�N ) = 4.6 + 4.62 tanh(≠0.42(�N + 1.49)) (3.41)

To compensate for the reduced inflow from G3P, amino acid conversion
to pyruvate is stimulated proportionately. After counting for the reduced
intracellular amino acid concentration to form the necessary gradient, a
glucagon multiplier for the amino acid to pyruvate reaction was estimated:

Eaac≠pyr(�N ) = 2.73 + 3.52 tanh(0.4(�N ≠ 2.36)) (3.42)

The e�ect of glucose inhibition Both glucose and G6P have the capacity
to inhibit glycogenolysis. [3] In this model, only the inhibition e�ect of
glucose is implemented. A function was fitted to mimic the Sorensen’s glucose
inhibition function with the dependence on intracellular glucose levels. For
intracellular glucose that would be larger than twice times the basal, the
function probably underestimates, but within the typical range (which is
quite narrow) of intracellular glucose levels it should work correctly.

Ebreak(CN

cell) = 1.01 ≠ 0.18 tanh(1.46(CN

cell ≠ 0.94)) (3.43)

where C
N

cell
is normalized intracellular concentration.
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3.2.4 Kidneys

The kidneys are modeled in the Sorensen’s thesis only as a site of insulin
clearance and glucose excretion in case of high glucose levels. Nevertheless,
the kidney is capable of both gluconeogenesis, variable glucose uptake and is
sensitive to insulin. [51] [58] The kidneys have varying activities across the
proximal and distal tubules. In the distal tubules glycolysis is the primary
source of energy and results in the production of lactate, whereas the cortex
relies on fatty acid oxidation and has gluconeogenic enzymes. [51] Kidneys
are capable of GLUT4 translocation in the podocytes of the glomerulus when
stimulated by insulin. [97] Glomerulus extracts glucose which is then released
back into circulation at the proximal tubule. To capture this specific flow,
it is modeled that glucose enters the kidneys directly from the arteries (the
heart compartment) and then the membrane gradient transport represents the
proximal tubule glucose release. Only the glucose that is directly produced
from gluconeogenesis or utilized by the kidneys is modeled. Apart from these
changes, the flows and reactions follow the standard scheme.

The basal kidney glucose uptake was measured by Meyer et al. to be circa 20
mg/min and basal glucose release to be 29 mg/min. [57] Kidney glycogen
stores are limited [51] and are omitted from the model. From rat data it can
be estimated that the kidney oxidates circa 80 µmol/h/g dry tissue [73]. If
we assume the kidneys to have 290 grams [96] and the dry to wet ratio to be
0.2, then that is circa 14 mg/min of glucose oxidation. Data from Meyer et
al. [57] also show that glutamine is produced at a rate of circa 2 mg/min and
glutamate is netly released also at a rate of circa 2 mg/min, both in glucose
equivalents. It is assumed that the source of these flows is the uptaken glucose.
That would leave 2 mg/min unexplained which are modeled to be released
as lactate. The main gluconeogenic substrates are lactate (50%), glutamine
(20%) and glycerol (10%). In the model, other minor substrates which are
not modeled are assumed to be amino acids. Since renal glucose release is
measured to be 29 mg/min [57], that is 14.5 mg/min of lactate, 11.6 mg/min
of amino acid and 2.9 mg/min of glycerol net inflow. It is assumed that the
hexokinase parameters Km and Ki are the same as in the liver and also that
the glucose and G6P concentrations are the same. From these parameters and
basal rates, maximum velocities for hexokinase and glucose to G6P reactions
are calculated.

The insulin e�ect

Meyer et al. [57] and Cersosimo et al. [16] measured kidney glucose uptake
and release during a hyperinsulemic euglycemic clamp in humans. Meyer
used the insulin infusion rate of 6.0 mU/kg/min, Cersosimo 0.25 and 0.125
mU/kg/min as high and low infusion experiments. In the experiment by
Meyer et al., insulin levels stabilized at 6.8-fold of basal levels and reduced
glucose production to circa 0.4 of basal rates, and increased glucose uptake
to circa 1.3 of basal rates. In the measurements of Cersosimo et al. the
high infusion raised insulin levels to circa 2.8 of basal levels, increased renal
glucose uptake 1.9 times and decreased glucose production to 0.48 of basal
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levels. The low infusion raised insulin levels 1.4 times, and increased renal
glucose uptake 1.7 times and decreased glucose production to 0.6 of basal
levels. While the e�ects on gluconeogenesis agree, Meyer et al. measured
lesser glucose utilization for higher normalized insulin levels than Cersosimo
et al. Generally, it seems from the data that insulin stimulation of uptake is
in the range of 1.3 to 2 of the basal uptake. It is assumed that insulin can
raise glucose utilization 1.5 at saturation, 1.3 at 6.8 normalized insulin. The
estimated functions for renal glucose release and glucose uptake are

ERGR(IN ) = 0.88 + 0.5 tanh(1.2(1.2 ≠ I
N )) (3.44)

ERGU (IN ) = 0.9 + 0.65 tanh(0.11I
N ) (3.45)

As indicated in an oral glucose test study [58], extra glucose utilized by the
kidney seems to be primarily utilized for oxidation instead of fatty acids whose
uptake is reduced. Also lactate can be oxidized in the kidney. [73] During the
insulin infusion measured by Meyer et al., glutamine production and uptake
did not change (4 mg/min uptake, 2 mg/min production), glycerol net uptake
decreased to almost zero, lactate uptake increased to circa 23 mg/min and
glutamate net release increased to circa 3 mg/min. Glucose uptake increased
to circa 27.5 mg/min. Alanine stays at net 0 mg/min uptake. Since glucose
production was estimated to be circa 11 mg/min [57], it is assumed that it is
covered by the 4 mg/min of glutamine and the rest 7 mg/min is from lactate.
Glucose is assumed to be converted to the 2 mg/min of glutamine and 3
mg/min of glutamate. That leaves 22.5 mg/min of unspecified glucose and
16 mg/min of unspecified lactate and circa 12 mg/min of amino acids. It is
unclear what are the other fates of these metabolites apart from oxidation. It
is therefore modeled that they are converted to pyruvate and oxidized. The
saturation threshold for the conversion of pyruvate (either from glucose or
lactate) is set to 50 mg/min. To estimate the insulin e�ects, pyruvate inflows
and outflows have to be calculated first.

Arterial levels of lactate rise circa 1.3-fold when insulin rises circa 6.8-fold,
where also the net lactate uptake by the kidney should be 23 mg/min [57].
For simplicity, a linear relationship between insulin levels and lactate levels
is assumed. To create a su�cient gradient for such lactate inflow, pyruvate
levels are assumed to drop to 0.5 of basal levels. Again, a linear decline of
pyruvate is assumed with increasing insulin levels. The basal rates of PYR to
LAC and LAC to PYR have to be determined to produce such lactate inflow
rlac. First, intracellular lactate concentration has to be found.

Cout = Cin ≠ rlac

Q
(3.46)

Ccell = Cin ≠ rlac

k
(3.47)
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where Cout and Cin is outflow concentration and inflow concentration of
lactate, Q is blood flow, and k is membrane transport constant for lactate.
Then forming the equations to find basal rates gives:

2 = r
B

pyrC
N

pyr ≠ r
B

lacC
N

cell (3.48)

23 = r
B

pyr0.5C
N

pyr ≠ r
B

lac0.78C
N

cell (3.49)

where r
B
pyr and r

B

lac
are the basal rates of pyruvate to lactate, and reverse

reactions. It might be surprising that the intracellular lactate levels drop in
the second equation even when arterial lactate increases. This is necessary to
create a su�cient gradient to achieve the measured lactate uptake by Meyer
et al. Solving the equations yields: r

B
pyr = 48.7 mg/min, r

B

lac
= 60.7 mg/min.

Arterial levels of amino acids decrease or stay the same during insulin stimu-
lation [57]. Since pyruvate levels are modeled to drop, both the conversion
of pyruvate to amino acids and the other way around will decrease. This is
assumed to cause no significant changes in net amino acid inflow; the net
inflow stays at 8 mg/min.

Net glycolysis (glycolysis - gluconeogenesis) can be calculated to find net
G3P to PYR flow. The di�erence between r

B

RGU
ERGU and r

B

RGR
ERGR (net

uptake) equals the net glycolysis, where r
B

RGU
is basal renal glucose uptake

and r
B

RGR
is basal renal glucose release. Now the rate of pyruvate oxidation

can be calculated by adding inflow of lactate, amino acids, and net glycolysis
rate. After normalizing the calculated oxidation rates by the basal rate, the
insulin e�ect on PYR to ACoA is found

Eoxid(IN ) = 1 + 6.89 tanh(0.24(IN ≠ 1)) (3.50)

Insulin’s e�ect on PEPCK [75] is modeled to provide for the reduction in
gluconeogenesis (PYR to G3P), while G3P levels are assumed to stay constant.
Net uptake must equal net G3P to PYR flow at steady state.

rRGR ≠ rRGU = 29Egng(IN ) ≠ 20 (3.51)

The calculated data showed slightly negative (-1 mg/min) rates for PYR to
G3P at 8-fold insulin level rise. To produce physiologically plausible results,
it is assumed that at this insulin level the rate is 0.5 mg/min.

Egng(IN ) = 1.06 ≠ 1 tanh(0.45(IN ≠ 0.87)) (3.52)

To keep the G3P levels constant, the G6P to G3P flow has to balance out
all the other flows. Glycerol inflow is reduced with the same function that is
used to reduce lipolysis in the adipose tissue.

Eglc(IN ) = 1.13 ≠ 0.63 tanh(0.71(IN ≠ 0.71)) (3.53)
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Because no insulin e�ect is assumed on the G6P to G3P the modulation
is preformed by G6P levels. Again, net G6P to G3P flow has to equal net
glucose uptake.

rRGR ≠ rRGU = 29 ≠ 20C
N

g6p (3.54)

Before calculating insulin’s e�ect on G6Pase [75] (G6P to GLU), we need
to find the renal intracellular glucose concentration. After insulin levels rise,
the kidney glucose release decreases. To achieve that in the model, kidney
glucose levels have to decrease to reduce the gradient outflow.

rRGR = r
B

ERGR (3.55)

Cout = Cin ≠ rRGR

Q
(3.56)

Where r is the outflow of glucose and Q is the kidney output blood flow for
glucose. For a stable state, the flow rRGR has to equal membrane transfer to
the cell.

Ccell = Cout ≠ rRGR

k
(3.57)

Where Ccell is the glucose concentration in the cells, k is the glucose membrane
transport constant. The change in kidney intracellular glucose levels a�ects
the activity of hexokinase which is modeled as insulin-independent. G6Pase
activity with hexokinase and glucose inflow from glomerulus has to produce net
outflow r. Since we know both intracellular glucose and G6P concentrations,
inflow and outflow of glucose and hexokinase rate, we can calculate the e�ect
of insulin on G6Pase. When attempting to do so, the results produce negative
flows for hexokinase. This is mainly because hexokinase is inhibited by higher
G6P levels and cannot produce the calculated net uptake even if G6Pase
would be completely inhibited. To correct this, it is assumed that insulin also
a�ects hexokinase. The e�ect is split in half between hexokinase and G6Pase
to achieve the predicted flows.

EG6P ase(IN ) = 5.22 ≠ 4.79 tanh(0.77(IN + 0.81)) (3.58)

Ehk(IN ) = 2.13 + 2.11 tanh(0.55(C155 ≠ 2.09)) (3.59)

where Ehk is the e�ect of insulin on hexokinase.

3.2.5 Gut and non-liver abdominal organs

Sorensen modeled the Gut compartement as having an uptake rate of 20
mg/min which is insensitive to changes in glucose or hormonal levels. The
Gut block contains the gut, spleen and pancreas. The main metabolic fuels for
the gut are glutamine and ketone bodies, while glucose gets mainly converted
to lactate and alanine. Rat studies of small intestine show that only circa
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10% of taken up glucose is oxidized ([80], p. 125). The small intestine is
capable of gluconeogenesis but that is not visible during fasting but rather
during prolonged starvation, at least in rat models. [60] The gluconeogenesis
of gut is not taken into account in the model and Sorensen’s assumption are
used. If we follow the rat data for oxidation of glucose, that would result in 2
mg/min of glucose. To balance out whole body lactate inflows and outflows,
lactate release is assumed to be 7 mg/min and 11 mg/min is then assumed
to leave the Gut block as amino-acids.

3.2.6 Adipose tissue

Adipose tissue maintains plasma fatty-acid levels through lipolysis of its large
lipid stores. It is sensitive to insulin which can increase glucose uptake and
also inhibit lipolysis. [21] Sorensen does not model adipose tissue separately
but includes it in his Periphery module.

Basal flow rates

Glucose can be oxidized, turned to a lipid, be turned into glycerol [50] or leave
the cell as lactate. The primary energy source for adipose tissue is glucose
catabolism, with lactate release being circa 20% of the glucose uptaken [25].
Lipid synthesis from glucose is possible but is of very small magnitude ([80]
57) and is not considered in the model. Wolfe et al. measured the rate
of appearance of glycerol at rest to be 2.1 µmol/kg/min and that 20% of
the released free fatty acids get reesterified in the cell [95]. If we assume
that all of the 20% reesterified fatty acids needs the glycerol-3-phosphate
to be replaced from glucose then that is circa 29.4 µmol/min of glycerol,
or in glucose equivalents 2.6 mg/min, for the model 3 mg/min. Mitrou et
al. measured basal adipose tissue uptake in women from forearm to be 0.55
µmol/100 ml tissue/min. [61] Fat is circa 0.9 g/ml and Sorensen assumes
adipose tissue to have 10 kg (Sorensen, 59). That gives 11 mg/min glucose
uptake. If we assume that 20% of lactate leaves the adipose tissue, that gives
2.2 mg/min and leaves 11 ≠ 2.2 ≠ 2.6 = 6.2 mg/min for oxidation, for the
model 6 mg/min. With 4 kcal/g of glucose oxidation that should produce
0.025 kcal/min. With the adipose tissue having resting energy expenditure
of 0.031 kcal/min [96] that seems reasonable. The parameters of hexokinase
and concentrations of glucose and glucose-6-phosphate are assumed to be the
same as in the muscle. The lactate to pyruvate reaction is assumed to be 10
mg/min and pyruvate to lactate reaction 12 mg/min.
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The e�ect of insulin

Insulin stimulates glucose uptake in adipose tissue through GLUT4 transloca-
tion [21] but it is assumed no other glucose-related pathways are stimulated
by insulin. In vitro data of glucose uptake during insulin stimulation resemble
GLUT4 kinetics [48]. However, when attempting to calculate the flows under
these assumptions, the G6P levels were high, inhibited hexokinase and glucose
was not able to stimulate the hexokinase enzyme enough. For that, it is
assumed that both hexokinase and G6P to G3P are insulin stimulated, while
their concentrations stay at basal levels; the same scenario as in skeletal
muscle. Virtanen et al. measured uptake in adipose tissue during insulin
infusion which increased insulin levels 13.2-fold compared to basal levels.
From their study, adipose tissue uptake was estimated at 45 mg/min at that
insulin level [91]. The shape of the insulin e�ect function on glucose uptake
is the same as the one used in the muscle section when estimating adipose
glucose uptake.

Euptake(IN ) = 2.75 + 1.75 tanh(0.5(IN ≠ 5.5)) (3.60)

Having the uptake under insulin stimulation rupt, the e�ect of insulin on
GLUT4 translocation can be calculated

Cout = Cin ≠ rupt

Q
(3.61)

where Cout is the vessel outflow concentration of glucose and Q is the input
blood flow. Then the Eglut4 can be calculated from

rupt = Eglut4k(Cout ≠ Ccell) (3.62)

Eglut4(IN ) = 3.1 + 2.14 tanh(0.49(IN ≠ 5.61)) (3.63)
where k is the membrane transport constant and Ccell is intracellular glucose
concentration, which is known. The glucose to G6P and G6P to G3P reactions
are stimulated with the function Euptake.
The conversion of glycerol to G3P is modeled to depend on lipolysis, which
is inhibited by insulin. A study by Moberg et al. [62] on glycerol release
during insulin stimulation and euglycemic clamp found that compared to
basal levels, glycerol release from adipose tissue drops to circa 0.55 at circa 3
times insulin rise and saturates at 0.5 at 19-fold increase. These points were
fitted to estimate the e�ect of insulin on glycerol release/lipolysis.

Elipo(IN ) = 1.13 ≠ 0.63 tanh(0.71(IN ≠ 0.71)) (3.64)
It is assumed that G3P conversion to glycerol is a�ected by the same function.
With reduced lipolysis it is assumed that glucose oxidation saturates as insulin
rises. The resting energy requirements at 0.031 kcal/min would require circa
8 mg/min of glucose. This is approximated by the function

Eoxid(IN ) = 0.5 + 0.85 tanh(0.67I
N ) (3.65)
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3.2.7 Skeletal muscle

Skeletal muscle is modeled in Sorensen as a part of the Periphery block
incorporating skeletal muscle and adipose tissue. Since Sorensen provides
only a combined glucose uptake metrics for this Periphery tissue block, it is
necessary to ascribe consumption to individual tissues.

Initially, the skeletal muscle compartment was modeled as having a combined
equilibrium space and interstitial space. However, when running simulations
for intravenous glucose tolerance tests, it showed important to have this
separation, even though the glucose transport constant for vessel membrane
transport estimated by Sorensen is relatively small (5 min). Sorensen com-
pared his model performance with venous samples from peripheral circulation,
which had a characteristic blunted response compared to the arterial glucose
and insulin levels. Adding the membrane assured the correct curve type and
also provided a more realistic physiological model. Nevertheless, the extra
membrane was not added to the adipose tissue because its volume and blood
flow is comparatively smaller than the muscles’ and hence it can be simplified.

Basal flow rates

Sorensen assumes muscle to have 30 kg. However, in a study Janssen et al.
measured the skeletal muscle mass of men to be 38.% of total body mass
[40], which for a 70 kg man would be 26.88 kg. The model assumes muscle
mass to be 27 kg. In a study of Kelley et al. measured basal forearm muscle
uptake to be circa 23.1 mg/min [45] and Meyer et al. measured basal forearm
muscle uptake to be 24.1 mg/min [58]. In a di�erent study, Kelley et al.
measured skeletal muscle uptake from femoral muscle and measured it to be
7.2 mg/min [45]. A simple average of forearm and femoral muscle uptake
yields circa 15 mg/min which is used in the model. The basal oxidation of
glucose can be determined through resting energy expenditure. The skeletal
muscle has a metabolic rate of 13 kcal/kg tissue/day [96], or 0.244 kcal/min.
Under normal conditions, skeletal muscle uses ketones for less than 5% of
energy provision, 10% after overnight fast [24]. If we assume it to be 5%
then that is 0.012 kcal/min. Van Hall et al. in a study [88] measured femoral
muscle fatty acid oxidation to be 16 µmol/min. If we assume the oxidised
fatty acid to be the palmitic acid, which is the most common in the body
[15], then that is 4.1 mg/min. Van Hall et al. assume the femoral muscle to
be 5 kg, hence extrapolating to the whole body gives 22.1 mg/min. With
energy release of 9 kcal per gram of fatty acid oxidation, then that gives 0.199
kcal/min. 0.244 - 0.199 - 0.012 = 0.033 kcal/min. If we assume 4 kcal/g for
glucose oxidation, that means circa 8.2 mg/min of glucose oxidation. Since we
have seen that femoral and forearm glucose uptake di�ers it has to be taken
with limitation whether this glucose oxidation is a valid average for the whole
body. Kelley et al. measured basal glucose oxidation to be 8.7 mg/min, based
on femoral muscle measurements. In a review, Frayn estimates whole-body
skeletal muscle fatty acid utilization to be 20.8 mg/min (converted from day
to minutes) [26], which would make the resulting glucose oxidation slightly
higher. For the model, it is assumed that glucose is oxidized at a rate of 9
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mg/min in a basal state.

At rest, muscle releases lactate netly, estimated to be circa 11 mg/min [89].
To compensate for the di�erence between the uptake and lactate/oxidation
requirements, glycogen stores are utilized as was observed in the study of
Kelley et al. [45]. For the model, the basal net glycogenolysis is assumed to
be 11+9-15=5 mg/min.

The insulin e�ect

After glucose enters the cell, it is converted to glucose-6-phosphate through
the enzyme hexokinase. Heart hexokinase has Km of 0.1 mmol/l [43]. Fur-
thermore, in the brain, the inhibitory constant Ki of G6P on hexokinase is
circa 0.2 mmol/l [86] If we assume the same values for skeletal muscle, and 0.5
mmol/l glucose and 0.13 mmol/l G6P concentrations [71], then normalized
constants would circa be, Km = 0.2, Ki = 1.5. Maximum rate is then calcu-
lated to fit with the basal uptake of glucose (15 mg/min), vmax = 30 mg/min.
This combination of saturable conversion of glucose and inhibition by the
product produces a non-linear relationship. This is in contrast with Sorensen,
who models glucose uptake as a one-to-one linear function dependent on
interstitial muscle glucose concentration ([80], p. 68). By doing this he
possibly overestimated the e�ect of glucose concentration and the e�ect of
insulin on uptake should be corrected in this way.

From the data compiled by Sorensen, the normalized peripheral interstitial
glucose concentration is available. For conversion to mg/dl, basal interstitial
glucose concentration was calculated (for equations see Initialization of the
model) and multiplied by the normalized value. The goal is to calculate the
rate r of glucose uptake at such interstitial glucose levels, without the e�ect
of insulin. This rate was found from the following equations at steady state:

r = k(Cinter ≠ Ccell) (3.66)

r = 30 C
N

cell

0.2 + C
N

cell

1

1 + C
N
g6p

1.5

(3.67)

r = 150 · C
N

g6p + 20 · C
N

g6p ≠ 155 (3.68)

The first equation is the interstitium-cell membrane transport, k is the
membrane constant. The second equation is the hexokinase reaction, where
C

N

cell
is normalized intracellular glucose concentration and C

N
g6p

is normalized
G6P concentration. The last equation is the balance of flows of the G6P
metabolite. Since we have three equations and three unknowns (CN

cell
, C

N
g6p

,
r) we can solve them. After that, the found r is normalized by the basal rate
rB = 15. Sorensen in his data provides the normalized rates of peripheral
glucose uptakes which include both the e�ect of insulin and glucose. Glucose
uptake with only insulin e�ect is found:

r
N

I = r
N

r
N

G

(3.69)
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where r

N is the normalized peripheral glucose uptake reported by Sorensen,
r

N

G
is the normalized peripheral glucose uptake rate that would be caused

only by glucose levels, and r
N

I
is the uptake caused only by interstitial insulin.

Having found only the e�ect of insulin, it is possible now to estimate a new
function of insulin e�ect on the peripheral glucose uptake. A 34 mg/min basal
uptake is assumed to convert the uptake rates from normalized to mg/min.
Next, a separation of the adipose tissue uptake is needed. An approximation
of adipose insulin e�ect was constructed based on assuming 10 mg/min basal
uptake and circa 45 mg/min as a maximum response to insulin. The value is
for 13.2-fold basal insulin increase and was estimated from measurements of
di�erent types of fat tissues [91]. The following function was used:

EA(IN ) = 2.75 + 1.75 tanh(0.5(IN ≠ 5.5)) (3.70)

where I
N is the normalized peripheral interstitial insulin and the uptake

rates were found as rA = EA · 10, and subtracted from the peripheral uptake
rates. The remainder now represents forearm muscle uptake (since all the
above data provided from Sorensen come from forearm studies). The rates
in mg/min are divided by 24 mg/min to obtain normalized forearm muscle
uptake. A curve is estimated to fit the muscle normalized uptake rates.

EF MGU (IN ) = 7.5 + 6.8 tanh(0.6(IN ≠ 4.15)) (3.71)

where EF MGU (IN ) is the e�ect on insulin on forearm muscle uptake.

The next task is to accommodate the forearm muscle uptake with femoral
muscle uptake. For 6.8 normalized insulin, Kelley et al. measured 150
mg/min basal uptake at femoral muscle, whereas the fitted forearm function
predicted 330 mg/min [45]. For 13.2 normalized insulin Virtanen et al.
measured 272 mg/min for femoral muscle, fitted forearm function predicted
343 mg/min [91]. Following the same assumption of taking a simple average
as with the basal uptake rates, averages were taken, and divided by the basal
uptake (15 mg/min) for normalization. To fully fit a tanh function with four
parameters, at least four points are needed. From preliminary model testing
on intravenous glucose tolerance tests, it seems that a sharp rise in glucose
uptake is necessary even if interstitial levels of insulin do not rise as much.
To provide for that, the fourth point is modeled to pass through the point
[0,0] even though theoretically at zero insulin levels there should still be some
uptake. These four values were then used to fit an tanh function which would
approximate the dependency of glucose uptake on normalized muscle insulin.
The important thing is that this new function should be more representative
of the whole body skeletal muscle.

EMGU (IN ) = 9.69 + 11.02 tanh(0.3(IN ≠ 4.56)) (3.72)

The function was estimated using the python scipy.optimize library function
curve_fit. The determined uptake flow then splits between lactate production,
oxidation and storage as glycogen.
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Insulin stimulates GLUT4 translocation, hexokinase activity and phospho-
fructokinase activity (glycolysis). It also stimulates glycogen synthesis and
suppresses glycogenolysis. Rat muscle measurements show that G6P and
glucose levels don’t rise under insulin stimulation suggesting the influence of
insulin on glucose-processing enzymes. [21] However, this increased enzymatic
activity does not result in a significantly greater net lactate release ([80],
57), [45], which is also why lactate outflow is assumed as constant under
euglycemic insulin stimulation. In the model, glycogen synthesis and break-
down are equally a�ected by insulin to produce net glycogen flows. These
can be determined after determining the influence of insulin on the oxidation
of glucose.

Sorensen cites a study showing that glucose oxidation did not significantly
increase after a 100 gram oral glucose tolerance test (OGTT), concluding
that oxidation is not a significant route of glucose disposal ([80], p. 57).
However, Kelley et al. showed that insulin infusion during an euglycemic
clamp increased glucose oxidation nearly six times its basal rate. [45]. Glucose
oxidation is regulated among others by fatty acid availability. [21] The
di�erence could be possibly caused by the delays in fatty acid signalling
which, for a full e�ect, needs to reach the muscle after being first suppressed
by insulin in the adipose tissue. The study of Kelley et al. shows that glucose
uptake reaches full saturation only after circa 150 minutes, so it could be
possible that the fuel metabolism does not switch that quickly after an oral
glucose test. The e�ect is nonetheless limited – only so much fatty acid
oxidation can be replaced. In the cardiac muscle, after insulin stimulation,
60-70% of the cardiac energy metabolism can be provided by glucose oxidation
[38], where as at rest (without insulin stimulation) 70% is provided by fatty
acid oxidation. [55]. In the study of Kelley, fatty acid oxidation dropped
practically to zero (0.1+-0.2 µmol/100 ml tissue/min) after insulin stimulation
and euglycemia. For the model, it is assumed, that glucose can cover at
most 80% of the resting skeletal muscle energetic needs, or 0.195 kcal/min,
oxidating circa 50 mg/min. It is assumed that the e�ect rises linearly with
normalized muscle insulin concentration, up until saturation:

Eoxid(IN ) = 5.55 tanh(0.183I
N ) (3.73)

Net glycogen flow dependence on insulin can be calculated as the di�erence
between total uptake and glycolysis (oxidation, lactate release). After that,
the di�erence is divided by two and the rates of glycogen synthesis and
glycogenolysis are calculated. From the resulting data, curves are estimated

Eg_syn(IN ) = 1.39 + 0.46 tanh(0.33(IN ≠ 4.85)) (3.74)

Eg_lys(IN ) = 0.62 + 0.44 tanh(≠0.33(C108 ≠ 4.84)) (3.75)

where Eg_syn is insulin e�ect on glycogen synthesis and Eg_lys is the insulin
e�ect on glycogenolysis. G6P to G3P stimulation is calculated as the sum of
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lactate production (constant) and oxidation, assuming constant G6P levels
based discussion above. A curve is estimated:

Eg6p≠to≠g3p(IN ) = 0.28 + 2.79 tanh(0.17(IN + 0.54)) (3.76)

The e�ect of insulin on GLUT4 translocation has to be estimated also,
because with increasing uptake rate, the interstitial concentration of glucose
falls to create a gradient. However, this decreases the gradient to cell,
because intracellular glucose concentration is assumed constant (as discussed
above). The interstitial concentration can be calculated from vessel outflow
concentration since we are calculating in an euglycemic state.

Cinterst = Cout ≠ r

k1
(3.77)

Cout = Cin ≠ r

Q
(3.78)

where Cinterst is interstitial concentration, Cout is vessel outflow concentra-
tion, Cin is inflow concentration, both for glucose. k1 is vessel-interstitium
membrane constant. The e�ect of insulin is then:

r = E(IN )k2(Cinterst ≠ Ccell) (3.79)

where k2 is the interstitium-cell membrane constant, Ccell is intracellular
concentration and r is the calculated uptake. A curve for the insulin e�ect
on cellular glucose membrane transport is estimated:

Eglut4(IN ) = 24.17 + 25.41 tanh(0.3(IN ≠ 6.13)) (3.80)

3.2.8 Other tissues

The lungs compartment is joined with the heart in the work of Sorensen, but
no lung glucose uptake is estimated – it is implicitly a part of the Periphery
block. Sorensen estimated red blood cell uptake to be 10 mg/min at a
constant rate, insensitive to glucose, insulin or glucagon levels. ([80], p. 48,
51) Furthermore, in vitro data suggest that circa 90% of the uptaken glucose
leaves the cell as lactate [39], so in the model 9 mg/min of lactate is released
from red blood cells.

O’Neil et al. measured glucose uptake in the rat perfused lungs, and found
the uptake rate of 11.2 µmol of glucose per gram of tissue per hour. The
authors assume half of this value for humans, since the human lung consumes
half of oxygen compared to the rat lung. Furthermore, half of the uptaken
glucose is released as lactate [68]. Mean weight of the human lungs is 840
grams [63], which would give circa 14 mg/min of glucose uptake. Both red
blood cells and the lungs are modeled as simple sinks and sources without
the full organ structure. They are connected directly to the heart module.
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Kraegen et al. measured that rat lung tissue is sensitive to insulin and
stimulates glucose uptake. [47] A function is estimated from the data

E(IN ) = 2.01 tanh(0.56I
N ) (3.81)

where I
N is the normalized insulin concentration at heart.

3.3 Insulin clearance and release

The insulin release and clearance are modeled according to Sorensen. The only
di�erence is in the peripheral compartment, which is separated into muscle
and adipose tissue in this model. Sorensen modeled a membrane between
the equilibration space and the interstitial space, which is also modeled for
the skeletal muscle. The insulin clearance from the peripheral interstitial
compartment is calculated as ([80], p. 219)

K = 1 ≠ 0.15
0.15

1
Q

≠ 20
V

(3.82)

rIC = CI

K
(3.83)

where K is a clearance constant, 0.15 is the fractional extraction, Q is blood
flow (for insulin), 20 is the time constant for insulin membrane transport [min]
and V is interstitial volume. After inputting the estimated values of blood
flow and interstitial volume for muscle, a value of K = 3.06 was obtained. rIC

is the rate of muscle insulin clearance [mU/min] and CI is the concentration
of muscle interstitial insulin. The adipose tissue produced negative clearance
values with this approach and therefore a simpler way was selected. The
adipose tissue has relatively small volumes and is not a significant tissue of
glucose clearance, it should be then sound to combine the equilibrium and
interstitial volumes and set the insulin clearance rate directly to 15% of the
incoming insulin mass flow.
Adipose tissue, liver and kidneys clear insulin based on the equation

rIC = CIHQF (3.84)
where CIH is the insulin concentration from the inflowing organ - heart, Q is
the blood flow for insulin and F is the fractional clearance for each tissue, for
kidneys = 0.3, liver = 0.4, adipose tissue = 0.15.
Insulin release is taken directly as modeled in Sorensen, without any changes
and connected to the liver as in his model. For a list of his equations on
pancreatic insulin release please see ([80], p. 219-220).

3.4 Modeling glucose intolerance

As Sorensen discusses, the reaction to an intravenous glucose test can vary
significantly even for persons with the same medical diagnosis (namely, type
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1 diabetes mellitus). Furthermore, antibodies binding insulin in plasma may
delay insulin dynamics (although this shouldn’t be an issue with purified
insulins), and glucagon response can be diminished. A whole range of models
can be constructed ([80], p. 356-357). Since Sorensen decided to use the model
for therapy development purposes, he set the pancreatic insulin response to
zero and left everything else the same as in the typical metabolism. In other
cases of glucose intolerance, the insulin response is typical or higher, but the
intolerance is caused by tissue insulin resistance. This is caused by either
receptor or post-receptor resistance ([80], p. 318).

For modeling, the general e�ect of insulin production, and two types of
resistance were picked. The pure receptor resistance is characterized by
achieving the same insulin response as in a typical metabolism, yet only with
higher than typical insulin levels. This could be modeled as:

Einhib(IN ) = 0.5[1 + A tanh(B(IN ≠ C))]E(IN ) (3.85)

where E(IN ) is the typical tissue insulin response and tanh is the resistance
e�ect. The pure receptor response is simulated by changing the C parameter
- if the C parameter is set to a large positive number, the normalized insulin
concentration has to rise proportionately to achieve the same maximum
response. The post-receptor resistance decreases the maximum response,
meaning that even for large insulin concentrations, the response saturates
below the typical maximum response. This is modeled by decreasing the term
A below one, but above zero (no response). B is set to 0.5 to provide a more
smooth transition.

This approach can not be used for glycogenolysis. Insulin normally suppresses
glycogenolysis and in case of insulin resistance fails to do so. Applying such a
function for insulin resistance to liver glycogenolysis would suppress it already
in the basal state which would inhibit it and the glucose circulation system
would collapse. Hence a simple way is used to model insulin resistance in
glycogenolysis, and that is adding an S parameter directly to the insulin
e�ect tanh function, which can right-shift the insulin-dependence curve. The
following equation shows the principle.

Ebreak(IN ) = 1.0 ≠ 1.0 tanh(1.0(IN ≠ 1.0 ≠ S)) (3.86)

3.5 Initialization of the model

The initialization of the model is taken from Sorensen ([80], p. 264-265). The
heart module is initialized with the concentrations described in the basal
concentrations section; glucose - 97.3 mg/dl, lactate 10.7 mg/dl, glycerol 0.7
mg/dl, 4.6 mg/dl, insulin 1.5 mU/dl. First, the initialization of non-insulin
metabolite concentrations is described. For each tissue, the basal extracellular
concentration (or equilibrium space concentration for muscle) was calculated
as
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Cout = Cin ≠ r

Q
(3.87)

Where Cout is the output extracellular concentration, r is the net inflow of a
metabolite (negative for outflow) and Q is the output blood flow. Cin is the
mixed input concentration from input organs.

For muscle, the interstitial concentration was calculated in a similar way

Cinterst = Cout ≠ r

k
(3.88)

Where k is the vessel-interstitium membrane constant.

The calculations for insulin are the following. If the tissue has no insulin
clearance (brain, gut, lungs, RBC and heart), then its initial concentration
is the same as in the heart compartment. Adipose tissue and kidneys have
initial concentrations

Cout = Cin(1 ≠ F ) (3.89)

where Cin is input insulin concentration (heart) and F is the fractional
clearance constant.

For the liver, an equation using the mass conservation of insulin loop is used.

QLIL = H ≠ B ≠ K ≠ M ≠ A; (3.90)

Where H is the heart insulin output mass flow, similarly then B, K, M , A

are brain, kidneys, muscle and adipose tissue insulin output mass flows. QL

is liver insulin output blood flow. After liver insulin concentration is found,
the basal pancreas insulin release can be calculated:

r = QL

1 ≠ FL

IL ≠ QGIG ≠ QAIH (3.91)

where r is the basal pancreas insulin release in mU/min, QL is the liver
insulin output blood flow, QG and QA are input blood flows for insulin from
the arteries and the gut into the liver, IG and IH are gut and heart insulin
concentrations, and FL is liver insulin fractional clearance.

Glucagon is set to 80 pg/ml, following the data from the study of Meyer et
al. [57].

3.6 Implementation in Modelica

To allow for maintainable development, a modular approach was selected.
The general idea was to have a standard module for a tissue, that would be
consecutively specialized. Having a standardized tissue module could prove
to be limiting if one would like to develop a very detailed physiological model
of a certain tissue while keeping others the same. To be physically consistent,
all metabolites are modeled as masses and not concentrations, as would be
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typical for most models. This allows for truly conserved flows since mass is a
conserved quantity. Metabolite flows in the literature are often reported in
minutes and Sorensen’s model uses minutes too. Since Modelica’s derivations
use seconds as a time unit, a conversion is necessary to form a mass flow per
minute.

3.6.1 Base tissue

In the base tissue model TissueModel, there are no reactions, only three
metabolite pools and a system of exchange with blood flow. Metabolites
in the transfer pool TransPool represent intracellular metabolites that can
leave the cell, and metabolites locked inside the cell are in the LockedPool.
The reason for this division is that the metabolites which come into exchange
with plasma/interstitium can be expressed directly as a vector instead of
individual description. A third pool is the extracellular pool ExtraPool,
which contains the metabolites in the extracellular space. The RealInput is
prepared to be connected to the input organ concentration variable and is used
to calculate input mass flow. The output mass flow is based on ExtraPool
metabolite concentration and output blood flow. The input mass flow and
output mass flows are calculated according to equations in the subsection
Metabolite circulation. The metabolite input mass flow and output mass flow
are expressed as a metabolic source and sink and connected to the ExtraPool.
The membrane transport is modeled according to the equation in Metabolite
circulation. Insulin from ExtraPool does not enter the cells and therefore
a middle-step connector with only exchangeable metabolites is used. By
default, this middle-step connector is connected to the membrane module
and the transfer pool is connected to it. The middle-step connector can be
disconnected by setting the combined parameter to false, which is used in the
skeletal muscle module to add another membrane. In total, the base tissue
model TissueModel creates a hollow shell with metabolite pools and mass
inflow and outflow.

3.6.2 Glycolytic tissue

The modeled organs can be divided into two categories - those who only
perform glycolysis and those who besides it can also perform gluconeogenesis.
Glycolysis is a feature common to all modeled organs and therefore was
selected as the second inheritance step. The model for a glycolytic tissue
inherits from the module TissueModel and adds glycolytic reactions to it.
These are: glu-to-g6p, g6p-to-g3p, g3p-to-pyr, pyr-to-lac, lac-to-pyr, pyr-
to-acoa, acoa-sink. The reactions are described in the section Intracellular
reactions.

The intracellular reactions contain an input metabolite and an output metabo-
lite. Every reaction is driven by the input metabolite mass and sometimes
regulated by the output metabolite mass. Normalizing the mass by the basal
state mass allows for using a simple way of setting up basal rates. The basal
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masses are calculated from estimated or assumed concentrations and organ
water volumes. The reactions are connected to the transfer pool or the locked
pool depending on the metabolite. For each specialized tissue, there is a
file with constants that follows an outlay shown in GeneralConstants. The
Constants model includes volumes, blood flows, and basal concentrations for
each pool. When the glycolytic tissue is specialized to a particular tissue, the
GeneralConstants model is re-declared and replaced. The reaction rates are
also specified only at the specific tissues. The tissues that directly inherit
from glycolytic tissue are skeletal muscle, adipose tissue, brain, gut, and
heart.
Skeletal muscle

The skeletal muscle is enlarged with a second membrane modeling the trans-
port from equilibrium space to the interstitium. When running simulations
on the intravenous glucose tolerance test without this separation, the results
lacked a characteristic spike shortly after the infusion. It is also in line with
Sorensen, who models his periphery compartment as having this separation.
A new pool is introduced to represent the interstitial metabolite pool and
the ExtraPool represents the equilibrium space. The membrane transport
is modeled in the same way as the cell membrane transport. The extracel-
lular pool is connected to the membrane together with the interstitial pool.
This is possible directly because insulin can pass the vessel membrane. The
metabolites that can be exchanged from the interstitial pool are connected
to the middle-step connector. Another addition is the glycogen synthesis
and breakdown reactions (gly-to-g6p, g6p-to-gly) and adding a metabolic
intracellular source for amino acids (representing amino acids from muscle
breakdown). The insulin clearance sink is connected to the interstitial pool.
Adipose tissue

The adipose tissue releases fatty acids through lipolysis, which is captured
by adding a glycerol source, connected to the intracellular glycerol pool. For
reesterification of fatty acid, a portion of glucose has to be converted to
glycerol-3-phosphate which is modeled as sinking the G3P. The insulin sink
is connected to the ExtraPool.
Gut, Heart, Brain

A pyr-to-aac reaction is added to the gut because the tissue converts glucose
to amino acids. The heart and brain tissues have no changes from the
GlycolyticTissue.

3.6.3 Gluconeogenic tissue

Modeling gluconeogenesis as a general model is useful since both the kidneys
and liver are capable of gluconeogenesis. The GlucogoneogenicTissue in-
herits from the glycolytic tissue model and adds these reactions; g6p-to-glu,
g3p-to-g6p, glc-to-g3p, pyr-to-g3p, aac-to-pyr, connects them to their respec-
tive pools and references the reaction metabolite basal masses to the general
constant model.
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Kidneys

The reaction for pyr-to-aac is added and a special connector is created for
glomerular glucose uptake and is connected to the extracellular pool. This
connector has to be later connected to the heart module too. The insulin
sink is connected to the insulin in the extracellular pool.

Liver

Glycogen is broke down and synthesized in the liver, hence the gly-to-g6p
and g6p-to-gly reactions are added. Insulin clearance is connected to the
extracellular insulin pool together with insulin production source. The insulin
release module is instantiated in the liver and outputs the value which drives
the insulin source.

3.6.4 Regulatory e�ects

The regulatory e�ects are not modeled for all tissues, as some of them are
not regulated by insulin, glucagon or glucose. These are the brain and gut
tissue. For the tissues that are regulated, a division in two groups is made.
First, simple tissues, namely adipose and heart tissue, have their basal rates
and regulatory e�ects described in a single module. More complex tissues
(muscle, renal and liver tissues) are composed of two modules. The first
module contains the basal rates with all intracellular reactions but it does
not contain any regulatory e�ects. The second module adds the functions
for insulin, glucagon or glucose e�ects. This allows for simpler testing where
first the basal state model is developed and then another layer of complexity
is added. The tissue models without regulation e�ects have a Basal su�x
in their name, for example RenalTissueBasal. The final tissues are called
without the su�x and inherit from their basal versions. The regulatory e�ects
are driven by normalized concentrations of intracellular (or interstitial for
muscle) metabolites which a�ect tanh functions. The tanh functions are
incorporated into the model through specifying a reg-eff variable present
in every intracellular reaction and in the membrane transport module.

3.7 Comparison of model results to data

The model was tested on three tests which Sorensen also used to test his
model. These are the intravenous glucose tolerance test (p. 269), intravenous
insulin tolerance test (p. 276), and continuous insulin infusion (p. 278). The
red lines represent this model’s simulations which were added to the figures
provided by Sorensen. Sorensen changed the basal levels for glucose and
insulin depending on the experiment which was not done for this model’s
simulations. If a short infusion is given in the test, the dose gets delivered in
three minutes. The red line in the figures is this thesis’ model results, and
they were all adapted from Sorensen.

46



............................... 3.8. Structure of the web page

3.7.1 Tests

The intravenous glucose tolerance test is shown in figure 3.3. Sorensen used
this test to estimate his model parameters. From the test, it seems that the
primary determinant for the di�erent reactions is the reduced initial insulin
response. The blood glucose consequently does not decrease as fast and
triggers the delayed insulin release which produces the late increased venous
plasma insulin levels.

Similarly to the glucose bolus, insulin can be infused. The intravenous insulin
tolerance test of 0.04 U/kg (2.8 U) is displayed in figure 3.4. The plasma
insulin peak is below Sorensen’s results but decays a bit slower. However, the
response to hyperinsulemnia is much greater than in the experimental data
and Sorensen’s model. Plasma glucose drops to 18 mg/dl, which probably
triggers the great glucagon response which attempts to return the glucose
levels to basal levels.

The continuous insulin infusion which administers 0.25 mU/kg/min (17.5
mU/min) is shown in figure 3.5. The glucose decay and stabilization are
reasonably close to experimental data. However, from the experimental data
on insulin infusion, it seems that insulin gets cleared by the body more quickly
than in the model, which causes slower accumulation in the bloodstream.

3.7.2 Evaluation

From the tests, it seems that the metabolism (probably the muscle tissue) is
too sensitive to insulin when insulin levels are very high. Under continuous
insulin infusion, the glucose uptake gets also enhanced a bit too much. This
is at first in contrast with the glucose tolerance test where the glucose uptake
is insu�cient. However, the di�erence is that with the glucose tolerance
test, the liver insulin e�ects act with a delay and do not get fully mobilized.
The first step to correct the model for the experimental data would be
to tune the pancreas release module and insulin metabolism to achieve a
correct initial insulin peak response. After that, the muscle tissue module
could be reconsidered. A simple average was taken to combine the forearm
muscle measurements with the femoral muscle measurements. The femoral
muscle had much lower glucose uptake when extrapolated to the whole body
compared to the forearm extrapolated results. More than 50% of the body
muscle mass may behave more as femoral muscles than as forearm muscles.
Adjusting for this should at least partially solve the severe hypoglycemia
observed during the insulin tolerance test.

3.8 Structure of the web page

Glucose metabolism can be viewed for its complexity from several di�erent
dimensions. The first dimension is the organ dimension. Glucose gets
produced and consumed to form a closed loop and the role of tissues and
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Figure 3.3: The intravenous glucose tolerance test with the dose 0.5 g/kg (35 g)
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Figure 3.4: The intravenous insulin tolerance test with the dose 0.04 U/kg (2.8
U)
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Figure 3.5: The continuous insulin infusion with the dose 0.25 mU/kg/min (17.5
mU/min)
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organs can change depending on the level of glucose. The second dimension
is how the net organ metabolite inflows are driven by intracellular reactions.
The third is how glucose metabolism does not involve only glucose, but also
lactate or amino acids and other metabolites. These metabolites are not
only sources of glucose but also bu�ers. Fatty acids can be substituted by
glucose for energetic use. The fourth dimension is regulation with the goal of
homeostasis. Multiple hormones are used to react to the changing needs or
consumption of glucose. Through understanding each dimension, complex
glucose metabolism can begin to emerge. The concept behind the web page
is to show these dimensions. The tools used for this will be graphs portraying
how flows or metabolite concentrations taken from the model change in time
during an experiment. The experiments will be glucose infusions where the
user can set the amount of the dose. To view the dimension of regulation,
modeling insulin resistance and destruction of insulin production is used. The
user can set the extent of the destruction and resistance, with the possibility
of creating many types of homeostasis. The graphs are complemented with
texts explaining to the user the basis of the viewed process and they direct
the user’s attention.

The web application is chosen as a platform because of its accessibility and
visualizing potential. It constitutes of three sections. The first section shows
how di�erent tissues react to a hyperglycemic state after the infusion of
glucose. The second section displays lactate-glucose cycling (the Cori cycle)
and through it gluconeogenesis and glycolysis. The third section shows what
happens after introducing insulin resistance or reducing pancreas insulin
production. The results are shown again for an intravenous glucose tolerance
test.

3.8.1 Organs

The user can determine the dose of glucose that will be administered. In
the first row of graphs, peripheral plasma glucose is shown on the left side
and normalized insulin and glucagon peripheral plasma concentrations are
shown on the right side. This o�ers a total overview of how the body reacts
to glucose. Below that, net glucose flows for all tissues shown except the
kidneys and RBCs are shown. At the bottom, liver and muscle glycogen
synthesis and breakdown are displayed. Through that, the user sees where
exactly the surplus glucose gets absorbed. Furthermore, they will see the role
of glycogenolysis and glycogen synthesis in this process. The composition of
graphs is shown in figure 3.6.

3.8.2 Metabolites and intracellular reactions

The lactate-glucose cycle (the Cori cycle) is the conversion of glucose to lactate
in tissues such as muscle, adipose tissue, or the brain and its conversion back
to glucose in the liver and kidneys. On top, venous glucose levels are shown.
The second graph depicts the flows of glycolysis. The third graph shows
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arterial lactate levels and to close the loop, the uptake of lactate by the liver
is displayed in the last graph. The composite view of these flows should allow
the user to see how the production of lactate through glycolysis in one tissue
drives lactate levels, which a�ect gluconeogenesis. For the outlay on the web
page see figure 3.7.

3.8.3 Glucose intolerance (Regulation dimension)

In this section, the user can change the parameters of the metabolism and
administer a fixed dose of 35 g of glucose. The first is the insensitivity of
the liver glycogenolysis to insulin, the second is the capacity of the pancreas
to produce insulin. The third is the insensitivity of muscle glycogenolysis to
insulin, the fourth and fifth produce the insensitivity of muscle uptake and
reduce the maximum e�ect of insulin. For comparison, changed metabolism
is shown on the left side and typical metabolism is on the right. In the first
row of graphs liver glycogenolysis is shown. In the second, muscle glycogen
breakdown and glucose uptake is displayed. In the third, venous glucose and
insulin levels are shown (normalized) to give a global overview.
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Figure 3.6: Web page section one graphs
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Figure 3.7: Web page section two graphs
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Figure 3.8: Web page section three graphs
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Chapter 4
Conclusion

The objective of this thesis was to create a glucose metabolism model for
educational purposes. The existing glucose metabolism models usually follow
a minimalist approach to achieve their goals, which results in localized or only
partially whole-body models. Although some models o�er a great amount
of detail, this detail is either localized to one particular tissue or makes the
model very complex. In the first case, the models do not o�er a full view of
glucose metabolism. In the second case, the complex models require a lot
of e�ort to understand which makes them less transparent and available for
adaptations. This means that the current models’ use in education is limited
and was the source of the decision to produce a new model instead of using
an existing one. The goal was to then use the educational model to display
di�erent points of view on glucose metabolism in an educational application -
organ metabolite exchange, intracellular reactions, metabolite transformation,
and regulation for homeostasis.

In order to fulfill the goal, several criteria were set as guidelines for the
model. Firstly, to include all important tissues to close the loop of metabolite
production and consumption in glucose metabolism. The organs/tissues
devised to be modeled were: the brain, lungs, heart, liver, kidneys, skeletal
muscle, adipose tissue, red blood cells, and gut. Secondly, to model important
metabolites related to glucose metabolism, namely lactate, amino acids,
and glycerol; with insulin and glucagon as regulators. Third, to contain
intracellular reactions to the extent necessary to capture the process of
glycogen breakdown, gluconeogenesis, and glycolysis. And at last, to join the
tissues with a system of physical metabolite circulation. The model produced
in this thesis matches all of the defined criteria.

The model builds primarily on the work of T. J. Sorensen[80] who developed
a glucose metabolism model in his 1985 thesis. His model fulfills many of the
goals stated in the paragraph above, namely a system of metabolite circulation,
insulin and glucagon metabolism, and glucose dynamics for major organs.
However, his model contains no intracellular reactions, combines some tissues,
and treats them as one singular tissue. The combined tissues were modeled as
separate in this model and their glucose metabolism was estimated. To model
the processes not present in Sorensen’s model, the work of Pratt et al.[71]
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and Carstensen et al.[14] was used for the construction of an intracellular
system of reactions. Using a modular approach, a general tissue object was
created which was further adapted to form specific organs. This makes the
model more simple to maintain and understand. Furthermore, it equalizes the
depth of detail for di�erent tissues and allows for straightforward comparison
between organs. On the level of plasma metabolite concentration, the model
reproduces qualitatively the data as published by Sorensen, although it is too
sensitive to high insulin levels. The plasma metabolite values are produced
by intracellular processes, in line with the existing theory.

The limitations of the model are that intracellular processes could be too
simplified - for example in the kidney which has several di�erent functional
segments. The amino acid dynamics are constrained by not modeling indi-
vidual amino acids, such as alanine and glutamine. There are several ways
the model could be furthered. While the basal state is representative of
glucose metabolism, expanding the model to represent exercise or food intake
could o�er new interesting simulations. The fatty acid metabolism is tightly
connected to glucose metabolism and is a�ected for example in diabetes
mellitus Type 2, which would add another layer of useful complexity to the
model.

The web page is composed in line with the logic of showing di�erent dimensions
of glucose metabolism, as described in the section above, and is made of
three sections. The first provides an overview of organ outflows and the
process of glycogenolysis during a user-set intravenous glucose tolerance test.
The second captures gluconeogenesis and glycolysis through lactate-glucose
recycling. In the third, the user changes the metabolism’s resistance to insulin
and its capacity for insulin production to see how it a�ects the body’s ability
to achieve glucose homeostasis. These three sections should give the user a
broad idea of how multi-faced glucose metabolism. The e�ect of the concept
could be deepened by adding a point of view of several types of infusions;
glucose, insulin, lactate, or combined glucose and insulin.

Besides creating the final products - the model and the web page - the process
of writing this thesis also generated new information and byproducts that can
contribute to further educational modeling of glucose metabolism. Namely,
the glucose net uptake basal rates for the newly added tissues, the estimated
new blood flows and volumes for the muscle and adipose tissue, and the
programmed Modelica objects.
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