
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

K-means clustering algorithm on parallel platforms

Emil Eyvazov

doc. Ing. Ivan Šimeček, Ph.D.

Informatics

Computer Science

Department of Theoretical Computer Science

until the end of summer semester 2023/2024

Instructions

1) Study basic K-means clustering algorithm [1] and its improved variants with a triangle

inequality [2, 3].

2) Design and implement multithreaded versions of algorithms using OpenMP

technology.

3) Design and Implement parallelized versions of algorithms on CUDA.

4) Compare the performance of algorithms from 2) and 3) with python sklearn

implementation.

5) Evaluate the quality of clusters obtained from presented algorithms using different

clustering scores.

[1] S. Lloyd, "Least squares quantization in PCM," in IEEE Transactions on Information

Theory, vol. 28, no. 2, pp. 129-137, March 1982, doi: 10.1109/TIT.1982.1056489.

[2] Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings of the

Twentieth International Conference on International Conference on Machine Learning,

ICML 2003, pp. 147–153. AAAI Press (2003)

[3] Hamerly, Greg. (2010). Making k-means Even Faster.. Proceedings of the 2010 SIAM

International Conference on Data Mining. 130-140. 10.1137/1.9781611972801.12.

[4] sklearn library, https://scikit-learn.org/

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 29 September 2022 in Prague.

Bachelor’s thesis

K-MEANS CLUSTERING
ALGORITHM ON
PARALLEL PLATFORMS

Emil Eyvazov

Faculty of Information Technology
Department of computer science
Supervisor: doc. Ing. Ivan Šimeček, Ph.D.
January 3, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Emil Eyvazov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Eyvazov Emil. K-means clustering algorithm on parallel platforms. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 Clustering and K-means algorithm in general 3
1.1 Overview of K-means algorithm . 3
1.2 Triangle inequality heuristics . 3

1.2.1 Elkan’s triangle inequality . 3
1.2.2 Hamerly’s improvement . 5
1.2.3 Drawbacks of triangle inequality heuristics 6

1.3 Metrics for measuring quality of clusters . 6
1.4 Initialization of centroids with K-means++ . 6

2 Parallel platforms 9
2.1 OpenMP technology . 9

2.1.1 Multithreaded parallelization methods . 10
2.1.2 Reduction . 10

2.2 CUDA technology . 11
2.2.1 GPU architecture . 11
2.2.2 CUDA programming model . 13

3 Implementation and parallelization 15
3.1 Sequential implementations . 15

3.1.1 Elkan’s heuristic . 16
3.1.2 Hamerly’s heuristic . 18

3.2 OpenMP implementations . 19
3.3 CUDA implementations . 20

3.3.1 Implementation in global memory . 20
3.3.2 Implementation in shared memory . 26

3.4 Sklearn implementation . 34

4 Testing and evaluation of results 37
4.1 Solvers . 37
4.2 Types of tests . 37
4.3 Testing environment . 38
4.4 Testing sample and time measurement . 38
4.5 Testing with double precision values . 38
4.6 Testing with single precision values . 41

iii

iv Contents

4.7 The scores . 43

5 Conclusion 45

A Definition of variables, arrays, and structures used in CUDA kernels 47
A.1 Variables and arrays . 47
A.2 Structures . 48
A.3 Kernels . 49

Contents of enclosed CD 53

List of Figures

1 Distances between point and clusters . 4
2 K-means++ by example . 7

3 OpenMP fork-join model (source: LLNL HPC-tutorials) 9
4 Streaming Multiprocessor Architecture (source: Nvidia) 12

5 Parallel reduction to find minimum . 24
6 Reduction in shared memory . 29

7 Time of execution of sequential and OpenMP solvers with double precision values 39
8 Time of execution of CUDA solvers in global memory with double precision values 40
9 Time of execution of sequential and OpenMP solvers with single precision values 41
10 Time of execution of CUDA solvers in global memory with single precision values 42
11 Histogram of Silhouette scores . 43
12 Histogram of Calinski-Harabasz scores . 44
13 Histogram of Davies-Bouldin scores . 44

List of Tables

List of code listings

2.1 Parallel region . 9
2.2 Data parallelism . 10
2.3 OpenMP reduction . 11
2.4 Example of kernel configuration . 13
2.5 Example kernel . 14
3.1 Main algorithm loop . 15
3.2 Function for finding the closest cluster to each point 16
3.3 Function for finding the closest cluster to each point 16
3.4 Updating upper and lower bounds for Elkan’s heuristic 17
3.5 Finding distances between clusters’ centroids . 18
3.6 Updating upper and lower bounds for Hamerly’s heuristics 18

v

https://hpc-tutorials.llnl.gov/openmp/programming_model/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

vi List of code listings

3.7 Finding closest and second closest clusters for Hamerly’s heuristics 19
3.8 Addition of parallel loop for find closest cluster function 20
3.9 Addition of parallel loop for find cluster average function 20
3.10 Kernel for finding the closest cluster to each point in global memory 21
3.11 Kernel for updating the bounds of each point for Elkan’s heuristic in global memory 22
3.12 Kernel for updating the bounds of each point for Hamerly’s heuristic in global

memory . 23
3.13 Parallel reduction to find minimum in global memory(host code) 24
3.14 Parallel reduction to find minimum in global memory(device code) 25
3.15 Parallel reduction to find average in global memory 26
3.16 Kernel for finding the closest cluster to each point in shared memory 28
3.17 Parallel reduction to find the closest cluster in shared memory(host code) 30
3.18 Initialization of shared memory in kernel for reducing the obtained closest clusters

to each point in each chunk . 31
3.19 Blockwise parallel reduction in kernel for reducing the obtained closest clusters to

each point in each chunk . 33
3.20 Writing back the results to the global memory in kernel for reducing the obtained

closest clusters to each point in each chunk . 33
3.21 Configuration of Sklearn implementation . 35
A.1 Kernel for shifting data from original array to temporary array 49
A.2 Kernel for shifting data from temporary array to original array 50

I would like to thank my supervisor doc. Ing. Ivan Šimeček, Ph.D.
for helping me with thesis and especially with the subject NIE-GPU
that I took, which helped me a lot with understanding NVIDIA
CUDA technology and efficient ways of using it.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on January 3, 2023 .

viii

Abstract

Implementation of K-means clustering algorithm on multithreaded platform using OpenMP and
on GPU using CUDA technology. Comparison of time of execution of CUDA implementation
with multithreaded and sequential implementations on CPU.

Keywords K-means clustering, OpenMP, GPU, CUDA shared memory, Elkan’s and Hamerly’s
triangle inequality

Abstrakt

Implementace shlukovaćıho algoritmu K-means na v́ıcevláknové platformě pomoćı OpenMP a na
GPU pomoćı technologie CUDA. Porovnáńı doby prováděńı implementace CUDA s v́ıcevláknovými
a sekvenčńımi implementacemi na CPU.

Kĺıčová slova K-means shlukováńı, OpenMP, GPU, sd́ılená pamět’ CUDA, Elkanova a Hamer-
lyho trojúhelńıková nerovnost

ix

List of abbreviations

API Application Programming Interface
CPU Central Processing Unit

CUDA Compute Unified Device Architecure
GPGPU General-Purpose Graphics Processing Units

GPU Graphics Processing Unit
OpenMP Open Multi-Processing

SM Streaming Multiprocessor

x

Introduction

The goal of thesis is to implement K-means clustering algorithm using parallelization technolo-
gies like OpenMP (Open Multi-Processing) [1] on CPU (Central Processing Unit) and CUDA
(Compute Unified Device Architecture) [2] on GPU (Graphics Processing Unit), and compare
their performance with sequential algorithm on CPU.

K-means clustering [3] is one of the most important algorithms in Machine Learning. For
that reason, it is essential to have an efficient algorithm that would be able to assign a cluster
to thousands of points.

The basic algorithm consists of finding the distance between each point and each cluster,
assigning each point to the closest cluster, and finding an average of coordinates of all points in
a given cluster, further assigning the value of that average of coordinates as a centroid of that
cluster.

The implementations of K-means clustering will also include triangle inequality heuristics to
reduce the number of needless distance calculations. As K-means clustering algorithm consists
of multiple iterations and each iteration consists of finding the closest cluster to each point,
which means that Euclidean distances [4] would have to be calculated, some of those distance
calculations could be avoided, as in most cases, points don’t tend to often change the cluster to
which they are assigned to.

Two variations of triangle inequality heuristics will be covered: Charles Elkan’s [5] and Greg
Hamerly’s [6]. Charles Elkan being the first to suggest the usage of triangle inequality between
point and two clusters to determine if the current point should change the cluster that it is
assigned to. Greg Hamerly improved on Charles Elkan’s idea to use triangle inequality on points
and clusters and proposed an algorithm that will usually be faster and use much less memory
than original Elkan’s implementation.

Besides having an efficient sequential algorithm, proper parallelization of given algorithm is
as much important. For parallelization purposes, multithreading using OpenMP and NVIDIA
CUDA GPGPU (General-Purpose Graphics Processing Units) [7] technology will be used.

To obtain better clusters, proper initialization of centroids must be achieved. The basic
algorithms will consist of selecting random points as initial centroids. As randomly selected initial
centroids could potentially lead to poor quality of final clusters, a better way of initializing those
clusters must found. One of the most famous and widely used centroids initialization algorithm
is K-means++ [8], that uses the previous centroid initializations to create a new centroid.

The rest of this thesis is organized as follows:

Chapter 1 describes the K-means algorithm and possible heuristics to speed up the algorithm.

Chapter 2 describes parallel platforms on which different solvers could be implemented.

Chapter 3 describes implementation of solvers different platform and parallelization of them.

1

2 Introduction

Chapter 4 describes testing and test results of solvers. The results include time of execution
of different solvers and Silhouette scores of K-means++ and random centroids initialization
methods.

Chapter 5 summarizes obtained testing results to discuss the solvers and their efficiency.

Chapter 1

Clustering and K-means
algorithm in general

1.1 Overview of K-means algorithm
K-means clustering is one of the essential Machine Learning algorithms that originates from signal
processing. K-means clustering algorithm separates points into K clusters. Basic algorithm
consists of following steps:

1. Initialize centers of clusters, also referred as centroids. Points are chosen as initial centroids.
Choice of those points as initial centroids is done either randomly or by particular algorithm.
Initialization of centroids is covered more in Chapter 1.4.

2. For each point, calculate distance between point’s coordinates and each cluster’s coordinates.
Assign this point to the closest cluster.

3. In case if no point has changed cluster that it is assigned to, stop the algorithm, as each point
is correctly assigned to the closest cluster.

4. For each cluster, calculate average of coordinates of all points in this cluster and assign that
obtained average as new coordinates of that cluster.

5. Repeat from step 2.

1.2 Triangle inequality heuristics
In most of the cases, clusters don’t tend to drastically change their coordinates in each iteration,
which means that points in those clusters tend to stay in those clusters. This makes most of
distance calculations for finding closest cluster to each point redundant.

1.2.1 Elkan’s triangle inequality
Charles Elkan was first to introduce triangle inequality as a way of drastically decrease the
number of distance calculations [5]. In order to decrease distance calculations, previous values
of those calculations should be used. Elkan’s method consists of finding so called upper bound
and lower bounds for each point.

3

4 Clustering and K-means algorithm in general

Upper bound of each point is a maximum possible value of distance from this point to the
cluster that it is currently assigned to. Lower bound is calculated between each point and each
cluster as a minimum possible distance to that cluster. Each point has K −1 lower bounds (lower
bound to the cluster that this point is currently assigned to is not needed). Thus, by comparing
the value of upper bound of this point to all lower bounds of it, it is possible to establish if
there is a cluster that is potentially closer to this point or not. As, if maximum possible distance
between a given point p and a cluster that it is currently assigned to ci is lower than or equal
to minimum distances to all other clusters cj : 0 ≤ j < K ∧ j ̸= i, then cluster ci is the closest
cluster to the point p and there is no need to calculate distances between point p and each cluster
cj .

Figure 1 Distances between point and clusters

Figure 1 illustrates an example of distances between a point p and two clusters ci and cj in
3 iterations of the algorithm:

1. In the first iteration, point p is assigned to cluster ci, as a distance between p and ci, i.e.
d(p, ci), is less than a distance between p and cj , i.e. d(p, cj). As p is assigned to ci, the
upper bound of point p is d(p, ci). Lower bound of point p to cluster cj is d(p, cj).

2. In the second iteration, centroid of cluster ci moved to c′
i and a centroid of cluster cj moved

to c′
j . As in this iteration, the distance between p and a cluster it is assigned to c′

i is equal to
d(p, c′

i), in order to not calculate values of distances, an approximation with an upper bound
to c′

i and a lower bound to c′
j could be used. The upper bound of p is an approximated value

of an upper bound of d(p, c′
i), which is d(p, ci) + d(ci, c′

i). Effectively, upper bound is found
via triangle inequality, as, if values d(p, ci), d(ci, c′

i), and d(p, ci) would be sides of a triangle,
triangle inequality for d(p, c′

i) would look like:

|d(p, ci) − d(ci, c′
i)| < d(p, c′

i) < d(p, ci) + d(ci, c′
i)

In the same fashion the lower bound to c′
j of p, i.e. lower bound of d(p, c′

j), is found via
triangle inequality:

|d(p, cj) − d(cj , c′
j)| < d(p, c′

j) < d(p, cj) + d(cj , c′
j)

Triangle inequality heuristics 5

thus lower bound of d(p, c′
j) is equal to d(p, cj)−d(cj , c′

j). In case if value of d(p, cj)−d(cj , c′
j)

is less than 0, the lower bound of d(p, c′
j) would be set to 0.

Finally, the values of upper bound and lower bound for p are compared:

If the value of upper bound is less than or equal to the value of lower bound, then there is
no need to calculate precise distances d(p, c′

i) and d(p, c′
j), as the maximum possible value

of d(p, c′
i) is less than or equal to the minimum possible value of d(p, c′

j) and this would
mean that c′

i is still the closest cluster to p.
In case the upper bound of p, i.e. maximum possible value of d(p, c′

i), is greater than the
lower bound to c′

j , i.e. the minimum possible value of d(p, c′
j), the precise distances would

have to be calculated.

In this iteration, upper bound turns to be less than a lower bound, so calculations of distances
d(p, c′

i) and d(p, c′
j) are not needed.

3. In the third iteration, centroids move again: c′
i → c′′

i and c′
j → c′′

j . This time, the centroids
moved a lot, which resulted in the upper bound of d(p, c′′

i) = d(p, c′
i) + d(c′

i, c′′
i), being greater

than a lower bound of d(p, c′′
j) = d(p, c′

j) − d(c′
j , c′′

j).
So, in this iteration, the precise distances d(p, c′′

i) and d(p, c′′
j) must be calculated.

Although such method removes a lot of distance calculations between points and clusters, it
adds distance calculations between clusters’ previous and current centroids. But, as there are
going to be fewer clusters than points, those additional distance calculations between centroids
do not lead to significant performance drawback.

1.2.2 Hamerly’s improvement
Although Charles Elkan’s triangle inequality served its purpose of reducing redundant distance
calculations between points and clusters, it brought additional upper and lower bounds calcu-
lations. The most significant impact being made by lower bound calculations. As lower bound
must be calculated between each point and each cluster in each iteration of algorithm, memory
bandwidth becomes an issue in platforms that are sensitive to memory addressing, e.g. CUDA.

In order to get rid of multiple lower bound calculations between each point and each cluster,
Greg Hamerly introduced his variant of triangle inequality heuristics [6]. Hamerly’s method
consists in only one upper bound and only one lower bound per point. Upper bound is calculated
as it is in Elkan’s method, but a lower bound for each point is calculated as a minimum possible
value of distance to the second closest cluster.

In Elkan’s method, the lower bound to cluster c′
j(from Figure 1) is calculated as

d(p, c′
j) = d(p, cj) − d(cj , c′

j)

but in Hamerly’s method that same equation would be

d(p, c′
j) = d(p, cj) − max(d(ck, c′

k) : 0 ≤ k < K)

So, in Hamerly’s method the lower bound of the point is found as a previous value of the
lower bound to the second closest cluster minus the value of the distance of the cluster that
moved the most.

This way we ensure that even if the second closest cluster moved the most(the calculated
value of the lower bound to that cluster is close to 0), in case if upper bound to the closest
cluster was less than or equal to the lower bound to the second closest cluster, the closest cluster
to the given point hasn’t changed and there is no need to calculate all distances between that
point and all clusters.

6 Clustering and K-means algorithm in general

1.2.3 Drawbacks of triangle inequality heuristics
The possible drawback of both Elkan’s and Hamerly’s triangle inequality heuristics consists in
extra calculations of lower and upper bounds. In the memory sensitive platforms, e.g. CUDA,
loading lower and upper bounds, and further calculations of them could take more time than
distance calculations between points and clusters. This drawback could be more significant in
Elkan’s heuristic, as Elkan’s heuristic consists in calculating lower bounds between each point
and each cluster, more data should be loaded from global memory, thus calculations of lower
bounds in each iteration takes more time.

1.3 Metrics for measuring quality of clusters
In order to calculate the quality of obtained clusters, i.e. how good clusters are separated from
each other or how dense they are, different metrics are used:

Silhouette score: the most famous method used for measuring the quality of obtained clusters
is a Silhouette score, see [9]. The Silhouette score is between -1 and 1:

Silhouette score Quality of clusters
-1 Clusters did not properly form, better clustering of given points can be achieved
0 Some clusters overlap
1 The clusters are well separated from one another

So, the closer the silhouette score to 1, the better are clusters that were formed.

Calinski-Harabasz score: also used to determine the quality of clusters [10]. The higher
Calinski-Harabasz score indicates better clustering.

Davies-Bouldin score: the last method that is used for determining the quality of clusters is
Davies-Bouldin score [11]. The lower Davies-Bouldin score indicates better clustering.

1.4 Initialization of centroids with K-means++
K-means++ is an algorithm for initial centroid initializations [8]. This algorithm is used, as it
creates sophisticated initial centroids that will eventually result in higher quality clusters.

The initial centroids obtained by K-means++ algorithm are mutually distant from each other,
thus there are no situations, when clusters are very close to each other and the points close to
them are divided in two clusters, whereas they could represent only one cluster.

To obtain mutual distance between initial centroids, K-means++ adds clusters one by one,
where each new clusters is chosen as a point with maximum distance from all the existing clusters.
The algorithm is

1. Randomly pick one point as the first centroid.

2. Find closest cluster to each point.

3. Find the farthest point from its cluster and assign it as a new centroids.

4. Repeat from step 2 as long as the required number of centroids is initialized.

Figure 2 illustrates an example K-means++ step by step with 10 points and 4 centroids that
should be initialized:

1. The first centroid is picked by random and it is point 0.

Initialization of centroids with K-means++ 7

2. The distances are calculated between the centroid 0 and all points and point 1 is the farthest,
thus it becomes the second centroid.

3. The closest cluster is calculated for each point and each point is assigned to either cluster 0
or 1. The farthest point from its cluster is chosen and it is point 2.

4. The closest cluster is again calculated for each point and now point 3 is the farthest point
from its cluster, thus it becomes the last centroid.

Figure 2 K-means++ by example

All the implementations of K-means++, i.e. sequential, OpenMP, and CUDA, are very
similar to the original K-means clustering algorithm, as K-means++ algorithm consists of as
many iteration as many centroids are needed. Each iteration, simply computes closest cluster to
each point, finds the farthest point from all clusters, and makes that point a new centroid.

8 Clustering and K-means algorithm in general

Chapter 2

Parallel platforms

2.1 OpenMP technology
OpenMP (Open Multi-Processing) [1] is an API for programming of multithreaded applications
on shared memory. OpenMP is used for parallelism within a node of multiple cores that share
(virtual) memory. OpenMP is a huge library, but only the parts important to this thesis will be
covered.

OpenMP programming model is based upon fork-join mechanism, when a master thread
creates a parallel region for slave threads to execute that region of code concurrently, as
illustrated on Figure 3.

Figure 3 OpenMP fork-join model (source: LLNL HPC-tutorials)

Getting into parallel region is achieved via OpenMP directives, mainly being

Code listing 2.1 Parallel region
1 int i, j;
2 omp_set_num_threads(num_threads);
3 #pragma omp parallel private(i) shared(j)
4 {
5 // parallel region
6 }

Such a directive would create a num threads number of threads in a thread pool that would
be used in future parallel regions. Each thread will get its own copy of variable i and the changes
made to that variable won’t affect the copy of it in master thread, whereas, variable j will be
shared among threads, thus modifications done to it via one thread would be visible to other
threads including the master thread.

9

https://hpc-tutorials.llnl.gov/openmp/programming_model/

10 Parallel platforms

2.1.1 Multithreaded parallelization methods
There are two main parallelization methods in OpenMP: task and data parallelisms. Task
parallelism is achieved via task directive, but it won’t be further covered, as OpenMP imple-
mentations in this thesis don’t use task parallelism.

Data parallelism is a parallelization method that is achived via splitting the data, e.g. array,
into separate disjoint regions that would be processed by concurrent threads. It is achived via
parallel for directive:

Code listing 2.2 Data parallelism
1 int * array;
2 int arr_size, chunk_size;
3 // initialization of the array
4

5 omp_set_num_threads(num_threads);
6 #pragma omp parallel
7 {
8 #pragma omp for schedule(static, chunk_size)
9 for(int i = 0; i < arr_size; ++i) {

10 // some operations on array
11 }
12 }

Each thread gets its iterations that are separated from other threads’ iterations by chunks.
Array of size arr size is divided into chunks of size chunk size and each chunk is statically
assigned to threads, e.g. with 3 slave threads, arr size = 14, and chunk size = 3, the chunks
would be assigned to threads accordingly:

1. Iterations 0–2 will be processed by thread 0.

2. Iterations 3–5 will be processed by thread 1.

3. Iterations 6–8 will be processed by thread 2.

4. Iterations 9–11 will be processed by thread 0.

5. Iterations 12–13 will be processed by thread 1.

There are other scheduling mechanisms like dynamic and guided , where chunks could
be assigned to threads according to the threads being free or busy at that moment, but those
scheduling mechanisms won’t be covered further.

It is possible to omit chunk size, in that case, the iterations are going to be equally distributed
into chunks for each thread.

2.1.2 Reduction
There are several mechanisms to accumulate results from all threads into one result in the master
thread. One of the widely used mechanisms is parallel reduction, which is implemented in
OpenMP to be convenient for usage. Reduction is achieved via reduction(op:variable) ,
where op is an operation that should be done accumulatively on each thread’s copy of variable.
There are different possible reduction operations like: +, -, * and so on.

Listing 2.3 illustrates an example of a reduction with 2 slave threads and chunk size = 2.
As there are 5 iterations, they will be split into chunks:

1. Iterations 0–1 will be processed by thread 0.

2. Iterations 2–3 will be processed by thread 1.

CUDA technology 11

3. Iteration 4 will be processed by thread 0.

Code listing 2.3 OpenMP reduction
1 int sum = 0, chunk_size = 2;
2 omp_set_num_threads(2);
3 #pragma omp parallel
4 {
5 #pragma omp for schedule(static, chunk_size) reduction(+:sum)
6 for(int i = 0; i < 5; ++i)
7 sum += 10;
8 }

Which means, that thread 0 will get 3 iterations, so variable sum will be increased 3 times,
so at the end sum = 30. The thread 1 will get 2 iterations, so the value will be sum = 20.
Eventually, the values of sum, from both slave threads, will be accumulated to obtain the value
50. So, master thread will get the value of sum = 50.

2.2 CUDA technology

CUDA [2] is a parallel computing platform and an API for GPGPU that is developed by NVIDIA.
As CPU and GPU work together to efficiently compute different tasks in a process called co-
processing, an efficient and easy to use technology is needed to enable such a paradigm. Such
a technology is CUDA that makes co-processing easier between CPU that is referred to as host
and GPU that is referred to as device.

2.2.1 GPU architecture
GPU is a special device with its architecture being very different from CPU’s architecture. CPU
has multiple powerful cores with very high clock speed and a rich instruction set architecture.
On the other hand, GPU’s cores are much simpler and slower, but this allows the manufacturers
to utilize many more cores on GPU rather than on CPU, which means that many more threads
will run concurrently on GPU compared to CPU. This gives a GPU a capability to compute
many simple computations concurrently, which is very useful for an application with abundance
of mathematical computations. GPU consists of multiple SMs (Streaming Multiprocessors that)
have a common L2 cache and one global memory.

2.2.1.1 Thread groupings

Figure 4 illustrates an architecture of one Streaming Multiprocessor of Kepler GPU. Each Stream-
ing Multiprocessor consists of multiple Streaming Processors, which are essentially cores where
threads are going to run on. Threads are running concurrently in groups which are called
warps. Each warp consists of 32 threads. GPU follows SIMT (Single Instruction Multiple
Threads) model, which means that each thread in a warp executes the same instruction at a
time. This could bring to branch divergence, when a branch, based on its condition, could
cause threads, that don’t satisfy the branch condition, wait until other threads, that satisfy the
branch condition, execute the body of the branch. Such divergence could bring to serialization
of the code that brings to the decrease of performance. Execution of warps and their scheduling
is done via warp scheduler.

Multiple warps form a block, blocks together form a grid. The number of threads in one
block is limited to 1024.

12 Parallel platforms

Figure 4 Streaming Multiprocessor Architecture (source: Nvidia)

2.2.1.2 Coalesced memory accesses
One of the main performance obstacles of parallel and distributed systems is memory bandwidth,
as a lot of consecutive memory accesses could bring up to decrease in performance. CUDA
enables coalescing of consecutive memory accesses into one, which could prevent the drastic
drop in performance due to memory bandwidth. As the accessed data is transferred from global
memory into cache, it is crucial for consecutive threads to access consecutive memory addresses.

2.2.1.3 Shared memory
Each Streaming Multiprocessor has its own L1 cache which is shared among all the cores of
that SM. L1 cache can be partially dedicated to a programmer as a so called shared memory.
Shared memory is limited and, if allocated, each block gets its own memory address from shared
memory. Shared memory can be upto 100 times faster than global memory, so it can serve as a
significant performance boost if used appropriately.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

CUDA technology 13

2.2.1.4 Double precision units
Each core consists of ALU (Arithmetic Logic Unit) and FPU (Floating Point Unit), so 32-bit
operations can be quickly executed via each core. The situation is different with double precision
numbers, as GPUs were initially created for graphics and gaming, 64-bit calculations weren’t
a necessity, so old versions of GPUs didn’t support 64-bit double precision calculations. With
occurence of GPGPU in 2008, a need for better precision became a necessity, thus a double
precision units were added to each Streaming Multiprocessor, but as there were fewer double
precision units compared to single precision units, the performance of calculations with double
precision is significantly lower than of single precision calculations. Figure 4 illustrates double
precision units as DP Unit.

2.2.2 CUDA programming model
To efficiently utilize NVIDIA GPUs, CUDA toolkit [12] is used, which serves as an extension
of C++. The main part of CUDA toolkit is a CUDA kernel, which represents an extension of
standard C++ function that is recognized by NVIDIA NVCC compiler, that will eventually run
on a device.

In order to run a kernel, a configuration should be given. Configuration of the kernel is:

1. Block configuration: number of threads in a block. Could be given up to 3 dimensions: x, y,
z.

2. Grid configuration: number of blocks per grid. Also could be given up to 3 dimensions.

3. Size of shared memory per block(in bytes).

4. Stream that will run this kernel. Won’t be further covered, as all kernels in this thesis are
running on a default stream.

To define number of threads per block, and number of blocks per grid, dim3 structure is
used. This structure holds the values of x, y, and z coordinates respectively.

Kernel is called in the same way as any C++ function would be called with only addition
of <<< · · · >>> after a function name and before the parantheses with parameters. Kernel
configuration with block dimension, grid dimension, and the size of allocated shared memory per
block are defined between <<< · · · >>>.

Any allocated memory from host can’t be sent to device directly, as device has its own global
memory. In order to transfer data from host to device, the memory should be allocated in
device memory. Allocation and deallocation in a global memory of the device is done via special
CUDA functions: cudaMalloc and cudaFree . Copying data from host to device is done via
cudaMemcpy function.

Code listing 2.4 Example of kernel configuration
1 dim3 block_dim(5, 3, 1);
2 dim3 grid_dim(2, 2);
3 int shared_mem_size = 20;
4

5 my_kernel<<<block_dim, grid_dim, shared_mem_size>>>(cuda_array_in, cuda_array_out, arr_size);

Listing 2.4 illustrates a host code that serves as an example of block and grid configurations
for kernel my kernel . Blocks are of dimensions 5 · 3 · 1, so 15 threads are configured per block.
Grid dimensions are 2 · 2, resulting in 4 blocks in total.

CUDA kernels are non-blocking, which means that host, after calling kernel, won’t wait for
the kernel to finish and will start execution of the next instruction. In order to wait for an
execution device kernel, host must call a function cudaDeviceSynchronize right after the
kernel execution of which host is waiting for. Kernels and special CUDA functions for memory

14 Parallel platforms

allocation, deallocation, and copy, however, execute on the device in such an order in which they
were called. It is possible to run kernels concurrently on a device and it is achieved via CUDA
streams, but streams won’t be covered any further, as all the kernels in this thesis will run on a
default stream.

In order to declare a kernel, special keyword global must be used right before the
function declaration and definition.

Code listing 2.5 Example kernel
1 __global__ void example_kernel(int * arr, int arr_size) {
2 int thread_pos = blockDim.x * blockIdx.x + threadIdx.x;
3

4 extern __shared__ int shared_arr[];
5 shared_arr[threadIdx.x] = arr[thread_pos];
6 __syncthreads();
7 }

Listing 2.5 illustrates an example of a kernel that only loads data into shared memory:

1. Line 2: absolute position of a thread is found via CUDA specific variables:

blockDim — dimension of the block, i.e. number of threads in the block.
blockIdx — index of the block in the grid.
threadIdx — index of the thread in its block.

All of these variables are objects of dim3 structure, so each variable has 3 members: x, y, z.

2. Line 4: shared memory is declared with the size that was given to kernel as its configuration.

3. Line 5: data is written form global memory to shared memory.

4. Line 6: threads in a block are synchronized via syncthreads function, so that all threads
in a block load the data into shared memory.

This serves just as an example of how kernel is defined and how data is loaded into shared
memory, in real applications, kernel would have done some calculations on the data from shared
memory, then would have stored the results in global memory.

Chapter 3

Implementation and
parallelization

3.1 Sequential implementations
Listing 3.1 illustrates the main loop of the algorithm:

1. Line 3: flag that indicates if algorithm has converged is set to true , as by default it is
considered that no point has changed the cluster it is assigned to.

2. Line 4: function is called to find the closest cluster to each point.

3. Lines 5–6: if no point has changed the cluster it is assigned to, the algorithm converges.

4. Line 7: function is called to find the new centroid of each cluster by finding average of all
points in that cluster.

Code listing 3.1 Main algorithm loop
1 bool flag_finished;
2 while(true) {
3 flag_finished = true;
4 find_closest_cluster(&flag_finished);
5 if(flag_finished)
6 break;
7 find_cluster_average();
8 }

Listing 3.2 illustrates a find closest cluster templated function with template parameter
T that receives

Pointer to a flag parameter that indicates if algorithm has converged.

and find the closest cluster to each point:

1. Lines 2–22: iterate over all points:

a. Lines 3–8: if a point is assigned to some cluster, find the distance between that point and
the cluster it is assigned to. This distance is considered as minimum distance.

b. Lines 10–21: iterate over all clusters:
i. Lines 11–14: find the distance between a point and a cluster.

15

16 Implementation and parallelization

ii. Lines 16–20: if point is not assigned to any cluster or the distance to the current cluster
is less than the minimum distance, consider this distance as a new minimum distance
and assign the point to the current cluster. As the cluster to which this point is assigned
to has changed, set the flag to false .

Code listing 3.2 Function for finding the closest cluster to each point
1 T min_cluster_dist, current_cluster_dist;
2 for(auto & point : m_points->m_vec_points) {
3 if(point.m_cluster) {
4 min_cluster_dist = calculate_distance(
5 (const Coordinate<T> *) (&(point.m_coordinate)),
6 (const Coordinate<T> *) (&(point.m_cluster->m_coordinate))
7);
8 }
9

10 for(auto & cluster : m_exec_results->m_clusters) {
11 current_cluster_dist = calculate_distance(
12 (const Coordinate<T> *) (&(point.m_coordinate)),
13 (const Coordinate<T> *) (&(cluster.m_coordinate))
14);
15

16 if(!(point.m_cluster) || current_cluster_dist < min_cluster_dist) {
17 min_cluster_dist = current_cluster_dist;
18 point.m_cluster = &cluster;
19 *flag_finished = false;
20 }
21 }
22 }

Listing 3.3 illustrates a find cluster average templated function with template parameter
T that finds average of X and Y coordinates of all points in that cluster and assigns those values
to that cluster.

Code listing 3.3 Function for finding the closest cluster to each point
1 for(int cluster_id = 0; cluster_id < m_exec_results->m_clusters.size(); ++cluster_id) {
2 Cluster<T> * cluster = &(m_exec_results->m_clusters[cluster_id]);
3 T sum_x = 0, sum_y = 0;
4 int cluster_size = 0;
5

6 for(const auto & point : m_points->m_vec_points) {
7 if(point.m_cluster->m_cluster_id == cluster->m_cluster_id) {
8 sum_x += point.m_coordinate.m_x;
9 sum_y += point.m_coordinate.m_y;

10 ++cluster_size;
11 }
12 }
13

14 if(cluster_size > 0) {
15 cluster->m_coordinate.m_x = sum_x / cluster_size;
16 cluster->m_coordinate.m_y = sum_y / cluster_size;
17 }
18 }

3.1.1 Elkan’s heuristic
For finding upper and lower bounds, find closest cluster function should be modified:

In each iteration over vector of points, upper bound and lower bounds should be updated as
illustrated on Listing 3.4.

Sequential implementations 17

1. Line 2: the distance that the cluster’s centroid, that this point is assigned to, has moved
should be added to the current value of the upper bound of this point.

2. Lines 4–18: iterate over all clusters:
a. Lines 5–6: if the iterated cluster is the currently assigned cluster to this point, just

continue, as no comparison of upper and lower bounds should be made.
b. Lines 8–12: calculate the lower bound between this point and currently iterated cluster.

The lower bound is a difference between current value of it and the distance that this
cluter’s centroid moved. In case if the obtained value of lower bound is negative, assign
0 to it.

c. Lines 14–17: if calculated upper bound is greater than the value of a lower bound for
the currently iterated cluster, then this cluster could be closer to this point than a
cluster that this point is currently assigned to. In such case, actual distances between
this point and all clusters should be calculated and bounds should be reset, so the flag
was updated is set to true .

d. Lines 20–21: if the bounds shouldn’t be updated(upper bound of this point was less
than or equal to lower bounds to all clusters), then no distance calculations should
be made, so the outermost loop that iterates over points in find closest cluster
function should continue to the next point.

e. Lines 23–27: distance to the cluster, that this point is currently assigned to, is calculated
and the value of this distance is assigned to the upper bound of this point.

In the inner loop of find closest cluster function that iterates over all clusters, the
calculated current distance should be assigned to the lower bound between this point
and currently iterated cluster. This is done to reset the value of a lower bound, in case if
was updated flag is true and a reset of bounds is needed.

Code listing 3.4 Updating upper and lower bounds for Elkan’s heuristic
1 if(point->m_cluster) {
2 *upper_bound += m_cluster_prev_dist[point->m_cluster->m_cluster_id];
3

4 for(auto & cluster : m_exec_results->m_clusters) {
5 if(point->m_cluster->m_cluster_id == cluster.m_cluster_id)
6 continue;
7

8 lower_bound = &(m_points_bounds[point_id].m_lower_bounds[cluster.m_cluster_id]);
9 *lower_bound -= m_cluster_prev_dist[cluster.m_cluster_id];

10

11 if(*lower_bound < 0)
12 *lower_bound = 0;
13

14 if(*upper_bound > *lower_bound) {
15 was_updated = true;
16 break;
17 }
18 }
19

20 if(!was_updated)
21 continue;
22

23 min_cluster_dist = calculate_distance(
24 (const Coordinate<T> *) (&(point->m_coordinate)),
25 (const Coordinate<T> *) (&(point->m_cluster->m_coordinate))
26);
27 *upper_bound = min_cluster_dist;
28 }

18 Implementation and parallelization

Function find cluster average to find the new centroid for each cluster should also be
modified to find the distance between current cluster centroid and new cluster centroid. The last
if branch should be modified as illustrated in Listing 3.5:

1. Lines 2–4: find the new coordinates of the centroid.

2. Lines 5–9: calculate the distance between current and new centroids.

3. Lines 10–11: assign coordinates of the new centroid to this cluster.

Code listing 3.5 Finding distances between clusters’ centroids
1 if(cluster_size > 0) {
2 Coordinate<T> cluster_new_coordinates{
3 sum_x / cluster_size, sum_y / cluster_size
4 };
5 m_cluster_prev_dist[cluster_id] =
6 KMeansClusteringSequential<T>::calculate_distance(
7 (const Coordinate<T> *) (&(cluster->m_coordinate)),
8 (const Coordinate<T> *) (&(cluster_new_coordinates))
9);

10 cluster->m_coordinate.m_x = cluster_new_coordinates.m_x;
11 cluster->m_coordinate.m_y = cluster_new_coordinates.m_y;
12 }

3.1.2 Hamerly’s heuristic
The function find closest cluster is modified:

Update of bounds is much simpler than in Elkan’s heuristic, as only one lower bound is
needed for each point. Listing 3.6 illustrates updating of bounds:

1. Line 2: upper bound is calculated the same as it was calculated for Elkan’s heuristic.
2. Lines 3–6: lower bound is calculated. The updated value of a lower bound is a difference of

current value of a lower bound with the maximum distance between clusters’ previous and
current centroids, i.e m max cluster prev dist . The value of m max cluster prev dist
is calculated in find cluster average function.

3. Lines 8–9: if the value of upper bound for this point is less than or equal to the value of
lower bound of this point, there is no need to calculate distances between this point and
all clusters, as the cluster, this point is currently assigned to, is definitely the closest one.

Code listing 3.6 Updating upper and lower bounds for Hamerly’s heuristics
1 if(point->m_cluster) {
2 *upper_bound += m_cluster_prev_dist[point->m_cluster->m_cluster_id];
3 *lower_bound -= m_max_cluster_prev_dist;
4

5 if(*lower_bound < 0)
6 *lower_bound = 0;
7

8 if(*upper_bound <= *lower_bound)
9 continue;

10 }

In case if upper bound of this point is greater than the lower bound, the bounds must be
reset and it is done inside an inner loop of the find closest cluster that iterates over all
clusters to find distance between each cluster and this point. As the new value of the lower
bound is the distance to the second closest cluster to this point, the two values of minimum

OpenMP implementations 19

distances should be held: min and prev min . Listing 3.7 illustrates the reset of bounds
for this point:

1. Lines 2–5: calculate the distance from this point to currently iterated cluster.
2. Lines 7–11: if the value of minimum distance is not set or the distance to the currently

iterated cluster is less than the minimum distance, assign the value of the current minimum
distance to the second minimum distance, as previous minimum is the second minimum,
and assign the value of the distance to the current cluster to the minimum distance.

3. Lines 11–12: if the value of the second minimum is not set or the value of the distance
to the currently iterated cluster is less than the current value of second minimum, assign
the value of the distance to the currently iterated cluster to the second minimum distance.
This branch would execute only in case if the distance to the currently iterated cluster is
greater than or equal to the distance to the closest cluster, that is the value of min , but
it is less than the distance to the second closest cluster, so the value of the distance to the
second closest cluster should be updated.

4. Lines 15–16: the minimum distance is assigned to the upper bound and the second mini-
mum distance is assigned to the lower bound.

5. Lines 18–21: if this point is not assigned to any cluster or the obtained closest cluster is
different than an already assigned one, assign this point to the obtained closest cluster.

Code listing 3.7 Finding closest and second closest clusters for Hamerly’s heuristics
1 for(auto & cluster : m_exec_results->m_clusters) {
2 current_cluster_dist = calculate_distance(
3 (const Coordinate<T> *) (&(point->m_coordinate)),
4 (const Coordinate<T> *) (&(cluster.m_coordinate))
5);
6

7 if(min == -1 || current_cluster_dist < min) {
8 prev_min = min;
9 min = current_cluster_dist;

10 point_cluster = &cluster;
11 } else if(prev_min == -1 || current_cluster_dist < prev_min)
12 prev_min = current_cluster_dist;
13 }
14

15 *upper_bound = min;
16 *lower_bound = prev_min;
17

18 if(!point->m_cluster || point_cluster->m_cluster_id != point->m_cluster->m_cluster_id) {
19 point->m_cluster = point_cluster;
20 *flag_finished = false;
21 }

The only difference between Hamerly’s version of find cluster average and Elkan’s version
of that function is that Hamerly’s version also finds the maximum value out of all distances
between clusters’ current and new centroids, i.e. the greatest value in m cluster prev dist
array.

3.2 OpenMP implementations
OpenMP implementations are the same as sequential implementations with the only difference:
data parallelism with parallel for loop. Parallel for is added for the outermost loop of both
functions:

find closest cluster : the outmost loop that traverses through all points is parallelized as
illustrated in Listing 3.8.

20 Implementation and parallelization

Code listing 3.8 Addition of parallel loop for find closest cluster function
1 #pragma omp parallel
2 {
3 #pragma omp for schedule(static) reduction(+:flag_finished)
4 for(int point_id = 0; point_id < m_num_points; ++point_id) {
5 // find the closest cluster to this point
6 }
7 }

One more important addition is a reduction of the flag that indicates if no point has changed
the cluster, that this point is assigned to, in this iteration and the algorithm should converge.
The reduction is done with an addition operator, so after find closest cluster was called,
flag finished should be compared with the number of points and if the equality holds true,
the algorithm converges.

find cluster average : the outmost loop that traverses through all clusters is parallelized
as illustrated in Listing 3.9.

Code listing 3.9 Addition of parallel loop for find cluster average function
1 #pragma omp parallel
2 {
3 #pragma omp for schedule(static)
4 for(int cluster_id = 0; cluster_id < m_num_clusters; ++cluster_id) {
5 // find the average of coordinates of all points in this cluster
6 }
7 }

3.3 CUDA implementations

3.3.1 Implementation in global memory
3.3.1.1 Finding the closest cluster to each point
In order to find the closest cluster to each point, the cuda find closest cluster is used with
configuration:

Block dimension of dim3 blockDim(block dim) .

Grid dimension of dim3 gridDim(ceilf((float) num points / block dim)) .

Thus, each point is processed via one CUDA thread.
Listing 3.10 illustrates a cuda find closest cluster templated kernel with template pa-

rameter T :

1. Lines 1–3: calculate the absolute position of the thread that will represent a point and check
if it is out of bounds of total number of points.

2. Lines 5–6: if any heuristics were used, the upper bound of this point is fetched from the
global array.

3. Lines 8–10: initialize local variables that will be used in this kernel.

4. Lines 12–16: if this point has already been assigned to any cluster, any heuristics were used,
and bounds of this point shouldn’t be changed, return, as there is no potential closer cluster
to this point rather than the one that has already been assigned to it.

5. Lines 18–34: iterate over all clusters:

CUDA implementations 21

a. Lines 19–21: calculate the distance from this point to the currently traversed cluster.
b. Lines 23–26: if the Elkan’s heuristic is used, assign the value of the calculated distance to

the lower bound between this point and currently traversed cluster.
c. Lines 28–33: update shortest and second shortest distances.

6. Lines 35–36: if any heuristics were used, assign the value of the shortest distance to the upper
bound of this point.

7. Lines 37–38: if Hamerly’s heuristic was used, assign the value of the second shortest distance
to the lower bound of this point.

8. Lines 40–43: if this point hasn’t been previously assigned to any cluster or the obtained
closest cluster to this point is not the cluster that has already been assigned to this point,
update the cluster that this point is assigned to and set the flag that indicates that this point
hasn’t changed its cluster to 0.

For all definitions of variables, arrays, and structures in the listing, see Appendix A.

Code listing 3.10 Kernel for finding the closest cluster to each point in global memory
1 int point_id = blockDim.x * blockIdx.x + threadIdx.x;
2 if(point_id >= num_points)
3 return;
4

5 if(heuristics_type == Elkan || heuristics_type == Hamerly)
6 upper_bound = &(upper_bounds[point_id]);
7

8 T point_x = points_x[point_id], point_y = points_y[point_id];
9 int point_cluster_id_val = point_cluster_id[point_id];

10 arr_flag_finished[point_id] = 1;
11

12 if(point_cluster_id_val > -1 && (heuristics_type == Elkan || heuristics_type == Hamerly) &&
13 !was_updated[point_id]
14) {
15 return;
16 }
17

18 for(int i = 0; i < num_clusters; ++i) {
19 current_distance = cuda_calculate_distance(
20 (T) point_x, (T) point_y, (T) clusters_x[i], (T) clusters_y[i]
21);
22

23 if(heuristics_type == Elkan) {
24 lower_bound = &(arr_lower_bounds[point_id * num_clusters + i]);
25 *lower_bound = current_distance;
26 }
27

28 if(shortest_distance < 0 || current_distance < shortest_distance) {
29 second_shortest_distance = shortest_distance;
30 shortest_distance = current_distance;
31 id_closest = i;
32 } else if(second_shortest_distance < 0 || current_distance < second_shortest_distance)
33 second_shortest_distance = current_distance;
34 }
35 if(heuristics_type == Elkan || heuristics_type == Hamerly)
36 *upper_bound = shortest_distance;
37 if(heuristics_type == Hamerly)
38 arr_lower_bounds[point_id] = second_shortest_distance;
39

40 if(point_cluster_id_val == -1 || id_closest != point_cluster_id_val) {
41 point_cluster_id[point_id] = id_closest;
42 arr_flag_finished[point_id] = 0;
43 }

22 Implementation and parallelization

In order to use heuristics, upper and lower bounds should be calculated for each point in
advance, i.e. before calling cuda find closest cluster kernel.

For Elkan’s heuristic, cuda update bounds kernel is used with the same configuration that
kernel cuda find closest cluster is called with. Listing 3.11 illustrates cuda update bounds
templated kernel with template parameter T :

1. Lines 1–3: calculate the absolute position of the thread that will represent a point and check
if it is out of bounds of total number of points.

2. Line 5: fetch the index of the cluster to which this point has already been assigned to.

3. Lines 6–7: if this point is not assigned to any cluster, then no bounds have been set before
for this point and the point’s bounds must be calculated.

4. Lines 8–27: if this point has already been assigned to any cluster:

a. Line 10: set the value was updated flag for this point to 0, as initially it is considered,
that no bounds should be recalculated.

b. Line 11: increment the upper bound of this point by the value of the distance that the
cluster, that this point is assigned to, has moved.

c. Lines 13–26: iterate over all clusters:
i. Lines 14–16: if the cluster that is currently iterated is the same that this point has

already been assigned to, continue, as there is no need to compare the upper and lower
bounds to the same cluster.

ii. Lines 17–20: update lower bound of this point to currently iterated cluster.
iii. Lines 22–25: if updated upper bound is greater than updated lower bound to this

cluster, then the bounds must be recalculated, thus value of was updated for this
point is set to 1, and there is no need to update and compare bounds for this point any
further.

For all definitions of variables, arrays, and structures in the listing, see Appendix A.

Code listing 3.11 Kernel for updating the bounds of each point for Elkan’s heuristic in global memory
1 int point_id = blockDim.x * blockIdx.x + threadIdx.x;
2 if(point_id >= num_points)
3 return;
4

5 int point_cluster_id_val = point_cluster_id[point_id];
6 if(point_cluster_id_val == -1)
7 was_updated[point_id] = 1;
8 else {
9 T * lower_bound;

10 was_updated[point_id] = 0;
11 upper_bounds[point_id] += cluster_prev_dist[point_cluster_id_val];
12

13 for(int i = 0; i < num_clusters; ++i) {
14 if(i == point_cluster_id_val)
15 continue;
16

17 lower_bound = &(arr_lower_bounds[point_id * num_clusters + i]);
18 *lower_bound -= cluster_prev_dist[i];
19 if(*lower_bound < 0)
20 *lower_bound = 0;
21

22 if(upper_bounds[point_id] > *lower_bound) {
23 was_updated[point_id] = 1;
24 break;
25 }
26 }
27 }

CUDA implementations 23

For Hamerly’s heuristic, the cuda update bounds kernel is very similar to Elkan’s heuristic
version of this kernel, with the only difference being in the body of the else statement of
that kernel, as there is only one lower bound for each point. Listing 3.12 illustrates the body if
the else statement of cuda update bounds kernel for Hamerly’s heuristic that has the same
configuration as cuda update bounds kernel for Elkan’s heuristic:

1. Lines 1-2: are the same as they were for Elkan’s heuristic, i.e. set the value was updated
flag for this point to 0 and increment the value of the upper bound.

2. Lines 4-10: decrement the value of the lower bound of this point by the value of the distance
of the cluster the centroid of which has moved the most in one iteration of the algorithm.

3. Lines 12-13: if the value of the upper bound of this point is greater than the value of the
lower bound for this point, set the was updated flag for this point to 1, as the bounds must
be recalculated.

For all definitions of variables, arrays, and structures in the listing, see Appendix A.

Code listing 3.12 Kernel for updating the bounds of each point for Hamerly’s heuristic in global
memory

1 was_updated[point_id] = 0;
2 upper_bounds[point_id] += cluster_prev_dist[point_cluster_id_val];
3

4 T lower_bound = arr_lower_bounds[point_id];
5 lower_bound -= *max_cluster_prev_dist;
6

7 if(lower_bound < 0)
8 lower_bound = 0;
9

10 arr_lower_bounds[point_id] = lower_bound;
11

12 if(upper_bounds[point_id] > lower_bound)
13 was_updated[point_id] = 1;

3.3.1.2 Checking flags for algorithm convergence
After finding the closest cluster to each point, the array of flags, that indicates if points have
changed their clusters or not, should be reduced to find out if no point has changed its cluster
or not. The default value of the flag is 1 that indicates that a point hasn’t changed its cluster,
otherwise the flag is 0. So, the array should be reduced to find the minimum value and in case if
the minimum value is 1, the algorithm should converge, as no point has changed its cluster from
the previous iteration.

Parallel reduction is used in order to speed up the search in an array, as the complexity of
simple linear search is O(n), parallel reduction is used to speed up the search to O(log(n)), where
n is the number of elements in the array. The array of flags is stored in arr flag finished .

Figure 5 illustrates parallel reduction of arr flag finished with 7 elements: there are 3
iterations in total, as each iteration requires only half as many threads as there are elements. As
total number of elements is 7, ⌈O(log(7))⌉ = 3 iterations are needed to reduce this array. Each
iteration:

In the case of odd number of elements:
num elements

2 + 1 threads are needed.

For the next iteration, the number of elements will be num elements + 1
2 .

In the case of even number of elements:

24 Implementation and parallelization

num elements

2 threads are needed.

For the next iteration, the number of elements will be num elements

2 .

Figure 5 Parallel reduction to find minimum

Listing 3.13 illustrates the host code of parallel reduction:

1. Line 2: call the kernel that should be reduced in global memory.

2. Lines 4–6: calculate the number of elements for the next iteration of parallel reduction. It is
calculated as it was explained for Figure 5.

Code listing 3.13 Parallel reduction to find minimum in global memory(host code)
1 while(num_elements > 1) {
2 // call the kernel that should be reduced
3

4 if(num_elements % 2 == 1)
5 ++num_elements;
6 num_elements /= 2;
7 }

The kernel cuda find min reduction is used to find the minimum value in a given array.
The configuration of the kernel is

Block dimension of dim3 blockDim(block dim) .

Grid dimension depends on the number of elements:

If the number of elements is odd, then dim3 gridDim(ceilf((float) (num elements /
2 + 1) / block dim)) .
If the number of elements is even, then dim3 gridDim(ceilf((float) (num elements
/ 2) / block dim)) .

CUDA implementations 25

Listing 3.14 illustrates cuda find min reduction templated kernel with template parameter
T :

1. Line 1: calculate the absolute position of thread.

2. Lines 2–3: If thread’s position is greater than the half of the number of elements in the array,
that should be reduced, or is equal to it, no need to proceed any further. The element in
the middle is not reduced either as it doesn’t have a mirror element with which it will be
compared.

3. Lines 5–13: calculate the position of mirror entry. The mirror entry’s value is compared with
value of the current thread and a minimum is written into min variable.

4. Lines 15–16: if the number of elements is 2, i.e. it is the last iteration of parallel reduction and
there is only one thread running, the obtained minimum is written into the flag finished
.

For all definitions of variables, arrays, and structures in the listing, see Appendix A.

Code listing 3.14 Parallel reduction to find minimum in global memory(device code)
1 int thread_pos = blockDim.x * blockIdx.x + threadIdx.x;
2 if(thread_pos >= num_elements / 2)
3 return;
4

5 int thread_mirror_pos = num_elements - thread_pos - 1;
6 int min;
7

8 if(arr_flag_finished[thread_pos] < arr_flag_finished[thread_mirror_pos])
9 min = arr_flag_finished[thread_pos];

10 else
11 min = arr_flag_finished[thread_mirror_pos];
12

13 arr_flag_finished[thread_pos] = min;
14

15 if(num_elements == 2)
16 *flag_finished = min;

After obtaining the minimum, the value of flag finished is copied to the host to check
if the algorithm should converge or not: in case if the value is 1, i.e. no point has changed its
respective cluster, the algorithm converges, otherwise, the algorithm continues.

3.3.1.3 Finding the average of each cluster
To find a new centroid for each cluster, the average coordinates of all points in each cluster is be
calculated. Average can be found as a sum of all points in that cluster divided by the number of
those points. To efficiently find the sum of all points, parallel reduction is used for each cluster.

To find an average of all points in a cluster via parallel reduction, cuda find average reduction
kernel is used. Kernel is called in the same reduction loop, as cuda find min reduction is
called, as illustrated on Listing 3.13. The only difference, though, is a grid dimension: as parallel
reduction is called for each kernel, grid will also have a Y dimension, each entry of which will
represent one cluster.

Listing 3.15 illustrates cuda find average reduction templated kernel with template pa-
rameter T :

1. Lines 1-2: calculate the absolute position of thread in X axis and the index of the cluster
that is represented as a Y axis.

2. Lines 4–5: if the number absolute position of thread is greater than or equal to the number
of elements in current iteration of parallel reduction, don’t go any further, as the number of
threads must be equal to the half of the number of elements.

26 Implementation and parallelization

3. Line 7: calculate the position of mirror entry.

4. Lines 8–13: increment the X and Y values by the mirror entry values of the corresponding
arrays as those arrays represent the sum of the coordinates of all points in that cluster.

5. Lines 15–30: if there are only 2 elements left to reduce, i.e. this is the last iteration of parallel
reduction, and the number of points in the cluster is greater than 0:

a. Lines 16–19: calculate the average of coordinates of that cluster via dividing the obtained
sum of all points with the number of points in that cluster.

b. Lines 21–26: if any type of heuristic is used, the distance between previous and current
centroids of this cluster is calculated.

c. Lines 28–29: coordinates of this cluster are written to the corresponding arrays.

For all definitions of variables, arrays, and structures in the listing, see Appendix A.

Code listing 3.15 Parallel reduction to find average in global memory
1 int thread_pos = blockDim.x * blockIdx.x + threadIdx.x;
2 int cluster_id = blockIdx.y;
3

4 if(thread_pos >= num_elements / 2)
5 return;
6

7 int thread_mirror_pos = num_elements - thread_pos - 1;
8 array_average_x[cluster_id * num_points + thread_pos] +=
9 array_average_x[cluster_id * num_points + thread_mirror_pos];

10 array_average_x[cluster_id * num_points + thread_pos] +=
11 array_average_x[cluster_id * num_points + thread_mirror_pos];
12 array_num_points_in_cluster[cluster_id * num_points + thread_pos] +=
13 array_num_points_in_cluster[cluster_id * num_points + thread_mirror_pos];
14

15 if(num_elements == 2 && array_num_points_in_cluster[cluster_id * num_points + thread_pos] > 0) {
16 T updated_cluster_x = array_x[cluster_id * num_points + thread_pos] /
17 array_num_points_in_cluster[cluster_id * num_points + thread_pos];
18 T updated_cluster_y = array_y[cluster_id * num_points + thread_pos] /
19 array_num_points_in_cluster[cluster_id * num_points + thread_pos];
20

21 if(heuristics_type == Elkan || heuristics_type == Hamerly) {
22 cluster_prev_dist[cluster_id] = cuda_calculate_distance_average(
23 (T) clusters_x[cluster_id], (T) clusters_y[cluster_id],
24 (T) updated_cluster_x, (T) updated_cluster_y
25);
26 }
27

28 clusters_x[cluster_id] = updated_cluster_x;
29 clusters_y[cluster_id] = updated_cluster_y;
30 }

3.3.2 Implementation in shared memory
3.3.2.1 Finding the closest cluster to each point
The main idea behind algorithms in shared memory lies in chunking. When finding the clos-
est cluster for each point, every point calculates a distance to every cluster (unless Elkan’s or
Hamerly’s heuristic is used, which could prevent calculation of some distances), so the cluster
coordinates that are fetched from the global memory could be reused for multiple points.

As an example, assume that 256 threads are used in a block and each thread represents a
point. Each point could fetch the coordinates of one cluster and write those coordinates into

CUDA implementations 27

shared memory that will be reused by all threads in that block, thus threads could calculate
distances between a point that they represent and each cluster in the shared memory.

The only caveat of calculations in chunks is that parallel reduction should be used to ac-
cumulate results from different chunks. In the case of finding the closest cluster to each point,
the closest cluster will be found in each chunk, thus the results from different chunks should be
reduced to find the cluster with the shortest distance to the given point.

So, the shared memory version of finding the closest cluster algorithm consists of two parts:

Find the closest cluster to each point in each chunk of clusters.

Reduce the results from all chunks of clusters to obtain the closest cluster to each point.

To find the closest cluster to each point in chunks, cuda find closest cluster chunks
kernel is used with configuration:

Block dimension of dim3 blockDim(block dim) .

Grid dimension of dim3 gridDim(ceilf((float) num points / block dim), num clusters chunks)
.

Shared memory size of block dim * sizeof(CudaCoordinate<T>) .

Listing 3.16 illustrates the part of cuda find closest cluster chunks kernel that is dif-
ferent from cuda find closest cluster :

1. Line 1: get the index of this chunk of clusters as an entry of this block in a Y dimension of
the grid.

2. Line 2: calculate the offset of clusters in this chunk, i.e. an index of the first cluster in this
chunk of clusters.

3. Lines 4–11: initialize the shared memory and write the cluster coordinates in this chunk from
global array to shared memory.

4. Lines 13–14: if the index of this point is greater than or equal to the total number of points,
don’t continue any further. The checking for the out of bounds of this thread is done only
at this stage and not earlier, as it could happen that the number of points in this block is
less than the number of clusters in this chunk (could happen in the case if it is the last block
in this row of the grid and not all threads in this block would be used), thus every thread,
even if it wouldn’t be used, should first fetch the cluster’s coordinates from the global array,
so that other threads could use this cluster’s coordinates to calculate distances.

5. Lines 16–20: if any type of heuristic is used and bounds of this point shouldn’t be recalculated:

a. Lines 17–18: If this block belongs to the first row of the grid, write the flag that indicates
that this point hasn’t changed its cluster to arr flag finished . This checking is done
so that the same point in different cluster chunks, i.e. in different grid rows, doesn’t try
to write to the same memory location to create a race condition.

b. Line 19: return, as there is no need to calculate distances.

6. Lines 22–24: iterate over all clusters in this chunk and find the cluster with shortest distance
to this point and cluster with second shortest distance to this point.

7. Lines 26–29: write the obtained results into the temporary array tmp points clusters .
This array will be further reduced to obtain the closest cluster to this point and the second
closest cluster to this point.

For all definitions of variables, arrays, and structures in the listing, see Appendix A.

28 Implementation and parallelization

Code listing 3.16 Kernel for finding the closest cluster to each point in shared memory
1 int clusters_chunk_id = blockIdx.y;
2 int clusters_offset = clusters_chunk_size * clusters_chunk_id;
3

4 extern __shared__ uint8_t shared_array_clusters_1[];
5 CudaCoordinate<T> * shared_array_clusters = (CudaCoordinate<T> *) shared_array_clusters_1;
6

7 if(threadIdx.x < clusters_chunk_size && threadIdx.x + clusters_offset < num_clusters) {
8 shared_array_clusters[threadIdx.x].m_x = clusters_x[clusters_offset + threadIdx.x];
9 shared_array_clusters[threadIdx.x].m_y = clusters_y[clusters_offset + threadIdx.x];

10 }
11 __syncthreads();
12

13 if(point_id >= num_points)
14 return;
15

16 if((heuristics_type == Elkan || heuristics_type == Hamerly) && !was_updated[point_id]) {
17 if(!blockIdx.y)
18 arr_flag_finished[point_id] = 1;
19 return;
20 }
21

22 for(int i = 0; i < clusters_chunk_size && i + clusters_offset < num_clusters; ++i) {
23 // calculate the shortest and second shortest distances
24 }
25

26 int tmp_arr_id = point_id * num_clusters_chunks + clusters_chunk_id;
27 tmp_points_clusters[tmp_arr_id].m_cluster_id = id_closest;
28 tmp_points_clusters[tmp_arr_id].m_cluster_distance = shortest_distance;
29 tmp_points_clusters[tmp_arr_id].m_second_cluster_distance = second_shortest_distance;

Figure 6 illustrates a parallel reduction of an array with 11 elements in shared memory:

At the beginning of each iteration of the reduction, all threads in a given block fetch data
from array in global memory and write it to shared memory, as shared memory represents a
portion of an array that will be reduced by threads in this block.

Size of each portion is equal to the double of number of threads in the block, as each thread
reduces 2 entries in an array. Thus the number of blocks is num elements

block dim · 2 .

In each iteration, the first entry in the array that will be processed by this block and the last
entry in the array that will be processed by this block is calculated, i.e. block offset and
block last pos correspondingly.

After the threads in each block have reduced their corresponding portion of the array, the
results are written back to the array to the first entry in this block, i.e. block offset . This
is done in this fashion, so that blocks don’t write to the same region and no racing condition
occurs.

In order to prepare this array for the next iteration of parallel reduction, the results should be
shifted, so that the elements, that will be reduced in the future, are consecutively located in
the array. This is done via shifting the values from each block’s first entry to the temporary
array and further copying the values from temporary array to the original array. Shifting
occurs at the end of each iteration of parallel reduction.

After the shifting occured, the parallel reduction may continue with its next iteration.

CUDA implementations 29

Figure 6 Reduction in shared memory

The benefit of reduction in shared memory lies in decreasing number of accesses to global
memory via decreasing the number of parallel reduction iterations and making most of the
reduction in the kernel itself using shared memory. The number of iterations of parallel reduction
in shared memory implementation is equal to

⌈logblock dim·2 num elements⌉

where the base of logarithm is equal to the double of number of threads in a block.
Listing 3.17 illustrates the host code of parallel reduction in shared memory:

1. Line 2: call the kernel that should be reduced in shared memory.

2. Lines 4–8: calculate the number of elements for the next iteration of parallel reduction.
For all definitions of variables, arrays, and structures in the listing, see Appendix A.

30 Implementation and parallelization

Code listing 3.17 Parallel reduction to find the closest cluster in shared memory(host code)
1 while(num_elements > 1) {
2 // call kernels that should be reduced in shared memory
3

4 if(num_elements % (block_dim * 2)) {
5 num_elements /= (block_dim * 2);
6 ++num_elements;
7 } else
8 num_elements /= (block_dim * 2);
9 }

Kernel cuda find closest cluster reduction shared is used to reduce the obtained clos-
est clusters to each point from each chunk. Each point is processed via one kernel grid row. The
kernel is called from the parallel reduction loop, illustrated on Listing 3.17 with configuration

Block dimension of dim3 blockDim(block dim) .

Grid dimension of dim3 gridDim(ceilf((float) num elements / (block dim * 2)), num points)
.

Share memory size of 2 * block dim * sizeof(CudaTmpPointCluster<T>) .

The kernel consists of 3 parts:

1. Initialization of shared memory.

2. Blockwise parallel reduction in shared memory.

3. Writing back the results to the global memory.

Listing 3.18 illustrates the first part of the kernel:

1. Line 1: calculate the index of this point by the index of the block in the Y dimension of the
grid, as each row of blocks of the grid processes one point.

2. Lines 2–3: if any heuristic is used and the bounds of the point shouldn’t be updated, return,
as no distance calculations are needed.

3. Lines 5–7: calculate the offset of this block, i.e. the entry in the array that this block of
threads will start reduction with, absolute position of this thread in the array, and the last
entry in the array that this block of threads will reduce.

4. Line 12: calculate the number of elements that this block of threads will reduce.

5. Lines 13–18: if the index of this thread in the block exceeds the half of the number of elements
that should be reduced or there is only one thread in this block with only one element (so,
no reduction is needed), return.

6. Lines 20–23: calculate the index of the mirror entry that will be reduced with this thread’s
entry. The index of the mirror entry is calculated both in the array that is in the global
memory and in the shared memory.

7. Lines 25–43: initialize shared memory and copy the portion of the array in the global memory,
that will be reduced by threads in this block, to shared memory.

For all definitions of variables, arrays, and structures in the listing, see Appendix A.

CUDA implementations 31

Code listing 3.18 Initialization of shared memory in kernel for reducing the obtained closest clusters
to each point in each chunk

1 int point_id = blockIdx.y;
2 if((heuristics_type == Elkan || heuristics_type == Hamerly) && !was_updated[point_id])
3 return;
4

5 int block_offset = blockDim.x * blockIdx.x * 2;
6 int thread_pos = block_offset + threadIdx.x;
7 int block_last_pos = block_offset + blockDim.x * 2 - 1;
8

9 if(block_last_pos >= num_elements)
10 block_last_pos = num_elements - 1;
11

12 int num_block_elements = block_last_pos - block_offset + 1;
13 if((num_block_elements % 2 == 0 && threadIdx.x >= num_block_elements / 2) ||
14 (num_block_elements % 2 == 1 && threadIdx.x > num_block_elements / 2) ||
15 (threadIdx.x == 0 && thread_pos == block_last_pos)
16) {
17 return;
18 }
19

20 int thread_mirror_pos = block_last_pos - threadIdx.x;
21 int shared_thread_mirror_pos = block_last_pos - block_offset - threadIdx.x;
22 int tmp_arr_id = point_id * num_clusters_chunks + thread_pos;
23 int tmp_arr_mirror_id = point_id * num_clusters_chunks + thread_mirror_pos;
24

25 extern __shared__ uint8_t shared_array;
26 CudaTmpPointCluster<T> * tmp_shared_arr = (CudaTmpPointCluster<T> *) shared_array;
27

28 tmp_shared_arr[threadIdx.x].m_cluster_distance =
29 tmp_points_clusters[tmp_arr_id].m_cluster_distance;
30 tmp_shared_arr[threadIdx.x].m_second_cluster_distance =
31 tmp_points_clusters[tmp_arr_id].m_second_cluster_distance;
32 tmp_shared_arr[threadIdx.x].m_cluster_id =
33 tmp_points_clusters[tmp_arr_id].m_cluster_id;
34

35 if(threadIdx.x != shared_thread_mirror_pos) {
36 tmp_shared_arr[shared_thread_mirror_pos].m_cluster_distance =
37 tmp_points_clusters[tmp_arr_mirror_id].m_cluster_distance;
38 tmp_shared_arr[shared_thread_mirror_pos].m_second_cluster_distance =
39 tmp_points_clusters[tmp_arr_mirror_id].m_second_cluster_distance;
40 tmp_shared_arr[shared_thread_mirror_pos].m_cluster_id =
41 tmp_points_clusters[tmp_arr_mirror_id].m_cluster_id;
42 }
43 __syncthreads();

After the portion of the array, that should be reduced by this block of threads, was copied
from global array to shared array, that portion should now be reduced. Listing 3.19 illustrates
the actual reduction inside the cuda find closest cluster reduction shared kernel:
1. Lines 3–7: if the index of this thread in the block exceeds the half of the number of elements

that is left to be reduced, return, as each thread reduces 2 entries in an array.

2. Line 9: calculate the position of the mirror entry in the shared memory.

3. Lines 10–34: if the index of this thread in the block is not equal to the mirror entry’s index
in the shared memory (this checking is done, so that no reduction occurs between elements
in the same entry):

a. Lines 11–28: if the distance to the cluster in the mirror entry is less than the distance to
the cluster in this entry, update the current entry’s closest cluster, i.e. assign the cluster
of the mirror entry to the current entry, as illustrated in lines 24–27.
One more important step is to update the second closest cluster, which comprises of 2
different scenarios:

32 Implementation and parallelization

Lines 14–19: in this scenario, the mirror entry’s distance to the second closest cluster
is less than this entry’s distance to the closest cluster, the mirror entry’s second closest
distance is assigned to this entry’s second closest distance. Table below is given as an
example of such a scenario.

this entry mirror entry
distance to the closest cluster 10 6

distance to the second closest cluster 12 8
Lines 19–22: in this scenario, this entry’s distance to the closest cluster is less than
a distance to the mirror entry’s second closest cluster, thus the value of this entry’s
closest cluster is assigned to this entry’s second closest cluster. Table below is given as
an example of such a scenario.

this entry mirror entry
distance to the closest cluster 10 6

distance to the second closest cluster 12 15
b. Lines 28–33: if this entry’s distance to the closest cluster is less than or equal to mirror

entry’s distance to the closest cluster and the mirror entry’s distance to the closest cluster
is less than this entry’s distance to the second closest cluster, there is no need to update
this entry’s closest cluster, but the mirror entry’s distance to the closest cluster should be
assigned to this entry’s second closest cluster. Table below is given as an example of such
a scenario.

this entry mirror entry
distance to the closest cluster 10 16

distance to the second closest cluster 18 20

4. Lines 35–42: if there were only 2 elements left to reduce, thus only one thread to reduce
them, the result is written back from shared memory to global memory.

5. Lines 43–45: the number of elements is updated for the next iteration of reduction inside the
block.

6. Line 47: threads are synchronized before the next iteration of reduction inside the block.

After the array was reduced inside the block, the results are written back to the array in global
memory. Each block writes the obtained result into the first of the array that was processed by
that block, i.e. block offset from Figure 6. Listing 3.20 illustrates the third part of the
kernel:

1. Lines 1–11: if there is only one block in this row of the grid and there is only one thread
operating in this block, i.e. this is the last iteration of parallel reduction:

a. Lines 2–3: if any heuristic is used, assign the distance to the closest cluster to the upper
bound of this point.

b. Lines 4–5: if Hamerly’s heuristic is used, assign the distance to the second closest cluster
to the lower bound of this point.

c. Lines 6–10: if an index of obtained closest cluster is not equal to the index of the cluster
that this point is currently assigned to, assign this point to the closest cluster and assign
the flag that indicates that this point hasn’t changed its cluster to 0. Otherwise, set the
flag to 1, as point hasn’t changed its cluster.

For all definitions of variables, arrays, and structures in the listing, see Appendix A.

CUDA implementations 33

Code listing 3.19 Blockwise parallel reduction in kernel for reducing the obtained closest clusters to
each point in each chunk

1 int tmp_num_elements = num_block_elements;
2 while(tmp_num_elements > 1) {
3 if((tmp_num_elements % 2 == 0 && threadIdx.x >= tmp_num_elements / 2) ||
4 (tmp_num_elements % 2 == 1 && threadIdx.x > tmp_num_elements / 2)
5) {
6 return;
7 }
8

9 shared_thread_mirror_pos = tmp_num_elements - threadIdx.x - 1;
10 if(threadIdx.x != shared_thread_mirror_pos) {
11 if(tmp_shared_arr[shared_thread_mirror_pos].m_cluster_distance <
12 tmp_shared_arr[threadIdx.x].m_cluster_distance
13) {
14 if(tmp_shared_arr[shared_thread_mirror_pos].m_second_cluster_distance <
15 tmp_shared_arr[threadIdx.x].m_cluster_distance
16) {
17 tmp_shared_arr[threadIdx.x].m_second_cluster_distance =
18 tmp_shared_arr[shared_thread_mirror_pos].m_second_cluster_distance;
19 } else {
20 tmp_shared_arr[threadIdx.x].m_second_cluster_distance =
21 tmp_shared_arr[threadIdx.x].m_cluster_distance;
22 }
23

24 tmp_shared_arr[threadIdx.x].m_cluster_distance =
25 tmp_shared_arr[shared_thread_mirror_pos].m_cluster_distance;
26 tmp_shared_arr[threadIdx.x].m_cluster_id =
27 tmp_shared_arr[shared_thread_mirror_pos].m_cluster_id;
28 } else if(tmp_shared_arr[shared_thread_mirror_pos].m_cluster_distance <
29 tmp_shared_arr[threadIdx.x].m_second_cluster_distance
30) {
31 tmp_shared_arr[threadIdx.x].m_second_cluster_distance =
32 tmp_shared_arr[shared_thread_mirror_pos].m_cluster_distance;
33 }
34 }
35 if(tmp_num_elements == 2 && threadIdx.x == 0) {
36 tmp_points_clusters[tmp_arr_id].m_cluster_distance =
37 tmp_shared_arr[threadIdx.x].m_cluster_distance;
38 tmp_points_clusters[tmp_arr_id].m_second_cluster_distance =
39 tmp_shared_arr[threadIdx.x].m_second_cluster_distance;
40 tmp_points_clusters[tmp_arr_id].m_cluster_id =
41 tmp_shared_arr[threadIdx.x].m_cluster_id;
42 }
43 if(tmp_num_elements % 2 == 1)
44 ++tmp_num_elements;
45 tmp_num_elements /= 2;
46

47 __syncthreads();
48 }

Code listing 3.20 Writing back the results to the global memory in kernel for reducing the obtained
closest clusters to each point in each chunk

1 if(gridDim.x == 1 && threadIdx.x == 0) {
2 if(heuristics_type == Elkan || heuristics_type == Hamerly)
3 upper_bounds[point_id] = tmp_shared_arr[0].m_cluster_distance;
4 if(heuristics_type == Hamerly)
5 arr_lower_bounds[point_id] = tmp_shared_arr[0].m_second_cluster_distance;
6 if(point_cluster_id[point_id] != tmp_shared_arr[0].m_cluster_id) {
7 point_cluster_id[point_id] = tmp_shared_arr[0].m_cluster_id;
8 arr_flag_finished[point_id] = 0;
9 } else

10 arr_flag_finished[point_id] = 1;
11 }

34 Implementation and parallelization

As the results from individual blocks are located at the beginning entry of each block, those
results must be shifted to the beginning of the array, such that the next iteration of parallel
reduction gets the array with data in consecutive entries. The shift is done via two kernels:

cuda shift results to tmp closest cluster : shifts entries from the beginning of each
block to the temporary array in consecutive order.

cuda copy shifted results from tmp closest cluster : copies entries from temporary
array back to original array.

The shift in details is illustrated on Figure 6. The listings of these kernels can be found in
Appendix A.3.

The heuristics kernels can also be implemented in shared memory via chunking:

For Elkan’s heuristic:

1. The upper bound is updated, in the same fashion as it was updated for global memory
implementation. It should be done in a separate kernel before updating lower bounds.

2. The lower bounds of each point are calculated in chunks, i.e. between a point and clusters
in a given chunk. The lower bounds in this chunk are compared with the previously
computed upper bound for this point. In case if upper bound is greater than any lower
bound in this chunk, 1 is written to was updated array for this particular point and this
particular chunk.

3. To obtain accumulated results, was updated array is reduced in shared memory to
obtain the maximum value in the array. In case if the final value is 0, there is no need
to recalculate bounds, as for each chunk of clusters, the corresponding entry’s value in
was updated array is 0, thus for every chunk of clusters, the cluster, to which this point
is currently is assigned to, is the closest cluster to that point.

For Hamerly’s heuristic everything is much easier, as there is only one lower bound per point
and shared memory is used to store variable max cluster prev dist .

3.3.2.2 The remaining kernels
Kernel to find minimum value in an array of flags that indicates if points have changed their
cluster or not is modified to use reduction in shared memory. The implementation of the kernel
is quite similar to the implementation of cuda find closest cluster reduction shared with
the difference that instead of the closest and second closest cluster, the minimum value is found.

Kernel to find the average coordinates is also modified to support calculations in shared
memory in chunks. The chunks are the chunks of points that are copied from global memory
to shared memory, so that this chunks of points could be used by other clusters in this block of
threads. The finding of average in shared memory consists of two parts:

Finding the sum of points in a given chunk that are in a given cluster.

Reduction of the sums from all chunks of points to obtain a new centroid coordinates for a
given cluster.

The kernel to find the sum in chunks is very similar to cuda find closest cluster chunks
kernel.

3.4 Sklearn implementation
Python’s Sklearn library contains implementation of K-means clustering [13]. The implementa-
tion is sklearn.cluster.KMeans with parameters:

Sklearn implementation 35

Number of clusters.

Initialization method of clusters: could be random or K-means++. The clusters could be
generated in advance and sent as this parameter to KMeans constructor.

Number of initializations: used for random initialization of centroids to denote the number of
times centroids will be initialized with different seeds to obtain the best centroid initialization.

Number of maximum iterations: the maximum number of times an algorithm should run.

Tolerance level, i.e. floating point precision.

Random state: used for random number generations for random generation of cluster cen-
troids.

Algorithm type: standard Lloyd’s algorithm or an algorithm with Elkan’s triangle inequality.

Listing 3.21 illustrates configuration of KMeans used, where

k value is a number of clusters.

np arr clusters is an array with initial centroid coordinates.

algorithm type is a type of algorithm that is used: Lloyd’s or Elkan’s.

Code listing 3.21 Configuration of Sklearn implementation
1 KMeans(n_clusters = k_value, max_iter = 100000, random_state = 0, init = np_arr_clusters,
2 tol = 0, n_init = 1, copy_x = True, algorithm = algorithm_type)

In order to cluster the points, fit method is used on the KMeans object illustrated on
Listing 3.21. Two dimensional list is sent as a parameter of fit method as point coordinates.

36 Implementation and parallelization

Chapter 4

Testing and evaluation of results

4.1 Solvers
All the solvers decribed in previous chapter will be included in testing, i.e. sequential solvers,
OpenMP solvers, CUDA solvers in global and shared memory, Sklearn solver. All solvers except
for Sklearn solver is tested has 3 versions:

Basic, which is a basic Lloyd’s algorithm.

Elkan, which is Elkan’s triangle heuristic.

Hamerly, which is Hamerly’s improvement of Elkan’s triangle heuristic.

The results of the solvers, i.e. clusters to which the points are assigned to, are compared to
the results of sequential basic solver. To make sure that sequential basic solver gives produces
correct results, the results of it are compared to the Sklearn Python library implementation of
K-means algorithm.

OpenMP solvers are tested in 3 different configurations (number of threads in parallel region):
4, 8, 12. CUDA solvers are tested in global and shared memory in 3 different block dimensions
(number of threads per block): 64, 256, 1024.

The centroid initialization method of choice is K-means++ for all solvers. Random initial-
ization will be used only for some tests only to compare the produced Silhouette of clusters [9]
with random centroids initialization and K-means++ centroids initialization.

4.2 Types of tests
Tests will be done with single and double precision values. This is done as some systems,
especially GPU, has less double precision modules than single precision modules, it is clearly
illustrated on Figure 4, thus the time of execution is different for single and double precision
values.

The precision of calculations and precision with which results of the solvers will be compared
to sequential basic solver varies:

10−4 for single precision values.

10−12 for double precision values.

These precisions are chosen as precisions less than assigned could result to imprecisions, thus
incorrect results for some calculations. To prevent the imprecision and to get correct results, the
precisions were chosen accordingly.

37

38 Testing and evaluation of results

4.3 Testing environment
The testing environment is

GPU: NVIDIA GeForce RTX 2080 Ti.

CPU: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz.

CUDA Version: 11.4.

Compiler command with options: nvcc -std=c++11 -Xcompiler -fopenmp.

4.4 Testing sample and time measurement
This sample was used for testing [14]. Values in the sample file are parsed consecutively as X
and Y coordinates of the points.

For sequential, OpenMP, and CUDA solvers, time is measured via C++ std::chrono li-
brary, simply by taking the time before calculations (after all host and device memory allocations
and memory copying from host to device) and time after the algorithm has converged (before all
memory copying from device to host and device and host memory freeing).

For Sklearn solver, time is measured by time() function in time library, that returns the
time in seconds since epoch.

4.5 Testing with double precision values
Figure 7 illustrates a time of executon of sequential and OpenMP solvers:

Sequential solvers were slower than Sklearn implementation. sequential solver with Hamerly’s
heuristic is the fastest among sequential solvers with Elkan’s heuristic being the second fastest
among sequential solvers.

OpenMP solvers behave similar to sequential solvers, i.e. Hamerly’s heuristic is the fastest
and Elkan’s heuristic is the second fastest among OpenMP solvers right after the Hamerly’s
heuristic. All OpenMP solvers are faster than basic sequential solver, but only with 8 and 12
number threads, OpenMP solvers get faster than Sklearn implementation.

Testing with double precision values 39

Figure 7 Time of execution of sequential and OpenMP solvers with double precision values

Figure 8 illustrates a time of executon of CUDA solvers in global and shared memory:

The block dimension of 64 threads is the best block dimension for all solvers in both global
and shared memory, as solvers with 64 threads in block are the fastest, which can be explained
with high SM occupancy, as there are more blocks that are executed in parallel with lower
number of threads per block.

Solvers in shared memory are faster than solvers in the global memory with 64 and 256
threads per block.

In most of the cases, Hamerly’s heuristic is the fastest with Elkan’s heuristic competing in
the second place. Only in configuration with 1024 threads, Elkan’s heuristic is faster than
Hamerly’s heuristic.

All CUDA solvers in configurations with 64 and 256 threads were faster than Sklearn solver
from Figure 7 and, as SKlearn is faster than sequential and OpenMP solvers, transitively,
CUDA solvers are faster than sequential and OpenMP solvers too.

40 Testing and evaluation of results

Figure 8 Time of execution of CUDA solvers in global memory with double precision values

Testing with single precision values 41

4.6 Testing with single precision values
Figure 9 illustrates a time of executon of sequential and OpenMP solvers:

The situation is quite similar to the one with double precision, i.e. the sequential solvers are
slower than Sklearn and Hamerly’s heuristic solver is faster than Elkan’s heuristic solver.

Figure 9 Time of execution of sequential and OpenMP solvers with single precision values

Figure 10 illustrates a time of execution of CUDA solvers in global and shared memory:

The configuration with 64 threads in block is still the best configuration, with only exception
of Elkan’s heuristic solver in shared memory, which is faster with configuration of 256 threads
in block, rather than 64 threads.

The main difference with double precision values is that the basic solver in both global and
shared memory is faster than Hamerly’s and Elkan’s solvers. It can be explained by the
speed of calculations with single precision. Calculations with double precision are slow, as
there aren’t as many double precision units in SM, as single precision units for calculations,
thus prevention of those calculations lead to significant performance boost. But with single
precision values, calculations are very fast and accessing the global memory for calculating
upper and lower bounds in Hamerly’s and Elkan’s heuristics becomes a hurdle, which impacts
performance in a much more negative way, rather than prevention of already fast calculations
with single precision values.

42 Testing and evaluation of results

Figure 10 Time of execution of CUDA solvers in global memory with single precision values

The scores 43

4.7 The scores
Silhouette score:
The score is obtained via Sklearn implementation of Silhouette score, see [9]. Figure 11
illustrates a histogram of Silhouette scores of random and K-means++ centroids initialization
methods. The Silhouette scores are computed for different number of points and clusters:

Number of clusters Number of points
100 1000
200 2000
300 3000
400 4000
500 5000

Figure 11 Histogram of Silhouette scores

In all instances the Silhouette scores of clusters obtained by K-means++ centroids initializa-
tion method are higher than random centroids initialization method. Thus, clusters obtained
by K-means++ are more well separated from one another and are more dense than clus-
ters obtained by random initialization method, which means that quality of clusters with
K-means++ initialization is higher.

Calinski-Harabasz score:
The score is obtained via Sklearn implementation of Calinski-Harabasz score, see [10]. Fig-
ure 12 illustrates a histogram of Calinski-Harabasz scores of clusters obtained by random
centroids initialization and K-means++ centroids initialization.
For all instances, the score of K-means++ was higher than of random initialization, which
means that K-means++ centroids initialization results in higher quality of clusters than
random centroids initialization.

44 Testing and evaluation of results

Figure 12 Histogram of Calinski-Harabasz scores

Davies-Bouldin score:
The score is obtained via Sklearn implementation of Davies-Bouldin score, see [11]. Figure 13
illustrates a histogram of Davies-Bouldin scores of clusters obtained by random centroids
initialization and K-means++ centroids initialization.

Figure 13 Histogram of Davies-Bouldin scores

For all instances, the score of K-means++ was lower than of random initialization, which
means that K-means++ centroids initialization results in higher quality of clusters than
random centroids initialization.

Chapter 5

Conclusion

The goal of this work was to study K-means clustering algorithm, triangle inequality heuristics,
and implement solvers on different platforms.

Solvers were implemented on single thread on CPU (sequential solvers), multiple threads on
CPU (OpenMP solvers), and on GPU (CUDA solvers). The solvers were eventually compared
with Python’s Sklearn library implementation of K-means clustering, as it is the most widely
used K-means implementation in Data Mining field.

As it turned out, sequential solvers were slower than Sklearn implementation. OpenMP
solvers with 8 and 12 threads were faster than Sklearn implementation, as with increase of num-
ber of threads, more points could be assigned to more threads, thus finishing the overall job
faster. Throughout testing sequential and OpenMP solvers with and without triangle inequality
heuristics, it became obvious that Elkan’s triangle inequality heuristic is faster than basic imple-
mentation of K-means clustering and that Hamerly’s heuristic is faster than Elkan’s. The reason
that Hamerly’s heuristic was faster than Elkan’s lied in the fact that, while in Elkan’s heuristic
we had to calculate lower bound between each point and each cluster, in Hamerly’s heuristic we
only need to calculate one lower bound for each point.

All CUDA solvers were faster than Sklearn implementation, thus faster than sequential and
OpenMP solvers. The best configuration for CUDA solvers turned out to be 64 threads in the
block, because more blocks can be scheduled concurrently and more SMs are occupied, thus
increasing the performance. CUDA solvers in shared memory were faster than solvers in global
memory, as reduction in block was used, thus utilizing shared memory that is allocated for each
block in SM, rather than repeatedly referring to global memory. In addition to reduction in
block, shared memory algorithms use chunking of the array from the global memory, thus the
chunk of an array that will be used by all threads in the block is loaded only once and number
of accesses to the global memory is reduced, which leads to significant performance boost. With
double precision values and configurations of 64 and 256 threads per block, CUDA solvers in
shared memory were approximately 1.4–1.6 times faster than CUDA solvers in global memory.
With single precision values and configurations of 64 and 256 threads per block, CUDA solvers
in shared memory were approximately 1.8–2 times faster than CUDA solvers in global memory.

For CUDA solvers, Elkan’s heuristic was usually faster than basic solver and Hamerly’s
heuristic was faster than Elkan’s heuristic. But it holds true only when using double precision
values, as double precision calculations are very expensive, due to fewer double precision units
in GPU compared to single precision units. For single precision values though, basic solver was
faster than Elkan’s and Hamerly’s, as to calculate upper and lower bounds, global memory should
be referenced, and due to the fact that single precision calculations are very fast, it was more
efficient to calculate all the distances, rather than access global memory in order to calculate
bounds.

45

46 Conclusion

Silhouette, Calinski-Harabasz, and Davies-Bouldin scores of random and K-means++ cen-
troids initializations showed that K-means++ centroids initialization results in clusters of higher
quality, i.e. more dense and more separated from other clusters.

Appendix A

Definition of variables, arrays,
and structures used in CUDA

kernels

A.1 Variables and arrays
T * points x : array with X coordinates of the points.

T * points y : array with Y coordinates of the points.

T * clusters x : array with X coordinates of the points.

T * clusters y : array with Y coordinates of the points.

int * point cluster id : array with indexes of clusters to which each point is assigned to.

int * arr flag finished : array with flags for each point to denote if the point has changed
its cluster or not.

int * arr flag finished shifted : array with shifted values of arr flag finished .

int * flag finished : flag that denotes if all points have changed their clusters or not.

int num points : number of points.

int num clusters : number of clusters.

T * arr lower bounds : array with lower bounds.

T * upper bounds : array with upper bounds.

T * cluster prev dist : array with distances of each cluster’s centroid coordinates to its
previous centroid coordinates.

int * was updated : array with flags that for each point to denote if upper or lower bounds
of that point should be updated.

int * was updated shifted

CudaTmpPointCluster<T> * tmp points clusters ;

47

48 Definition of variables, arrays, and structures used in CUDA kernels

CudaTmpPointCluster<T> * tmp points clusters shifted

T * array average x : array with X values of averages of all points in a given cluster that
will serve as an X coordinate of the new centroid of that cluster.

T * array average y : array with Y values of averages of all points in a given cluster that
will serve as an Y coordinate of the new centroid of that cluster.

T * array average x shifted : array with shifted values of array average x .

T * array average y shifted : array with shifted values of array average y .

int * array num points in cluster : array for each cluster that denotes the number of
points in that cluster.

int * array num points in cluster shifted : array with shifted values of array num points in cluster
.

T * tmp cluster prev dist : array that has values of cluster prev dist that will be
reduced to find maximum.

T * tmp cluster prev dist shifted : array with shifted values of tmp cluster prev dist
.

T * max cluster prev dist : maximum value of the distance that any cluster has between
its current centroid and previous centroid.

HeuristicsType heuristics type : heuristic that is used for elimination of distance calcu-
lations.

block dim : number of threads in one CUDA block.

A.2 Structures
HeuristicsType is an enumerator with members:

None: no special heuristic is used to eliminate distance calculations.
Elkan: Elkan’s triangle heuristic is used to eliminate distance calculations.
Hamerly: Hamerly’s triangle heuristic is used to eliminate distance calculations.

CudaCoordinate is a templated structure with template parameter T and members:

T m x : X coordinate.
T m y : Y coordinate.

CudaTmpPointCluster is a templated structure with template parameter T and members:

T m cluster distance : distance between a given point and the closest cluster in a given
chunk of clusters.
T m second cluster distance : distance between a given point and the second closest
cluster in a given chunk of clusters.
int m cluster id : index of the cluster in a given chunk of clusters with distance m cluster distance
to a given point.

CudaSharedSumChunks is a templated structure with template parameter T and members:

Kernels 49

T m point x : X coordinate of the point.
T m point y : Y coordinate of the point.
int m point cluster id : index of the cluster to which this point is assigned to.

CudaSharedFindAverage is a templated structure with template parameter T and members:

T m sum cluster x : sum of all X coordinates of clusters in this chunk of points.
T m sum cluster y : sum of all Y coordinates of clusters in this chunk of points.
int m num points in cluster : number of all points in this chunk of points that are
assigned to this cluster.

A.3 Kernels
Listing A.1 illustrates cuda shift results to tmp closest cluster kernel. Configuration is

Block dimension of dim3 blockDim(block dim .

Grid dimension of dim3 gridDim(ceilf(ceilf((float) num elements / block dim * 2)
/ block dim), num points) .

Code listing A.1 Kernel for shifting data from original array to temporary array
1 int thread_pos = blockDim.x * blockIdx.x + threadIdx.x;
2 int point_id = blockIdx.y;
3

4 if((heuristics_type == Elkan || heuristics_type == Hamerly) && !was_updated[point_id])
5 return;
6

7 if(thread_pos >= num_blocks)
8 return;
9

10 int tmp_arr_id = point_id * num_clusters_chunks + thread_pos;
11 int tmp_arr_block_id = point_id * num_clusters_chunks + thread_pos * block_num_elements;
12 tmp_points_clusters_shifted[tmp_arr_id].m_cluster_distance =
13 tmp_points_clusters[tmp_arr_block_id].m_cluster_distance;
14 tmp_points_clusters_shifted[tmp_arr_id].m_second_cluster_distance =
15 tmp_points_clusters[tmp_arr_block_id].m_second_cluster_distance;
16 tmp_points_clusters_shifted[tmp_arr_id].m_cluster_id =
17 tmp_points_clusters[tmp_arr_block_id].m_cluster_id;

50 Definition of variables, arrays, and structures used in CUDA kernels

Listing A.2 illustrates cuda copy shifted results from tmp closest cluster kernel. Con-
figuration is

Block dimension of dim3 blockDim(block dim .

Grid dimension of dim3 gridDim(ceilf(ceilf((float) num elements / block dim * 2)
/ block dim), num points) .

Code listing A.2 Kernel for shifting data from temporary array to original array
1 int thread_pos = blockDim.x * blockIdx.x + threadIdx.x;
2 int point_id = blockIdx.y;
3

4 if((heuristics_type == Elkan || heuristics_type == Hamerly) && !was_updated[point_id])
5 return;
6

7 if(thread_pos >= num_blocks)
8 return;
9

10 int tmp_arr_id = point_id * num_clusters_chunks + thread_pos;
11 tmp_points_clusters[tmp_arr_id].m_cluster_distance =
12 tmp_points_clusters_shifted[tmp_arr_id].m_cluster_distance;
13 tmp_points_clusters[tmp_arr_id].m_second_cluster_distance =
14 tmp_points_clusters_shifted[tmp_arr_id].m_second_cluster_distance;
15 tmp_points_clusters[tmp_arr_id].m_cluster_id =
16 tmp_points_clusters_shifted[tmp_arr_id].m_cluster_id;

Bibliography

1. BLAISE BARNEY, LAWRENCE LIVERMORE NATIONAL LABORATORY. OpenMP.
2022. Available also from: https://hpc-tutorials.llnl.gov/openmp/.

2. NVIDIA. CUDA. 2022. Available also from: https://www.nvidia.com/en-gb/geforce/
technologies/cuda/.

3. LLOYD, S. Least squares quantization in PCM. IEEE Transactions on Information Theory.
1982, vol. 28, no. 2, pp. 129–137. Available from doi: 10.1109/TIT.1982.1056489.

4. O’NEILL, Barrett (ed.). Front Matter. In: Elementary Differential Geometry (Second Edi-
tion). Second Edition. Boston: Academic Press, 2006, p. iii. isbn 978-0-12-088735-4. Avail-
able from doi: https://doi.org/10.1016/B978-0-12-088735-4.50001-8.

5. ELKAN, Charles. Using the Triangle Inequality to Accelerate K-Means. In: Proceedings of
the Twentieth International Conference on International Conference on Machine Learn-
ing. Washington, DC, USA: AAAI Press, 2003, pp. 147–153. ICML’03. isbn 1577351894.
Available from doi: 10.5555/3041838.3041857.

6. HAMERLY, Greg. Making k-means Even Faster. In: SDM. 2010. Available also from:
https://www.semanticscholar.org/paper/Making-k-means-Even-Faster-Hamerly/
103e3167b2308987a809d5eed679dff213861664.

7. GHORPADE-AHER, Jayshree; PARANDE, Jitendra; KULKARNI, Madhura; BAWASKAR,
Amit. GPGPU processing in CUDA architecture. CoRR. 2012, vol. abs/1202.4347. Avail-
able also from: https : / / www . researchgate . net / publication / 220484926 _ GPGPU _
processing_in_CUDA_architecture.

8. ARTHUR, David; VASSILVITSKII, Sergei. K-Means++: The Advantages of Careful Seed-
ing. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. New Orleans, Louisiana: Society for Industrial and Applied Mathematics, 2007,
pp. 1027–1035. SODA ’07. isbn 9780898716245. Available from doi: 10.5555/1283383.
1283494.

9. SCIKIT LEARN. Silhouette score. 2022. Available also from: https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.silhouette_score.html.

10. SCIKIT LEARN. Calinski-Harabasz Score. 2022. Available also from: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.
html.

11. SCIKIT LEARN. Davies-Bouldin Score. 2022. Available also from: https : / / scikit -
learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.
html.

12. NVIDIA. CUDA Toolkit. 2022. Available also from: https://docs.nvidia.com/cuda/.

51

https://hpc-tutorials.llnl.gov/openmp/
https://www.nvidia.com/en-gb/geforce/technologies/cuda/
https://www.nvidia.com/en-gb/geforce/technologies/cuda/
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/https://doi.org/10.1016/B978-0-12-088735-4.50001-8
https://doi.org/10.5555/3041838.3041857
https://www.semanticscholar.org/paper/Making-k-means-Even-Faster-Hamerly/103e3167b2308987a809d5eed679dff213861664
https://www.semanticscholar.org/paper/Making-k-means-Even-Faster-Hamerly/103e3167b2308987a809d5eed679dff213861664
https://www.researchgate.net/publication/220484926_GPGPU_processing_in_CUDA_architecture
https://www.researchgate.net/publication/220484926_GPGPU_processing_in_CUDA_architecture
https://doi.org/10.5555/1283383.1283494
https://doi.org/10.5555/1283383.1283494
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
https://docs.nvidia.com/cuda/

52 Bibliography

13. SCIKIT LEARN. Sklearn K-means. 2022. Available also from: https://scikit-learn.
org/stable/modules/generated/sklearn.cluster.KMeans.html.

14. GÖRLITZ, Olaf; SIZOV, Sergej; STAAB, Steffen. PINTS: peer-to-peer infrastructure for
tagging systems. In: IPTPS. 2008, p. 19.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Contents of enclosed CD

Thesis..................................the directory with latex source file and thesis pdf
src .. the directory of source codes

CSV Files ... generated CSV files
Common Files .. files used by every solvers
Cuda..CUDA solvers
Graps..generated graphs
OpenMP..OpenMP solvers
Scripts ... Python scripts for graph generations
Sklearn..Sklearn implementation
Tests..tests

Samples .. Sample files used for testing

53

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Clustering and K-means algorithm in general
	Overview of K-means algorithm
	Triangle inequality heuristics
	Elkan's triangle inequality
	Hamerly's improvement
	Drawbacks of triangle inequality heuristics

	Metrics for measuring quality of clusters
	Initialization of centroids with K-means++

	Parallel platforms
	OpenMP technology
	Multithreaded parallelization methods
	Reduction

	CUDA technology
	GPU architecture
	CUDA programming model

	Implementation and parallelization
	Sequential implementations
	Elkan's heuristic
	Hamerly's heuristic

	OpenMP implementations
	CUDA implementations
	Implementation in global memory
	Implementation in shared memory

	Sklearn implementation

	Testing and evaluation of results
	Solvers
	Types of tests
	Testing environment
	Testing sample and time measurement
	Testing with double precision values
	Testing with single precision values
	The scores

	Conclusion
	Definition of variables, arrays, and structures used in CUDA kernels
	Variables and arrays
	Structures
	Kernels

	Contents of enclosed CD

