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Abstrakt

The master thesis aims to introduce optimal control algorithms for a UAV with
a suspended load and implement a simulation model of the UAV with a suspended
load for the control design. Further, the design and implementation of the optimal
control strategy and its comparison with a conventional control method. The goal
is also to design a laboratory setup of a planar UAV with a suspended load and
experimentally verify the algorithms.
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Nomenclature

ẋ, ẍ First and second derivative of variable, x, respectively

x̂k Estimated value of xk

λ Eigenvalue of the matrix Ad

Ac State matrix of the continuous-time system

Ad State matrix of the discrete-time system

Aaug State matrix of the augmented system

A State matrix of the nonlinear state-space model

Bc Input matrix of the continuous-time system

Bd Input matrix of the discrete-time system

Baug Input matrix of the augmented system

B Input matrix of the nonlinear state-space model

Cc Output matrix of continuous-time system

Cd Output matrix of the discrete-time system

C Viscous damping matrix

Dc Feedthrough matrix of the continuous-time system

Dd Feedthrough matrix of the discrete-time system

f(·, ·) State equation

g(·, ·) Output equation

G(x(t)) Gyroscopic matrix

K0 Feedback gain

Ki Gain of integral action

KLQR LQR gain

K Gain of the feedback with integral action

LLQR Kalman-Bucy filter gain



L(x(t)) Input matrix

L Luenberger observer gain

M(x(t)) Mass matrix

P Positive semidefinite matrix

PT Terminal weight matrix of the NMPC

Qmpc Weight matrix of the NMPC

Qe Weight matrix of the Kalman-Bucy filter

Q(x(t)) Gravitation matrix

q(t) Generalized coordinates vector

Q Weight matrix of the LQR

Rmpc Weight matrix of the NMPC

Re Weight matrix of the Kalman-Bucy filter

R Weight matrix of the LQR

umax Upper boundary of uk

umin Lower boundary of uk

u(t) System input vector

vk Sensing noise

wk Process noise

xIk Integral state vector

xmax Upper boundary of xk

xmin Lower boundary of xk

xref Vector of desired states

x(t) State vector

xk State vector at time k

y(t) Output vector

Cn Reachability matrix

L Lagrangian

On Observablity matrix

R Rayleigh’s dissipation function



U Polyhedral set of uk

X Polyhedral set of xk

ω Angular velocity

θ Absolute angular displacement of the UAV

φ Absolute angular displacement of the pendulum

a1 Distance from the quadrotor’s center of gravity to the propeller

a2 Distance from the quadrotor’s center of gravity to the cart’s center
of gravity

a3 Distance from the cart’s center of gravity to the pendulum’s joint

B Prediction horizon

b Damping coefficient

cj jth coefficient of linear friction

Ek Kinetic energy

Ep Potential energy

g Acceleration due to gravity

IS1 Pendulum’s moment of inertia

IS2 Quadrotor’s moment of inertia

l Length of the pendulum

M Torque generated by propellers

m1 Load mass

m2 Linear guide mass

m2 Quadrotor mass

m3 Cart mass

pCLi
ith pole of the closed-loop system

pei ith pole of the observer

qj jth generalized coordinate

Qnc
j jth generalized force

T Thrust generated by propellers



Ts Sampling time

tr Rise time

u
(i)
max Maximum magnitude in control signal in i

x Horizontal position of the cart

y Vertical position of the cart

z
(i)
max Maximum transient error admissible in z(i)



Intoduction

In the past decade, Unmanned Aerial Vehicles (UAVs) have witnessed increasing
usage due to progress in technology contributing to making them cheaper. UAVs
possess many unique abilities. Therefore, UAVs have become popular not only for
dangerous rescue missions but also in the hobby community and transportation
tasks. Specifically, the utilization of UAVs for emergency assistance and customer
package delivery. In those tasks, the UAVs carry a suspended load which dramatic-
ally changes the dynamics. In addition, the acceleration and deceleration cause the
swing of the payload. Therefore, the control of a UAV with a suspended payload is
challenging.

The goal of the master thesis is to introduce optimal control algorithms for a
UAV with a suspended load and implement a simulation model. Design optimal
control algorithms and verify them in simulation. Furthermore, compare the op-
timal control algorithms with a conventional control method. In addition, the goal
is to build a prototype of an experimental setup for testing the control algorithms
for a UAV with a suspended load.

In the Literature review, UAVs with a load are introduced. Furthermore, the op-
timal control methods of a UAV with a suspended payload are discussed. Methods
contain an experimental setup design for testing control algorithms. The math-
ematical nonlinear model of the experimental setup is derived and implemented in
MATLAB/Simulink. In addition, the model is linearized and discretized. Moreover,
an analysis of the discrete-time state-space model is performed. Lastly, three control
algorithms are implemented. Specifically, output feedback control with integral ac-
tion, linear-quadratic control, and nonlinear model predictive control. A comparison
of their performance is discussed.
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1 Literature Review

In this section, the UAVs with a load are introduced as well as their control in
general. Furthermore, the optimal control methods for a UAV with a suspended
payload are discussed.

1.1 UAVs in General

An Unmanned Aerial Vehicle (UAV), also called a drone or more specifically
quadrotor, is an aircraft without a human pilot on board with the ability to fly
semi- or fully autonomously owing to an onboard computer and sensors. In recent
years, UAVs have become popular not only for dangerous rescue missions or military
missions but also in the hobby community or intelligent transportation. UAVs pos-
sess many unique abilities, such as great mobility, hover, vertical take-off, or flying
and landing in limited space. Among the numerous applications of drones, aerial
load transportation has attracted the attention of several research groups worldwide.
The load can be represented as a camera that senses the area of a forest fire or lidar
that creates a 3D point cloud of a building or a suspended load.

1.2 UAVs with a Load

Two main approaches have been used for load transportation. The first method
is based on equipping a quadrotor with grippers [4], [19]. However, it faces the
problem of slow response for attitude change because of the additional inertia of the
load. The second approach is to connect the payload to the drone by a rope or cable
[10], [17]. This approach preserves its agility. On the other hand, the cargo swing
dramatically affects the dynamics of the quadrotor. The quadrotor with a suspended
load represents an underactuated system, i.e. a system with fewer control inputs
than its DOFs. The movement of the quadrotor causes swings of the payload which
cannot be directly controlled. Furthermore, a quadrotor itself is also underactuated.
Therefore, due to the underactuated property, the control of a quadrotor with a
suspended load becomes challenging.

1.3 Control of a UAV with a Suspended Load

A list of results, including open-loop control strategies as well as closed-loop
methods, have been studied for different purposes. The main task of a quadrotor
with a suspended payload can be divided into three flight schemes: takeoff, hover
or forward flight, and landing.

During take-off, when the UAV is moving vertically and the load is directly be-
neath it, the load will not oscillate. In contrast, when the load is situated next to
the UAV and it starts taking off, the load will oscillate. This problem has been
addressed in [6]. In this work, a nonlinear hybrid controller to track the trajectory
of suspended payload has been designed.

2



The control algorithms for forward motion can be divided into two main groups.
The first approach is based on the generation of the flight trajectory and the second
one uses an anti-swing controller in the feedback loop.

The damping of oscillations of the suspended payload has been proposed in [18].
In this paper, input shaping is introduced to reduce residual vibration. The strategy
modifies a reference command by convolving it with a series of impulses. The authors
in [12] solve the problem of damping oscillations by moving in the vertical direction
using a nonlinear time-delay control law.

1.3.1 Optimal Control of a UAV with a Suspended Load

The following section focuses on different optimal control strategies applied on a
UAV with a slung load. Most research in this area has been done on quadrotor po-
sition and attitude control using a linear-quadratic controller and model predictive
control techniques.

Trachte et al. [20] have presented a controller for the safe and precise operation
of a multi-rotor with a slung load in three-dimensional space. The work discusses
System Dynamics and Control Simulation Toolbox in MATLAB/SIMULINK. The
control design is divided into two major components. The first, top-level control-
ler, i.e. Nonlinear model predictive control (NMPC) or Linear Quadratic Regulator
(LQR). The second, low-level proportional attitude control. For top-level control,
the NMPC and LQR are evaluated for their ability in managing stabilization and
trajectory tracking problems. Specifically, the authors use ACADO toolkit which
provides a comprehensive C++ code library suitable for the creation of an algorithm
to solve nonlinear optimal control problems. The simulation results show that the
LQR control may violate the physical constraints on the system. The NMPC strictly
complies with the constraints. Furthermore, the NMPC decreases the overall con-
trol effort which is a great advantage when power is limited. However, both optimal
control schemes show poor performance for non-predictable disturbance rejection.

In the paper [1], an iterative linear-quadratic regulator (iLQR) for controlling a
quadrotor with a cable-suspended heavy rigid body has been presented. For com-
parison, the classical LQR controller has also been proposed. The controllers have
been designed for two control objectives. The first, precisely tracking a given desired
trajectory, and the second, an anti-swing load through a transporting task has been
studied. The nonlinear dynamics model of the quadrotor with a consideration of
the cable-suspended payload is represented. Subsequently, this model is linearised
in two modes, a vehicle mode without a load effect during a taking-off task and a
switching-to-quad-load system mode considering the load effect. The results have
shown that the performance of the iLQR was faster with a small steady-state error
than that of the LQR controller. In both control objectives, the iLQR controller has
performed better than the LQR controller in terms of cost function, time consump-
tion, and steady-state error.

A hybrid control approach for the swing-free transportation of a double pendu-
lum with a quadrotor has been declared in [7]. The objective of the control strategy
is to achieve dampening of the double pendulum oscillations while following a pre-
cise trajectory. For this task, a proportional derivative (PD) controller has been
combined with a linear model predictive control (MPC). The four PD controllers
have been used to compute the quadrotor torque and trust. Each is in charge of one
of the four degrees of freedom. Specifically, the Euler angles and the vertical posi-
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tion of the quadrotor. The linear MPC block computes the desired attitude angles
minimizing the payload swing. The MPC controller is designed for a discrete-time
state-space LTI system, where not all states are measured. Therefore, a Kalman
filter for the prediction has been introduced. The experiment has proved that the
quadrotor under the combination of PD and MPC controller is capable of following
the assigned path as well as robust enough to stick close to the desired parabolic
trajectory.

The previously mentioned papers have considered the optimal control strategy
in the time domain. The control method which has been proposed in [7] tries to
maintain a good balance between transient behavior and frequency-domain per-
formance. This goal has been fulfilled by a mixed H2/H∞ tracking controller based
on linear matrix inequality. For the purpose of controller design, the continuous-
time linear state space describing the dynamics of a single quadcopter carrying a
cable-suspended payload has been used. The controller design has been validated
by simulation which has shown that the controller efficiently eliminates the position
error and still keeps a smooth change for the quadcopter’s attitude. Additionally,
extra constraints are added to limit the aggressiveness of the swing angle.
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2 Methods

The section consists of a description of an experimental setup for testing control
algorithms for a planar quadrotor with a suspended payload. The mathematical
nonlinear model of the experimental setup is derived together with its identifica-
tion. Then the nonlinear model is implemented in MATLAB/Simulink. For the
control design, the nonlinear model is linearized and discretized. An analysis of the
discrete-time state-space model is performed. Finally, three control algorithms are
implemented and compared, namely, output feedback control with integral action,
linear-quadratic control, and nonlinear model predictive control.

2.1 Experimental Setup

The following chapter describes the experimental setup. The goal was to build a
low-budget experimental setup for testing control algorithms for a planar quadrotor
with a suspended payload. The devices for measuring a quadrotor’s position (in
centimeters) in 3D are costly. Therefore, the prototype of the experimental setup
was designed from scratch.

Figure 1: Experimental setup
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The proposed experimental setup is displayed in the Figure 1 which consists of a
planar quadrotor carrying a suspended load. The quadrotor is attached to a trolley
with a rotary joint. The load is suspended with a rope that is attached to the
quadrotor also with a rotary joint. Therefore, the quadrotor and suspended load
can be represented as a double pendulum. The trolley can translate in x and y
direction using the track linear guides. The physical realisation of the experimental
setup is displayed in the Figure 4.

2.1.1 Design of Experimental Setup

The section contains a description of the mechanical components for the experi-
mental setup as well as the electrical parts.

Mechanical Components

Most of the mechanical parts, such as the track rollers, quadrotor’s body, etc.
were designed in Autodesk Inventor and then printed from plastic (PLA, PETG) on
a 3D printer to make the construction as light as possible. The track rollers’ shafts
as well as the pendulums’ shafts were machined from steel to ensure stiffness. The
trolley was manufactured from plywood.

Sensors
The feedback of the system is ensured by several sensors which provide inform-

ation about the current state of the system.
The knowledge about x position is provided by an incremental position mag-

netic sensor AS5304. The sensor composes of two separate parts - a magnetic linear
sensor and a magnetic strip. There are 160 pulses per 4.0 mm pole pair length on
the standardized quadrature output interface with an index pulse (=ABI-interface).
To ensure an accurate measurement, the distance between the strip and the sensor
has to be kept constant, approx. 1 mm. The sensor operates on 5 V logic. The
sensor’s location within the experimental setup is displayed in the Figure 3.

Unlike the x position measurement, the vertical position could not be measured
directly by the magnetic linear sensor because the cart moves at the same time in
both directions. Therefore, an indirect measurement using a rotary incremental en-
coder was used. The output of the sensor is a quadrature 5V signal. An optical
incremental encoder by Megatron was attached to the shaft of the track roller. The
distance was calculated from the revolutions of the track roller and its diameter.

The angle of the planar quadrotor θ and pendulum’s angle φ was measured by
a magnetic angular encoder AS5048A. The magnetic encoder also consists of two
parts - a sensor and a magnet. The magnet was glued to the shaft of the pendulum
and quadcopter respectively. The sensor uses a 3.3 V logic level. More details on
the sensors can be found in the datasheets. The sensors’ location within the exper-
imental setup is displayed in the Figure 2.

The magnetic linear sensor AS5304 and optical encoder from Megatron operate
on 5 V logic, whereas the microcontroller Beaglebone Blue operates on 3.3 V logic.
For this reason, level shifters were used to transform the voltage level.
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Actuators
Drones have become exceptionally popular over the last few years. The break-

through not just in the hobby community was motivated by powerful, lightweight,
and above all inexpensive brushless DC motor (BLDC). They are not only powerful
enough to carry a payload but also relatively rapid to move.

The planar quadrotor was actuated by two BLDC outrunner motors. The choice
of motors was a tradeoff between the weight and the thrust that the motor can
provide. Consequently, KAVAN Brushless motor C3542-1250 was chosen. As thrust
generators, the SPORT 10x5 inches propellers were used. The combination of this
propeller and the KAVAN motor can achieve a thrust of up to 1.8 kg. An essential
part of a BLDC motor is an electronic speed controller (ESC). The main function of
the ESC is to regulate the motor’s speed. The ESC was selected with respect to the
motor - KAVAN R-60SB was chosen. The ESCs were powered by a 12 V lead-acid
battery.

Figure 2: Magnetic encoders

Figure 3: Magnetic linear sensor
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Figure 4: Experimental setup

BeagleBone Blue
The main computing unit was BeagleBone Blue (BBB). BeagleBone Blue is a

Linux-based computer for robotics, integrating onto the board the Octavo OSD3358
microprocessor together with all necessary peripherals, such as wifi/Bluetooth, IMU,
and much more. The board also has several built-in connectors: 4 DC motors
and encoders, 8 servos, SPI, I2C, and UART. The computer is compatible with
MATLAB/Simulink. Therefore, it makes a good choice for the development and
testing of the control algorithms. Because of the issues with the BeagleBone Blue
support package in Simulink, which will be discussed later, a second board had to be
used - NodeMCU-32S. This board was used to read data from the magnetic encoders
via SPI and then sent by UART to BBB.
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The BBB, NodeMCU-32S, sensors, and motors were connected according to the
following diagram.

Figure 5: Diagram of control wiring

BeagleBone Blue & Simulink setup
Before an initial Simulink code could be deployed, several setup steps on BBB

had to be done. The approach followed the official BBB website. [13]
First, the Debian image had to be flashed to a microSD card and transferred to

the BBB. Next, the Simulink Coder package for BeagleBone Blue hardware had to
be installed and configured.

After the successful installation and configuration of the BBB board, a first
Simulink model could be created. The following steps were adopted from Mathworks
documentation. [15] The BBB has two means of connection - via USB or wireless
WiFi connection. The second method was used. The connection between a PC and
the BBB blue was established using the command beagleboneblue(′IP address′)

Simulink for Controlling BBB
The Simulink coder support package for BeagleBone Blue hardware contains

blocks for supporting hardware protocols. Those blocks were used to interact
between BBB and sensors and motors.

The BLDC motors were controlled using a Servo Motor block. The input is the
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shaft position of the servo motor which in the case of BLDC corresponds to the
speed of the motor because the block’s output signal is a PWM signal in both cases.

The optical encoder and linear magnetic sensor send quadrature output. Thus,
the Encoder block was used. The output of the block had to be gained with a
constant that links the tick of the quadrature signal with the angle and distance
respectively. Those constants were read from datasheets.

The magnetic encoder AS5048A uses the SPI interface. The Simulink Package
includes an SPI Register Read block. However, several unsuccessful attempts were
made to establish communication. Consequently, another board - NodeMCU-32S
was used to read the data from the magnetic encoder via SPI. Then, the data from
the NodeMCU-32S board were sent via UART to BBB where an SCI Read block
was implemented. The raw data received from the sensor are 12-bit angle values.
Accordingly, the raw angle values were converted to radians. In addition to this,
the angle in radians is an absolute value. Naturally, another step was to obtain the
relative angle regarding the start of the simulation. This was implemented using
the MATLAB function block. The input to this block was an unwrapped angle in
radians. This was implemented with Unwrap block which ensures that if the differ-
ence between two consecutive samples is bigger than a chosen threshold, the block
adds to the input value 2π radians.

The measured data are stored in BBB as mat files. To get the data to a PC
a getFile() function was used. This function was added inside StopFcn Callback.
Those callbacks are executed at the end of a simulation and the files are transferred
to the PC.

Troubleshooting with Simulink & Beaglebone Blue
During the deployment of the Simulink codes, main two problems occurred. The

first error, a Checksum mismatch error, aroused when Simulink was restarted, and
the files from the previous session were still stored in BBB. This issue can be solved
by deleting the files with deleteFiles() from BBB or just resaving the Simulink
code with a different name. The second issue was with a process running on BBB
which highly burdened the CPU. If the process with a specific PID was running,
the Simulink code could not be run. This was solved by connecting to the BBB via
SSH in the command prompt and killing the process manually.
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2.2 Mathematical Model

The laboratory setup consists of a trolley with mass m3. The mass of the quad-
rotor and the mass of the suspended load are denoted m2 and m1, respectively.
The vertical linear guide has a mass of m4. The motion of the planar quadrotor
is provided by two motors with propellers that generate thrust T and torque M .
The quadrotor’s angle of rotation is labeled θ, whereas the angle of the pendulum
is labeled φ.

Figure 6: Scheme of the laboratory setup

For the derivation of a simplified mathematical model of the planar quadrotor
with a suspended load which describes the laboratory setup, the following assump-
tions were made:

• friction in joints is linearly dependent on velocity

• the pendulum is considered a mathematical pendulum

• the system undertakes a flat motion in the plane

• the parameters of the system are time-invariant
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2.3 Equations of Motion

For the derivation of equations of motion, Euler–Lagrange equation of the second
kind extended with Rayleigh’s dissipation function in the following form was used:

d
dt

(︂ ∂L
∂q̇j

)︂
− ∂L

∂qj
+

∂R
∂q̇j

= Qnc
j , j = 1, . . . , J, (1)

where j is the number of generalized coordinate, gj is the jth generalized coordinate
and Qnc

j the jth generalized nonconservative force. In the case of the considered
laboratory setup, the generalized coordinates were chosen as q1(t) = x(t), q2(t)
=y(t), q3(t) = θ(t) and q4(t) = φ(t). As well as the generalized non-conservative
forces were selected Qnc

1 = 0, Qnc
2 = T , Qnc

3 = M and finally Qnc
4 = 0.

Lagrangian L is given as the difference between the kinetic and potential energy
of the system

L ≡ Ek − Ep. (2)

The system’s kinetic energy is equal to the sum of the kinetic energies of each of
the bodies. Likewise, the kinetic energy of a rigid body can be written according to
the König’s theorem as the sum of translation energy and rotational energy relative
to the center of mass. Thus, the kinetic energy of the system displayed in the Figure
6 is given as follows

Ek =
1

2

4∑︂
n=1

mn

(︁
ẋ2

cmn
(t) + ẏ2cmn

(t)
)︁
+

1

2

4∑︂
n=1

Icmnω
2
n(t). (3)

The potential energy of gravity forces V is equal to:

Ep =
4∑︂

i=1

Vi = m1gycm1(t) +m2gycm2(t) +m3gycm3(t) +m4gycm4(t) (4)

Linear velocity-dependent energy dissipation can be handled by use of Rayleigh’s
dissipation function R

R =
1

2

4∑︂
i=1

cj q̇j
2(t), (5)

where cj is the coefficient of linear friction. In later text, the coefficients cj are
denoted as c1 = cx, c2 = cy, c3 = cθ and c4 = cφ.
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The coordinates of the mass center appearing in the equations (3) and (4) are
equal to

xcm3(t) = x(t),

ycm3(t) = y(t),

xcm2(t) = x(t) + a2 sin (θ(t)) ,

ycm2(t) = y(t)− a2 cos (θ(t)) ,

xcm1(t) = x(t) + a3 sin (θ(t)) + l sin (φ(t)) ,

ycm1(t) = y(t)− a3 cos (θ(t))− l cos (φ(t)) ,

xcm4(t) = x(t),

ycm4(t) = d

ω1(t) = φ̇(t)

ω2(t) = θ̇(t)

ω3(t) = 0

ω4(t) = 0

(6)

The potential energy was obtained by inserting expressions (6) into (4) and the
kinetic energy was obtained by inserting derivative of (6) into relationships (3) which
after substitution into the (2) gave Lagrangian in form

L = (m2(ẋ+ a2 cos(θ(t))θ̇(t))
2 + (ẏ(t) + a2 sin(θ(t))θ̇)

2) +m1(ẋ+ a3 cos(θ(t))θ̇(t)+

+ l cos(φ(t))φ̇(t))2 + (ẏ(t) + a3 sin(θ(t))θ̇ + l sin(φ(t))φ̇(t))2 +m3(ẋ
2 + ẏ2)+

+ Is2 θ̇
2 + Is1φ̇

2 + gm1(a3 cos(θ(t))− y(t) + l cos(φ(t)))− gm3y(t)− gm2(y(t)−
− a2 cos(θ(t)))− dgm4.

(7)

Lagrangian (7) and Rayleigh’s dissipation function (5) were derived according to
equation (1) to gain the nonlinear equations of motion in form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m1 +m2 +m3 +m4) ẍ+ cx ẋ+
(︁
a2m2 + a3m1

)︁
θ̈ cos (θ (t)) + l m1 φ̈ cos (φ (t))−

−
(︁
a2m2 − a3m1

)︁
θ̇
2
sin (θ (t))− l m1 φ̇

2 sin (φ (t)) = −T (t) sin(θ(t))

(︁
m1 + m2 + m3

)︁
g + cy ẏ +

(︁
m1 +m2 +m3

)︁
ÿ + l m1 φ̈ sin (φ (t)) + l m1 φ̇

2 cos (φ (t))+

+
(︁
a2m2 a3m1

)︁
θ̇
2
cos (θ (t)) +

(︁
a2m2 + a3m1

)︁
θ̈ sin (θ (t)) = T (t) cos(θ(t))

(︁
Is2 + a2

2m2 + a3
2m1

)︁
θ̈ +

(︁
a2m2 + a3m1

)︁
ÿ sin (θ (t)) + a3 l m1 φ̈ cos (θ (t)− φ (t)) + cθ θ̇+

+
(︁
a2m2 + a3m1

)︁
ẍ cos (θ (t)) +

(︁
a2m2 + a3m1

)︁
sin (θ (t)) g + a3 l m1 φ̇

2 sin (θ (t)− φ (t)) =

= M(t)

(︁
Is1 + l2m1

)︁
φ̈+ cφ φ̇+ l m1 ÿ sin (φ (t)) + g l m1 sin (φ (t)) + l m1 ẍ cos (φ (t))+

+ a3 l m1 θ̈ cos (θ (t)− φ (t))− a3 l m1 θ̇
2
sin (θ (t)− φ (t)) = 0

(8)
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2.4 Equations of Motion in Matrix Form

The set of second-order ordinary differential equations (8) can be also represented
in a more concise and clear matrix form

M(q(t))q̈(t) + (C+G(q(t)))q̇(t) +Q(q(t)) = L(q(t))u(t), (9)

where the vector q(t) concatenates q(t) = [x(t), y(t), θ(t), φ(t)]T, while the sys-
tem input u(t) concatenates u(t) = [T (t), M(t)]T. The matrices can be found in
Appendix.

2.5 Nonlinear state space model

The set of n second-order differential equations can be also represented as a
set of 2n first-order equations. A set of first-order nonlinear differential equations
representing a time-invariant system has the following form

ẋ(t) = f
(︁
x(t),u(t)

)︁
(10a)

y(t) = h
(︁
x(t),u(t)

)︁
. (10b)

The equations above are the so-called state-space model. Furthermore, the func-
tion f(·, ·) is called a state equation and the function g(·, ·) is called an output
equation. The vector x(t) is a vector of state variable and vector u(t) is a vector
of inputs acting on the system. Finally, the vector y(t) is the output vector - a
vector of variables that are measured. To create a nonlinear state-space model of
the experimental setup the state vector was determined as x(t) = [q(t), q̇(t)] and
input vector remained the same as defined in equation (9), i.e u(t) = [T (t), M(t)]T.

The nonlinear state-space system (9) can also be represented by introducing
matrices (A, B) as follows

ẋ(t) = Ax(t) + Bu(t) (11)

The relationship between matrices in equation (9) and nonlinear state-space form
(11) is following

A =

[︃
0 I
0 −M−1(C+G)

]︃
(12)

B =

[︃
0

M−1L

]︃
. (13)
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2.6 System Identification

The control design is based on the knowledge of the controlled system. In the
previous chapter, the nonlinear model has been derived. However, the parameters
appearing in the model are unknown. Therefore, the following section is focused on
the identification of the parameters.

2.6.1 Gray-box Identification

Gray-box identification estimates the structure of the model by means of analyt-
ical tools and the parameters of the model are estimated using experimental data.
In this case, the parameters were estimated by several experiments. The first and
simplest experiment was conducted to estimate the masses m1, m2, m3, and m4

which were measured on a digital scale. In the same fashion, the lengths a1, a2, a3,
and l were measured using a ruler and a tape measure.

Identification of Moments of Inertia
The identification of moment of inertia IS1 was based on the assumption that

the pendulum is considered a mathematical pendulum where the moment of inertia
can be calculated as IS1 = m1l

2. The second moment of inertia IS2 was analyzed in
Autodesk Inventor. In this software, the 3D model of the planar UAV was created
and IS2 was found.

Identification of Friction Coefficients
For the identification of friction coefficients, the whole system was separated into

subsystems where the specific coordinates were fixed. First, the coordinates x, y,
and θ were fixed for measuring the coef. of friction cφ. In this case, the subsystem
was assumed a damped harmonic oscillator. The equation of the damped harmonic
oscillator is

φ̈(t) + bφ̇(t) +mglφ(t) = 0 (14)

The solution to this equation is given

φ(t) = φ0e
−bt
2m cos(ωt+ Φ), (15)

where ω is

ω =

√︃
g

l
(16)

The measured data of the subsystem were fitted in MATLAB using the fminsearch()
function to the equation (15). The fitted function is given as

φ(t) = 22.82e−0.01t cos(3.23t− 0.11), (17)

Comparing the equation (17) and (15) with known parameters m and l, the desired
coeficient of friction is calculated cφ = 0.013 kgs−1.
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Figure 7: Identification of the coef. of friction cφ, nmrs = 82 %

The same bearings as for the pendulum joint were used in the joint which restricts
the motion of the quadrotor. Therefore, the coefficient of friction cθ was assumed
the same as for cφ.

The coefficients of friction cx, cy were estimated using the force required to move
the trolley with a constant velocity. In the horizontal direction, the quadrotor was
tilted at an angle of 18.5 degrees, and from equality of forces, the coefficient was
estimated cx = 0.04 kgs−1. Similarly, the cy coef. was estimated. The thrust
which caused the vertical movement with constant velocity was measured and cy
was determined as cy = 0.3 kgs−1.

Motor Thrust Identification
The motor with ESC was tested experimentally to find the dependency between

thrust and MATLAB value. For this purpose, the motor test stand was built as
it is displayed in the following figure. The idea is that the thrust generated by
the propeller is transferred to the digital scale. The frame is rotationally mounted,
directly beneath the BLDC motor, enabling the frame to freely rotate and transfer
the thrust to the scale. The horizontal and vertical distances of the frame are the
same. The measured data were fitted with the polynomial function of second order

T = −9.876−5x2 + 0.02879x− 0.8069. (18)
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Figure 8: Thrust test stand

Figure 9: Thrust measurement
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2.6.2 Simulation of Nonlinear Nodel

Simulation-based validation of nonlinear dynamics (11) was carried out in MAT-
LAB/Simulink. The matrix differential equation was implemented by MATLAB
function block in Simulink together with an integrator. The parameters identified
in the previous section were used in the simulation. The parameters are listed in
Table 1. The response of this system with a non-zero initial value on φ = 0.2 rad is
displayed in Figure 10.

parameter value
m1 0.3 kg
m2 0.72 kg
m3 1.0 kg
m4 0.4 kg
a1 0.225 m
a2 0.07 m
a3 0.066 m
l 0.7 m
IS1 0.061 kgm2

IS2 0.02 kgm2

cx 0.04 kgs−1

cy 0.3 kgs−1

cθ 0.013 kg−1

cφ 0.013 kgs−1

g 9.81 ms−2

Table 1: The system parameters

Figure 10: Simulation results of the model (9) with initial conditions easilyzzzzkk
x0 = [0, 0, 0, 0.2, 0, 0, 0, 0] and input vector u = [(m1 +m2 +m3)g, 0]

T,
(MATLAB/Simulink, ode45, rel. tol. 1e-6, max. step size 0.01)

The response of the system in Figure 10 confirms the behavior of the planar
quadrotor with a suspended payload. The pendulum’s angle is attenuating over
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time because of friction. The x position as well as the quadrotor’s angle θ oscillating
which is caused by the swaying of the pendulum. As a result of pendulum sway, the
vertical position y is decreasing till the pendulum oscillations are damped. This is
caused by the fact that the quadrotor oscillates as well. Therefore, the motor thrust
is not always pointing in the vertical direction.

2.7 Linearization

The equations (8) or equivalent (11) describing the dynamics of the system are
highly nonlinear. However, the most common control design methods are much
simpler and straightforward for linear rather than for nonlinear models.

Linearization is a technique for finding a linear approximation of a nonlinear
model. As Lyapunov proved, if a linear model is valid near an equilibrium point and
is stable, then there exists a region containing the equilibrium within the nonlinear
model is stable. Moreover, a crucial role of feedback control is to maintain the
controlled system near equilibrium, so this linearized system is a good starting point
for control design. [9]
The nonlinear dynamics were approximated by a linear state-space model about the
equilibrium point.
Linearized continuous-time state-space model approximating the nonlinear dynamics
of the system has the following form

δẋ(t) = Acδx(t) + Bcδu(t)

δy(t) = Ccδx(t) + Dcδu(t),
(19)

where δx(t) and δu(t) refer to the deviation from the equilibrium to point out that
the model is linearized. In the following text, the δ symbols are disregarded. The
Jacobian matrices (Ac, Bc, Cc and Dc) are given by

Ac =
∂f

∂x

⃓⃓⃓⃓
(xe,ue)

(20)

Bc =
∂f

∂u

⃓⃓⃓⃓
(xe,ue

(21)

Cc =
∂h

∂x

⃓⃓⃓⃓
(xe,ue)

(22)

Dc =
∂h

∂u

⃓⃓⃓⃓
(xe,ue)

(23)

.
The equilibrium state and the input were determined xe =[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T,

ue = [(m1+m2+m3)g, 0]
T. That corresponds to a state when the quadrotor is hov-

ering. As a result of derivation (10a) according to (20) and (21) the state space
matrices were obtained. The output matrix Cc was selected considering that only
the first four state variables in the state vector were measured, i.e. x(t), y(t), θ(t),
and φ(t). The last matrix appearing in the state-space, the matrix Dc was determ-
ined as a zero matrix. The matrices are listed in Appendix B.

The state-space model (19) was implemented in Simulink using the State-space
model block. The simulation results are showing that the vertical position y is fixed
because of the linearization.
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Figure 11: Simulation results of the model (19) with initial conditions x0 =
[0, 0, 0, 0.2, 0, 0, 0, 0] and input vector u = [0, 0]T, (MATLAB-Simulink, ode45, rel.

tol. 1e-6, max. step size 0.01)

2.7.1 Discrete-time Description of Continuous-time System

The equations developed in the previous chapters describe the system in the
continuous-time domain, which is assumed to be implemented on analog electron-
ics. However, these days, most control systems use digital computing controllers.
Thus, in the following chapter, the discretization of the continuous-time system is
represented.

2.7.2 Discretization of Continuous-time system

There are many approaches to Discretization - sampling and reconstruction of
a continuous-time signal. In this thesis, the main focus was on a zero-order hold
converter. Zero-order hold accepts a sample at time t and maintains its output
constant until the next sample is sent. More details on this method can be found
for instance in [8].

For the linearized continuous-time state-space model (19) preceded by a zero-
order hold, the equivalent discrete-time state-space difference equations are

xk+1 = Adxk + Bduk

yk = Cdxk + Dduk,
(24)

where

Ad = eAcTs , Bd =

∫︂ Ts

0

eAcτBcdτ, (25)

where Ts donates the sampling time.
The lower bound on selecting the sampling frequency brings the Nyquist fre-

quency. However, the sampling frequency given by Nyquist frequency is not satis-
factory to get acceptable quality of closed-loop control. Therefore higher frequencies
are used. Sample rate draft is a trade-off between computational load on the con-
troller and effectiveness in control. The choice of sampling frequency was done using
the rule of thumb which recommends 4 - 10 samples per rise time. To capture the

20



dynamics of the system, the state with the fastest response has to be considered.
In figure 11, it can be observed, that the shortest raising time has a curve that
corresponds to the pendulum’s angle φ. The raising time tr was read as tr ≈ 0.3 s.
Therefore, the sampling time was dedicated as Ts = 0.05 s.

The matrices (Ad, Bd) were obtained in MATLAB using c2d() fuction. Those
matrices can be found in Appendix B.

The simulation of (24) are showing the same results as for the continuous-time
case, but with visible sampling.

Figure 12: Simulation results of the model (24) with initial conditions x0 =
[0, 0, 0, 0.2, 0, 0, 0, 0] and input vector u0 = [0, 0]T, (MATLAB/Simulink, ode4,

Fixed-step size 0.05)
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2.8 Analysis of Discrete-time State-space

The previous chapter has shown how the nonlinear system was linearized and
transformed when sampled. In this section, the key tools for analyzing the discrete-
time system represented by state-space, are developed, namely stability, reachability,
and observability. Furthermore, those concepts are also important for later control
design. The control algorithms were designed for the discrete-time model because
of its implementation on an embedded system so the analysis was done also on the
discrete-time model.

2.8.1 Stability

The notion of stability is the main tool for the analysis of dynamics. There
are many types of stability concepts. In this thesis, the focus is on the asymptotic
stability of discrete-time linear systems.
Discrete-time linear system (24) with Ad ∈ Rn×n is asymptotically stable if and only
if the matrix Ad is Schur, i.e.

|λi(Ad)| < 1, ∀i = 1, . . . , n. (26)

Geometrically, it requires that all eigenvalues lie inside the unit circle in the complex
plane.

The eigenvalues of the matrix Ad were computed and displayed in the following
figures.

Figure 13: Eigenvalue locations of discrete-time model (24)
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In the Figure 13 it can be seen that all eigenvalues lie inside the unit circle.
Thus, the system is stable.
Furthermore, in the Figure 14 one can notice there are two pairs of complex-valued
eigenvalues. Those eigenvalues correspond to the double pendulum which the quad-
rotor with a suspended payload form. The remaining four poles lie on the real axis
of the complex plane with two poles at the stability boundary.

Figure 14: Zoomed eigenvalue locations of discrete-time model (24)

2.8.2 Reachability

In short, reachability refers to the question if it is possible to steer a system from
an initial state to any other state. This property is crucial for state-space control
design methods. The reachability can be found throughout the reachability matrix
which is defined as

Cn = [Bd AdBd . . . An−1
d Bd] (27)

The linear system (24) is reachable if and only if

rank(Cn) = n (28)

The reachability matrix was constructed in MATLAB using ctrb() and the rank
of this matrix was computed. As the result, the reachabality matrix for (24) is full
rank, i.e. rank(C8) = 8.
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2.8.3 Observablity

Observability is related to determining the state just from observations of inputs
and outputs. It is especially essential when we are not able to observe the complete
state vector, which is common in real applications. In contrast to reachability, ob-
servability is important for an observer design. The linear system (24) is observable
if and only if

rank(On) = n, (29)

where the observability matrix is given

On =

⎡⎢⎢⎢⎣
Cd

CAd
...

CdA
n−1
d

⎤⎥⎥⎥⎦ (30)

In the same fashion as the reachability matrix, the observability matrix was
designed in MATLAB using the obsv() function. Also, the observability matrix is
a full rank, i.e. rank(O8) = 8.
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2.9 Control Design

2.9.1 State Feedback Control Design

State feedback control designs are mostly based on state-space models. The
control input is shaped as a linear combination of the system states. The goal of the
control law is to allow the assignment of pole locations for the desired closed-loop
system behavior. The advantages of state-space control design are evident when
the system to be controlled is the so-called MIMO system. Therefore, this control
strategy was used as the conventional method for the control design of the quadrotor
with a suspended payload.

State feedback
The linear state feedback is given

uk = −K0xk. (31)

If the expression above is inserted into the model (24) with assumption of zero Dd

matrix the closed-cloop dynamics is

xk+1 = (Ad −BdK0)xk

yk = Cdxk

(32)

The dynamics of the closed-loop system is therefore defined by the matrix (Ad−
BdK0). The closed-loop eigenvalues can be assigned arbitrary locations only if the
open-loop system is reachable. As has been shown in the previous chapter, the
discrete system is reachable. Thus, the state feedback could be designed. The
corresponding block diagram to (32) is displayed in the following figure.

Figure 15: State-space control scheme
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Luenberger Observer
The state feedback control law presented in the previous section assumed all the

state variables are accessible for feedback. Typically, not all states are measured.
Moreover, in some cases, it is physically impossible to measure all the states. In the
case of the quadrotor with a suspended payload, only the first four variables in the
state vector are measured. The rest of the state variables have to be estimated using
an observer (estimator). The fundamental observer called Luenberger observer was
proposed. The Luenberger observer for (24) has form

x̂k+1 = Adx̂k + Bduk + L(yk − ŷk)

ŷk = Cdx̂k + Dduk

(33)

for a constant observer gain matrix L. The estimator uses the input and out-
put sequence, together with the system model to reconstruct an estimated vector
x̂k. Similarly, as for state feedback, the observer dynamics are characterized by
eigenvalues of the matrix (Ad − LCd), which can be transformed using a suitable
selection of observer gain. The eigenvalues (Ad −LCd) can be assigned to arbitrary
locations if and only if the system is observable. In the section Analysis of discrete-
time state-space, the observability matrix was determined as full rank; hence the
observer could be applied.
For computing matrix L, the principle of duality was used, because there is a duality
relationship between the estimation and control problem.

Output feedback
As a result of the combination of an observer, and static linear feedback the

following output feedback controller is received

x̂k+1 = Adx̂k + Bduk + L(yk −Cdx̂k)

uk =−K0x̂k

(34)

If the matrix K0 is designed that (Ad−BdK0) is Schur, and L so that (Ad−LCd)
is also Schur, then the system is asymptotically stable. These conclusions are done
under the assumption that the model and the estimator perfectly matches the true
system.

To illustrate the principle of output feedback, the block diagram is displayed in
the following figure.

Figure 16: Estimator and controller scheme
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Integral Control
The control law and observer obtained in the previous sections are useful for

stabilization. This design does not consider a reference input or reference tracking,
which is crucial for the control design of a UAV. In general, there are two common
techniques. The first, introduce a compensation term in feedback or feed-forward
path. The compensation matrix is computed via state matrices. Therefore, this
method is not robust because any changes in the plant parameters cause a nonzero
error. The second method is based on introducing an integral action to obtain robust
control. Augmenting the state vector with the extra integral state xI leads to the
augmented state equations[︃

xk+1

xIk+1

]︃
=

[︃
Ad 0
−Cd I

]︃
⏞ ⏟⏟ ⏞

Aaug

[︃
xk

xIk

]︃
+

[︃
Bd

0

]︃
⏞ ⏟⏟ ⏞
Baug

uk +

[︃
0
I

]︃
rI , (35)

and the feedback law is
uk = −[K0 KI]

[︃
xk

xIk

]︃
(36)

or simply

uk = −K

[︃
xk

xIk

]︃
(37)

Combining the output feedback with integral action, the following block diagram
is formed.

Figure 17: Output feedback control with integral action

The reachability matrix of the augmented system (35) is full rank i.e. rank(C10) =
10, therefore, the augmented system could be used for the control design.
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2.9.2 Tuning of State Feedback Control

The gain matrix K can be determined by several methods. In this thesis, the pole
placement technique was used. In MATLAB, the pole placement is implemented via
place() function which is based on algorithm [11]. The drawback is that none of the
desired closed-loop poles may be repeated, i.e the poles must be distinct. This can
be overcome by slightly moving the location of repeated poles. On the other hand, it
can handle MIMO systems. The output feedback control design with integral action
was tuned for three different desired poles location of the closed-loop system. The
poles were selected with respect to the desired behavior of the closed-loop system.

In the first closed-loop poles selection for gain matrix K, the desired poles were
chosen as

pCL1 = [0.6, 0.61, 0.9+0.15i, 0.9− 0.15i, 0.9, 0.91, 0.7+0.2i, 0.7− 0.2i, 0.0, 0.0] (38)

The following poles map shows the location of closed-loop poles with respect to the
location of the open-loop poles. The poles of the closed-loop system are located
closer to the imaginary axis which implies a faster response. Furthermore, the two
desired poles are located in the origin. Those poles have an integral character.

Figure 18: Poles map of Poles location 1

The desired poles location of the estimator matrix L was selected five times faster
than the dynamics of the closed-loop system, i.e.

pE1 = 0.2pCL1 (39)

This ensures a faster decay of the estimator errors compared with the desired system
dynamics.
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In contrast to the first desired poles selection, the second poles’ choice of was
selected more conservatively

pCL2 = [0.9, 0.91, 0.95+0.25i, 0.95−0.25i, 0.9, 0.91, 0.8+0.2i, 0.8−0.2i, 0.0, 0.0]. (40)

The poles are situated further from the imaginary which implies a slower response
of the closed-loop system coupled with not-so-aggressive input actions.

The desired poles location of the estimator matrix L was also selected five times
faster than the dynamics of the closed-loop system, i.e.

pE2 = 0.2pCL2 (41)

Figure 19: Poles map of Poles location 2
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The last poles selection was as follows

pCL3 = [0.7 + 0.3i, 0.7− 0.3i, 0.9 + 0.25i, 0.9− 0.25i,

0.9 + 0.1i, 0.9− 0.1i, 0.8 + 0.2i, 0.8− 0.2i, 0.0, 0.0].
(42)

All poles were chosen as complex-conjugate except the ones which correspond to the
integrator. The response of the closed-loop system with this poles location should
be faster than the second pole’s location. In addition, the response should be poorly
damped.

Figure 20: Poles map of Poles location 3

The desired poles location of the estimator matrix L was, as in the previous
cases, selected five times faster than the closed-loop system.

pE3 = 0.2pCL3 (43)
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2.9.3 Simulation validation of State Feedback Control Design

The block diagram of the output feedback control with integral action was im-
plemented in MATLAB/SIMULINK. The designed control was validated on the
nonlinear continuous-time model (9) for three different flight scenarios and three
different poles location selections. The control’s actions as well as the states’ re-
sponses are displayed in the following figures.

Figure 21: Scheme of the Simulink implementation of output feedback control with
integral action
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Scenario 1 corresponded to the situation when the trolley moves only in the ho-
rizontal direction, i.e xref = [0.5, 0]T.

Figure 22: Control actions for scenario 1
(MATLAB/Simulink, Ode5, Fixed-step size 0.05)
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Figure 23: States response for scenario 1
(MATLAB/Simulink, Ode5, Fixed-step size 0.05)
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Scenario 2 referred to the vertical takeoff of the UAV, i.e xref = [0.0, 0.5]T.

Figure 24: Control actions for scenario 2
(MATLAB/Simulink, Ode5, Fixed-step size 0.05)
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Figure 25: States response for scenario 2
(MATLAB/Simulink, Ode5, Fixed-step size 0.05)
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The last scenario combined the two previous ones. In this case, the most com-
plicated, the UAV flew in the vertical and horizontal position at the same time, i.e
xref = [0.5, 0.5]T.

Figure 26: Control actions for scenario 3
(MATLAB/Simulink, Ode5, Fixed-step size 0.05)

36



Figure 27: States repsonse for scenario 3
(MATLAB/Simulink, Ode5, Fixed-step size 0.05)
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The predicted behavior of the closed-loop system based on the location of the
poles was confirmed in the simulation.

It can be seen in previous figures for all three scenarios, that Poles location
3 has the fastest time response together with the most aggressive control actions.
Furthermore, this setting has a significant overshoot in positions x and y. Besides
that, for the third scenario, the pendulum’s angle φ attenuates the fastest. On the
other hand, the amplitude of the first oscillation is the biggest.

In contrast, the second poles location has the slowest time response supported by
mild control actions. It is most noticeable in the second state when vertical position
y drops after the start of the simulation and after approx. 0.5 seconds, it starts
slowly raising towards the desired position. The first setting lies between those two
previous ones. This setting behaves reasonably for the first and the third scenario.
However, for the vertical takeoff, the peak of torque M = 0.18 Nm produces a great
peak in the quadrotor’s angle as well as in the horizontal position.
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2.9.4 Linear-quadratic Control

In the previous chapter, the feedback gain K and observer gain L were chosen
to assign eigenvalues using pole placement. However, modern control design tech-
niques allow finding optimal gains with respect to a specific performance criterion,
robustness to model uncertainty, suppression of disturbances, and energy efficiency.
This chapter presents the optimal control design for linear systems with quadratic
cost functions in the state and controls.

Linear-quadratic Regulator
In linear-quadratic control, the state feedback gains are entirely determined by

the quadratic cost function. The cost function parameters become the tunning
parameters in the control design.
Considering the linear discrete-time state-space model and infinite-horizon cost

∞∑︂
k=0

xT
kQxk + uT

kRuk, (44)

where Q ≥ 0 and R > 0. The optimal control feedback law

uk = −KLQRxk, (45)

where static gain KLQR

KLQR = (R+BT
dPB)−1BT

dPAd (46)

and P is the positive semidefinite solution to the algebraic Riccati equation

P = Q+AT
dPAd −AT

dPBd(R+BT
dPB)−1BT

dPAd. (47)

In addition, if (Ad, Bd) is reachable and (Ad, Q1/2) is detectable, then the algeb-
raic Riccati equation admits a unique positive semi-definite solution and the close
loop is asymptotically stable.
The solution of the algebraic Riccati equation was found in MATLAB by dlqr()
function. In addition, this function also returns the optimal feedback gain matrix
KLQR.

Kalman-Bucy filter
In the previous chapter on the estimator, the duality between the regulator

and the estimator was mentioned. In linear quadratic control, there also exists an
optimal estimator using dual quantities, a so-called linear-quadratic estimator or
Kalman-Bucy filter.
Kalman-Bucy filter is an estimator for stochastic system

xk+1 = Adxk + Bduk +wk

yk = Cxk + vk +wk,
(48)

where the process noise wk and sensing noise vk are white Gaussian random se-
quences with zero mean.
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The gain of the Kalman-Bucy filter LLQR can be computed using the dual quant-
iti, i.e. LLQR = KT

LQR. Therefore, the gain of the Kalman-Bucy filter was computed
in MATLAB using the same function as for the controller. The tuning parameters
of the filter are the matrices Qe and Re which are given

Qe = Cov(wk), Re = Cov(vk). (49)

The higher the value of Qe, the higher the model uncertainty. Similarly, the higher
the value of Re, the higher the sensing noise. Those parameters were chosen with
the fact, that the filter was applied to the nonlinear system, so the process noise
was high due to nonlinearities. However, the value of Re was small, because there
was a high degree of certainty in measurement. Those matrices were evaluated by
simulation as

Qe = 10I, Re = 0.001I. (50)

Tuning of Linear-quadratic Controller
In linear-quadratic control, the state feedback gains are entirely determined by

the quadratic cost function. The cost function parameters become the tunning
parameters in the control design. The matrices Q and R in quadratic cost (44)
become the "tuning knobs" in controller design. There are many approaches to
tuning the parameters to obtain the desired controller response. In this thesis, the
starting point for a design procedure was the fundamental Bryson’s tuning rule
combined with the tuning by simulation. Bryson’s rule suggests using

[Q̄]ii =
1

z
(i)
max

, [R̄]ii =
1

u
(i)
max

, (51)

where z
(i)
max is the maximum transient error that can be admissible in performance

z(i), and u
(i)
max is the maximum magnitude in control signal i.

There is also an intuitive view of the tuning of the LQR controller. It can be shown
that making R very small, i.e. when one does not penalize energy used by the
control signal, the response becomes arbitrarily fast. This is referred to as cheap
control. On the other hand, when R tends to infinity, the energy used is heavily
penalized, and this case is called expensive control.

Similar to the tuning of state feedback control, the linear-quadratic controller
was tuned for three different settings of the tuning parameters. As it was mentioned,
the "tuning nobs" for this optimal control strategy are the weight matrix Q and R.
Three following combinations of tuning weight matrices were examined. For each
setting, the pole map is displayed to see where the LQ-optimal controller placed the
poles.

As the first trial, the control effort was chosen as expensive together with a low
penalization on states.

Q1 = diag(1, 1, 1, 1, 1, 1, 1, 1, , 1, 1) (52)

R1 = diag(0.01, 0.01) (53)
The corresponding poles were

pCL1 = [0.937 + 0.245i, 0.937− 0.245i, 0.918 + 0.149i, 0.918− 0.149i,

0.867 + 0.144i, 0.867− 0.144i, 0.848 + 0.066i, 0.848− 0.066i,

0.743, 0.002].

(54)
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In the pole map, it can be seen that the LQR placed all the poles as complex-
conjugate pairs besides the last two in (54). As the result, an oscillatory time
response is expected. One can also spot that all poles are relatively far away from
the origin which implies slow time response and small control actions.

Figure 28: Poles map of Design 1
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In the second tuning, the states as well as the control inputs were penalized more
harshly, especially, the x and y positions were more heavily penalized together with
pendulum’s and quadrotor’s angle.

Q2 = diag(20, 20, 10, 10, 1, 1, 1, 1, 50, 50) (55)

R2 = diag(0.001, 0.001) (56)

Corresponding poles were

pCL2 = [0.95 + 0.241i, 0.95− 0.241i, 0.866 + 0.235i, 0.866− 0.235,

0.749 + 0.088i, 0.749− 0.088i, 0.625 + 0.291i, 0.625− 0.291i,

0.423, 0.00].

(57)

The consequence of the penalization can be seen in the following poles map.
The poles moved closer to the origin as well as furtherer from the imaginary axis
compared to the first design.

Figure 29: Poles map of Design 2
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Finally, the last combination of weight matrices was suggested. In this design,
the control became cheaper and states were penalized the most heavily.

Q3 = diag(50, 50, 20, 20, 10, 10, 10, 10, 100, 100) (58)

R3 = diag(0.005, 0.005) (59)

Coresponding poles were

pCL3 = [0.954 + 0.242i, 0.954− 0.242i, 0.852 + 0.246i, 0.852− 0.246i,

0.722 + 0.089i, 0.722− 0.089i, 0.541 + 0.304i, 0.541− 0.304i,

0.323, 0.0].

(60)

Poles map shows that the poles were moved even closer to the origin. This indicates
faster time response at the expense of more control effort.

Figure 30: Poles map of Design 3
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2.10 Simulation Validation of Linear-quadratic Control

The linear-quadratic control was validated using the same block diagram in
MATLAB/Simulink as for the state feedback control. However, during the sim-
ulation, the problem with numerical instability was encountered when the values
of R were smaller than in R3. Apart from this, the problem with integral action
appeared. The method of integration in the Discrete-Time Integrator block had to
be selected as Forward Euler accumulation otherwise the simulation was numerically
unstable. Several solvers were tested and the best one seemed to be Ode1be with a
fixed step size.

Scenario 1

Figure 31: Control actions of Scenario 1,
(MATLAB/Simulink, Ode1be, Fixed-step size 0.05)
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Figure 32: States response of Scenario 1,
(MATLAB/Simulink, Ode1be, Fixed-step size 0.05)

Scenario 2
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Figure 33: Control actions of Scenario 2,
(MATLAB/Simulink, Ode1be, Fixed-step size 0.05)
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Figure 34: States response of Scenario 2,
(MATLAB/Simulink, Ode1be, Fixed-step size 0.05)

Scenario 3
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Figure 35: Control actions of Scenario 3,
(MATLAB/Simulink, Ode1be, Fixed-step size 0.05)
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Figure 36: States response of Scenario 3, (MATLAB/Simulink, Ode1be, Fixed-step
size 0.05)
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The simulation results for the first design when the penalization of states is low
and the control actions are expensive showed that the control inputs are the mildest
together with the slowest time response. For all scenarios, it can be seen that the
y position goes during the first 0.8 s significantly in the opposite direction. As a
result of mild control actions, there are not many pendulum oscillations compared
to the other two settings.

The other two settings are similar in terms of the response’s speed and reaching
the desired positions. However, the control actions for the third design are larger
with a peak around 70 N which is far away from what the motors are capable of.
In contrast to the pole placement design for the vertical takeoff scenario, none of
the LQR designs produced pendulum oscillations.

50



2.10.1 Nonlinear Model Predictive Control

In the previous chapters, the control design was based on the linearized system
represented by state space. In the following chapter, a model predictive control
(MPC) strategy for the nonlinear system with constraints and a terminal cost will
be developed.

Model predictive control is an advanced optimization-based control strategy. In
this work, a receding-horizon control strategy was used - at each sampling time, the
current state is measured, an optimal control sequence over a constant horizon N is
planned, but then only the first control in the sequence is implemented. Therefore,
the receding horizon control is a feedback policy since the control action at each time
depends on the actual state at the time. The key idea of model predictive control
is to exploit a model of the process to predict and optimize the future behavior of
the system. In NMPC, a nonlinear model describing the system is used. Moreover,
NMPC can make use of a nonquadratic cost function and nonlinear constraints.
Nevertheless, in this thesis, the nonlinear model, quadratic cost function, and linear
constraints were implemented

xk+1 = f(xk,uk). (61)

xk ∈ X , uk ∈ U , k ≥ 0. (62)

The sets U , X are polyhedra described by the following linear inequalities

U = {u : Huu ≤ hu}, X = {x : Hxx ≤ hx}. (63)

The following state and control constraints were considered

xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax (64)

with xmax = −xmin = [1, 1, π/4, π/4, 2, 2, π/2, π/2]T and umax = −umin = [35, 1]T.
The state and control constraints were selected with respect to the physical system.

The Nonlinear MPC problem is formally defined as an optimal control problem

min
u

N−1∑︂
k=0

eT
kQmpcek + uT

kRmpcuk + eT
TPTeT

s.t. xk+1 = f(xk,uk)

ek = xk − xref

xk ∈ X
uk ∈ U
x0 = xk

(65)

In this thesis, the simplified version of nonlinear MPC was used, which does not
contain terminal constraints, but does contain a terminal cost - more details can
be seen in [5]. In short, the nonlinear MPC problem is stable considering only a
terminal cost PT = γQmpc, γ > 1, i.e. the terminal cost is a scaled-up version of
the state cost. The related terminal set will be dependent on how large γ is. A huge
γ also affects the performance of the NMPC.
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Discretization and Implementation of Optimal Control Problem
The nonlinear MPC problem (65) was implemented in MATLAB with Casadi.

Casadi is an open-source tool for nonlinear optimization. [2] The optimal control
problem (65) was first transcribed into a nonlinear program using the direct multiple
shooting method. The main idea of this method is to decompose the system integra-
tion into short time intervals, i.e. use the system model as a state constraint at each
optimization step. In contrast to the single shooting method, state variables also
become decision variables in the optimization problem. Also, the multiple shooting
method is more suitable for nonlinear systems optimizing over a long horizon. More
details on this method can be found in [14] or [3].

The basic structure for the implementation of the direct multiple shooting method
in Casadi was code [16]. The code was modified for the planar quadrotor with
a suspended load. Besides that, the terminal cost was added together with the
reference-input tracking scheme in the cost function. The code can be found in the
attachment.

Tuning the NMPC
A model predictive controller has a wealth of parameters to tune, such as sample

time, weight matrices, horizon length, etc.
The weight matrices appearing in the cost function of (65) were tuned mainly by

Bryson’s rule and by simulation where the starting point was the weight matrices
from the LQR controller.

In theory, if the prediction horizon is increased, the performance gets closer to
that of the optimal infinite-horizon controller. However, the bigger the prediction
horizon N , the larger the computational burden of the calculation of the optimal
solution.

The sample time derived in the previous chapter was used.

Simulation Validation of NMPC
The NMPC controller was simulated for three different selections of the predic-

tion horizon and Qmpc,Rmpc, PT, namely

N = {4, 8, 30},
Qmpc = diag(100, 100, 100, 100, 10, 10, 10, 10),

Rmpc = diag(0.001, 0.001),
PT = 20Qmpc.

(66)

And also for three different matrices Qmpc

Qmpc1 = diag(15, 15, 10, 10, 10, 10, 10, 10)
Qmpc2 = diag(40, 40, 40, 40, 10, 10, 10, 10)
Qmpc3 = diag(80, 80, 200, 200, 20, 20, 20, 20)

N = 12,

Rmpc = diag(0.001, 0.001),
PT = 20Qmpci.

(67)

Those combinations of tuning parameters were simulated for a scenario when the
trolley moves at the same time in both directions.

52



Figure 37: Control actions of NMPC, N = {4, 8, 30}
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Figure 38: States response of NMPC, N = {4, 8, 30}
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Figure 39: Control actions of NMPC for Qmpc1,Qmpc2,Qmpc3
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Figure 40: States response of NMPC for Qmpc1,Qmpc2,Qmpc3
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From the simulation results, one can say that the longer prediction horizon res-
ulted in a better time response in terms of time to reach the desired position. On
the other hand, the shortest prediction horizon caused a slow response in the hori-
zontal position with the fastest response in the vertical position together with small
pendulum oscillations. Consequently, one can say that the faster response in the x
direction resulted in higher pendulum oscillations.

2.11 Comparison of the Control Strategies

Lastly and most importantly, the control strategies were compared. Output
feedback, linear-quadratic control, and NMPC were compared in simulation for the
third flight scenario. Namely, the first poles’ location for output feedback, the
second tuning design for linear-quadratic control, and for the NMPC the tunning
parameters were given by (66) for N = 30.

Figure 41: Control inputs comparison for the control strategies
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Figure 42: States response comparison for the control strategies
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The linear-quadratic control resulted in the fastest time response in the x direc-
tion and the slowest response in y. For this reason, the pendulum oscillations were
greatest. The output feedback performed the slowest response in the horizontal
direction coupled with the smallest oscillations in the φ. The NMPC achieved the
fastest response in the vertical motion with a reasonable damping effect on the pen-
dulum. Nevertheless, the control actions are incomparable. Whereas the NMPC
complies with the constraints with a maximum in thrust T = 35 N and torque M
= 0.4 Nm, the linear-quadratic control reached the thrust peak of T = 50 N and
torque peak M = 1 Nm. Between those two was output feedback with a maximum
in thrust T = 42 N and torque M = 0.5 Nm. It has to be mentioned that it is
difficult to compare those three control methods. Especially, the NMPC and output
feedback control, because they are based on a different approaches.

2.12 Validation on the laboratory setup

The designed algorithms, specifically, output feedback control with integral ac-
tion and linear-quadratic control were tested on the experimental setup. However,
the trolley was too heavy together with high friction coefficient cy, and the control
actions produced by the motors were large which resulted in a big movement beyond
the physical restrictions of the experimental setup.

59



Conclusion and Future Work

Conclusion

The aim of this master’s thesis was an introduction to optimal control of a planar
UAV model with a suspended load. Further, the creation of a simulation model of
the planar UAV for the purpose of the control design as well as the optimal control
design and its comparison with a conventional control method. The goal was also
the design of an experimental setup and experimental validation of the algorithms.

In the thesis, several optimal control methods of a UAV with a suspended load
were listed. Then, the experimental setup for testing control algorithms with a
suspended load was designed together with the sensor, actuator, and control unit
implementation. After, the setup was identified. The nonlinear mathematical model
of the experimental setup was developed. Moreover, this model was linearized and
discretized for the purpose of control design. Those models were implemented in
MATLAB/Simulink and verified. Then three control methods were designed. First,
the conventional output feedback control with integral action and Luenberger ob-
server. Second, the linear-quadratic controller together with the Kalman-Bucy filter.
Lastly, nonlinear model predictive control. Those methods were implemented and
simulated for three different flight scenarios. Finally, the control algorithms were
compared.

The linear-quadratic control resulted in the fastest time response in the ho-
rizontal direction and the slowest response in the vertical position. The output
feedback performed the slowest response in the horizontal direction coupled with
the smallest pendulum oscillations. Nonlinear model predictive control achieved
the fastest response in the vertical motion with a reasonable damping effect on the
pendulum. Nonetheless, the control actions are incomparable. Whereas the NMPC
complies with the constraints with a maximum in thrust T = 35 N and torque M
= 0.4 Nm, the linear-quadratic control actions reached the thrust peak of T = 50
N and torque peak M = 1 Nm. Between those two was output feedback with a
maximum thrust T = 42 N and torque M = 0.5 Nm.

Future Work

Improvement in experimental setup design and experimental validation has been
left for the future. Future work concerns decreasing the weight of the trolley with
the quadrotor as well as the deeper identification.

60



Appendix A

M(x(t)) =⎡⎢⎣ m1 +m2 +m3 +m4 0 a2m2 cos (θ) + a3m1 cos (θ) l m1 cos (φ)
0 m1 +m2 +m3 sin (θ) (a2m2 + a3m1) l m1 sin (φ)

cos (θ) (a2m2 + a3m1) sin (θ) (a2m2 + a3m1) m2 a2
2 +m1 a3

2 + Is2 a3 l m1 cos (θ − φ)
l m1 cos (φ) l m1 sin (φ) a3 l m1 cos (θ − φ) m1 l

2 + Is3

⎤⎥⎦

C =

⎡⎢⎢⎣
cx 0 0 0
0 cy 0 0
0 0 cθ 0
0 0 0 cφ

⎤⎥⎥⎦

G(x(t)) =

⎡⎢⎢⎣
0 0 −θ̇ sin (θ) (a2m2 + a3m1) l m1 φ̇ sin (φ)

0 0 θ̇ cos (θ) (a2m2 + a3m1) l m1 φ̇ cos (φ)
0 0 0 a3 l m1 φ̇ sin (θ − φ)

0 0 −a3 l m1 θ̇ sin (θ − φ) 0

⎤⎥⎥⎦

Q(x(t)) =

⎡⎢⎢⎣
0

g (m1 +m2 +m3)
g sin (θ) (a2m1 + a3m2)

g l m2 sin (φ)

⎤⎥⎥⎦

L(x(t)) =

⎡⎢⎢⎣
− sin (θ) 0
cos (θ) 0

0 1
0 0

⎤⎥⎥⎦
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Appendix B

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 −8.35 1.43 −0.02 0.00 0.01 0.00
0.00 0.00 0.00 0.00 0.00 −0.16 0.00 0.00
0.00 0.00 −5.33 6.33 0.05 0.00 −0.58 0.02
0.00 0.00 6.21 −26.54 0.01 0.00 0.02 −0.07

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 −1.14
0.52 0.00
0.00 44.44
0.00 −1.28

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ad =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0.00 −0.01 0.00 0.05 0.00 −0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.05 0.00 0.00
0.00 0.00 0.99 0.01 0.00 0.00 0.05 0.00
0.00 0.00 0.01 0.97 0.00 0.00 0.00 0.05
0.00 0.00 −0.42 0.07 1.00 0.00 −0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00
0.00 0.00 −0.26 0.31 0.00 0.00 0.97 0.01
0.00 0.00 0.31 −1.31 0.00 0.00 0.01 0.96

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 −0.00
0.00 0.00
0.00 0.05
0.00 −0.00
0.00 −0.06
0.03 0.00
0.00 2.19
0.00 −0.06

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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