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Abstract

Machine learning is considered to be the direction of current and future ATM systems development.

Providing new approaches to challenges presented by the ever-increasing demands on safety and

efficiency, it represents a powerful tool for solving problems across the ATM industry. The core

of any ATM system are aircraft tracking algorithms that receive large amounts of surveillance

data and apply complex computations in order to provide precise tracking data. Track filtering

poses a large challenge when the computational power needed is considered. With the goal of

optimizing the computations required for effective tracking, an Artificial Neural Network tasked

with track classification based on the tracked aircraft dynamics is presented. The purpose of the

ANN is to classify tracks in correlation with the behaviour of the tracked aircraft, in order to

allow for dynamic filtering algorithm designation. The ANN is trained and tested using ADS-B

data and evaluated by defined performance indicators.

Keywords: Machine Learning, ANN, MLP, CNN, Classification

Supervisor: Ing. Petr Lukeš

Abstrakt

Strojové učeńı je považováno za směr dnešńıho a budoućıho vývoje ATM systémů. Strojové učeńı

představuje nové př́ıstupy k řešeńı problémů spojených s nar̊ustaj́ıćımi nároky na bezpečnost a

efektivitu, d́ıky čemuž se jedná o kompetentńı nástroj s možnou implementaćı např́ıč oblast́ı

ATM. Jádrem každého ATM systémů jsou algoritmy určené k sledováńı polohy letadel. Tyto

algoritmy přij́ımaj́ı velké množstv́ı dat ze sledovaćıch systémů, a aplikuj́ı na ně komplexńı výpočty

s ćılem efektivńıho a přesného sledováńı. Filtrace sledováńı v čase klade velké požadavky na

výpočetńı výkon. S ćılem umožnit optimalizaci potřebného výpočtu pro filtrováńı sledováńı, je

navržená neuronová śı̌t, která má za úkol klasifikaci sledovaných letadel na základě dynamiky

jejich pohybu. Účelem neuronové śıtě je klasifikovat sledovaná letadla v korelaci jejich dynamikou

letu, což umožńı implementaci systémů s dynamickým přǐrazováńım r̊uzných filtr̊u v závislosti

na klasifikaci. Navržená neuronová śı̌t je trénována a testována pomoćı ADS-B dat a je dále

hodnocena pomoćı definovaných ukazatel̊u výkonnosti.

Kĺıčová slova: Strojové učeńı, ANN, MLP, CNN, Klasifikace

Vedoućı práce: Ing. Petr Lukeš
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Bc. Max A. Minev 1 INTRODUCTION

1 INTRODUCTION

Aircraft tracking systems employ track filtering algorithms to improve the accuracy and integrity

of the surveillance systems. These filtering algorithms require significant computational power,

which only increases with the number of tracked aircraft in the surveyed area. Even with setbacks

in recent years, which had negative effects on the Air transport industry, the trend of air traffic

volume keeps rising. This poses a challenge for the ATM systems not only in the need for accurate

and reliable ATM systems but also increases demands on the processing capacity of such systems.

Track filtering is dependent on the dynamic model of the system (aircraft). There are different

track filtering methods, and each is suitable for a different dynamic model.

Machine learning is the current trend of research and development in almost any technical field.

There are numerous benefits of implementing machine learning algorithms into ATM systems at

any level. This research explores the implementation of Artificial Neural Networks into ATM

systems. The aim of this research is to propose an Artificial Neural Network tasked with track

classification with the correlation to the tracked aircraft flight dynamics so that different filter

algorithms can be dynamically assigned to such classified tracks. This is expected to optimize

the computational power needed since simpler, less demanding track filtering algorithms can be

used for tracks with predictable flight dynamics.

ADS-B data is used for Artificial Neural Network training and testing. A track classification

ANN algorithm is presented with the goal of separating different tracks based on the tracked

aircraft flight dynamics.

This thesis makes an effort in describing the environment for which it is valuable. The theory

behind Machine learning is provided, as well as different air traffic surveillance systems that

can be considered as a data source for training, or as an input for the already trained Artificial

Neural Network. A variety of track filtering algorithms are closely examined providing a deeper

understanding of the research’s goal.

The methodology of ADS-B data pre-processing and classification is described, as well as the

development of the ANN. Furthermore, the trained Artificial Network is evaluated using defined

performance indicators, and the results are further discussed.

9
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2 MACHINE LEARNING

Machine Learning algorithms fall under the Artificial Intelligence ”umbrella” of computer science.

The term Machine Learning was first used in 1959 by Mr Arthur Samuel, a graduated electrical

engineer from the College of Emporia in Kansas. At the time, Arthur worked at IBM and later

was behind one of the first working self-learning computer programs.

In the 1960s, a machine by the name of ”Cybertron” was developed by Raytheon to analyze

sonar signals, electrocardiograms and speech. This machine was trained by a human instructor

to recognize patterns in collected data sets.

Today, Machine Learning has several tasks, ranging from data sets classification based on certain

models that have already been developed, future outcomes prediction (regression) based on

such models, data clustering based on the similarity of data in a dataset, reduction of data

set dimensionality to help with ”big data” processing, and many more. Machine Learning is

one of (if not the) fastest-growing subsets of computer science and is used to support many

applications that we use every day from translation software, and personalized advertising to

purchase recommendations. Throughout the years of research and development, there are two

main approaches to Machine Learning. Supervised and Unsupervised. Both are closely examined

in the following chapters. Besides those two main approaches, there are several other such as

semi-supervised learning or reinforcement learning. [1]

2.1 SUPERVISED MACHINE LEARNING

Supervised Machine Learning (SML) utilizes labelled datasets to train algorithms in such a way,

that the output from them is classified data, or accurately predicted outcomes. Labelled data is

fed through the algorithm and its influence on the outcome is controlled by a variable called

weight. This weight and several additional variables, (like bias for example), can be adjusted

until the returned data fits the desired output. There are two types of problems that can be

tackled by SML. Classification problems, where input data is classified into determined categories.

An example of such Classification could be separating spam from the inbox of an email client.

Regression is used to help understand the relationship between independent and dependent

variables. Such regression algorithms are very capable of predicting values given different data

points. An example of a regression application can be a prediction of sales for a business. SML

can be conducted using several algorithms, some of which are explained in the following chapter.

[2]

2.1.1 Linear Classifiers

Linear Classifiers group items with similar features into distinctive categories. Features are some

qualitative metrics that can be used to represent the data (for example age, height, etc..) This

grouping is achieved by a decision based on the linear combination of said features. Linear

Classifiers are practically applied to tasks such as document classification, email spam separation,

or any other application where there is a large number of variables (features) supplied to the

model. Linear Classifiers have an advantage when compared to other techniques thanks to their

speed of classification when properly set up. That makes them suitable for scenarios where there

10
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Figure 1: A flow chart displaying the process of Supervised Learning algorithms. Crucial part
is the feed-back loop used to adjust the processing of the algorithm. Flowchart created by the
author based on [1].

are strict time requirements. Linear Classifiers fall under the Discriminative classifiers umbrella.

Discriminative classifiers are different from Generative classifiers in their underlying principle.

Discriminative simply divides the data space so that each data group is occupying one part of

the split data space. Generative classifiers define boundaries around each class in the data space.

One example to represent the application of linear classifiers is classifying two groups based on

their colour. For datasets where the colour greatly affects their distribution within the space,

meaning that the position of the data is dependent on the colour of the data point, and different

colours map data points far from each other, linear regression works quite well if applied correctly,

as can be seen in the first example in figure 2. Even with a good dataset, poorly chosen linear

regression does not perform well when classifying data. This can be seen in the second example.

3. For data sets where the colour does not affect the distribution of data points n the data space,

linear regression will not perform as well as other classification algorithms. [3] [4].

2.1.2 Logistic Regression

Logistic Regression is used to predict the probability of an output (label). There are three types

of Logistic Regression. Binomial Logistic Regression considers only two possible types of output

11
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Figure 2: Example of well executed linear classifier splitting two groups effectively. Image created
by the author based on [5].

Figure 3: Example of poorly executed linear classifier not separating the two groups accurately.
Image created by the author based on [5].

(yes/no, 0,1). Multinomial Logistic Regression considers more than 2 possible unordered types

(fork, knife, spoon). Ordinal Logistic Regression allows for more than two ordered types (hot,

warm, cold). Logistic Regression is considered a Linear Classification model, making its naming

quite misleading. Logistic Regression states the boundary between two possible groups and

outputs the probability of classified data being a part of a group, based on the distance of the

group from the established boundary. Some use cases utilizing the Logistic Regression can be

predicting the possibility of illness occurring within a population, or analyzing the possibility of

fraud when an individual files an insurance claim. Like Linear Classifiers, Logistic Regression is

12
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one of the applications of Discriminative classifiers. [6] [7].

Figure 4: Logistic Regression application example. Binary classification of data with a threshold
value. Closer the data is to the threshold value, the lower is the certainty in the output state.
Image created by the author based on [8].

2.1.3 Bayesian Networks

Bayesian Networks are used as a probabilistic graphical model. Such model represents a set

of variables and their dependencies using a directed acyclic graph (DAG). Bayesian Networks

are suitable for predicting the likelihood of a possible cause being the contributing factor to a

specific event that has occurred. A use case for a Bayesian Network can be the representation of

a probabilistic relationship between the symptoms, and the disease they could be a contributing

factor. Let’s imagine a scenario where a person wants to start the engine of a car, but the engine

won´t start. Observing this malfunction, we can construct a simplified acyclic graph of the causes

and the observed evidence. In this example there is no edge between the causes, however, it is

not impossible to have two causes that share an edge. Once the causes are given a probability of

occurrence, it is possible to predict which cause is responsible for the observed outcome. [9].

2.1.4 Naive Bayesian Networks

Naive Bayesian Networks are nothing more than simplified regular Bayesian Networks. Such net-

works are composed of directed acylic (not forming circles) graphs (DAG) with just one ”parent”,

and several ”children”. What makes such networks naive is the assumption of independence

amongst the ”children”. Naive Bayesian Networks are considered less accurate on their own

when compared to other Machine Learning algorithms. Some applications showed however that

when combined with kernel density estimation, for some cases they provide high accuracy levels.

The upside of the network’s simplicity is its scalability. There are again several types of Naive

Bayesian Networks. Multinomial Naive Bayesian Networks, where there are several possible

output classes. An example of such classification can be if a specific car belongs to a car class

(sports car, SUV, saloon, hatchback etc..). Bernoulli Naive Bayesian Networks are similar to

13
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Figure 5: Bayesian Network example of a event, in this case not starting the engine when turning
the ignition key in a vehicle, and two, non-correlated possible causes. Image created by the
author based on [9].

Multinomial, however, the variables used to predict the output are Boolean, meaning only yes

or no values. For example, if a specific word can be found in a song. Gaussian Naive Bayesian

Networks are used when the variables used to predict the output are not discrete, and it is

assumed that they are forming and Gaussian distribution. [10] [11]

2.1.5 Support Vector Machines

SVMs are said to be one of the most robust classification and prediction methods. SVMs have to

be provided with a set of training examples already labelled as being a part of a specific category.

Then, the algorithm constructs a model that can assign new examples to given categories for

which it was trained on. That makes it a non-probabilistic binary classifier, however, there are

some ways to apply SVMs in probabilistic classification tasks as well. SVM maps the training

dataset as points in space, with the goal of making the gaps between the categories as large

as possible. This is where the name comes from since the data on the ”boundary layer” are

called support vectors. With new data, the algorithm again maps the corresponding point into

already created space and classifies them as belonging to one of the classes previously established

with the training dataset. SVMs are not only capable of linear classification, but when utilizing

the ”kernel trick” of avoiding the explicit mapping that is needed to get linear algorithms to

learn non-linear functions, they can be used for non-linear classification as well. Support Vector

Machines allow for a wide variety of use cases such as image classification, writing recognition or

synthetic-aperture radar data grouping (stitching). [12] [13]

2.1.6 Decision Trees

Decision Trees can be used as a classification algorithm assuming the outcomes are only discrete

values. For such Decision Trees, each node represents a feature to be classified, and each branch

represents a value that the node can assume. Decision Trees allow the combination of numerical

values with binary values. Decision Trees also propose an efficient way to optimize the algorithm.

The so-called ”pruning” technique uses a validation set to remove nodes and assign the most

common instance instead. For purposes where the outcomes are not strictly discrete, but can

assume value described as any real number, Regression Trees are used instead. Decision Trees

14
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Figure 6: Example of a SVM with large margins in data classification thanks to utilizing support
vectors. Image created by the author based on [14]

Figure 7: Example of a classification not utilizing support vectors, having significantly smaller
margins.Image created by the author based on [14]

are easy to design, read and interpret. However for real word applications, there is one downside

preventing it from being the go-to algorithm, and that is its inaccuracy. To combat that, Random

Forests are examined below. [15] [16]

2.1.7 Random Forrest

Building on the knowledge of Decision Trees, understanding Random Forests is quite straight-

forward. Random Forests combine the simplicity of Decision Trees, and flexibility to combat

inaccuracy. The basic principle of Random Forest lies in employing several Decision Trees

15
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Figure 8: Simple Decision Tree algorithm example, in which it is trying to predict the possibility
of a expensive vehicle sale to a specified group of people. Image created by the author based on
[17].

provided with the same data set and then comparing the result with each other. The class that

is most represented as the output of single Decision Trees becomes the one, that is outputted as

the decided class by the Random Forest algorithm. In the case of Regression Trees, the average

of the output is selected as the decided output of the whole algorithm. One important aspect

of Random Forests performing accurately is the Decision Trees not being correlated with each

other. One method of de-correlating Decision Trees is called ”bootstrapping”. Bootstrapping is

the procedure of assigning a different subset of the data to each Decision Tree. This ensures that

each Decision Tree will perform differently since it is working with different input data. Another

way to ensure the de-correlation of Decision Trees is called ”Feature Randomness”. This method

assigns different sets of features to different Decision Trees. [18] [19]

16
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Figure 9: Simple example of a Random Forest algorithm. The prediction that is most represented
in the entire forest is regarded as the output from the Random Forest. Image created by the
author based on [18].

17
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2.2 UN-SUPERVISED MACHINE LEARNING

Unsupervised Machine Learning (UML) differentiates itself from SML by its ability to process

unlabeled data. Such algorithms are described as being able to detect patterns in data sets, that

are otherwise hidden from the user’s point of view. There are many problems that can be solved

using UML algorithms, some of which are discussed in this thesis. Clustering means grouping

data that are not labelled into groups by their similarity. Clustering is strong with tasks such as

image compression, or market segmentation for optimized marketing. For scenarios where it is

needed to find the relationships between a data set and variables in that data set, association

algorithms are employed. This method of UML can be used to create recommendation engines

for potential buyers based on their purchase history. Dimensionality reduction is a technique

that is widely used in data pre-processing scenarios. Such UML techniques reduce the number of

inputs while preserving the quality of the whole data set. [20] [21]

2.2.1 K-Means Clustering

K-Means Clustering can be also referred to as a Vector Quantization. Vector Quantization is a

technique originally used in signal processing to allow the modelling of the probability density

function of prototype vectors. This technique served for data compression with the goal of data

transfer optimization. It divides a large set of points represented as vectors into groups based on

their proximity to each other and ensures that each group has approximately the same number of

points. A centroid point then represents each group. A data space divided by such an algorithm

forms several so-called Voronoi cells. A Voronoi cell is created by a partition of a plane divided

by the proximity of the points in that space to each other. A Voronoi cell contains all points,

that are closest to the seed of the specific cell, than to any other seed of the Voronoi cell in that

shared space. Knowing this, the K-Mean method can be used to group points from a data set

into a ”K” number of clusters. The data clustered is unlabeled, making the K-Means Clustering

a UML algorithm. There are several steps needed to apply K-Means Clustering to data. The first

step is to select the K-value. As already stated, the K-value represents the number of clusters

to be created. The next step is initializing a centroid - selecting a random data point as the

centroid (seed). The third step is assigning each data point to its closest centroid, which will

create the clusters. The fourth step is calculating the variance, and placing a new centroid in

each cluster. Once the new centroid is established, the third step repeats and some data points

will be reassigned to their new cluster based on the distance from their new closest centroid. This

process is finished once none of the data points changes its centroid after the variance correction.

K-Means Clustering is one of the most widespread uses of a UML algorithm.

Let’s imagine a scenario, where a real estate agency just introduced two housing developments

to the market. One is a luxury development in the centre of the city, and the second is an

affordable housing complex on the outskirts. The agency knows that in order to optimize the

advertisement cost, it needs to advertise each project to a different potential buyer class. the

model they develop clusters targets the advertisement audience into three groups (3 clusters).

Those who are unlikely to buy into any of those developments, those, who are more likely to

purchase the more affordable apartments, and those who are after the luxury apartments. Two

key pieces of information to cluster buyers are their current living location - if the person already

18
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lives in the centre, he is more likely to buy the more expensive apartment, and second is their

income - the more they earn, the more likely they will be to spend on the luxury apartments.

Like this, the agency can divide the potential buyers into three clusters, and each advertises a

different project in order to make the marketing as efficient as possible. [22] [23]

Figure 10: Example showing the several clusters of data with each assigned to its centroid point.
Image created by the author based on [24].

2.2.2 Hierarchical Clustering

This method builds a hierarchy of clusters. There are two approaches to building said hierarchy.

The agglomerative ”bottom-up” approach is where the observation starts in the singular clusters,

and when moving up the hierarchy, corresponding clusters merge together. At the start, each

data point is considered its own cluster, and with each iteration, similar clusters are merged,

until a one or predetermined number of clusters are established. The steps of Agglomerative

Hierarchical Clustering are computing the proximity matrix of all data points, then establishing

each data point as its own cluster, merging the selected number of closest clusters (at this point

still data points), updating the proximity matrix, and again merge the select number of closest

cluster. Repeat until the desired number of clusters is formed.

The divisive ”top-down” method starts in the ”top cluster and then splits as the observer moves

down the hierarchy of clusters. This method is basically the Agglomerative method but turned

the other way around. Instead of starting at individual data points, all the data points are

considered to be a part of a single cluster, and then the ones that are least similar to the rest

(outliers) are removed from the cluster.[“Cite –atlolla˙understanding˙2020˝]
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Figure 11: Example showing the difference between Agglomerative hierarchical Clustering, and
Divisive hierarchical Clustering. Image created by the author based on [25].

Now the question of how the algorithm compares clusters among each other to determine which

ones are the most similar, and which they should group together, or split away. There are

several ways into deciding just that. Single-linkage algorithm (”MIN” method) is defined as the

minimum similarity between two points, each belonging to a separate cluster, which is equal to

the similarity of involved clusters. In other words, the clusters are defined as similar to each

other based on the similarity of the closest points in each cluster. This approach works well as

long as there is minimal to no noise in the data points.[26]

Figure 12: Example of Hierarchical Clustering employing the ”MIN” method. Clusters are
considered similar based on the distance of the closest data points from each cluster. Image
created by the author based on [26].

For such cases, it is advisable to utilize the so-called Complete-linkage algorithm (”MAX” method).

This algorithm defines similar clusters based on the maximum similarity between two points from

each cluster. To simplify again, two clusters are considered similar, based on two points (each

from a different cluster) that are furthest apart. Even though this approach solves the problem

with noisy data points, it has issues when the size of clusters is not approximately the same.
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Figure 13: Example of Hierarchical Clustering employing the ”MAX” method. Clusters are
considered similar based on the distance of the furthest data points from each cluster. Image
created by the author based on [26].

Group averaging is another approach that instead of comparing two single points from each

cluster, averages all the similarities between points from each cluster. This approach again does

well with data sets where there is noise present in the data space, however, it tends to be biased

towards global clusters. Also, the amount of computation needed for large data sets makes it

less feasible in real-life applications. [26]

Figure 14: Example of Hierarchical Clustering employing the Group averaging method. Clusters
are considered as similar based on the average distance between points from each cluster.Image
created by the author based on [26].

The methods explained above are the most common ones, and the results that are returned by

them meet the requirements set for the algorithm, however, there are several other methods that

can be used in special cases such as calculating and comparing the distances between centroids

of different clusters. Lastly, Ward´s method is very similar to the group averaging method, and

it carries the same advantages and disadvantages, the difference is that instead of comparing
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averages, Warg´s method calculates the sum of the squared distances between points from each

cluster. [26]

Overall, hierarchical Clustering has an advantage over other clustering methods in that it not

only returns clusters themselves but also the hierarchy in which they were constructed, meaning

it provides more information about the relationship between the clusters. On the other hand,

when processing large data sets it tends to be quite slow when compared to other clustering

methods, due to the additional steps needed to merge/divide clusters. Hierarchical Clustering

does not perform the best when working with data sets with a significant amount of noise, or

with data sets containing outliers. [27] [28] [26]

2.2.3 Mean-Shift Clustering

Mean-Shift is an algorithm used for UML clustering, although it does have other applications as

well. Today, it is widely used for data analysis, such as image or voice segmentation. Mean-Shift

is an iterative algorithm, where with each iteration each data point is ”shifted” to the ”mean” of

the region. In the end, the final destination of those data points is the cluster they belong to.

The steps of the mean shift algorithm are as follows. First, it is important to set what is the

data point’s local range of influence i.e. the bandwidth. In other words how far away within the

whole data space does a selected point calculate the local mean? Once the range is set, each

point calculates the mean of the local area that is in the range (that means that for each point,

a different mean will be calculated). In the next step, the point moves from its original position

to the position of the calculated mean for the given local area. This two-step process iterates

until the point does not move to a new position, meaning it is finally located at the mean of the

cluster it belongs to, i.e. the centroid.

The algorithm as presented here would need to conduct an unreasonable amount of calculation if

processing the introduced steps for each point in the data set. To streamline the process, there is

a technique applied that allows for ignoring calculations of means of the bandwidth with fewer

data points when two bandwidths overlap. Since the bandwidth is the only parameter used for

this method, it is crucial to set it appropriately to the data set examined. Too little bandwidth

could result in false clusters when working with noisy data, and bandwidth too large could result

in the grouping of two separate clusters. [29] [30]

2.2.4 Density-Based Clustering

A cluster, under the Density-Based Clustering methodology, is defined as an area of higher

density of data points, when compared to the rest of the data set. DBSCAN (Density-Based

Spatial Clustering of Applications with Noise) introduced in 1996 by Martin Ester, Hans-Peter

Kriegel, Jörg Sander and Xiaowei Xu, is the most popular implementation of the Density-Based

Clustering method. It uses a specific number to distinguish clusters from outliers i.e. noise. Even

though it is the fastest Density-Based Clustering method, it is not always the best option for

some particular cases. Since the distance used for the separation is fixed, it could potentially not

be sufficient if used for data sets where all the clusters are similarly dense.

Two parameters are needed for the DBSCAN to create clusters, and decide if and to which a
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Figure 15: Graphical example of the Mean-Shift clustering algorithm. Each points ”shifts” to
the local ”centroid” of the cluster. Image created by the author based on [30].

data point belongs. ϵ defines the radius of the neighbourhood, and the m defines the minimum

number of data points in the neighbourhood. Data points that are not part of the density-

defined cluster are considered outliers or noise. Points, that are at the centre of a cluster that

passes both conditions of the minimum number of points, within the defined radius defining the

neighbourhood are considered core points. Data points that are a part of a cluster that passes

both conditions, however, the cluster they are at the centre of do not are considered border

points.

Point is considered as ”density-reachable” by another point in the data space, if it is possible to

connect the two points using only core points, that are each in the neighbourhood of the previous

one, with the possible exception of the destination i.e. reached point. Also, a point is considered

”directly density-reachable”, by a point, if it is located inside the epsilon-defined neighbourhood

of the core point.

The first step of DBSCAN is selecting a random point from the data set that has not been yet

assigned to any cluster or marked as an outlier. By applying the two conditions of the ϵ and the

minimum number of points in the neighbourhood, the algorithm decides if it is a core point. If it

is not, the point is marked as an outlier (this does not yet mean that it will end up as an outlier

at the end.) The next step is to add all the points that are directly density-reachable by the core

point to its cluster. Next, ”jump” to all the points that are ”density-reachable”, and assign them

to the forming cluster. If the point that is at this moment reached has been previously marked
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as an outlier, it is re-marked as a border point. Now, a cluster is formed, and this process is

repeated until all the points are assigned to a cluster, or considered as an outlier.

There are other Density-Based Clustering algorithms, such as the Self-Adjusting HDBSCAN

that utilize several distances to cover such data sets, where the clusters have different densities.

HDBSCAN requires the least amount of user input since it is the most data-driven algorithm.

Multi-Scale OPTICS creates a so-called ”reachability plot”, that is used to separate clusters with

different densities from outliers. [31] [32] [33]

Figure 16: Example of points that are ”density reachable” by a DBSCAN clustering algorithm.
Image created by author based on [32].
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2.3 ARTIFICIAL NEURAL NETWORKS

Neural Networks, also referred to as Artificial Neural Networks (ANNs), are one of, if not the

most widely recognized and examined executions of Machine Learning principles. The origins

could be traced back to the mid-1940s, when researchers like Warren McCulloch, Walter Pitts,

and later D.O.Hebb laid the groundwork for what we today call Artificial Neural Networks.

Hebbian Learning is the mechanism described by the hypothesis based on the neural plasticity

created by the already introduced D.O.Hebb. Later, in the mid-1950s, Wesley A. Clark was the

first to use a ”computer” to simulate such a Hebbian network. Frank Rosenblat, an American

psychologist, invented in 1958 the ”Perceptron”, which earned him the widely accepted status as

the father of Deep Learning. Perceptron is considered the first ANN. All other work in this field

has been possible thanks to his breakthrough. Since ANN is the method utilized in this thesis, it

will be examined closer, than the algorithms described in the previous chapters. [34]

2.3.1 Mechanisms of Artificial Neural Networks

Three layers are needed to form an ANN. The input layer is responsible for the information input

from the outside world to the following Hidden layer. Input layer neurons are considered passive,

since they don´t receive inputs from other neurons, but the data is provided by the user. The

output layer is the last layer of the ANN and is responsible for producing outputs generated by

the Hidden layers of the ANN. Output can be either one decided value (or based on how the

neural network is used class etc.), or a set of values each presented with how confident the ANN

is in each one of them. The hidden layer is topologically located between the Input and output

layers and is in fact comprised of several layers of neurons.

Each layer is connected via channels (tensors), and each channel is assigned with a weight. The

weight of a channel represents how much the value of the specific neuron connected by the

channel influence the following neuron. Simply put a neuron that is connected via a channel

with a low weight will not affect the following neuron as much, as a neuron that is connected via

a channel with a higher weight.

Another parameter influencing the output of the ANN is called Bias. Bias is used to better fit

the activation function of the Neural network to the data set that is used to train the ANN. Both

weight and Bias are ”trainable” values, meaning at the beginning of the training cycle, both are

set at random, and are adjusted by each iteration of the training cycle so that the output the

ANN returns is as close as possible to the desired one. The state of a neuron in the Hidden layer

is either active, or inactive, decided by the activation function that is inputted the weighted

sums of previous inputs, or it can be a discrete value. [34] [35] [36]

2.3.2 Activation Function

Activation Functions are used to decide if a neuron is to be activated or not, and if so then

what should the output from said neuron be? There are several Activation Functions that are

suitable and widely used for that purpose. Activation Functions can be categorized as Linear, or

Non-Linear Activation Functions, Some of the functions that were encountered most frequently

during the research for this thesis are examined in the following section. [38]

25



Bc. Max A. Minev 2 MACHINE LEARNING

Figure 17: Topology of a general Artificial Neural Network showing Input layer, several Hidden
layers and the Output layer. Image created by the author based on [36].

Figure 18: A disection of a ANN Neuron showing the channels with assigned weights, the sum of
the weights and bias, and the activation function that sum is applied to. Image created by the
author based on [37].

Step Activation Function

The step Activation Function simply decides if the value of the weighted sum is greater than

a set threshold. If the value clears the threshold then the neuron is ”activated”. This binary

state possibility however limits the use of the simple Step Activation Function, since it does not

allow for multiple output classes. Another issue arises when considering back-propagation during

the training of the ANN. That is because the back-propagation uses derivatives of Activation

Functions, that in the case of a step function is equal to 0. The equations for the step activation

function are shown in 1 and 2. [39]

f(x) = 1, if x >= 0 (1)
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Figure 19: A Step Activation function with a binary output. Image created by the author based
on [39].

f(x) = 0, if x <= 0 (2)

Where:

x is the input

Linear Activation Function

Linear Activation Function would allow for a range of possible output values, however, if there

were only Linear Activation Functions used throughout the ANN, it would only be possible to

use linear data sets as input. Another drawback is that in back-propagation, it remains constant.

That means it does not change while learning. Possibly the worst characteristic of the Linear

Activation Function is that the last layer of the neural network will always be a function of the

first layer, no matter how deep (how many layers) the ANN is comprised of. It is a good practice

to use Linear Activation Function in the output layer of such ANNs, that deal with regression

problems. The equation for the linear activation function is shown in 3. [40]

f(x) = x (3)

Where:

x is the input

Sigmoid Activation Function

The sigmoid Activation Function suits the needs of an output of predicted probability since it

exists in its entirety between the values of 0 and 1. Sigmoid is non-linear, differentiable, and
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Figure 20: Linear Activation function with direct mapping of output. Image created by the
author based on [41].

for multi-class classification is generalized into a ”softmax function”. This means, especially

the non-linear characteristic, that the Sigmoid Activation Function is used for data that is not

linearly separable. For a function to be used as an Activation Function, it has to be monotonically

increasing, which Sigmoid Activation Function indeed is. The equation for the Sigmoid activation

function is shown in 4. [42] [43]

Figure 21: A Sigmoid Activation Function that compresses the data space into values between 0
and 1. Image created by the author based on [39].

σ(x) =
1

(1 + e−x)
(4)
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Where:

x is the input

Hyperbolic Tangent Activation Function

Hyperbolic Tangent Activation Function is similar to the Sigmoid Activation Function in its

shape, and in some of its properties such as it is also differentiable. The difference is that its

values range from -1 to 1. That means that inputs that are negative are mapped as strongly

negative. Hyperbolic Tangent Activation Function is mostly used for classification between two

groups. The equation for the hyperbolic tangent activation function is shown in 5. [44] [41]

Figure 22: A Tangent Activation function allowing mapping data with negative values, as well
as positive values. Image created by the author based on [41].

f(x) =
(ex − e−x)

(ex + e−x)
(5)

Where:

x is the input

ReLU Activation Function

ReLU (Rectified Linear Unit) is the most common Activation Function used today. ReLU

Activation Function is rectified at the bottom, meaning the function is equal to 0 when the input

value is equal to or less than 0. With other values, it returns the value of the input directly. Its

implementation is regarded as one of the easiest, and it does not suffer from the same issues

that some of the previous Activation Functions do. Vanishing Gradient is one of the main issues

that other Activation Functions suffer from, but ReLU fares well with it. ANNs that employ

the ReLU activation function are sometimes labelled as ”Rectified Networks”. The fact that

all negative values are returned as 0 could be potentially a problem for such data sets, where
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the inputs do reach negative values. For such cases, the so-called ”leaky” ReLU was defined to

tackle them. The leak refers to the part of the function in the negative values, where it does not

automatically plot them as 0. This allows the ReLU Activation Function to cover a large array

of cases where the negative values have to be accounted for since its range is from - inf to +inf.

The equation for the ReLU activation function is shown in 7. The equation for the Leaky ReLU

is shown in 8. [45] [46]

Figure 23: A ReLU Activation function that is rectified from the bottom. This is not ideal fort
input data that assumes negative values. Image created by the author based on [39].

f(x) = max(0, x) (6)

Where:

x is the input

f(x) = ax, x < 0 (7)

f(x) = max(a ∗ x, x) (8)

Where:

x is the input

a is the ”leaky” constant

There are a number of activation functions that can be used in some specific cases of particular

data sets and needs of the user, however, they are not examined in this thesis since they are not

related to the topic discussed.
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Figure 24: Leaky ReLU solves the shortcoming of ReLU by allowing datasest with negative
inputs to be processed. Image created by the author based on [39].

2.3.3 Training the Neural Network

ANN training is an iterative process, in which with each iteration, the behaviour of the network

in regard to processing input data changes. At the beginning of the training, the weights are

initialized randomly. Since the weight affects the output of the ANN quite significantly. The

output of such ANN with random weights will in fact be just as random. By adjusting the

weights of the channels in the ANN, the training slowly with each iteration enables the network

to achieve such outputs, that are increasingly closer to the desired outputs. The goal of the

training is to minimize the ”loss function”. [47]

Loss Function

A Loss function is one of possible representations of the neural network’s ability to process a

specific task. There are several functions that can be used as a ANN loss function, some of which

are Mean Square Error, Mean Absolute Error, Quantile Loss etc. The goal of training a Neural

Network is to minimise the loss function. There are several algorithms used to do just that.

Gradient Descent (or Stochaistic Gradient Descent) is the most commonly used algorithm for

the Loss Function minimisation and is examined in the following section. [48] [49]

Gradient descent

A gradient can be interpreted as the slope of a surface. Descent means to move downwards. So

put together, Gradient Descent means moving down a slope unlit reaching the lowest point on

said surface. Algorithms based on Gradient Descent are iterative. The initialize at a random

point of a function, and with each iteration travels down the function until it reaches the point,

that is located at the bottom of the function. The math behind the algorithm will not be shown

in this thesis, however, it can be mentioned that steps that are further away are large, and get

smaller the closer it gets to the desired lowest point of the loss function. The step (distance) is

31



Bc. Max A. Minev 2 MACHINE LEARNING

regarded as the ”learning rate”. As an example of the Gradient-based Optimization algorithms,

a Stochastic Gradient Descent is examined closer. [50] [51]

Figure 25: Example of a gradient descent, where the calculation travels from a starting point to
the lowest point on the Loss Function. Image created by the author based on [50].

Stochastic Gradient descent

Gradient Descent algorithms inherently carry a drawback of a massive amount of computation

needed in order for the algorithm to work given that for each feature of each data point it has

to compute the derivative of the function. Stochastic Gradient Descent greatly reduces the

amount of computation needed without degrading the performance of the algorithm. Instead of

computing the derivative for every data point, it can randomly pick one data point from the data

set for the calculation in each iteration. Alternatively, it can select a small sample of all the data

points, and perform the calculation for the selected few. This is called ”mini-batching”. This

combines the computational optimization of not selecting all the data points, with the accuracy

and performance of considering all the data points. [52] [53]

Stochastic Gradient Descent is the most widely used Loss Function optimization algorithm,

however, there are some cases that are problematic. Such a case can be a Non-convex Loss

Function. In such a scenario, Gradient Descent is might not be able to locate the global minimum

since there can be several local minima. [47]

Backpropagation

Before the examination of Back propagation, let´s introduce something called Forward Propaga-

tion. Forward Propagation is a term used for the ”forward” flow of data in the ANN from the

Input layer, through the Hidden layer up to the Output layer using the channels connecting the

neurons. As already stated in the section describing Artificial Neural Networks as a whole, the
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Figure 26: A non-convex Loss Function leading the gradient descent calculation to finding just
the local lowest point, but failing to find the global lowest point of the Loss Function. Image
created by the author based on [50].

activation of a neuron can be described as the weighted sum of all the previous activation in

the preceding layer, plus a given bias that is then ”inserted” into a chosen Activation Function.

Knowing this, there are three variables that can be adjusted in order to change the activation of

a neuron. The Bias, the Weight and the selection of an Activation Function.

For large ANNs, the Loss Function can be very complicated, meaning that the calculation of

the gradient of such a function is very complex. Backpropagation is an algorithm that is tasked

with just that. Simply put, Backpropagation optimizes the paths of the ANN with the goal to

strengthen the paths that end up in the desired output (increases the weight of the channels and

adjusts the Bias in that path) and weakens the paths that would otherwise lead to undesirable

output (lowers the weights of the channels and adjusts the Bias in that path). [54] [55]

Vanishing Gradient

In the segment of this thesis where the different Activation Functions are introduced and explained,

the term ”Vanishing Gradient” is mentioned. As already obvious from the definitions presented

above, the Activation Functions ”map” the outputs into a space defined by them, which means

in most cases it largely decreases the scale. This means that a large change in input will be

returned as a small change in the output. The way how the functions are placed into the space

also influences the derivative of said function. For example, a derivative of a Sigmoid Activation

Function is relatively large when deriving around 0, but the derivative 9 gets closer to zero when

the function gets larger or smaller.
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Figure 27: A derivation of a Sigmoid Activation Function showing the reduction of data space
causing a significant Vanishing Gradient. Image created by the author based on [56].

σ′(x) = σ(x)(1− σ(x)) (9)

Where:

x is the input

This does not cause a problem in ANNs that do not employ a large number of layers, however, with

increasing layer counts, an effect called Vanishing Gradient starts to appear. Vanishing Gradient

is simply put the decrease of a gradient in ANNs layers when the Backpropagation calculates

the derivatives throughout the Artificial Neural Network. By the time the Backpropagation

arrives at the Input layer, the gradient gets very small. This in practice means that the weights

and Biases of layers in the beginning layers of the network will not be updated efficiently by

the Backpropagation. The simplest way of solving the issue of Vanishing Gradient lies in the

selection of an Activation Function that has such properties allowing for derivatives that don´t
end up diminishing the values of the data space. [57] [58] [59]

2.4 MACHINE LEARNING CONCLUSION

In this section of the thesis, the topic of Artificial Neural Networks has been introduced and

somewhat closely examined. The differences between Supervised and Unsupervised learning

techniques have been explained, and for each, a selected number of specific learning techniques

were presented.

The topic of ANNs has been dissected in further detail since its principles are chosen as the

underlying learning technique for the practical part of this thesis. The mechanics behind ANN

decision-making are somewhat of an advanced topic, but this thesis makes an effort in explaining
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it in simple, understandable terms. Training of the ANN is a crucial part of the practical part of

this thesis, and as such, it has been given substantial attention as well.
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3 AIR TRAFFIC SURVEILLANCE

Air traffic surveillance is a key component for Air traffic management. Providing the ATC

continuously with accurate positional and other data about the traffic is necessary for safe and

efficient air coordination efforts. Even with some of the setbacks in recent years that negatively

affected the growth of air traffic numbers, the amount of aircraft using the airspace is increasing

when considering the long-term trends. Key systems and principles are important to understand

in order to design methods and applications that can be used to improve the aircraft tracking

capability of such surveillance systems. In the following section, such systems are presented, and

the principle of operation is explained.[60][61]

3.1 EARLY DAYS OF RADIO WAVES

The principle today used by Primary Surveillance Radars (PSR) dates back to the early theoretical

work of a Scottish physicist James Clerk Maxwell who developed the general equation describing

electromagnetic fields in his work A Dynamical Theory of the Electromagnetic Field in 1865. In

the 1880´s German physicist Heinrich Hertz build on the work done by Maxwell and defined

a principle of reflecting radio waves off objects. Hertz proved his theory in 1888 when he did

just that utilizing electromagnetic waves at a frequency of 455 MHz. This proof of Maxwell’s

theory laid the groundwork for all the uses of electromagnetic transmission employed today in

our wireless technology.[62][63]

Gugliemo Marconi was an Italian electrical engineer credited as the inventor of the Radio thanks

to his experiments in 1899. This experiment was the outcome of his interest and research of a

”Wireless Telegraph”. In his experiments, Marconi observed that the electromagnetic waves did

reflect from the objects back to the transmitter. In 1916 he followed his experiment when using

short radio waves, crucial for the development of the RADAR. [63][64]

Christian Hülsmeyer, a German physicist and entrepreneur, was granted a patent for his

Telemobilscope in 1904. this device was closest to a RADAR of its day, however, it could

not determine the range of the object. This device used electromagnetic waves to intercept

distant objects at sea (i.e. ships). Hülsmayer did demonstrate the system’s capabilities to

the German Navy forces, however, at the time it did not spark further interest due to the

socio-economical environment in Germany (and Europe) at that time. Hülsmayer also developed

a technique which estimated the range of the object having the Telebobilscope deployed on a mast

and measured the angle at which the returned signal was strongest. Then, with triangulation

calculation, the estimate of the distance to the object was returned.[64][65]

3.1.1 Early Military Developments

As with any major technological development in human history, military efforts were the main

driving forces behind the research and development of Radio detection and ranging technology.

With the rising tension throughout Europe in the 1930s, several countries began heavily investing

in the research and development of a system using electromagnetic waves to intercept potential

airborne threats. Some of the leading regions of the most significant efforts were the USA, Great

Britain, France, the Netherlands, the (at the time relatively freshly formed) Soviet Union and
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Japan.

One of the most significant and earliest functioning RADAR systems were developed and deployed

in Great Britain in 1938. The RADAR system called Chain Home is regarded as one of the key

contributors to the successful defence against German Air-raids, even with the British Royal

Airforce being outnumbered by the German Luftwaffe. Chain Home remained in operation until

the end of the Second World War. The Chain Home radar can be seen in figure 28.[64][63]

Figure 28: Early Warning Radar system Chain Home with the CF of 30 MHz deployed on the
British east coast as part of the defence against German Luftwaffe Air-raids at the initial stages
of WW2.[66]

3.1.2 Identification Friend or Foe

With a working Radar System with the capability to intercept incoming Aircraft, a question

of determining the Aircraft´s designation arose. Having the knowledge of the presence of an

Aircraft in the airspace is a great advantage, however, to determine if it is a friendly Aircraft

coming home from a mission, or an enemy Aircraft on its way to bomb targets in the homeland

is perhaps just as important in order to effectively manage the friendly fleet of defence fighters.

Even though the principle of IFF (Identification Friend-or-Foe) was examined even before the

construction of the Chain Home EW (Early-Warning) RADAR system, the issue quickly sprung

into the researcher’s focus after the incident in the Battle of Barking Creek in 1939 where a

miss-identified friendly aircraft ended up shot down as a result of friendly-fire by a scrambled

squadron of friendly Hawker Hurricanes.

The first concepts of such systems were based on a passive ”reflector” antenna mounted on the

Aircraft. This antenna was designed in such a way that it would provide the best possible gain

for the Carrier Frequency of the ground RADAR. This design would result in a much stronger

reflection from a friendly aircraft equipped with this type of antenna.[63][67]

IFF Mark I, II, III, IV, V

IFF Mark I is the first identification RADAR system that required a transponder to be installed
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on the aircraft. This transponder helped to distinguish friendly aircraft with a Regenerative

Receiver. This receiver would be tuned to the same frequency, as the CF (Carrier Frequency)

of the RADAR, and the signal irradiating the aircraft would be amplified and fed back to a

transmitter, sending it back to the ground radar. This would display a longer ”blip” on the

operator’s radar display. At that time, there was no standardized frequency to be used. That

meant that Mark I transponders were not a viable option in the long term.

In 1940, the IFF Mark II was introduced. Transponders capable of Mark II were equipped

with several tuning boards and were able to change the operating frequency with regard to the

corresponding ground RADAR. Also, the problem of overpowering the ground RADAR by the

amplified reflection was solved by implementing an automatic gain control. With the accelerating

development of RADARs, Mark II soon was unable to keep up.

Freddie Williams, an English engineer, proposed a single standardized frequency for all IFF

already in 1940, however at the time, there was simply no need for such separation. Thanks to

the successful development of the Magnetron, the allied forces started with the development of

IFF Mark III. Transponders capable of operation under the Mark III standard were designed

so that they would generate replies to interrogations sent from surveillance ground RADARs

on a specific set of CFs. This was the first time that an early form of communication was

enabled between the RADAR and the aircraft (aircraft could for example send a ”mayday” reply

informing the ground RADAR operators about the situation in the air). One of the biggest

drawbacks of the IFF systems described was that a response from an aircraft could potentially

solicit a reply from another aircraft in its vicinity, or in the beam of the onboard IFF antenna.

Even before WW2, researchers at the USNRL (United States Naval Research Center) were

developing an IFF system of their own. The key feature that differentiated this IFF from the

ones developed in Europe was that it used a set frequency for the interrogation, and a second set

frequency designated for the reply. This would solve the issue of creating ”fake” replies from other

aircraft by the reply from the aircraft that is being interrogated. This system would eventually

be known as the IFF Mark IV, however, the United States chose to use the already deployed

solutions from the British. IFF Mark V would solve the problem of the Mark IV (sharing a

similar frequency of 600MHz with a German Artillery RADAR) by moving the frequencies used

up to around 1GHz. By the time IFF Mark V testing would have finished the Second World

War has ended. That meant the further research pivoted to the research of the IFF Mark X.[68]
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3.2 PRIMARY SURVEIILANCE RADAR

Primary Surveillance Radar (PSR) is the oldest and one of the most widely used Air Traffic

Control (ATC) equipment used today. The history of early development and research was already

presented in the previous chapters, however, its further development continues to this day, and it

will likely remain a key system in the future as well.

3.2.1 PSR - Principle of operation

To understand the principle of how PSRs work, first it is needed to have an understanding of the

components and their purpose of a PSR. To generate an electro-magnetical signal, a RADAR

needs to be equipped with a Transmitter. A transmitter is mostly an electronic circuit that

generates an electrical signal, that is fed to the antenna. The antenna then ensures the conversion

from an electrical signal into an electromagnetic signal. The design of the antenna is crucial for

the type of propagation of the electromagnetic signal. A parabolic antenna is the most widely

used design for PSR RADARS. Since a PSR needs to be able not only to transmit a signal but

also to receive it, it has to be equipped with a receiver. Receivers are again mostly electronic

devices that can receive the electrical signal that has been received by the antenna it is connected

to. Since a Radar is using the same antenna to transmit and receive electromagnetic signals it

needs to be able to switch the signal path between the transmitter and receiver depending on

which is used at the moment. Duplexer is responsible for just that.

The principle of PSR aircraft location lies in the transmission of an electromagnetic pulse (series

of pulses) in a specific direction and then receiving the pulses from that direction that were

reflected by the aircraft. The measurements that are made by the PSR are the distance of the

aircraft from the position of the PSR, and the azimuth from the PSR. The way the PSR calculates

the distance is fairly simple and shown in the figure (XY). The azimuth is determined by the

current azimuth in which the antenna is oriented. This process is entirely passive, and it does

not require any active system onboard the aircraft (transponder. The Range of the PSR is given

by the Pulse Repetition Frequency (frequency of pulse transmission, not the Carrier frequency

of the signal itself), the accuracy in distance measurement is given by the time measurement

capability of the PSR, and the accuracy in azimuth is given by the beamwidth of the antenna.

There are several drawbacks to using PSRs. Due to the design of the antenna, there is a cone

of silence directly above the PSRs antenna. Aircraft in this space will likely not be detected.

Another drawback is having a high power consumption since the transmitter has to generate a

pulse strong enough so that it can be detected after travelling towards an aircraft and reflected

back by the aircraft. Such transmitters generate pulses in the range between 10 and 30kW.

Acquiring identification is another issue the PSR system cant solve as well as determining the

height of the aircraft due to the characteristic of the antenna. The issue of determining height

also affects the accuracy of the RADAR in distance, as shown in figure (XY). The last two issues

were the main reasons for the development of the next type of RADAR, Secondary Surveillance

RADAR (SSR).[69]
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Figure 29: Primary Surveillance RADAR by the Czech manufacturer ELDIS.[70]
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3.3 SECONDARY SURVEIILANCE

The history of IFF development and use was already discussed in the chapter Early Military

Developments. The IFF MARK V forms the basis for the principle of operation of the SSR

in that it used two separate CFs for interrogation, and for the reception of replies. After the

Second World War, an IFF Mark X (which originally started as an experimental research project)

became the standard.[71]

3.3.1 SSR Principle of operation

The SSR works on an interrogation/reply principle. The signal sent from the SSR carries a

specific ”inquiry”, that is received and decoded by the transponder mounted on the aircraft.

Based on that interrogation from the SSR, the transponder generates a reply and encodes it into

a signal that is then transmitted from the aircraft. This transmission is received and decoded

by the SSR to retrieve the information encoded into the reply. This capability of encoding

aircraft-specific information into the reply is called a Selective Identification Feature (SIF). The

azimuth is determined the same way as with the PSR, however, for the calculation of the distance,

the PSR has to adjust for the processing time of the transponder (de-coding the interrogation

and encoding the reply). The adjusted formula for the distance calculation is shown in (XY).

The capability to transmit a signal that ”carries” some information hugely improves the drawbacks

of PSR. With an SSR, it is possible to identify an aircraft, and also retrieve its height besides

other information depending on the SSR mode that is used. Another improvement is the reduced

power consumption. Since the signal transmitted by the SSR has to only travel the distance to

the aircraft, it can be significantly less powerful. This is also the reason why the antenna of an

SSR can be by a planar phased array instead of the parabolic antenna of a PSR. Some of the

drawbacks however remain, such as the cone of silence, and a large rotating antenna.

The principle of operation of an SSR allows for a number of possible information to be transmitted

from the aircraft to the SSR enhancing the surveillance capabilities of the system. There are

several modes, each defining what the provided information from the aircraft to the SSR will

be, that are closely examined in the following text. Throughout the described Modes, there is a

certain overlap between civilian and military-used modes, however, this thesis will be focused on

the civilian-used modes.[71]

3.3.2 Mode A/C

With IFF Mark X, the civilian used SSR Mode A (alfa) and SSR Mode C were defined. SSR

Mode A allowed for the 4-digit octal identification number of the aircraft. This code would

be set on the transponder by the pilot. In order to interrogate the aircraft about its 4-digit

identification code, the aircraft sends a series of pulses, with a time delay between the first and

third of 8 µs. The function of the second pulse is described in a later chapter. Once the signal is

received by the transponder, it generates a reply with the 4-digit octal identification set by the

pilot into the reply and transmits it. There are 4096 possible combinations with some reserved.

The structure of the interrogation and reply is shown in the pictures (XY) and (XY). In order

for the SSR to obtain the altitude of the aircraft, it has to interrogate the aircraft by the SSR
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Mode C. Mode C interrogation is similar to the interrogation in Mode A, with the difference in

the time delay between the first and third pulse being 21µs instead of 8µs. The reply is again

coded as 4 digits octal reply. The altitude encoded into the Mode C reply is retrieved from the

aircraft’s onboard Altimeter. Due to the limitations of the possible combinations of Mode C, the

altitude is encoded in 100-ft increments.[72]

Figure 30: Graphic explaining the pulse modulation of a Mode A/C interrogation. The P2 pulse
serves for the side lobe supression.[73]

Figure 31: Graphic explaining the bits set up of the pulsed-modulated reply from the transponder
ind MODE A/C. Bit groups ABCD can each facilitate values between 0 and 7. X bit was once
used for identification of UAV traffic, some systems use it to identify garbled replies.[74]

Now let´s explain the P2 pulse in the interrogation. Besides the main lobe of the radar that

directs the signal in the desired direction, there are ”undesirable” side and back lobes. This can

pose an issue since an aircraft that is located in the side lobe at the time of interrogation, could

generate a reply. For that reason, there is a second omnidirectional antenna co-located with the

SSR. This antenna transmits a pulse timed with the P1 and P3. The strength of this P2 pulse is

set up so that it overpowers the potential side-lobe reception of P1 and P3 pulses by aircraft

that are not in the main beam of the SSR. The principle is shown in the figure 32.[75]

There are some unwanted ”features” of an SSR besides the side lobe interrogation. One of them

is the False Reply Un-synchronized in Time (FRUIT). This phenomenon happens when a single

aircraft is interrogated by two SSRs at around the same time and it causes ”false” replies to the

interrogation by either of the radars, making the target appear further or closer to the radar than

it actually is. Another issue comes in the form of garbling. Garbling occurs when two signals

”arrive” at the receiver close to each other. This can cause a change in the message transmitted

since the pulse-modulated signal can be compromised but still decoded as a valid message.[76]

With the increasing amount of air traffic at the time, Mode A/C quickly became insufficient.
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Figure 32: Graphics explaining the Side Lobe Suppression technique. Aircraft interrogated by
the main lobe of the SSR will reply to the interrogation. Aircraft interrogated by the side lobe
will not reply to the interrogation due to the P2 pulse overpowering the P1 and P3 pulses. Image
created by the author.

That is one of the reasons that a system provides a data transfer capability to transmit a larger

amount of data between the SSR and the aircraft’s transponder. Since Mode A was set by the

pilot on the transponder based on the request by the ATC controller, in high-capacity airspace it

could trigger a situation where two aircraft would bare the same Mode A identification, The

introduced SSR Mode S solved some of the drawbacks of previous mode issues by implementing

phase modulated signal transmission.[76]

3.3.3 MODE S

The implementation of phase modulation increases the transmitting bandwidth significantly.

Mode S capable transponders can encode a 24-bit address, giving almost 16 777 214 possible

unique address combinations. Every transponder capable of Mode S is assigned his unique 24-bit

address. With the increased capability of Mode S, it is possible to interrogate and send replies in

several possible formats. Different Uplink Formats (UF) are standardized with each inquiring for

different information from the aircraft. Downlink Formats (DF) are the standards for the replies

generated by the Mode S interrogation.[76]

Mode S interrogation starts with a preamble consisting of a P1 and P2 pulse spaced by 2µs.

After the preamble, the 56 (or 112) but data block is transmitted with the encoded interrogation.

This data block is modulated using Binary phase shift keying (BPSK) and encodes the inquiry

of the interrogation. The UF of the interrogation determines if the data block is 56 or 112 bits

long. The relevant UF formats and their content is listed in Table 1.

For seamless integration between the Mode S and Mode A/C capable traffic, the method of

All-Call/Roll-Call is implemented. In the All-Call period of interrogation, the surveillance of

Mode A/C equipped aircraft takes place, as well as the acquisition of 24-bit aircraft addresses

of Aircraft in the surveyed area (and of course their position). The Roll-Call is the selective
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surveillance feature of Mode S is applied since the 24-bit aircraft addresses of the aircraft in the

area of interest were acquired in the All-Call period.

Each SSR includes its unique Interrogation Code (IC) in its interrogations. This IC is also

included in the reply transmitted by the interrogated aircraft after being acquired by the All-Call

interrogation by the SSR. The SSR will instruct the aircraft to a lockout in the following Roll-Call,

prohibiting the aircraft from responding to an All-Call interrogation with the SSR´s IC in the

following 18 seconds.[77][78]

UF0 is a short air-to-air surveillance request utilized by the Aircraft Collision Avoidance System

(ACAS). UF4 is the Mode S short surveillance request for the Mode S 24-bit identity, GND Flag

and barometric altitude (MODE C). UF5 is similar to UF4, however, it requests the 4-digit

identification (MODE A) instead of the barometric altitude. UF11 serves as the Mode S All-Call

interrogation. UF16 is designated for the long air-to-air surveillance request used by the ACAS.

UF20 and 21 are requested for Comm-B with altitude and identity respectively. Comm-D employs

the UF24.

Uplink Formats Table

UF number bits Type

UF0 56 Short air-air surveillance (ACAS)
UF4 56 Surveillance, altitude request
UF5 56 Surveillance, identity request
UF11 56 Mode S All-Call
UF16 112 Long air-air surveillance (ACAS)
UF20 112 Comm-B, altitude request
UF21 112 Comm-B, identity request
UF24 112 Comm-D (ELM)

Table 1: Table of used Uplink Formats, their length in bits and type of use.

Mode S encounters the same problem as Mode A/C in terms of unwanted side-lobe interrogation.

For Mode S interrogation, the P2 pulse is used as a part of the preamble, so it does not

serve the same function as in the Mode A/C interrogation. A control pulse P5 is transmitted

omnidirectionally so that it overpowers the synchronization phase reversal that is placed 1.25µs

into the transmitted data block if the aircraft is interrogated by an SSR side lobe.[79]

Based on the UF format of the interrogation, the transponder encodes a message with the

corresponding attributes of a given DF. The reply comprises several pieces of information. Every

Mode S DF includes the 24-bit address of the aircraft, but the rest of the possible data is

DF-specific. The bit lengths and contents are listed in Table 2.

The DF selected for the reply depends on the UF used in the interrogation by the Mode S

SSR. Two DFs that should however be mentioned are the DF18 and DF18. Those are used by

the Automatic Dependent Surveillance Broadcast (ADS-B). The difference is that the DF18 is

transmitted by a non-transponder equipped beacon, usually a Vehicle Tracking System (VTS).

Mode S provides a mechanism for the detection of garbled messages. This is ensured by the

Parity bits that are included at the end of each message. Parity is a calculated value, that is
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Figure 33: The interrogation in Mode S. The pulses P1 and P2 serve as the preamble. The data
block with the BPSK encoded transmission is either 56, or 112 bits long depending on the UF
used. The control pulse P5 ensures the side lobe suppression by overpowering the synchronization
phase reversal in the data block.[79]

Downlink Formats Table

DF number bits Type

DF0 56 Short air-air surveillance (ACAS)
DF4 56 Surveillance, altitude reply
DF5 56 Surveillance, identity reply
DF11 56 Mode S All-Call reply
DF16 112 Long air-air surveillance (ACAS)
DF17 112 Extended squitter
DF18 112 non-transponder Extended squitter
DF20 112 Comm-B, altitude reply
DF21 112 Comm-A, identity reply
DF24 112 Comm-D (ELM)

Table 2: Table of used Downlink Formats, their length in bits and type of use. [73]

Figure 34: DF00, DF05 DF11, DF17, DF18, DF20, and DF21 contents 3.[73]

specific for each message, based on its contents. At the reception, the receiver applies the same

calculation to the received message and compares it to the Parity data block received at the end

of the transmission. If the calculated values are the same as the received Parity message, then

the receiver can be sure that the message that was transmitted was also received with the same

content, and was not garbled with another message.[73].

To determine which information should be encoded into the MB data field, the 8-bit Comm-B
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Data Fileds and their content

Field bits content

DF 5 Used Downlink Format for the reply
FS 3 Current flight status
DR 5 Downlink Request
UM 6 Transponder Utility Mode
ID 13 Mode A identity code
AC 13 Altitude (25feet increments)
AP 24 Address Parity
MB 56 Message Comm-B

Table 3: Table of DF Data fields and their content.[73]

Data Selector (BDS) is used. BDS also defines the data to be encoded into ADS-B messages,

even though they are considered Mode S Extended Squitter (ES) messages, and not Comm-B

messages. Without the knowledge of the specific BDS register used for the message, it is not

possible to decode the MB field. The Mode S DF and its relationship with different BDS registers

with their contents are shown in the figure 35.[73]

Figure 35: This figure show the BDSs assigned to their respective DFs. [73]

In Figure 35, the ELS, EHS and MRAR/MHS BDS groups are depicted as a part of the Comm-B

Mode S messages. ELS stands for elementary Surveillance, and it contains, BDS registers 10, 17,

20 and 30. The EHS stands for Enhanced Surveillance, and it contains the BDs registers 40,50

and 60. Meteorological Routine Air Report (MRAR) consist of BDS registers 44 and 45. The

explanation of each BDS register is not explained since it is beyond the intended scope of this
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thesis.[80]
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3.4 ADS-B

ADS-B is a cooperative dependent surveillance system. The position determined on board by

a GNSS receiver together with other data such as velocity and ID is periodically broadcasted

utilizing the Mode S Extended Squitter (ES). Since it is the positioning data source used for the

practical part of this thesis, it will be given a closer look.[80]

3.4.1 ADS-B Versions

There have been 4 different versions of ADS-B since its introduction three. The reason behind

the updates is the need for extending the pool of data that can be transmitted using ADS-B.[73]

The RTCA (Radio Technical Commission for Aeronautics) DO-260 defines the ADS-B version

0 (V0). The only way to indicate the accuracy or integrity of the (horizontal) position data

of the ADS-B system was the Navigation Uncertainty for Position (NUCp). The Navigational

Uncertainty Category for Velocity Rate (NUCr) defined the accuracy and integrity of the velocity

data. The NUCp is directly mapped by the Message Type Code (TC). The influence of the TC

over the NUCp is shown in table 4.[80]

Relationship between the TC and NUCp in ADS-B v0 with accuracy values.

Surface Position

TC NUCp HPL Horizontal Error Vertical Error

0 0
5 9 ≤ 7.5m ≤ 3m -
6 8 ≤ 25m ≤ 10m -
7 7 ≤ 185m ≤ 93m -
8 6 ≥ 185m ≥ 93m -
8 6 ≥ 185m ≥ 93m -

Airborne position with Barometric Altitude

9 9 ≤ 7.5m ≤ 3m -
10 8 ≤ 25m ≤ 10m -
11 7 ≤ 185m ≤ 93m -
12 6 ≤ 370m ≤ 185m -
13 5 ≤ 926m ≤ 463m -
14 4 ≤ 1852m ≤ 926m -
15 3 ≤ 3704m ≤ 1852m -
16 2 ≤ 18520m ≤ 9260m -
17 1 ≤ 37040m ≤ 18520m -
18 0 ≥ 37040m ≥ 18520m -

Airborne position with GNSS Altitude

20 9 ≤ 7.5m ≤ 3m ≤ 4m
21 8 ≤ 25m ≤ 10m ≤ 15m
22 0 ≥ 25m ≥ 10m ≥ 15m

Table 4: Table of NUCp to TC mapping.[73]

The following ADS-B version 1 (V1) is defined by the RTCA DO-260A. This version allowed

for separate reports of Integrity and Accuracy by replacing the NUCp with the Navigation

Accuracy Category for Position (NACp), Navigation Integrity Category (NIC) and Surveillance

Integrity Level (SIL). The NUCr is replaced by the Navigation Accuracy Category for Velocity
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(NACv). The NIC introduces more levels than the previous NUCp. Since there are more levels

defined, it is no longer possible to map the just based on the TC. NIC requires an additional bit

in order to distinguish between NIC codes within one TC. This bit is referred to as NICs (NIC

supplement bit) and is located in the 44th position in the ME data field. The values of NIC and

their dependence on NICs and TC are shown in the table 5.[73]

The surveillance Integrity Level (SIL) indicates the certainty of the measurement. in other words,

what is the probability of the measurement being outside a defined acceptable range? The SIL

parameters are depicted in the table 6.[73]

The Navigation Accuracy Category of Position (NACp), and is considered a ”supportive” indicator

of the NIC. NACp replaces the NUCp from ADS-B V1. NACp is designated to bits 45-48 in

the ME message field. NACp allows for the determination of the 95% horizontal and vertical

accuracy boundaries. The values for NACp are are the Horizontal Figure of Merit (HFOM), and

the Vertical Figure of Merit (VFOM). The values for each NACp are depicted in table 7.[73]

Similar to NACp, the NACv also refers to the Navigation Accuracy category, however now it is

reserved for the velocity. It replaces the NUCr from ADS-B V1. The bits 11-13 in the ME fields

are taken by the NACv. NACv is used to define 95% of the errors in horizontal and vertical

velocities. The values of HFOM and VFOM for each NACv category are depicted in table 8.[80]

ADS-B V1 NIC values, and the relationship with TC and NICs

TC NIC NICs RC VPL

0 - - - -
5 11 0 ≤ 7.5m -
5 11 0 ≤ 7.5m -
6 10 0 ≤ 25m -
7 9 1 ≤ 75m -
7 8 0 ≤ 185m -
8 0 0 ≥ 185m -
9 11 0 ≤ 7.5m ≤ 11m
10 10 0 ≤ 25m ≤ 37.5m
11 9 1 ≤ 75m ≤ 112m
11 8 0 ≤ 185m -
12 7 0 ≤ 370m -
13 6 0 ≤ 926m -
13 - 1 ≤ 1111m -
14 5 0 ≤ 1852m -
15 4 0 ≤ 3704m -
16 3 1 ≤ 7408m -
16 2 0 ≤ 14800m -
17 1 0 ≤ 37040m -
18 0 0 ≥ 37040m -
20 11 0 ≤ 7.5m ≤ 11m
21 10 0 ≤ 25m ≤ 37.5m
22 0 0 ≥ 25m ≥ 112m

Table 5: Table of ADS-B V1 NIC values determined by the TC and NICs.[73]

(The 1090MHz Riddle) (P01-FAA-AgendaItem3.pdf)
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ADS-B V1 SIL values and their corresponding parameters P-RC and P-VPL

SIL P-RC P-VPL

0 - -
1 ≤1 ×10−3 ≤1 ×10−3

2 ≤1 ×10−5 ≤1 ×10−5

3 ≤1 ×10−7 ≤2 ×10−7

Table 6: Table of ADS-B V1 SIL values and the corresponding parameters of P-RC and P-VPL.[80]

ADS-B V1 NACp values and the co responding parameters of HFOM and VFOM.

NACp HFOM VFOM

11 ≤ 3m ≤ 4m
10 ≤ 10m ≤ 15m
9 ≤ 30m ≤ 45m
8 ≤ 93m -
7 ≤ 185m -
6 ≤ 556m -
5 ≤ 926m -
4 ≤ 1852m -
3 ≤ 3704m -
2 ≤ 7408m -
1 ≤ 18520m -
0 ≥ 18520m -

Table 7: Table of ADS-B V1 NACp values, and the corresponding values of HFOM and VFOM.[80]

ADS-B V1 NACv values and their corresponding parameters HFOMr and VFOMr

NACv HFOMr VFOMr

0 - -
1 ≤10 ms−1 ≤15.2 ms−1

2 ≤3 ms−1 ≤4.5 ms−1

3 ≤1 ms−1 ≤1.5 ms−1

3 ≤0.3 ms−1 ≤0.46 ms−1

Table 8: Table of ADS-B V1 NACv values and the corresponding parameters of HFOMr and
VFOMr.[80]

With the ADS-B version 2 (V2), defined by the RTCA DO-260B, there are some additions

to the NIC, and some adjustments in the definitions of SIL parameters when compared to the

ADS-B V1. There are two additional supplement bits that are added to the NIC specification.

NICa corresponds to the NICs from the ADS-B V1. NICb is located in the 8th bit of the ME

message field. NICc is located in the 20th bit of the ME message field. These additional bits

widen the available data space in the TC. The updated table 9 for ADS-B V2 NIC values and

parameters is depicted below. ADS-B V2 also introduces a supplementary bit for SIL. The SILs

can be found in the 55th bit of the ME message field. The bit defines the time period used for

the sampling of the probability. If SLSs bit is equal to 0, then the probability is sampled per

hour. If the SLSs it is equal to 1, then the probability is sampled per each sample. The ADS-B

V2 does not present any changes to the NACp or NACv.[80]

RTCA DO260C is currently the newest update document for the ADS-B.
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ADS-B V NIC values, and the relationship with TC and NICa, NICb and NICc

TC NIC NICa NICb NICc Rc

5 11 0 - 0 ≤ 7.5m
6 10 0 - 0 ≤ 25m
7 9 1 - 0 ≤ 75m
7 8 0 - 0 ≤ 185m
8 7 1 - 1 ≤ 370m
8 6 1 - 0 ≤ 556m
8 - 0 - 1 ≤ 1111m
8 0 0 - 0 ≥ 1111m
9 11 0 0 - ≤ 7.5m
10 10 0 0 - ≤ 25m
11 9 1 1 - ≤ 75m
11 8 0 0 - ≤ 185m
12 7 0 0 - ≤ 370m
13 6 0 1 - ≤ 556m
13 - 0 0 - ≤ 926m
13 - 1 1 - ≤ 1111m
14 5 0 0 - ≤ 1852m
15 4 0 0 - ≤ 3704m
16 3 1 1 - ≤ 7408m
16 2 0 0 - ≤ 14800m
17 1 0 0 - ≤ 37040m
18 0 0 0 - ≥ 37040m
20 11 - - - ≤ 7.5m
21 10 - - - ≤ 25m
22 0 - - - ≥ 25m

Table 9: Table of ADS-B V2 NIC values determined by the TC and NICa, NICb and NICc. [80]

3.4.2 Structure and Contents of an ADS-B Messages

The message structure is 112 bits long- First 5 bits contain the Downlink format used. The next 3

bits contain the transponder Capability (CA). there are 7 possible capability values. CA0 informs

about Level 1 Transponder, CA1, CA1 and CA3 three are reserved and currently not in use.

CA4 informs about a Level 2 Transponder that is also capable of setting the capability to CA7

if on-ground. CA5 informs about Level 2 Transponder capable of setting the CA7 if airborne.

CA6 informs about a Level 2 Transponder that is capable of setting CA7 either on-ground or

airborne. CA7 signifies either that the Downlink request is valued at 0, or that the Flight Status

is 2,3,4 or five on-ground or airborne. The following 24 bits carry the ICAO Aircraft address.

The type of the ADS-B message is encoded to the following 5-bits longType Code (TC). The

TCs used are Aircraft Identification (TC1-4), Surface Position (TC5-8), Airborne Position with

Barometric Altitude (TC9-18), Airborne velocity (TC19), Airborne Position with GNSS Height

(TC20-22), Aircraft Status (TC28), Target State and Status Information (TC29), and Aircraft

Operational Status (TC31). The TC is included in the 56-bit Message (ME), which contains

data specified by the TC. The last 24 bits are used for the encoding of Parity data (PI). An

example of an ADS-B message structure is shown in figure 36.[80]

The contents of the ME message filed are determined by the TC. Now let’s have a closer look at
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Figure 36: The structure of an ADS-B message containing the Preamble,5-bit Downlik Format
(DF), 3-bit Transponder Capability (CA), ICAO 24-bit adress (AA), the 56-bit Message (ME/ADS-
B), and the 24-bit Parity Check (PI).[76]

the specific messages that can be encoded into the ME.[80]

Aircraft Identification and Category

For a TC 1-4, the ME contains the Aircraft’s Identification, or in other words it call-sign, and

the Aircraft´s vortex category. The structure of the ME field is depicted in figure 37. The 56

bits are divided into 10 parts. The first, part is designated for the TC (5 bits), the second

part for the Aircraft Vortex Category (CA, 3 bits), and the last 8 parts are used to encode

the Aircraft’s Call-sign (6 bits per part). To encode the Call-sign, the ASCII encoding format

is used. The Aircraft vortex categories determined by the TC and CA are listed in table 10.

The ADS-B-defined vortex categories are different from the ICAO-defined vortex categories,

however, they do correlate. ICAO WTC L (Lights) corresponds with the TC4, CA1, WTC M

(Medium) corresponds with the TC4 CA2/CA3, and the WTC H (Heavy) corresponds with the

TC4, CA5.[80]

Figure 37: The structure of the ME field with the Aircraft Category and Identification. [73]

Aircraft Airborne Position

For TC9-18 the ME field contains the Aircraft´s Airborne position and the Barometric Altitude.

For TC20-22, the ME field contains the Aircraft´s Airborne position and the GNSS height. The

structure of the Airborne position ME field is depicted in figure fig: Airborne.[80]

Figure 38: The structure of the ME field with the Airborne position encoded.TC-Type Code, SS
- Surveillance Status, SAF - Single Antenna Flag, ALT - Altitude, T - Time, F - CPR Format,
LAT-CPR - Encoded Latitude as per the CPR, LON-CPR - Encoded Longitude as per the CPR.
[73]

The CPR Format is worth explaining. CPR stands for Compact Position Reporting, and it

allows for position encoding using fewer bits than if the system were to encode the traditional

Longitude Latitude values into the transmitted message. The CPR utilizes encoding two types

of positioning data into separate odd and even messages.[80]
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Aircraft Vortex Category CA designation with the relationship to the TC used.

Vortex Category CA TC Defining parameters

Reserved not-specified T1 -
No info 0 not-specified -
Surface Emergency Ve-
hicle

1 2 -

Surface Service Vehicle 3 2 -
Ground obstruction 4-7 2 -
Glider 1 3 -
Aircraft Lighter than
Air

2 3 -

Skydiver 3 3 -
Ultralight,
Paraglide,Hang-glider

4 3 -

Reserved 5 3 -
UAV 6 3 -
Space/Transatmospheric
Vehicle

7 3 -

Light Aircraft 1 4 ≤ 7000kg
Medium 1 Aircraft 2 4 7000 - 34000 kg
Medium 2 Aircraft 3 4 34000 - 136000 kg
High Vortex Aircraft 4 4 -
Heavy Aircraft 5 4 ≥ 136000kg
High Performance Air-
craft

6 4 ≥ 5gacc,≥ 400ktv

Rotorcraft 7 4 -

Table 10: Table of Aircraft Vortex Categories and their corresponding TC an CA. [80]

In order to calculate the Aircraft position for the first time (without the knowledge of the

previous position of the aircraft), the system has to approach the localization using the Globally

unambiguous position decoding. This localization technique requires the receiver to include both

messages (odd and even) in the calculation of the position. Once the position of the aircraft is

acquired for the first time, the receiver can include only one message since the Global ambiguity

is solved by the previous localization. This localization is called Locally Unambiguous Position

Decoding. In order for the CPR to work, there are CPR zones defined for the entire Globe.[80]

The CPRs capability of shrinking the number of bits needed for the position transmission is the

reason for its employment in the encoding, however, the drawback is that for a global position

decoding there are two messages needed. ADS-B reception systems can implement mechanisms

to check if the decoded calculation makes sense. One of these checks can be referencing the

receiver position, and determining if the decoded position of the aircraft is in range of the ADS-B

transmission.[80]

Aircraft Surface Position

For TC5-8, the aircraft Surface position is encoded in the ME field. This is implemented for such

cases when the aircraft is on the ground. Since there is no need for altitude information, the bits

that would be used fur just that are now encoded with the velocity and track angle information.

53



Bc. Max A. Minev 3 AIR TRAFFIC SURVEILLANCE

The structure of the message is depicted in figure 39. The Movement Field encodes the ground

speed of the aircraft. The speed is not encoded linearly for the whole range of speeds in order to

have better precision at lower speeds, and a reasonable amount of data at high speeds. Possible

entries are depicted in the table 11. The status for Ground Track in the S field tells if the given

ground track should be considered Valid (S1), or invalid (S0). The position of the aircraft is

encoded and for that matter decoded the same way as in the3.4.2.[80]

Figure 39: The structure of the ME field with the Surface position encoded.TC - Type Code,
MOV - Movement, S - Status for ground track, TRK, Ground Track, T - Time, F - CPR Format,
LAT-CPR - Encoded Latitude as per the CPR, LON-CPR - Encoded Longitude as per the
CPR.[80]

Aircraft Surface position: Movement field values.

Encoded Ground Speed Range Discrete

0 Not available -
1 ”Stopped”, v ≤ 0.125kt -
2-8 0.125 ≥ v ≤ 1kt 0.125 kt
9-12 1 ≥ v ≤ 2kt 0.25 kt
13-38 2 ≥ v ≤ 15kt 0.5 kt
39-93 15 ≥ v ≤ 70kt 1 kt
94-108 70 ≥ v ≤ 100kt 2 kt
109-123 100≥ v ≤ 175kt 5 kt
124 v ≥ 175kt -

125-127 Reserved -

Table 11: Table of Aircraft Ground Movement speeds and their encoding. [80]

Aircraft Airborne Velocity

For a TC19, the ME field contains the Airborne velocities of the transmitting aircraft. The

decoding of TC19 ME field is quite challenging due to its large number of sub-fields. The sub-fields

and their content is depicted in figure 40. The fields that are not Subtype specific are IC (1 bit)

giving the Intent change flag, NUCr/NUCv (3 bits) giving the Navigation Uncertainty Category

for velocity, VrSrc (1bit) giving the Source of the vertical rate (VrSr1=Baro, VrSrc0=GNSS),

Svr (1 bit) giving the Sign for Vertical Rate (Svr1=Down, Svr0=Up), VR (9 bits) giving the

Vertical Rate, SDif (1 bit) giving the Sign for GNSS/Baro altitude difference (SDif1=GNSS

above Baro, SDif0=Baro above GNSS) and dAlt (7 bits) giving the GNSS/Baro difference.[80]

The subtype-specific field content depends on the subtype selected. Subtype 1 and 2 is used

when the data on the Aircraft’s ground speed is available. There are four main components, Dew,

Vew, Dns and Vns for the subtype 1 and 2 fields. The Dew field (1 bit) marks the Direction of

the East/West velocity component (Dew1=East to West, Dew0=West to East). The Vew field

marks the East/West velocity components themselves (10 bits). The Dns field (1 bit) is the

equivalent of Dew field, but for the North/South velocity component. The Vns (10 bits) is the

equivalent of Vew, but for the North/South velocity component.[80]

54



Bc. Max A. Minev 3 AIR TRAFFIC SURVEILLANCE

Subtypes 3 and 4 are designated for situations, where the Aircraft´s ground speed is not available.

his can be caused by several reasons, one of which can be the unavailability of any GNSS signal.

In such cases, The Subtype specific fields are SH field (1 bit), giving the status of the magnetic

heading information (SH1=available, SH0=unavailable), the HDG field (10bits) contains the

Magnetic heading data. The T field gives the Airspeed Type (T1=Indicated Air Speed (IAS),

T0=True Air Speed (TAS)), and AS contains the Air Speed.[80]

Figure 40: The structure of the ME field with the Airborne Velocity encoded. TC - Type Code,
ST - Subtype, IC - intent change flag, IFR - IFR capability flag, NUCr/NUCv - Navigation
uncertainty category for velocity (ADS-B V0/1,2), STSf - Subtype Specific Field, VrSrc - Vertical
Rate Source, Svr - Sign for Vertical Rate, VR - Vertical Rate, SDif - Sign for GNSS/Baro Altitude
Difference, dAlt - GNSS/Baro Altitude difference. [73]

Aircraft Operation Status

With the TC31, the ME field can contain the Aircraft Operation Status. This Operation status

contains information regarding the surveyed aircraft. The Aircraft operation Status message

differs between the ADS-B V0/1/2. For ADS-B V0, the message structure is depicted in figure

41. Even though the TC31 is defined for the ADS-B V0, version 0 transponders do not transmit

any operation status messages.[80]

Figure 41: The structure of the ME filed for TC31 for ADS-B V0. TC - Type Code, ST
- Subtype code, CC4 - Enroute Operational Capabilities, CC3 - Terminal Area Operational
Capabilities, CC2 - Approach/Landing Operational Capabilities, CC1 - Surface Operational
Capabilities, OM4 - Enroute Operational Status, OM3 - Terminal Area Operational Status, OM2
- Approach/Landing Operational Status, OM1 - Surface Operation Status. [80]

For ADS-B V1, the message structure is depicted in the figure42. The operation status is

implemented in the broadcast of the V1 transponders. The ADS-B V2 Aircraft Operational

Message is very similar to the ADS-B V1, updated with some additions to the message. THE

GVA (2 bits message field is added providing the Geometric Vertical Accuracy if ST0, and being

reserved if ST1.[73]

Figure 42: The structure of the ME filed for TC31 for ADS-B V1. TC - Type Code, ST -
Subtype code, CC - Capacity Class, OM, Operational Mode, Ver - ADS-B Version, NICs - NIC
supplement bit, NACp - Navigational Accuracy Category - position, BAQ - (if ST0) - Barometric
Altitude Quality (if ST1) - Reserved, SIL - (if ST0) - Barometric Altitude Integrity (if ST1) -
Track Angle od Heading, HRD - Horizontal Reference Direction.[80]
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3.5 MULTILATERATION

Multilateration (MLAT) could be considered an alternative form for obtaining surveillance of

Air traffic, however, it is currently one of the fastest-growing numbers of deployments and most

saw after by Air Traffic services providers. Unsurprisingly, multilateration began as a research

and application for military efforts but slowly transitioned into civilian applications.[81]

3.5.1 Multilateration Principle of operation

Multilateration is based on the Time Difference of Arrival (TDOA) method. The principle is

based on the multistatic reception of a signal transmitted by an aircraft. With the information

about the Time of Arrival (TOA) of the signal at several receiving stations deployed in the

area, the system calculates the differences of that reception between the stations and determines

the position of the aircraft mathematically. In order to understand the TDOA method, let’s

revise the definition of a hyperbola, since the TDOA method is also referred to as the Hyperbolic

localization method.[81]

Hyperbola can be defined as a curve constructed by a set of points with a constant difference in

distances between each point and two foci. Figure 43 depicts the construction of a hyperbola.

With this knowledge, if the two foci are considered the two receiving stations, the calculation of

the TDOA will provide the hyperboloid (3D localization) on which the aircraft that transmitted

the signal is located at. Now if there are 4 receiving stations, it is possible to calculate 3 TDOAs

meaning it is possible to construct 3 hyperboloids. These three hyperboloids will intersect

(in most cases) at two points in space, one of which can be easily discarded since it is ussaly

claculated to be under the earth surface. The second calculated position is considered to be the

position of the surveyed aircraft. Figure 44 makes an effort to simply explain the localization

principle of multilateration.[81][82]

The basic MLAT system is passive, meaning it does not require any transmission to be sent

by the system. It utilizes the existing SSR replies (ADS-B) transmissions in order to localize

the aircraft. However, usually, the MLAT surveillance systems are deployed with active SSR

interrogators. This provides the system not only with some sort of control over the generated

replies, but such an active system is capable of so-called Multi-Ranging. What is Multi-Ranging

and the reason for its implementation is examined in the following chapter. The advantage of

MLAT systems is the sufficient use of already existing messages transmitted by the Aircraft.

Only information that the MLAT system need is the TOA of the same signal at each receiving

station. [81][82]

3.5.2 Multilateration Accuracy

There are three main components that negatively affect the accuracy of MLAT systems. σt σt

is the standard deviation of the TOA measurement at the receiver. Some of the effects that

influence the TOA measurements are the shape of the pulse (a pulse with a sharp leading edge

will provide a better TOA measurement), the rounding of the TOA measurement, and the time

measurement discrete of the receiver. σc is the deviation of the travel speed of the signal (even

though the signal travels at a constant speed of light, due to atmospheric influence over the
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Figure 43: Construction of a hyperbola. the difference in distance between any point of the
hyperbola and the two foci is constant throughout the hyperbola. Image created by the author.

Figure 44: The multilateration principle of aircraft localization by the calculation of 3 TDOAs.
Image created by the author.
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path of the signal there is some deviation in the actual time it takes the signal to travel between

the aircraft´s transmitter and the ground receiver). Finally, the geometry of the receiver’s

deployment influences the PDOP (Positional Dilution of Precision). PDOP consist of VDOP

(Vertical Dilution of Precision), and HDOP (Horizontal Dilution of Precision). The σt determines

the dispersion of the constructed hyperboloid. The PDOP determines the angle at which the

hyperboloids intersect. It can be said that a PDOP is considered good if a small change in the

aircraft position leads to a large change in TDOA, and PDOP can be considered bad if a large

change in the aircraft´s position leads to a small change in TDOA. It is to be noted that the

PDOP does not depend solely on the geometry of the receiving station’s deployment, but also on

the area of surveillance in relation to that specific deployment. The combination of the three

sources of deviation between the actual and calculated position defines the Area of Inaccuracy.

Area of inaccuracy is a physical 3D space that contains all the possible positions of the surveyed

aircraft.[81][81]

3.5.3 Active Multilateration

So far the principles behind passive MLAT surveillance systems were discussed. MLAT surveillance

systems however are usually deployed with one or more transmitters, that actively interrogate

the Aircraft. This allows not only for at least some sort of control over the generated replies, but

most importantly it allows for the application of Multi-ranging (elliptical) method. Multi-ranging

is used for the reduction of the Area of Inaccuracy in measurements with high PDOP. Since the

system knows the time of the interrogation transmission, and the time of the reply reception

(TOA), it can construct an ellipsoid, on which the aircraft is located in 3D space. This ellipsoid

can help reduce the Area of Inaccuracy quite drastically for such areas where the PDOP of the

system is very high.[83]

3.6 AIR TRAFFIC SURVEILLANCE CONCLUSION

Every Air Traffic Surveillance system covers a different role in the overall ATC environment.

This means that no single system can be chosen as the only source of the Air Traffic situation.

Table 12 shows the different tasks and capabilities of the surveillance system with the type of

aircraft that is being surveyed.

Air Traffic Surveillance system capabilities

Surveillance system/Aircraft Cooperative Non-Cooperative

Dependent ADS-B -

Independent SSR/MLAT PSR

Table 12: Table of Air Traffic Surveillance systems capabilities.

To understand the figure 12, let’s explain the labels used. Aircraft is considered Non-cooperative

if it is not equipped with any form of transponder that would allow it to decode interrogations, or

encode replies (unsolicited replies in the case of ADS-B). Aircraft that is capable of transmitting

a response (or generating an ADS-B message), is considered a Cooperative. A surveillance

system is considered Independent if the aircraft position is determined by the surveillance system

itself. If the position information is provided by the surveyed aircraft, the surveillance system is
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considered Dependent.
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4 TRACK FILTERING

Tracking an aircraft is a task of updating the aircraft’s position (or other information but for the

scope of this thesis let’s focus on position tracking) in time. By simply plotting the updated

aircraft position provided by the chosen surveillance system (actually by the fusion of several

surveillance systems but let’s keep it simple for now), the accuracy of the track is solely dependent

on the accuracy of each position determination. The accuracy of the track can be increased if

the system considers the previous position and some other metrics that can be retrieved from the

available data. Track filters are doing just that, and the filters that are most commonly utilized

in Air traffic Surveillance are the focus content of this chapter.[84]

4.1 g-h FILTER

The g-h filter is also referred to as the α-β filter or the f-g filter. The g-h filtering algorithm is

considered a steady-state two-dimensional Kalman filter. [85] In aircraft tracking problems, the

implementation of a g-h filter allows for an increase in the positional accuracy and the accuracy

of velocity measurement. To implement any filter into the tracking system, the system dynamic

model has to be defined. The dynamic system model. An example of a system dynamic model

with constant velocity is shown in 11. The dynamic system state equations are different for a

system with linear or non-linear acceleration.[86]

xn+1 = xn +∆Nẋn (10)

ẋn+1 = ẋn (11)

Where:

xn+1 is the position at n+1

xn is the position at n

∆N is the time difference between the n and n+1

ẋn is the velocity at time n

ẋn+1 is the velocity at time n+1

With the dynamic system model defined, the position and velocity prediction can be defined

using the state extrapolation method. With the system state predictions calculated, it is possible

to update the system state measurement taken at the time defined for the prediction using the

equations for the updated system position 12 and updated system position. 13. These equations

are called the α-β track update equations. Note that these are for a system dynamic model a

constant velocity and linear position change.[86]

x̂n,n = x̂n,n−1 + g(zn − x̂n,n−1) (12)

ˆ̇xn,n = ˆ̇xn−1 + h(
zn − x̂n,n−1

∆t
) (13)
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Where:

x̂n,n is the estimated position of the dynamic system at n (after zn)

x̂n,n−1 is the previous position estimate at time n (estimate made at n-1)

g is the factor dependent on the state measurement accuracy

h is the factor dependent on the velocity measurement accuracy

Zn is the measurement at n

ˆ̇xn,n is the estimated velocity of the dynamic system at n (after zn)

∆t is the time difference between measurements

In real-world applications, the g-h filter does not meet the requirements for tracking systems since

it only deals with dynamic systems with constant velocity. It cant be expected the tracked aircraft

will keep its heading and velocity constant for the entire duration of the flight. The g-h-k filter is

more capable in the sense of track filtering dynamic systems with linear acceleration.[86] For

such dynamic system, the state update equation in 14 15 16. The setup of the g-h-k parameters

is crucial for the performance of the filtering algorithm.[86] The figure 45 show a flowchart of the

estimation algorithm.

Figure 45: Flowchart explaining the estimation algorithm. [86]

x̂n,n = x̂n,n−1 + α(zn − x̂n,n−1) (14)

ˆ̇xn,n = ˆ̇xn−1 + β(
zn − x̂n,n−1

∆t
) (15)

ˆ̈xn,n = ˆ̈xn,n−1 + k(
zn − x̂n,n−1

0.5∆t2
) (16)

Where:

x̂n,n is the estimated position of the dynamic system at n (after zn)

x̂n,n−1 is the previous position estimate at time n (estimate made at n-1)

g is the factor dependent on the state measurement accuracy

h is the factor dependent on the velocity measurement accuracy
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k is the factor dependent on the acceleration measurement accuracy

Zn is the measurement at n

ˆ̇xn,n is the estimated velocity of the dynamic system at n (after zn)

∆t is the time difference between measurements

ˆ̈xn,n is the estimated acceleration of the dynamic system at n (after zn)

Even with the advantages of the g-h-k filter over the g-h filter, the real-life application is limited

as well. Dynamics systems cant be expected to have either constant or linear acceleration for the

entire track. Kalman filters however are more suitable for less predictable dynamic systems and

are explained in the following section.[86]

4.2 KALMAN FILTER

Kalman filter is an iterative algorithm used to estimate system parameters (not unlike the g-h

filter. Kalman filter is capable of providing accurate estimates even with the input data being

inaccurate and/or noisy. Linear Kalman filter can be used for tracking of a dynamic linear

system. For non-linear dynamic systems, there are other Kalman filters that can be employed[87]

Not unlike the g-h-k filter, the Kalman filter employs an extrapolation equation to describe the

dynamic system model. The general equation is shown in 17.[86]

x̂n+1,n = Fx̂n,n +Gun + wn (17)

Where:

x̂n+1,n is the predicted state vector at n+1

x̂n,n is the estimated system state vector at n

un is the control variable (measurable input to the system)

wn is the process noise (input that can´t be measured)

F is the state transition matrix

G is the input transition matrix

The five Kalman filter equations explain the Kalman filter algorithm. The following equations

show on the possible implementation of the Kalman filter for applications in state dynamic

systems with constant velocity. The dynamic system state update equation is shown in 18. The

system state and velocity extrapolation for a dynamic system with a constant velocity is shown

in equations 19 and 20. The Kalman gain represents the estimation weight that is dynamically

recalculated with each iteration. Kalman gain equation is shown in 21. Covariance update

is also called the correction equation and is defined by the equation 22. For a dynamic state

system with a constant acceleration, the covariance extrapolation is defined as 23. To gain e

better understanding of the Kalman filter algorithm, figure 46 showcases the relationships in the

algorithm.[86]

x̂n,n = x̂n,n−1 +Kn(zn − x̂n,n−1) (18)
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Where:

x̂n,n is the estimated system state vector at n

x̂n,n−1 is the estimated system state vector at the previous n

Kn is the Kalman Gain

zn is the system state measurement at time n

x̂n+1,n = x̂n,n +∆tˆ̇xn,n) (19)

ˆ̇xn+1,n = ˆ̇xn,n (20)

Where:

x̂n+1,n is the predicted system state vector at n+1

x̂n,n is the estimated system state vector at n

∆t is the time difference between measurements

ˆ̇xn,n is the estimate of velocity at n

ˆ̇xn+1,n is the prediction of velocity at n+1

Kn =
pn,n−1

pn,n−1 + rn
(21)

Where:

Kn is the Kalman gain for the system state estimation at n

pn,n−1 is the covariance update estimation at n-1

rn is the measurement uncertainty

pn,n = (1−Kn)pn,n−1 (22)

Where:

pn,n is the estimated covariance update at n

Kn is the Kalman gain at n

pn,n−1 is the estimated covariance update at n-1

pn+1,n = pn,n (23)

Where:

pn+1,n is the predicted covariance extrapolation at the n+1

pn,n is the estimated covariance update at n
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Figure 46: Flowchart explaining the Kalman filter algorithm.[86]

The Kalman Gain is an important part of the Kalman filter, it determines how much the

prediction influences the system state estimate. In other words, if the measurement is labelled

as low uncertainty, and the prediction is labelled with high uncertainty, the resulting Kalman

gain would be High. This means the system state estimation will be more influenced by the

measurement. Low Kalman gain is the result of a measurement with high uncertainty relative to

the prediction uncertainty. In such case, the prediction will influence the final state estimation

more.[86]

4.2.1 Extended Kalman Filter

A linear Kalman filter is limited by the need for a linear system. Extended Kalman Filter allows

for the filtering of non-linear systems by a process called linearization. Linearization is a process

of approximation of non-linear transition and measurement functions employing the Taylor Series

Expansion. Linearization of non-linear function is done by a line tangent of the function in its

mean value. When compared to the Simple Kalman Filter, the extended Kalman filter is less

accurate, however, it allows for application in non-linear systems.[84][88]

4.3 TRACK FILTRATION CONCLUSION

With the understanding of different track filtering algorithms and approaches, the use cases for

each are clearly different. The hypothesis proposed in this research discusses a track classification

that would allow for an implementation of a system that would dynamically assign different

filtration algorithms to the tracking algorithm based on the tracked aircraft behaviour. In other

words, tracked aircraft with constant velocity and no change in the heading can be assigned with

a linear filter, and aircraft with less predictable behaviour would be assigned with a track filter

that can handle non-linear systems. This is argued to be beneficial in terms of the demands on

computational power since less demanding aircraft tracks would be assigned with a filtration

algorithm that has simpler calculations. The track classification methodology and execution are
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closely examined in the following section.
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5 METHODOLOGY

In this section, the methodology used for this research is presented. ADS-B is chosen as the

source of surveillance data for the research due to its availability, however, note that other sources

should be compatible with the methodology presented here. With the supervised ANN chosen

as the machine learning algorithm, there is a need to define a data classification and labelling

system. The first step however is data pre-processing which ensures that only data of certain

quality are considered as input for the ANN. The methodology flowchart is shown in figure 47.

Figure 47: Flowchart of the thesis methodology.

Figure 47 depicts the methodology used in the research behind the thesis. Raw ADS-B data is

firstly pre-processed to optimize the dataset for the task at hand. With the pre-processed dataset

the track itself is then defined for the aircraft utilizing the positional information contained in the

ADS-B messages. Tracks are then split into segments which will be then classified by a defined

classification algorithm. The classification algorithm is proposed with the goal of classifying the

segments based on the track behaviour. Classified segments are then labelled by the class they

are a part of and are used as the training and testing datasets for the ANN designed for the goal

of this research. Segments themselves are converted into images with normalized dimensions.

This decision is made so that the input to the ANN is normalized being the image dimensions.
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Another approach is providing the track segments as time series of 2D plots, however, this would

require further data manipulation to ensure a certain level of normalization so that it can be

used as input for the ANN. This additional data manipulation (interpolation of plots to ensure

normalized update rate for example) could change some hidden data features that are present

in the data if represented by an image. An MLP and CNN are proposed, trained and then

compared to determine which is more suitable for the goal of this research.

To effectively train an ANN, the amount of data required is important. To be specific the more

data is used for the training, the better the performance is to be expected from the ANN. This

however means that the demands for computing power are great. The PC specs for this research

are listed below:

• Processor - Intel(R) Core(TM) i5-10210U CPU @1.60GHz 2.11

• RAM - 8 GB (7.64 Usable)

• Graphics - Intel(R) UHD Graphics

This setup is not ideal for such an application due to the lack of a dedicated Graphics card. This

does not affect the performance of the classification itself, but it does affect the time needed to

train the ANN, and the time needed for the ANN to classify data.

5.1 DATA PRE-PROCESSING

Providing the ANN with well-prepared data is key to its efficient training. The raw ADS-B data

is fed through several pre-processing algorithms before it is prepared to be fed into the ANN

as input. The process of data pre-processing is examined in this section. A sample of the used

ADS-B data is shown in figure 48.

Figure 48: Sample of decoded ADS-B data before any processing for the ANN input.

This raw decoded ADS-B dataset contains a lot of data that are not needed for the track

classification. Leaving only the key data greatly reduces the computational power needed for the

later stages of pre-processing. Data deemed as necessary for the track segmentation and label

definition are the aircraft’s unique 24-bit ICAO address, timestamp, latitude and longitude. The

rest of the data is filtered out. Furthermore, after calculating the time difference between all the

rows in the dataset, some rows show an update rate that is not valid since their update rate is

way too fast for an ADS-B system. Such rows are considered as noise (or false aircraft updates)

and are filtered out from the dataset as well. Figure 49 shows the code used for the filtration of

such rows.
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Figure 49: Code discarding rows from the dataset that have too small update time.

To calculate track flight dynamics indicators, the first step is to split the ADS-B data into

segments which will be later labelled. The rules for the track segmentation are heuristically

selected based on the reasonably expected correlation with the labelling logic and are as follows:

• single 24-bit ICAO address in one segment

• segments no longer than 15 seconds

• no less than 4 updates per segment

Having a single 24-bit ICAO address ensures that a single aircraft is present in a segment. The

15-second segment limit is chosen to minimise the change of the tracked aircraft behaviour in

a single segment, which would make for a less clear classification. This would also result in a

more demanding dataset for the ANN to classify. Limiting the lowest number of track updates

with the distribution of plots within one segment. This condition ensures that the segment is not

unbalanced with updates in time.

The dataset is then divided into segments using the code shown in figure 50, and the segments

that do not comply with the rules listed above are discarded using the code shown in figure 51.

Figure 50: Code dividing the dataset into segments.

Having well-processed segments that comply with the defined rules is key for the definition

of labels that are used for ANN learning. Inconsistency in the training dataset comprised of

individual segments would greatly reduce the performance of the ANN not only while training,

but also the label definition would be negatively affected resulting in undesirable and illogical

ANN outputs.
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Figure 51: Code discarding segments that do not comply with the rules for valid segments.
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5.2 TRACK CLASSIFICATION

This thesis focuses on track classification with the purpose of dynamic filtering applications.

Track filters perform differently based on the ”predictability” of tracked aircraft behaviour.

Classification of tracked aircraft can be approached by a number of possible metrics which are

discussed in this thesis.

5.2.1 Classification Metrics for Labelling

Defining what will be the classification based on is key for the labelling of the input data and

for the ANN training performance. The classification of the track is intended to allow the ANN

to classify segments for a dynamic filtering algorithm applied to a specific track. This means

that the classification itself has to be correlated with the variables affecting the performance of

the filter used. Simply put the track classification is based on how difficult it is to predict the

behaviour of the track. There are endless possible indicators (and a combination of indicators)

that can be retrieved from available data, that can be expected to have some correlation to

the tracking behaviour. A selection of possible indicators is shown in this section. A trained

ANN does not rely on the classification provided while being trained. While the ANN is being

trained, it is only supplied with the label of the data that it is classifying, and it defines its

own classification metric that is hidden from the user. These classification metrics defined by

the ANN might not be the same as the ones defined by the user when training the ANN. This

ensures that the ANN is capable of processing inputs that are not labelled by the user, and it

still achieves the classification that is requested.

Tracked aircraft in upper flight levels can be argued to have more predictable behaviour than

aircraft flying at lower flight levels. This assumption is based on the fact that most of the

flight time spent in higher flight levels is without large and/or sudden changes in heading or

altitude. Aircraft in lower flight levels can be expected to change their heading and altitude

more unpredictably since it is expected that they are either about to land and are manoeuvring

to prepare for an approach to an airport, or have just departed and are advancing into their

planned flight path and altitude. With this in mind, the tracked aircraft’s current altitude can

be considered as an indicator (or better a part of a set of indicators) on which track classification

can be based.

The speed of a tracked aircraft can also be considered as part of the set of indicators used for

the track classification. Aircraft travelling at a higher speed can be considered less likely (and

actually less capable) of sudden and/or large changes in heading or altitude. Subsequently, if

the tracked target is determined to be travelling at a lower speed, it has the capability and is

expected to proceed with more sudden and large changes in heading or altitude. The tracked

aircraft acceleration is another flight performance indicator that can be used for the classification

with a very similar application as the speed indicator described previously.

Flight plan of the tracked aircraft can be considered as a contributing factor to the classification

algorithm as well. Taking into consideration the flight path and altitude given by the aircraft

flight plan, the classification of such track would be quite straightforward, as long as the aircraft

adhered to the flight plan. Any classification algorithm however can not rely solely on the
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flight plan since there is no guarantee the aircraft will adhere to the flight plan due to changing

conditions affecting the flight.

It can be argued that the wake vortex category can be another indicator of the aircraft’s behaviour

capability. Heavy aircraft do not have the same capability in terms of flight dynamics when

compared to lighter aircraft. This assumption means that the wake vortex category can be

considered one of the contributors to the classification algorithm.

Some sort of qualitative indicator about the tracked aircraft flight can be proposed that can be

subsequently used as the classification backbone for the ANN and for the labelling algorithm.

This research entertains several possible approaches to this method, which are closely examined

in the following section.

5.2.2 Segment Classification for Labelling

One possible classification method explored while conducting the research is the minimal turn

radius of the tracked aircraft flight within one segment. Figure 52 shows the logic behind this

metric. Track segments are then represented by the smallest turn radius present in that segment.

The turn radius is calculated for three subsequent plots, for all the groups of three in the segment

excluding the first and last plot of the segment. This approach however is not ideal since it is

very sensitive to noise present in the dataset, and the classification is deemed insufficient for the

application of this research. The code processing of this approach is shown in the figure 53.

Figure 52: Figure showing the difference between a track with large turnradius, and a small
turnradius.

The tracked aircraft track segment standard deviation from the shortest distance between the

first and last plot (forming a linear function) is examined as one of the possible metrics for

the track classification. The distribution of track segments can be seen in the histogram 54.

Standard deviation is defined as the squared root of variance. Variance is defined as the squared

differences from the mean. the formula for variance is shown in figure 24.
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Figure 53: Section of the code in charge of calculating the turnradius of three subsequent plots.

S2 =

∑
(xi − x̄)

n− 1
(24)

Where:

S is the sample variance

xi is the value of a single measurement

x̄T is the mean of all measurements

n is the number of measurements

This approach performed better than the turn radius as a metric approach, however, it is not

selected as the classification metric for this research due to its poorer performance when compared

to the following classification metric.

The best-performing metric for this research is considered to be the distance comparison between
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Figure 54: Histogram showing the frequency of standard deviation values. This histogram shows
that most of the track segments are approaching a standard deviation of 0, meaning that the
aircraft is flying straight, without a change in heading.

the tracks covered distance, and the shortest distance between the first and last plot of a segment.

Figure 55 explains the logic behind this classification metric definition.

Figure 55: Logic between the selected classification metric. Track A is considered to be classified
as easier to be tracked due to the difference in distance covered by the aircraft and the shortest
distance between the first and last plot of the segment is lower, than the difference of the track B.

The classification of track segments is defined by the boundaries of the ratio between the distance

covered by the aircraft and the shortest distance between the first and last plot of the segment.

Boundaries set for the classification are set based on the distribution of ratios throughout the
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dataset. The lower boundary is set to a ratio of 1.003, and the upper boundary is set to a ratio

of 1.04. Segments with a ratio below the lower boundary of 1.003 are assigned to a class ”0”.

Segments with a ratio between the lower boundary of 1.003 and upper boundary of 1.04 are

assigned to a class ”1”, and the segments with a ratio above the upper boundary of 1.04 are

assigned to a class ”2”. Code shown in the figure 56 deals with the shortest distance between the

first and last plot of a segment, the ratio calculation between the shortest distance and the actual

distance covered by the aircraft and with the segment classification based on the boundaries

defined.

Figure 56: Code segment tasked with the shortest distance between the first plot and the last
plot of the track segment calculation, the ratio calculation and with the segment classification.

Using this distance ratio classification metric, the track segments are divided into classes, each

saved into separate folders representing the segment class as seen in the figure 57.

Figure 57: Figure showing the classes folders with segments loaded into the corresponding
directory.

With the track segments sorted into their corresponding classes, the dataset is ready to be used

for ANN training and testing.
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5.3 ARTIFICIAL NEURAL NETWORK SETUP

A gentle introduction to artificial neural networks has already been presented in this thesis. The

following part shows the application of selected neural networks to the problem at hand. There

are two ANNs trained, tested and compared to each other so that there can be a conclusion

made on which is more suitable for the goal of this thesis in mind.

5.3.1 Multi-Layer Perceptron Training Principles

MLP (Multi-Layer Perceptron) is a variant of an ANN that has all of its layers fully connected.

This means that each neuron in a layer is connected to each layer of the preceding and the

following layer in the neural network. There is a number of python libraries that can be utilized

for the construction of an MLP. For this research, the Scikit Learn python library is used due to

its relative ease of use, and amount of configuration provided to the user.[89]

The data flow throughout the neural network is divided into forward propagation, and backprop-

agation. The steps for forward propagation are explained in the figures below. The first step is

multiplying the input value with the assigned weight of the path connecting the neurons, and

then summing all those multiplied values together as shown in 25. Weight influences the value

influence on the receiving neuron. The
∑

is also equal to the dot product x.w. [90]

∑
= (x1 × w1) + (x2 × w2) + ....+ (xn × wn) (25)

Where:

xi is the input value

wi is the weight assigned to the path connecting the neurons

n is the number of connections between the neuron and the previous layer

The next step is adding the dataset bias to the sum of the values multiplied. Bias is necessary to

fit the dataset to the activation function used by the neuron. The equation 26 shows the bias

application.[90]

I =
∑

+b (26)

Where:

I is the input value adjusted by a bias

b is the bias∑
is the sum of values multiplied by weight

Third and the last step is to pass this I value through a selected activation function. Activation

functions have a significant effect on the neural network performance since the compress the

input values to a smaller scale easier manageable by the neural network. The example in 27

shows the application of a sigmoid application function.[90]
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ŷ = σ(I) =
1

1 + e−I
(27)

Where:

ŷ is the output value

σ is the sigmoid activation function

I is the input value adjusted by a bias

Backpropagation is used for the training of the MLP (or any other ANN). In simple terms,

backpropagation is used to compute the gradient of the loss function of the MLP considering

the weights. There are two main steps to backpropagation in ANN. The first step is to figure

out how far is the estimate returned by the ANN from the actual desired values. Usually, the

MSE (Mean Square Error) is used for the Loss function in regression problems, however, in the

case of this research, a Cross Entropy loss function is used since it is dealing with a classification

problem. Equation 28 shows how the Cross-Entropy loss function is calculated when there are

more than 2 classes (non-binary classification).[91]

CE = −
∞∑
c=1

yo,clog(po,c) (28)

Where:

M is the number of classes

c is the is the correct classification for o

o is the observation

y is the indicator for the ”correctness” of c for o

p is the probability predicted of the o being the class c

The entire training set has to be accounted for for the loss function. The average of the loss

function for the entire training set is called the Cost function C .

To improve the performance of the ANN, the biases and weights are to be adjusted. This requires

the knowledge of how the Cost function changes when the biases and weights are adjusted. The

gradient is used just for that purpose. The equation 29 shows how the weight affects the Cost

function, and equation 30 shows how the bias affects the cost function.[90]

∂C

∂wi
=

2

n
×
∑

(y − ŷ)× σ(I)× (1− σ(I))× xi (29)

Where:

C is the Cost function

w is the weight

y is the actual value

ŷ is the predicted value

I is the input value adjusted by a bias
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x is the input value

∂C

∂b
=

2

n
×

∑
(y − ŷ)× σ(I)× (1− σ(I)) (30)

Where:

C is the Cost function

b is the bias

y is the actual value

ŷ is the predicted value

I is the input value adjusted by a bias

x is the input value

σ is the sigmoid activation function

With the knowledge of how the weights and biases affect the loss function (performance) of the

ANN, it allows us to optimize the weights and biases to minimize the Loss function. Optimization

is the search for the best set of weights and biases for the particular dataset classification.

Gradient descent is the most widely used optimization algorithm and is also employed in our

case. Learning rate α is a parameter that controls how much the optimization algorithm changes

the values of weight and bias with each iteration. The equation 31 shows how the weight is

adjusted to minimise the loss function, and the equation 32 shows how the bias is adjusted to

minimise the loss function.[90]

wi = wi − (α× ∂C

∂wi
) (31)

Where:

C is the Cost function

w is the weight

α is the learning rate

b = b− (α× ∂C

∂b
) (32)

Where:

C is the Cost function

b is the bias

α is the learning rate

5.3.2 MLP Setup

Using the Scikit Learn python library, the setup of the MLP is done using specified parameters.

Some of the key parameters that can be adjusted to improve the MLP performance for a specific
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dataset are described in this section.

The first step after loading the labelled dataset normalises the number of data in each class.

This step ensures that there is no class bias. In our case, class ”0” contains significantly more

segments than class ”1” and class ”2”. This would mean that the class ”0” segments would be

over-represented in the training set, and the trained MLP would tend to classify other classes as

the class ”0”. The next step is splitting the dataset into a training and a testing dataset. For

our purposes, the entire dataset is split into 80% training and 20% testing. Splitting the dataset

into training and testing subsets prevents the occurrence called overfitting. Overfitting describes

the case of having an ANN well-trained for the dataset that is used for the training of the ANN.

By splitting the dataset, the system can be validated with dataset that it has not seen before.[92]

All segment image sizes are normalized, meaning there is no normalization needed at this point.

Having images with the same size is important since the number of input layer neurons depends

on the number of pixels in that image. Having a high-definition image means having a more

complex MLP. This means minimising the number of pixels without removing key features from

the image is important. The images in the dataset used do carry important features that can

only be retrieved from an image with high resolution and would disappear if the pixel count was

decreased. The resolution of images used as input for the MLP in this research is 640x480p.

The number of hidden layers affects the performance of the MLP. The number of hidden layers

that are implemented should correspond with the dimensionality and complexity of the dataset.

For the MLP examined the chosen number of hidden layers is 100. The solver used for the

training of the CNN is chosen ”adam” which is the stochastic gradient descent solver.

Selecting an activation function is crucial for MLP performance. Poorly selected activation

functions used throughout the MLP can completely invalidate the output even with the rest of

the MLP set up optimally. In the dataset used, the values of pixels don´t reach negative values,

meaning the ReLU activation function can be applied to the hidden layers. The ReLU activation

function is a linear function, meaning the input is mapped as the output. Another possible

candidate for the activation function used in this research is the sigmoid function. The sigmoid

function also allows for mapping just positive values (just like the ReLU activation function),

however, it decreases the dataspace used, whereas the ReLU function does not. For the output

layer, the ReLU is not suitable since the output should be a definitive class. For that reason, a

Softmax activation function is applied in the output layers.

5.3.3 Convolutional Neural Network Training Principles

CNN’s (Convolutional Neural Networks) have a different way of classification when compared

to other ANNs. The biggest difference is that the layers are not always fully connected to the

previous or following layers. CNN’s layers are divided into three main types. The convolutional

layer is tasked with the extraction of certain features from the input dataset. The neurons in a

such layer are not connected to all the neurons from the previous layer, but only to a specified

number of neighbouring neurons from the previous layer. Kernels are filters that are a part of a

CNN, that are tasked with the extraction of features from the dataset. The math behind the

convolution using a kernel is shown in the equation 33. To put it simply, the input data is split
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into smaller sub-parts that are then convolved by the kernel. The output from a convolution

layer is inherently location-dependent. This poses a problem in terms of the calculation power

needed for a convolution neural network to conduct the classification. Figure 58 illustrates the

CNN architecture. [93]

Figure 58: CNN diagram explaining the algorithm. [94]

Z = X ∗ f (33)

Where:

Z is the output from the Convolution

X is the input data

f is the filter (kernel)

Pooling layers are employed to solve this potential issue. Pooling is very similar to convolution

in its principle. Pooling employs a filter that ”travels” across the output from the convolutional

layer, and the output depends on the pooling technique selected for the specific case, usually

Max Pooling or Average Pooling. The pooling layer reduces the dimension of the output from

the convolutional layer. The backpropagation of CNN is quite different. The Bias optimization

is the same as with the MLP, however, there is also a need to optimize the filters that are

used for the convolution. The principle however is the same as with the optimization in MLP,

the optimization algorithm adjusts the values in the kernels so that the output matches the

expected value of classification. For all the filters in the CNN, the equation for optimization

using backpropagation is shown in 34. The equation for optimization of all the inputs in the

CNN using backpropagation is shown in 35. [95] [96]

∂L

∂Fi
=

M∑
k=1

L

∂Ok
∗ ∂Ok

∂Fi
(34)

Where:

F is the filter (kernel)

O is the convolution output
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L is the loss function

∂L

∂Xi
=

M∑
k=1

L

∂Ok
∗ ∂Ok

∂Xi
(35)

Where:

X is the input to the convolutional layer

O is the convolution output

L is the loss function

5.3.4 CNN Setup

Setting up a CNN for the purpose of this research is considered more challenging when compared

to the setup of MLP. The main reason is that unlike the MLP, in which all the hidden layers

work in a similar fashion, the CNN has different types of Hidden layers. For the purpose of this

research, the python library Tensorflow is used for the coding of the CNN.[97]

The final CNN setup is inspired by the setup used in [97], and is shown in figure 59. The dataset

used for the training of the CNN is the same as for the MLP training.

There are two data splits explored for the training/testing data distribution, 80/20 and 70/30.

Differences in CNN performance based on the data split are shown in a later section.

There are three convolution layers, all having a ReLU activation function assigned. The dense

layer is the last, fully connected layer that is tasked with the final output. Re-scaling is used to

convert the input images from colour pixels into greyscale so the features are more defined.

The optimizer used is ”adam” which stands for stochastic gradient descent and the number of

epochs is set to 10. The number of epochs is picked with regard to the computing power and

time needed for the CNN training. It is possible to increase the number of epochs and achieve

possibly higher accuracy, however, the increase in training time would not be justifiable.

The number of epochs representing the number of training iterations with the whole dataset

being fed into the CNN is 10. The influence of adjusting the value of epochs is explored in a

later section.
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Figure 59: The final CNN architecture used for the track classification.

5.4 ANN PERFORMANCE INDICATORS

To determine if the trained ANN performs to a degree that is acceptable, there are numerous

indicators are used to evaluate ANN performance. Performance indicators, some of which are

used to evaluate the ANNs examined in this research are explained in the following section.

Accuracy of the classification is a simple metric showing the ratio of such predictions that are

correct to those that were incorrect. The calculation of accuracy is depicted in 36.[98] Training

accuracy is the accuracy of the classification while training and validation accuracy is the accuracy

calculated for the testing subset.
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A =
Clc
Cl

(36)

Where:

A is the Accuracy

Clc is the number of correct classifications

Cl is the number of classifications

Loss is a metric that represents the ANNs ability to fit the input data. Like the accuracy, the

loss is also determined for the training and testing subset. High Loss represents the ANN´s high
dependency on the dataset used for training. Low Loss means that the trained ANN performs

well with data that it has not been presented with while training.

Precision is defined for binary classification problems. The calculation of Precision is shown in 38.

Here, the terms True Positive and False Positive occur. True Positive Classification is a metric

that shows the number of data that were classified as a specific class, and actually are part of

that class. False Positive is an indicator that shows the number of data that were classified as a

class, however, they do not belong to that class. [99]

Pr =
TP

TP + FP
(37)

Where:

Pr is the Precision

TP is the number of True Positive classifications

FP is the number of False Positive classifications

Recall is an indicator that shows the ratio of positive classifications that were classified correctly.

The recall calculation is shown in 38. There is a new term called False Negative present. A false

negative count is used for the number of data that belongs to a specified class, however, is not

classified as such. [99]

Re =
TP

TP + FN
(38)

Where:

Re is the Recall

TP is the number of True Positive classifications

Fn is the number of False Negative classifications

ROC (receiver operating characteristic curve) is an indicator that is comprised of two other

indicators, the True Positive rate and the False Positive Rate. The ROC curve is shown in figure

60. The goal of the classifier training is to maximise the AUC (area under the ORC curve). [100]
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Figure 60: Different ROC curves for classifiers. The closer the curve to the upper left corner of
the graph, the better the performance of the classifier. [101]

If the Precision and Recall are Combined, the performance metric called F1 score is the outcome.

It is the harmonic mean (average) of precision and recall to be exact. F1 score is calculated using

the formula 39. Classification will be awarded a high F1 score if both the Recall and Precision

are high. On the other hand, if both Recall and Precision are low, the F1 score will be low as

well. [102]

F1score = 2x
Pr

Re
(39)

Where:

Re is the Recall

Pr is the precision

Another way to evaluate the performance of a classification algorithm is employing a so-called

Confusion Matrix. It is a NxN matrix with the N standing for the number of classes. The matrix

displays the classification performance, i.e. to which class data belongs, and where it is classified

by the algorithm. The confusion matrix defined for this thesis is shown in figure 61. A confusion

matrix is easily implemented for multi-class classification. [103]

Figure 61: Confusion matrix with three classes used in this research.
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5.5 MLP AND CNN PERFORMANCE COMPARISON

With two different ANN approaches used for the track classification segments, comparing the

two shows which are more suitable for the given task. The performance difference is significant

and is further explained in this section.

5.5.1 MLP Performance

MLP proved to be insufficient in the task of track classification. Even with several iterations with

different parameters and training dataset sizes, the MLP performance of track classifications is

not far from a system that would classify segments randomly (in terms of accuracy percentage).

The influence of the training dataset size on the MLP performance is seen in the table 13. Three

dataset sizes were tested, 300 segments with 100 per class, and 3000 segments with 1000 per

class. And 30000 segments with 10000 per class. The confusion matrix of the proposed MLP

is shown in figure 62. The distribution throughout the confusion matrix remained the same,

regardless of the training dataset size or MLP parameters. The confusion matrix in figure 62 is

created based on the MLP being trained with 1000 input track segments with an 80/20 ratio of

training/testing dataset. The confusion matrix shows that the trained MLP classified most track

segments as a class ”0”. This does not change with different dataset sizes or other MLP setup

changes, such as the number of epochs or training/testing split ratio.

MLP performance based on the dataset size

Number of segments 300 3000 30000

Validation Accuracy 36.663 37.522 36.996

Training Accuracy 42.456 36.550 37.256

Table 13: The validation accuracy of the trained MLP based on the size of the input dataset.

Figure 62: Confusion matrix of the MLP trained with 3000 segments in the dataset.

Both the accuracy and confusion matrix did not change significantly with different MLP setups

and dataset sizes. The conclusion is made that the MLP training and classification is not usable

for the goal of the research, and the focus is shifted to CNN, which is expected to perform better.

5.5.2 CNN Performance

With the CNN setup presented in a previous section, the performance met the expectations even

with the relatively small size of the training dataset. Performance only increased with the size

of the training dataset. The influence of the training dataset size on the accuracy is examined

later in this section. The performance of the CNN begins at a relatively high level even from the
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first EPOCH and increases with each additional EPOCH until a certain number of epochs. The

Performance increase with each epoch is shown in figure 65. Results of Training and Validation

(testing) accuracy are shown in figure 63, and Results of Training and Validation (testing) loss

are shown in figure 64.

Figure 63: Accuracy of the training and validation set with the training/testing ration of 80/20.

Figure 64: Loss of the training and validation set with the training/testing ration of 80/20.
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Figure 65: Accuracy development for each epoch with the training/testing ration of 80/20.

Another training iteration is conducted with an adjusted ratio of training/testing data distribution

to 70/30. The results for training and validation (testing) accuracy are shown in figure 66. The

result for training and validation (testing) loss are as shown in figure 67. The increase in accuracy

with each epoch is shown in figure 68.

Results show that the Validation Loss deteriorates with the training/testing ratio setup as 70/30.

The validation accuracy does not experience major improvements, the first distribution of 80/20

is considered more suitable for the CNN training.

To examine the influence of epochs on the classification capability, the EPOCH count is increased

to 20. Results for training and validation(testing) accuracy are shown in figure 69. Results for

training and validation (testing) loss are shown in figure 70.

Figure 69 shows the validation accuracy does not change significantly with the epoch count, and

after epoch 20 it remains almost constant. Figure 70 shows that with the increasing epoch, the

validation loss dramatically rises. This trend represents the tendency of overfitting the CNN to

the dataset used for the training. The epoch count of 10 is more favourable for the goal of this

research.

So far the track segment number is 3000, with 1000 track segments per class. As already mentioned,

the size of the dataset used for the ANN training significantly influences the performance of the

trained CNN. To illustrate, figure 71 shows the training and validation (testing) accuracy for a
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Figure 66: Accuracy of the training and validation set with the training/testing ration of 70/30.

Figure 67: Loss of the training and validation set with the training/testing ration of 70/30.

CNN that is trained with 300 track segments, 100 per class. Figure 72 shows the training and

validation (testing) loss for the same dataset.

As seen in the figure 71. The validation accuracy is negatively affected by the reduced size of the

training and validation dataset. Figure 72 shows that the reduced dataset volume also negatively
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Figure 68: Accuracy development for each epoch with the training/testing ration of 70/30.

Figure 69: Accuracy of the training and validation set with the the epoch count of 20.
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Figure 70: Loss of the training and validation set with the the epoch count of 20.

Figure 71: Accuracy of the training and validation set for track segment dataset size of 300.

affects validation loss. This makes the trained CNN not versatile to be able to classify data that

is not used for the training.

The Confusion Matrix for the trained CNN with parameters defined based on the development

explored above is shown in 73. To have 100% accuracy of the classification algorithm, only the

89



Bc. Max A. Minev 5 METHODOLOGY

Figure 72: Loss of the training and validation set for track segment dataset size of 300.

diagonal of the confusion matrix has to be populated.

Figure 73: Confusion matrix for the CNN.

CNN is considered to be the viable option for the goal of this research. It performed better

in all areas of performance evaluation, and it achieved it without increasing the time required

for the training and testing. The only drawback that can be considered for the CNN is the

setup complexity of the CNN itself. Further improvements and limitations encountered while

conducting the ANN development are explained in the discussion section.
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6 DISCUSSION

The proposed CNN capable of track classification based on the motion dynamics does show high

levels of performance. This section explores the limitations that prevent the proposed algorithm

from achieving even higher performance. With the limitations defined, suggestions for further

development of such algorithms are defined.

The most influential limitation defined when conducting this research is the computation power

limitations. HW used for the ADS-B data manipulation and CNN training and validation can be

considered as a lower-end specification when the HW´s performance is considered. The biggest

drawback of the HW is the lack of a dedicated graphics card. Since the ANN is provided with

track segments interpreted as images, a dedicated GPU would greatly reduce the time needed for

the dataset to be propagated throughout the ANN. The time saving would allow for a larger

dataset, which can be expected to improve the classification performance of the ANN.

This research considers the 2D positional data forming the dataset for track classification and for

ANN training and validation. Extending the dimension of the dataset with other track information

can be considered to further extend the capability of the classification. Such information can

be the altitude of the track, the velocity of the track, the wake vortex category of the track

and many more. Implementing this into further research would require more complex ANN and

much more capable HW. Such ANN classification systems would not necessarily show higher

performance in terms of accuracy, but they would allow for deeper integration into the track

filtering algorithms.

Another approach for the data input would be utilizing the time series format instead of the image

format used in this research. This would result in a more complex classification algorithm since

the input layer dimension would have to be defined in such a way, that the lack of normalization

caused by the time series format is accounted for. Such algorithms would require much more

powerful HW to be trained and to be implemented.
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7 CONCLUSION

The goal of developing an Artificial neural network capable of track classification with correlation

to the track’s motion dynamics is met. The proposed classification algorithm allows for the

implementation of a system that would dynamically assign different track filtration algorithms

based on the track flight behaviour.

The related field of Machine learning principles, aircraft surveillance techniques and track filtering

algorithms are closely examined to provide the reader with an understanding of the environment

for which this research is of value.

The process of ADS-B data manipulation covering the pre-processing and data filtration is

explained. The track segmentation method suitable for the task of track classification is presented,

and several track segment classification methods for labelling purposes are explored. Track

segment classification based on the ratio of distance covered by the tracked aircraft and the

shortest distance is chosen as the classification method based on which the labelling of the

training and validation set for the ANN learning is conducted.

Two approaches to ANN algorithms are described and developed with the goal of track classifi-

cation based on aircraft dynamics. Prepared labelled tracked segments are then used for the

training of the proposed MLP and CNN.

Indicators used to evaluate the performance of classification are described and applied to both

MLP and CNN. The results of the evaluations of the trained MLP and CNN are compared, with

the CNN proving to be the optimal ANN algorithm for the track classification.

The results and possible further developments to improve the performance of the classification

and extend the use of track classification by considering alternative classification methods are

discussed.
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9. HORNÝ, Michal. Bayesian Networks. Boston, 2014-04. Technical, 5. Available also from:
https://www.bu.edu/sph/files/2014/05/bayesian-networks-final.pdf.
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