Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Decentralized Federated Learning for
Network Security

Bc. Pavel Janata

Supervisor: Garcia Sebastian, Assist. Prof., PhD
Supervisor—specialist: Ing. Rigaki Maria
January 2023

ii

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

~
Student's name: Janata Pavel Personal ID number: 465810
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Science
Study program: Open Informatics
Specialisation: Data Science
N\ J
Il. Master’s thesis details
~
Master’s thesis title in English:
Decentralized Federated Learning for Network Security
Master’s thesis title in Czech:
Decentralizované federativni u€eni pro sitovou bezpe€nost
Guidelines:
ederated Learning (FL) is a type of decentralized learning that allows for collaborative training of machine learning models
without the explicit exposure of participants' private data. This is very important for network security, where data privacy
is of great concern. The traditional collaborative model of FL uses a single aggregator node, but this is not desirable in
certain scenarios and a decentralized approach may be required.
The goal of the thesis is to review the existing state-of-the-art of Federated Learning and to propose a decentralized FL
method for network security. The approach should be able to detect threats in peers and benefit from the cooperative
training of the model. The models should be evaluated under realistic conditions, including statistical heterogeneity of the
data and handling an imbalance in both the participants' computational resources and data volume. The student should
consider taking advantage of a trust model between participants to mitigate the security concerns. Both supervised and
unsupervised methods should be evaluated. The developed method should be compared to a similar state-of-the-art
method.
Bibliography / sources:
Kairouz, Peter, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoiji, Kallista Bonawitz,
et al. 2019. “Advances and Open Problems in Federated Learning,” December.
https://ieeexplore.ieee.org/document/9464278.
Rey, Valerian, Pedro Miguel Sanchez Sanchez, Alberto Huertas Celdran, and Géréme Bovet. 2022. “Federated Learning
for Malware Detection in loT Devices.” Computer Networks 204 (February). https://doi.org/10.1016/j.comnet.2021.108693.
Wang, Jianyu, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera y Arcas, Maruan Al-Shedivat,
et al. 2021. “A Field Guide to Federated Optimization.” ArXiv:2107.06917 [Cs], July. http://arxiv.org/abs/2107.06917.
Name and workplace of master’s thesis supervisor:
Ing. Sebastian Garcia, Ph.D. Artificial Intelligence Center FEE
Name and workplace of second master’s thesis supervisor or consultant:
Ing. Maria Rigaki Department of Computer Science FEE
Date of master’s thesis assignment: 25.07.2022 Deadline for master's thesis submission: 10.01.2023
Assignment valid until: 19.02.2024
Ing. Sebastian Garcia, Ph.D. Head of department’s signature prof. Mgr. Petr Péata, Ph.D.
k Supervisor’s signature Dean'’s signature)

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisors Gar-
cta Sebastidn, Assist. Prof. PhD and Ing.
Maria Rigaki for all their patience and
the help they provided me over the past
year. I also have to thank everyone in
the Stratosphere Laboratory for provid-
ing a warm and welcoming environment
for writing this thesis.

Finally, I would like to thank my wife,
Anna, and the rest of my family for be-
ing with me and providing me with their
unending support during all my years of
study.

Declaration

I hereby declare that the presented
work has been composed solely by my-
self and that I have listed all sources of
information used within it in accordance
with the methodical instructions about
ethical principles in the preparation of
academic theses.

V Praze, 10. January 2023

Abstract

Network security is an increasingly impor-
tant concern in today’s connected world
as the number and complexity of threats
continue to grow. Federated learning (FL)
is a machine learning method to distribut-
edly train an model using clients’ data
while protecting their privacy. In this the-
sis, we present an FL solution for network
security, specifically for detecting malware
activity in HTTPS traffic. We developed
both supervised and unsupervised meth-
ods for detecting malware in the clients’
data. We evaluate our methods using the
CTU-50-FEEL dataset, which contains re-
alistic benign traffic of ten users spanning
five days, as well as traffic of six distinct
malware. Our experimental results show
that our federated learning approach is
able to detect a wider range of threats
with higher accuracy than if the clients
relied only on their own data to create
their models. Overall, our work demon-
strates the feasibility of using Federated
Learning for detecting malware activity in
clients with non-IID network traffic while
preserving their privacy.

Keywords: Federated Learning,
Network Security, HT'TPS, Malware,
Machine Learning, Variational
Autoencoder, Anomaly Detection,
Classification

Supervisor: Garcia Sebastian, Assist.

Prof., PhD

vi

Abstrakt

Sitova bezpecnost je v dnesnim propoje-
protoze pocet a slozitost hrozeb neustale
roste. Federativni uceni (FL) je metoda
strojového uceni, kterd umoznuje distri-
buované trénovat model s vyuzitim dat
klienti a zaroven chranit jejich soukromi.
V této praci predstavujeme FL feseni pro
sitovou bezpecnost, konkrétné pro detekci
aktivity malwaru v HT'TPS provozu. Vy-
vinuli jsme metody s ucitelem i bez uci-
tele pro detekci malwaru v datech klientu.
Nase metody vyhodnocujeme pomoci da-
tové sady CTU-50-FEEL, ktera obsahuje
realisticky ,,neskodny* provoz deseti uzi-
vateld v rozpéti péti dna a také provoz
Sesti raznych druhi malwaru. Nase experi-
mentalni vysledky ukazuji, ze nas pristup
zalozeny na federativnim uceni je scho-
pen detekovat Sirsi skalu hrozeb s vyssi
presnosti, nez kdyby se klienti pfi vytva-
feni svych modeld spoléhali pouze na sva
vlastni data. Celkové nase prace prokazuje
proveditelnost pouziti federativniho uceni
pro detekci aktivity malwaru u klienti s
non-IID sitovym provozem pii zachovani
jejich soukromi.

Kli¢ova slova: Federativni Uceni,
Sitova Bezpecnost, HT'TPS, Strojové
Uceni, Variac¢ni autoencoder, Detekce
Anomalii, Klasifikace

P¥eklad nazvu: Decentralizované
federativni uceni pro sitovou bezpecnost

Contents

1 Introduction 1
2 Theoretical Background 5|
2.1 Supervised and Unsupervised
Learning........................
2.2 Performance Measures. 6l

2.3 Feed-Forward Neural Networks

2.5 Autoencoders 10/
2.6 Federated Learning
2.6.1 Cross-device and Cross-silo
Federated Learning
2.6.2 Horizontal and Vertical
Federated Learning
2.6.3 Federated Optimization.
2.6.4 Challenges of Federated
Learning
3 Previous Work 19
4 Methodology 23
4.1 Proposed Solution
4.1.1 Solution Architecture. 23|
4.1.2 Unsupervised Approach.
4.1.3 Supervised Approach
4.1.4 Assumptions and Limitations
4.1.5 Learning Algorithm
4.2 Implementation
4.3 Experiment Setup
4.3.1 Federated Training Process. .
432 Metricsooviiii

vii

4.3.3 Comparison to Other Settings

5 Dataset 33
5.1 Benign Traffic................
5.2 Malware Traffic............... 135
5.3 Feature Extraction............ 35
5.4 Dataset Mixing
6 Experiments 39
6.1 Unsupervised Experiments

6.1.1 Experiment Al: Reusing the
model on the next day

6.1.2 Experiment A2: New model on
each day

6.1.3 Experiments A3: Effect of fewer

participants
6.2 Supervised Experiments

6.2.1 Experiment S1: CTU-50-FEEL

dataset and reusing the model. ..
6.2.2 Experiment S2: Only training

the model using clients with

malicious data, 42|

6.2.3 Experiment S3: New model on

eachday
6.2.4 Experiment S4: Using the

CTU-50-FEEL-less-malware

dataset 44

6.2.5 Experiment S3+S4: New model
on each day,
CTU-50-FEEL-less-malware

dataset 45!
7 Discussion 49
8 Conclusion 51
8.1 Future Work 52

A Detailed Experiment Results 55|

A.1 Detailed Anomaly Detection
Results 55

A.2 Detailed Classification Results . 57

B Bibliography 59

viii

Figures

2.1 Confusion matrix 6!
2.2 Activation functions............ 9]
2.3 Autoencoder 10
2.4 Cross-device and cross-silo FL .. [12
4.1 Training process diagram
4.2 Models architecture 26!
6.1 Model performance comparison .
6.2 Results of experiments S4 and
SA4+S83. .

ix

Tables

5.1 Benign dataset flows
5.2 Malware dataset flows 35
5.3 Description of features
5.4 Vaccine malware.............. 37
5.5 CTU-50-FEEL raw dataset

OVEIVIEW ... oo 38

5.6 Malware in the
CTU-50-FEEL-less-malware variant 38|

6.1 Anomaly detection results
summary

6.2 Experiments S1, S2 and S3

summary results
A.1 Detailed Al experiment results.
A2 Detailed A2 experiment results.
A.3 Detailed A3 experiment results

with 6 clients................... 56/
A .4 Detailed A3 experiment results

with 6 clients................... 57
A.5 Detailed supervised experiment

resultS...... 58

Chapter 1

Introduction

Network security is an increasingly important concern in today’s connected
world as the number and complexity of threats continue to grow [1, 2]. Many
solutions exist, both using conventional threat intelligence and machine
learning (ML) methods to address these security threats. However, one
challenge of using ML for this purpose is that algorithms need to be trained
with data that is usually private, since the organizations owning them may be
unwilling to share the data with others, making a traditional or centralized
ML solution hard to implement. Moreover, centralized machine learning
models may need vast computational and data storage resources. Therefore,
Federated learning (FL) is proposed by the community as a ML method
where each client trains its own model in its own private data and then shares
the model updates with a central aggregator, which creates a global model
for all the clients. FL is a way to collaboratively and distributedly train
with clients’ data while protecting their privacy. This thesis presents an FL
solution for network security.

There has been a growing interest in using federated learning for various
applications in network security. Previous research has demonstrated the
feasibility of using federated learning for tasks such as intrusion detection,
sharing cyber threat intelligence, and network traffic classification. These
studies have shown that federated learning can achieve good performance
while preserving the privacy of individual networks [3] [4].

While federated learning has shown promising results for various applica-
tions in network security, there are still many open research questions and
challenges to be addressed. One important area of focus is the heterogeneity
of data across different networks, which can pose a challenge for the models
trained using FL, which often struggle to converge on data which is not
independent and identically distributed (non-IID). This is especially relevant
in the context of network security, where data may vary significantly due to
the diversity of both benign traffic generated by users and malicious traffic
originating from a wide range of malware. Additionally, most of the existing
research in federated learning for network security has focused on specific

1. Introduction

domains, such as the Internet of Things (IoT), or targeted a narrow range of
threats. There is a need for more research that addresses the generalizability
and scalability of federated learning to a wider range of network security
scenarios.

The usage of HT'TPS has become widespread in the past years [5], and
its privacy benefits to the users are well known. However, new versions
of malware also started taking advantage of it, as encrypting their traffic
makes them more difficult to discover. There is a growing need to develop
new methods for detecting these types of malware. The traditional machine
learning methods rely on gathering data from users to train models. In the
network security setting, this translates to collecting potentially sensitive
information about the users’ network traffic and thus violating their privacy.
This privacy issue is addressed by using Federated Learning. We have used
FL to train both unsupervised and supervised machine learning models
for detecting malware activity. Our methodology involves multiple clients
participating in the training process, some of them only with benign traffic.
This represents a particularly challenging scenario due to the extreme class
imbalance across the clients, where the majority of traffic is benign and only
a small fraction is malicious. Moreover, this thesis uses, as far a we know, for
the first time the concept of network malware vaccines, which in our case, are
a small dataset of malicious feature vectors that can be shared with the clients
and incorporated into their local datasets for federated training. Vaccines
for malware binaries and system infections have been known for decades [6],
but no use of network traffic vaccines has been reported so far. Results of
our experiments show that the use of vacciones significantly improves the
convergence and performance of the global model, which is then able to detect
even types of threats not originally present in the vaccine.

To train and evaluate our proposed FL methods, we use the CTU-50-
FEEL dataset [7] developed in the Stratosphere Laboratory [8]. It contains
everyday traffic of ten different users using a diverse mix of operating systems
and applications. The malicious traffic is from malware deployed in the
Stratosphere Laboratory. The traffic captures span five consecutive days
allowing for the simulation of longer-term deployment with realistic differences
in distributions and activity between the days.

The evaluation the proposed FL methods is done in a series of experiments
using both supervised and unsupervised algorithms. We designed different
scenarios to evaluate the FL methods. These scenarios are designed to find out
how is the performance of the FL. model affected by fewer clients participating
in the training. The scenarios are also designed to evaluate if FL models
from previous days can be reused and retrained on the following days. To
test the methods under harder conditions, we created a variant of the dataset
called CTU-50-FEFEL-less-malware which has more challenging properties for
detection. This variant of the dataset contains fewer infected clients each day,
making the dataset more imbalanced. With fewer infections, there are spans
of no activity for some malware, enabling us to evaluate the ability of the

1. Introduction

models to remember past threats.

Every FL experiment consist of three sub-experiments: (i) the FL experi-
ment where clients send updates to a central aggregator and receive a global
model; (ii) a local experiment where each client trains alone and tests alone;
(iii) a central experiment where we get all the data together as if there were no
clients, and no privacy concerns. The central experiment provides an upper
bound on the performance that can be achieved with FL. In contrast, the (ii)
local learning setting illustrates a case where data privacy is a concern, and
FL nor any other communication is used. As such, each client trains a local
model using only its own data, without any collaboration.

Results shows that Federated Learning is a viable method for detecting
malware that use TLS encrypted traffic. The FL models consistently out-
perform the models trained only on the local data of the clients. We also
show that in the multi-day deployment scenarios, models from previous days
can be retrained on new data using fewer training rounds while preserving
comparable performance to the models trained from scratch. The use of
the vaccine enabled the training of supervised detection models with both
infected and non-infected clients. The FL methods achieved overall high
accuracy with a minimal performance penalty compared to the experiments
of type (iii) where the dataset was completely centralized.

All our experiments showed that there is a clear performance benefit to
the federated training (i) over the local setting (ii). In the unsupervised
experiment, the collaboratively trained anomaly detection model achieved a
95.26 % accuracy, while the models trained only on the local data reached
average accuracy of 94.80 %. The best unsupervised results were achieved in
the central experiments (iii) with an average accuracy of 96.55 %, but these
scenarios require violating the privacy of clients’ data.

The benefits of the clients’ collaboration are even more pronounced in
the supervised experiments. The type (iii) experiments on the completely
centralized dataset had an average accuracy of 99.80 %, while in the federated
experiments (i), the models achieved only a slightly worse accuracy of 99.46 %,
while providing stronger privacy guarantees to the clients. Both these scenarios
are an improvement over the type (iii) experiments with no cooperation, in
which the models had an average accuracy of 98.27 %.

These results support the idea that cooperation is beneficial to developing
new malware detection methods in network security. They also show that
Federated Learning is a viable method to achieve collaboration without
compromising the privacy of the data. Although there is a performance
penalty to the models, it may often be outweighed by privacy concerns.

The novel contributions of this thesis are:

® A new dataset called CTU-50-FEEL with HTTPS features for the CTU-
50 dataset.

1. Introduction

® A multi-head neural network architecture that includes a autoencoder
and fully connected neural network.

® Highly unbalanced dataset variations and experiments for realistic ex-
treme malware classes.

® A multi-day methodology to accelerated training with past models.

B Use of network data vaccines sent to the clients to improve detection.

Chapter 2

Theoretical Background

This chapter aims to give a theoretical overview of areas and methods related
to or directly used in this work. We introduce some commonly used metrics
used for evaluating and comparing machine learning models, describe neural
networks and how they are trained, and then focus on specific types of neural
networks.

Then we focus on the area of Federated Learning, describe the motivation
behind it, how it achieves its goals, and classification of the types of FL.
We introduce the field of Federated Optimization, which devises algorithms
and methods for training machine learning models in the federated setting.

Finally, we focus on the challenges commonly encountered when developing
FL methods.

B 21 Supervised and Unsupervised Learning

An often-used categorization of machine learning is supervised and unsuper-
vised learning [9, Chapter 5]. This splits most of the algorithms based on
what kind of data they are able to observe when learning.

In supervised learning, the algorithm is given information about the label
or target for each data point. For example, in the case of classification, the
label provides information to which category an input sample belongs.

In unsupervised learning, the algorithm is not given such information and
can only observe the structure and properties of the dataset. Tasks on such
datasets could be, for example, to somehow learn the underlying probability
distribution or to cluster together similar samples.

However, the boundary between supervised and unsupervised learning can
become blurry, as in some cases, there does not have to be a label for every
data point in the dataset (we refer to this as semi-supervised learning), or
the label information can be weak or unreliable [10]. Active learning systems

5

2. Theoretical Background

are designed to use as little labeled information as possible to achieve their
learning goals and usually work in a framework where they query the user to
provide additional labeled information during the learning process.

. 2.2 Performance Measures

We use performance measures to quantitatively evaluate a machine learning
algorithm on a given task [9, Chapter 5].

To properly evaluate the algorithm, we usually use a test dataset - a
collection of data points separate from the training data. The performance
measures vary based on the types of tasks and used data.

We will describe specific performance measures for binary classification as
they are particularly relevant to this work. Figure 2.1/ shows the four possible
outcomes of classifying a data point. This structured table is referred to
as a confusion matrix, and it contains the absolute counts of the possible
outcomes. We will use the notation in the table to express the measures [11].

Predicted Class
Positive Negative

2 Positive True Positive | False Negative
= (TP) (FN)
@)
Tg False Positi T Negati

. alse Positive | True Negative
B Negative
g7 (FP) (TN)

Figure 2.1: Confusion matrix
Accuracy is one of the intuitive measures, and it expresses the ratio of

correctly classified samples over the whole dataset.

TP +TN
TP+TN+ FP+ FN

(2.1)

accuracy =

True Positive Rate (T'PR), sometimes referred to as recall or sensitivity,
is the proportion of positive samples which are correctly identified as positive.

TP
TPR = TP+ FN (22)

Similarly, True Negative Rate (TN R or specificity), False Positive Rate
(FPR or fall-out), and False Negative Rate (FFNR) can be expressed as

6

2.3. Feed-Forward Neural Networks (FF-NN)

TN rp FN

TNR=———"__ FPR=——__ FNR=——__
R=TNyrp R=FpiTn R=rns71p

(2.3)

Precision expresses the proportion of real positives in the positively pre-
dicted values

TP

—_— 24
TP+ FP (24)

precision =

Finally, the F-score combines the precision and recall measure using their
harmonic mean

precision - recall

F-score =2 (2.5)

precision + recall

It is also referred to it as a balanced F-score as it weights both measures
equally or Iy coming from a generalized variant Fg which uses a 3 parameter
to put S-times more importance on the precision metric.

precision - recall (2.6)

Fg=(1+p
p=(1+5)(52 - precision) + recall

B 2.3 Feed-Forward Neural Networks (FF-NN)

Neural Networks (NN) are a group of machine learning models that are com-
posed of a number of units that were originally meant to resemble biological
neurons[I2]. In Feed-Forward NN, the neurons are organized into units, and
the information flows in one direction from one layer to another.

Goodfellow et al. [9, Chapter 6] describe Neural Networks as a composition
of multiple functions. A case of a simple network with three layers could
be described using functions f1), f@) fG3) Those layers are connected in
a chain forming f(x) = f®(f@(fM(x))). fO is called first layer or input
layer as it takes the input vector x; f (2) is referred to as a second layer, and
the final layer is usually called output layer. The layers between the input
and output layers are collectively referred to as hidden layers, and the total
number of layers in a chain gives the depth of the model. The goal of FF-NN
is to create such function f(x), which approximates some function f*.

Each layer j has a weight matrix W; associated with it, a bias vector bj,
and an activation function ¢;. The i-th row of the W; represent the weights
vector wj; of i-th neuron in layer and bj; its bias term. The output of the
layer j is then

2. Theoretical Background

fi(j) (xj-1) = SO(XJT‘AWJ' +b;)

Where x;_1 is the output of the previous layer. The activation layer is
usually some non-linear function that is applied element-wise. The non-
linearity of ¢ gives NN models the ability to approximate complex functions.
A wide variety of different activation functions are used in modern neural
networks, we provide an example of some of the common ones in the list
below and their plots in Figure [2.2,

® Sigmoid: s(z) = L

14+e—*
0 ifz<O
® Rectified Linear Unit (ReLU): r(z) = s
z ifx>0
*—1 ifz<0
® Exponential Linear Unit (ELU): e(z) = ‘ s
T ifz>0
® Hyperbolic Tangent function (Tanh): tanh(z) = zz;g:z

B 24 Training of Neural Network Models

The process of training refers to an effort to find parameters 6 such that the
network f(x,6) best approximates function f * (x). In the case of NN, the
0 represents the weights and biases of the individual layers [9, Chapter 8|.
As fx represents the desired function, we usually use a set of samples x and
target values y. A loss function L(y, fx) is used to compare the outputs of
the model to the desired ones.

We can formalize the training as an optimization process of finding parame-
ters that will minimize the sum of loss over each sample. In order to improve
the loss of the model, we need a way of computing its gradient to inform
us how to adjust the weights. The backpropagation algorithm [12] is used
for this purpose. It progresses in the opposite direction from the inference -
from the last layer to the first. Since the f(x) representing FF-NN consists
of multiple layers compounding to produce the output, the partial derivative
can be obtained using the chain rule. As its output, the algorithm produces
a gradient of the loss function with respect to the parameters of the model as
a function of the inputs x and outputs y.

In practice, the whole set of training samples is not used to compute
the gradients, and instead, an algorithm called Stochastic Gradient Descent
(SGD) is employed, which uses an average gradient over a subset of the
data to compute updates to the weights. The algorithm shows the process of

8

2.4. Training of Neural Network Models

(a) : Sigmoid (b) : ReLu

|

I

1
=5 0 5
(c) : ELU (d) : Tanh

Figure 2.2: Examples of commonly used activation functions.

computing new weights using a part of the dataset (batch), and a learning rate
parameter 7 controls the step size of the update. Traditionally, the batches
are obtained by splitting the training data into equally sized partitions, and
one iteration over all batches is referred to as an epoch.

The size of the batch controls the amount of stochasticity in the process.
With larger batch sizes, the update steps approach the true gradient of the
whole dataset, but they can also more easily get stuck in a local minimum of
the non-convex function. Decreasing the size of the batches can somewhat
mitigate it and also uses less memory, but the algorithm will take longer to
compute the larger number of updates.

There exists a large number of algorithms driving from SGD and improving
its convergence speed. The often-used method is momentum which introduces
a velocity variable v. It accumulates the gradients from previous steps and
enables the algorithm to take larger steps if multiple successive updates point
in the same direction.

One particular method which uses momentum is Adaptive Moment Esti-
mation (referred to as Adam [I3]). It uses the first and second momentums
of the gradient, and it also individually adapts the learning rates to progress

9

2. Theoretical Background

faster in less sloped areas of the parameter space. Although this algorithm is
more computationally demanding, it accelerates the convergence and seems
to be more robust in the choice of hyperparameters.

. 2.5 Autoencoders

An autoencoder (AE) is a type of neural network architecture which is trained
to produce copies of its inputs as its outputs [9, Chapter 14]. The particular
type of autoencoders we deal with are Undercomplete Autoencoders shown in
Figure 2.3l They are split into two parts. An encoder projects the input into
some lower dimension (latent space), and a decoder attempts to reconstruct
the input from it. The model is trained using a reconstruction loss function
which measures the differences between the input and output of the model.
Mean square error (MSE) is often used as such a loss.

Input Output
. S
\ f

)
[R
Latent
> z 1
' S space ‘o v !
] \ [e RN e 2N e Y []
v . . -
\ 1 \ /| \ / \ 1
S LIy s— \ \ ’ 1 S
AN ’ W !
v (i v Wi
v Y v/ It
] n] I A] " |
1\ AY / \ 1
\ o S \
1 1 — \ A 1 ! 1
1 \ /I \ 1 \
\
\ ’ ’ \ ! \
| 1 | I \ |
1 ! N 1
! \ ’ \ N ‘\
/ \
[| D I Vo
1 A \
, N
A , . \
P N
[NI
, R
L O}
' . N
, J
Encoder Decoder

Figure 2.3: A structure of an Undercomplete Autoencoder. 1t excepts 10-
dimensional vectors as its input, and the encoder projects them down to 3
dimensions from which the decoder attempts to reconstruct the original vector.

Since the model only compares its input to its output, it does not need any
label information and can be used for unsupervised learning. The encoder
can be used as a method for non-linear dimensionality reduction or to extract
useful features from the data. Autoencoders can also be used in generative
tasks, as the decoder can produce samples for any point in the latent space.
They can also be used for anomaly detection by training the model on normal
data and relying on the model to create an output with a greater loss for
outlier samples.

A special variant of autoencoder is Variational Autoencoders (VAE) [14].
The VAE does not produce the embedding directly but instead uses a proba-

10

2.6. Federated Learning

bilistic distribution which it learns - an unbiased multivariate normal distribu-
tion in our case. The encoder is trained to produce mean (x) and log-variance
vectors (log(0?)), which are then used when sampling the normal distribution.
The log variance is used to prevent the model from producing negative values.

To train the model using backpropagation, a representation trick is used
for sampling the normal distribution. A random vector ¢ is sampled from
the standard normal distribution, which is scaled by the variance vector and
added to the mean vector. By using a specific distribution, VAEs tend to
generalize better and are less prone to overfitting. They are also better suited
for generative tasks as the encoder can generate multiple samples coming
from the same distribution.

To train VAE, a reconstruction loss is used as in a regular autoencoder.
To it, a Kullback-Leibler divergence is added as a regularization term which
discourages the learned distribution from diverging. This metric is used
to compare two probabilistic distributions, and in this case, it describes
the distance of the model’s diagonal multivariate normal distribution to a
standard normal distribution as can be expressed as

k

Dict, (N1, 0%), M0, 1)) = 3 Y (02 + 4 — Log(o?) — 1)

i=1

B 2.6 Federated Learning

Since the introduction of Federated Learning (FL), many variants have been
developed targeting specific use cases. The basic version of FL assumes a
central aggregator node, which communicates with a number of clients and
orchestrates the model training with them [15]. In this case, the clients
hold the data, which usually have different distributions, but the features
observed in every client are the same, and the different clients usually hold
data describing different entities. In this chapter, we introduce some variants
of Federated Learning which differ in those basic assumptions.

B 2.6.1 Cross-device and Cross-silo Federated Learning

The first applications of FL focused mainly on training on edge devices like
mobile phones or IoT devices. We refer to those approaches as cross-device
as the learning and data are present on the devices themselves. This is to
oppose a cross-silo approach, where the data is usually first siloed across
an organization onto a more powerful server, which then serves as a node
participating in the Federate Learning. This, for example, allows multiple
organizations to collectively train a model without sharing their data directly.

11

2. Theoretical Background

JL

Device 1

/ Device 2

e *z =

Aggregator \ Device3 Aggregator

Device 4

AN
Organization 3
Device 5
(a) : cross-device (b) : cross-silo

Figure 2.4: Classification of Federated Learning based on the type of participants.
In cross-device FL, the models are trained in the devices from which the data
originates. As opposed to cross-silo, where the participants are usually larger
organizations that have dedicated servers in which the data of the organization are
siloed. These servers usually provide better reliability and more computational
resources available for the training. The number of participants is generally
lower in the cross-silo setting.

Cross-device methods are often designed to handle thousands of participants
and are thus more difficult to coordinate and can have higher demands on
transmission efficiency. Furthermore, the edge devices participating in cross-
device learning often offer limited computational power or availability. For
instance, when training on mobile phones, conditions such as the charging
state, network connectivity, and the user’s activity must be considered [16,
17, 18]. This is usually done by selection strategies, which would only accept
participating devices that fulfill defined conditions. It is also assumed that
some devices might become unavailable during the training process.

In the cross-silo scenario, the data from an organization are usually con-
centrated on a single machine within an organization. This and a number
of participants as low as two, allow for stronger assumptions on availability,
computational resources, and network connectivity.

Sometimes, the cross-silo approach is employed when organizations share
the same entities in their datasets but observe different features describing
them, but for privacy reasons, they can’t share data directly. This can be
the case, for example, when hospitals and laboratories conduct medical tests
and have data about the same individuals. Due to the high privacy concerns

12

2.6. Federated Learning

related to medical records, privacy-preserving FL can be the only option to
train a model using both datasets. This approach is called Vertical Federated
Learning and is further discussed in the next section.

B 2.6.2 Horizontal and Vertical Federated Learning

One of the key classifications of Federated Learning is how the samples and
features are partitioned among the clients participating in FL. When the
features in the datasets are the same, but the samples come from different
(or partially overlapping) sets of entities, it is called Horizontal Federated
Learning (HFL). The opposite case, when clients share different features from
the same set of entities, it is called Vertical Federated Learning (VFL).

HFL is applicable in cases where similar behaviors can be observed in
a number of clients. For example, it can be used to improve wake word
detection models used by Al assistants. In this case, each device collects the
same audio features, but each device contains only samples generated by a
single user. In this setup, a CNN is able to learn to detect key phrases with
high accuracy without the data leaving the edge devices.

The concept of the vertical split of the data is more applicable in the
cross-silo FL. It assumes that all participants are in possession of data from
the same ID space but different feature spaces. This has direct effects on
the architecture of the models. In HFL, all clients generally have the same
models, which are being locally updated by them and then synced through
a central coordinator. While in VFL, the clients usually only maintain part
of the model, and both training and inference have to be done in a more
coordinated manner.

In the case of neural networks, each client maintains a part of the whole
model. During training, it inputs its set of features through its model and
sends the output to a participant in possession of the labels. The responsibility
of the label owner is to produce an output of the whole model and send the
backward messages to all participants so that they can update their models.
One of the pre-requisites for this process of training is the establishment
of a common set of IDs of samples which further adds to the coordination
complexity.

B 2.6.3 Federated Optimization

In this subsection, we will introduce the main methods used for federated
optimization, which refers to the optimization algorithms used in Federated
Learning. The focus of this subsection is on introducing the main methods
used for training models in FL, which are mostly extensions of Stochastic
Gradient Descent (SGD) and can be used to train a variety of models, including

13

2. Theoretical Background

Neural Networks [15], Linear Regression [19], Support Vector Machine [20],
Gradient Boosting Trees [21], and Random Forests [22].

Federated Learning SGD can be implemented with the Federated Averaging
algorithm (FEDAVG) (described in Section 2.6.3). Since its introduction, new
methods were proposed to extend and improve upon it in order to achieve
better stability, and performance. This includes both the performance of the
model and the computational efficiency of the training process.

B Federated Averaging

FEDAvVG was proposed by McMahan et al. [15], and it can be viewed as an
extension of Stochastic Gradient Descent and is described in Algorithm 1. The
training of the models is done in rounds, coordinated by a central aggregator
server. The server initializes a model wg, which then broadcasts to all clients
who take part in the training. The clients then apply a local SGD using their
data D;, for a number of epochs - E. After the clients finish their rounds,
they send the adjusted weights wf of their models back to the central server,
which aggregates the weights by computing their average. This results in a
new global model wy, which is broadcasted to the clients in the next round
of training.

The main contribution of the FEDAVG compared to previous algorithms
used distributed learning [23] is the introduction of the multiple local epochs.
This allows for more communication-efficient learning as the model parameters
are transmitted less often. However, higher values of F also lead to more
divergence between the clients’ models in the case of non-IID data.

B Adaptive Optimization

Extensions of FEDAVG were developed to allow for better control of the
training process. One of those is FEDOPT proposed by Reddi et al. [24],
which generalizes the "vanilla" FEDAVG and enables the use of momentum-
based and adaptive optimization techniques. Algorithm [2| shows the federated
variant of the ADAM optimizer, which utilizes these techniques together with
separate learning rates for the client and server procedures. Similarly, as in
traditional machine learning, the adaptive methods in a federated setting tend
to have better convergence characteristics and necessitate less hyperparameter
tuning.

It is important to note that in some cases, the clients may be unable to
maintain a persistent state between the rounds. For example, when the client
population is large, and the participants in each iteration are sampled. In
this case, many clients may only be used once, and the local learning rates
can not be applied.

14

2.6. Federated Learning

Algorithm 1 Federated Averaging algorithm [I5]. S; is the set of clients in
time ¢, and they are indexed by k; w are parameters of the model, 7 is the
learning rate and [is the loss function.

procedure SERVER EXECUTION
initialize wg
for round t < 1,2,..T do
for client k£ € S; in parallel do
wh, | +CLIENTUPDATE(k, wy)
end for
Witl & f She1 Wi
end for
return wp
end procedure

procedure CLIENTUPDATE(k, w) > Run on client %
B < (Split local dataset Dy, into batches of size B
for local epoch ¢ from 1 to E do
for batch b € B do
w < w —nVI(w;b)
end for
end for
return w to server
end procedure

B Regularization

In FL, clients often perform multiple local updates before sharing them with
the aggregator server in order to save on communication overhead. This often
leads to client drift where the models of the individual clients diverge. This
can be mitigated by using regularization, which can be viewed as a term
added to the loss function, which penalizes the drifting of the local model
from the global one.

By choosing the function (w, w,), a distance function of the local model
w, and the latest global model w,, we can ensure that the local models will
not diverge significantly. Examples of the regularization functions can be
found in the FEDPROX [25], which introduces the proximal term

VYRS

vi(w,wy) = 5 (|lw —wyl))?

where p is a hyper-parameter of the method. The proximal term is added to
the loss function as a penalty.

15

2. Theoretical Background

Algorithm 2 FEDADAM algorithm[24]. S; is the set of clients in time ¢, and
they are indexed by k; w are parameters of the model, 7. and ns are the client
and server learning rates, [is the loss function, m and v are the momentum
and velocity vectors, 1,82 € [0,1) are hyper-parameters controlling their
decay and ¢ is a small non-zero constant

procedure SERVER EXECUTION(wq, m_1,V_1, 31, 2, €)
for round £+ 1,2,..T do
Wf — Wy
for client k£ € S; in parallel do
A¥ + CLIENTUPDATE(K, W¢)
end for
= R Ay = Y0 A
my < fimy_1 + (1 — B1) Ay
Vi < Bavit + (1 — Bo) A?
Witl = Wills A
end for
return wr
end procedure

procedure CLIENTUPDATE(k, w) > Run on client &k
B « (Split local dataset Dy into batches of size B
for local epoch ¢ from 1 to E do
for batch b € B do
w — w — VI (w;b)
end for
end for
Af e w —w
return AF to server
end procedure

B Model Weighting

During the model aggregation step on the central server, a weighting scheme
is often employed. For example, in the FEDAVG algorithm, the global model
can be obtained as a weighted average of the clients’ contributions. Weighting
is most often employed in cases of data or performance heterogeneity, as
described in Section[2.6.4L Its main purpose is usually to mitigate the tendency
of the model to favor clients with higher volumes of training data or available
resources. However, employing some weighting scheme may require the clients
to share information about their data which might bring technical and privacy
concerns. For example, when weighting is based on the number of samples
used for training the model, the clients inevitably leak the amount of data
they contain.

16

2.6. Federated Learning
B 2.6.4 Challenges of Federated Learning

Federated Learning is a collaborative effort to extract knowledge from a set of
clients while ensuring their data privacy. As this process is usually distributed,
it shares some challenges with Distributed Learning while also introducing
some unique ones. In this chapter, we will discuss some of those challenges
and how they are usually addressed.

B Data Heterogeneity

One of the most discussed and wildly studied challenges in Federated Learning
is that the data across clients is often not identically and independently
distributed (non-I1ID). This usually arises when each device contains data
generated by a single user or a small set of them. It means that it is more
common in the cross-device setting, but organizations in cross-silo settings
can also each have uniquely skewed data.

The non-IID property of the data can manifest itself in a multitude of
ways. The class balance can be different across clients, some labels being
overrepresented on some sets of clients while non-present on others at all.
The quality of labels can also vary across clients, and it is possible that the
same features can have different labels across devices.

The non-IID data was presented as a key challenge in Federated Learning
since its introduction[I5], and it is often viewed as a requirement for realistic
FL datasets.

Non-IID data is not unique to FL, and it is a challenge with which many ML
models struggle. Robust statistics is an area of research focusing on methods
applicable to data coming from a wide range of distributions. Using some
robust techniques can help with FL on non-IID data. Examples of this can
be extensions of FedAvg (see Section 2.6.3), which use a median or trimmed
mean instead of a simple mean for weight aggregation [3]. These robust
methods offer resiliency against outliers but at the cost of losing information,
leading to slower convergence and worse performance.

A different approach is to relax the requirement of training a single global
model. As the issues of non-IID data arise from the heterogeneity of the
client’s data, a possible solution might be to personalize the models for each
client. A common approach is to use a method common in transfer learning -
local fine-tuning[26] 27, 2§]. In it, a shared FL model is first acquired, which
is then fine-tuned on the client’s own data to achieve personalization. Work
has been done relating FL to Meta Learning [29] when viewing clients as
heterogeneous tasks. This allows for the use of Model Agnostic Meta Learning
(MAML) [30], which strives for general models which can be quickly adapted
for specific tasks.

17

2. Theoretical Background

B Device Heterogeneity

In many practical FL deployments, there exist significant differences among
the clients. We discussed the differences in their data in the previous section,
but apart from those, the clients can also vary in the available performance
and communication resources as well as in the amount of data they can
collect.

The practical challenge of training a federated model is that as the individual
clients differ in their performance, it may take longer for some of them to
finish iterating a batch of training data. This leads to some of the clients
sitting idle and the wall-clock time of the training increasing [16].

A solution is to set a fixed time limit and allow the clients who would
have finished sooner to continue training locally and omit the contributions
of the struggling clients. Another option is to use asynchronous aggregation
instead of conducting the training in distinct rounds. This allows the clients
to share their contributions with the aggregating server as often as they are
capable [31].

However, both of those approaches introduce bias favoring clients that are
capable of finishing more batches. To mitigate this, a weighing schema is
usually employed in the aggregation, decreasing the weights of contributions
produced by the more active client [32]. A similar schema is also used to
promote contributions from clients with fewer training samples available, to
decrease the bias from the data volume heterogeneity.

B Communication Efficiency

When deploying FL on IoT devices or mobile phones, communication overhead
can become a significant obstacle. The main sources of bandwidth consump-
tion is the aggregation server sharing the global model with the clients and
the clients sending their gradients back to it. Some common techniques
used to decrease the model size can be applicable here, e.g., sparsification or
quantization.

Gradient compression is a popular technique that reduces the size of the
gradients by only preserving the most important components and sparsifying
them [26] 33).

Another approach is to employ a Multi-Epoch aggregation, where in each
round the clients train their local models for multiple epochs, and only after
that they share their updates with the aggregator [15]. This decreases the
total number of communication rounds but also allows the local models to
drift from each other.

These techniques usually represent a trade-off between the communication
efficiency and the convergence time of the model and its accuracy.

18

Chapter 3

Previous Work

While Federated Learning is a relatively new area of research, it quickly found
its applications in various fields. The focus of this chapter is to introduce
some of the works relevant to applying FL in network security. In network
security, there is a need to detect threats using a vast amount of data that is
distributed between a large number of devices. Learning from this data can
pose performance challenges and bring up privacy concerns. As the data is
usually some representation of the network traffic, it may contain sensitive
information. This might lead to Federated Learning being a good fit for these
applications and, in some cases, the only option because of legal regulations.

Many of the published works focus on the area of the Internet of Things
(IoT). One of the most relevant works to this thesis is by Rey et al. [3] on
detecting malware in IoT devices. The authors compare both supervised and
unsupervised methods and propose robust model aggregation techniques to
handle non-IID data and to make the models more resilient to certain types
of attacks. This work was tested on a static IoT dataset in which every device
was infected with two types of malware (Mirai[34] and BASHLITE[35]). In
contrast, in our work, we evaluated the developed methods on a dataset
with a wider range of malware that uses HTTPS. Our dataset also spans
multiple days, with significant changes in the data distribution. The malware
is contained only in a subset of the clients, making it more challenging to
train the supervised detection models.

Other works in IoT focused on anomaly detection using sequential models.
The work done in [36] shows the importance of being able to capture the
temporal information of the data for network security applications. They
have evaluated the use of two types of recurrent models, a Long Short-Term
Memory (LSTM) and Gated Recurent Unit (GRU). Their anomaly detection
models were tested to detect various types of Distributed Denial of Service as
well as Man-in-the-Middle attacks. Previous work has shown the viability
of using the more demanding recurrent models in a resource-constrained FL
environment [37] by employing techniques such as gradient compression.

19

3. Previous Work

De Carvalho Bertoli et al. [38] decided to focus on a narrow threat in
network intrusion detection and designed a federated system for detecting
port scanning attacks. They have evaluated a Logistic Regression trained using
FEDAVG on a dataset with 13 siloed agents, each with different distribution of
benign and scanning traffic. In the majority of clients, the FL outperformed
a locally trained model. However, their federated approach struggled with
agents with significantly different class balances.

The heterogeneity of the clients’ datasets is an inherent problem in Feder-
ated Learning, and it can be especially challenging in network security. This
led some researchers to reject the FL goal of obtaining a single global model.
Segmented Federated Learning [39, 40] was proposed for network intrusion
detection. Segmentation allows for multiple global models to be maintained.
Clients are periodically evaluated and reassigned to a group with the best
fitting model.

In Segmented Federated Learning, all clients are assigned to a single segment
at the beginning. In the following training rounds, the diverging clients split
away from it to form new segments or join already existing ones. However,
this often leads to a single group containing the majority of the clients and
the rest scattered among groups of one or two. As a result, some clients do
not benefit from the federation at all, as their models are only based on their
local data. Neither work compared the results to models to models trained
only on the client’s local data.

A common variant of FL is so-called cross-silo learning which is charac-
teristic for a small number of participants, usually large organizations, and
each node containing data siloed from the organization’s network. For this
setting FedDICE was proposed [4] and used to detect the spreading of ran-
somware in an integrated clinical environment. Their goal was to enable
collaborative training of machine learning models between multiple hospitals.
They have shown that a federated approach can achieve similar results as
fully-centralized learning, even in cases of non-IID data across the clients.

Federated Learning was also proposed as an effective method of sharing
cyber threat intelligence across organizations [41]. This works utilized two
distinct network intrusion detection datasets, each representing an organiza-
tion. The datasets vary in the attack scenarios they contain as well as the
number and class balance of the samples. They evaluated two neural network
models (a Feed-Forward Deep Neural Network and an LSTM). They have
shown that their approach can produce a robust model capable of a high
detection rate across, through which it is capable of collaborative sharing of
threat intelligence.

Works focusing on network security outside of Federated Learning may
also be relevant for developing new FL methods in this field. For example,
the authors of [42] use anomaly detection to recognize malware attacks in the
network. They employ autoencoders trained on samples of realistic normal

20

3. Previous Work

network traffic to learn its pattern. This model can then be used to mark
any deviations in the testing traffic as anomalies and potentially malicious.

We also cannot omit work done by Frantisek Strasak [43], a former student
and a member of Stratosphere Laboratory [§]. In their bachelor’s thesis, they
focused on developing methods of detecting malware that uses HT'TPS to
communicate. Their methodology groups traffic to each service and extracts
features from it. They used XGBoost to classify with high accuracy which
connections are malicious and which benign. We use a modified variant of
their feature extraction in this work.

21

22

Chapter 4

Methodology

B a1 Proposed Solution

We use horizontal cross-device federated learning for detecting malicious
activity in encrypted TLS network traffic. Cross-device in this context means,
that the clients represent edge computers, monitoring and capturing their
traffic. It is horizontal because the clients observe the same set of features,
produced by different entities. The federated approach allows to distributively
train a model using the client’s observations, without having direct access to
the data. This enables us to protect the privacy of the data, while still being
able to learn from it. In addition, each client also benefits from cooperative
training, as they use a global detection model that is averaged from all model
updates sent by all the clients. The global model, therefore, had access to a
larger and more diverse set of data coming from all clients, possibly leading
to better performance and generalization, compared to a model trained only
with each client’s local data.

B 4.1.1 Solution Architecture

Our federated learning system consists of a central aggregator and multiple
clients. The aggregator is a dedicated machine that initializes and coordinates
the training process. There are ten clients in our system, representing the
edge computers, each containing their data in the form of processed feature
vectors used for training the detection models. The data spans multiple
days, and each day is treated as a separate training process. The clients
split each day’s data into training and validation data using an 80/20 split.
The clients use the data of the next day as testing data for the current day.
This is functionally equivalent to training the model on yesterday’s data and
evaluating it on today’s data as it is coming in.

At the start of the training, every client needs to adjust its features to a
common range. For this purpose, they each fit a MinMazx scaler, which finds

23

4. Methodology

Day N

"""""""""""" [[
Client 1 4 C | | 1 |
— / Training Evaluate global \T> 1 . 1]

Local _L} locally for model on data 1 |
1 K epochs from day N+1 10 1 0 1
1 I

A 1

* | LI

! (L] T
Aggregator, | . 1 X 1
istribute || Assregate Collect and IR |
the model g == aggregate Prpeeety

I updates metrics 1 1

Day N-1 Model \ Glo del ! ! Day N Model
!

\ +] | H 1]
[clientk | | commmmm] T
Client2 | [; : [; 1
— | Training Evaluate global | |
Local » locally for model ondata - Lyl 1 1 1

Data K epochs from day N+1 A 1
AY 7 1 | I
: Y _ _ ____ PR

Round 1 Round 2...Round M

Figure 4.1: Diagram of the training process. Each day is treated as a separate
training process with multiple federated training rounds. The aggregator co-
ordinates the training process, distributes the global models, and creates new
models using updates it receives from the clients. The clients distributively
train the models using their local data. In our work, there are up to ten clients
participating in the training.

the minimum and maximum values of every feature in the client’s training data.
Those extreme values are then shared with the aggregator, which combines
them to produce a global MinMax scaler that is then distributed back to the
clients. We choose the MinMax scaler, as it can be easily implemented in the
federated setting. This scaler traditionally scales the values to 0-1 range. It
is possible that some of the values transformed by the scaler may lay outside
the fitted range of the scaler, as the scaler fit on the training data is also used
to transform the validation and testing data. In this case, the values will be
scaled outside of the 0-1 range proportionally to the values observed in the
training data. This does not create issues for our work, as the used features
are computed on 1-hour windows and are mostly consistent.

The training itself is initiated by the clients receiving an initial global
model from the aggregator. The clients then train this model for a series
of rounds. A round consists of the clients training the models locally for
a number of epochs specified by the aggregator. After the local training,
each client reports how the model’s weights changed to the aggregator. In
turn, the clients receive an updated aggregated global model, which they
use in the next round. For the purposes of the experimental evaluation, the
clients also evaluate the new aggregated global model on their testing data,
which consists of the benign and malicious from the next day. They compute
relevant metrics on this dataset and report them back to the aggregator.
After which the next round of training starts.

The number of rounds and local epochs depends on the complexity of the
models and the number of training iterations it needs to converge. Increasing
the number of local epochs means that the model can be trained for the same
number of epochs while decreasing the number of rounds. This effectively
lowers the communication overhead. However, more local iterations may also

24

4.1. Proposed Solution

lead to a higher risk of divergence of the models, as the clients receive the
global models less often. We discuss the exact number of rounds and local
epochs in the following sections describing the individual approaches.

The aggregator combines metrics using a weighted average with the number
of clients’ samples as weights. It also produces a global model after each
round using a process described in Section [4.1.5. At the end of the day’s
training process, the aggregator selects the best-performing model using an
aggregated validation loss of each model. This model is used as the initial
model for the next day. We assume that when the model is reused, it can
be trained for fewer rounds as it already possesses some domain knowledge.
This can save on both computational and communication resources as well as
enable the model to preserve previous knowledge.

B 4.1.2 Unsupervised Approach

For unsupervised learning, we use a Variational Autoencoder (VAE) to detect
anomalies in the network traffic. One reason for using unsupervised learning,
in this case, is that it might be difficult to obtain high-quality labels for
malware traffic, which are needed for supervised learning approaches. Al-
though our dataset is labeled, previous works have reported that unsupervised
learning can be effective for detecting anomalies in network traffic data [3] [37].

The anomaly detection model consists of an encoder and a decoder. The
encoder of the model embeds the inputs into a 10-dimensional latent space.
It fits multivariate normal distributions (with a diagonal covariance matrix)
from the data to generate the embedded samples. The decoder then attempts
to reconstruct the input vector from its compressed representation. The
architecture of the model is shown in Figure 4.2a

The model is trained using a combined loss function consisting of the recon-
struction loss Ly,se (Mean Square Error of the input and output vectors), and
the regularization Kullback-Leibler loss (K L), which penalizes the difference
between the learned distribution and the standard normal distribution. The
use of this penalty function was introduced together with the VAE, and
ensures that the learned distributions do not diverge from each other and
produce a generalizing embedding [I4]. The loss function for each sample can
be represented as:

L = Lyse(x,%) + KL(N(p,,02), N(0,1))

Where x and % are the input and output vectors of the model, and p, and
02 are the mean and variance vectors produced by the encoder for a given

input.

For detection, the reconstruction loss is used as an anomalous likelihood.
Each client derives an anomaly threshold based on its validation data. The

25

4. Methodology

Sigmoid Linear
layer layers

ELU layer ELU layer Sampling ELU layer ELU layer ELU layer

layer Dropout

Dropout Dropout

Dropout o \ Dropout
Input 38 32 20 , 10 /N(M,d)—1-o—> I—MA 32 , |36, output

log(a)

(a) : Anomaly Detection Model

ELU layer ELU layer ELU layer
Dropout
Dropout
Dropout
ELU layer ELU layer Sigmoid layer
20 32 36 Reconstruction
Dropout —> —> Output
Dropout utpu
input 385 2 _, 20, 10
ELU layer Sigmoid layer
Dropout
5 1 Classification
Output
(b) : Multi-Head Model
ELU layer ELU layer Sigmoid layer
Dropout
Dropout ELU layer Sigmoid layer
Dropout
36 32 20 10 5 N 1 _ Classification
Input ——» > O — v " Output

(c) : Classifier-only

Figure 4.2: Architecture of the Neural Network models used in this work. The
Classifier-only model is derived from the Multi-Head model by removing its
reconstruction head.

reconstruction error on the normal data is often used for deriving the anomaly
threshold [44, 45]. The clients compute reconstruction errors for every sample
in their normal validation dataset. From those values, they found a threshold
that classifies 1 % of their validation data as malicious. We use this approach
in order to provide robustness to outliers in the benign validation data. If we
would instead choose the maximum value on the validation dataset, it could
select some non-malicious outlier of the dataset. Such a threshold would then
result in more malware being missed. The specific value of 1% was chosen
using an expert heuristic.

26

4.1. Proposed Solution

After computing individual thresholds, the clients send them back to the
aggregator, which averages them and weights them by the ratio of the training
data in each client to produce a global threshold. On the first day, when the
model is trained from scratch, ten training rounds are used, and five when
the model from the previous day is reused. Clients train the model locally for
one epoch in the first two rounds and for two epochs in the remaining rounds.
While more local rounds are more communication efficient, as discussed
in Section [2.6.4, it may also lead to divergence in the individual client’s
updates. When using the momentum-based methods, the largest steps in the
parameter space are generally made in the first few epochs [13]. We hope
that by aggregating after each epoch in the first two rounds, the global model
manages to converge into a state from which it reliably converges with less
frequent aggregations.

B 4.1.3 Supervised Approach

For supervised learning, we use two types of models, a Multi-Head model
and a Classifier-only model. They are shown in Figure |4.2bland Figure 4.2c|
respectively. The Multi-Head model is derived from a regular autoencoder by
adding a classification head after the encoder while also keeping the decoder
part. We hope that by keeping the autoencoder components, the clients with
only benign samples can contribute to the learning process by improving the
embedding space. The model is trained to distinguish malicious traffic from
benign; malicious being the positive class. Only benign samples are passed
to the decoder part of the network so that the network does not learn to
reconstruct the malicious samples well.

The model is trained on a combined classification - Binary cross entropy
(LpnE) - and reconstruction loss - Mean Square Error (Lyrsk).

n

- o, 1L .
L=LpNng+ Lyse=(1—y)log(L—9)—ylog(y)+ - Z(xz — #)?

=1

The Classifier-only model was created to evaluate if the decoder part of
the Multi-Head model brings any benefits. Its structure is identical to the
Multi-Head model, but with the reconstruction part of the network missing.
This effectively turns it into a regular classification model and is trained using
only the Binary cross entropy.

The supervised models are trained for 75 rounds on the first day when
the models are trained from scratch. On the following days, when the model
from the previous day is reused, 25 training rounds are used. Clients train
the model locally for one epoch every round.

27

4. Methodology
B Malware Vaccine

The motivation behind the Multi-Head model is to allow all clients to par-
ticipate in supervised training, even if they do not have any malware data.
However, it was observed that having clients participating without positive
samples makes the supervised federated model unable to converge. To address
this, we decided to send each client a set of malicious feature vectors, which
we call a "vaccine", to help with the convergence. Traditionally in the security
field, vaccines are a harmless part of the malware that is injected into the
host machines to prevent infections [6]. Our vaccines differ in that they are
not a passive mechanism but an aid in the learning process and a way to
tackle data heterogeneity, as suggested in [46, Chapter 3]. The vaccines are
comprised of only numerical values and, as such, do not pose any risk to the
clients. In our setting, the central aggregator is responsible for gathering and
distributing this set of data to the clients. This approach could be achieved in
real deployments by using samples of malicious network traffic from publicly
available datasets. In order to mitigate the convergence issues, the "vaccine'
dataset has to be sufficiently large (more than 70 feature vectors).

B 4.1.4 Assumptions and Limitations

In this subsection, we discuss the assumptions and limitations of our work.

B Supervised learning assumption: In the supervised setting, we
assume that the clients have the capability to label the data locally. This
is a relatively strong assumption in real deployments, but our work aims
at developing methods that would only require this from a subset of the
participants.

#® Unsupervised learning assumption: For the unsupervised setting,
we assume that there are no malicious samples in the benign dataset.
While we are confident that this assumption holds in this work, as the
dataset was created using expert knowledge, it may be challenging to
assure in future work or in real-world deployments.

® Client trust: We also assume that the clients who connect are not
malicious and try to damage the training process or extract knowledge
from other clients.

® Client availability: One limitation of our work is that we do not handle
cases where some clients drop out or are unavailable during the training
process. Although this is quite common in real-world settings, we believe
that with the limited size of the dataset, we would not be able to evaluate
this well.

28

4.2. Implementation

Overall, our work has several assumptions and limitations that should be
considered when interpreting the results and implications. These limitations
do not invalidate our findings, but they should be taken into account when
considering the generalizability and applicability of our approach.

B 4.1.5 Learning Algorithm

To train our models, we use a combination of FEDADAM and FEDPROX
algorithms. SGD with FEDPROX regularization is used to train the models in
the clients. FEDPROX adds a term to the loss function penalizing the clients’
divergence from the last received global model. This mitigates divergence in
case of statistical differences between the clients’ datasets. This client-side
regularization is important when training with a small batch size (making
a larger number of local steps) or when training locally for multiple epochs
before sending the weight updates to the aggregator.

On the server side, the clients’ contributions are aggregated using a weighted
average based on the amount of clients’ training data. Using this aggregate,
a new update to the global model is created using the FEDADAM algorithm
provided in the flower framework. It is a federated variant of the Adam
optimizer, and as such, it uses momentum when aggregating the client
updates providing better convergence on the heterogenic data. These learning
algorithms are described in more detail in Section [2.6.3|

B a2 Implementation

We chose to use a Python-based open-source federated learning framework
called Flower [47] to implement our methods. Flower is a versatile framework
that provides extendable implementations of both the server (aggregator)
and the clients. It is designed to handle the communication between the
aggregator and clients, enabling us to focus on developing the methods. In
addition, Flower includes implementations of some of the common algorithms
for aggregating client updates.

In the Flower framework the user is responsible for implementing the
functionality, such as loading the local dataset, orchestrating the local fitting,
and computing the metrics. To train the models in the clients, we have used
TensorFlow [48] in combination with Keras [49]. On the server side, the
aggregation of metrics must be implemented, as well as the initialization of
the model and setting of training parameters. Flower allows for the sending of
serializable data structures, which can be useful for exchanging configurations
or other information between aggregator and clients. The serializable data
has been used to distribute the vaccines from the aggregator to the clients.

29

4. Methodology

The code for this work can be found in the repository of the FEEL project:
https://github.com/stratosphereips/feel_projectl This repository con-
tains the implementation of the described methodology, including the code
for orchestrating and running experiments and analyzing their results. It also
includes the preprocessing of raw data into hourly feature vectors used by
the models. The feature extraction is based on an in part reused from the
work done by Frantisek Strasdk in [43].

B a3 Experiment Setup

This section describes how the proposed methods are evaluated, how they
are compared, and how the metrics are collected.

For the purposes of this work, one experiment is a set of conditions and
parameters which are evaluated. Each experiment consists of ten federated
runs with identical parameters, differing only in the random seed used for
initializing the model and splitting the local datasets for training and valida-
tion. Each run in an experiment performs a federated run, a local run, and a
centralized run; all using the same parameters and random seed.

On each run, the models are trained for a total of four days, producing a
global detection model each day. These models are then evaluated on the
next day’s data resulting in four sets of evaluation metrics from each of the
runs. Only four days are evaluated because the dataset has five days and the
last day can not be evaluated since there is no next day.

B 4.3.1 Federated Training Process

The dataset on which our solution is evaluated has network traffic from
five consecutive days for ten distinct clients. Only five clients have labeled
malicious traffic which can be used for supervised training, the rest five clients
only have benign traffic.

On each day a federated training process is done. The diagram in Figure 4.1
illustrates the federated training process. On the first day of training, the
model is initialized randomly and trained from scratch on each client’s data,
while on the following days (days 2, 3 and 4), the previous day’s model is
reused. On a given day, the clients train using data from that day, split into
training and validation data (using an 80/20 split). The validation dataset is
used for selecting the best-performing global model (based on an aggregated
validation loss). The testing is done on the next day’s traffic, which is
functionally equivalent to using the previous day’s model for detection.

The model from the previous day is used, so that gained knowledge from
the past is preserved while also not requiring the clients to keep data for

30

https://github.com/stratosphereips/feel_project

4.3. Experiment Setup

longer periods of time. In general, when training the model from scratch,
more rounds of training are necessary than when adjusting an already existing
model to newer data.

B 4.3.2 Metrics

After each round, the clients evaluate the received global model on their test
dataset by computing a set of metrics. Each of these values is aggregated
on the server using a weighted average, where the weights are relative ratios
of the sizes of clients’ data used for generating the metrics. Meaning, that
in the case of testing metrics, the sizes of the test datasets were used, with
the vaccine samples included. The motivation for this is to produce similar
metrics as if they were computed on a complete dataset from all clients.

To evaluate our methods, the metrics used are Accuracy (Acc), True
Positive Rate (TPR), False Positive Rate (FPR) shown in egs. (2.1) to (2.3)
and F-score shown in eq. (2.5). Accuracy is a standard metric used to
evaluate classification and detection models. However, it can not capture
all the relevant information on its own. TPR indicates what ratio of the
malicious samples was detected, and FPR shows how much of the benign
samples are misclassified as malicious. The F-score is often advocated as a
summarizing metric when comparing the performance of two classifiers [9}
Chapter 11] [11]. We use its unweighted variant F1.

B 4.3.3 Comparison to Other Settings

All experiments are repeated ten times with a different random seed for
initializing the model and splitting the dataset. Each run of the federated
experiment is accompanied by training the same model with equivalent
parameters in a local and centralized setting.

8 Local setting: The local setting mimics the scenario when the client
decides not to participate in the federated learning and instead creates a
model using only its data. Comparing this to the federated results should
show the benefits of joining the federated process. When evaluating the
local setting, we use the datasets of all clients for the following day. This
is to demonstrate how well the locally trained models would perform
in other clients or when encountering unknown threats. The reported
results are averages of the performance of the individual models.

8 Centralized setting: The centralized setting represents a case where
there would be no restrictions on the privacy of the data so that we
could collect all datasets of the clients into a single one and use that
for training the models. This should provide an ideal scenario for the
model’s performance.

31

32

Chapter 5

Dataset

For the evaluation of the proposed solution, we have considered existing
datasets used by researchers studying network security. However, Federated
Learning requires that the used dataset can be split in a specific manner to
represent the local datasets of the individual participants of the federated
process. Therefore a dataset for Federated Learning should include several
different clients and possibly different days. Moreover, the split between classes
should be realistic in the sense that its parts should be non-IID, meaning they
should have different sizes, class balances, and the statistical distribution of
the feature differ. Although some federated datasets in network security exist,
they are mostly based on IoT malware, which is not complex and relatively
easy to detect. IoT malware also usually does not use HT'TPS traffic. We
therefore decided to use the CTU-50-FEEL dataset[7] created for this thesis.
CTU-50-FEEL is a dataset that contains very specific HTTPS features
based on the more generic dataset CTU-50 created by the Stratosphere
Laboratory [8].

CTU-50-FEEL consists of aggregated features for ten clients that generate
traffic for five days. All the clients produce benign traffic, but only five of
them also produce malware traffic mixed with the benign. The dataset also
contains a sixth malware for testing. The following sections describe the
process of creation, processing and subsequent feature extraction.

In particular for this thesis, the CTU-50-FEEL dataset was further modi-
fied to create a dataset variation called CTU-50-FEEL-less-malware. This
variant contains much less malware per client, and less clients with malware,
and therefore is much harder to detect. This was done to further test our
supervised methods. More details about the differences between the variants
is shown in Section [5.4.

33

5. Dataset

B 51 Benign Traffic

The CTU-50-FEEL dataset has the traffic of 10 real human users (no simula-
tions) over five consecutive days. The original format of the flows uses the
Zeek logs to form the dataset [50]. Zeek is an open-source tool for monitoring
and analyzing network traffic. It saves the network events into log files based
on their type. The conn.log contains records about each connection, such
as the used protocol, the originator, and the responder, as well as a unique
identifier of the connection, which can be used to associate it with other types
of logs. The ssl.log and £509.log log files are also relevant for this work, as they
contain information about HTTPS connections and the certificate used to
establish the encrypted connection. Zeek can generate other types of logs for
different types of traffic or protocols, but those that are not used for feature
extraction. All flows in the log files were labeled using the Stratosphere Lab’s
tool netflowlabeler [51].

Table 5.1 shows the number of TLS flows per client for each day. The traffic
comes from real users, which are active for different periods each day and
are using different operating systems and sets of applications. This results in
realistic traffic where there are significant differences in the client data. The
10 real users used Linux, Windows and macOS operating systems.

The benign dataset was created by capturing the traffic of users in Strato-
sphere Laboratory [8]. The traffic was collected with their consent and for
the purposes of security research. The CTU-50-FEEL dataset only consists
of processed aggregated numerical features and does not contain any Zeek
flow data or identifiable information.

Client | Day 1 Day 2 Day 3 Day4 Day?5

1 545 611 596 631 602
2 3,174 1,039 868 1,870 2,543
3 2,817 1413 1,091 703 1,227
4 998 812 595 995 635
5 1,067 365 497 1,006 795
6 3,060 1,900 2,287 2,666 2,101
7 1,479 887 1,000 906 866
8 2,145 2522 2,928 2967 3,396
9 2,541 2,539 2,349 2217 1,874
10 | 4,694 4,823 5287 4,126 5,976

Table 5.1: Number of client TLS flows per day for benign traffic data

34

5.2. Malware Traffic

. 5.2 Malware Traffic

The malicious traffic comes from the deployment of real malware in the
Stratosphere Laboratory [8]. All malware use TLS for command and control
communication. As this traffic is encrypted, it is more difficult to distinguish
it from normal traffic. Table [5.2] shows the number of TLS flows of each
malware on individual days. The number of malware flows is much lower
than the benign traffic, and two of them have TLS activity only on the first
day.

Malware Designation | Day 1 Day 2 Day 3 Day4 Dayb

Dridex.A M1 205 302 301 302 304
Trickbot M2 88 89 88 89 87
NjRAT M3 13 0 0 0 0
Cridex M4 780 823 775 855 793
Kovter.B M5 744 0 0 0 0
Dridex.B M6 822 908 910 920 900

Table 5.2: Number of TLS flows per day in each of the malware datasets

. 5.3 Feature Extraction

To train neural network models on the data, we need to extract numerical
features from the data. For that, we took advantage of the work done by
Frantisek Strasdk in [43]. The methodology used allows us to extract useful
and proven features from TLS data to detect threats. However, in our work,
we have decided to aggregate the traffic in one-hour windows, instead of
per-day. This enables faster detection of possible threats, as the feature
vectors and subsequent detection can be done within an hour of capturing
the traffic.

Within the one-hour window, connections are aggregated based on a 4-tuple
of source IP address, destination IP address, destination port, and protocol.
This 4-tuple allows to group all related connections to one specific service.
The flows inside the 4-tuple share a unique purpose and behavior. These
values, along with information about the amount of data transferred and
some temporal aspects of the connection, are extracted from the conn.log
files. Features relating to the TLS traffic are computed from the values
contained in ssl.log files using the certificate information located in the
x509.1og filse. The complete list of features can be seen in Table [5.3. Features
mentioned as not used in the table were omitted because of low variance in
their values. Both benign and malware data were processed in this manner.
The processed dataset without the identifying information can be found at:
https://github.com/stratosphereips/feel_data

35

https://github.com/stratosphereips/feel_data

5. Dataset

Feature

Description

num_ flows

avg_dur

std_dev__dur

percent_ stdev_ dur
total_size_of flows_ orig
total_size_of flows_ resp
ratio of sizes
percent_ of established_states
inbound_ pckts

outbound_ pckts

periodicity _avg
periodicity_stdev

ssl_ratio

average_ public_ key

tls_ version_ratio
avg_cert_length

stdev__cert_ length

is_ valid__certificate_during capture
amount_ diff certificates
num_domains in_cert
cert_ratio

num__ certificate_ path
x509 ssl ratio

SNI ssl ratio

self signed_ ratio

is. SNIs in SNA dns
SNI_equal DstIP

is CNs_in SNA dns
ratio_of differ SNI_in_ ssl_log
ratio_of differ subject_in_ssl log
ratio_of differ_issuer in_ssl log
ratio_of differ subject_in_ cert
ratio_of differ issuer in cert
ratio of differ sandns in cert
ratio_of same_ subjects

ratio of same issuer
ratio_is same CN__and SNI
avg_ certificate__exponent

is. SNI_in_top_level domain
ratio_ certificate path_ error
ratio_ missing_ cert_in_ cert_ path

Number of records in 4-tuples
Mean duration of connections
Stdev of connection duration
Percent of connections exceeding stddev
Bytes sent by the originator
Bytes sent by the responder
Ratio of responder bytes
Percent established connections
Number of incoming packets
Number of outgoing packets
Mean periodicity of connection
Stdev of the periodicity of connection
Not used

Mean public key length

Ratio of records with TLS
Mean certificate length

Stdev certifcate length

1 if certificate is valid

Number of certificates

Number of domains in certificates
Ratio of valid certificates
Number of signed paths

Ratio of SSL logs with x509
Ratio with SNT in SSL record
Not used

Check if SNI is in the SAN DNS
Not used

1 if all common names are in SAN
Ratio SSL with different SNIT
Ratio SSL with different subject
Ratio SSL with different issuer
Ratio of subjects

Ratio of issuers

Ratio of SAN DNS

Ratio SSL with same subject
Ratio SSL with same issuer
Checks if CN is same as SNI
Mean exponent value

1 if SNI is a top level domain
Not used

Not used

Table 5.3: Extracted features for a TLS connection, or 4-tuple. A TLS connection
aggregates all the TLS flows that share a source IP, destination IP, destination

port, and protocol.

36

5.4. Dataset Mixing

. 5.4 Dataset Mixing

For the purpose of this work, we needed to mix the malware and benign
traffic to form a supervised dataset. For the CTU-50-FEEL dataset, we have
achieved that by assigning a different malware to each the first six clients.
Two of the malware only had some HTTPS activity on the first day. This
mixing was designed to fully utilize all captured malware traffic. The total
number of feature vectors for each client can be seen in Table [5.5.

In Section 4.1.3 we described the malware vaccine which is a set feature
vectors from the malware dataset, which is send to the clients to improve the
convergence of the supervised federated methods. On each day we dedicated
one day of a malware datasets to be used as a vaccine. Which malware
dataset is used as a vaccine for a given day is shown in Table |5.4L When the
clients receive the vaccines, they incorporate them into their local dataset
and use them to train the supervised models.

Day1 Day?2 Day3 Day4
Vaccine malware M4-1 M2-2 M1-3 M6-4

Table 5.4: Malware datasets used as a vaccine in the supervised experiments.

We also designed a scenario that enables us to assess how the proposed
methods cope with more complicated setups. We have named this variant
of the dataset CTU-50-FEEL-less-malware. Its benign data is identical to
the CTU-50-FEEL, but we have removed malware infection on some of the
days. The overview of the malware left in the CTU-50-FEEL-less-malware
in each client is shown in Table [5.6l Note that the syntax M<malware
number>-<day> references the malware captured by a client in the complete
mix on a particular day. The table also indicates which vaccine was used
each day.

Decreasing the number of malware present in the clients leads to increased
class imbalance and amplifies the overall non-IID properties of the clients’
datasets. While in the CTU-50-FEEL, around half of the clients did have
some malware traffic on each day, in this variant, the number of infected
clients at a given time is even smaller. By designing this more challenging
scenario, we hope to demonstrate the capabilities of the developed methods
to handle the following challenges:

® Challenge one: The situation where on the first day only the "vaccine"
malware is present, with some malware appearing on the second day
in some of the clients. As the models are evaluated on the next day’s
data, it test how well it is able to generalize from one type of malware
to others, as well as how well the models can adapt to new malware
appearing.

37

5. Dataset

Day 1 Day 2 Day3 Day 4 Day 5
Client Malware | Benign Malware | Benign Malware | Benign Malware | Benign Malware | Benign Malware
1 M1 346 48 356 48 361 48 396 48 395 48
2 M2 748 72 468 72 430 72 600 72 902 72
3 M3 598 4 297 0 281 0 380 0 568 0
4 M4 417 108 337 105 264 109 402 105 255 106
5 M5 341 29 223 0 216 0 371 0 454 0
6 M6 1,115 96 943 96 891 96 1,042 96 805 96
7 — 415 0 334 0 361 0 344 0 312 0
8 — 1,203 0 1,315 0 1,470 0 1,515 0 1,593 0
9 1,180 0 1,283 0 1,147 0 1,044 0 783 0
10 — 1,213 0 1,263 0 1,338 0 1,410 0 1,466 0

Table 5.5: Number of benign and malicious samples in each client in the raw
CTU-50-FEEL on a particular day. The malware indications reference malware
in Table [5.2

® Challenge two: The situation where on the third and fourth days, malware
that was previously used as a vaccine reappears after not being present
on the previous day. This evaluates how well the knowledge is preserved
after retraining on a different set of threats.

® Challenge three: The situation where the last day contains all available
malware to test the final model on as much malicious data as possible.

Day 1 Day 2 Day 3 Day 4 Day 5
Vaccine Client Vaccine Client Vaccine Client Vaccine Client Vaccine Client
Client | Malware Malware | Malware Malware | Malware Malware | Malware Malware | Malware Malware

1 M4-1 — M2-2 M1-2 MI1-3 — M6-4 Mi1-4 — M1-5
2 M4-1 — M2-2 — M1-3 — M6-4 M2-4 — M2-5
3 M4-1 — M2-2 — M1-3 — M6-4 — — M3-1
4 M4-1 M2-2 M1-3 M4-3 M6-4 M4-4 M4-5
5 M4-1 — M2-2 M5-1 M1-3 — M6-4 — — —
6 M4-1 — M2-2 — MI1-3 M6-3 M6-4 — — M6-5
7 M4-1 — M2-2 — MI1-3 — M6-4 — — —
8 M4-1 — M2-2 — M1-3 — M6-4 — — —
9 M4-1 M2-2 M1-3 M6-4
10 M4-1 — M2-2 — M1-3 — M6-4 — — —

Table 5.6: The used malware in the CTU-50-FEEL-less-malware dataset for
each client. The M<malware number>-<day> references a particular day of
malware from the malicious data of CTU-50-FEEL, shown in Table [5.2. Benign
data is identical to CTU-50-FEEL, as shown in the Table |5.5.

38

Chapter 6

Experiments

This chapter describes the experiments conducted to evaluate the methods
proposed in Chapter 4] using the dataset described in Chapter [5. We provide
a description of the parameters used when running the experiments and an
the results.

B 6.1 Unsupervised Experiments

Recall that the unsupervised experiments are designed to measure how well
FL can be used for clients without labels for their traffic. In these experiments,
we use the Autoencoder architecture described in Section 4.1.2] for anomaly
detection. Each client trains the model using its benign local data of a
particular day according to the CTU-50-FEEL dataset. The data for that
day is split into training and validation datasets using an 80-20 split (80%
for training).

The validation data is used for selecting the anomalous threshold. Each
client selects as threshold a 99 percentile of their validation losses, i.e. value,
which will mark 1 % of their validation samples as anomalous. The thresholds
on each client are then weighted on the aggregator based on the number of
training samples in the clients and finally averaged to produce the global
detection threshold. The aggregator uses the combined weighted validation
loss to selecting the best-performing model. By default, the model is saved
and reused on the next day’s training.

If the model is trained from scratch, it is trained for ten rounds. If the
model from the previous day is re-used, then it is only trained for five rounds.
The model is trained at the clients for one epoch in the first two rounds and for
two epochs for the remaining rounds. The batch size used is 64. Both global
and local learning rates are set to 10™3 and the first and second momentums
of FedAdam are set to 0.9 and 0.99 respectively. The pu parameter of the
proximal term is set to 10.

39

6. Experiments

One run of the experiment consists of training on the first four days and
always testing on the next day’s dataset. Each run is repeated ten times with a
different random seed, with the values reported in this section corresponding
to the mean values across the runs. Each run of the experiment is also
accompanied by a centralized and local run.

Bl 6.1.1 Experiment Al: Reusing the model on the next day

This type of experiment reuses the previous day’s model on each next day.
This allows for fewer training rounds on the subsequent days as well as
preserving knowledge from across the days, as the model is effectively exposed
to a larger amount of data.

Figure |6.1a) shows results of these type of experiments. When the model is
trained in the federated setting, it outperforms the models trained locally in
almost every metric, while the centralized models achieve better results than
both of them.

Although on some days the local models detect marginally more malicious
samples, their average False Positive Rate is almost one and a half that of
the federated one. This results in significantly better accuracy and F1 for
the federated model.

Although it is expected that a centralized model would perform better
due to access to all data simultaneously, these results show that clients using
the federated model would anyway greatly benefit from participating in the
federated learning. This shows that federated learning can be a valuable
alternative when direct data sharing is not feasible or desired.

B 6.1.2 Experiment A2: New model on each day

In contrast to experiments Al, it is important to evaluate the effects of
training a new model completely each day. This requires training for the
whole ten rounds each day and therefore can mitigate the degradation of the
model.

The summarized results in Table [6.1] show that training a model from
scratch every day marginally but marginally improves the performance. This
may hint that the performance of the reused model is degrading, which
seems to be the case for testing days 3 and 4 according to the results in
Appendix [A.1. However, on the final day, the A1 model outperforms the
A2 model. An explanation for this observation might be a change in the
distribution of the clients’ benign data between day 4 (the training day) and
day 5 (testing day). Table 5.5 shows the differences in amounts of benign
data between these days. Possibly the A1 model may be more resilient after
multiple rounds of fine-tuning.

40

6.2. Supervised Experiments

Cent.

Fed.

Local

Al

Acc £ std
TPR =+ std
FPR + std

F1 + std

96.65 + 0.31
46.14 + 2.24

1.00 £0.31
55.14 + 2.49

96.03 £ 0.47
45.46 £ 0.89

1.66 £ 0.45
50.09 £ 2.83

95.24 £ 0.66
45.12 £ 0.70

2.46 + 0.68
45.56 £ 3.31

A2:

Acc + std
TPR + std
FPR + std

F1 &+ std

96.65 = 0.32
46.12 £ 2.25

0.99 £ 0.32
55.18 £ 2.53

96.07 £ 0.43
45.29 £ 0.60

1.61 £0.43
50.22 £ 2.60

95.60 £ 0.67
45.29 £0.71

2.09£0.71
47.63 + 3.28

A3: 6 clients

Acc + std
TPR =+ std
FPR + std

F1 + std

96.58 £ 0.40
46.11 £2.21

1.06 + 0.44
54.71 £ 2.94

94.78 £1.10
45.52 £ 0.61

2.98 £1.09
43.70 £ 4.41

94.97 £ 0.82
45.32 £0.69

2.76 = 0.80
44.35 £ 3.37

A3: 3 clients

Acc £ std
TPR =+ std
FPR + std

F1 + std

96.31 £ 0.68
46.05 + 2.14

1.34 £+ 0.68
53.01 + 4.28

94.16 £1.13
45.35 £ 0.59

3.62+1.14
40.82 £ 4.25

93.37£2.13
44.91 £ 0.37

4.42 +2.14
38.57 £ 6.66

Table 6.1: Summary of the anomaly detection experiments. The provided values
are averages over the four testing days with ten runs each.

B 6.1.3 Experiments A3: Effect of fewer participants

In previous type of experiments Al and A2 all ten clients always participated
in the training. In this type of experiment, we evaluate the performance of
models when only training on six and three of the original clients, while still
evaluating using the complete next day’s dataset.

As expected, with the decreased number of clients used for training, the
obtained models perform worse. However, the gap between the centralized
and federated models increases significantly with the decreased number of
participants. Analogically, this could mean that with more clients, the
performance gap between centralized and federated could shrink.

B 6.2 Supervised Experiments

Recall that the supervised experiments are designed to use the knowledge
and labels in the clients, independently of how these labels were obtained. In
the supervised setting, some clients have malicious samples in addition to
benign samples. The distribution of the malware dataset among the clients is
described in Section |5.4. Most of the parameters of the training remained
unchanged from the unsupervised experiments, except of the number of
training rounds which we increased to 75 if training the model from scratch

41

6. Experiments

and to 25 if reusing the model from the previous day. In this set of experiments,
each client trains the models for one epoch each round. The vaccine used for
the supervised experiments is described in Section |5.4.

Two types of architectures are evaluated - the Multi-Head model with both
a classification head and a decoder head and a Classifier-only model. As with
unsupervised cases, each experiment is run in a federated, centralized, and
global setting and is repeated ten times with a different random seed.

Bl 6.2.1 Experiment S1: CTU-50-FEEL dataset and reusing the
model

This scenario represents the base case for the supervised experiments. The
benign and malicious datasets of the CTU-50-FEEL are split amongst the 10
clients. In this scenario, every client is used for both training and evaluation.

The summarized results are shown in Table 6.2, and the breakdown of
the performance on individual days can be seen in Figure 6.1. The figure
also compares the performance of supervised models to that of the anomaly
detection model. As expected, the supervised models achieve much better
results, and even the locally trained supervised models outperform centralized
AD models. Most of the improvements come from improved recall (TPR).
Previously it hovered below 50%, but the supervised models reached nearly
100% recall meaning almost all malware samples are detected.

The two variants of the supervised models reach comparable results, with
the Classifier-only model achieving marginally better average accuracy and
F1 metrics. However, the performance margin is minor and does not provide
enough evidence to claim the superiority of one of the model variances.

Compared to the unsupervised models, both classifying variants come
closer to the performance of the centralized model event outperforming it in
some metrics. However, the relative gap between local and federated settings
increased compared to the AD model. This is likely caused by some of the
clients only containing benign data, and all malicious samples used in training
originate from the vaccine.

Bl 6.2.2 Experiment S2: Only training the model using clients
with malicious data

In experiments of type S1 all clients are used for federated training of the
model even if the client does not possess any malicious samples. In order
to evaluate if their inclusion brings any benefit to the final model, the S2
experiment is designed in which clients non-infected clients are excluded from
training and only used for evaluation. Specifically, Clients 1-6 are used to

42

6.2. Supervised Experiments

Cent. Fed. Local

Acc+ std | 99.76 £0.07 99.61+0.17 98.29 & 0.78

. TPR+std | 99.10 £0.81 99.784+1.37 84.94+9.23

S1 Multi-Head model om0 00l 70914006 0304018 108+ 0.55
Fl+std | 97.37+0.78 9496 +2.13 81.72 +8.13

Acc+ std | 99.77+0.07 99.62+0.16 98.11 & 0.81

$1 Classifier-only model TPR+std | 99.05+0.71 99.774+1.37 83.02+9.89
assyier-onty m FPR+std | 0.20+0.06 0384017 1.19+0.59
Fl+std | 97444075 9506 +1.98 79.76 & 8.41

Acc+ std | 99.78 £0.08 99.62+0.15 98.08 & 1.28

. TPR+ std | 99.73+0.54 100.00 4 0.00 90.72 + 8.58

52 Multi-Head model ppp \ 00l 0994008 0404015 156+ 1.10
Fl+std | 97574078 9503+ 1.72 81.66 + 11.05

Acc+ std | 99.79+0.08 99.61+0.16 98.37 + 0.97

52 Classifier-only model TPR+std | 99.70 £0.53 99.9240.49 91.76 + 8.40
ASSILET-ONLY MOACt ppp 4 gtd | 0.214+0.07 0404017 1.31+0.76
Fl+std | 97.67+0.83 94.98+1.97 83.81+9.12

Acc+ std | 99.76 £0.06 99.60 +0.21 97.60 =+ 0.47

. TPR+ std | 99.42+0.71 100.00 4+ 0.00 64.87 + 11.15

53 Multi-Head model ppp - 00l 0994006 0414022 0.88+0.57
Fl4std | 97.374+0.61 94.85+2.60 70.39 + 5.86

Acc+ std | 99.77+£0.06 9919+ 1.10 97.67 +0.54

$3 Classifier-only model TPR+ std | 99.32+0.73 87.50 +33.49 64.40 + 13.78
y FPR+std | 0214005 0384025 0.7940.64

Fl4std | 97.414+0.65 82.79431.78 70.60 & 7.13

Table 6.2: Summary of the S1, S2, and S3 experiments all conducted on the
CTU-50-FEEL dataset. The provided values are averages over the 4 testing

days.

train on the Day 1 and Clients 1, 2, 4, 6 on the following days, as clients 3,
and 5 only have malware data on the first day.

The summary results of the S2 experiments are shown in Table 6.2, Al-
though the number of training clients decreased, the models managed to
preserve a similar performance to those of S1. In the federated setting, the
only observable difference is a statistically insignificant improvement in the
Multi-Head models’s F1 and a similarly inconclusive decrease of the same
metric of the Classifier-only model.

A more pronounced difference is in the TPR of the local models, which
improved when trained only on the clients with their own malware. This
supports the claim from the previous subsection that when training locally,

using malicious data only from the vaccine results in worse performance.

43

6. Experiments
B 6.2.3 Experiment S3: New model on each day

In the S1 and S2 scenarios, we save the model at the end of training to
be reused on the next day. This saves computational and communication
resources since the reused models can be trained for fewer epochs. It might
also enable the model to remember threats it saw on previous days and
transfer this knowledge into the future.

However, there is also a risk of gradual degradation of the model and worse
adaptability to shifting distribution of data. In this type of experiments, we
train a new model every day to measure the impacts of these potential risks.

The summary of results in Table [6.2| shows that while the performance of
the Multi-Head S3 model is comparable to the S1 type, the S3 Classifier-
only models’s average TPR is much lower with higher variance. The detailed
results in Table |A.5|show that on the first testing day the model performs the
same as the other models, and only on the following days it degrade. Since
the first training day contains the most malicious samples, it suggests that
the Classifier-only model needs more positive samples in the clients.

The similar performance of the Multi-Head model in the S1 and S3 experi-
ments suggests that reusing the model does not lead to degraded performance
over time while requiring fewer training rounds.

Bl 6.2.4 Experiment S4: Using the CTU-50-FEEL-less-malware
dataset

Section [5.4] describes a second type of malware mix which we have created in
order to test our proposed models. CTU-50-FEEL-less-malware is designed
to be both more challenging and more realistic by including less positive class
samples. None of the clients have any malware data on the first day and have
to rely on the vaccine provided by the aggregator to train the classification
model. In the following days, only two to three clients have their own malware
samples, and the final day, which is only used for evaluation, contains as
much malware as possible. As the amount of malware and its types change
every day, it should prove to be much more challenging for the model and its
ability to adapt.

Figure|6.2a presenting the results of this experiment shows that this scenario
is much more challenging for the supervised methods. Although the overall
accuracy is still higher than in the unsupervised experiments, there are
measurable differences between the two classification models.

Day 2 results are produced by models trained only on the first day when no
client has any malware data except the vaccine. However, on the second day
on which the model is tested, two different malware are present in the client’s
dataset, which the model struggle to detect. The third day contains the same

44

6.2. Supervised Experiments

malware as the first day’s vaccine (M4) and the traffic of M6 malware, which
is the same type as the M1 present on the second day. This results in overall
better performance on Day 3.

On the following day, the M2 appears in Client 2 while only being used
as a vaccine on Day 2 previously. However, it seems that the model was not
able to preserve its knowledge well since the true positive rate decreased on
that day. The final day is only used for testing and contains a larger amount
of malware samples. Despite that, the models perform best on it with an
average F1 score above 90%.

This more challenging data scenario shows that with small amounts of
positive samples, the models might struggle to converge to a solution that is
able to detect the malware. When the models are trained with only the benign
data and the vaccine, it occasionally resulted in models which did not mark
any of the test samples as malicious. This seems to affect the Multi-Head
model more than the Classifier-only model. Although on the next day, all of
the Classifier-only models mostly recovered, some of the Multi-Head ones still
performed significantly worse. This effect seems to disappear in the following
days.

Bl 6.2.5 Experiment S3+S4: New model on each day,
CTU-50-FEEL-less-malware dataset

The CTU-50-FEEL-less-malware dataset variant also provides a good setting
to test, how well the model preserves information from previous days. In the
scenario, there are instances where a dataset is used for training on one day,
is not present on the next day, and reappears on one of the following ones. In
order to evaluate if the reuse of the model brings any benefits in these cases,
we combined the S4 data scenario and S3 in which the model is trained from
scratch each day.

The results are shown in Figure [6.2b. Day 2’s results are not really relevant
as the setting is functionally identical to the S4 experiment. The differences
in the results on this are given by some of the models failing to converge to a
solution that is able to detect any malware. Similar issues can be observed
on Day 3. It seems that reusing the model can mitigate it, as all of the S4
models are detecting at least some malware.

On Day 4, when more clients have malware, all models converged to a
working state. However, the average recall of the Classifier-only model is
significantly worse than that of the Multi-Head model and both of the models
which reused models from previous days.

The last testing day with the highest amount of malware data again shows
a worse performance of the Classifier-only model. When comparing the S4
and S3+S4 Multi-Head model outperforms its variant, which reuses the model
from the previous day. There is also a much smaller variance in the results.

45

6. Experiments

Overall, this more difficult data scenario shows that with fewer malicious
samples in the clients’ datasets, both evaluated supervised models face issues
with convergence. In multiple cases, the models converged to local minima,
where they classified every sample as benign. However, when reusing the
model from the previous day, the model is able to recover from it.

A shortcoming of the supervised methods is that it relies on the clients to
label their data correctly and also to be infected to have malicious samples. In
feature works, we would like to investigate a setting in which the aggregator
provides bigger and more diverse vaccines as a form of threat intelligence, and
Federated Learning would be used as a means to learn from clients’ benign
data. This approach would mitigate privacy concerns while taking advantage
of public malware datasets created by the security community.

In this work, the models are always learning from a single day of network
traffic. As having access to more training data at once is generally better, we
would evaluate how the models would benefit from being trained on longer
spans of activity. However, this might require a new dataset containing data
for more days. While we did not observe any degradation in the performance
of the models when they were reused for multiple days, it would be beneficial
to test whether this holds for longer deployments. It would also be interesting
to investigate whether the models need to be periodically retrained from
scratch to maintain their performance. A longer dataset would be useful for
this purpose.

46

6.2. Supervised Experiments

100 100 - 100 - =
E3 - = - =
P]t
98 98 98 I
G ITHE M T {
3 961] 96 96
@©
o
St [
vl
2
944 94 94
Centralized Centralized Centralized
921 Federated 92 Federated 92 Federated
Local Local Local
Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5
1001 100 - 100 -
E3 - = - - x
901 90 f { 90 { f
801 80 80 {
704 70 70 {
® 60 60 60
)]
501 } { 50 50
404 { 40 40
301 Centralized 30 Centralized 30 Centralized
Federated Federated Federated
20 Local 20 Local 20 Local
Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5
1004 1001 - = T 1001 = z = F
901 90 f { 90 { f
801 80 80
X 704 70 70
&
~ 60 60 60
501 = 50 50
1 =II z -Fx
407 Centralized 40 Centralized 40 Centralized
Federated Federated Federated
301 Local 30 Local 30 Local
Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5
Centralized Centralized Centralized
51 Federated 5 Federated 5 Federated
Local Local Local
44 4 4
R 34 3 3
o
o
[
21 2 { 2]
1 l } [1 { { 1 } {
E3 = = = S = = =
04 0 0
Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5

(a) : Anomaly Detection

Model

(b) : Multi-Head model

(c) : Classifier-only model

Figure 6.1: Comparison of the three types of models on the A1 (for unsupervised)
and S1 (supervised) scenarios. The models trained on the CTU-50-FEEL dataset,
split amongst ten clients. The days refer to the days on which the models were
tested, being trained on the previous day. At the end of the day’s training, the
model was saved to be reused the next day.

6. Experiments

Accuracy Accuracy
100 100
11 1* It Il -
99 1 99 1 I
N
> 98 A 98 1
o
e
=1
S
g 971 97 1
961 Classifier-only 96 1 Classifier-only
Multi-Head Multi-Head
95 T T T T 95 T T T T
Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5
F1 F1
100 100 1 -
AR ST 1771
80 80 - TT
. 604 60 A
x o=
—
s + 4
40 40 -
204 T 20 1
Classifier-only Classifier-only
Multi-Head Multi-Head
0- --l-- T T T 0- --l-- --l-_ T T
Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5
TPR TPR
100 A { - 100 A - T —
801 T T T 804 T T T
® 60 60 -
o
& +
40 ol 404 —+
204 L 20 A
Classifier-only Classifier-only
Multi-Head Multi-Head
0- --l-- T T T 0- --l-- --l-_ T T
Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5
FPR FPR
3.0 3.0
Classifier-only Classifier-only
2.5 Multi-Head 2.5 Multi-Head
2.0 A 2.0 A
X
o« 1.5 1.5 4
a
w
1.01 1.04
0.5 A l 1 T 0.5 A =
_= I
Day 2 Day 3 Day 4 Day 5 Day 2 Day 3 Day 4 Day 5

(a) : S4 Experiment

(b) : S3+S4 Experiment

Figure 6.2: Results of the supervised models on a CTU-50-FEEL-less-malware
dataset. The models were trained from scratch each day in the S4+S3 experiment
and the previous day’s model was reused in the S4 experiment.

48

Chapter 7

Discussion

Our results showed that federated-trained models consistently outperformed
those trained solely on local data. While centralizing data can often produce
the most accurate models, it is not always possible due to technical limitations,
privacy concerns, or legal requirements. In these cases, Federated Learning
offers a way to train effective malware detection models while taking these
considerations into account.

We evaluated the models on a series of training and testing days to somehow
mimic an actual real deployment and the challenges related to it. In particular
the challenge of how the distribution of data may shift between individual
days. The datasets used in this work reflect this well, as the benign traffic
was collected from actual users using different operating systems and sets of
applications with notable differences in activity in the span of the five days.

One way to handle the situation of different distribution of data is to
train a new model for each day, which ensures that the daily models are
independent and do not suffer from degraded performance due to changes in
data distribution.

The experiments were successful in showing that the models from the
previous day could be reused, and its training could be resumed on a new
day of data. This leads to lower computational and communication overhead,
as fewer training rounds were necessary to adapt the model to new data than
to train it from scratch. This approach also has the potential to enable the
model to remember threats or types of data it encountered in the past. We
attempted to evaluate the long-term memory capabilities of the model, but
we did not observe any significant improvements in this aspect when reusing
the model.

Obtaining reliable labels in the network security setting can be difficult as it
usually requires deep domain knowledge from the user. To address this issue,
we have developed a fully unsupervised method for detecting threats in the
client’s traffic. This method uses a variational auto-encoder and utilizes it for
anomaly detection. The model is trained on a dataset of benign data, which

49

7. Discussion

allows it to learn the distribution of normal network traffic. By comparing
new data to this distribution, the model can identify data that is unusual
or out of the ordinary and mark it as potentially malicious. However, our
experiments showed that this method was not always able to accurately detect
all types of malware, as some of it was indistinguishable from normal traffic
for the model.

To take advantage of labels, we also run supervised methods of detection.
In this setting, we assume that only a subset of clients was able to observe
the malicious activity. Having malicious samples only in some clients make
the setting more realistic, as in the real world, it is unlikely that every client
would be infected. That also means that the non-infected clients only have
training samples of one class. Including these clients in the federated training
process often results in the models not converging correctly and learning the
trivial classification of marking every sample as benign. Although we were
successful in addressing these convergence issues, it is clear that this is a
particularly challenging aspect of Federated Learning.

The solution to this problem was to introduce the concept of "vaccine".
A vaccine, for us, is a set of malicious data which is distributed to the
clients, which would incorporate it into their own local dataset and use it for
training. It is the responsibility of the aggregator to obtain this set of data by,
for example, capturing the traffic of malware, processing it, and extracting
features. These features can be safely distributed among the clients, as they
are purely numerical and do not contain any of the malware’s actual traffic
or code. We have shown that when utilizing vaccines, the supervised models
are able to converge to a state in which they accurately detect a majority of
the malware. However, our experiments also showed that occasionally when
the amount of malicious data available to the clients is small (for example,
only the vaccine), the models may still fail to converge properly. In these
cases, we suggest implementing a fallback system that would automatically
restart the training process with a differently initialized model.

In the supervised experiments, we have evaluated two types of models: a
Multi-Head model and a Classifier-only model. The Multi-Head model was
trained on two tasks: (i) reconstructing an input feature vector similar to
an autoencoder; (ii) classification of the traffic. The Classifier-only model
was derived from the Multi-Head model by discarding the reconstruction
part of the network. The rationale behind training the Multi-Head model on
two tasks is that even clients with mostly benign data can contribute to the
learning by improving the embedding of the model.

Our experiments showed that the simpler Classifier-only model achieves
better results. However, in scenarios with fewer malicious samples, we were
observed the convergence issues more often in the case of Classifier-only
model than in the case of Multi-Head model.

50

Chapter 8

Conclusion

This thesis developed and evaluated both supervised and unsupervised Feder-
ated Learning methods for network security. We showed that these methods
allow the clients participating in the training to distributively train models
which detect a wider range of threats with higher accuracy compared to
models trained only on their own local data. The used federated methods
also ensure that the privacy of clients’ data is not violated, as the training
happens locally in the clients and their data never leaves their machines.

To evaluate the methods we created a new CTU-50-FEEL dataset and a
dataset variant, both containing benign and malicious traffic. The benign data
was created by capturing traffic of the people in the Stratosphere Laboratory|[§]
for five consecutive days. The malicious traffic originates from six distinct
malware, all of which use HT'TPS. Using HTTPS makes them more difficult
to detect than malware that uses unencrypted connections. This results in a
challenging federated dataset with realistic differences between the individual
clients.

Our experiments showed that by utilizing the federally trained models,
the clients were able detect a wider range of threats with better accuracy
than if they relied only on their own data to create them. Although the
model’s performance (including its variance) improved slightly if trained on a
centralized dataset, doing so may not be always possible due to privacy issues.
In cases where the security of the data is important or regulation prevents
sharing the data, the gained privacy may outweigh the loss in performance.

We have evaluated both supervised and unsupervised methods for detecting
threats. The unsupervised approach utilizes a Variational Autoencoder
trained to reconstruct the benign data. This model is then used for anomaly
detection, marking the malicious feature vector as anomalous. The main
benefit compared to the supervised approach is that it eliminates the need to
label the data in the clients. However, it is not able to reliably detect all of
the malware on which it was tested.

The supervised approach uses label information to train classification

o1

8. Conclusion

models. Two supervised models were used in our work. A Multi- Head model,
which was trained for both classification and reconstruction of the samples,
and a Classifier-only model. The main challenge in the supervised approach
was that the dataset was non-IID. Specifically, only some of the clients had
malware samples, and there were significant differences in the amounts of
clients benign traffic. However, these properties are to be expected in real
network security applications, and that is why we found it important to focus
on them.

When developing the supervised methods, we observed that the inclusion of
clients without any malicious samples impairs the convergence characteristics
of the federated model. One approach to tackle the issue of the non-infected
clients participating in the training is to provide them with some malicious
samples. We did this in the form of a vaccine, which consists of numerical
feature vectors of malware’s activity. The aggregator sends these samples to
the clients, where they can be incorporated into their local dataset, enabling
the convergence of the supervised models. The vaccines always consisted in
the traffic of a single malware. With the help of vaccines the models were
also able to learn to distinguish other types of malware.

One of the goals of this thesis was to evaluate the methods under realistic
conditions, such as an imbalance in the participants’ computational resources
and data volume. While we successfully created significant differences in the
data volume of the clients, our setup did not allow for a straightforward way
to simulate differences in computational resources between clients. However,
the Flower framework used for Federated Learning allows for dropouts of
individual clients, and in our experiments, we did examine the effects of fewer
participants on the quality of the model.

As the dataset spanned five successive days, we were able to evaluate the
methods in a simulated multi-day deployment, where it would be trained
on data from the previous day and tested on the current one. We have
evaluated if the models trained on the previous day can be repurposed to
accelerate the training on the next day. We have shown that by doing so, the
models required fewer training rounds to reach comparable performance to
the models trained on that day from scratch. We also observed that in cases
where the models did not converge successfully, they often recovered on the
next day when reused.

. 8.1 Future Work

A shortcoming of the supervised methods is that it relies on the clients to
label their data correctly and also to be infected to have malicious samples.
In future work, we would like to investigate a setting in which the aggregator
provides larger and more diverse vaccines. We would also like to investigate
how Federated Learning would be used as a means to learn from clients’

52

8.1. Future Work

benign data. This approach would mitigate privacy concerns while taking
advantage of public malware datasets created by the security community.

In this work, models always learnt from a single day of network traffic.
Since having more data is usually better, we believe the models would benefit
from being trained on longer spans of activity. However, this might require a
new dataset containing data for more days. While we did not observe any
degradation in the performance of the models when they were reused for
multiple days, it would be beneficial to test whether this holds for longer
deployments. It would also be interesting to investigate whether the models
need to be periodically retrained from scratch to maintain their performance.

Further ideas for future research in this area might include taking advantage
of model personalization[26, 27, 28]. In this approach, at the end of the
federated training process, the clients train locally on the global models. By
fine-tuning them using their local data, they can better adapt it for their
purpose. This might be beneficial in the unsupervised anomaly detection
approach, where the model has to learn to represent normal traffic. We
observed the normal traffic of the clients could differ significantly across the
clients, and personalizing the models on the normal data of each client might
lead to better performance. In this case, a new approach to learning the
anomaly threshold would have to be developed.

53

o4

Appendix A

Detailed Experiment Results

B A1 Detailed Anomaly Detection Results

Cent.

Fed.

Local

Day 2

Acc * std
F1 + std
FPR+ std
TPR + std

96.63 + 0.27
57.36 £1.96

1.15£0.28
49.92 + 0.26

96.26 £ 0.22
52.61 £1.50

1.34+£0.24
45.76 £ 1.07

95.63 £ 0.56
46.61 + 3.00

2.19 £ 0.60
45.63 £ 0.74

Day 3

Acc + std
F1+ std
FPR + std
TPR + std

96.62 £ 0.25
54.77 £ 1.81

0.92 £0.26
45.05 £0.33

95.54 £ 0.49
48.29 £ 2.90

2.00 £ 0.50
44.92 £0.77

95.20 + 0.48
46.04 £ 2.45

243 £0.51
45.17 £ 0.57

Day 4

Acc + std
F1 + std
FPR + std
TPR + std

96.49 £ 0.32
54.00 £2.09

0.99 £0.35
44.52 £0.41

96.14 + 0.42
49.52 £ 2.99

1.68 +0.42
45.76 £ 0.95

94.99 £ 0.76
45.28 + 3.58

2.56 £0.81
44.70 £ 0.80

Day 5

Acc + std
F1+std
FPR + std
TPR + std

96.84 £0.33
54.10 £ 2.68

0.93+0.34
45.08 £ 0.26

96.19 + 0.33
49.56 + 2.08

1.62 £0.36
45.37 £ 0.54

95.16 + 0.73
43.45 + 3.71

2.68 £0.76
45.00 + 0.29

Table A.1: Results of the Al experiment comparing the federated anomaly

detection model to the centralized and local models.

55

A. Detailed Experiment Results

Cent.

Fed.

Local

Day 2

Acc £ std
F1 + std
FPR + std
TPR =+ std

96.66 + 0.33
57.55 + 2.26

1.12+0.35
49.92 £ 0.34

96.20 £+ 0.22
52.02 £ 1.52

1.38 £0.23
45.36 + 0.30

95.76 + 0.64
4741 + 3.34

2.05 £0.69
45.63 £0.70

Day 3

Acc £ std
F1+ std
FPR+ std
TPR + std

96.60 = 0.38
54.56 + 2.72

0.95 £+ 0.40
44.98 + 0.26

95.75 + 0.49
49.46 £ 2.97

1.78 £ 0.50
44.89 + 0.64

95.73 £0.60
49.01 £ 3.11

1.87 £ 0.66
45.22 £ 0.58

Day 4

Acc + std
F1+ std
FPR + std
TPR + std

96.51 + 0.28
54.19 +1.90

0.96 £0.29
44.49 £ 0.22

96.39 £0.19
50.94 +1.24

1.41+£0.21
45.39 £0.53

95.24 £ 0.87
46.67 £ 3.78

2.32£0.96
45.01 £ 0.94

Day 5

Acc £ std
F1+ std
FPR + std
TPR =+ std

96.84 £ 0.21
54.10 + 1.60

0.93 £0.22
45.08 £0.21

95.95 £ 0.47
48.11 £+ 2.76

1.88 £0.51
45.53 £0.73

95.69 £ 0.47
46.48 £ 2.66

2.14 £0.50
45.29 £ 0.50

Table A.2: Results of the A2 experiment comparing the federated anomaly

detection model to the centralized and local models.

Cent.

Fed.

Local

Day 2

Acc £ std
F1+ std
FPR+ std
TPR + std

96.46 + 0.48
56.10 + 3.52

1.32£0.51
49.83 £ 0.31

94.75 + 0.74
44.10 £ 3.32

2.92+£0.79
45.64 + 0.57

95.33 £0.61
45.09 £ 3.05

2.51£0.64
45.82 +£0.71

Day 3

Acc + std
F1+std
FPR + std
TPR + std

96.33 £ 0.46
52.74+ 3.12

1.24 £ 0.48
45.14 £ 0.37

93.71 +£1.29
40.02 £ 5.23

3.94 £ 1.37
45.29 + 0.80

94.07 £0.55
40.97 £2.51

3.62 £ 0.56
45.37 £ 0.62

Day 4

Acc £ std
F1+ std
FPR + std
TPR &+ std

96.77 £ 0.18
56.07 £1.40

0.69 £0.19
44.49 £ 0.33

95.36 £ 0.67
44.87 £ 3.77

2.50+£0.70
45.67 £ 0.51

94.81 £0.76
44.49 + 3.58

2.76 £0.79
44.87 + 0.64

Day 5

Acc + std
F1+std
FPR+ std
TPR =+ std

96.77 + 0.23
53.51 £1.79

1.00 £ 0.24
44.98 +0.22

95.29 £0.81
44.35 +4.13

2.56 £ 0.85
45.47 £ 0.53

95.65 + 0.34
46.21 £1.95

2.18 £ 0.36
45.20 £ 0.48

Table A.3: Results of the A3 experiment with six clients comparing the federated

anomaly detection model to the centralized and local models.

56

A.2. Detailed Classification Results

Cent.

Fed.

Local

Day 2

Acc +£ std
F1 + std
FPR + std
TPR &+ std

96.28 £ 0.55
54.78 £3.77

1.50 £0.58
49.66 £ 0.14

93.88 £ 0.85
40.21 £ 3.12

3.81 £0.90
45.33 £ 0.40

94.61 £0.63
41.29 £ 2.95

3.24 £ 0.66
45.34 £ 0.18

Day 3

Acc * std
F1+ std
FPR + std
TPR + std

96.55 £ 0.69
54.18 £ 4.52

1.00 £0.73
44.98 + 0.26

93.61 +1.27
39.46 £ 4.65

4.03+1.31
44.95 + 0.53

92.65 +1.94
35.72 £ 6.50

5.09 £2.04
45.02 +£0.21

Day 4

Acc + std
F1 4+ std
FPR + std
TPR + std

95.71 £0.68
49.05 £ 3.90

1.80 £0.72
44.52 £0.33

94.03 £0.92
38.68 £ 3.71

3.88 +0.96
45.58 £0.71

90.99 £1.43
31.36 £ 3.51

6.75 £1.50
44.42 +0.19

Day 5

Acc + std
F1 + std
FPR + std
TPR + std

96.70 £ 0.38
53.00 £2.74

1.07 £ 0.40
45.02 £0.22

95.11 £0.95
43.46 £+ 4.22

2.76 £1.01
45.53 £ 0.57

95.25 £ 1.02
43.84 £ 5.04

2.58 £ 1.06
44.88 £ 0.07

Table A.4: Results of the A3 experiment with six clients comparing the federated
anomaly detection model to the centralized and local models.

. A.2 Detailed Classification Results

o7

A. Detailed Experiment Results

"S[OPOW [€D0] PUR PIZI[BIJUD Y[} 0} [OPOUW UOI}09p paurery A[reropej oy Surredurod sjuowrriodxo posiatedns oYy Jo

S)[NSAI parreId(J :G'Y d|qeL

60V FI869 TOGFCOE6 LTOFTHL6 | 99T FO8EL SOPFCHEs 000 F 00007 | LL'GFCLI) FL6TFPRSE TIE0FG6ET6 | OFSF8EGL STEPFI6TY TLOFIE66 | PISF I
WOFIF0 CO0FCH0 200FEL0 | II0FET0 600F L0 000F000 | LEOFGET L00F6L0 1000F820 | 8LOFI60 — 000F000 00FC00 | PEFULT o quey soyisse ps-4es
EVEF6L8G TT6FILG6 00°0F 00001 | 80LFEGIE9 CUOTFOCTIL 0000 F0000T | LETTFO09TI8 TEOEFEXFR G8OFI696 | 000 F 00°00T TE6EF GOS8y 000 F 007001 | PIS FYd.L ’
WOF0626 SEOFOV66 TO0OFSLG6 | STOFO0V86 TC0FII66 000 F 00001 | LEOFFES6 ¥ROFLEGE T00FI966 | LZOFOI66 FHOFIFGE CO0FL6E66 | PisFoy
CIYFIT6) O0LOF8IV6 O0E0FFFL6 | TOFFEEL SELFPE 0000 F00°00T | 6T8F 6199 9667 F G768 SE0FST6 | 09CFIT08 G677 FI199G 990 F¥0'66 | PIS F I
OFOFLE0 EOOFSI0 €00FTE0 | IFOFLLI0 ELOFOL0 000F000 | OFOFEET 900F8I0 00FOE0 | 6I0F 690 000F000 200FE00 | PRFULT 1 no beoqumuig ps-es
9LTFC86S 000FLL86 690F8LG6 | TOUOFIL09 OFGTFO09LL 000 F0000T | 99T FLI6L 6S06F 9968 0 TFTE8 | IUEF 0066 IOV FSF6E 0000 F0000T | P FYUJL ’
660F08L6 €00F6V66 COOFRLGE6 | STOFIFS6 FEOFCE66 000 F0000T | LEOFFE86 G80OFO0V66 CO0FLIG66 | LIOFOLG66 9V0FTE66 T00FL6G6 | Prs Foov
LOVFOLVR 9R0FFOV6 GUOFEVLE | 98TFIVG8 TILFG6E8 000F 00000 | 0V9FO6F9 9RTFEL06 SYTFIFI6 | CTOFIFCL Crer FI8es CO0FI886 | PIsF 14
LE0F650 SOOFEF0 LOOFIE0 | LEOFFO0 €I0OF600 000F000 | 9COFOFT FOOFIZ0 900FGE0 | 9EOFIC0 SIOFI00 C00FEO0 |\ PEFULL o oue ogsse b
CETFIGES 000FLL86 CLOF 6966 | 00€FOST6 9VSTFO09LL 000 F 00001 | €591 F298L 80T FE€6'88 S8OFE6'86 | ITEF 0066 9TV F SO0 000 F 00001 | PIs FUJL v
8E0FGLY6 S00F €466 CO0F8LG6 | SCOFSIG6 €L0OFIZ66 000F0000T | LEOFITYE OTOFLI66 LOOF0966 | €E0FG0G6 SSOFSLG6 T00FL6G6 | PrsF ooy
99T F G698 EPTFORLE6 STOFFVL6 | 08€F 906 €TLFC098 EUOFP666 | GTLFV6GY TOUSFIE68 6LLFO068 | 86FFFYLL T9EFT06C 990F 6566 | PIsF LA
€0F6E0 VIOFIFO - Z00FEE0 | 8OOFO0 ELOFSO0 L00F000 | TFOFIT 200FO0C0 9UOFSEO | FTOFELO BLOF0 200FL00 | PEFULL oo oqmmiy s
86'TF88EY 86'9OF 9496 00°0F 0000T | 669 F G2'€6 9P'GTF092LL 0000 F00°00T | 92FT F6F'6L LOTLFGI98 GEGTFI6€6 | 000 F 00001 TEEEFT6LL 000 F 007001 | P F Yd.L
8T'0F 9686 9TOFLY66 CO0OFSLG6 | F&OFLE66 €C0FIT66 T00F0000T | LEOFEL86 9L0F6E66 CC0FO0I66 | €C0OFSI66 SPOFI066 T00F 6666 | PrsF oy
90°¢ FLLOL GO0EFGE06 9TOFOILL6 | GTCF6V99 8COVFCEIS 9T0OF6L86 | ITLFCL9L LUTFF0L8 OT0F G996 | 968 FL0O0L SPTFSOTI6 FHOFLELE | PISFIA
STOFCE0 FIOFIFO €00FC0 | 9TOF6T0 CTOFEL0 €00FITO | TEOFGIT 8UOFOT0 T00FLZO | LE0FEET €T0FTLO E00FO0T0 | PEFULT o e somssery 65
8LYFV6LG TOTEF 0006 690FSLG6 | L&LFGLTG 9T FO0008 6£0FER66 | CECIFSLIL 9TTFF 0008 000FGL86 | 60ZIFEUTL 000 F0000T 6L0F¥6'86 | PIS F YL ’
GTOFT086 LTUTFOT66 TO0OFSLG6 | €C0OF8EL6 CITFO6I66 TOOFVRG66 | PSOFISLE 09TF G066 T00FG6I66 | €LOFFTL6 ETOFO0E66 FOOFILGE | PrsF ooy
0CEF 9869 SGCOFOSTV6 CCOFSIVLE | GEOFEO8Y TTOFSEE6 LUOFCIS6 | €LOFELTL LEOFOGL6 9C0F 1996 | 2OGF 6869 SUEFEIT6 9L0FCTL6 | PIsF 1A
TOFSF0 200FLFO €00FEZ0 | EOF6E0 T00F620 Z00FLI0 | ZZOFFET - E0COFIZ0 FOOFOL0 | SEOFOFT 9T0FL00 €00F0T0 | PEFULT or puoqnmy ss
S0TF€96S 000F 00001 0S0F 1666 | EF9FTIFE 000 F 00001 6E0FC66 | 62 TTF0LGL 000F 00001 99°0F 866 | 008 F&G69 000 F0000T SG0FLESG | PIS FUJL i
980 F L8L6 CO0FGG66 COOFRLGE6 | OVOFTYL6 TO0OFCLG6 TOOFESG6 | IS0FCIL6 €00F 0866 €00FRIG6 | SPOFSLL6 SCOFGEG6 €00FGLGE | PisF ooy
ILTFGY68 GEOF66T6 OTOFSES6 | LETFO6S€6 6C0FGEG6 IT0OFSY86 | €6GFLV6L SGVOFETL6 O0C0OFF996 | S6CFIGTL O0STFEGIT6 VEOFIULE | P F I
IE0F 660 POOFCHO T00FFI0 | FOOFEEO FOOFLEO T00FFI0 | IFOFIET JOOFFE0 L00FIE0 | SOFS0T CIOFEY0 €OOFHTO | P FULL L hon cue sogisserd 7S
9T'0F €666 00°0F 00001 00°0F 00°00T | 09°C F 86 860 F69°66 620F 1666 | 996 F2r'16 000 F 00001 6S°0F 0966 | STTFISTS 000 F0000T 990 F 066 | PIS FUJL -
0€0F G066 FOOF 9966 TO0OF 9866 | TTOFOVG6 CO0OFEL66 TOOFISG6 | LGOFISL6 FOOFLL66 COOF6966 | 2€0FGIL6 TTOFGEG6 €O0FVLGE | PisF ooy
I0EFEV68 FHOFILT6 LEOFSIS6 | 960F I7°€6 LE0F 0966 SGTOFCERE | 9€LFI8CTL TS0FL6'96 FEOFLYO6 | 667 FOV0L GVIFe8e6 9IP0FOLLE | PIsF I
EPOFCOT VOOFE0 €00FEI0 | 600FEE0 200FST0 c00FCI0 | TEOF LG CO0FI0 E00FLEO | LFOFIET ELOFLEO0 VOOFOTO0 | PEFULL oo beoqmmiy s
00°0 F00°00T 00°0F 00°00T 69°0F8L66 | P& FGEE6 000F 00000 6£0FER66 | 8G9F 0668 000F 00001 6£0FI866 | 0FGFe96L 000F0000L T90F0466 | PISFYdL ’
WOFT066 VOOFFI66 €O0FIRG66 | 600F6£66 TO0FEL66 TOOFF66 |00TFI696 FOOFGL66 COOFG6966 | ISOFI696 EL0OFGH66 TVOOFELGC6 | PIsFoy
LLUTF G008 SFOFCIG6 SPOFGYL6 | 99CFEL98 O0T0FEIG6 ETOFEVS6 | 68ECF08L CrIFTTL6 LEOFGY96 | €4GFSC8) L&OF6LT6 FEOFITL6 | Prs F LA
6U0F290 SOOFVI0 €00FSI0 | EE0F6L0 100FS0 200FCL0 | 8EOFILT 100F0E0 E00FST0 | OFOFTYL 800FEY0 VOOFIE0 | PR FULL | ho guey sogssery 1§
86'TFIE98 0TOFV6'66 90TFGI66 | €& TFI068 000F 00001 SHOFGEE6 | ¥96FOULS FLTFEI66 CrOF G886 | P& LFGE69 000 F 00001 L90FO0886 | PISF YL ’
LUOFTIR86 FOOFRGG6 FOOFGLG6 | 060OFFL86 TO0FEL66 T00FEI66 | IE0FSLLE TIOFLLG6 TOOFSYGE | cG0OFLOL6 L0OFIFG6 €O0FCLG6 | PIs FOV
0CTFI9L8 VOOFITUGE SGEOFO0SLE | I6TFO69L8 GOOFSES6 OUOFENS6 | 1CGFIL0S CHIFILL6 FCOFIGI6 | 8TOFG660L 90TFO6T6 9F0OFFOL6 | PIsFId
LU0FEE0 000FF0 200F 020 | 0T0F0L0 T00FST0 ZOOFELO | GEOFFET 000F 020 200F 80 | 680FCCT G00F GO0 E00Fe0 | PRFULD |nore booqnmyy 18
EFTF VYL 000F 00001 C60F9S66 | IFTFIZ68 000F 00001 SVOFCH66 | 89LFCL6S TLCFEI66 STOFGLRE | GE6FI6CL 000 F 00001 660 F€IS6 | PIs FUJL ’
6T0FL686 000F 8366 €00FG6L66 | 0T0FV886 T00FEL66 TO0FCSG6 | 050F 9086 TT0OF8L66 CO0FRIG6 | 2GOFG6LL6 G00OFLEGE TOOFELGCE | PisF ooy
Ted07 ‘Pod RLETS) 1e20] ‘Pod R Ted0] ‘Pod RLETS) 1es0] ‘Pod “Jua))

¢ feqq v feq ¢ feq ¢ feq

o8

Appendix B

Bibliography

Check Point. Check Point Research: Third quarter of
2022 reveals increase in cyberattacks and unexpected de-
velopments in global trends - Check Point Software —

blog.checkpoint.com. https://blog.checkpoint.com/2022/10/26/
third-quarter-of-2022-reveals-increase-in-cyberattacks/#: |
~:text=Global’,20attacks’,20increased’,20by%2028, organizationy,|
|20worldwide%20reached’%20over%201%2C130} 2022. [Accessed 08-Jan-
2023].

Steve Morgan. Cybercrime To Cost The World
$10.5 Trillion Annually By 2025 — cybersecurityven-
tures.com. https://cybersecurityventures.com/
hackerpocalypse-cybercrime-report-2016/, 2020. [Accessed
08-Jan-2023].

Valerian Rey, Pedro Miguel Sanchez Sanchez, Alberto Huertas Celdran,

and Gérome Bovet. Federated learning for malware detection in IoT
devices. Computer Networks, 204, 2022. Publisher: Elsevier B.V.

Chandra Thapa, Kallol Krishna Karmakar, Alberto Huertas Celdran,
Seyit Camtepe, Vijay Varadharajan, and Surya Nepal. FedDICE: A ran-
somware spread detection in a distributed integrated clinical environment
using federated learning and SDN based mitigation. In International Con-

ference on Heterogeneous Networking for Quality, Reliability, Security
and Robustness, 2021.

W3Techs. Historical yearly trends in the usage statistics of site elements
for websites, January 2023 — w3techs.com. https://w3techs.com/
‘technologies/history_overview/site_element/all/y, 2023. [Ac-
cessed 08-Jan-2023].

Andre Wichmann and Elmar Gerhards-Padilla. Using infection markers
as a vaccine against malware attacks. In 2012 IEEFE International

99

https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/#:~:text=Global%20attacks%20increased%20by%2028,organization%20worldwide%20reached%20over%201%2C130
https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/#:~:text=Global%20attacks%20increased%20by%2028,organization%20worldwide%20reached%20over%201%2C130
https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/#:~:text=Global%20attacks%20increased%20by%2028,organization%20worldwide%20reached%20over%201%2C130
https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/#:~:text=Global%20attacks%20increased%20by%2028,organization%20worldwide%20reached%20over%201%2C130
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://w3techs.com/technologies/history_overview/site_element/all/y
https://w3techs.com/technologies/history_overview/site_element/all/y

B. Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

Conference on Green Computing and Communications, pages 737-742,
2012.

Pavel Janata, Maria Rigaki, and Sebastian Garcia. Ctu-50-feel. https
//zenodo.org/record/7515406/ Jan 2023.

Sebastian Garcia, Veronica Valeros, et al. Stratosphere research labo-
ratory. https://www.stratosphereips.org/. Cybersecurity group of
the Artificial Intelligence Centre, Faculty of Electrical Engineering at the
Czech Technical University. Last Accessed: 2023-01-07.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
Adaptive computation and machine learning. The MIT Press, 2016.

Zhi-Hua Zhou. A brief introduction to weakly supervised learning.
National Science Review, 5(1):44-53, 2018.

David M. W. Powers. Evaluation: from precision, recall and f-measure
to ROC, informedness, markedness and correlation. Journal of Machine
Learning Technologies, 2(1):37-63, 2021.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn-
ing representations by back-propagating errors. Nature, 323(6088):533—
536, 1986. Number: 6088 Publisher: Nature Publishing Group.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes.
preprint arXi:1312.6114, 2014.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Seth Hampson.
Communication-efficient learning of deep networks from decentralized
data. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, pages 1273-1282, 2017.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
et al. Towards federated learning at scale: System design. In A. Talwalkar,
V. Smith, and M. Zaharia, editors, Proceedings of Machine Learning and
Systems, volume 1, pages 374-388, 2019.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei
Li, Nicholas Kong, Daniel Ramage, and Frangoise Beaufays. Applied
federated learning: Improving google keyboard query suggestions, 2018.

Chen Zhu, Zheng Xu, Mingqging Chen, Jakub Kone¢ny, Andrew Hard,
and Tom Goldstein. Diurnal or nocturnal? federated learning of multi-
branch networks from periodically shifting distributions. In International
Conference on Learning Representations, 2022.

60

https://zenodo.org/record/7515406
https://zenodo.org/record/7515406
https://www.stratosphereips.org/

[19]

[21]

[22]

[23]

[24]

[26]

[27]

[28]

[29]

B. Bibliography

Adria Gascén, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack
Doerner, Samee Zahur, and David Evans. Privacy-preserving distributed
linear regression on high-dimensional data. In Proceedings on Privacy
Enhancing Technologies, volume 2017, pages 345-364, 2017.

Ruei-Hau Hsu, Yi-Cheng Wang, Chun-I Fan, Bo Sun, Tao Ban, Takeshi
Takahashi, Ting-Wei Wu, and Shang-Wei Kao. A privacy-preserving
federated learning system for android malware detection based on edge
computing. In 2020 15th Asia Joint Conference on Information Security

(AsiaJCIS), pages 128-136, 2020.

Qinbin Li, Zeyi Wen, and Bingsheng He. Practical federated gradient
boosting decision trees. In AAAI-20, 2019. Number: arXiv:1911.04206.

Yang Liu, Zhuo Ma, Ximeng Liu, Zhuzhu Wang, Siqi Ma, and Ken Ren.
Revocable federated learning: A benchmark of federated forest. arXiv
preprint arXiv:1911.03242, 2019. Number: arXiv:1911.03242.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal
Jozefowicz. Revisiting distributed synchronous sgd. arXiv preprint
arXiv:1604.00981, 2016.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith
Rush, Jakub Koneény, Sanjiv Kumar, and H. Brendan McMahan. Adap-
tive federated optimization. In 2021 The International Conference on
Learning Representations, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. Federated optimization in heterogeneous
networks. In Sizth Conference on Machine Learning and Systems. arXiv,
2020.

Kaan Ozkara, Navjot Singh, Deepesh Data, and Suhas Diggavi. QuPeL:
Quantized personalization with applications to federated learning. In
Advances in Neural Information Processing Systems, 2021.

Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated
learning by local adaptation. arXiv preprint arXiv:2002.04758 [cs, stat],
2022.

Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner,
Francoise Beaufays, and Daniel Ramage. Federated evaluation of on-
device personalization. arXiv:1910.10252 [cs, stat], 2019.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized
federated learning with theoretical guarantees: A model-agnostic meta-
learning approach. In Advances in Neural Information Processing Sys-
tems, volume 33, pages 3557-3568. Curran Associates, Inc., 2020.

61

B. Bibliography

[30]

[31]

32]

[38]

[39]

[40]

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70, 2017.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Tal-
walkar, and Virginia Smith. On the convergence of federated optimization
in heterogeneous networks. CoRR, abs/1812.06127, 2018.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent
Poor. Tackling the objective inconsistency problem in heterogeneous fed-

erated optimization. In Neural Information Processing Systems, volume
abs/2007.07481, 2020.

Irem Ergun, Hasin Us Sami, and Basak Guler. Sparsified secure aggrega-
tion for privacy-preserving federated learning. Computers and Security,
2021.

Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jef-
frey Voas. Ddos in the iot: Mirai and other botnets. Computer, 50(7):80—
84, 2017.

Siddharth Sharma. Mirai code re-use in Gafgyt. https://www.uptycs}
com/blog/mirai-code-re-use-in-gafgyt|

Viraaji Mothukuri, Prachi Khare, Reza M. Parizi, Seyedamin Pouriyeh,
Ali Dehghantanha, and Gautam Srivastava. Federated-learning-based
anomaly detection for [oT security attacks. IEEE Internet of Things
Journal, 9(4):2545-2554, 2022. Conference Name: IEEE Internet of
Things Journal.

Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen
Kang, and M. Shamim Hossain. Deep anomaly detection for time-series
data in industrial IoT: A communication-efficient on-device federated
learning approach. IEEE Internet of Things Journal, 8(8):6348-6358,
2021.

Gustavo de Carvalho Bertoli, Lourengo Alves Pereira Junior, and Osamu
Saotome. Improving detection of scanning attacks on heterogeneous
networks with federated learning. ACM SIGMETRICS Performance
Evaluation Review, 49(4):118-123, 2022.

Yuwei Sun, Hideya Ochiai, and Hiroshi Esaki. Intrusion detection with
segmented federated learning for large-scale multiple LANs. In 2020
International Joint Conference on Neural Networks (IJCNN), pages 1-8,
2020. ISSN: 2161-4407.

Geet Shingi, Harsh Saglani, and Preeti Jain. Segmented federated
learning for adaptive intrusion detection system. arXiv preprint
arXiw:2107.00881, 2021.

62

https://www.uptycs.com/blog/mirai-code-re-use-in-gafgyt
https://www.uptycs.com/blog/mirai-code-re-use-in-gafgyt

[41]

[43]

[44]

B. Bibliography

Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, and Marius Port-
mann. Cyber threat intelligence sharing scheme based on federated
learning for network intrusion detection. Journal of Network and Sys-
tems Management, 31(1):1-23, 2023.

Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf
Shabtai, Dominik Breitenbacher, and Yuval Elovici. N-baiot—network-
based detection of iot botnet attacks using deep autoencoders. IEEFE
Pervasive Computing, 17(3):12-22, 2018.

Frantisek Strasdk. Detection of HI'TPS malware traffic. Bachelor’s
thesis, Czech Technical University Prague, Czech Republic, 2017.

Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau.
Autoencoder-based network anomaly detection. In 2018 Wireless
Telecommunications Symposium (WTS), pages 1-5, 2018.

SungJin Kim, WooYeon Jo, and Taeshik Shon. APAD: Autoencoder-
based payload anomaly detection for industrial IoE. Applied Soft Com-
puting, 88:106017, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, et al. Advances and Open Problems
in Federated Learning. Now Publishers, Inc., 2021.

Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan
Parcollet, and Nicholas D Lane. Flower: A friendly federated learning
research framework. arXiv preprint arXiv:2007.14390, 2020.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

Frangois Chollet et al. Keras. https://keras.io, 2015.

Aashish Sharma, Christian Kreibich, Fatema Bannat, Johanna Amann,
Keith Lehigh, et al. Zeek: An open source network security monitoring
tool. https://zeek.org/l Last Accessed: 2023-01-07.

Sebastian Garcia. Netflow Labeler: A configurable rule-based labeling
tool for network flow files.

63

https://keras.io
https://zeek.org/

	Introduction
	Theoretical Background
	Supervised and Unsupervised Learning
	Performance Measures
	Feed-Forward Neural Networks (FF-NN)
	Training of Neural Network Models
	Autoencoders
	Federated Learning
	Cross-device and Cross-silo Federated Learning
	Horizontal and Vertical Federated Learning
	Federated Optimization
	Challenges of Federated Learning

	Previous Work
	Methodology
	Proposed Solution
	Solution Architecture
	Unsupervised Approach
	Supervised Approach
	Assumptions and Limitations
	Learning Algorithm

	Implementation
	Experiment Setup
	Federated Training Process
	Metrics
	Comparison to Other Settings

	Dataset
	Benign Traffic
	Malware Traffic
	Feature Extraction
	Dataset Mixing

	Experiments
	Unsupervised Experiments
	Experiment A1: Reusing the model on the next day
	Experiment A2: New model on each day
	Experiments A3: Effect of fewer participants

	Supervised Experiments
	Experiment S1: CTU-50-FEEL dataset and reusing the model
	Experiment S2: Only training the model using clients with malicious data
	Experiment S3: New model on each day
	Experiment S4: Using the CTU-50-FEEL-less-malware dataset
	Experiment S3+S4: New model on each day, CTU-50-FEEL-less-malware dataset

	Discussion
	Conclusion
	Future Work

	Detailed Experiment Results
	Detailed Anomaly Detection Results
	Detailed Classification Results

	Bibliography

