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Abstrakt

Vliv definice východu na chováńı chodc̊u během evakuace byl zkoumán pomoćı
nástroje simulaćı na bázi celulárńıho automatu. V této práci je představen
modifikovaný Floor-Field model podporuj́ıćı r̊uzné typy východ̊u. Výsledky
simulaćı porovnaj́ı vliv východu na r̊uzné konfigurace agent̊u: homogenńı, kdy
všichni agenty jsou stejńı, a heterogenńı, kdy agenty patř́ı do r̊uzných skupin.
Tohle porovnáńı ukazuje, že heterogenita v agresivitě a citlivosti do okupace
může měnit vlastnosti toku, zp̊usobuj́ıćı ztrátu stacionárity toku a obracej́ıćı
ho do lineárńı klesaj́ıćıho toku, změna typu východu v tomhle př́ıpadě může
posilovat ten efekt.

Kĺıčová slova Celulárńı model, definice východu, evakuace, pohyb chodc̊u,
stacionárńı, lineárńı klesaj́ıćı tok, agresivita, citlivostńı analýza.

Abstract

The influence of exit definition on the pedestrian behaviour during evacuation
is studied via a simulation toolkit based on cellular model. This thesis presents
modified Floor-Field model that supports different types of exits. Simulation
results compare the influence of exits on different agent configurations: homo-
geneous, when all agents are equivalent, and heterogeneous, when agents are
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divided into different groups. The comparison shows that the heterogeneity in
aggressiveness and sensitivity to occupation can change the properties of the
flow, causing it to lose stationarity and turning it into a linearly decreasing
flow, and changing the type of exit in this case can enhance this effect.

Keywords Cellular model, exit definition, evacuation, pedestrian dynamics,
stationary flow, linear decreasing flow, aggressiveness, sensitivity analysis.
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Introduction

The simulation of pedestrian evacuation processes plays an important role
in recent years. There are several reasons for this: the first reason is the
growing computing power to simulate large crowds. The second reason is that
in the world there are constantly accidents involving a large number of people
leading to death. Definition of exit and analyzing the action of the crowd in
the bottleneck is an important part of the analysis of the evacuation.

Up to now there do exist a lot of simulation models for simulating pedes-
trian dynamics. These models can be distinguished in some categories as a
representation of space, population, behavior of agents, and so on. One sub-
group of simulators in this area are cellular models. The advantage of such
models is low computational requirements and simple rules, which simplifies
the interpretation of the model. Most cellular automata are based on the idea
of Floor-Field model [2], [3].

In the field of cellular automata and evacuation processes, there is not
much research on the exit definition, most of the work can be distinguished
into the following categories:

• obstacles - how does adding an obstacle affect the evacuation process
[4], [5], [6], [7].

• agent modification - how adding a new parameter helps to better de-
scribe the evacuation process [1], [8], [9], [10].

• multiple exits - how multiply exits affect evacuation and choice of agent
[11], [12], [13], [14].

• width of exit - how does exit width affect crowd movement [15].

One of the main disadvantages of cellular automata is the use of a discrete
space. This becomes a problem when we define exits and bottlenecks in the
system. Most cellular automata set the cell size based on the area occupied
by the average person in space 0.4×0.4 m2. In the case when we need a width
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Introduction

of exit that is not a multiple of 0.4, we have no options left except to try to
adjust other parameters of the model to fit the real world data. To solve this
problem, it was proposed to modify the cellular automaton (Chapter 1) based
on the ideas of [1], [10] to support walls of various thicknesses, which would
allow new types of exits to be defined.

To analyze the influence of new types of exits on the evacuation process,
a new approach to flow calculation was proposed in Chapter 2. Based on the
obtained metric, simulations of evacuations with different types of exits were
made. Using sensitive analysis, it was shown how the exit definition affects
the behavior of the crowd during the evacuation.
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Chapter 1
Definition of the model

The model used in this thesis comes from a family of Floor-Field cellular
models. This model is based on studies [1], [10], but several modifications
have been added to it: exit types et (Section 1.5), exit friction µexit (Section
1.6) and open space (Section 1.7).

The cellular model that is now going to be presented is discrete in space and
time, the spatial lattice is orthogonal. The base structure is a two-dimensional
grid L ∈ Z consisting cells x = (x1, x2). Each cell can be either empty or
occupied by one agent (pedestrian). The size of the cell is 40 × 40 m2, which
corresponds to the average space occupied by one pedestrian in a dense crowd
[16]. Agents move around the grid by stepping from their current cell x ∈ L
to a neighbouring cell y ∈ N(x) ⊂ L, where N(x) is Moore neighbourhood
N(x) = y ∈ L : |x1 − y1| ≤ r, |x2 − y2| ≤ r, where r = 1 is range of neighbors
(Figure 1.1).

Figure 1.1: The Moore neighborhood is composed of nine cells: a central cell
and the eight cells which surround it.
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1. Definition of the model

1.1 Basic rules for choosing the next cell

Each agent has a 3×3 matrix of attractiveness, which contains the probabilities
P (y|x) for a move of the agent from cell x ∈ L to their target cells y ∈
N(x). The central element of the matrix describes the probability that the
agent will not move at all, the remaining 8 correspond to a move to the
neighbouring cells. Agent choose the next cell stochastically according to
matrix of attractiveness. The transition probability P (y|x) is based on the
work [10] and is calculated from two components PS and PO:

P (y|x) = koPO(y|x) + (1 − ko)PS(y|x) (1.1)

1.1.1 Sensitivity to static field S.

Figure 1.2: The static floor field S for single and multiple exits.

The component PS(y|x) is responsible for the sensitivity of the agent to the
static potential S(y) and should determine how well the agent knows the area
around him. This component can be represented as the following expression:

PS(y|x) = exp{−ksS(y)}(1 − kdDx(y))∑
z∈N(x) exp{−ksS(z)}(1 − kdDx(z)) (1.2)
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1.2. Updating scheme

Static floor field S. The static field is a grid (Figure 1.2) in which each
cell stores a value representing the Euclidean distance S(y) =

√
|y1|2 + |y2|2

from the current cell y to the nearest exit from the system E = (0, 0). Obvi-
ously, P (y|x) ∝ exp{−ksS(y)}, where ks ∈ [0,+∞) denotes the parameter of
sensitivity to the field S.

Diagonal movement. The attractiveness of the target cell is further influ-
enced by the diagonal movement. In cellular models, the diagonal movement
must be penalized to avoid the zig-zag motion. Otherwise, the model will
give preference to diagonal movement, since in this case the agent will cover a
longer distance

√
2. Dx(y) is an indicator function (1.3), when the neighboring

cell is diagonal, the value of the function is equal to 1, otherwise 0. Sensitivity
parameter to the diagonal movement is denoted by kd ∈ [0, 1] (when kd = 1
diagonal movement is prohibited).

Dx(y) =
{

1, if (x1 − y1)(x2 − y2) ̸= 0
0, otherwise

(1.3)

1.1.2 Sensitivity to ocupation.

The term PO(y|x) defines the probability with which the agent will choose an
already occupied cell and can be described as the following equation:

PO(y|x) = exp{−ksS(y)}(1 −Ox(y))(1 − kdDx(y))∑
z∈N(x) exp{−ksS(z)}(1 −Ox(z))(1 − kdDx(z)) (1.4)

where Ox(y) is function that indicates whether a cell is occupied or not
(1.5). Sensitivity parameter to the occupancy is denoted by ko ∈ [0, 1] (ko = 1
means that occupied cell will never be chosen), The probability P (y|x) is
directly proportional to ko parameter.

Ox(y) =


1, if y ̸= xand y is occupied
0, if x = y

0, if yis empty cell
(1.5)

1.2 Updating scheme

All agents are updated at the same time, time is a discrete value and for 1
unit of time the agent can make only one step. If agents choose the same cell,
a conflict occurs. All these conflicts are resolved through the mechanism of
friction (Section 1.6) and aggressiveness (Section 1.8).
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1. Definition of the model

1.3 Parameters configuration

All model configuration parameters can be divided into two groups:

• Agent based parameters - parameters that may differ from agent to agent

• Room based parameters - global parameters that apply to the whole
model and are shared between all agents

Agent based parameters. Agent based parameters Table 1.1 can be set
in three ways:

• all agents have the same parameters

• agents are divided into groups, each group has its own parameter sets

• agent parameters generated using distribution, this feature is only sup-
ported by aggressiveness γ and occupation ks

Parameter Description
ks Sensitivity to potential
kd Penalization of diag. motion
ko Sensitivity to occupation
γ Aggressiveness

Table 1.1: Agent based parameters

Room based parameters. Room parameters include the following 3 mech-
anisms: friction µ (Section 1.6), exit type et (Section 1.5) and open space
(Section 1.7). In addition to this section, we can include the number of agents
in the system. All agents are generated in a room within a certain radius
using a uniform distribution.

1.4 Principle of bonds

The principle of bonds allows the agent to choose an occupied cell. An agent
who chooses an occupied cell builds a bond with the agent that is in the given
cell. If more than one agent tries to build a bond, the conflict mechanism
comes into play. This bond lasts until the next movement of the target agent.
As soon as the associated agent takes a step, the second agent instantly takes
his place. This strategy supports the motion in lines and can lead to fluent
flow through the bottleneck. This strategy allows agents to move in a line,
thus forming a fluent flow through the bottleneck.
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1.5. Exit Types et

1.5 Exit Types et

To be able to create new types of exits, a thin wall mechanism has been added
to the cellular automaton, which allows an agent to occupy a cell containing a
thin wall. Using combinations of different wall types, we can create exits with
different bandwidth (Figure 1.4). In this work we will compare the following
cases:

• et = 1 (exit type 1) - thick walls on both sides of the exit

• et = 2 (exit type 2) - thin wall on one side and thick on the other

• et = 3 (exit type 3) - thin walls on both sides of the exit

Figure 1.3: et = 1 Figure 1.4: et = 2 Figure 1.5: et = 3

1.6 Friction µ and µexit

One of the parameters responsible for conflict resolution is the friction pa-
rameter µ. The friction parameter µ is denoting the probability that none of
the agent wins the conflict. That is, with a probability of 1 − µ, the conflict
will be won by one of the agents. This mechanism has been extended with
the aggressiveness parameter γ, which determines which agent should win the
conflict.

In order to study the effect of friction in the exit area, a new parameter
µexit has been added to this model. This parameter allows us to set a new
coefficient of friction in a certain radius near the exit (Figure 1.6).

1.7 Open Space

A distinctive feature of this cellular model is the presence of open space after
the exit. This allow us to follow the flow after the agents have left the room.
Usually in experiments the agent disappears from the system after crossing
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1. Definition of the model

Figure 1.6: Setting a separate friction parameter µexit for the exit. The area of
friction near the exit may differ depeding on its type. The friction parameter
in the entire room is always less than near the exit.

the exit, this makes it impossible to trace the impact of the movement of the
crowd outside the exit on the evacuation.

The friction parameter in the open space is set to µ = 0. After the agent
crosses the line, the sensitivity to the field S is set to ks → ∞. This allows us
to exclude any conflicts from outside and forces the agents to leave the room
as quickly as possible.

1.8 Aggressiveness γ

The ability of an agent to win a conflict is determined using an additional
aggressiveness parameter γ ∈ [0, 1]. The idea behind the mechanism is as
follows. The conflict is always won by the agent with the highest γ. If more
than one agent with the highest γ is involved in the conflict, then the friction
parameter µ is used. The conflict will not be solved with probability µ(1−γ),
none of the agents move in this case. On the other hand, the conflict will be
resolved with probability 1 − µ(1 − γ) and one of the agents will occupy the
target cell. The choice of the agent who will start the movement is determined
randomly among all agents with the highest γ involved in the conflict. The
solution of the conflict in the case of the presence of agents with different
aggressiveness is shown in Figure 1.7.
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1.8. Aggressiveness γ

Figure 1.7: Conflict solution for γ1 < γ2. Left: more aggressive wins the
conflict over twoless aggressive. Right: the conflict of two more aggressive can
resolve by the blockingof the movement. The picture was borrowed from the
author of the aggressiveness mechanism [1]
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Chapter 2
Stationary Flow

2.1 Problem statement

To conduct any analysis of the influence of exit difinition on the behavior
of agents during the evacuation, we need to figure out how to interpret the
behavior of agents in the system. One of the possible solutions may be to cal-
culate the flow in the exit area. In our experiments, the exit is the bottleneck
of the system, which means that the flow value will be limited by exit. This
property gives us the ability to determine the influence of exit definition on
the evacuation process.

Figure 2.1: How many agents leave the room at time t

The crowd flow calculation can be carried out in various ways. One possible
way would be to calculate the flow from a single trajectory, when you count
the number of agents Xt crossing the exit in a time interval ∆t (Figure 2.1).
But the results of experiments with the same input parameters show that
the trajectory of one experiment can be very different from the trajectory of
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2. Stationary Flow

another experiment, in such a case it is necessary to measure the actual flow
in more smooth way.

Due to the fact that we can simulate an infinite number of experiments,
we are able to estimate the flow as mean value Jt = EXt per time unit t,
which gives us a more accurate value for analysis (Figure 2.2):

Jt = EXt =
∑
ω∈Ω

Xt(ω)P (ω) = 1
N

N∑
i=1

Xti

where Xti is the number of agents crossing the exit at time t in the simu-
lation i.

Figure 2.2: Homogeneous. How many agents leave the room at time t (average
of N = 500 simulations)

If we look at flow chart (Figure 2.2), we can see that the flow has been
stabilized around a certain value Jt ≈ 0.6 for a long time period t ∈ [b1, b2].
We calls this phenomenon ”the flow stationarity” and denote this by Jstac.
Initially, our hypothesis assumed that the flow is always stationary and we
can describe it by mean value:

Jstac = Et∈[b1,b2]Jt

But during the experiments it was discovered that the flow Jt can lose
its stationarity depending on how the input parameters were chosen. This is
most noticeable in the heterogeneous case. For example, when two distinct
groups are created with their own aggressiveness parameter γ1 ̸= γ2, the
Jt starts to have a descending trend (Figure 2.3), but this decrease is still
linearly dependent. For this reason, it was decided to consider two different
representations of the flow:

• Stationary flow Jstac -when the Jt can be estimated by a mean value,
for homogeneous case only.
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2.2. Estimation.

• Linearly decreasing flow Jlin - when flow can be estimated by a linear
model Y = αx+ c, for heterogeneous case only.

Figure 2.3: Heterogeneous (2 groups). The first group of agents has aggres-
siveness γ1 = 0.1, the second one γ2 = 0, 9. Jt has descending trend line.

2.2 Estimation.

The calculation of Jstac and Jlin values has a similar approach and consists
of three steps:

1. fit the breakpoint positions

2. choose the right segment

3. estimate Jstac or Jlin on selected segment

Breakpoints. Breakpoint positions are computed using the Muggeo’s itera-
tive algorithm [17] from piecewise-regression python-package [18]. The general
form of the model with one breakpoint is:

y = αx+ c+ β(x− ψ) × I(x > ψ) + ε

where x, y - some observations (in our case x = t and y = Jt), α is the left
slope, c is the intercept for the first segment, β is the difference-in-slopes (the
change from the first segment to the second), I(·) is the indicator function, ε
is a noise term and ψ is the breakpoint.

This expression has non-linear relantionship and can’t be solved by linear
model. Muggeo (2003) [17] shows that the nonlinear term can be replaced
with linear approximation by a Taylor expansion with some initial guess for
the breakpoint ψ(0):
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2. Stationary Flow

y ≈ αx+ c+ β(x− ψ(0)) × I(x > ψ(0)) − β(ψ − ψ(0)) × I(x > ψ(0)) + ε

Now this equation has linear relantionship and we can iteratively find a
new breakpoint estimation ψ(t) = ψ(t−1) − γ̂/β̂, where γ̂ - measures the gap,
at the current estimate of ψ(t), between the two fitted straight lines coming
from the model:

y = αx+ c+ β(x− ψ(0)) × I(x > ψ(0)) − γ × I(x > ψ(0)) + ε

This model can be estimated through ordinary linear regression using the
statsmodels python package [19]. We iterate in this way until the algorithm
converges (the gap γ̂ ≈ 0).

Muggeo’s iterative algorithm is not guaranteed to converge on a globally
optimal solution. To address this limitation, the piecewise-regression package
[18] has implemented bootstrap restarting [20], following Muggeo’s approach
[21].

The disadvantage of the Muggeo’s algorithm is that we must know the
number of breakpoints before starting. For this problem, 4 breakpoints were
used, the optimal number was chosen empirically during experiments.

Figure 2.4: The Muggeo’s iterative algorithm with 4 breakpoints and their
confidence intervals. Input parameters were selected in homogeneous way.

Segment selection. The experiment results shows that the best heuristic
for segment selection is to find the longest segment from piecewise-regression
Jsegmented (Figure 2.4). In the case when the flow is stationary, we can fine
tune selection by slope, because the given segment will be parallel to the
x-axis.

14



2.2. Estimation.

Segmented regression. As it was discussed before, the flow has to be
estimated in two different ways.

Stationary flow. When parameters were chosen in homogeneous way, the
flow will be stationary at a certain interval (Fig. 2.2). In this case, we can
estimate Jstac value by intercept-only linear model:

Y = c

The mean value of Jt will be the best estimation:

c = Jstac = 1
b2 − b2

b2∑
i=b1

Xti

,
where Xt - number of agents crossing the exit at time t, [b1, b2] - selected

time interval.

Linearly decreasing flow. When input parameters were chosen in hetero-
geneous (2 groups) way, the Jt value will have descending trend. In this case,
we can use the prediction of Muggeo’s iterative algorithm from previous step.
This prediction will give us the same result as if we used linear regression on
selected segment:

Y = c+ αX + ε

where X = (Xb1 , Xb1+1, ..., Xb2) - number of agents crossing the exit at
time t, [b1, b2] - selected time interval.

For further analysis, we will interpret the linear flow Jlin as a vector of
three quantities: slope, minimum and maximum flow.

Jlin =

 α
min(Y )
max(Y )

 (2.1)
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Chapter 3
Sensitivity analysis

In academic papers, the definition of sensitivity analysis may vary. One possi-
ble definition of sensitivity analysis is the following: The study of how uncer-
tainty in the output of a model (numerical or otherwise) can be apportioned
to different sources of uncertainty in the model input (Saltelli et al., 2004).

The Sensitivity analysis is often used to study (qualitatively and/or quan-
titatively) the importance of each of the model’s input parameters on the
behavior of the system/the output variable of the model. We can distinguish
between local and global sensitivity analysis. A local SA looks at the influence
of a single input parameter value on the output of the system, while a global
analysis look at the influence of the entire parameter distribution.

3.1 Input parameters

All input parameters X1, X2, ..., Xn are fixed, except for those Xi that we are
examining. Due to the fact that the way the parameter is chosen strongly
affects the behavior of the system, we consider several ways to choose param-
eter:

• Homogeneous - all agents have the same value for parameter Xi

• Heterogeneous (2 groups) - two groups of agents, each group has their
own value for parameter Xi: Xi1 , Xi2 ∈ [a, b], Xi1 ̸= Xi2

• Heterogeneous (global) - parameter is generated for each agent from
Xi ∼ U(I), with given interval I = [a, b] = {x ∈ R : a ≤ x ≤ b}

All initial parameters and their ranges for the sensitivity analysis you can
find in Tables 3.1, 3.2 and 3.3.

17



3. Sensitivity analysis

3.1.1 Environment (Room)

In the agent-based models, the environment give a lot of importance, because
it directly influences the behavior of agents. In this work we simulated one
room with one exit and space outside.

Room. In all experiments, the dimensions of the room don’t change. This
is a rectangular room with an area of 7.6 × 4.4 m (Figure 3.1).

Figure 3.1: Settings of rooms in the experiments. Dimensions of room always
the same 7.6 × 4.4 m (one cell 0.4 × 0.4 m), but type of exit may be different
(See Exit Types et).

3.1.2 Homogeneous

Parameter Value Range Step Description
ks 3.5 [0.5, 4.5] 0.25 Sensitivity to potential
kd 0.7 [0, 1] 0.1 Penalization of diag. motion
ko 0.9 [0, 1] 0.1 Sensitivity to occupation
γ 0.14 [0, 1] 0.1 Aggressiveness
µ 0.3 [0, 1] 0.1 Friction parameter

µexit 0.8 [0, 1] 0.1 Friction parameter in the exit area r = 1
et [1, 2, 3] - - Type of exit
ped 70 [5, 105] 10 Number of agents

Table 3.1: Input parameters: Homogeneous
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3.1.3 Heterogeneous (2 groups)

Parameter Value Range Step
ks 3.5 - -
kd 0.7 - -
ko 0.9 ko1 , ko2 ∈ [0, 1], ko1 ̸= ko2 0.1
γ 0.14 γ1, γ2 ∈ [0, 1], γ1 ̸= γ2 0.1
µ 0.3 - -

µexit 0.8 - -
et [1, 2, 3] - -
ped 70 - -

Table 3.2: Input parameters: Heterogeneous (2 groups)

3.1.4 Heterogeneous (global)

Parameter Value Range Step Distribution
ks 3.5 - - -
kd 0.7 - - -
ko 0.9 a, b ∈ [0, 1], b > a 0.1 U(a, b)
γ 0.14 a, b ∈ [0, 1], b > a 0.1 Udiscrete(a, b)
µ 0.3 - - -

µexit 0.8 - - -
et [1, 2, 3] - - -
ped 70 - - -

Table 3.3: Input parameters: Heterogeneous (global)

3.2 Output parameters

For Local SA, it was deceided to use both forms of the flow stationarity Jstac

and Jlin, which were described in the previous chapter [2].

3.3 Local SA

In this section we will review the local influence of each input parameter to
the exit type et on raw data from cellular automata. All parameters are fixed
(see column Value in Tables ??, 3.1, 3.2 and 3.3), except for the analyzed
one. To calculate the flow Jstac in the stationary case and Jlin in the case
of a linearly decreasing trend, 500 simulations were run for each set of input
parameters.
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Figure 3.2: Comparison of 3 exits: number of agents ped.

3.3.1 Number of agents ped.

In confirmation that the stationary flow Jstac describes the maximum band-
width of the exit, we gradually increased the number of agents ped in the
room. Figure 3.2 shows that no matter how many agents we put into the
system, the value of the flow can’t exceed a certain threshold for each type
of exit. In case of exit type et = 1, even with a small number of agents, we
achieve the maximum throughput of the exit. Which is obvious, although the
value of the flow Jstac remains constant, the evacuation time increases with
the increase in the number of agents (Appendix A). In order to load the exits
as much as possible and have an acceptable simulation speed, it was decided
to fix the number of agents at ped = 70.

3.3.2 Sensitivity to static field ks.

PS(y|x) = exp{−ksS(y)}(1 − kdDx(y))∑
z∈N(x) exp{−ksS(z)}(1 − kdDx(z)) (3.1)

PO(y|x) = exp{−ksS(y)}(1 −Ox(y))(1 − kdDx(y))∑
z∈N(x) exp{−ksS(z)}(1 −Ox(z))(1 − kdDx(z)) (3.2)

P (y|x) = koPO(y|x) + (1 −Ko)PS(y|x) (3.3)

Increasing the parameter ks makes the model more sensitive to the static
field S and accordingly increases the probability of choosing a cell located
closer to the exit, since the probability P (y|x) (3.3) is directly proportional
to ks in both parts of the equation: PO(y|x) ∝ exp{−ksS(y)} (3.2) and
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3.3. Local SA

PS(y|x) ∝ exp{−ksS(y)} (3.1). Therefore even large values of ks don’t lead to
a totally deterministic behavior, since there might be a bunch of cells where
ksS(y) has the same value. On the other hand even the slightest difference in
S will lead to deterministic behavior if ks is chosen large enough.

Figure 3.3: Comparison of 3 exits: static field ks.

Obviously, increasing the probability of choosing the ”correct” (nearest to
exit) cell leads to an increase in the flow in the exit area, until it reaches
its limit (Figure 3.3). For exit type 1 the behaviour of the flow is slightly
different, after a certain threshold ks ≈ 2, the Jstac starts to decrease. This is
due to the fact that there is only one way to leave the room with exit type 1
and in this case, when a crowd appears in the front of the exit, more conflict
situations arise. If we reduce the number of conflicts in front of the exit, this
reduction in flow should disappear.

To reduce the number of conflicts, we can reduce the friction parameter
to µ = 0.3. In this case, we can see (Figure 3.4) that all exit types start to
have the same behavior with a certain offset. In this regard, we come to the
conclusion that the first type of exit is more sensitive to µ parameter, which
is consistent with the theory, since the first type of exit has a thick walls and
only one way how to leave the room.

3.3.3 Diagonal movement kd.

The kd = 1 completely eliminates any effect of the exit type on the flow (Figure
3.5). This is expected behaviour as exit types et = 2 and et = 3 provide us
new ways to leave the room only in case of diagonal movement. We have no
interest in analyzing this parameter because it completely negates the effect
of exit type.
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Figure 3.4: Comparison of 3 exits: static field ks.

Figure 3.5: Comparison of 3 exits: diagonal movement kd.

In further researches the diagonal movement has a fixed value kd = 0.7, we
use this paramter to penalize the diagonal movement, since it is

√
2 longer.

3.3.4 Friction µ/µexit.

Adding a separate friction parameter for exit µexit, even with a small radius
r = 1, gives us the same the same result as a global parameter µ (Figure
3.6). This means that the friction effect occurs only in the exit area and in
a very small radius. Based on these results, we can conclude that one of the
parameters is redundant in the system and the presence of a separate friction
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3.3. Local SA

parameter for exit only increases the complexity of the model. For this reason,
in global SA we will use a single friction parameter µexit to reduce the space
of input parameters.

Figure 3.6: Comparison of 3 exits: friction µ/µexit

From the graph (Figure 3.6), it would appear that friction has the same
influence on the flow Jstac regardless of the exit type, but this only happens
when the friction changes locally. In the global sensitivity section, we will
show that the first type of exit is significantly more sensitive to friction µ. If
we approximate the cellular automaton with a polynomial of 3 degrees and
compare the effect of friction in a three-dimensional plane, then we will get a
completely different result. When we talked about sensitivity to a static field,
we made the assumption that an increase in the ks parameter does not always
lead to an increase in the flow, and under certain circumstances it can increase
the risk of confrontation with the friction parameter. And indeed, if we try
to display the polynomial surface with respect to friction µ and sensitivity
to static field ks, we will see that the first type of exit et = 1 is much more
sensitive to friction µ (Figure 3.7).
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3. Sensitivity analysis

Figure 3.7: Exit 1 vs. Exit 3: influence of friction with respect to ks

3.3.5 Aggressiveness γ.

Homogeneous. When the aggressiveness parameter γ is chosen homoge-
neously, this parameter becomes redundant. This happens because all agents
have the same γ and we know that the priority mechanism only works when
one agent is more aggressive than another. In this case a conflict occurs with
a probability µ(1 − γ), which causes the γ parameter to become a coefficient
for friction µ(1 − γ) = µ1. This means that these parameters start to work in
tandem and we get a simplified model that has only the friction parameter.

Figure 3.8: Comparison of 3 exits: aggressiveness γ (homogeneous).

The local changes for parameter γ give us a mirrored result (Figure 3.8)
compared to friction (Figure 3.6), which corresponds to the previous state-
ment.
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Heterogeneous (2 groups). As we mentioned in the Chapter 2, the pres-
ence of groups with different characteristics can lead to a linearly decreasing
flow Jlin. During experiments with two groups of aggressiveness γ1 < γ2, it
was found that the gradual decrease in Jlin follows certain rules, regardless of
exit type:

• Rule 1: γ1 controls the minimum value of the flow Jlin and has a direct
relationship with the homogeneous case Jstac.

• Rule 2: γ2 controls the maximum value of the flow Jlin.

• Rule 3: A larger gap in aggressiveness between two groups |γ2 −γ1| gives
the higher slope of the Jlin.

Figure 3.9: Exit type 3: Homogeneous vs. Heterogeneous (2 groups)

Rule 1. If we compare the Jstac and Jlin results for the homogeneous and
heterogeneous (2 groups) cases, respectively, we can see (Figure 3.9) that the
Jstac estimation for homogeneous γ always indicate a lower limit of Jlin. After
this threshold, the flow rate begins to drop rapidly. If we think about the
nature of the aggressiveness mechanism, the reason why this happens can be
explained in the following way. During an evacuation, less aggressive agents
γ1 always give way to more aggressive agents γ2. Over time, the number of
more aggressive agents γ2 in the system decreases to 0, and only one type of
agents remains in the room, which brings us back to the homogeneous case.

The fact that the system becomes homogeneous over time can be con-
firmed by experiments with the first exit type et = 1. In this type of exit,
conflicts occur more often, since they can only exit through one cell. To en-
hance this effect, we need to use lower values for γ1 = 0.2 and higher values
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for γ2 = 1.0. In this case, agents with more aggressiveness will leave the sys-
tems faster, forcing agents with less aggressiveness to wait. The Figure 3.10
shows that after all aggressive agents have left the system, the flow has lost
all heterogeneity properties and became stationary again. Given the initial
input parameters, only the exit type et = 1 combines the properties of the
homogeneous and heterogeneous case at the same time. Whether a similar
situation is possible with other types of exits is subject to investigation.

To confirm that γ1 determines the minimum value of the flow Jlin on the
segment, experiments were carried out with other sets of parameters (Figures
3.12 and 3.13). Regarding the exit types, the linear part Jlin has a similar
behavior, the relationship between the exits is preserved, where the exit type
et = 3 has the highest slope α and the largest difference in the minimum and
maximum flow.

Figure 3.10: Exit type 1: Homogeneous vs. Heterogeneous (2 groups)
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Rule 2. Speaking of the maximum flow value Jlin, there is no direct
relationship with the homogeneous case, we can’t compare the results with
Jstac as in the case of the minimum flow from Rule 1. Since we have several
types of agents in the system at the beginning of the evacuation, the maximum
value of the flow Jlin will be lower than Jstac from homogeneous case (Figure
3.11).

The only case when the estimation of Jstac (homogeneous) determines the
upper flow limit occurs when γ2 = 1.0. Obviously γ2 = 1.0 is an extreme
case, because for agents with such aggressiveness there will never be a conflict
P (conflict) = µ(1−γ2) = 0, which means Jlin will have the maximum possible
flow for a certain period of time.

Figure 3.11: Exit type 2: Homogeneous vs. Heterogeneous (2 groups)

On the other hand, γ2 is still responsible for the maximum possible flow
value, which has been confirmed by numerous experiments. When γ2 is fixed,
the maximum value of flow Jlin remains constant (Figure 3.12). When γ1 is
fixed and the value of γ2 gradually increases, then the maximum value of flow
Jlin increases accordingly (Figure 3.13).
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Rule 3. The results of the experiments show that the groups with a larger
difference in aggressiveness |γ2 − γ1| have a more significant downward trend
(Figures 3.12 and 3.13). In the context of different types of outputs, it is worth
mentioning that outputs with a larger bandwidth (et = 3 > et = 2 > et = 1)
have a greater slope of the Jlin.

Figure 3.12: Left picture: slope comparison. Right picture: comparison of the
maximum and minimum of the Jlin flow. γ2 has fixed value.

Figure 3.13: Left picture: slope comparison. Right picture: comparison of the
maximum and minimum of the Jlin flow. γ1 has fixed value.
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Heterogeneous (global). Based on the rules of aggressiveness, a conflict
can occur only when agents with the same γ choose the same cell. This means
that the γ can’t be generated from a continuous distribution, because in this
case the event when agents with the same γ appear in the system will almost
never happen P (γi = γj) = 0.

Figure 3.14: Uniform discrete distribution.

For this reason, it was decided to generate quantities from a discrete version
of the uniform distribution (Figure 3.14). Thus, n = 7 values were selected
for each studied interval [a, b], which gives us 7 separate groups of agents in
the room.

Figure 3.15: Exit type 1: 7 groups of agents from uniform discrete distribution.

According to the results of the experiments, it was found that even with
the presence of 7 groups, a slight slope of the Jlin flow remains. This slope
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is most visible in the case of exit type 1 (Figure 3.15). More curiously, any
homogeneous properties have been removed from the system and we can no
longer determine the lower limit of the flow by single γ. The remaining prop-
erties of the system from the case of 2 groups were preserved. In this regard,
we recommend using a discrete distribution with a limited number of groups
for real simulations. The number of groups should not be too small, as this
would lead us to a homogeneous case. On the other hand, the number of
groups should not be very large, since we can reduce the mechanism of con-
flicts. In the case of the aggressiveness parameter, we see two areas for further
investigation: what is the optimal number of groups and what type of discrete
distribution (ratio of agents in the system) best suits the actual evacuation
process.
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3.3.6 Sensitivity to occupation ko.

Homogeneous. A low value of the ko parameter gives the agent the op-
portunity to choose an occupied cell, which allows building bonds that form
queues. When agents know the direction of the exit, in other words have
increased sensitivity to the static field S, queuing speeds up the evacuation
process (Figure 3.16). On the other hand, in the case of low bandwidh exit
et = 1, the queue increases the crowd near the exit, which slows down the flow
and makes it more sensitive to the friction parameter µ.

Figure 3.16: Comparison of 3 exits: occupancy ko.

Heterogeneous (2 groups). In the presence of two groups with a different
sensitivity to occupation ko1 ̸= ko2 , an unexpected flow behaviour was found.
If we fix one of the occupation parameters ko1 = 0.0 and start gradually
shifting the second parameter ko2 ∈ [0.1, 1.0], then after a certain threshold
ko2 > 0.5 the flow loses its stationarity and gains a slope with a linear trend
(Figure 3.17 a)). To confirm this, the results were compared with different
combinations of parameters. For ko1 = 0.3, stationarity disappears at the same
value of ko2 > 0.5 (Figure 3.17 b)). If the parameter is fixed for the second
group ko2 = 1.0, the flow still loses its stationarity, but we get a mirrored
result (Figure 3.17 c)).

We have not been able to explain the reason for this strange behaviour
of the flow. This may indicate that one group of agents begins to block the
movement of another group, but we have no proof.
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Figure 3.17: Left picture: slope comparison. Right picture: comparison of the
maximum and minimum value of the flow.

Heterogeneous (global). In the case of generating the parameter from a
uniform distribution ko ∼ U(a, b), the stationarity of the flow is preserved,
regardless of the type of distribution (continuous or discrete). Comparing the
results (Figure 3.18), we get a picture similar to a homogeneous case (Figure
3.16). With an increase in the interval [a, b], we get a decrease in the flow
Jstac and this happens because we get more agents with a larger ko value.
The flow reduction in this case is not as significant, but the flow still has the
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same dependence on the occupation parameter for each exit type.

Figure 3.18: Flow comparison when using uniform distribution with different
range
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3.4 Global SA

In the context of the global analysis, only the homogeneous case was consid-
ered. It remains an open question how to interpret the flow in the heteroge-
neous case so that it is of any use in the analysis of evacuation. One of the
possible solutions may be the proposed interpretation in this thesis, where we
consider the flow as a vector Jlin of three quantities: slope, maximum and
minimum flow. When using the vector form of the flow Jlin, we’ve run into
a problem with the generation of the training dataset. To generate a dataset
with Jlin prediction, we need to run at least 500 simulations for each set of
parameters, but in the heterogeneous case, the complexity of the model also
increases, since we have more input parameters (for example γ1 and γ2 in-
stead of one γ). In such a situation, generating a training dataset with such
requirements can take several weeks. For this reason, it was decided to leave
the heterogeneous case for further research

3.4.1 Model

Dataset. In a global analysis, we look at the impact of the entire distribution
of input parameters on the output. Based on time consumption, we can’t use
flow estimates Jstac directly from the CA simulator. In such a situation, the
use of some approximating model can help us. Before building a prediction
model for a stationary flow Jstac, we need to build a training dataset. For
the homogeneous case, it was decided to look only at 5 input parameters
Table 3.4. From these parameters, a 5-dimensional grid is built, where each
parameter changes with a certain step within the interval, until all possible
combinations are sorted out. For each combination of parameters (Table 3.4),
N = 100 simulations were run and the stationary flow Jstac was calculated
using Muggeo’s iterative algorithm. In the end, we got a training dataset of
size O(µexit ∗ γ ∗ ks ∗ ko ∗ et) = 25410 with Jstac estimates.

Parameter Range Step Description
µexit [0.0, 0.9] 0.1 Friction parameter in the exit area r = 1
γ [0.0, 1.0] 0.1 Aggressiveness
ks [1.5, 4.5] 0.5 Sensitivity to potential
ko [0.0, 1.0] 0.1 Sensitivity to occupation
et [1, 2, 3] - Type of exit

Table 3.4: Input parameters for dataset generation

Model. At the beginning, there were attempts to build a general model for
3 types of exits. This approach was unsuccessful because it greatly reduced
the quality of the model and therefore it was decided to use a separate model
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Figure 3.19: Results of polynomial regression. The size of the test dataset is
15%.

for each type of exit. After numerous tests, the choice fell on polynomial
regression of degree 3.

3.4.2 Sobol indices

The objective of sensitivity analysis is to rank the impact of each input on the
output. One way to measure this would be to use variance-based methods.
One of such method, which is often used in global sensitivity analysis,is the
Sobol indices. This method decomposes the variance of the output of the
model or system into fractions which can be attributed to inputs or sets of
inputs. The intuition of this method is the following, the importance of an
input variable Xi is measured by the part of the variance of Y for which it is
responsible, that is, if we fix Xi, we look at how much the variance of Y has
decreased. If it has dropped significantly, then the variable Xi was measuring
a large part of the variance of Y and therefore Xi is an important variable.
Therefore, the uncertainty of Y is attributed to the uncertainty of Xi since it
represents mainly its variance.

1st and 2nd Orders. There are different orders for the Sobol Index re-
flecting the number of variables interacting with each other. Therefore, the
1st-order quantifies the share of variance in Y = f(X1, X2, ...Xm) due to the
only variable Xi. Mathematically, the relation is the following:

Si = V ar[E(Y |Xi)]
V ar(Y )

where E(Y |Xi) - the expectation, when only the values of Xi are condi-
tioned (fixed). The division by the total variance V ar(Y ) eases the interpreta-
tion of the result: the closer the index is to 1, the more important the variable
(if order 1) or the group of variables (order ¿ 1) is.

In case of the 2nd order, we fix two input parameters Xi and Xj , which
allows us to determine how the interaction between the two affects the variance
of output:

Sij = V ar[E(Y |Xi, Xj)] − V ar[E(Y |Xi)] − V ar[E(Y |Xj)] − E(Y )
V ar(Y )
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Total-effect index. Using the Si, Sij and higher-order indices given above,
one can build a picture of the importance of each variable in determining
the output variance. However, when the number of variables is large, this
requires the evaluation of 2m − 1 indices, which can be too computationally
demanding. For this reason, a measure known as the ”Total-effect index”, STi ,
is used. This index sums up all the indices where the variable of interest is
present. For example with 3 variables, ST1 = S1 + S12 + S13 + S123.

3.4.3 Results

In practice, the calculation is impossible directly. Thus, we use estimators
and in particular, the Monte-Carlo Method [22], [23], [24]. The SALib frame-
work [25], [26] allows us to carry out these calculations. Model inputs were
generated using Saltelli’s extension of the Sobol’ sequence [27], [28], [23], [22].

Looking at the results of the Sobol indices (Figures 3.20, 3.21 and 3.22),
we get only confirmation of our conclusions from the previous section Local
SA 3.3. Unfortunately, we did not get any new knowledge from these indices.

Aggressiveness. As expected, despite the type of exit, the aggressiveness
parameter γ is redundant in the homogeneous case and does the same job as
the friction parameter µexit. This is indicated by the almost equivalent weight
of the total indices STγ ≈ STµexit

and 1st order indices S1γ ≈ S1µexit
, as well

as the high value of the 2nd order index S2(µexit,γ) .

Figure 3.20: Exit comparison: total index ST .
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Friction. As we noted earlier, the first type of exit is much more sensitive to
the friction parameter, since there is only one way to get out of this exit. This
is clearly visible on the 2nd order indices (Figure 3.22), if the index includes
γ or µexit, which is equivalent, then the first type of exit et = 1 stands out
strongly from the rest of the exits. Comparing the exit types, it is worth
mentioning a noticeable trend that the higher the exit bandwidth, the lower
the sensitivity to friction µexit.

Sensitivity to static field ks. The first type of exit et = 1 turned out to
be much less sensitive to the static field. This can be explained by the fact
that in the case of low exit bandwidth the friction parameter begins to play a
more important role on the flow velocity, and increasing the sensitivity of the
ks parameter only increases the size of the crowd near the exit. On the other
hand, exits where agents are able to leave the room in multiple ways et ∈ 2, 3
will be more sensitive to the ks parameter and less sensitive to friction µexit,
since conflicts will occur less often near the exit. Regardless of the exit type,
we can formulate the following rule for a given CA: the more sensitive the exit
is to the parameter ks, the less sensitive it is to friction µexit, and vice versa.

Figure 3.21: Exit comparison: 1st order S1.

Sensitivity to occupation ko. Sensitivity ko is one of the most important
parameters of the model, because this parameter is responsible for the forma-
tion of queues. The first exit et = 1 is more sensitive to this parameter, since
agents can leave this exit in only one way. It is worth noting that the S2(ks,ko)
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3. Sensitivity analysis

may indicate that queues become more efficient when agents know where the
exit is located (Figure 3.22).

Figure 3.22: Exit comparison: 2nd order S2.
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Conclusion

The purpose of this work was to find out how the exit definition influencing
simulation of evacuation in agent-based models. As part of the first stage, a
cellular automaton was implemented, which was inspired by [1], [10]. This cel-
lular model has been modified to support different types of exits. In addition,
an open space mechanism has been added to keep track of agents after leaving
the system. Another change was the addition of a separate friction parameter
that was responsible for the zone near the exit, but during the simulations
it was found that this parameter is redundant. All work was done in pure
python without any third-party libraries.

At the second stage, the main issue was the choice of metrics for the
analysis of evacuation. Initially, in this paper, it was assumed that the flow
in the system always becomes stationary for some period of time, but during
the experiments this hypothesis was rejected. For this reason, it was decided
to measure the flow in a different way for the homogeneous and heterogeneous
case Chapter 2. Before proceeding with sensitive analysis, it was necessary to
decide how to automate the flow calculation process. During the search, it was
proposed to use an iterative Muggeo’s algorithm [17], which was implemented
by [18].

The final and most labor-intensive stage was the analysis of the influence
of exit definition on the evacuation process. The presence of three different
types of exits greatly increased the complexity of the analysis and the cost
of generating simulations. According to the results of experiments, sensitive
analysis showed that the influence of thick-walled exit et = 1 is significantly
different from other types of exits.

The research of the heterogeneous case deserves special mention. This
thesis showed that in a heterogeneous case, parameters such as aggressiveness
and sensitivity to occupation can change the properties of the flow and make
it linearly decreasing. An analysis of aggressiveness with different types of
exits revealed that the flow during evacuation can change its properties. For
example, when using the first type of exit, the flow can be linearly decreasing
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Conclusion

in one period of time and stationary in another.
An area of further study could be the analysis of linearly decreasing flow

in the case of global sensitive analysis, as well as the comparison of exits with
different widths, since the question remains how the exit with thin walls differs
from the wider exit with thick ones.
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Appendix A
Number of agents ped.

Figure A.1: Exit type 1: Jstac comparison
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A. Number of agents ped.

Figure A.2: Exit type 2: Jstac comparison

Figure A.3: Exit type 3: Jstac comparison
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Appendix B
Aggressiveness γ.

B.1 Homogeneous

Figure B.1: Exit type 1: Jstac comparison
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B. Aggressiveness γ.

Figure B.2: Exit type 2: Jstac comparison

Figure B.3: Exit type 3: Jstac comparison

B.2 Heterogeneous (2 groups)
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B.2. Heterogeneous (2 groups)

Figure B.4: Exit type 1: Jlin comparison
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B. Aggressiveness γ.

Figure B.5: Exit type 2: Jlin comparison
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B.2. Heterogeneous (2 groups)

Figure B.6: Exit type 3: Jlin comparison
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Appendix C
Contents of CD

Visualise the contents of enclosed media. Use of dirtree is recommended.
Note that directories src and text with appropriate contents are mandatory.

src ....................................... the directory of source codes
simulator.................................the directory of program

templates ...................................... room templates
sff...................................visualization of simulation
cellular model.ipynb........................the cellular model
flow calculation.ipynb........................flow calculation

thesis..............the directory of LATEX source codes of the thesis
figures .............................. the thesis figures directory
*.tex.................... the LATEX source code files of the thesis

text..........................................the thesis text directory
thesis.pdf ...................... the Diploma thesis in PDF format
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