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Abstract
The main focus of this master thesis is the
field of boosting algorithms in the domain
of process modeling in smart building sys-
tems. The work deals with the creation
and implementation of a machine learning
model in Python, which learns to predict
the input power consumption of buildings
from the knowledge of the outdoor tem-
perature, building occupancy, and times-
tamp.
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Abstrakt
Náplní této diplomové práce je problema-
tika boosting algoritmů v oblasti mode-
lování procesů v systémech chytrých bu-
dov. Práce se zabývá vytvořením machine
learning modelu v Pythonu, který se na-
učí predikovat příkon budov ze znalosti
venkovní teploty, obsazenosti budovy, da-
tumu a času.
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Introduction

The world is constantly shifting to be more digital; thus, the real and the
virtual parts are merging together. Even companies are adopting the current
consumers’ digital trends. The constant need for new gadgets, software
products, robots, RPA 1, and data warehouses requires more energy resources.
In general, people’s demand for electricity is rising with all these digital
advancements.

According to the forecast by International Energy Agency, global electric
power generation will increase by 63% in the nearest 30 years [10]. This is
mainly driven by the economic growth of developing countries around the
world.

4 main tendencies occur based on [10]:. Optimizing energy consumption of buildings. Decentralization of electricity production. Using renewable sources of energy.Mastering the newest technologies, for example, IoT 2

As non-fossil energy generation progresses and becomes more popular, the
energy industry shifts to a more decentralized system. Now even individuals
and companies are able to supply their own energy using solar panels, wind
generators, and so on.

The U.S. Department of Energy and UNEP estimates that buildings’ heating
and cooling systems account for nearly 18-24% of all energy usage and produce
40% of total carbon footprint[10]. However, buildings certified as "green"
throw 34% less carbon dioxide, consume 25% less energy, 11% less water, and
that is the driver of the smart buildings trend which aims to alleviate climate
change and reduce energy consumption. This tendency yields economical
savings, resource efficiency as well as it is more environmentally friendly since
it reduces greenhouse gas emissions. [10]

1RPA = Robot Process Automation
2IoT = Internet of Things
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With the help of industrial IoT and all the smart sensors, meters, and devices
that commercial smart buildings are nowadays equipped with, high-frequency
interval data can be obtained. These data allow various processes to be
monitored, analyzed, and optimized, for instance, heating, ventilation, and
air conditioning (HVAC) optimization, and malfunctions detection. This
digital infrastructure and increased availability of data from sensors have
led to possibilities of using advanced machine learning models for energy
consumption prediction and other tasks. [11] [12]

Lately, ensemble algorithms gained more attention in predicting energy usage.
Specifically, GBM 3 is a powerful machine learning algorithm that is being
implemented in many data-driven fields.

In this thesis, gradient boosting methods of energy consumption prediction
are proposed.

3GBM = Gradient Boosting Machine
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Chapter 1
Motivation and Goals

The motivation of this thesis is to broaden the knowledge of machine learning
algorithms that are used for data prediction, specifically energy consumption.
In general, the ML field is constantly developing and improving, especially in
terms of time and computational efficiency of algorithms. However, this work
focuses mostly on ensemble methods, namely on boosting algorithms and
their usage in process modeling in smart buildings. Due to high requirements
for energy efficiency, and cost savings, optimization systems are deployed
in smart buildings. They are used to analyze and monitor the building’s
operation by setting the right parameters to ensure the desired temperature
inside the building for the employees to work comfortably.
The goal of this master thesis is to study the use of Gradient Boosting for
modeling processes in smart building systems and apply the selected approach
to data supplied by Energocentrum plus s.r.o. The outcome should be a
gradient boosting model in Python that is able to predict the power needed for
optimal operation of a particular building based on the knowledge of outside
temperature, building’s occupancy, and timestamp. In order to achieve so,
there are some steps to be completed to fulfill this master thesis’s assignment:..1. Research the use of gradient boosting modeling processes in smart build-

ing systems..2. Research suitable libraries in Python programming language for appli-
cation of the gradient boosting method on data supplied by a company
Energocentrum plus s.r.o...3. Implement the gradient boosting method in Python for modeling of
process systems in smart building systems..4. Validate the implementation on data supplied by Energocentrum plus
s.r.o.

This thesis is divided into 7 chapters, including the introduction and the
conclusion. The work is organized as follows:. Brief introduction to smart building and machine learning. Explanation of decision trees

5



1. Motivation and Goals .................................
. An overview of ensemble methods. The basic principles of Gradient Boosting Machine, which requires un-

derstanding the following terms:.Weak/Strong learner. Ensemble boosting technique. Data analysis and preprocessing. Research of Python libraries suitable for boosting algorithms. Gradient Boosting model implementation in Python. Critical evaluation of achieved results

In the theory section, a brief overview of the machine learning field is provided.
Then, ensemble methods, their advantages, disadvantages, and differences
over each other are described. The majority of the theory part deals with
gradient boosting algorithm that uses decision trees as weak learners. In
order to understand the whole process, essential key technical terms, such as
the ensemble algorithm, boosting, and decision trees, are explained.

The practical part aims to develop and implement a gradient boosting machine
learning model in Python. To make the model as precise in predicting
as possible, various model’s hyper-parameters have to be tuned. Before
approaching the actual model creation, the data from smart buildings provided
by Energocentrum plus s.r.o. are analyzed and visualized. In order to use the
data for creating and training the model, several data preprocessing steps are
performed. It is desired to get as precise and accurate predictions as possible;
therefore, the performance of two boosting libraries in Python is compared
and model parameters are optimized. The final model is then validated on the
provided data and tested against the already existing TOWT model provided
by the company Energocentrum plus s.r.o.

6



Chapter 2
Theory

Prediction models are in general divided into 3 main categories [13]:. Physics-based. Statistical.Machine learning-based

The physics-based models are very complex and difficult to obtain, on the
other hand, statistical models perform with low accuracy. The ML-based
models are able to yield promising results and operate with complex models
at the same time, they have become sort of a standard in predictive modeling.

2.1 Machine Learning

Machine learning (ML), which includes a deep learning field, is a subfield of
artificial intelligence. This hierarchical relationship is illustrated in Fig. 2.1.

Artificial Intelligence (AI)

Artificial intelligence is a machine or application that simulates human be-
havior and is embedded with an intelligent capacity to autonomously execute
based on predictions. AI has basically two elements [14]:. Predictions. Execution

Firstly, predictive modeling is used to deliver predictions upon which the
AI system makes autonomous responses, in other words, executes necessary
steps to fulfill the predictions. [14]

7



2. Theory .......................................

Figure 2.1: AI vs. ML vs. DL [1]

Deep Learning (DL)

Deep learning falls into the ML field and is established on NN 1. The core
concept of the neural network is based on mathematical models of neurons
which are supposed to mimic how actual neurons in the brain work. NNs are
then trained on data and upon that, decisions are made. [1]

Machine Learning (ML)

Machine learning is the brain behind AI, it uses statistical methods to learn
from data, find trends, and identify patterns in data. This information learned
by the ML model is then used to make predictions about the future behavior
of the data. The performance of ML algorithms gets better as it is exposed
to more data.[14]

Since ML is a computer science discipline where algorithms learn from data
that is provided to them, ML combines the following areas [14]:. Data mining and analysis. Statistics. Pattern recognition. Computational learning theory in AI.Mathematical optimization

Some machine learning use cases [14]:
1NN = Neural Network

8



.................................. 2.1. Machine Learning

. Fraud /Spam detection. Sales/Price/Consumption/Demand forecasting. Natural Language Processing. Assigning data to groups. Recommendation engines. Different computer vision tasks. . . .

Types of machine learning methods [8] [15]:. Supervised Learning = Training data contains both set of features and
the known target (dependent) variable. This data is often referred to as
labeled data.. Unsupervised Learning = Predictions are made from unlabeled data,
meaning that the set of input vectors has no target (dependent) variable.
The goal of such a method is to determine the distribution of observed
data, group similar data points, or decrease high-dimensional space.. Semi-Supervised Learning = is a combination of the two methods above;
thus, this technique uses both labeled and unlabeled data.. Reinforcement Learning = is an ML area where an agent is supposed to
find a suitable solution by taking action in an environment with the aim
of maximizing the reward. As opposed to supervised learning, there are
no labels, it is learning from experience and by trial and error.

An abundant amount of data is not everything because every method (learner)
has some assumptions and knowledge behind its working principle; conse-
quently, underlying knowledge of ML methods is crucial to be able to pick
the right one for a certain application. So let’s look at some ML algorithms.
[1]

Types of ML algorithms by function [14]:. Classification. Regression. Linear regression. Logistic regression. Clustering

9



2. Theory .......................................
. Hierarchical methods. K-means clustering. Dimension reduction. Explanatory factor analysis. Principal component analysis (PCA). Deep learning. Association rules. Instance-based learning. K-nearest neighbor algorithm (KNN). Ensemble Methods. Random Forest. Gradient Boosting. Decision Trees. Bayesian statistics. Regularization algorithms

Table 2.1: ML Grouping

Supervised Learning Unsupervised Learning
Continuous Regression Dimensional reduction
Categorical Classification Clustering

ML is a very extensive area and finding the right algorithm to solve a specific
task can be tremendously challenging to figure out. One of the main goals
of designing and training an ML model is to generalize it well so that it
shows good results not only for the data it is trained on but as well for new
data. If it is not properly generalized, the model suffers from an overfitting
issue. Overfitting means that the model fits the training data too perfectly
and when new data points are presented to the model, its performance is
significantly lower. Overfitting is overall a common undesirable problem in
ML applications, there are several methods to prevent it, and some relevant
ones will be mentioned later.

ML models for estimating energy consumption are often regression models
using supervised learning techniques; therefore, the rest of the thesis is focused
on this particular area of ML.

10



.................................. 2.1. Machine Learning

2.1.1 Machine Learning Challenges

Machine learning models combine data with knowledge, they cannot make
up reasonable results from nothing.

Overfitting

As mentioned before, one of the main challenges in ML is overfitting. Over-
fitting occurs when a model is overly complex and usually has too many
parameters in comparison to the number of observations in the training data.
As a result, the model performs well on the training data, it learns the data
including the noise perfectly, but it does not generalize well to new, unseen
data points. [2]

Another way to interpret overfitting is by decomposing the error into bias
and variance. [16]

Figure 2.2: Variance and bias analogy
[2]

Bias refers to the systematic errors
that are introduced to the model dur-
ing the training phase. As a conse-
quence, the model has a tendency
to learn the same incorrect things
repeatedly. For example, if the train-
ing data contains a disproportionate
number of examples from one group
compared to another, the model may
be biased towards classifying exam-
ples from the more common group
more accurately. [2] [16]

Variance is the amount of deviation
or spread in the predictions made
by the model. When the variance is
too high, it can lead to overfitting
and too low variance can cause un-
derfitting of the model. Considering
a decision tree model, which is ex-
plained in Section 2.2, decision trees
can suffer from high variance and potentially overfitting when they are too
deep. In other words, they can be overly complex and sensitive to specific
details of the training data. [2] [16]

The difference between bias and variance can be observed in a simple example
of dart-throwing in Fig. 2.2.

Possible method to prevent overfitting [2]:. Gathering more data (if possible) or use a simpler model. Adding regularization

11



2. Theory .......................................
. Using cross-validation. Using early stopping. Performing a statistical significance test, e.g. chi-square

It is quite easy to get rid of overfitting (variance) by amplifying the opposite
error of underfitting (bias). Avoiding both of these errors is not a simple task,
as it would require training a perfect model. [2]

Curse of Dimensionality
Another big problem in the machine learning area is the curse of dimension-
ality. It arises when dealing with high-dimensional data, such as data with
many features. Not only is such data difficult to analyze and visualize, but
also the models perform poorly on it. The bad performance of the model
is mainly caused by the fact that the number of data points required to
accurately model a phenomenon increases exponentially with the number
of dimensions. Meaning that if the model requires 100 data points to make
accurate predictions in 2D, it would probably require about 10000 data points
in 3D. Thus, adding more and more features is not always beneficial. [2]

Feature Engineering
What makes some of the machine learning models do very well and some of
them fail? One of the most important components of creating an ML model
is feature engineering. Features are inputs that the model is learning from
and can significantly impact the performance of the model; hence, obtaining
the right features is crucial to the good performance of the model. Feature
engineering is the process of extracting useful features from the provided raw
data, various statistical or machine learning methods can be used for it. [2]
The ideal state would be to have independent features that have a strong
correlation with the class. Usually, the raw data is not in a form suitable
for training. Then feature engineering comes into place with the target of
deriving new features and adding them to the training set to improve the
accuracy of the ML model. [17]
Feature engineering has multiple steps [17]:. Feature Creation. Transformations - transforming one feature representation to another. Feature Extraction - extracting useful information from raw data. Exploratory Data Analysis - used in order to understand the data, create

new hypotheses, and find patterns. Benchmark model - running the developed model against benchmark
model and comparing the resulting performance

12



.................................... 2.2. Decision Trees

2.2 Decision Trees

Decision trees are a very popular algorithm that can be used for both classifi-
cation and regression tasks. It uses an inverted tree-like structure to capture
the relationship between independent variables (features) and the dependent
variable (target), the structure is demonstrated in Fig. 2.3. Decision trees
can make predictions from nonlinear data and can cope with both continuous
and categorical data at the same time. This algorithm divides the input space
into regions, where each region is associated with the corresponding node and
is denoted by a different set of parameters. As a consequence, the space is
divided into non-overlapping regions expressed in Fig. 2.4. [18] [19]

Figure 2.3: Decision tree structure and terminology

Decision’s tree terminology [3]:. Leaves, also called terminal nodes. represent the final regions. do not split any further. tree are displayed upside down → leaves are at the bottom of the
tree. Internal (Decision) nodes = nodes, where the decisions are made; hence,

where the predictor space is split. Branches = the connections between the nodes

Decision trees are quite transparent and easy to interpret, they can be
expressed as a set of if-then-else rules. The topmost node, sometimes called

13



2. Theory .......................................

Figure 2.4: Decision tree non-overlapping regions [3]

the root node, contains the most important factor that plays a role in
determining the target variable, then the algorithm moves step by step to less
and less significant features. Each node focuses on one feature only. Since
the regions are non-overlapping, one node always corresponds to one region.
A decision tree algorithm is generally considered to be non-parametric unless
the size of the tree is restricted to some maximum number, then it becomes
parametric, which is usually the case. [3] [14]

There are two types of decision trees [14]:. Classification tree = Categorical variable decision tree.Target variable is a categorical value. Regression tree = Continuous variable decision tree.Target variable is a continuous value

A categorical variable is a variable that can take on any discrete value from a
limited amount of values, usually some classes, for example, gender, ethnicity,
color, type of car, etc.

On the other hand, a continuous variable is a variable that can gain any
numerical value within a certain range, such as weight, temperature, and
time.

Since this thesis deals with a continuous target variable, only regression
trees will be discussed further.

14



.................................... 2.2. Decision Trees

2.2.1 Stratification of the Feature Space

There are two main steps in constructing a regression tree [3]:..1. Dividing the predictor space into J non-overlapping regions R1, R2, . . . ,
RJ ...2. Every observation X1, X2, . . . , XP falls into one of the regions RJ . For
each region RJ , the same predictions are made.

Taking into consideration regions R1, R2, R3 in Fig. 2.4, the final response
of the region is calculated as a mean of the training observations that are
included in the specific region RJ . Let’s assume that the mean response of
the first region R1 is 50, then for a given observation X = x, if x ∈ R1, then
the model predicts 50 as the target variable for such observation. [3] [20]

Recursive binary splitting is a method that is used to divide the feature space
into regions. [18]

Recursive binary splitting is [3]:.Greedy - Means that this approach does not look ahead, but it always
makes the best split at the individual node.. Top-down - The algorithm begins at the root node, where there is only
one region that includes all the observations. Based on the rule (the
most important feature) at the root node, the observations are split into
two regions. This technique continues splitting the space into regions at
each internal node until leaf nodes are reached, then the process stops
and the final number of regions is obtained.

Splitting is performed in a way that minimizes the SSR2. [18] First, the
predictor XJ and the cutpoint s are chosen at the particular node such that
the predictor space is divided into 2 subregions [3]: R1(j,s) = {X|XJ < s}
and R2(j,s) = {X|XJ ≥ s}.

In simple words, it means that when the observation X evaluated based on
the splitting feature of the node XJ takes on a value less than s, it goes to
the region R1; otherwise, it belongs to region R2. The aim is to find values j
and s that minimize the equation [3]∑

i: xi ∈ R1(j,s)
(yi − ŷR1)2 +

∑
i: xi ∈ R2(j,s)

(yi − ŷR2)2, (2.1)

where ŷR1 is the mean response for the training observation in the first region
R1(j,s) and ŷR2 is the mean response for the training observation in the
other region R2(j,s). When the number of features p is not too big, the
recursive binary splitting is completed quite fast. The value of SSR denotes
the difference between the target variables of the training observations and

2SSR = Sum of Squared Residuals
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2. Theory .......................................
their average (mean) value. The higher the SSR value, the higher variability
(more dissimilarity) in the data. A lower value of SSR signifies lower variability.
[3]

This process keeps repeating for all of the following nodes where the observa-
tion are divided into more and more regions based on a specific feature rule
of each node. Recursive binary splitting continues until a stopping criterion is
achieved. Consequently, leaf nodes are created and the algorithm calculates
mean responses for each of the regions R1, R2, . . . , RJ based upon the
training observations that ended up in the region. [3]

2.2.2 Tree Pruning

Splitting predictor space into non-overlapping regions described in 2.2.1
might yield promising results in the training phase, but is prone to overfit
the training data. The reason is that the constructed tree might be too
complex and not able to generalize well; as a result, it performs poorly on
the test data. To overcome this problem, a method called Pruning is often
used. The idea behind pruning is to remove some of the branches of the tree
that have no significant contribution to making predictions. There are two
general types of pruning [18]: pre-pruning and post-pruning. Pre-pruning
techniques limit the size of the tree during the recursive partitioning process
resulting in smaller trees. Smaller trees may have lower variance, but they are
short-sighted and can omit some important patterns. On the contrary, post-
pruning methods leave the whole decision tree to be trained and then remove
some non-significant branches in order not to miss any notable patterns.
Post-pruning is not as efficient as pre-pruning since it’s more computationally
expensive; however, it yields better results. The goal of post-pruning is to
get a subtree that delivers the lowest error rate on the test multiset.[3]

Two popular tree pruning methods [18]:. Hold-out test. simplest, fastest. going through each leaf node and evaluating whether its removal
would improve the overall cost function of the test multiset -> the
algorithms stops removing nodes when no more enhancement can
be achieved. Cost-complexity pruning - also called weakest link pruning

Let’s briefly describe the cost-complexity pruning [3]:..1. Letting a large tree grow using the recursive binary splitting...2. By applying cost complexity pruning on the large tree, a sequence of
best subtrees is acquired. These trees are a function of parameter α.
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.................................... 2.2. Decision Trees..3. Parameter α is derived using K-fold cross-validation. The training
multiset is split up into K folds (k = 1, . . . ,K). Steps 1 and 2 are done
on all the folds except the kth one which is left out for evaluation of the
error...4. Algorithm gives back the subtree that corresponds to the α value that
minimizes the error.

2.2.3 Tree Versus Linear Models

Both linear regression and regression trees are models that predict numerical
variables. However, they differ quite a lot. It cannot be easily said which
model is better as it depends on the relationship between the features and
the response (target variable). If the relationship shows a linear trend, linear
regression models might be a good fit for that. [3]

If the relationship between features and responses is complex and rather
non-linear, regression trees can deal with that; and therefore, yield more
accurate results than linear regression. [3]

Both linear regression and regression trees have different strengths and draw-
backs. Linear regression is a simple and fast method that is easy to interpret,
but it may not be able to capture more complex relationships. Regression
trees, on the other hand, can capture more complex relationships, but they
are prone to overfitting.

2.2.4 Advantages and Disadvantages of Decision Trees

Decision trees have plenty of advantages as well as limitations and drawbacks
[3] [14]:

↑ Non-linear relationships between variables can be modeled

↑ Easy to be explained and interpreted

↑ Easy to be displayed graphically which helps with interpretation

↑ Can handle both categorical and numerical data at the same time

↑ Can cope with categorical data without the need of encoding

↑ Require less data → suitable for applications where data is sparse.——————————————————————————————

↓ Non-robust = a small change in the data can significantly affect the
predictions

↓ Sensitive to training data - splitting rules depend on the training data

17



2. Theory .......................................
↓ Global optimum not guaranteed because of the greedy algorithm that does

not look ahead

↓ In general, they do not reach very high accuracy as some other regression
algorithms

↓ May not generalize well since they can feature high depth (overfitting)

The performance of one single decision tree is not that good; however, com-
bining multiple decision trees together brings considerable improvement. This
concept of ensemble methods is introduced in the next Section 2.3.

18



.................................. 2.3. Ensemble Methods

2.3 Ensemble Methods

Machine learning methods have been developing and progressing for a couple
of decades, including the field of ensemble methods, where some of the
algorithms were proposed as early as the 1980s and 1990s.
In recent years, ensemble methods have gained significant attention and
become more popular due to the success of methods such as random forests
and gradient boosting machines in a variety of machine learning competitions
and real-world applications. Overall, ensemble methods are used more and
more since machine learning practitioners have come to recognize their ability
to improve the performance, accuracy, and robustness of models. [11]
Ensemble methods are techniques that train multiple simple models, also
called base or weak learners, and then aggregate them into one more powerful
model (strong learner). Weak learners usually do not perform very well on
their own; however, they are better than luck (coin flip); thus, combining
them together improves the predictions gradually. Based on [2], it has been
shown that combining more weak learners reach better results than trying
to find one "best" learner; moreover, it doesn’t cost much additional effort
to do so. Even though ensemble machine learning algorithms have already
been used successfully in many various areas, they have just quite recently
been incorporated to solve tasks in the field of modeling energy processes of
commercial buildings. [11] [2]
There are two techniques on how to build an ensemble, base learners can be
generated either sequentially or in parallel. In parallel ensemble techniques,
e.g. random forest (bagging), all the weak learners are trained at the same
time and their predictions are combined to make the final prediction. This
approach promotes the independence between weak learners. When it comes
to sequential techniques, weak learners are trained one after the other, and
the predictions of each base learner are then used to train the following base
learner in the sequence. Therefore, the following learner is attempting to
correct the mistakes of the base learner before, this makes the base learners
dependent. An example of a sequential ensemble technique is AdaBoost
(boosting method). [4]
The choice between the parallel and sequential technique depends on the
specific application. Both methods should improve the accuracy and per-
formance of the model. Sequential ensemble techniques are generally more
computationally expensive, but they can achieve better accuracy in some
cases. Parallel ensemble approaches are normally faster to train, but they
may not be as accurate as sequential techniques in some cases.

Ensemble methods can be split into different subgroups based upon various
aspects. Here are three main types of ensemble method [4]:. Bagging (=Bootstrap Aggregating): This involves training multiple mod-

els on different subsets of the training data and averaging their predictions.
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2. Theory .......................................

Figure 2.5: General ensemble methods [4]

Bagging can help reduce the variance of the model, as each model is
trained on a different subset of the data.. Boosting: In this case, models are trained sequentially, where each model
tries to correct the mistakes of the previous model. The final prediction
is made by combining the predictions of all the models. Boosting can
help reduce bias and improve the performance of the model.. Stacking: Again, multiple models are trained and their predictions
(outputs) are used as features (inputs) for a higher-level model, which
makes the final prediction.

Another differentiation of ensembles can be made depending on the base
learners [16]:. Homogeneous Ensembles. e.g. Random Forest, AdaBoost, XGBoost. use the same algorithm for each weak learner.many famous ensemble methods are of this type. Heterogeneous Ensembles.weak learners are of different types. are built mostly independently.Metamodeling.multiple models are working together to solve a problem. learners might be sending certain information to each other - es-

sentially models receive as input the outputs of other models, e.g.
stacking. example - one model can predict risk and the rest can classify the
type of the risk (it’s not a simple average as with bagging)
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. this term is not as agreed upon as the two previous ones

Decision trees are in general susceptible to overfitting; hence, using an en-
semble of decision trees typically improves the predicting accuracy by a lot.

Lets’ explore bagging and boosting closely.

2.3.1 Bagging

Bagging got its name from the fact that it combines bootstrapping and
aggregation. The basic idea behind bagging is to train multiple base learners
on the subsets of the train data and then let the learners vote on the output
for the test dataset. Voting is performed by model averaging, it works well
with the assumption that base learners make non-identical errors on the test
set. [5]

When weak learners make independent errors from each other on the test set
(non-overlapping error regions), model averaging works well. Considering k
regression models with variance v and covariance c. Supposing that weak
learners make exactly the same errors, then the errors are perfectly correlated
and c = v. As a result, the mean squared error equals v and in that case,
model averaging didn’t help at all to elevate the performance. On the other
hand, when errors of each weak learner are uncorrelated and c = 0, the mean
squared error lowers down to 1

k v, which would be the ideal case. In the worst
case, the ensemble’s performance equals to any of its components (learners)
performance. If the learners make different errors, the ensemble’s predictions
are substantially better than the predictions of any of the individual base
learners. [5]

Figure 2.6: Simple bootstrapping example [5]
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2. Theory .......................................
Bootstrapping
Bootstrapping is a resampling method that generates datasets of the same size
as the original one by sampling with replacement from the initial population.
In bagging, k different datasets are constructed using bootstrapping. Since
sampling with replacement is employed, each new dataset most probably does
not include all of the data points from the original dataset, some samples
are missing and some are duplicated. Generally, 2

3 of initial observations
are found in the constructed dataset. By sampling the original dataset with
replacement, bootstrapping ensures that each subset of the data is somewhat
different from the rest, which helps to create diverse training datasets that
are later used for training. [5]
A basic example of bootstrapping is demonstrated in Fig. 2.6, where the
original dataset consists of numbers: 9, 6, 8. By bootstrapping, two distinct
train datasets are created, in one of them, an 8 is repeated and in the
other one, a 9 is duplicated. The goal is to be able to detect an 8. After
training, the first learner is able to recognize the upper loop and the other
one detects the bottom loop of an 8. Each of the models is fragile in making
correct predictions, but when averaging their outputs, a more robust model
is obtained. [5]

Aggregation
In the context of bagging, aggregation refers to the process of combining
the predictions of the individual models trained on different subsets of the
original data. It is performed either through simple averaging or by weighting
the predictions according to the performance of the individual models. By
aggregating the predictions of the base learners, bagging aims to improve the
generalizability of the final model and reduce the risk of overfitting to the
training data. [5]

Bagging, as captured in Fig. 2.7, can improve predictions for a lot of regression
methods, but it is especially useful for decision trees. Considering decision
trees as base learners, each decision tree is built in a slightly different manner
because of the distinct train dataset and that ensures reducing the variance
by averaging the results of all the weak learners. The final model is more
general and has improved accuracy. [5] However, the key assumption of
bagging is that the errors, that individual base learners make, are not all the
same. If this holds true, the performance is always improved. In any case,
the expected error of the ensemble cannot be higher than the expected error
of the base learners. [8]

Ebaselearner ≤ Eensemble (2.2)

Slightly better performance can be achieved by employing random forests.
When even higher improvements are desired, a method called boosting can be
employed.
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Figure 2.7: Bagging [6]

Variable Importance

Although bagging is usually more accurate than a single decision tree, one of
the very appealing properties is lost, namely interpretation. Because when
combining multiple base learners to create one strong learner, it cannot be
simply illustrated as one single decision tree. In addition, finding out the
most important variables in the procedure becomes a challenge. SSR can be
used to obtain the feature importance for regression models and, for example,
the Gini index can be applied to classification problems.

Random Forests

Random forests are a type of ensemble learning algorithm that combines
decision trees using bagging. Random forests are an extension of bagging
that makes the decision trees to be less correlated. [21]

Same as in bagging, subsets of data are created using bootstrapping and
then used to train the base learners. The difference between bagging and
random forests is that when training the decision trees, random forests pick a
random sample of m predictors from all the features p as split candidates. A
new sample of m features is determined at each new split, usually, m = √p,
which provides a different subset of features for each of the base learners.
This might not be very intuitive, but it solves the problem of one dominant
feature that would be used in the majority of the base learners in the top
split. As a result, the base learners (decision trees) using only the bagging
method would be highly correlated; thus, their averaging would not yield the
desired reduction in variance. However, since different subsets of features are
forced, random forests overcome this issue. Typically, (p−m)/p of the splits
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2. Theory .......................................
do not even include the most influential feature which results in an overall
decrease of the test error compared to bagging where m = p. [3]

2.3.2 Boosting

Figure 2.8: Difference between bagging and boosting [7]

The idea behind boosting is to train weak models in sequence, those models
perform only slightly better than random guessing, and then iteratively
improve the model by focusing on the examples that are misclassified by the
previous model in the sequence. There are several different types of boosting
algorithms, including AdaBoost, Gradient Boosting, and XGBoost. Each of
these algorithms works by training a series of weak models and combining
them to create a single strong learner. The base learners are typically decision
trees, which are trained on different subsets of the original multiset. Boosting
can produce highly accurate final models that are relatively insensitive to
overfitting since they do not rely on one single model, but rather are a
combination of several base models. [4]

The main difference between bagging, described in Section 2.3.1, and boosting
is that in boosting, the weak learners are trained in sequence, and in bagging,
the training of weak learners is performed in parallel (see Fig. 2.8).

AdaBoost

One of the oldest and the most used boosting algorithms is AdaBoost which
stands for adaptive boosting. It was introduced in 1996 by Freund and
Schapire. [8]
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Figure 2.9: Boosting - increasing weights of misclassified data points [8]

Let’s take a closer look at AdaBoost to demonstrate how boosting algorithms
work. As already mentioned several times, boosting techniques train weak
learners in sequence. In addition, each base learner is trained on a weighted
dataset where the weights linked to each data point depend on the training of
the previous classifier. When a data point is misclassified by the base learner,
the weight associated with it is increased, as illustrated in Fig. 2.9. In the
left part of the Fig. 2.9, the data points are divided into two groups (classes)
by the first base learner, it is obvious that not all data points are classified
correctly; hence, the misclassified points receive higher weights (marked by
bigger circles on the right side of the figure) and with these weights, the second
classifier proceeds with training and splits the data differently. This means
that at each step, AdaBoost trains a new classifier that focuses more on the
points that were previously incorrectly classified, through increased weights
these points are prioritized in the next iteration. This process continues until
all base learners are trained, then the final prediction is made through a
weighted majority voting scheme. [8]

AdaBoost Algorithm procedure

Considering a two-class classification task, where x1, . . . , xN are input vectors,
that can be assigned to one of two labels tn ∈ {−1,1}. Each data point
receives a weight parameter wn and weak classifiers ym(x) are trained on a
weighted form of the inputs. [8]..1. Initialization of weight parameters wn = 1

N for n = 1, . . . ,N..2. For m = 1, . . . ,M :..a. Minimizing the weighted error function by fitting a classifier to the
training dataset

Jm =
N∑

n=1
w(m)

n I(ym(xn) ̸= tn) (2.3)

where I(ym(xn) ̸= tn is called an indicator function, it equals 1
when ym(xn) ̸= tn and 0 otherwise.
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2. Theory .........................................b. Quantities calculation

ϵm =
∑N

n=1 w
(m)
n I(ym(xn) ̸= tn)∑N

n=1 w
(m)
n

(2.4)

and based on quantities ϵm, determine

αm = ln{1− ϵm

ϵm
} (2.5)..c. Updating weights

w(m+1)
n = w(m)

n exp{αm I(ym(xn) ̸= tn} (2.6)..3. Final model as a weighted combination of base models ym

YM (x) = sign(
N∑

n=1
αm ym(x)) (2.7)

Initially, weight parameters w
(1)
n are equally distributed between train data

points, and the first classifier y
(x)
1 is trained. After that, weight coefficients

are recalculated based on equation 2.6 and either decreased for correctly
classified data points or increased for incorrectly classified points. Error rates
of each classifier are denoted by quantities ϵm which are then used to calculate
weight parameters αm for each of the base classifiers. The bigger the weight
of the classifier, the more accurate results the base model yields. [8]

Figure 2.10: AdaBoost Algorithm [8]

Fig. 2.10 depicts the Adaboost algorithm, where base learners are decision
stumps. Decision stumps are a type of decision tree with only one level,
meaning the depth of the decision tree equals 1. In other words, a decision
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stump is a tree with a single decision node and two leaf nodes. Predictions
are based on whether a single feature exceeds a certain threshold or not and
as consequence, the input space is partitioned into regions. Decision stumps
tend to have high bias and low accuracy compared to more complex models.
However, when used as part of an ensemble method, such as boosting, they
can progressively contribute to the overall performance and accuracy of the
final model. [8]

27



28



Chapter 3
Gradient Boosting Machine

Predicting energy consumption; and thus, estimating savings is crucial for
evaluating the energy efficiency of buildings. Nowadays, the availability of
countless data from smart devices in buildings with a combination of machine
learning algorithms opens up new predicting possibilities. Very popular in
building energy modeling are neural networks because of their capability of
representing complex trends in energy consumption. Another famous approach
is SVM1 that can capture nonlinear trends using even quite small training
datasets. Nevertheless, SVM requires choosing the right kernel and NNs are
dependent on selecting the right topology; therefore, both of them are more
difficult to tune than the gradient boosting machine (GBM) algorithm. GBM
is a part of the boosting ensemble methods that keep delivering promising
results. Weak learners (in this case decision trees) for GBM are generated
sequentially and are dependent on each other, as explained in Boosting section
2.3.2 of Ensemble algorithms. Since the procedure is sequential, GBM is
able to lower the bias, and because of the fact that each weak learner has a
different contribution to the final strong learner, the variance is reduced. [12]

Boosting techniques were initially introduced for classification tasks. In 2001,
Friedman developed the gradient boosting machine method as a boosting
algorithm targeting regression problems. [9] The GBM algorithm begins by
initializing (guessing) the first base learner (decision tree) and then at each
following step, a new decision tree is built to minimize the loss function and
appended to the model. The word "gradient" in gradient boosting refers to
the gradient of the loss function that the algorithm is trying to minimize.
The generated base learner at each step should be as correlated with the
negative gradient of the loss function as possible so that the model is updated
in the direction that reduces the loss function. GBM is very flexible since
it depends on the choice of the loss function; thus, it can be customized to
target a specific problem or application. There are a variety of loss functions
that can be selected from or even application-specific loss functions can be
developed. [12] [9]

The GBM algorithm is stage-wise which means that the previously added
weak learners are not altered when the new decision tree is added. Moreover,

1SVM = Support Vector Machines
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3. Gradient Boosting Machine...............................
each base learner is added with a certain weight parameter λ, also called
the learning rate or shrinkage parameter, which forces the model to make
smaller steps in the right direction to improve the model’s performance and
accuracy. The model can be also improved by adding randomization to the
fitting process by subsampling. [12]

GBM has four hyper-parameters that have to be tuned [12]:..1. Depth of the decision tree . . . d..2. Number of iteration/decision trees . . . M..3. Learning rate/Shrinkage parameter . . . λ..4. Subsample fraction . . . η

3.1 Methodology - Function Estimation

Taking into consideration the function estimation task. Since GBM is a
supervised ML technique, the dataset (x,y)N

i=1 has to be provided with labels
(also called target or dependent variables) y and input feature vectors x. The
aim is to find the unknown function f that maps the corresponding labels y
to the right feature vectors x. The estimated function is denoted as f̂(x) and
it reduces some chosen loss function Ψ(y,f) [9]:

f̂(x) = y (3.1)

f̂(x) = arg min
f(x)

Ψ(y,f(x)) (3.2)

In equations 3.1 and 3.2, no assumptions about the functions f and f̂ are
made; hence, it is non-parametric. The equation 3.2 can be rewritten using
expectations [9]:

f̂(x) = arg min
f(x)

Ex[Ey(Ψ[y,f(x)])|x], (3.3)

where Ex is the expectation over the whole dataset and Ey is response
variable (expected y loss). The target variable y can be derived from various
distributions; therefore, different loss functions Ψ can be chosen. The function
estimation becomes more manageable when some parameter is added to
restrict the search space. Then the function estimation turns from non-
parametric into parametric optimization: [9]

f̂(x) = f(x,θ̂), (3.4)

θ̂ = arg min
θ

Ex[Ey(Ψ[y,f(x,θ)])|x], (3.5)
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...........................3.1. Methodology - Function Estimation

where θ is the added parameter. Usually, in order to solve this parametric
estimation, an iterative approach has to be taken. [9]

3.1.1 Numerical Optimization

The estimation of parameter θ can be formed in increments [9]:

θ̂ =
K∑

i=1
θ̂i, (3.6)

where K is the number of iteration steps.
The steepest gradient descent method is often applied for parameter estima-
tion. In the steepest gradient descent, the model’s parameters are updated
using the negative gradient of the loss function with respect to the parameters.
The direction of the gradient signifies the greatest increase in the loss function,
so taking the negative of the gradient points in the opposite direction, which
is the direction of the greatest decrease in the loss function. [8]
The dataset (x,y)N

i=1 is provided and the target is to minimize the empirical
loss function J(θ) over the observations[9]:

J(θ) =
N∑

i=1
Ψ(yi,f(xi,θ̂)) (3.7)

The steepest gradient descent optimization works by iteratively updating the
parameter as it moves along the negative gradient of the loss function ∇J(θ).

Notation [9]:. θ̂ . . . the parameter estimate. θ̂t . . . t-th incremental step of the parameter estimate θ̂. θ̂t . . . estimate of the whole ensemble = sum of all increments from the
beginning of the optimization until the end

The steepest gradient descent optimization works as follows [9]:..1. Initialization of θ̂0
For each step the following procedure is repeated:..a. Getting collapsed parameter estimate θ̂t

θ̂t =
t−1∑
i=0

θ̂i (3.8)..b. Assessment of the gradient of the loss function ∇J(θ):

∇J(θ) =
[

∂J(θ)
∂J(θi)

]
θ=θ̂t

(3.9)
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3. Gradient Boosting Machine.................................c. Determination of the new estimate θ̂t:

θ̂t ← −∇J(θ) (3.10)..d. The new estimate θ̂t is being added to the ensemble

3.1.2 Optimization in Function Space

In boosting techniques, the optimization is performed in the function space
so that function estimate f̂ has an additive form [9]:

f̂(x) = f̂M (x) =
M∑

i=0
f̂i(x), (3.11)

where f̂0 is the initial estimation guess, K is the number of iteration steps,
and {f̂i}Mi=1 are boosts (function increments).

Following the same approach, base learners can be parameterized as h(x,θ)
and then incrementation of base learners’ functions can be employed using
an optimal step-size ρ [9]:

f̂t ← f̂t−1 + ρth(x,θt) (3.12)

(ρt, θt) = arg min
ρ,θ

N∑
i=1

Ψ(yi,f̂t−1) + ρh(xi,θ) (3.13)

3.2 Gradient Boosting Algorithm

Since the functions of the loss Ψ(y,f) and the base learners h(x,θ) can be
chosen or defined arbitrarily, the solution is quite hard to achieve; hence, a
new function h(x,θt) can be selected in a way that it is the most parallel to
the negative gradient along the observations {gt(xi)}Ni=1 [9]:

gt(x)) = Ey

[
∂Ψ(y,f(x))

∂f(x) |x
]

f(x)=f̂ t−1(x)
(3.14)

The simplification is that instead of searching for a general solution, the
solution is obtained in a way where the increments are moving in the direction
of −gt(x). This simplification allows to turn the optimization task into
least-squares minimization [9]:

(ρt, θt) = agr min
ρ,θ

N∑
i=1

[−gt(xi) + ρh(xi,θ)]2 (3.15)
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This implies that the specific formulas are dependent on the choice of the loss
function Ψ(y,f) and the base learners h(x,θ).

GBM pseudo-code [9] [12]:
Inputs:. Dataset (x,y)N

i=1. Number of iterations M. Selected loss function Ψ(y,f). Selected weak learner model (decision trees) h(x,θ)

Algorithm:..1. Initialization of f̂0..2. For each step t=1,. . . ,M:..a. Calculation of negative gradient gt(x)..b. Fitting a new weak learner h(x,θt)..c. Obtaining optimal step size ρt:

ρt = arg min
ρ

N∑
i=1

Ψ
[
yi,f̂t−1(xi) + ρh(xi,θt)

]
(3.16)..d. Adjusting the estimation of the function:

f̂t ← f̂t−1 + ρth(x,θt) (3.17)

3.3 GBM Design

The GBM design is derived from the selection of the loss function Ψ(y,f) and
base learners h(x,θ) that are chosen to fulfill desired application.

3.3.1 Loss Functions

Generally, the loss function can be either chosen from an already developed
loss function suitable for GBM or arbitrarily specified. The loss function can
be split into three different groups based on the target variable y [9]:..1. Categorical target variable, y ∈ {0,1}:. Binomial loss function. Adaboost L1 loss function
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3. Gradient Boosting Machine.................................2. Continuous target variable, y ∈ R:. Laplace L1 loss function. Gaussian L2 loss function. Huber loss function. Quantile loss function..3. Other :. Loss functions counts data. Loss functions for survival models. Arbitrarily defined loss functions. . . .

Since this thesis is focused on predicting the input power of buildings which
is a regression task, only continuous loss functions are discussed.

Figure 3.1: Loss functions for continuous target variable y [9]

Fig. 3.1 depicts L1, L2, Huber, and Quantile loss functions. The subfigures
E-H are the applications of the loss functions to an artificially created dataset.

Gaussian L2 loss function
L2 loss function, also called the squared error loss function, is one of the most
used ones. It is defined as [9]:

Ψ(y,f)L2 = 1
2(y − f)2 (3.18)

This loss function penalizes incorrect predictions made by the model. The
higher the deviation from the dependent/target variable, the bigger the
penalization; therefore, it is not very robust to outliers.[9]
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Laplace L1 loss function
Laplace L1 loss function is more robust to outliers since they are not penalized
as strongly as with the L2 loss function. L1 loss function is formulated as [9]:

Ψ(y,f)L1 = |y − f | (3.19)

Huber loss function
Another robust loss function is the Huber loss function, which is a combination
of L1 and L2 loss functions. Its form is [9]:

Ψ(y,f)Huber,δ =
{1

2(y − f)2 |y − f | ≤ δ

δ(|y − f | − δ
2) |y − f | > δ

(3.20)

where δ is the cutting-edge parameter that is able to control the robustness
of the Huber loss function.

Quantile loss function
The quantile loss function is general, distribution-free, and robust to outliers.
It is designed as follows [9]:

Ψ(y,f)α =
{

(1− α)|y − f | y − f ≤ 0
α|y − f | y − f > 0

(3.21)

where α is a parameter that controls the conditional distribution. When
α = 0.5, the Quantile loss function would equal the Laplace loss function.

3.3.2 Weak Learners

GBM can be implemented using several types of weak learners. The commonly
used base learners are [9]:. Linear models. Ordinary linear regression. Ridge regression - penalized linear regression. Random effects. Smooth models. Radial basis functions. P-splines. Decision Trees. Decision stumps. Decision trees with different depths
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. Some other models.Wavelets.Markov random fields. Base-learner functions (tailor-made)

GBM model can either use only one type of base learners (homogeneous
ensembles) or even combine multiple ones (heterogeneous ensembles).
In this work, only decision trees as weak learners are explored. They
can capture non-linear relationships and are suitable for both categorical
and continuous variables. Decision trees partition the feature space into
rectangles, where each split is associated with one if-then-else rule. For a
more detailed explanation (see Chapter 2.2 about decision trees).

Figure 3.2: Decision trees as weak/base learners [9]

As illustrated in Fig. 3.2, the choice of the number of iterations M matters
a lot as it controls the accuracy of the final model. When it comes to the
loss functions, it is advised to start with the L2 loss function and then move
to the more complex ones. For the base learners, decision trees with small
depth or decision stumps are commonly used. [9]
Since decision trees are prone to overfitting, the GBM model with decision
trees as base learners is also susceptible to overfit the training data. There
are several regularization approaches that can be implemented to prevent the
undesired overfitting tendency.

3.3.3 Regularization Techniques

One of the main aspects of a successful ML model is that it can generalize
well and have a good performance on both the training and test data (the
newly presented data). Regularization methods can be deployed to restrict
the fitting process so that overfitting is reduced. [9]

From Fig. 3.3, it is noticeable that the model overfits to the data, it has
learned the training data perfectly including the noise, which is not desirable
because the model then cannot make reasonable predictions for data that it
has not seen before. The Fig. 3.4 represents different combinations of the
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Figure 3.3: GBM re-
gression overfitting ex-
ample [9]

Figure 3.4: Fitting a decision-tree
GBM to a noisy data [9]

number of steps/iterations M and the learning rate λ: C) M = 100, λ = 1;
D) M = 1000, λ = 1; E) M = 100, λ = 0.1; F) M = 1000, λ = 0.1.

Popular GBM regularization techniques [9]:. Subsampling. Shrinkage. Early Stopping

Let’s briefly explain each of them.

Subsampling

Generally, subsampling has shown enhanced generalization ability and reduced
time and computational demands. Instead of training the weak learner using
the whole dataset, a subset of data is sampled without replacement (typically)
and used for training. Subsampling needs the subsample fraction η, also
called bag fraction, to be picked. For instance, if the subsample fraction is set
to 0.5, it means that only 50% of the initial data points are used for training
each decision tree which not only elevates the accuracy but also reduces the
computational demands since less data overall is used. The η = 0.5 gives
meaningful outcomes when the data is abundant. When insufficient training
data is available, the subsample fraction must be chosen carefully. [12] [9]

Shrinkage

Shrinkage is implemented in order to decrease the impact of each gradually
added decision tree. It reduces the effect of each iteration because improving
models by taking many little steps yields much better results than taking
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3. Gradient Boosting Machine...............................
fewer bigger steps. The shrinkage parameter λ, also known as learning rate,
can take on values between 0 and 1, λ ∈ (0,1⟩. The lower the value of λ, the
better generalization is reached; however, more steps must be taken for the
algorithm to converge. [12] [9]

The shrinkage regularization method is executed in the final iteration of the
GBM algorithm [9]:

f̂t ← f̂t−1 + λρth(x,θt) (3.22)

As demonstrated in Fig. 3.4, shrinking the learning rate λ implies that more
iteration M have to be taken to reach the desired accuracy. Nevertheless,
using the shrinkage parameter enables the model to learn more details, which
is especially useful for decision trees because they cannot represent details
very well. [9]

Figure 3.5: Training set error vs. Validation set error [9]

But how do the number of iterations M and the value of the learning rate
λ impact the effect of overfitting? Fig. 3.5 compares how setting different
λ values affects the number of iterations and the overall error evaluated on
the training dataset (Fig. 3.5A) and on the validation set (Fig. 3.5B). As
can be observed from the curves in Fig. 3.5A, the speed of convergence is
highly affected by the learning rate. However, the more important factor is
the behavior of the validation set error, depicted in Fig. 3.5B. The minimum
error value for each chosen λ value is denoted as a circle, which shows that
the lower the value of learning rate λ, the lower the error of the validation
set, but the more steps have to be taken. [9]

In summary, increasing the number of iterations too much can lead to overfit-
ting and a very small value of M may, on the other hand, stop the training
process too early causing the final model to perform poorly. When considering
the learning rate, larger values of λ can cause overfitting. On the contrary, a
smaller learning rate can slow down the training process and may result in

38



..................................3.4. GBM Interpretation

underfitting if it takes too long to reach the optimal parameters. To achieve
the optimal behavior of the final GBM model, both of these parameters have
to be tuned carefully. Some methods can be implemented to find the right
combination of parameter values.

Early Stopping

Considering the regularization techniques discussed above, when the learning
rate λ is given, the optimal number of steps Mopt typically does not equal the
initially set M . It would be ideal to stop adding decision trees to the ensemble
when the minimum validation error is reached. Early stopping is implemented
by training the model on a training set and periodically evaluating the model’s
performance on a separate validation set. The training process is stopped
when the model’s performance on the validation set starts to degrade, as this
indicates that the model begins to overfit the training data. [9]

3.4 GBM Interpretation

Interpreting the results of GBM can be challenging, as the final model is
a complex ensemble of base learners (decision trees), it cannot be easily
visualized as one single decision tree. There are several techniques that can
be used to interpret and understand the results of a GBM model. Let’s take
a closer look at two popular interpretation techniques. [9]

Relative Variable Influence

Relative variable influence is used to examine the importance of features used
by the model. Every split on a feature (variable) in a decision increases the
likelihood of the whole ensemble, and the sum of log likelihood across all
decision trees grows. [9]
The variable influence is defined as [9]:

Influencej(T ) =
L−1∑
i=1

I2
i 1(Si = j), (3.23)

where L is the number of tree splits. The sum is until L− 1 because all the
nodes except the leaves are of interest. The variable influence equation 3.23
is based on how many times each feature is chosen for splitting. Si is the
current splitting variable, j is the queried splitting feature, and I2

i denotes
the weights of the influence. The influence of feature j in the whole ensemble
is the average of the variable influence in each decision tree [9]:

Influencej = 1
M

M∑
i=1

Influencej(Ti) (3.24)
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The influences are then scaled so that they sum up to 100%. [9]

Partial Dependence Plots

Visualization is a very useful way of interpretation. Partial dependence plots
show the effect of a feature on the model’s predictions after marginalizing out
all other explanatory variables. This can be useful for understanding how a
particular feature is influencing the model’s predictions. Even though these
plots might not depict the effects perfectly, they can be a good foundation
for interpretation. Pairwise dependence plots can be convenient to visualize
relationships between couples of variables. [9]
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Chapter 4
Model Implementation

The input power and energy consumption of large buildings depend on
multiple factors that are often complex and diverse. There are three main
groups that the factors can be grouped to [22]:. Physical and technical factors → building design and climate. Occupancy → number of occupants and their activities. Social and economic factors → diverse energy usage in buildings

The necessary data for this master thesis was provided by the company
Energocentrum plus s.r.o. The data is collected in hourly or 15-minute
intervals from smart commercial buildings in Prague. Each building’s dataset
includes information about the timestamp, occupancy of the building, outside
temperature, and input power.

The ability to obtain high-interval data from smart meters helps to create
better predictive models with accurate forecasts. In general, the more data
is available, the better the model generalizes and its performance improves.
However, as a consequence, processing large amounts of data is very time-
and memory-consuming. Hence, finding some sort of compromise between
the data amount and the computational cost is desired.

Let’s take a closer look at the supplied input data and preprocessing methods
that are deployed to modify the inputs.

4.1 Data Preprocessing

It is sometimes surprising how much time and effort data preparation con-
sumes. To build a successful model, the data needs to be gathered, cleaned,
preprocessed, and only after that it can be used for model training. Building
an ML model is an iterative process, where the model is trained, and the
results are evaluated. Based on the analysis of the outcomes, the input data
can be modified, new features can be added or the model itself can be tuned.
[23]
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This chapter includes a lot of plots that are generated using the script
data_exploration.py that also applies functions from modify_data.py.

In this work the following preprocessing steps are taken:..1. Loading and analyzing the data..2. Handling missing values..3. Adding features..4. Transforming categorical variables - Encoding..5. Removing outliers..6. Scaling..7. Treating correlated features..8. Splitting the data

4.1.1 Loading and Analyzing The Data

Loading The Data

The input data is in a CSV format, where one CSV file belongs to one building,
and in total, 124 buildings are analyzed. All the buildings are located in
Prague. Script load_data.py is used to go through the whole folder with CSV
files, and parse them into columns: ’ts’, ’occ’, ’temp’, and ’meas’, respectively.
The script merges the available data for all buildings into one file and saves
it as data.pickle.

Pickle is a Python module that is used to serialize and de-serialize a Python
object structure. “Pickling” is the method of converting a Python object
into a byte stream, the reverse process is called “unpickling” in which the
byte stream is transformed back into the Python object hierarchy. To pickle
or serialize an object, the function dump() is applied. On the contrary, to
unpickle or de-serialize the byte stream to the initial object structure, the
function load() is called. The pickled format of data is quite a compact binary
representation; thus, it is a common way to store Python objects. Script
read_data.py is employed to read ("unpickle") the data.pickle so that the data
can be used in other scripts. [24]

From data.pickle, the dataset for each building can be created using DataFrame
class from the pandas library, see Table 4.1. The first column ’ts’ stands for
the timestamp, the second column ’occ’ shows whether the building was at
a given day occupied (True) or unoccupied (False), the third column ’temp’
shows the outside temperature in °C, and the final column ’meas’ represents
the input power in kW. The input power is the dependent (target) variable
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Table 4.1: Example - Data for building number 29

ts occ temp meas
2019-01-01 00:00:00 True 0.0 NaN
2019-01-01 01:00:00 True 0.0 0.0
2019-01-01 02:00:00 True 0.0 1.3
2019-01-01 03:00:00 True 0.0 1.3
· · · · · · · · · · · ·
2022-10-25 21:00:00 True 17.0 5.25
2022-10-25 22:00:00 True 18.0 4.84
2022-10-25 23:00:00 True 19.0 3.66
2022-10-26 00:00:00 True 19.5 6.33

that is intended to be predicted by the model. Since the target variable is a
continuous variable, the whole task is a regression problem.

Visualization of the dataset for building No. 29 is depicted in Fig. 4.1, the
data is recorded from the beginning of the year 2019 until the end of October
2022. The topmost graph depicts the values of temperature in °C, the trend
is very clear and it is the same for all the buildings because the temperatures
rise as summer approaches and they are the lowest in winter months. The
input power in kW is illustrated in the middle plot, the building No. 29
shows quite consistent input power throughout the years, there are no clear
signs that the building would spend significantly more energy on heating or
air conditioning. These differences are discussed further down. And the last
bottom plot shows on which days the building was occupied (denoted by 1)
and unoccupied (denoted by 0). The vertical dashed-lined pictures the split
between the train and test datasets, detailed explanation of the process is in
Section 4.1.8.
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Figure 4.1: Dataset No. 29

44



.................................. 4.1. Data Preprocessing

Data Analysis

Inspecting the data visually is a crucial step in understanding the data, its
structure, characteristics, and trends; therefore, implementing different sorts
of plots to display the data is desired. By observing the graphs, some errors
in the input data can be discovered and removed or modified; otherwise, they
would yield unreasonably bad results.

Plots used for visualization of the data [25]:.Histogram. shows a variable’s distribution as a set of adjacent rectangles on a
data chart. represents counts of data within a numerical range of values. Scatter plot. useful for exploring interrelations or dependencies between two
different variables. ideal for detecting outliers and trends in data.Box plot. useful for seeing a variable’s spread. helpful for visually spotting outliers.Pie chart. uses a circle divided into sections (categories) as percentages of a
whole.Pair plot, also known as scatter plot matrix. displays multiple pairwise scatter plots in a matrix format. helpful for visualizing relationships between multiple variables in a
dataset, potentially spotting any correlations. useful to get a sense of the distribution of data

After visualizing pandas data frames for each building, different trends of
input power can be spotted. As mentioned above, Fig. 4.1 shows quite
consistent values of input power. However, some buildings use more energy
in summer for air conditioning, as expressed in Fig. 4.2, and some others, on
the contrary, use more energy for heating in winter, which is captured in Fig.
4.3.
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Figure 4.2: Dataset No. 33 Figure 4.3: Dataset No. 63

Figure 4.4: Occupancy pie chart for
building No. 7

By visual inspection and running
scripts to detect unusual values,
some anomalies are detected. Pie
charts for the occupancy feature are
generated to show the percentage of
occupied versus unoccupied days for
each building. When going through
all the pie charts, it is clear which
buildings work in continuous mode,
meaning that the occupancy of such
buildings is equal to 1 (True) all the
time. An example of a pie chart for
a building that is non-stop in oper-
ation depicts Fig. 4.4. There are
only 6 buildings in the whole input
data that exhibit continuous working
mode.

In the next step, the attention is focused on the values of temperature. The
buildings that have values of temperature either below -25°C or above 50°C
are filtered out since those temperatures would be considered extreme and
unusual in Prague. Such temperature boundaries are exceeded only for 2
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buildings, with indices 14 and 15, for which the measured temperatures reach
more than 1000°C which is, of course, impossible, see Fig. 4.5. Another
common issue is the presence of outliers (extreme values) that are usually
caused by a momentary failure of the sensor or some power outage. Fig. 4.6
illustrates the existence of outliers in the measured input power for building
No. 22, some of the outliers are so huge that the distribution of the data
cannot be observed. Outliers can very negatively affect the prediction results,
especially when the chosen loss function is not robust to outliers, e.g. squared
loss function which is commonly used for regression. Thus, a good practice is
to remove outliers before feeding the data into the model.

Figure 4.5: Incorrect values of temperature for building No. 14

Figure 4.6: Example of the dataset with outliers (building No. 22)
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4.1.2 Handling Missing Values

Most of the ML models are sensitive to missing values, so it is important to
treat them properly. What to do with missing (NaN1) values is application
dependent. Either the rows with missing values can be dropped from the
dataset, or the missing values can be filled in with an appropriate replacement,
for example, mean, median, or any specified value, etc. In the case of this
work, all rows with missing values are dropped as the model cannot properly
learn from them. Usually, the most missing values are in the column of a
target variable of input power and there is no reason for keeping the rows with
missing target variables because Gradient Boosting is a supervised learning
method, so the labels (target variables) are necessary.

4.1.3 Adding Features

To make the model more precise, additional features are extracted from the
timestamp and appended to the data frame of each building, namely:

. Hour.Minute. Day of week. Quarter.Month. Year. Day of year. Day of month.Week of year

The names of the "datetime" features are self-explanatory and have integer
values. These additional features deduced from the input data give the model
extra information from which it can learn a certain pattern. Not always all
added features have to be relevant, some can be highly correlated with others
which would not provide any new information. Moreover, appending a redun-
dant number of correlated features can even cause the curse of dimensionality.
Hence, some feature selection techniques should be always implemented to
find the most relevant features.

1NaN = Not a Number
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4.1.4 Transforming Categorical Features - Encoding

Even though ML models that are based on decision trees should be able to
handle categorical features, it is always a good idea to encode categorical
variables to prevent any issues. The only categorical feature in the input
data is occupancy which can acquire values of either True or False. Encoding
categorical features, like color, gender, or occupancy of a building, means
transforming the string values into numerical values. Label-Encoding and
One-Hot-Encoding are two popular approaches used for it.

The process of label encoding involves assigning a unique integer value to
each category in a categorical variable. For example, consider a dataset with
a categorical variable "color" that can take on the values "purple", "pink", and
"blue". Using LabelEncoder from the scikit-learn library in Python, 0 would
be assigned to "blue", 1 to "pink", and 2 to "purple". This label encoder works
in a way that it sets integer values starting with 0 to the categories based on
alphabetical order. This allows the machine learning algorithm to understand
the ordinal relationship between the categories. It is important to note that
label encoding does not create a numerical relationship between the categories;
it only assigns an arbitrary integer value to each category. Algorithms based
on decision trees are not affected by this arbitrary assignment. However, some
other ML algorithms like linear regression and neural networks can assume a
hierarchical relationship. To overcome this issue, one-hot encoding should be
applied. [26]

One-hot encoding is another method used to convert categorical variables
into a numerical form that can be provided as input to machine learning
algorithms. One-hot encoding prevents any assumptions about the order in
the encoded values because for each category it creates a new binary column.
Considering the same "color" example as before ("purple", "pink", and "blue"),
three new columns would be created, one for each color category, see Table
4.2. One-hot encoding will create a lot of new columns and might lead to
high dimensionality if there are many categories. [26]

Table 4.2: One-hot encoding

Color Color-purple Color-pink Color-blue
Purple 1 0 0
Pink 0 1 0
Blue 0 0 1

Since the occupancy feature is binary by itself, there is no reason to use
one-hot encoding which would create one redundant column and increase the
dimensionality for no benefit. Therefore, LabelEncoder from the scikit-learn
library is used for purpose of encoding this categorical feature. The single
problem was when the building has only True values for occupancy (non-stop
in operation). Then, these True values would be encoded as 0 since the
encoder always starts assigning values from 0; therefore, these cases are
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identified and relabeled so that the values are consistent: False is mapped to
0 and True is encoded to 1.

4.1.5 Removing Outliers

Handling outliers is s key component of preprocessing because they can skew
the distribution of the data and affect the statistical values such as mean,
standard deviation, variance, etc. When the outliers are not removed and
fed to the model, the model’s results can lead to misleading conclusions.
Nevertheless, removing outliers is not always a good idea, especially when the
outlier values are meaningful for the model/analysis; therefore, visualization
of the data can help to understand the appearance of outliers and treat them
accordingly. There are multiple approaches how to handle outliers. In the
case of gradient boosting methods, the effect of outliers can be also controlled
by the choice of the loss function, for example, the Huber loss function is more
robust to outliers than the most commonly used squared error loss function,
for more information on loss functions (see Section 3.3.1). However, to obtain
adequate results, it is essential to remove the outliers from the target variable
(input power).

For outlier removal, Interquartile Range (IQR) method is deployed. This
method uses the concept of quartiles, which divide a dataset into four equal
parts. Let’s explain this technique on the input power feature of building No.
22 that is displayed in Fig. 4.6. Using the pandas function describe() on the
dataset, descriptive statistics are obtained (see Table 4.3). The 25% signifies
the first quartile Q1 and the 75% value indicates the third quartile Q3. [27]

Table 4.3: Descriptive statistics before and after outliers removal using IQR

Before outlier removal After outlier removal
count 40968 39335
mean 2.894922 2.722410
std 1.561004 1.060807
min 0.590000 0.590000
25% 1.920000 1.920000
50% 2.280000 2.200000
75% 3.530000 3.360000
max 154.350000 5.920000

The IQR method works as follows using the data from Table 4.3 [25]:..1. Calculate the interquartile range by subtracting Q1 from Q3.
IQR = the distance between the first quartile (at 25%) and the third
quartile (at 75%)
IQR = 75%(value)− 25%(value) = 3.53− 1.92 = 1.61
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.................................. 4.1. Data Preprocessing..2. The data points that are more than 1.5 times the IQR below Q1 or above
Q3 are considered outliers.
1.5 · IQR = 1.5 · 1.61 = 2.415
Q1− 1.5 · IQR = 1.92− 2.415 = −0.495
Q3 + 1.5 · IQR = 3.53 + 2.415 = 5.945..3. Remove the identified outliers from the dataset.

Figure 4.7: Box plot for building
No. 22 before removing outliers

Figure 4.8: Box plot for building
No. 22 after removing outliers

The visualization of box plots for building No. 22 can be observed in Fig.
4.7 (still with outliers) and in Fig. 4.8 (without outliers). These boxplots
show the range of input power for each month. As can be deduced from
the left Fig. 4.7, the biggest outliers occur in June, maybe there was some
problem with a particular smart sensor and thus, such extreme values were
measured. When the outliers are removed, the final distribution of the input
power distribution is plotted in Fig. 4.9. The y-axis called meas corresponds
to the input power in kW.

Figure 4.9: Dataset No. 22 after outlier removal
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Figure 4.10: Histogram for build-
ing No. 22 before removing outliers

Figure 4.11: Histogram for build-
ing No. 22 after removing outliers

The differences in the values and the kernel density distribution of input
power before and after the outlier removal can be also observed in Fig. 4.10
and Fig. 4.11. These figures are histograms with KDE2 denoted by the solid
line.

4.1.6 Scaling

Scaling is an important step in the preprocessing of data because some ML
algorithms are sensitive to the magnitude of features which can cause the
feature to be more dominant than others. In general, scaling is not necessary
for gradient boosting algorithms, such as XGBoost, which are based on
decision trees, so they can handle data of different ranges. However, it might
still improve the performance of the learner and lead to faster convergence. In
addition, when the data is scaled, it is much easier to compare error metrics,
like mean squared error, among the buildings. The performance of the model
is tested when the data is scaled and when it is not and the conclusion is
that scaling slightly improved the accuracy; thus, it stays employed in the
data preparation process.

MinMaxScaler from the scikit-learn library is used to perform the feature
scaling. MinMaxScaler transforms the minimum value of the feature to 0 and
the maximum value to 1, the values in between are scaled accordingly. The
shape of the original distribution is preserved. [28]

This work implements only scaling of temperature (’temp’) and input power
(’meas’) features because the rest of the features (minutes, hours, days, months,
etc.) have always the same range for all the buildings, so scaling those features
does not bring any enhancements.

2KDE = Kernel Density Distribution
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4.1.7 Treating Correlated Features

There are many techniques to visualize correlated features in a dataset,
heatmaps and pair plots are one of those frequently used in Python, they
can be easily implemented using the seaborn library.

Heatmaps can be used to illustrate the relationship between two or more
variables, they provide the correlation matrix showing the direction of the
correlation and how strongly are two features correlated. Heatmaps are based
on Pearson correlation coefficients which are mainly intended to discover
linear relationships between numeric variables. The correlation coefficients
range anywhere between values -1 and 1. [29] [22]

Pearson Correlation Coefficient [25]:. R = 1 → Strong positive relationship. R = 0 → Not linearly correlated. R = -1 → Strong negative relationship

Figure 4.12: Heatmap for building No. 22 before dropping correlated fetures

Again, considering the dataset for building No. 22., Fig. 4.12 depicts the
dataset with all the features where the numbers and colors denote how
strongly and whether negatively or positively the features are correlated.
The features that have values of the Pearson correlation coefficient either
close to 1 or close to -1 show a high correlation with another feature and
hence, should be removed. Fig. 4.13 captures the heatmap after dropping the
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Figure 4.13: Heatmap for building No. 22 after dropping correlated fetures

most correlated features, those features are ’quarter’, ’weekofyear’, ’dayofyear’
because they are very correlated with ’month’. The highly correlated features
do not bring additional information to the model; moreover, they increase
the dimensionality of the dataset.

Pair plots enable the visualization of relationships between multiple variables
in a dataset in one figure. They plot all possible pairs of features against each
other in a scatter matrix, the non-diagonal plots represent the relationship
between two variables. The diagonal plots show histograms or kernel density
estimates, which represent the distribution of each individual variable. Pair
plots are not only useful in identifying correlations and associations between
variables, but they can also help to uncover patterns and outliers. [30] [25]

Both heatmaps and pair plots make sense only for fairly small amounts of
features; otherwise, the visualization would not be readable. Thus, the pair
plot for building No. 22 in Fig. 4.14 shows only chosen features so that it
is easily visible. The red color represents the data points that belong to the
occupied days of the building and the blue color corresponds to the data for
unoccupied days.
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Figure 4.14: Pair plot for building No. 22

4.1.8 Splitting The Data

Diving the original data into a training and a test set is a key step in the ML
process, especially for performance evaluation. The goal of any ML model is
to be able to generalize well and give accurate results for new data points.
However, when the model’s performance is assessed using the same data that
is used for training, the results might be overly optimistic because the learner
is evaluated using the same data points as for training. In addition, such a
model is prone to suffer from overfitting.

By splitting the data into training and testing datasets, the learner is trained
on the training set, and its performance is then evaluated on the test (unseen)
data to avoid any misleading conclusions. Thus, the common practice is to
divide the available data into two subsets (train and test), it can be easily
implemented using train_test_split() function from the scikit-learn library.
For supervised learning methods, the data is further split into independent
variables (features) and dependent variables (labels):. Train set - usually contains around 70-80% of the initial data. X_train - features used for training
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. y_train - labels used for training. Test set - the remaining 20-30% data. X_test - features used for evaluation (predictions). y_test - labels used for evaluation

In summary, splitting the data into a training set and a test set is important
because it allows evaluation of how the model operates on completely new
data, which provides a better estimate of its true performance in the real
world, and also helps to prevent overfitting.

4.2 Model Development

Gradient boosting machine (GBM), described in Chapter 3.3, is a general
framework for gradient boosting. There are different libraries that can be used
for the implementation of the gradient boosting algorithm in Python. Popular
ones are XGBoost, LightGBM, and CatBoost; the scikit-learn library has also
a gradient boosting regressor. In this thesis, two models are developed, one
using the scikit-learn library and the other one with the help of the XGBoost
library. [22]

Both the gradient boosting regressor from the scikit-learn library and the
XGB regressor from the XGBoost library are implementations of the gradient
boosting algorithm for regression and both use decision trees as base learners.
The scikit-learn library is a well-known machine learning library. On the
other hand, XGBoost is only focused on gradient boosting and therefore, is
more powerful, efficient, and scalable in that area. [31]

4.2.1 Scikit Learn Model

One main distinction between the scikit-learn gradient boosting model (Gra-
dientBoostingRegressor class in the scikit-learn library) and the XGB model
(XGBRegressor class in the XGBoost library) is that the gradient boosting
regressor cannot handle any missing values in features, so in case there is a
feature that extracts values from the past data, then when there is no more
historical data available, it is filled with NaN. This feature would not be able
to be used for training the gradient boosting regressor model. Another thing
to note is that the gradient boosting regressor has fewer parameters that
can be set or optimized compared to the XGB regressor. However, there is
still a number of parameters that can be used to control the behavior of the
gradient boosting algorithm. [32]
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Important parameters to take into consideration when developing the gradient
boosting regressor [32]:. Loss function → specifies the loss function that is being optimized by

the model
Possible loss functions: squared error, absolute error, Huber, quantile. Learning rate → controls the contribution of each decision tree
Smaller steps mean slower convergence, but the algorithm is less likely
to overshoot the optimal solution.. Number of estimators → defines the number of trees in the ensemble. Subsample fraction → identifies the fraction of samples used for fitting
one individual weak learner
Subsample fraction must be chosen from (0,1⟩ range..Maximal depth → controls the maximum depth of the decision trees
Large depths can capture more complex relationships, but also increases
the risk of overfitting.

There are more parameters that can be tuned, but these ones make significant
differences in performance. The overall performance of this gradient boosting
regressor is later tested against the XGBoost implementation, for comparison
results see Chapter 5.

4.2.2 XGBoost Model

XGBoost stands for Extreme Gradient Boosting and was proposed by Chen
and Guestrin at the University of Washington in 2014 [13]. XGBoost is
similar to GBM; however, it is an optimized version of GBM that delivers
even more promising results and operates faster. By adopting advanced
regularization, XGBoost generalizes better and hence, prevents overfitting. It
uses the second-order derivative of the loss function and due to the possibility
of parallel computing, the training of the model is faster than other popular
approaches, the newer libraries such as LightGBM and CatBoost might yield
even faster results. Compared to the gradient boosting scikit-learn library,
XGBoost can even handle missing values, is more efficient, provides a more
extensive set of hyperparameters, and also have support for regularization.
The XGBoost library has available the XGBRegressor class that can be used
for solving gradient boosting regression problems. [21] [33]

There are more available parameters than for the scikit-learn implementation;
however, the main ones remain the same. XGBoost regressor is a slightly
more advanced model than the previous gradient boosting which results in
more variability in tuning the hyperparameters. Some principal parameters
that affect the model’s accuracy and training speed are [31]:
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. Loss function (objective) → specifies the loss function that is being

optimized by the model
Possible objective functions: squared error, squared log error, absolute
error, logistic, Huber, gamma, Tweedie. Learning rate → controls the contribution of each decision tree
Smaller steps mean slower convergence, but the algorithm is less likely
to overshoot the optimal solution.. Number of estimators → defines the number of trees in the ensemble. Subsample fraction → identifies the fraction of samples used for fitting
one individual weak learner
Subsample fraction must be chosen from (0,1⟩ range..Maximal depth → controls the maximum depth of the decision trees
Large depths can capture more complex relationships, but also increases
the risk of overfitting.

↑ Above parameters are the same as for the scikit-learn implementation. Number of early stopping rounds → allows stopping the training process
after a certain number of rounds when the performance of the model on
a validation set starts deteriorating. Alpha regularization weight → used for L1 regularization, it helps in
preventing overfitting. Lambda regularization weight → used for L2 regularization, it helps to
combat overfitting. Base score → sets initial predictions for all data points. Tree method → specifies the used tree method. exact - quite slow and difficult to scale. approximation - runs sketching with Hessian weights before fitting

each tree. histograms - fastest as it runs sketching only once. gpu histograms - it is the hist method implemented using GPU3. Predictor → either set to CPU predictor or GPU predictor

XGBoost has a multitude of other parameters available for fine-tuning the
model. The best combination of parameters depends on the specific character-
istics of the data and the problem that is being solved. Additionally, XGBoost
also provides a built-in mechanism for early stopping based on a user-defined
metric. Early stopping is a technique that can be used to prevent overfitting

3GPU = Graphics Processing Unit
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by automatically stopping the training process when the performance of the
model on a validation set stops improving for a specific number of rounds.
If the number of early stopping rounds parameter is set to a high value, the
model is trained for more rounds even when the performance decreases and
has more chances to overfit the data. On the contrary, if the value is too
low, it might stop the training process too early and prevent possible further
improvements. [31]
When running a comparison analysis of the previously mentioned Gradient-
BoostingRegressor model in Section 4.2.1 against the XGBRegressor model.
The performance of both models is mostly similar; however, when it differs,
the XGBRegressor usually shows at least slightly better results, more about
that in Chapter 5. Because the XGBRegressor model yields better results
and the XGBoost library is more powerful, further parameter tuning and the
model’s accuracy enhancements are performed only on the XGBRegressor
model.

XGBoost Model Performance Improvements

There are several things that might improve the model’s performance. The
universal preprocessing steps are already discussed in Section 4.1. All the
data preparation steps such as adding "datetime" features, removing outliers,
scaling, and dropping correlated features boost the model’s predicting capa-
bilities. For instance, the accuracy of predictions for the dataset of building
No. 22 that initially had big outliers increased from 26% to 70% just by
removing the outliers. However, the preprocessing actions do not improve
the predictions for all of the buildings, but overall performance rises.
The additional potential enhancements that are explored and tested in this
work are:..1. Incorporating public holidays..2. Adding average features..3. Adding lag features..4. Relabeling..5. Changing the split size between train and test sets..6. Altering the subsample fraction..7. Choosing a suitable loss function

Each of the possible enhancements is implemented and tested on a subset
of buildings to see how the change affects the R-squared score (R2) and the
MSE4; the ones that improved the accuracy stay implemented, the rest are
excluded.

4MSE = Mean Squared Error
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Incorporating public holidays

The idea here is to check whether the building is mostly in constant operation
by calculating the percentage of unoccupied days from the whole data set. If
the percentage of unoccupied days is less than 20%, keep the occupancy values
as they are. On the other hand, when the percentage of unoccupied days is
more than 20%, meaning that the building does not operate nonstop, then it
is assumed that during public holidays the building is empty (unoccupied).
Therefore, the days that fall on Czech public holidays are set to unoccupied.
This change is tested on 4 random buildings that have no unoccupied days
outside of weekends and the predicting accuracy (R2 score) is increased as
can be observed in Table 4.4.

Table 4.4: Performance improvement when public holidays incorporated

Building index R2 score
Building #18 0.7033 → 0.7069
Building #22 0.6983 → 0.7376
Building #25 0.7802 → 0.8058
Building #78 0.8141 → 0.8501

This table shows clear signs that even though the public holidays are marked
as occupied (maybe all weekdays are set to be occupied by default for some
buildings), setting them to be unoccupied rises the precision of the predictions
since the buildings were probably unoccupied or operated with just limited
resources. As a result, this enhancement stays employed.

Adding average features

Three extra features are added and their effect on the model’s performance is
evaluated. The first added feature is ’meas_month_avg’ which is calculated
as an average value of input power for each month. The second newly included
feature is an average temperature in a month called ’temp_month_avg’. The
last added feature is ’meas_dayofweek_avg’ that is obtained as an average
value of input power taking into consideration only the same days of the week
in a month, e.g. the value for ’meas_dayofweek_avg’ feature for each Monday
in June 2022 would be determined as an average value of all Mondays in June
2022. This last feature should target the different heating approaches on each
day of the week.

Based on the evaluation, the ’temp_month_avg’ feature brings basically
no improvement so it can be omitted. On the contrary, both features
’meas_month_avg’ and ’meas_dayofweek_avg’ showed slight improvements;
however, they can be used only for analysis of the data not for future predic-
tions because these values would not be available in the future as they are
derived only for historical and current measurements.
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Adding lag features
For future predictions in time series, lag features can be useful. The idea
behind lag features is to use the value of a variable at previous time steps as
a feature for predicting the value of the variable at the current time step. Lag
features that reflect the value of the input power a week ago (’lag_1week’) and
a year ago (’lag_1year’) are implemented. The lag features do not outperform
the average features in data analysis, but they do not harm the performance.

Relabeling
Even though gradient boosting algorithms are supposed to be resilient to the
type of values of the features, in this experiment, zero values in features are
replaced. The ’dayofweek’ feature range is changed from 0-6 to 1-7 and False
values in ’occ’ feature (occupancy of the building) are mapped to -1 instead
of 0. Zero values might cause some problems in certain algorithms; however,
in this case, the accuracy remained the same. Thus, the range 1-7 from the
’dayofweek’ feature is kept as it makes sense and the occupancy values are
changed back to 0 and 1.

Changing the split size between train and test sets
When performing the split into the training and the test datasets, there
is a function train_test_split() from the scikit-learn library that does this
splitting operation and has a parameter called test_size. This parameter
specifies the percentage of the initial data that is allocated to the test set.
The alteration between 20%, 25%, and 30% is examined. The effect on the
model’s performance varies from building to building so there is no clear
answer to which percentage works the best, but it seems that the 30% fraction
(test_size=0.3) yields reasonable results.

Altering the subsample fraction
Another important parameter in the XGBRegressor is the value of the sub-
sample. In general, it’s a good practice to set the subsample parameter to
a value between 0.5 and 0.8 since this will balance the trade-off between
overfitting and underfitting. Values of subsample fractions equal to 0.5, 0.6,
0.7, 0.8, and 1 are tested. Again, the accuracy shows no major changes and
the behavior depends on the dataset itself. Nevertheless, the values of 0.6
and 0.7 resulted in the best outputs in most of the cases; hence, the average
of 0.65 is set as the final value of the subsample parameter.

Choosing a suitable loss function
The influence of the squared error (L2) and the Huber loss function are
inspected. Results of R2 scores for both loss functions can be seen in Table
4.5.

The Huber loss function is more robust to outliers than the squared error loss
function, but since the data has already been treated for outliers, changing
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Table 4.5: Performance improvement when altering loss functions

Building index R2 of L2 loss func. R2 of Huber loss func.
Building #18 0.9247 0.9245
Building #22 0.7345 0.7353
Building #25 0.8384 0.8379
Building #78 0.8522 0.8522

the L2 loss function to the Huber one is not beneficial. As a consequence, the
squared loss function is kept.

Automatic Hyperparameter Tuning

The model’s hyperparameters can be tuned manually by trial and error, but
there is also a technique called grid search that makes it easier. The goal of
grid search is to find the best combination of hyperparameters that results in
the best performance of the model on the test data. This approach consists
of defining a combination of values for each parameter that is to be optimized.
The algorithm then goes through all the combinations of parameters and
evaluates the performance. In the end, it chooses the best combination
of hyperparameters. The drawback is that grid search is computationally
expensive, especially when a lot of parameters with many values as options
should be tuned. [11] [12]

Even though the technique is implemented so it runs on GPU to make the
process faster, it is too time-consuming. It can be used to analyze one building,
but applying it to find the best parameters for each of the 124 buildings
would be too computationally expensive. [34]

Final XGBoost Model’s parameters

Final XGBoost Model’s parameters

Considering all the trials and errors with parameter settings examined, the
final parameters of the XGBoost model are covered in table 4.6:

Table 4.6: Final XGBoost Model’s parameters

Parameter Value
Base score 0.5
Learning rate 0.01
Loss function Squared error
Number of early stopping rounds 50
Number of estimators 1000
Maximal depth 3
Subsample fraction 0.65
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Feature Importance

XGBoost library has a function plot_importance() that enables plotting how
important certain features are in building the ensemble, see Fig. 4.15. The
hierarchy of the importance of features is different for each of the buildings,
but the dominant features keep repeating.

Figure 4.15: Feature importance plot for building No. 22

Visualization of decision trees

XGBoost library is also equipped with plot_tree() function which allows
plotting any decision tree in the sequence. The first decision tree in the
ensemble for the dataset of the first building building is depicted in Fig. 4.16.

In the next chapter, the final XGBoost model is compared to the scikit-learn
and TOWT models.
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Chapter 5
Results

This chapter is devoted to the comparison of predictive models with the aim
of finding the one that performs the best on the given data for 124 smart
buildings in Prague. First, two gradient boosting models that are developed
as a practical part of this master thesis are compared. Then, the better of
those two is set against the TOWT model that is being used in Energocentrum
plus s.r.o. company for practical purposes.

Following statistical metrics for regression are used to compare the perfor-
mance of models [35] [22]:.Mean. STD (Standard Deviation).MSE (Mean Squared Error) - measures the average squared difference

between the predicted values and the real values
- smaller values signify more precise estimates. R2 - determines the proportion of the variance in the target variable
that is explained by the model
- reaches values between (0,1⟩
- the higher the value, the better the model is in making predictions. CV(RMSE) (Coefficient of Variation of the Root-Mean Squared Error) -
represents the RMSE as a percentage of the mean of the target variable
- the value of 0 would indicate that the model’s predictions are equal to
the true target values
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5.1 Comparison of the Scikit-learn and the
XGBoost Models

As discussed in the previous chapter, two gradient boosting models are
developed, one using the GradientBoostingRegressor class from the scikit-
learn library (further referred to as SKLEARN model) and the other one
using the XGBRegressor class from the XGBoost library (further referred to
as XGB model). All the statistical metrics and comparison figures can be
obtained by running the script comparison_xgb_sklearn.py.

The accuracy of the models is compared using two common statistical mea-
sures, namely the R-squared value (R2) and the mean squared error (MSE).
The buildings that reach R2 values outside of the (0,1⟩ are dropped from
the evaluation. Fig. 5.1 demonstrates histograms of R2 scores and Fig. 5.2
captures histograms of MSE values. It is noticeable that the XGB model
reaches slightly higher values of R2 score and lower values of MSE than the
SKLEARN model which is desired. The SKLEARN model is able to get
slightly better predictions for only 30 buildings out of the 124 buildings.

Figure 5.1: R2 scores histogram - Comparison of the SKLEARN model
against the XGB model

In the next step, 15 buildings with the highest differences in R2 scores and
MSE values between the two models are explored. These buildings’ evaluation
metrics are illustrated in Fig. 5.3 and Fig. 5.4. Except for the 2 buildings
with indices 51 and 76, the XGB model is always more accurate. In addition,
building No. 76 has many missing values and building No. 51 has a weird
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Figure 5.2: MSE histogram - Comparison of the SKLEARN model against
the XGB model

drop in the input power values in the test set, so it is difficult to train the
models on such datasets properly.

Figure 5.3: The biggest differences in R2 scores of the SKLEARN and XGB
models
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Figure 5.4: The biggest dissimilarities in MSE of the SKLEARN and XGB
models

The final performance of both models is summarized in Table 5.1, these
metrics are calculated as averages across all the buildings in the dataset. As
conclusion, it is shown that the XGB model performs a bit better and thus,
is chosen as the winner. In the next section, the XGB model is compared to
the TOWT model.

Table 5.1: Evaluation of the overall models’ performance

Model Avg R2 score Avg MSE
SKLEARN model 0.6692 0.0141
XGB model 0.6879 0.0135
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5.2 Comparison of the XGBoost and the TOWT
Models

TOWT stands for Time-of-Week-and-Temperature model and is a type of
time series forecasting model (piecewise linear model) that is used to predict
the values of a variable based on the time of the week and temperature. This
model is commonly used in predicting energy consumption, it takes into
account the daily and weekly patterns in the data, as well as the impact of
temperature on energy consumption. [12]

The script comparison_xgb_towt.py enables to plot the comparison graphs
between the XGB and TOWT models based on the mean, STD, R2, MSE,
and CV(RMSE) statistical metrics. The plots reflecting the actual values of
the target variable (the input power) against the predictions made by both
models can be acquired by running the script xgb_towt.py.

Figure 5.5: Comparison of the true mean values against the mean values of
TOWT and XGB models

Firstly, the mean and standard deviation values are examined (see Fig. 5.5
and 5.6). The blue points denote the actual mean and STD values of the
provided input datasets, the pink points signify the XGB model’s values, and
the yellow points depict the values of the TOWT model. The XGB model
mimics the actual values more closely because the pink points are, in general,
closer to the blue points (real values) than the yellow points (TOWT). To
make it more clear that the XGB model performs slightly better, box plots of
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Figure 5.6: Comparison of the actual STD against the STD values of TOWT
and XGB models

Figure 5.7: Boxplots of the actual,
XGB, and TOWT mean values

Figure 5.8: Boxplots of the actual,
XGB, and TOWT STD valuess

mean and STD values can be observed in Fig. 5.7 and Fig. 5.8, respectively.
The same color coding is used in the box plots.

Further, the performance of the XGB model and the TOWT model is evaluated
using typical statistical measures such as the R2 score, MSE, and CV(RMSE).
Once more, the buildings that reach R2 values outside of the (0,1⟩ are omitted
from the evaluation. Histograms of R2 scores are illustrated in Fig. 5.9,
histograms of MSE values are depicted in Fig. 5.10, and histograms of
CV(RMSE) values are demonstrated in Fig. 5.11. It is easily observable that
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Figure 5.9: R2 scores histogram - Comparison of the TOWT model against
the XGB model

Figure 5.10: MSE histogram - Comparison of the TOWT model against
the XGB model

the XGB model outperforms the TOWT model, there are only 3 buildings
(with indices 8, 9, and 40) where the TOWT model yields more precise
predictions. Buildings No. 8 and 9 have data recorded only for one year
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Figure 5.11: CV(RMSE) histogram - Comparison of the TOWT model
against the XGB model

which might not be sufficient for the XGB model to result in reasonable
outcomes.

Figure 5.12: The biggest differences in R2 scores between the TOWT and
XGB models
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Figure 5.13: The biggest dissimilarities in MSE values between the TOWT
and XGB models

Again, 15 buildings with the biggest differences of R2 scores and MSE values
between the two models are detected and their evaluation metrics are depicted
in Fig. 5.12 and Fig. 5.13. For all of those buildings, the XGB model resulted
in more accurate predictions.

The biggest difference in the R2 score between the XGB and TOWT models
is found for building No. 108. The whole prediction period is shown in Fig.
5.14, where it can be observed that the TOWT model is not able to discover
the lower input power values at the beginning of the prediction period, while
the XGB model is able to adapt and follows the trend of the actual target
values much more closely. It seems that the TOWT model sticks to a quite
constant prediction pattern. When it is zoomed to the first week of predictions
starting from Monday for building No. 108, it is even more visible that the
TOWT model does not do a good job for this dataset (see Fig 5.15). On
the other hand, the predictions that can be seen in Fig. 5.16 look to be very
appropriate for both of the models, even though the XGB model again yields
slightly more precise estimations.
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Figure 5.14: Predictions of input power for building No. 108

Figure 5.15: First week of predictions for building No. 108

Figure 5.16: First week of predictions for building No. 29

Table 5.2 summarizes the average evaluation metrics for both models. Recall
that lower MSE values are desired, while higher R2 scores show more precise
predictions.
Taking into consideration the TOWT model’s low complexity and computa-
tional cost, it shows reasonable predictions, but it is not near the precision
of the XGB model. The input features of the TOWT model are only tem-

74



................... 5.2. Comparison of the XGBoost and the TOWT Models

Table 5.2: Evaluation of the overall models’ performance

Model Avg R2 score Avg MSE Avg CV(RMSE)
TOWT model 0.6548 0.0151 0.4359
XGB model 0.7517 0.0113 0.3753

perature and timestamp so the resulting performance of the model is highly
dependent on the quality of the input data and the ability of the model to
capture the underlying patterns in the data. On the contrary, the XGB model
is provided with additional "datetime" and "average" features and is, generally,
more flexible and more robust to noisy data since it is an ensemble of learners.

To sum up, based on Table 5.2 there is no doubt about which model performs
better. The XGB model’s accuracy is 10% higher than the accuracy of the
TOWT model. And both the average mean squared error and the coefficient
of variation of the root-mean squared error are lower for the XGB model
which means that the XGB model makes predictions that are closer to the
target values. The error metrics are always desired to be as close to zero as
possible.

So to conclude the results chapter, the XGB model achieves the best perfor-
mance and thus, is a clear winner among the 3 models that are here compared.
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Conclusion

The content of this thesis begins with an introduction to machine learning
followed by an explanation of ensemble methods with a primary focus on
boosting techniques. Then, the Gradient Boosting Machine algorithm is ex-
plained in detail. This theoretical part fulfills the first point of the assignment.

The major goal was to develop a gradient boosting model in Python that is
able to make accurate predictions of energy consumption which was achieved
and that covers the second and third points of the given assignment. Precise
energy consumption predictions can help companies to manage their energy
supply and improve the efficiency of energy distribution. By having the energy
consumption estimates, it can be ensured that there is enough capacity to
the demand and any blackouts can be avoided. Further, energy efficiency
can be improved by identifying areas where energy consumption is high
and optimizing the energy losses. Finally, accurate energy consumption
predictions can be also used to integrate renewable energy sources and to
help support consumers in managing their energy usage.

The final step of the assignment is satisfied by validating the developed
gradient boosting model on data supplied by Energocentrum plus s.r.o. From
the experiments conducted in this work, it can be concluded that both gradient
boosting methods outperformed the TOWT model in terms of the accuracy
of predictions. The XGBoost model reached the lowest prediction errors of
all three compared models. In general, the XGBoost library is a powerful and
flexible library for gradient boosting, it’s efficient in handling large datasets
and high-dimensional data, and it is widely used in many applications as it
supports parallel processing and provides regularization techniques that can
prevent the model from overfitting.

The performance of the final XGBoost model yields promising results, but it
is dependent on the quality of the input data. Many preprocessing techniques
are employed to increase the quality of the data fed directly to the XGBoost
model. Of course, there is certainly room for further modifications and
enhancements. One suggestion would be to train the model so that it is able
to recognize whether the building uses more energy for heating or for AC
because there is a difference between the two. The heat gets accumulated in
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the walls of buildings, while air conditioning happens in an instant matter
which results in non-identical energy consumption trends in summer and in
winter.

However, the current model achieves good accuracies of energy estimates and
proves to better track more irregular energy consumption trends than the
TOWT model which is much simpler.
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