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Abstrakt

Schopnost efektivně prohledávat veliké množství dat je důležitou součástí
nejen v bioinformatické a informatické sféře, ale v celém moderním světe.
Každý organismus je originální a vytvořit komplexní strukturu, která by vhodně
reprezentovala genomy a jeho varianty a uměla s nimi efektivně pracovat, je
hlavním směrem pangenomického výzkumu. V této práci diskutujeme a imple-
mentujeme poměrně nový algoritmus zvaný BIO-FMI, který má potenciál k
tomu efektivně komprimovat a vyhledávat nad množinou vysoce repetitivních
dat, jako jsou právě DNA sequence. V současné době je způsob ukládání ne-
vyhovující vzhledem k postavení vůči jednomu referenčnímu genomu a hledají
se alternativní řešení. Tato práce se zabývá modifikací algoritmu BIO-FMI
na formát elastických degenerovaných řetězců (EDS), které jsou kandidátními
reprezentanty pro ukládání variant. Práce ukazuje slibné výsledky v rychlosti
sestavení indexu, variabilitě nastavení a porovnává je s dalšími algoritmy z této
oblasti, kterými jsou LZ-RLBWT a r-index.

Klíčová slova BIO-FMI, elastický degenerovaný řetězce, self-index, pange-
nomatické prohledávání
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Abstract

The ability to search efficiently over large amount of data is an important
part not only the field of bioinformatics but throughout the modern time.
Every organism is unique, and to create a complex structure appropriately
representing genomes and their variants while at the same time being able
to work with them efficiently seems to be the main pan-genomic research
direction. This text deals with the discussions about the implementation of
a relatively new algorithm called BIO-FMI with the potential to efficiently
compress and search over a set of highly repetitive strings, such as the DNA
sequences. The storage principles of variants are currently insufficient due
to their position against one reference genome and some alternative solutions
are being sought now. This thesis specializes in a modification of algorithm
BIO-FMI to the format of elastic-degenerate strings which become candidate
representatives in terms of storing variants. The thesis shows promising results
in index construction time, setting variability while comparing them with
other algorithms in this field, namely LZ-RLBWT and r-index.

Keywords BIO-FMI, elastic-degenerate strings, self-index, pangenomatic
pattern matching
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Introduction

Motivation and objectives

Large genomics data collections and biological computation are expanding
departments these days. Biological data such as DNA and RNA sequences
contain a lot of information, which is needed to store and prepare for queries.
In the human genome case, the one chromosome has more than 3× 109 base
pare, which is about 250 Mb of information per one chromosome. Queering
over data of this kind consumes a lot of memory and computation time, but
it is necessary for bioinformatics analysis. The information from genome se-
quencing is insignificant without the next preparation and preprocessing. The
sequence of characters needs to go through statistical evaluation, mapping in
other genomes, or assembly processing to store this information into biological
databases and perform the next workflows.

Indexing and compressing formats that store this information are almost
necessary because every query on the existence or positions of genes, sub-genes,
repetitions, etc. would be over-consumed without it. This document describes
the basic problems and notation of indexing and compression algorithms used
on a set of genetic information. This is useful mainly for pan-genomic and
variant studies, where a lot of genomes are compared to each other, and a set
of genomes is the main target of studies. In short, a set of genomes compares
the genetic equipment of familiar organisms or the same kind of organisms in
one complex structure.

This document will describe a relatively new indexing method over a set
of strings called BIO-FMI. It has the potential to be a prospective index of
bioinformatics formats, like variant calling format (VCF), and according to
this, it could help with querying a huge amount of information flowing from
genome variant data. Next, we will design an index over elastic degenerated
strings (EDS) and discuss their corresponding storage structure. EDS struc-
ture has the potential to be used as a pan-genomic visualization and saving
format.
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Introduction

Problem statements

An indexation and compression are closely linked. Biological sequences are
often highly repetitive (about 10 % of variability in human genomes) and eas-
ily compressed, so the search for short patterns over compressed data is an
advantage. The methods when we need to search over a full original text,
are known as full-text compression and full-text indexation. When the index
works with original text and transforms it to get the best information from
that, then we talk about self-indexing.

Searching over the text can be divided into exact and approximate match-
ing, depending on allowed mismatches. A distance between two strings could
be defined in many ways according to the used algorithm (Levenshtein dis-
tance [5], rating matrixes [43, 33], . . .).

It is possible to study genetic variants using assembly techniques over
many existing genomes, but in the case of larger genomes, such as the human
genome, this method is really time-consuming. Another way is to map our
sequence to the existing model organism, or reference genome. Finally, if no
model organism is available, denovo assembly is another method that can be
used, but the result quality decreases.

Whatever method we use, the results are subject to error (bias), which can
lead to misleading observations. The ideal model for this study is a pange-
nomic picture that gives a general overview of all known variants. Then align-
ment or insert of new sequence means comparing with the most familiar struc-
ture, resp. combination of variants.

The use of pattern matching in genomes is mainly in gene and variant
research. It can be used in deep learning to learn the natural language of
DNA [28] and pattern mining to identify repetitive sequences that are difficult
to read [15].

State of the Art

Indexes used in these days can be divided into two groups with different ap-
proaches — non-reference-based indexes (usually based on dictionaries) and
reference-based indexes (mostly based on FM-index and BWT). Reference-
based genomics searching is popular because the concept of the reference
sequence is commonly used. The reference sequence in genomics and pro-
teomics is just a kind of agreed consensus string and because of it, a better
way is sought after.

The common format for storing variants is Variant Calling Format (VCF) [34]
and the most used tool for pangenome representation is the VG toolkit [18].
The tool is based on the structure of variant graphs, which is very complex
due to their tree structure.
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State of the Art

In 2015, a collective of researchers from Finland, Italy and France came
up with the proposition of index based on a combination of Lempel Ziv dictio-
nary compression algorithm with run-length Burrows-Wheeler transformation,
which gives a firm base for a new generation of genome indexing. The im-
provement called the r-index [17] published in 2017 is currently probably the
most examined tool for this purpose.

First, in this text we will define basic notions and describe the required
algorithms. Afterward, the exact matching algorithm called BIO-FMI will
be introduced in detail and further improved to accept an elastic degenerate
string as an input type. Time and memory complexity will be described for
both types. Then we will focus on the implementation and experiment details
and finally, our results will be discussed.
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Chapter 1
Basic notions

It is necessary to define several related stringology terms to clearly explain
the basic principles of our algorithms. Furthermore, there is great interest
in explaining the algorithms that are indispensable parts of our tool. Basic
stringology definitions are taken from stringology lectures at my university [22]
and the elastic degenerate string notation is inspired by Costas S. Iliopoulos
et al. [23].

1.1 Basic definitions

Definition 1.1.1 (Alphabet). An alphabet Σ is a finite non-empty ordered
set of symbols. We will refer to Σ as a set of nucleotide symbols A, C, G, T, N ,
expanded by characters −, #, and $.

Definition 1.1.2 (String). String x over an alphabet Σ is a concatenation
of alphabet symbols. The size of string x = x[1]x[2] . . . x[n] is the number of
symbols in the string. We denote it as |x| = n.

Definition 1.1.3 (Substring). The substring of string x is x[i..j] = x[i]x[i +
1] . . . x[j], 1 ≤ i ≤ j ≤ |x| = n. If i = 1, then x[i..j] is called prefix of x. If
j = n, than x[i..j] is called suffix of x. If i > j, then x[i..j] = ε.

Definition 1.1.4 (K-mer). A k-mer u is a substring of string T of length k.

Definition 1.1.5 (Rank operation). The rankb(B, i) operation is defined as
the number of occurrences of bit b in B[1..i], where b ∈ {0, 1} and B is a bit
vector of length n ≥ i.

Definition 1.1.6 (Select operation). The selectb(B, i) operation is defined as
the position of i-th occurrence of symbol b in B, where b ∈ {0, 1} and B is a
bit vector of length n ≥ i.

5



1. Basic notions

Definition 1.1.7 (Elastic-degenerate symbol). An elastic-degenerate symbol
ξ, over a given alphabet Σ is a set of two or more strings over Σ. We denote

it as


E1
E2
...

Ek

 , k = |ξ|. Also we define minimum (resp. maximum) length in ξ

as the length of shortest (resp. longest) string Ei ∈ ξ, denote by |ξ|min (resp.
|ξ|max).

Definition 1.1.8 (Elastic-degenerate string (EDS)). An elastic-degenerate
string x̂ over alphabet Σ is a sequence s1ξ1s2ξ2 . . . sk−1ξk−1sk, where each si ∈
Σ∗ \ {ε}, 0 ≤ i ≤ k is an string called seed and each ξi, 0 ≤ i ≤ k − 1 is a
elastic-degenerate symbol.

Definition 1.1.9 (Total size of X̂). The total size of X̂, denoted by ||X̂||,
is defined as the sum of the total length of its seeds and the total length of
all the strings in each of its elastic-degenerate symbols: ||X̂|| =

∑k
i=1 |Si| +∑k−1

i=1
∑|ξi|

j=1 |Ei,j |.

Definition 1.1.10 (Minimum length of X̂). The length of X̂, denoted by |X̂|,
is defined as the sum of the total length of its seeds and minimum length of
each elastic-degenerate symbol: ∑k

i=1 |Si|+ |ξi|min.

A position in EDS is given by its minimal length when the first sequence
of each symbol is used or is moved about the corresponding offset when the
sequence in the symbol is different.

Example 1.1.1. x̂ = atg

[
ε

tt

]
gtc

 a
cc
tga

 aa, where

• s1 = atg, s2 = gtc, s3 = aa are the seeds of x̂,

• ξ1 =
[

ε
tt

]
, ξ2 =

 a
cc
tga

 are elastic-degenerate symbols.

• For ξ1: E1 = ε, E2 = tt, minimal length |ξ|min = 0 and maximal length
|ξ|max = 2

• For ξ2: E1 = a, E2 = cc, E3 = tga, minimal length |ξ|min = 1 and
maximal length |ξ|max = 3

In the following section, we briefly introduce all the fundamental structures
and algorithms that give the solid basis for our tool.
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1.2 Suffix array
A suffix array (SA) for string T is a structure of lexicographically sorted
suffixes designed in [29]. On position i, the suffix array contains a pointer
to the i-th smallest suffix of the original string, that means for any i, j ∈
1 . . . n; i < j : T [SA[i]] < T [SA[j]].

There is an algorithm that can search for a pattern P in the original text
T using the suffix array in O(|P |+ log(|T |)) time.

Example 1.2.1 (Suffix array construction). Let text T = abraca

Suffixes of text T with start posi-
tions:

0: abraca$
1: braca$
2: raca$
3: aca$
4: ca$
5: a$
6: $

Sorted suffixes:

6: $
5: a$
0: abraca$
3: aca$
1: braca$
4: ca$
2: raca$

⇒
i 0 1 2 3 4 5 6
T [i] a b r a c a $
SA[i] 6 1 4 2 5 3 0

SA is constructed by the lexicographic ordering of the whole text suffixes
as shown in Example 1.2.1. The original principle of SA should store the
entire original text. For long texts such as DNA sequences, it could be quite
inefficient and therefore has led to further research in the field of compression
and sampling over SA [21, 2].

1.3 Burrows-Wheeler transform
The Burrows-Wheeler method was designed by M. Burrow and D. J. Wheeler
in [7] as a lossless data compression method. However, only the first part of
the algorithm is relevant for our project due to its content organization. The
principle of transformation is to create all cyclic shifts of the original string
and to sort them lexicographically. It could be visualized as a matrix M of
size n×n, where n is the length of the original string. The result of Burrows-
Wheeler transformation (BWT ) is the last column of the matrix M . We
denote the last column as L and the first column as F .

An example of BWT construction over string abraca is in Example 1.3.1.

Example 1.3.1 (BWT construction).

7



1. Basic notions

1 2 3 4 5 6 7
a b r a c a $
b r a c a $ a
r a c a $ a b
a c a $ a b r
c a $ a b r a
a $ a b r a c
$ a b r a c a

⇒

F L
1 2 3 4 5 6 7
$ a b r a c a
a $ a b r a c
a b r a c a $
a c a $ a b r
b r a c a $ a
c a $ a b r a
r a c a $ a b

Table 1.1: Burrows-Wheeler transformation simulation on string x=abraca

One thing to note is that we do not have to store the whole matrix M .
Because of the transformation characteristics, columns F and L are sufficient.
The BWT could be constructed using a suffix array with a formula in Equa-
tion 1.1. More are shown later in FM-index section.

BWT [i] =
{

TSA[i]−1, SA[i] > 1,

Tn, SA[i] = 1.
(1.1)

The original string is easily reconstructed from the transformed L string
with an inverse run of the algorithm. It can be observed that any column of
the matrix M is a permutation of the original string T . Thus, we start with
our L column and, with every next iteration of the algorithm, we sort all rows
lexicographically and vertically concatenated with L from the left to all rows.
After n iterations, the whole matrix M is reconstructed.

Another reconstruction can be done using the last to front mapping (LF
mapping) which has the following property.

Lemma 1.3.1 (LF mapping property). Let’s L is the last column in the BTW
matrix and the F is the first column in the BTW matrix. Then the LF mapping
property says that the i-th occurrence of a character c ∈ Σ in L corresponds
to the i-th occurrence of a character c ∈ Σ in F [26].

The L and F strings are required for the reconstruction of T . The order of
each character is preserved. We know, that the symbol $ means the end of the
whole text T . We also know it is the right context of the previous character.
The process is subscribed in Lemma 1.3.1 and its example in Example 1.3.2.
Because the reconstruction is done from the last symbols in the T , it is called
the backward-search approach.

Example 1.3.2 (LF mapping).
T = a0b0r0a1c0a2$

BWT itself is not an index, but it facilitates editing the original text to a
suitable form for the next indexing structures. This is the reason why a lot of
compression and indexing techniques work with this kind of transformation.
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F L
$ ⇒ a2
a2 . . . c0
a0 . . . $
a1 . . . ro

b0 . . . a0
c0 . . . a1
r0 . . . b0

F L
$ . . . a2
a2 ⇒ c0
a0 . . . $
a1 . . . ro

b0 . . . a0
c0 . . . a1
r0 . . . b0

. . .

F L
$ . . . a2
a2 . . . c0
a0 ⇒ $
a1 . . . ro

b0 . . . a0
c0 . . . a1
r0 . . . b0

Tr = a2$ Tr = c0a2$ . . . Tr = a0b0r0a1c0a2$

1.4 Rank and Select query support in constant
time

Rank and select structures in constant time query support were proposed by
Jacobson, Munro, and Clark [30, 24, 9]. The implementation takes n +O(n)
bits, where n is the length of the bit vector and they are known as Jacobson’s
rank and Clark’s select. This time he showed that attaching a dictionary of size
o(n) to the bit vector B1,n is sufficient to support rank operation in constant
time on the RAM model. It splits the vector into chunks of log2 n bits each
and store pre-calculated a cumulative rank up to each chunk. Then a rank
can be decomposed as finding what chunk it is in, looking up cumulative rank,
and summing it up with a relative rank within the chunk. A relative chunk
is calculated by dividing it into sub-chunks, calculating the cumulative rank
of these sub-chunks, and finally adding a relative rank of a specific sub-chunk
that could be found in constant time.

To summarize the process of select support in constant time, the structure,
as well as a rank, is at first divided into chunks, where each contains log2 n
1–bits. After that, it checks each chunk if it has a sparse (longer chunks) or
dense (shorter chunks) characteristic. For the sparse chunks, it is easy to get
the required query result, but for dense ones, it is again divided into sub-chunk
and the whole process is repeated.

Both structures and even more are described in detail by G. Navarro et al.
in [32].

1.5 Wavelet tree

The principle of a wavelet tree is to partition the alphabet into two sub-
alphabets, to assign them one and zero, and transform the original string into
a corresponding bit vector. We separate characters based on ones and zeros
into a new substrings and repeat the process again until the alphabet is not
of the size one. Finally, we get a tree, where the root is the bit vector of the
original string and leaves are the numbers of characters counted. Figure 1.1
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depicts the example of the structure of a wavelet tree over string abracadabra.

abracadabra 
00101010010

abaaaba 
0100010

aaaaa

|a| = 5

rcdr 
1001

cd 
01

0

0 0

0

1

1

1

1

  x  c(x)
  a  00
  b  01
  c  100
  d  101
  r  111  

rr

|r| = 2

bb

|b| = 2

c

|c| = 1

d

|d| = 1

Figure 1.1: Example of a wavelet tree over the string abracadabra

When the wavelet tree is balanced, the depth of the tree is log |Σ| and when
the rank and select query takes O(1) time, the time to find one character in
O(log n) time. Algorithm 1 and Algorithm 2 show how to obtain the required
rank and select queries iteratively.

Algorithm 1: rankx(i)
Input : Wavelet tree wt, asked number i, character x
Output: rankx(i)

1 Function Search((wt, i, x)):
2 N ← wt.root;
3 k ← 0;
4 while N is not leaf do
5 B ← N.bitvector;
6 b← c(x)[k] /* get the corresponding bit for character

on k-th position */
7 N ← N.child(b);
8 i← B.rankb(i);
9 k ← k + 1;

10 end
11 return i;
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Algorithm 2: selectx(i)
Input : Wavelet tree wt, asked number i, character x
Output: selectx(i)

1 Function Search((wt, i, x)):
2 N ← wt.leaf(x);
3 l← |c(x)| − 1;
4 while N is not root do
5 N ← N.parent;
6 B ← N.bitvector;
7 b← c(x)[k] /* get the corresponding bit for character

on k-th position */
8 i← B.selectb(i);
9 k ← k − 1;

10 end
11 return i;

1.6 Wavelet tree FM-index

Wavelet tree FM-index is a self-index constructed by P. Ferragina and G. Manzini
in 2000 [14]. It is a data structure to determine the occurrences of a pattern
P in a large text T in a time shorter than O(|T | ∗ |P |). Its structure is based
on backward searching using LF mapping of BWT . The algorithm takes ad-
vantage of the linkage of L of F string and more, a count of characters and
pointers to their locations can be found using rank queries to the start and
end position of the character in O(log σ) time using the wavelet tree.

Due to relativity between the original text, SA, L, and F string as shown
in Table 1.2, there is no need to store the F string.

1 2 3 4 5 6 7 8 9 10 11
T [i] a b r a c a d a b r a
SA[i] 11 8 1 4 6 9 2 5 7 10 3
SA[i]− 1 10 8 11 3 5 8 1 4 6 9 2
L = T [SA[i]] r d a r c a a a a b b
F = T [SA[i]− 1] a a a a a b b c d r r

Table 1.2: Structural characteristics and relativity of SA and FM -index

To simulate this algorithm, let us define an additive structure C as an
array containing the number of character counts and function Occ(x, i) that
returns the number of occurrences of the symbol x in the prefix L[0 . . . i]. Each
step is shown by Algorithm 3, where in every iteration, the interval [sp, ep]
determines the range of occurrences of suffix Pi,m in the input text T1,n.

11
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Algorithm 3: FM − search(P, m, n, C, Occ)
Input : pattern P of length m, length of n, array C containing

number of character counts, function Occ
Output: Interval of pattern locations

1 Function Search((P, m, n, C, Occ)):
2 sp← 1;
3 ep← n;
4 for i← m to 1 do
5 sp← C(Pi) + Occ(Pi, sp− 1) + 1;
6 ep← C(Pi) + Occ(Pi, ep);
7 if sp > ep then
8 return ∅;
9 end

10 i← i− 1;
11 end
12 return [sp, ep];

An array C takes |Σ| log n bits, and function Occ is performed in O(log |Σ|)
time according to the wavelet tree structure. Finally, the counting number of
occurrences of ep− sp + 1 in the range [sp, ep] takes O(|P | log |Σ|) time.

1.7 Introduction to genomics notions

In this thesis the algorithms related to genomics are being described and the
basic notions from biochemistry including genetics are being defined. The
following notions are taken from Bioinformatics and functional genomics by
Pevsner, Jonathan [37].

Definition 1.7.1 (Genome). Genome is all the genetic material in the chro-
mosomes of a particular organism. Its size is generally given as its total
number of base pairs.

Definition 1.7.2 (Gene). Gene is the fundamental physical and functional
unit of heredity. It is an ordered sequence of nucleotides located in a particular
position on a particular chromosome that encodes a specific functional product
(i.e., a protein or RNA molecule).

Definition 1.7.3 (Chromosome). A chromosome is the self-replicating ge-
netic structure of cells containing the cellular DNA that bears in its nucleotide
sequence the linear array of genes. In prokaryotes, chromosomal DNA is cir-
cular and the entire genome is carried on one chromosome. The eukaryotic
genome consists of a number of chromosomes whose DNA is associated with
different kinds of proteins.
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1.8 Sequence analysis

Modern methods of sequencing have evolved considerably over the last twenty
years. These next-generation sequencing (NGS) methods use parallelization
and produce a huge amount of short sequences. In general, there is no possi-
bility to sequence too long samples because of their decreasing quality. In the
last years the method of using cell nanopores has gained popularity because
of its high quality reading of longer sequences, but these methods stay quite
expensive. The most used method to obtain proper quality from sequencing
is high-throughput sequencing (HTS) [42], which accumulates a huge amount
of reads and using statistical and bioinformatics methods gets the best result.
Reads are saved in corresponding bioinformatics format together with their
quality for example format SAM [27].

After sequencing, there are many possibilities of what to do depending on
the required results and available resources. If there is a model organism and
it is known which kind of organism we sequence, then reads are aligned to
the reference sequence of this organism and we get a specific position to this
genome. Sometimes, the model organism is not available. Then the sequencing
is also called denovo sequencing and reads are aligned to each other to find the
most appropriate position (called an assembly). The whole process is shown
in Figure 1.2.

Sequence alignment is the process of comparing and detecting similarities
between biological sequences. At first, the alignment subjects to heuristic al-
gorithms. Dynamic programming giving us quadratic time complexity for two
sequences is used by optimal aligning algorithms. Thus, to align a high number
of reads it is not possible to align it in a reasonable time. An optimal align-
ment (usually Smith-Waterman or Needleman-Wunsch algorithm [43, 33]) is
used for more sensitive alignment of smaller sections. According to a number
of overlapping parts, a quality of a genome is measured and saved into the
corresponding database.

1.9 Genetics variants

There is almost zero probability to have an identical genome even when com-
paring two organisms of the same species. Almost every genome is unique and
contains some nucleotide changes, which are called variations. Many of these
variations are nonsense or have no harmful effects on organisms because the
gene expression has a very sophisticated repair mechanism. Most of them are
created in the prenatal part of life, the rest of them are caused by mutation
factors or by natural gene translation during the whole life. Two organisms
could share the same variants (for example a blood group) and some variants
could cause several kinds of diseases (Sickle cell disease).

Genetics variants are stored in specific format called variant calling format

13
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R
EA
D
S

Model organism genome

Mapping

Assembly

Sequenation

Figure 1.2: Short introduction to the basic methods accompanying sequence
analysis from the raw short sequences in a sample to assembled sequence

(VCF) [35]. A pan-genomics picture could be formed from variant schemes.
At the same time, the structure of a pan-genome has the potential to replace
still used comparison with one “reference” genome, which has limitations of
observation. Querying into a pangenomic structure is complex not only from
the biological side but also from the stringology side and its structure is very
complex. These days, the pan-genome structure is indexed and visualized us-
ing variant graphs, but there is a quite pressure from the scientific community
to improve it.

More about VCF format and its hierarchy will be mentioned later in Sec-
tion 2.4.

1,000 human project

The 1,000 Genomes Project includes a catalog of common human genetic vari-
ation, using openly consented samples from people who declared themselves
to be healthy. The reference data resources generated by the project remain
heavily used by the biomedical science community [10].
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Variant graphs

A variation graph, defined in [18] is s graph with embedded paths
G = (N, E, P ), where N notes a set of nodes, E is a set of edges and P is a
set of paths. Each node represents a sequence over alphabet A, C, G, R and
is traversed in both directions. Edges represent connections between nodes
and imply, that the sequence gained with the concatenation of node content
can be much longer than the structure is. The P gives the variable number
of executable paths, that specify the sequence encoded by a variant graph.
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Chapter 2
Analysis and design

This section reviews the literature related to the BIO-FMI algorithm and its
basic principles. We describe its structure, index construction, and index sur-
vey. We further develop the idea and try to apply it to a format containing
elastic-degenerate strings. For every algorithm, the time and memory man-
agement analysis will be described.

2.1 Main idea

Since we are talking about a set of genomes or another genetic material, it
is obvious that there is some redundant information rate. The evolution of
every organism has common ancestors, and therefore their genetic equipment
is similar to a certain extent.

In an effort to store and process every genetic material in its natural se-
quential form, we have a huge amount of redundant information. The main
principle of the BIO-FMI and many other indexes is to store data and search
in structures, which require only a fraction of the required information. One
group of indexes is reference sequence-based algorithms and their principle is
based on storing changes against one reference string. The reference string is
agreed on consensus sequence in the case of biochemistry and genetics, but it
does not correspond to any particular organism.

2.2 BIO-FM index design

The first idea was suggested by P. Prochazka and J. Holub in Compressing Sim-
ilar Biological Sequences Using FM-Index [40]. Their implementation shows
a very appropriate pattern searching time, even though the experiments were
performed over an artificial dataset and the implementation was limited by
only one type of allowed change — substitution.
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Due to the relatively complex character of the algorithm, we define addi-
tional and required structures.

Collection of strings

r lexicographically ordered strings T0, T1, . . . Tr − 1, r > 1, Ti ∈ Σ∗ are called
a collection of strings. We denote T0 as a reference string and Ti, i ̸= 0 as i-th
non-reference string.

Example 2.2.1 (Collection of strings and its alignment).
T0:AAAAAGGACAGGA T0:-AAAAAGGAC--AGGA
T1:TAGGACACACATAGGA T1:TAGGACACACATAGGA
T2:AGAGACACATAGGA ⇒ T2:--AGAGACACATAGGA
T3:AAAAGATAGG T3:--AAAAG---ATAGG-
T4:AAAGAGAGGA T4:---AAAGAG---AGGA

Parameter context_length is defined as the constant value of stored in-
formation from the reference string. The parameter is also used to chop the
input pattern into chunks of context length to search for patterns by parts,
which will be explained later in Section 2.2.3.

Change in non-reference string

A change notes some difference between a reference and non-reference string.
Technically, every non-reference string can be written as successive sequence
of common (C) and difference (R) blocks. Therefore, Ti = Ri,0Ci,0Ri,1Ci,1 . . .
Ci,ki−1Ri,ki

and R blocks can be called as changes.
From a genetic point of view, changes can be divided into many groups as

referred to in Section 1.7. For our purpose all changes can be divided into the
following three types:

1. Substitution: also called Single nucleotide polymorphism (SNP) is a
change where one character is substituted for another. The offset against
the reference string is zero.

2. Insertion: change, where in non-reference is inserted one or more char-
acters. The length of the non-reference string is now bigger than the
reference string and also the offset grows positively.

3. Deletion: change, where the substring is removed from the reference
string in the non-reference string. The length of the non-reference string
is now smaller than the reference string and also the offset grows nega-
tively.
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2.2.1 Change saving

As was mentioned in the main idea, we will store differences against the refer-
ence string. An assumption to store this kind of information is its correspond-
ing input format. There are a lot of alignment algorithms, mostly based on
dynamic programming, which can align biological sequences. After this ad-
justment, the sequences contain a character ‘-’ as in Example 2.2.1. For our
purpose, it means better parsing and detection of each change. The detailed
discussion on input format will be included in Section 2.4. Example 2.2.2
describes storing process of each type of a change.

Example 2.2.2 (Change types).

context_length = 3 a)
T0 A C C - - C T A

p
Ci,j−1 Ri,j Ci,j

Ti A C C A A C T A
q

d # C C A A C T #
(pj , (p− q)j , change_lengthj)

context_length = 3 b)

T0 A C C C C C T A
p

Ci,j−1 Ri,j Ci,j

Ti A C C - - C T A
q

d # C C C T #
(pj , (p− q)j , change_lengthj)

context_length = 3 c)

T0 A C C C C C T A
p

Ci,j−1 Ri,j Ci,j

Ti A C C A A C T A
q

d # C C A A C T #
(pj , (p− q)j , change_lengthj)
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Examples of types of changes: a) Insertion of “AA” substring, b) Deletion
of “CC” substring, c) Substitution of “CC” substring to “AA”.

The changes are stored in the vector d as a concatenation of the changes
separated by symbol #. Together with the changes, the left and right contexts
of corresponding one less length of context_length are stored. Furthermore,
there are additive structures that store the following values for every change:

1. Base position: A position in the reference string that corresponds to
the end of the change.

2. Offset: A difference of ending positions in reference and non-reference
strings.

3. Change length: The length of the change, including contexts. A sub-
stitution keeps lengths against the reference string, insertion is in posi-
tive numbers, and deletion in negatives.

Example 2.2.3 (Required structures for index build – summary).
context_length = 3, number_of _changes = 10, number_of _sequences = 5
T0 : AAAAAGGACAGGA\$
d : #TAGGACACAC#ACATAG#AGAGACAC#ACATAG#AA#AAAGATAG#GG$#AA#AAAGA#GAGAG#
loc : 100000000001000000100000000100000010010000000010001001000001000001
iloc :100000000000000000100000000000000010000000000000001000000000000001
base_position = {8 , 10 , 8 , 10 , 3 , 10 , 13 , 4 , 7 , 10}
offset = {−1 ,−3 , 1 ,−1 , 2 , 2 , 3 , 3 , 3 , 3}
change_lengths = {10 , 6 , 8 , 6 , 2 , 8 , 3 , 2 , 5 , 5}
start_positions = {0 , 18 , 34 , 50 , 65}

In our example, we get the required information and additive structures.
The above mentioned example depicts another two structures of bit-vectors
loc and iloc. These are used for quick rank and select queries.

2.2.2 Index build

The major part of the index building is divided into several steps. At first,
transformations of strings T0 and d are created follows by assembly of wavelet
tree FM indexes. The structure follows algorithm complexity in Algorithm 3.
Next, the index structure is sampled with iloc and loc vector, and rank and se-
lect structures are created. It is also necessary to build structures for rank and
select constant time queries as in Algorithm 1 and Algorithm 2. A summary
is marked in Algorithm 4.

2.2.3 Search in index

At first, the pattern is divided into k-mers of context_length size. For such
long chunks, it is ensured, that the k-mer will be found in the reference in-
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Algorithm 4: Building the indexes
1 function build (T0, d, iloc, loc);

Input : Two strings: reference T0 and d (string of changes), two bit
vectors: iloc and loc

Output: (I0,Id, rank_support, rank_support, select_support)
2 T BW T

0 ← createBWT (T0);
3 dBW T ← createBWT (d);
4 I0 ← createWT_FMindexT (T BW T

0 );
5 Id ← createWT_FMindexT (dBW T );
6 riloc← rank_support(riloc);
7 rloc← rank_support(rloc);
8 return I0, Id, rloc, riloc;

dex (in index I0), or if the k-mer differs at least one character, then in the
concatenation of changes d (in index Id).

Then, the location using the FM-Search algorithm has been found in Id

and for each location, the correct pointer to the corresponding non-reference
sequence and location has to be found. There can be easily found sequence
and change numbers using rank queries into loc and iloc vectors. The cor-
responding position can be deduced by the base position in reference and an
offset against the non-reference sequence and stored in a hash table.

Searching in the reference index follows a different procedure. We need
to iterate all non-reference sequences and check the corresponding positions
for non-stored parts of the sequence. If there is a non-changed substring on
the position, it has to be stored in the hash table too. It means, we need to
iterate all sequences for each location found in index I0.

This process is repeated for each next chunk with the difference, that every
non-first chunk has to be validated according to stored locations in the hash
table. Algorithm 5 shows the whole process of pattern search.

2.2.4 Special cases

During the whole process, there are different situations. At first, what happens
if two changes are too close to each other (their distance length is smaller
than the stored context) – then the two changes are merged into one bigger
and sometimes it might happen, that we cannot recognize the change type
anymore.

If the changes are too close to the end or the beginning of the sequence,
then there have to be additive conditions. In this case, there is more than one
way to implement it depending on base positions p and q. In this document,
we work with appending of symbol $ at the end of each sequence to detect
correct ends.
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Algorithm 5: Search in indexes
1 function search (P, m, I0, Id, r, context_length);

Input : Pattern P of size m, indexes I0 and Id, additive structures
base_position, offset, change_lengths

Output: (I0,Id, rank_support, rank_support, select_support)
2 chunks← parse P1,m into chunk of length context_length;
3 for i← 1 to |chunks| do
4 occ← FMSearch(Id, chunksi);
5 for j ← 1 to |occ| do
6 sequenceNumber = rankiloc(occj);

changeNumber = rankloc(occj);
positionj = basepositionj +offsetj +differenceFromHashj ;
if isV alid(positionj) then

7 store positionj to a hash table;
8 end
9 end

10 occ← FMSearch(I0, chunksi)
11 for j ← 1 to |occ| do
12 if isV alid(occj) then
13 store occj to a hash table;
14 end
15 for k ← 1 to r − 1 do
16 positionj = find the corresponding position and upcoming

changes;
17 if isV alid(positionj) then
18 store positionj to a hash table;
19 end
20 end
21 end
22 end
23 Report all positions with complete P1, m in a hash table;

2.2.5 Time and memory management

Let us recall that n is the length of input text. Then the reading and parsing
are done in linear time. The build time is given by the time and memory
complexity of the FM-index wavelet tree, which can be built-in O(n) time.

To find a pattern (a chunk in our case) of length mj in FM-index takes
O(mj log |Σ|). In the worst case, the index finds occurrences in every position
in the text, and iterating them takes extra |occ| ∗ number_of_sequences
time, where the |occ| is a number of occurrences found by the FM-index.
The validation is in constant time and the whole process of searching is done
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exactly ⌈ m
context_length ⌉ times.

Finally, we get O(⌈ m
context_length ⌉ ∗ |occ| ∗ number_of_sequences) linear

time complexity at all.
Wavelet tree FM-index takes O(log n) bits of storage. In the worst case,

the concatenation of changes will be the same size as the original text plus
constant for surrounding context and hash symbols. This case is not prob-
able, because we discuss highly repetitive texts. The size of additive struc-
tures (base_position, offset, and change_lengths) depends on similarity of
sequences.

2.3 BIO-FM Index design over EDS
In view of the EDS format, the substantial part is its parsing into the required
format. It is appropriate to remind indexing way in EDS as mentioned in
Definition 1.1.8. Let’s assume, that the sequences in each block are ordered
and the reference string is composed of the shortest sequences in each elastic
degenerate symbol. Then the position corresponds to the position in EDS
with minimal length, and when the change appears in some block against the
reference sequence, the position is shifted according to the offset between the
change and reference string.

2.3.1 Change saving

When two elastic degenerated symbols are too close, then the new block of
size |ξ|i ∗ |ξ|i+1 is created using Cartesian multiplication. During this process,
it may happen that some sequences have a common prefix/suffix with the
reference sequence. An offset of change is the difference between lengths of
sequence used in the reference string and sequence in an actual change (offset
is always a positive number). In start_positions pointers are stored to the d
string to the next segment hash symbol.

An example of EDS parsing into BIO-FMI format is described in Exam-
ple 2.3.1.

Example 2.3.1 (Parsing of EDS). T = AB

 ε
C
CC

 BAC

[
AA
RA

]
RA

context_length = 5

T ≈ AB


BACRA
CBACAA
CBACRA
CCBACAA
CCBACRA

 RA ⇒ T0 = ABBACAARA

d = #ABCBACA#ABCBACRARA$#ABCCBACA#CCBACRARA$#
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2. Analysis and design

base_position = {5 , 9 , 5 , 9}
offset = {1 , 1 , 2 , 2}

2.3.2 Index construction

According to recreating the input format into BIO-FMI format, the index
construction and construction of additional structures are same as in Algo-
rithm 4.

2.3.3 Searching in the index

At first, let’s take a look at a result conception of locate query. One of the
ways used in this document is to set location with increasing sequences of the
absolute number of changes. It means, that we do not take care about the
number of blocks, but only the overall order of sequence in EDS. See Table 2.1.

position0: [ Ex,y, . . . Ex+k,y+l ]
...

positionp: [ Ex,y, . . . Ex+k,y+l ]

Table 2.1: EDS output format visualization

Searching in indexes is similar to the algorithm in the previous design in
Section 2.2.3. At first, the pattern is divided into the chunks of the corre-
sponding length. These chunks are searched for in I0 and Id in any order
and subsequently iterated. To find the corresponding block and change the
number, rank queries over loc and iloc bit-vectors are used.

Every next chunk is validated with existing occurrences. Therefore for ev-
ery location of chunk and for every saved preceding occurrence, it is validated
for both reference and non-reference positions. This validation is essential,
especially for verifying non-conflicting sequences of used sequences in blocks.
The whole process is described in Algorithm 6.

2.3.4 Time and memory analysis

The time complexity of index build is the same as in the previous analysis.
In contrast with it, the size of text can increase depending on the segment
organization and context length. The time for finding occurrences in the
FM-index wavelet tree takes O(mj log |Σ|), where mj is the length of the
chunk. The maximum number of occurrences n in the worst case, but we do
not assume it, so note |occ| as a number of occurrences founded by the FM-
index Validation of one occurrence takes in the worst case O(|occ|j−1) time
complexity, where |occ|j−1 is a number of valid occurrences from the previous
chunk. The whole process is repeated ⌈ m

context_length⌉ times. Finally we get
estimation of asymptotic complexity ⌈ m

context_length⌉∗(O(mj log |Σ|)+O(|occ|)∗
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2.4. Input format discussion

Algorithm 6: Search in indexes over EDS
1 function search (P, m, I0, Id, r, context_length);

Input : Pattern P of size m Indexes I0 and Id, additive structures
base_position, offset, change_lengths

Output: (I0,Id, rank_support, rank_support, select_support)
2 chunks← parse P1,m into chunk of length context_length;
3 for i← 1 to |chunks| do
4 occd ← FMSearch(Id, chunksi);
5 occ0 ← FMSearch(I0, chunksi)
6 for j ← 1 to |occd|+ |occ0| do
7 changeNumber = rankloc(occj);
8 segmentNumber = rankiloc(occj);
9 for k ← 1 to |preceding_occ| do

10 if isV alid(positionj) then
11 Append current changeNumber to a valid start

position;
12 end
13 end
14 end
15 end
16 Report all positions with complete P1, m in table;

O(|occ|)) ≈ O(|occ|2). This time complexity is only a theoretical assessment
and the real-time complexity decides the experimental results. Furthermore,
the set of |occ|j−1 is with every iteration smaller until the positions for a full
pattern stays alone.

The space complexity is given by the complexity of the wavelet tree and
localization overhead as in the previous design. On the other hand, the content
of offset array gives us information in change lengths and that means there is
no need to store change_lengths anymore, and memory complexity is smaller.

2.4 Input format discussion
A sequence alignment based on biological similarity is really time-consuming
problem. These algorithms are mostly based on dynamic programming and
only pairwise alignment gives us an optimal result in quadratic time. For our
purpose, there is no need to have an optimal alignment, but still, we need
some information about the sequence similarity. This information is provided
in a few bioinformatics formats.

The most common format to save some biological material is probably
FASTA format. [31]. FASTA has no additive information about sequence
except for the name of the sequence and information stored in the name.
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2. Analysis and design

This format is very often able to be accepted by many bioinformatics tools as
input. Similar to FASTA is FASTQ, where always the first of the four is a
string about sequential quality and eventual comments [11]. In both of these
files, only the sequences in their raw form are available.

Short reads, aligned and mapped against reference sequence are stored in
SAM file with its binary form — BAM. SAM and BAM files contain quite
a big amount of information. However, this format does not contain solid
sequences. On the contrary, there are amounts of overlapping sequences.

The best potential input format is the variant call format (VCF) presented
by Petr Danecek et al. [34] in 2011. These file stores variants as an enumeration
of changes against a reference genome, usually saved in FASTA file. The
number of variant types is described in the header of the file together with
reference links and basic information about organisms. The body of the file
consists of basic eight columns and continues with columns of each sample
organism, that is included in the file. This sample organism has binary pair
information about change occurrence in each chromosome. See the example
in Figure 2.1.

VCF is a good format to store intergenomic information, but its indexation
is challenging. These days, the variant graph is used for indexation and visual-
ization, but in the future, there is a great potential in this field to improve the
time complexity and visualization of pangenomatic research. Moreover, the
whole concept based on the reference sequence could be misleading in research
over it, so another approach of storing and working with a set of genomes is
welcome.

In our algorithm, the alignment information is needed, but moreover, the
surrounding context has to be stored. It would lead to heavy parsing between
opened reference files, which size could be enormous, and VCF. Finally, in
the VCF format, there are variant types of tandem elements that are hard
to explore and their exact sequence is not available in this format. It could
be probably tracked in some databases, but this approach leads to a more
complex issue. VCF and SAM can be processed with a set of programs called
Samtools [6].

To summarize, the simplest way is to load a suitably large FASTA file
and align it using a good heuristic tool for multi-sequential alignment. The
use of such an approach is small because it is not used in practice. The most
appropriate approach is to hardly parse the VCF format, separate all required
information and run it. There was not enough time and resources in this work
to deal with this problem in more detail.
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2.4. Input format discussion

Figure 2.1: (a) Example of valid VCF. The header lines ##fileformat and
#CHROM are mandatory, the rest is optional but strongly recommended. Each
line of the body describes variants present in the sample population at one
genomic position or region. (b-f)Alignments and VCF representations of dif-
ferent sequence variants: SNP, insertion, deletion, replacement and large dele-
tion. The REF columns show the reference bases replaced by the haplotype
in the ALT column. The coordinate refers to the first reference base. (g)
Users are advised to use the simplest representation possible and the lowest
coordinate in cases where the positions are ambiguous [34].
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Chapter 3
Implementation

This chapter will describe the structure of the application, the libraries used,
and the input format. Next, the implementation of LZ-RLBWT and r-index,
essential algorithms for our experiments, will be briefly described, and finally,
we describe help scripts used for data generations and result processing.

3.1 Overall structure
The structure of our tool is quite simple. It consists of two small applica-
tions, the structure and communication with the filesystem are depicted in
Figure 3.1. Application organization is inspired by the implementation of
LZ-RLBWT and r-index, which have simple usage and organized outputs.

3.2 Technologies and libraries
The applications are written in the C++17 program language. As addi-
tional libraries, the boost library [4] and the Succinct Data Structure Library
Lite [20, 19] have been used. Both of these libraries are freely available. The
choice of SDSL library was clear, because of the effective implementation of
many structures including wavelet trees, FM-index, and rank and select sup-
port structures over a bit-vector. The classes from SDSL library have been
used for my implementation are shown in Table 3.1.

The boost library was used for the algorithmic work with strings and input
parsing. The helpful scripts are written in Python 3.8 language.

3.2.1 LZ-RLBWT

LZ-RLBWT is an algorithm designed in [3] and implemented by Nicola Prezza
et. al. It is free to download and use on GitHub repository [38]. The exper-
iments have their own website with the required information and more on
Pizza&Chilli website [36]. LZ-RLBWT is an algorithm-based combination of
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3. Implementation

text_file.eds pattern_file.txt

Index

BIO-FMindex

EDS ALN

text_file.aln
bio-fmi-build bio-fmi-locate

+ Context_length

Build Search

File system

reference_index (.ri)
change_index (.ci)
base_position (.abp)
offset (.aof)
change_lengths (.aop)

ReadSave
...

Figure 3.1: The structure of applications and their communication with the
filesystem. On the left the input files for index construction application – bio-
fmi-build, on the right side pattern file with index construction path as input
for bio-fmi-locate application. The index is stored in the filesystem with a
number of files stored I0, Id, base_positions, offset, change_lengths, loc, iloc
and configuration settings

WT FM-Index csa_wt < t_wt, t_dens, t_inv_dens, t_sa_sample_strat,
t_isa_sample_strat, t_alphabet_strat >

Select select_support_mcl < t_b, t_pat_len >
Rank rank_support_v < b, pattern_len >

Table 3.1: SDSL classes; A class for the Compressed Suffix Array (CSA) based
on a Wavelet Tree (WT ) of the BWT of the original text, that corresponds
to FM-index structure; Select structure supports constant time queries with
additional ≤ 2 ∗ n bits. Rank structure supports constant time queries with
additional 64 bits.

the Lempel-Ziv (LZ) algorithm over run-length BWT transformation of the
original string. The structure takes approximately O(z + r) memory, where
z is the number of factors in the LZ parser and r is the number of runs
in BWT. The index reports all the occurrences of a pattern of length m in
O(m(log log n + log z) + pocc logϵ z + socc log log n) time, where n is the length
of the string and pocc and socc are the number of primary and secondary
occurrences. See the definition of primary and secondary occurrences in the
original text of the Lempel-Ziv algorithm [25].
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3.3. Application setting, input format, and workflows

3.2.2 r-index

The algorithm of r-index was described in 2017 and improved in 2020 [17, 16].
An implementation by Nicola Prezza is free to download and use on its gitHub
repository [39]. The r-index is the first full-text index of size O(r), where r is
the number of BWT runs of the input text of size n. This algorithm reduces
the time of FM-index locates query from Ω(n/r) to O(log(n/r)) and takes
r∗(log |Σ|+(1+ϵ) log(n/r)+2 log n) bits, where epsilon is a non-zero constant
value. For experiments details over the r-index I refer to Pizza&Chilli testbed
website [36]. The implementation accepts raw .txt files with every sequence
on a separate line.

3.3 Application setting, input format, and
workflows

Application bio-fmi-build has one optional, but highly recommended param-
eter — context_length. This value is set by default to value six (justified in
Chapter 4). The text input format can be used by files with .aln and .eds
extensions. These formats are not used in common practice — this topic was
already discussed in Section 2.4. An .aln and .eds formats are depicted in
Figure 3.2.

a) ALN input format

-AAAAAGGAC--AGGA
TAGGACACACATAGGA
--AGAGACACATAGGA
---AAAAG--ATAGG-
----AAAGAG--AGGA

b) EDS input format

AG{,CC,GGG}CAAAAA{AA,TA}TA{,CC,TA}

Figure 3.2: The example of text file formats: a) a set of aligned sequences,
required the same lengths and the first line is taken as a reference string. b)
EDS format, where each elastic degenerate symbol is separated by braces. The
reference string is concatenation of seeds and first sequence from each block.

The implementation has an adjustable output path and silent mode, which
does not print parsed text files. The whole usage of the application is intuitive
and very simple (see Figure 3.3). For more detailed usage of the applications,
see Chapter B.

3.4 Format of index storing
For this time, every index and additive structure have been saved in a solo
file. The implementation creates a folder with the corresponding name and
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a) Build application usage

$ ./bio-fmi-build --help
Usage: ./bio-fmi-build [options] <input_file_name>

Allowed options:
--help produce help message
--help-verbose display verbose help message
-v [ --version ] display version info
-s [ --silent ] silent mode
-r [ --repetition ] arg number of repetition - for experiment needs
-l [ --context_length ] arg length of chunk and stored context, default 5
-o [ --basefolder ] arg use <basefolder> as prefix for all index files.

Default: build folder is the specified
input_file_name

-i [ --input-file ] arg input file

b) Locate application usage

$ ./bio-fmi-locate --help
Usage: ./bio-fmi-locate [options] <index_basename> <pattern_file>

Parameters:
-h [ --help ] display help message
--help-verbose display verbose help message
-v [ --version ] display version info
-s [ --silent ] silent mode
-p [ --pattern ] print occurences of every pattern
-i [ --index-path ] arg input text file path (positional arg 1)
-I [ --pattern-file ] arg input pattern file path (positional arg 2)

Figure 3.3: Usage of a) build and b) locate applications

subsequently saves both indexes I0, Id and all additive structures from Ex-
ample 2.2.3. This way of implementation uses the function of SDSL library
(store_to_file()), which can save any structure using XML language and vice
versa to load the structure using the function load_from_file(). In the future,
the complex structure of additive arrays could be stored more efficiently in
some kind of compressed form.

The rank and select support structures cannot be saved with the functions
mentioned above. For this time, the structures are transformed after loading
of the whole structure including bit-vectors. There was no problem with the
transformation of these structures because their construction is relatively fast.
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3.5. Data generators

3.5 Data generators
In this section, the characterization and setting of data generators are de-
scribed. The scripts were used for generating pseudo DNA dataset over al-
phabet Σ = {A, C, G, T, N} and corresponding pattern files. Let us recall
that even if N is used in our alphabet to mark any of the nucleotides, the
implementation and algorithm support only the exact pattern matching yet.

The first script, create_pseudoDNA, is used to generate a random multi-
sequence alignment without a link to a biological characterization. The output
of the script is in the format .aln described above. It has three different
parameters at the entrance — the number of sequences, the total size of the
file, and the probability of change against the reference sequence. The total
size is finally larger than its input parameter because the size is given by all
characters in the file, including the symbol ‘-’ for the gap, while the input
parameter gives the amount of raw information in DNA. By removing this
gap symbol we get an input file for LZ-RLBWT and r-index applications.

Within the Pizza&Chilli website, several helpful scripts for working with
data are available. According to this, the genpatterns script was used to
generate random patterns from the file. The number and length of the pattern
are required parameters. This script prevents the search for patterns that are
not available in the text file.

For generating random text files in format .eds, the script taken over
SOPanG [8] was annotated and used. For our experiments, the create_eds
script accepts the required total size of the file and the probability of change,
which gives a suitable number of blocks in EDS. The total size is again quite
larger according to the symbols that mark the start and end of the elastic
degenerate symbols.

The last script genEdsPatterns is used for the pattern extraction from
EDS file format. The script requires several patterns and lengths together
with input and output file paths. The script is used to prevent the search for
non-existing random patterns in the text file.

The implementation of BIO-FMI and additional data generators are freely
available in my GitHub repository [13].
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Chapter 4
Experiments

The experiments are divided into four main parts depending on the dataset
and the aim of the measures. Note that the implementation is designed for a
simultaneous run with one thread.

The number of results is quite high, which means that in this chapter we
describe only a fraction of them. See Appendix A for all measurements and
visualisations.

4.1 Measuring environment specifications

All experiments were carried out on the server covered by the Department of
Computer Science at CTU Prague with the following hardware statements.

OS GNU/Linux Kernel 5.15.41
CPU model Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

RAM memory 32GiB
Swap memory 29GiB

Table 4.1: Environment specifications

4.2 Time measurement

In order to measure accurately and omit the influence of other processes, the
measurement technique has to be adapted. The total CPU time contains
user time, which gives us the time spent in our code and system time, which
indicates the time eaten in kernel space with operations like the work with
files, kernel calls, etc. The total time is given by the sum of system and user
times and for this purpose function getrusage from the system library of C with
variables ru_stime and ru_utime was used. The best evaluation of the results
can be obtained with the repetition of experiments to suppress noise from
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other processes. We use a higher number of patterns for one run to get the
most valuable average results independently of the pattern characterization
and the number of occurrences, and we observe the average search time per
occurrence and per pattern.

4.3 Memory measurement

It is almost impossible to obtain an exact measurement of the memory usage of
a program and, simultaneously, there is usually no need to know the complete
usage of memory. The major interest of our experiment is in the higher value
of consumed RAM memory during the process running (Peak RAM memory
usage). The value can be measured using the function getrusage again, and we
are asking for the maximum size of our resident set, hidden under a variable
called ru_maxrss.

Unfortunately, memory measure during the pattern matching part is un-
stable. The searching process lasts too short of time to get some adequate
measurements, so this document does not contain memory comparisons dur-
ing the pattern matching.

4.4 Datasets overview

Experiments were running over pseudo-real data most time due to already
discussed problems in Section 2.4. But the result over real data is very impor-
tant for us, we show two real sets of DNA sequences, which are small enough
to gain their multi-sequence alignment. The pseudo-real dataset construction
will be described in the following section. Table 4.2 shows all datasets and
their characteristics, which all experiments were running over.

Experiment Pattern length PseudoDNA – .aln
Dataset name PL ALNVLength ALNVNumber ALNVDifference
FIle size [MB] 1 2i, i ∈ [0, 8] 4 4
Number of Sequences 100 100 2i, i ∈ [1, 9] 100
Change probability [%] 10 10 10 1,10,25,50

Experiment Thyroid peroxidase Drosophila tripunctata PseudoDNA – .eds
Dataset name TPO DT EDSVSize EDSVNumber
FIle size [MB] 0.01402 0.09192 2i, i ∈ [0, 3] 4
Number of Sequences 6 63 - -
Change probability [%] - - 10 1, 5, 10

Table 4.2: Datasets overview
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4.4.1 Pattern and stored context optimal length

Our algorithm is based on the iteration of all locations followed by concate-
nation with preceding chunks, for the speed, it is necessary to set the optimal
length of chunks or the whole pattern. The frequency of occurrence of shorter
patterns is bigger than for longer ones. It means, for too short patterns, their
frequency will be enormous and it increases linearly against the text size and
the algorithm consumes a lot of time.

From the perspective of biological science and its view of the optimal set-
ting of context_length, for every amino acid, there are three nucleotides to code
them and due to this, there is no need to search patterns shorter than 3. More-
over, the coding sequences begin with promoters and end with stop codons.
There are at least nine characters with some information between them. Fur-
thermore, there is a utilization without biological background. For example,
searching for words that are used as precursors for other algorithms such as
BLAST [1], or words for natural language processing (NLP) of DNA [28].
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Figure 4.1: Average number of occurrences (logarithmic scale) per pattern of
specific length in relation with input file size

For this purpose, dataset PL was created. It contains three input text
sizes 1MB, 10MB, and 100MB. These data are scanned for pattern lengths
x× text_size for x in 5–75 with step 5.

Results are shown in Figure 4.1, where on the vertical axis are average
frequencies with a logarithmic scale, and on the horizontal axis are plotted
lengths of searched patterns in their relations to file size.

4.4.2 Experiments over pseudo-DNA datasets

The datasets were created using generator script create_ALN described in
Chapter 3. The main parameter that could affect the algorithm’s behavior

37



4. Experiments

is the length of sequences, the number of sequences, and their similarity. We
must concern that, the three main datasets were created in the relation to
a variant parameter — ALNVLength, ALNVNumber, and ALNVDifference.
These datasets were transformed to .txt files and used as input for other
comparative algorithms.
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Figure 4.2: ALN datasets results review — Build time, peak RAM memory
usage and compression ratio.
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Figure 4.3: ALN datasets results review — Search time per pattern on left
axis and per occurrence on right axis for length 8 and 16.

If you look at Figure 4.2 and Figure 4.3, you will notice that there is a
comparison of three algorithms for every pseudo-DNA dataset o the horizontal
axis, and the main observation parameters are the build time, peak memory
RAM, and the compression ratio on the vertical axis. Search results have the
search time per pattern (left vertical axis) and per occurrence (right vertical
axis), which are the most valuable measurements. Figure 4.4 describes the
influence of context length on build and search time with the same graph
organization as was described for build and search graphs.

4.4.3 Experiments over real DNA datasets

The index was tested on two smaller datasets of real DNA sequences. At first,
the six human variants of thyroid peroxidase isoforms were downloaded from
NCBI GenBank [12]. These transcripts variants in mRNA form contain from
three to four thousand base pairs. Let’s note this dataset as TPO. The second
dataset was downloaded from BOLDSYSTEM [41] and contains sixty-three
sequences of Drosophila Tripunctata. There is a combination of COI-5P and
COI-3P. Mark this dataset with the DT shortcut.
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Figure 4.5: Experiment results over real datasets TPO and DT

The results over real DNA sequences in Figure 4.5 give us a good view
into time and memory complexity, which is closer to bioinformatics practice.
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4.4. Datasets overview

4.4.4 Experiments with EDS over pseudo—DNA datasets

The datasets were created using generator script create_EDS described in
Chapter 3. The format is able to store more information about several se-
quences in a smaller format, so there is no need to try the too big size files.
We created text files in the dataset EDSVSize with sizes from ten thousand
kilobytes to eight megabytes to test the behavior of the increasing size of the
input file. The number of elastic degenerate symbols was deduced by the size
of the input file to ten percent of changes.
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Figure 4.6: Construction results over EDS - Time, memory and compression
ratio
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Figure 4.7: Search results for EDS datasets — time per pattern and per
occurrence

In the second dataset EDSVNumber tests algorithm behaves according to
the number of elastic degenerate symbols. It is necessary to note that a larger
amount of ED symbols leads to a smaller space between them and it leads to
their coupling and input text size increase.

We can assume that higher context length settings and a larger amount of
degenerate symbols can rapidly retard read and build time. This is the reason
why the context length was limited to a value of 15.

Figure 4.6 shows the build time of described datasets and they are followed
by a search comparison over the index in Figure 4.7.

4.5 ALN and EDS comparison

Based on the previous experiments, one of the most interesting deductions can
be presented. We assume, that the behavior of the algorithm over .eds format
will be quite worse either in construction and pattern matching. As described
in the following graphs and tables, we compare them in input file size terms
and also their reaction to pattern length and size of stored context length.
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4.5. ALN and EDS comparison

All measurements were taken with context_length 6 and over pattern of
length 8.
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Figure 4.8: Comparison ALN and EDS
in terms of construction time with log-
arithmic scale

Build Time Search Time
ALN EDS ALN EDS

1 111.603 295.213 2.99896 0.43261
2 223.844 612.741 5.48827 0.70021
4 453.877 1286.010 7.60087 0.91363
8 971.139 3057.440 10.10840 1.57992

Table 4.3: Comparison ALN and EDS
in terms of construction time, original
measurements
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Figure 4.9: Comparison ALN and EDS
in terms of peak RAM memory with
logarithmic scale

ALN memory EDS memory

1 15937000.0 11988000.0
2 28619000.0 22000000.0
4 50341000.0 52804000.0
8 95326000.0 138912000.0

Table 4.4: Comparison ALN and EDS
in terms of peak RAM memory, origi-
nal measurements

Figures 4.8 and 4.9 together with Tables 4.3 and 4.4, respectively, describe
the dependency on the file size. Vertical axes are in logarithmic scale and the
tables contain the original measurements. At the first sight, the EDS gives
very good result against the original implementation over .aln format.
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Figure 4.10: Comparison ALN and
EDS in terms of pattern length with
logarithmic scale

ALN Search Time EDS Search Time

8 2.99896 0.43261
10 1.14691 0.92726
12 0.30633 0.35864
16 2.29278 1.83122
32 160.64700 9.41601
64 512.67900 5.71631
128 13895.40000 37.04910

Table 4.5: Comparison ALN
and EDS in terms of pattern
length, original measurements
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Figure 4.11: Comparison ALN and
EDS in terms of context length with
logarithmic scale

ALN Search Time EDS Search Time

6 5.48827 0.70021
9 0.01302 0.00027
12 0.02101 0.00023
15 0.02677 0.00016

Table 4.6: Comparison ALN
and EDS in terms of context
length, original measurements

Figure 4.10 and Table 4.5 show comparison in terms of dependency of
search time on pattern length. The second pair, Figure 4.11 and 4.6 represent
dependency on length of stored context. The search time is in both graphs in
logarithmic scale and the tables contain original measurements.
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1 2 4 8 16 32 64 128 256
Text file size [MB]

10 1

100

101

102

Ti
m

e 
[s

]

ALNVLength

2 4 8 16 32 64 128 256 512
Number of sequences

ALNVNumber

0.01 0.1 0.25 0.5
Diversibility [%]

ALNVDifference

Build Time
6 9 12 15 20 25

1 2 4 8 16 32 64 128 256
Text file size [MB]

10 2

10 1

100

Ti
m

e 
[s

]

ALNVLength

2 4 8 16 32 64 128 256 512
Number of sequences

ALNVNumber

0.01 0.1 0.25 0.5
Diversibility [%]

ALNVDifference

Peak Memory RAM
6 9 12 15 20 25

1 2 4 8 16 32 64 128 256
Text file size [MB]

10 3

10 2

10 1

100

101

pe
r p

at
te

rn
 [

s]

ALNVLength

2 4 8 16 32 64 128 256 512
Number of sequences

ALNVNumber

0.01 0.1 0.25 0.5
Diversibility [%]

ALNVDifferenceALNVLength ALNVNumber

10 5

10 4

10 3

10 2

per occurence [
s]

ALNVDifference

Search Time - pattern length=8
6 9 12 15 20 25 per occurenceper pattern

1 2 4 8 16 32 64 128 256
Text file size [MB]

10 3

10 2

10 1

100

101

pe
r p

at
te

rn
 [

s]

ALNVLength

2 4 8 16 32 64 128 256 512
Number of sequences

ALNVNumber

0.01 0.1 0.25 0.5
Diversibility [%]

ALNVDifferenceALNVLength ALNVNumber

10 5

10 4

10 3

10 2 per occurence [
s]

ALNVDifference

Search Time - pattern length=16
6 9 12 15 20 25 per occurenceper pattern

Figure 4.4: Context influence on construction and search time
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Chapter 5
Result discussion

5.1 Suitable setting of BIO-FMI
Figure 4.1 shows that the ratio of pattern length to input size has not any
influence on pattern frequency, hence we can talk about suitable patterns
generally and predict successful usage of the algorithm in a reasonable time.

The biggest fall can be observed for patterns shorter than the value of 10.
Another moderate decline set in patterns of lengths of about three hundred,
where the patterns are usually unique in texts. As the result, it depends on
user preferences. In general, any pattern shorter than ten should be avoided
for algorithm BIO-FMI and this value also applies to stored context length.

5.2 BIO-FMI efficiency discussion
Unlike the others, the BIO-FMI gives a positive opinion on the construction
part. In the search part, under certain conditions, implementation can be a
good tool and surpass algorithms of LZ-RLBWT and r-index.

The implementation of BIO-FMI is very quick in its construction and the
results respond to the theoretical estimation of linear time. The results in
Figure 4.2 confirm our assertion. The length of sequences, or general input
text files, has a dramatic effect on construction time. This kind of behavior
is expected and it does not differ from other algorithms. It can be observed,
that the number of sequences has a nearly small effect on construction time.
This can be used for searching in short reads in sequence analyses. We do not
observe any unexpected results even on the last type of the dataset where the
time consumption increases with an interesting sequence difference.

Algorithm search time has unpleasant results in comparison with the LZ-
RLBWT and r-index with regard to the input size. As you can see Figure 4.3,
the BIO-FMI upward trend is faster than the others. We can assume, that our
index usage will be limited by this parameter. The performance on a variable
number of sequences is an inappropriate result for discussion because with the
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5. Result discussion

increasing number, the length of sequences is shorter and so the comparison
is quicker.

The influence of context length copies the same trends for all datasets and
parameters in the building part. With the increasing context both the time
and memory increase themselves. Notice, that the differences are smaller with
the increasing context, so from some point are unobservable.

During the search part, with a lower context length, the search time in-
creases. This observation is in the line with the theory of algorithm, where
the more information and occurrences there are in the non-reference index,
the more time is saved.

5.3 BIO-FMI over EDS discussion
EDS results give us a positive opinion on smaller text sizes. At present, there
is no comparison with another index available, but the comparison with its
original version over .aln gives satisfying results.

At this time, the problematic part is input reading and parsing into the
required form, which takes enormous amount of memory and thus prolongs
the construction time.

Context length follows the same trends as in the ALN version, but during
the pattern matching the suitable small context, length shows better results.

5.4 Summary
To summarize, searching in BIO-FMI is expensive with increasing the text
size. This fact leads to limited usage of algorithms over bigger files. There are
a few exceptions but overall with increasing the context length the efficiency
seems to be higher and takes some additional memory.

The patterns and context length parameter should have a length of at least
10. At the same time, for every context length, the pattern should be either
a multiple of the context or one less to the best distribution of chunk lengths.

Implementation over EDS gives very good results against implementation
over ALN, but it takes a lot of time and memory to read the input file. The
EDS implementation has a strong dependency on the setting of context_length
and the length of seeds. This approach can be useful for very high repetitive
texts with lower stored context.
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Conclusion

To conclude this document, the survey of indexing in genomes was finished
including a basic introduction to sequence analysis and variant storing. The
current indexing way was presented and shortcomings were explained.

Furthermore, the thesis describes the algorithm BIO-FMI, the BIO-FMI
application was written to test the ability of the algorithm to adapt itself
to different types of data. For the first time, the full version including indel
changes recognizing was implemented and tested. Moreover, the document
introduces the new adaptation of BIO-FMI on elastic degenerate strings and
gives us a new approach to indexing this structure adequate for pan-genomic
representation.

The results show that the algorithm is highly dependent on the choice of
the stored context length for a specific pattern length, and its value cannot
be constant. On the other hand, this parameter can be deduced for groups
of problems and implemented in potential later versions of the BIO-FMI tool.
The same conclusions apply to the length of the pattern.

Implementation over EDS provides good results and confirms its usability
in this field.

Future work

In the future, there is much work to optimize the implementation. An im-
proper approach was implemented for reading input text in EDS format, which
takes a lot of time and more, its size enormously grows with increasing stored
context length.

My type of implementation takes a lot of RAM memory, which can be
probably optimized with the creation of metafiles during the process. After
reading optimization, the implementation over the EDS string and the struc-
ture of the result can be improved by a new, appropriate type of hash table,
which gives us a constant time of validation and improves the search time.

49



Conclusion

During the experiment testing, some kinds of pattern mismatching were
detected as a consequence of a high number of special cases. Even if their
existence does not cause great harm to experiments because of the huge range
of experiments, they need to be detected and resolved.

Implementation over elastic degenerate strings needs to be compared with
other algorithms, As one suitable algorithm seems to be SOPanG2.

Finally, over some time, I would like to extend a range of experiments on
real datasets such as 1,000 human genomes. For this purpose, there needs
to be some way of extracting the required information from VCF files. The
genome of eukaryotes contains more than one chromosome, so the chromosome
selection and distinct pattern matching over them could be implemented.
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Appendix A
Experiment details

A.1 ALN Build

A.1.1 Construction time

Table A.1: Construction time - ALNVLength

LZ-RLBWT r-index BIO-FMI

1 86.0 0.41670 0.11160
2 172.0 0.82653 0.22384
4 340.0 1.75622 0.45388
8 671.0 4.12301 0.97114
16 1342.0 9.81696 2.23030
32 2691.0 22.01270 4.87541
64 5483.0 47.71760 10.82420
128 10929.0 99.66440 22.64540
256 22396.0 210.83900 48.83330

Table A.2: Construction time - AL-
NVNumber

LZ-RLBWT r-index BIO-FMI

2 412.0 1.97260 0.53477
4 387.0 1.94424 0.48480
8 371.0 1.85612 0.48184
16 362.0 1.82452 0.46138
32 357.0 1.83036 0.46233
64 346.0 1.78487 0.45857
128 332.0 1.74929 0.44765
256 320.0 1.71574 0.44589
512 314.0 1.76860 0.45159

Table A.3: Construction time - AL-
NVDifference

LZ-RLBWT r-index BIO-FMI

0.01 43.0 0.33983 0.03558
0.1 87.0 0.40988 0.12028
0.25 114.0 0.46160 0.18361
0.5 122.0 0.47724 0.18382
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A. Experiment details

A.1.2 Peak memory RAM usage

Table A.4: Peak memory - ALNVLength

LZ-RLBWT r-index BIO-FMI

1 23.4688 26.464 0.015
2 32.2930 52.580 0.028
4 49.5703 104.988 0.050
8 83.4570 210.524 0.095
16 155.6170 401.704 0.204
32 293.6880 810.776 0.391
64 577.4410 1666.092 0.758
128 1054.8400 3269.280 1.501
256 2039.0100 6908.016 3.046

Table A.5: Peak memory - ALNVNum-
ber

LZ-RLBWT r-index BIO-FMI

2 53.7734 162.132 0.204
4 51.8672 132.724 0.391
8 51.4102 124.428 0.095
16 50.5234 120.012 1.501
32 50.5117 115.872 3.046
64 49.6250 108.268 0.758
128 48.1953 99.664 0.015
256 47.7891 91.024 0.028
512 47.3711 87.016 0.050

Table A.6: Peak memory - ALNVDifference

LZ-RLBWT r-index BIO-FMI

0.01 20.3398 13.280 0.015
0.1 23.4961 26.680 1.501
0.25 25.4844 43.744 0.204
0.5 25.8438 48.696 0.028

A.1.3 Compression ratio

Table A.7: Compression ratio - ALNVLength

LZ-RLBWT r-index BIO-FMI

1 1193.23862 2323.72040 993.81148
2 1529.16961 3242.42933 1266.70789
4 790.01924 1786.37073 662.05125
8 10.22369 24.33645 8.62447
16 1598.21366 3986.19785 1344.14156
32 59812.65997 155875.67719 49932.50646
64 95680.38908 262826.50948 76713.01003
128 129456.55008 371840.04314 108073.35901
256 105917.39357 321146.25046 83290.62917
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A.2. ALN Search

Table A.8: Compression ratio - AL-
NVNumber

LZ-RLBWT r-index BIO-FMI

2 522.02372 1370.56856 233.28269
4 8851.49213 22444.55222 5179.27611
8 1.46282 3.58447 1.00218
16 4364.39000 10544.37769 3224.41615
32 1673.60758 3992.32000 1290.07152
64 5822.86986 13454.53726 4834.75417
128 4500.37727 9893.93727 3962.76455
256 2725.63706 5660.92412 2573.19118
512 673.98508 1400.90246 663.85123

Table A.9: Compression ratio - ALNVDiffer-
ence

LZ-RLBWT r-index BIO-FMI

0.01 423.02283 785.22283 190.9324
0.1 1029.08571 2024.80000 832.6772
0.25 143.91106 338.40377 117.1601
0.5 1202.43835 2958.55398 687.4006

A.2 ALN Search

Tables on the left contain search time per occurrence, on the right per pattern.

Table A.10: Search time per occurence - AL-
NVLength 8

LZ-RLBWT r-index BIO-FMI

1 0.00682 0.00026 0.00001
2 0.00771 0.00045 0.00001
4 0.00881 0.00048 0.00002
8 0.00934 0.00042 0.00002
16 0.01137 0.00060 0.00002
32 0.01288 0.00043 0.00002
64 0.01467 0.00044 0.00000
128 0.01560 0.00051 0.00000
256 0.01694 0.00056 0.00000

Table A.11: Search time per pattern -
ALNVLength 8

LZ-RLBWT r-index BIO-FMI

1 0.26 0.01 0.000382
2 0.34 0.02 0.000543
4 0.55 0.03 0.000923
8 0.88 0.04 0.001515
16 1.72 0.09 0.002792
32 3.58 0.12 0.005333
64 8.73 0.26 0.000128
128 16.40 0.54 0.000224
256 35.86 1.18 0.000508
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A. Experiment details

Table A.12: Search time per occurence - AL-
NVNumber 8

LZ-RLBWT r-index BIO-FMI

2 0.01273 0.00085 0.00003
4 0.01144 0.00056 0.00002
8 0.01097 0.00073 0.00002
16 0.01021 0.00071 0.00002
32 0.01037 0.00078 0.00002
64 0.00917 0.00059 0.00002
128 0.00807 0.00050 0.00001
256 0.00671 0.00037 0.00001
512 0.00584 0.00026 0.00001

Table A.13: Search time per pattern -
ALNVNumber 8

LZ-RLBWT r-index BIO-FMI

2 0.45 0.03 0.000972
4 0.41 0.02 0.000860
8 0.45 0.03 0.000902
16 0.43 0.03 0.000844
32 0.40 0.03 0.000764
64 0.47 0.03 0.000855
128 0.48 0.03 0.000808
256 0.73 0.04 0.001039
512 1.13 0.05 0.001515

Table A.14: Search time per occurence - AL-
NVDifference 8

LZ-RLBWT r-index BIO-FMI

0.01 0.00239 0.00021 0.00000
0.1 0.00702 0.00027 0.00001
0.25 0.01149 0.00077 0.00003
0.5 0.01303 0.00109 0.00004

Table A.15: Search time per pattern -
ALNVDifference 8

LZ-RLBWT r-index BIO-FMI

0.01 0.23 0.02 0.00019
0.1 0.26 0.01 0.00038
0.25 0.15 0.01 0.00038
0.5 0.12 0.01 0.00033

Table A.16: Search time per occurence - AL-
NVLength 16

LZ-RLBWT r-index BIO-FMI

1 0.01490 0.00186 0.00008
2 0.01655 0.00236 0.00012
4 0.01749 0.00309 0.00019
8 0.01993 0.00374 0.00036
16 0.02290 0.00509 0.00075
32 0.02111 0.00352 0.00100
64 0.02766 0.00553 0.00003
128 0.02760 0.00627 0.00006
256 0.03256 0.00678 0.00014

Table A.17: Search time per pattern -
ALNVLength 16

LZ-RLBWT r-index BIO-FMI

1 0.16 0.02 0.000830
2 0.14 0.02 0.001026
4 0.17 0.03 0.001831
8 0.16 0.03 0.002928
16 0.18 0.04 0.005937
32 0.24 0.04 0.011560
64 0.20 0.04 0.000234
128 0.22 0.05 0.000481
256 0.24 0.05 0.001069

58



A.3. EDS Build

Table A.18: Search time per occurence - AL-
NVNumber 16

LZ-RLBWT r-index BIO-FMI

2 0.04237 0.02542 0.00182
4 0.03311 0.01324 0.00128
8 0.03191 0.01064 0.00097
16 0.02482 0.00709 0.00057
32 0.02163 0.00721 0.00044
64 0.01923 0.00321 0.00026
128 0.01682 0.00252 0.00016
256 0.01408 0.00136 0.00009
512 0.01288 0.00066 0.00006

Table A.19: Search time per pattern -
ALNVNumber 16

LZ-RLBWT r-index BIO-FMI

2 0.05 0.03 0.001835
4 0.05 0.02 0.001639
8 0.06 0.02 0.001623
16 0.07 0.02 0.001459
32 0.09 0.03 0.001646
64 0.12 0.02 0.001575
128 0.20 0.03 0.001835
256 0.31 0.03 0.002098
512 0.59 0.03 0.002699

Table A.20: Search time per occurence - AL-
NVDifference 16

LZ-RLBWT r-index BIO-FMI

0.01 0.00349 0.00029 0.00000
0.1 0.01567 0.00131 0.00009
0.25 0.03333 0.00833 0.00075
0.5 0.04000 0.01000 0.00075

Table A.21: Search time per pattern -
ALNVDifference 16

LZ-RLBWT r-index BIO-FMI

0.01 0.24 0.02 0.000325
0.1 0.12 0.01 0.000744
0.25 0.04 0.01 0.000743
0.5 0.04 0.01 0.000747

A.3 EDS Build

A.3.1 Construction time

Table A.22: Construction time - EDSVLength

6 9 12 15

01 0.03836 0.05585 0.13257 0.25527
1 0.29521 0.63138 1.21961 2.23245
2 0.61274 1.15504 2.86576 5.56061
4 1.28601 2.52741 7.15745 82.14360
8 3.05744 5.29240 13.09260 23.94830
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A. Experiment details
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Figure A.1: Search result for other pattern lengths - ALN
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A.3. EDS Build

Table A.23: Construction time -
EDSVNumber

6 9 12 15

01 0.32616 0.33551 0.34344 0.35066
05 0.19944 0.23574 0.28136 0.36482
1 0.60954 1.55617 13.26390 23.20900

A.3.2 Peak memory RAM usage

Table A.24: Peak memory - EDSVLength

6 9 12 15

01 0.003 0.004 0.010 0.018
1 0.011 0.040 0.091 0.170
2 0.022 0.083 0.153 0.344
4 0.052 0.144 0.532 4.871
8 0.138 0.308 0.715 1.497

Table A.25: Peak memory -
EDSVNumber

6 9 12 15

01 0.017 0.019 0.019 0.019
05 0.009 0.008 0.012 0.020
1 0.023 0.096 0.715 1.351

A.3.3 Compression ratio

Table A.26: Compression ratio - EDSVLength

6 9 12 15

01 309.36149 309.36149 309.36149 309.36149
1 2470.78324 2470.78324 2470.78324 2470.78324
2 503.68496 503.68496 503.68496 503.68496
4 7696.60964 7696.60964 7696.60964 7696.60964
8 8572.92093 8572.92093 8572.92093 8572.92093

Table A.27: Compression ratio - EDSVNum-
ber

6 9 12 15

01 2883.92898 2883.92898 2883.92898 2883.92898
05 1595.58121 1595.58121 1595.58121 1595.58121
1 505.24646 505.24646 505.24646 505.24646
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A. Experiment details

A.4 EDS Search

The first rows contain search time per pattern, and second per occurrence.

Table A.28: Search time per pattern -
EDSVLength 8

6 9 12 15

01 0.000388 0.000004 0.000008 0.000009
1 0.008622 0.000011 0.000016 0.000024
2 0.025999 0.000013 0.000019 0.000029
4 0.094414 0.000027 0.000042 0.000062
8 0.363981 0.000053 0.000084 0.000204

Table A.29: Search time per occurence -
EDSVLength 8

6 9 12 15

01 0.000154 2.551880e-07 1.452880e-07 1.448900e-07
1 0.000433 2.388530e-07 1.854960e-07 1.628110e-07
2 0.000700 2.667310e-07 2.339370e-07 1.602150e-07
4 0.000914 2.826510e-07 2.147810e-07 1.650940e-07
8 0.001580 2.792700e-07 1.734850e-07 8.893520e-08

Table A.30: Search time per pattern -
EDSVNumber 8

6 9 12 15

01 0.010712 0.000008 0.000008 0.000008
1 0.024716 0.000018 0.000034 0.000093
05 0.004560 0.000005 0.000006 0.000007

Table A.31: Search time per occurence -
EDSVNumber 8

6 9 12 15

01 0.000505 3.533950e-07 3.407910e-07 3.303850e-07
1 0.000501 2.078200e-07 1.567230e-07 9.330300e-08
05 0.000301 3.393440e-07 3.210950e-07 2.692960e-07
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A.4. EDS Search

Table A.32: Search time per pattern -
EDSVLength 16

6 9 12 15

01 0.000082 0.000004 0.000006 0.000008
1 0.000806 0.000020 0.000031 0.000042
2 0.001859 0.000030 0.000047 0.000216
4 0.004295 0.000058 0.000111 0.000655
8 0.011260 0.000126 0.000230 0.000416

Table A.33: Search time per occurence
- EDSVLength 16

6 9 12 15

01 0.000175 0.000008 0.000014 0.000017
1 0.001831 0.000046 0.000071 0.000096
2 0.004647 0.000074 0.000119 0.000541
4 0.008766 0.000119 0.000226 0.001336
8 0.030431 0.000340 0.000621 0.001124

Table A.34: Search time per pattern -
EDSVNumber 16

6 9 12 15

01 0.001065 0.000013 0.000013 0.000014
1 0.001794 0.000031 0.000050 0.000118
05 0.000620 0.000010 0.000011 0.000013

Table A.35: Search time per occurence
- EDSVNumber 16

6 9 12 15

01 0.001972 0.000024 0.000025 0.000026
1 0.004376 0.000074 0.000121 0.000287
05 0.001266 0.000020 0.000023 0.000026
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A. Experiment details
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Figure A.2: Search result for other pattern lengths - EDS
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Appendix B
Usage

B.1 Installation

First make sure, that the SDSL library is installed on your device. If not, see
the installation manual [19]. Second, make sure, that you have the required
standard of C++ for this application, which is C++17. Clone BIO-FMI from
GitHub repository [13] and install it with the following commands:

$ mkdir build
$ cd build
$ cmake ..
$ make

The applications bio-fmi-build and bio-fmi-locate are located in build folder
after successful compilation.

B.2 Usage

$ ./bio-fmi-build --help-verbose
This software is called BIO-FMI (Index for set of genomes and pangenomes).
It can be used for pattern matching in elastic-degenerate (ED text).
Authors: Petr Prochazka, Jan Holub.
Input format can be saved in .aln (ALN) file - alignment of sequences,
every sequence in new line; or in .eds file - {A,C,}GAAT{,A,AT}ATT,
where the strings in bracket are ordered ascending.BIO-FMI
return start positions of pattern occurences.

Usage: ./bio-fmi-build [options] <input_file_name>

Allowed options:
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B. Usage

--help produce help message
--help-verbose display verbose help message
-v [ --version ] display version info
-s [ --silent ] silent mode
-r [ --repetition ] arg number of repetition - for experiment needs
-l [ --context_length ] arg length of chunk and stored context, default 5
-o [ --basefolder ] arg use <basefolder> as prefix for all index files.

Default: current folder is the specified
input_file_name

-i [ --input-file ] arg input file

Input text file (positional parameter 1 or named parameter -i or
--in-text-file) should contain the file with extension .aln in the
format of sequence -AC--GT-CGTA and every sequence in new line or
.eds in the format {A,C,}GAAT{,A,AT}ATT.
Context length (optional named parameter -l or --context_length
with default value of 6) divide input pattern into chunks of this
length and during the construction save same length right and left
context of text input.

$ ./bio-fmi-locate --help-verbose
This software is called BIO-FMI (Index for set of genomes and pangenomes).
It can be used for pattern matching in elastic-degenerate (ED text).
Authors: Petr Prochazka, Jan Holub.
Input format can be saved in .aln (ALN) file - alignment of sequences,
every sequence in new line; or in .eds file - {A,C,}GAAT{,A,AT}ATT,
where the strings in bracket are ordered ascending.
BIO-FMI return start positions of pattern occurences.

Usage: ./bio-fmi-locate [options] <index_basename> <pattern_file>

Parameters:
-h [ --help ] display help message
--help-verbose display verbose help message
-v [ --version ] display version info
-s [ --silent ] silent mode
-p [ --pattern ] print occurences of every pattern
-i [ --index-path ] arg input text file path (positional arg 1)
-I [ --pattern-file ] arg input pattern file path (positional arg 2)

Input text file (positional parameter 1 or named parameter -i or
--in-text-file) should contain the file with extension .aln in
the format of sequence -AC--GT-CGTA and every sequence in new line or
.eds in the format {A,C,}GAAT{,A,AT}ATT.
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B.2. Usage

Input pattern file (positional parameter 2 or named parameter -I or
--in-pattern-file) should contain the information about number an
length of patterns followed by one line of concatenated patterns.

Every application supports silent mode with -s parameter. Within this the
all additive structures are printed. Parameter -p is used to print only number
of occurrences for every pattern. Parameter -r can be used for more accurately
measurement of build time, this parameter repeats index construction r-times
and print average time.
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Appendix C
Acronyms

LZ-RLBWT Lempel Ziv Run length Burrows Wheeler transformation

SDSL Succinct Data Structure Library

DNA Deoxyribonucleic acid

EDS Elastic degenerate string

SA Suffix array

BWT Burrows Wheeler transformation

WT Wavelet tree

mRNA messenger ribonucleic acid

HTS High-Throughput sequencing

NGS New generation sequencing
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Appendix D
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

bio-fmi.................................... implementation sources
thesis...............the directory of LATEXsource codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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