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Chapter 1

Introduction

With relativistic heavy-ion collisions, we can create a matter that was in our universe approxi-
mately 10−10 s after the Big Bang. This matter is composed of quarks and gluons that can travel
through the medium freely. Quarks and gluons cannot escape outside the hadrons under or-
dinary conditions; this is called colour confinement. Colour confinement is a consequence of
the nature of strong interaction.

Gluons, as a strong force carrier, can interact with themselves. This is different from the pho-
ton 𝛾 for example, which does not carry an electric charge and thus, does not possess a self-
interaction. Gluons carry colour charge and their self-interaction considerably complicates
first-principles calculations for certainprocesses. Thefirstprinciplephysicsof the colour charge
is considered as quantum chromodynamics (QCD).

Themain decisive factor whether something is calculable in QCD is the energy transferred dur-
ing the process. Processes with high-energy transfer are known as hard processes and on the
opposite side of the spectrum are soft processes. If the energy transferred between two parti-
cles is high enough, we canutilise a very powerful tool called perturbative quantumfield theory
(QFT). Perturbave theory is an approach to unfolding the process into a series. For some strong
interactionphenomena, it is a relatively straightforwardprocedure. However, for soft processes
perturbation series do not converge.

This, unfortunately, includes a lot of processes, such as quarks being bound inside the hadrons,
quarks and gluons hadronising into hadrons, or even evolution of the hot and dense medium
that is created during heavy-ion collision. To make the situation worse, processes that can be
calculated from pertubative theory are accompanied by those that are not calculable.

For example, if two quarks violently collide and exchange a lot of energy, it can be calculated
perturbatively. However, we cannot observe individual quarks due to the already mentioned
confinement and process of hadronisation, where those quarks converted into hadrons is not
calculable from first principles.

This thesis interconnects two topics in the field of heavy relativistic heavy-ion collisions. The
first branch is the physics of the medium. When ions collide with each other, they deposit en-
ergy and, after some short evolution, quark-gluon plasma (QGP) is created. It was discovered
that QGP has collective behaviour. This creates an opportunity to employ relativistic hydrody-

11



CHAPTER 1. INTRODUCTION 12

namics. The development of relativistic hydrodynamics showed that it is a powerful tool for
describing measured observables such as hadronic 𝑝𝑇 spectra or azimuthal harmonic coeffi-
cients. Nowadays, relativistic hydrodynamics is essential to our current understanding of the
soft sector observables that come from the bulk properties of the QGP.

The second branch of high-energy physics that is studied in this thesis is the hard sector. One
of the observables arising from the hard process at the beginning of the heavy-ion collision are
high transverse momentum 𝑝T colimated showers of hadrons called jets. The initial hard par-
ton fragments into more partons, which lose energy inside the strongly interacting medium
and then hadronizes.

In this thesis, you can find the results of simulations of the heavy-ion collision in form of obser-
vales. This is accompanied by rather deep theoretical review of almost each aspect of this simu-
lation. Thegoalwas to employ various frameworks (TRENTo [1], freestream-milne [2], MUSIC
[3], iSS [4], SMASH [5], Pythia [6], MATTER [7], LBT [8]) implemented in the Jetscape framework
[9] and obtain experimentaly measurable quantities like nuclear modification factor.



Chapter 2

The StandardModel

The Standard Model is a theory of particle physics based on quantum field theory (QFT). This
theory incorporates all known elementary particles of matter, three out of four fundamental
forces that are carried out by 4+8 intermediate particles represented by Yang-Mills fields [10],
and the final yet important four-component Higgs field, which with its Higgs potential is con-
nected to spontaneous symmetry breaking.

Thefirst of three forces is electromagnetism, and itsQFTcalledquantumelectrodynamics (QED)
is well known for its very high accuracy in the late 1940s, after the renormalisation procedure
was developed. This success accompanied the renormalizability of other theories, apart from
QED.

A much more difficult path to renormalizability was laid out for the interaction observed in the
𝛽decay and later in themuonor piondecay. Currently, we call this interactionweak, and the la-
bel for itsQFT is quantumflavourdynamics (QFD).Thedescriptionof this interaction started as
a parity-conserving vector 4-point fermion interaction, called Fermi theory. The vector current
interaction (𝛾𝜇)was inspiredbyQED,where the vertex factor of the photon is also vector-based.

However, Fermi theory could not explain the Gamow-Teller 𝛽 decay, where the angular mo-
mentum of the nucleus is changed. Furthermore, the observation of the decay of the polarised
60Co showed that the weak interaction does not preserve the parity symmetry. This experi-
ment is called theWuexperiment [11], since it was conducted in 1956 by theChinese-American
physicist Chien-ShiungWu.

TheQFDwas later constructedwith all possible currents (𝕀,𝛾5,𝛾𝜇,𝛾𝜇𝛾5,𝜎𝜇𝜈 = [𝛾𝜇,𝛾𝜈]) that were
later fixed by the experiments. This was called the V-A theory, since only the vector 𝛾𝜇 and the
axial vector 𝛾𝜇𝛾5 are preserved in the form of a current 𝛾𝜇(1−𝛾5) between two elementary par-
ticles. This form of current gives the maximum-parity violation.

However, both four-point fermion effective theories were not renormalizable. This was caused
by the dimension of the Fermi coupling constant [𝐺F] =𝑀−2 given by the condition on the ac-
tiondimension [S] = ℏ = 1 andby the fact that the fermionic bispinor has dimension [𝜓] =𝑀

3
2 .

Since both theories are built on the four-fermion interaction∼𝐺F𝜓𝜓𝜓𝜓, coupling constant𝐺F
must have dimension [𝐺F] =𝑀−2.

13
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This behaviour is due to the fact that the matrix element ℳ in perturbation theory is a series
of the coupling constant 𝐺 asℳ∼𝐺 +𝐺 2Λ2 +⋯, where Λ is a parameter of the perturbation
theory for witch Λ2 ≫ 𝑠 (see A.5 for more information on Mandelstam variables). This series
leads to non-renormalizability. The same issue has QFT of gravity with [𝐺𝑁] =𝑀−2.

This led to the introduction of massive intermediate bosons 𝑊 ± with a suitable dimension of
the coupling constant [𝑔] = 1. However, this theory does not lead to renormalizability either
because the matrix element ℳ for Feynman tree diagram processes has an asymptotic lead-
ing behaviour as a positive integer power of the energy. This means that in the limit 𝑠 → +∞
(see A.5 for more information on Mandelstam variables),ℳ diverges quickly and the S-matrix
becomes ununitary. The unitarity of the S-matrix is connected to the conservation of the prob-
ability current in quantum mechanics, and thus it is necessary to preserve this property. How-
ever, in terms of renormalisation, the logarithmic violation of unitarity is the highest-energy
asymptotic behaviour of the partial-wave scattering amplitude that is acceptable.

This led to electroweak theory (EWT), which is based on the minimal group that cancels the
leading asymptotic behaviours of tree-level diagrams. This group happens to be SU(2)𝐿×U(1)𝑌
with four vector gauge fields. The Abelian gauge field of subgroup U(1)𝑌 is called a weak hy-
percharge field, and three non-Abelian gauge fields of subgroup SU(2)𝐿 are called weak isospin
fields. These fields are a linear combination of the physical electroweak bosonic field. This
theory based on compact, reductive Lie algebras is called the Yang-Mills theory, and the fields
within this theory are called the Yang-Mills fields after Yang Chen-Ning and Robert Mills, who
developed this approach [10] to fundamental interactions in early 1954.

The Yang-Mills theory of the electroweak unification interaction built on symmetry SU(2)𝐿 ×
U(1)𝑌 still had twoproblems. First, there are still some residual energydivergences in thematrix
elements of some tree-level diagrams caused by the longitudinal polarisation of massive weak
bosons. Second, themass terms in the Lagrangian density violate the SU(2)𝐿×U(1)𝑌 symmetry.
Both issues were solved by the four-component Higgs scalar field and its potential. The poten-
tial has a symmetry of O(4). During spontaneous symmetry breaking of the Higgs potential,
the three components of the Higgs field correspond to unphysical Goldstone bosons that are
removedby a gauge-fixing condition called theU-gauge. As a consequence, for eachGoldstone
boson that disappears from the physical spectrum, the vector gauge field acquires a mass. This
means that the three weak intermediate vector bosons become massive without terms violat-
ing the symmetry in the Lagrangian density. Furthermore, additional tree-level Feynman dia-
grams cancel the residual bad high-energy behaviour of the matrix elements, and the S-matrix
becomes unitary. This is the renormalizable EWT of the Standard Model.

The last interaction described by the Standard Model is the strong interaction. This part of the
Standard Model is also based on Yang-Mills theory [10]. This time, it is the group SU(3)𝑐 that
represents the symmetry of the strong interaction. In contrast to the EWT, there are eightYang-
Mills gauge fields (see A.4 for more details on the differences between the SU(2) and SU(3) Lie
algebras).

The strong interaction is the crucial interaction in this thesis. A strong nuclear interaction dic-
tates the properties of the medium created during heavy-ion collisions, and it also determines
how the particles with high transverse momenta 𝑝T are created in the primary collision, their
interaction with the medium, and their overall evolution including hadronization. Therefore,
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there is a dedicated Section 2.3 for QFT that describes the strong interaction, also called quan-
tum chromodynamics (QCD).

2.1 Particles of the StandardModel

Particles of the Standard Model are classified into three main groups. First, we have the par-
ticles of matter that, among other things, build the world around us. Next, we have the force
carriers that provide the interaction between the particles. Finally, the Higgs field generates
masses of elementary particles.

The main distinguishable quantum property between these groups is spin. Spin is an intrinsic
angular momentum of elementary particles and comes in half-integer or integer values. For
all elementary particles of matter, the spin is 1

2 and they are represented as the 4-dimensional
reducible representation

(
1
2
,0)⊕(0,

1
2
)

that can be put in the form of a four-component Dirac spinor𝜓(𝑥).

Then there are intermediate particles that are gauge vector bosons with spin equal to 1. These
particles are called vector particles due to the possible representation of their wave function as
the Lorentz four-vector 𝐴𝜇 (see A.2 for more information on four-vectors). Higgs field is also a
boson, a scalar particle with spin 0. However, theHiggs field is also represented by four compo-
nents, where three of them correspond to unphysical Goldstone bosons that disappear during
the Higgs mechanism, and one component is a physical Higgs boson.

In addition to this pleasant categorisation, the spin of the particle consequently causes the
particle to have different statistical behaviour. The other way around, quantum statistics of
the particles are related to the value of spin.

2.1.1 Statistical behaviour

Statistics of elementary particles are introduced for two types of particles. The first family of
particles is called fermions, and their most characteristic property is that they carry a half-
integer spin. In contrast, the other group is called bosons, and they carry an integer spin.

Fermions

The fermions follow Fermi-Dirac statistics that were named after and introduced by Enrico
Fermi [12, 13] and Paul Dirac [14] independently in 1926.

Fermions follow the law called the Pauli exclusion principle. This principle was introduced for
electrons byWolfgang Pauli in 1925 [15] and later in 1940 it was extended to all fermions. The
Pauli exclusion principle states that no more than one identical particle can occupy the given
quantum state simultaneously.

From this principle, it is possible to construct the grand canonical partition function for a grand
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canonical ensemble for a system of identical fermions in thermodynamic equilibrium as

𝑍𝐹𝐷
𝐺 =∏

𝑖
[

1
∑
𝑛𝑖=0

exp(𝑛𝑖
𝜇−𝐸𝑖
𝑇

)] =∏
𝑖 [

1+exp(
𝜇 −𝐸𝑖
𝑇

)] ,

where 𝑛𝑖 is the number of particles occupying a given microstate, 𝐸𝑖 is the energy of the mi-
crostate 𝑖, 𝑇 is the temperature, and finally, 𝜇 is the chemical potential. It is possible to derive
the grand potentialΩ from the grand canonical partition function 𝑍𝐹𝐷

𝐺 as

Ω𝐹𝐷 =−𝑇 ln𝑍𝐹𝐷
𝐺 = 𝑇 ∑

𝑖
ln(1+exp(

𝜇 −𝐸𝑖
𝑇

)) .

Grand potentialΩ can be used, amongst other things, to derive the mean number of fermions
inside the thermodynamical system

⟨𝑁𝐹𝐷⟩ =∑
𝑖
𝑛𝑖 =−(

𝜕Ω𝐹𝐷

𝜕𝜇
)
𝑉 ,𝑇

=∑
𝑖

exp (𝜇−𝐸𝑖𝑇 )

exp (𝜇−𝐸𝑖𝑇 )+1

There is a straightforward path from this result to obtain the average number of fermions in a
single-particle state

𝑛𝑖 =
1

exp (𝐸𝑖−𝜇𝑇 )+1
.

This formula is called the Fermi-Dirac distribution and is the basis for Fermi-Dirac statistics.

There are other properties of fermions. First, they follow the rule of half-integer spin. This
means that fermions can have spin only 1

2 ,
3
2 ,

5
2 , etc. Next, the multiparticle wave function is

antisymmetric. Finally, fermionic fields follow anticommutation relations

{𝜓,𝜓} = {𝜓,𝜓} = 0, {𝜓(�⃗�, 𝑡),𝜓(�⃗�, 𝑡))} = 𝛾0𝛿(�⃗� − �⃗�),

where𝜓 and𝜓 are Dirac spinor and conjugated spinor with spin 1
2 . They are either Grassman-

valued fields or field operators depending on whether one considers canonical quantisation or
Grassmann path integral representation. This topic will be discussed in more detail in Section
2.2. Finally, 𝛾0 is a gamma matrix (see Appendix A.3).

Bosons

Bosons behave according to Bose-Einstein statistics. This statistical descriptionwas developed
by SatyendraNathBose in 1924 [16]. Albert Einstein translatedBose’swork fromEnglish toGer-
man and helped Bose publish his findings in the Zeitschrift für Physik journal. Einstein later
collaborated with Bose on the further development of this theory.

Bosons, in contrast to fermions, do not follow the Pauli exclusion principle. This means that
the occupancy number of the bosons 𝑛𝛾

𝑖 is not limited and can be any positive integer. Again,
it is possible to construct the grand canonical partition function for a grand canonical ensem-
ble for a system of identical bosons in thermodynamic equilibrium

𝑍𝐵𝐸
𝐺 =∑

𝛾
exp(∑

𝑖
𝑛𝛾
𝑖
𝜇−𝐸𝑖
𝑇

) =∏
𝑖

1

1−exp (𝜇−𝐸𝑖𝑇 )
,
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where𝐸𝑖 is the energy of themicrostate 𝑖, 𝑇 is the temperature, and 𝜇 is the chemical potential.
Same as for fermions, it is possible to derive the grand potential

Ω𝐵𝐸 =−𝑇 ln𝑍𝐵𝐸
𝐺 = 𝑇 ∑

𝑖
ln(1−exp(

𝜇 −𝐸𝑖
𝑇

))

and the average number of bosons

⟨𝑁𝐵𝐸⟩ = −(
𝜕Ω𝐵𝐸

𝜕𝜇
)
𝑉 ,𝑇

=∑
𝑖

exp (𝜇−𝐸𝑖𝑇 )

1−exp (𝜇−𝐸𝑖𝑇 )
.

Finally, the expected number of particles in the energy state 𝑖will be

𝑛𝑖 =
1

exp (𝐸𝑖−𝜇𝑇 )−1
. (2.1)

In contrast to theFermi-Diracdistribution, the equation 2.1 is thebasis for Bose-Einstein statis-
tics.

To complete the description of bosons, their properties are in contrast to fermions. They have
an integer spin (that is, 0,1,2, ...). Their multi-particle wave function is symmetric. Finally,
bosonic fields follow the commutation relations

[𝜙,𝜙] = [𝜋,𝜋] = 0, [𝜙(�⃗�, 𝑡),𝜋(�⃗�, 𝑡)] = 𝑖𝛿(�⃗� − �⃗�),

where 𝜙(𝑥) is the scalar field and 𝜋(𝑥) is its conjugate momentum. Similar relations would
apply to vector fields 𝐴𝜇 since they are also bosons.

2.1.2 Classification of particles of matter

There are twelve particles of matter, all of which are fermions. The Standard Model presumes
that all twelve particles ofmatter areDirac fermions and that all twelve particles have their own
antiparticle. In total, this involves twelve particles and twelve antiparticles of matter. However,
regarding thenumber of particles andantiparticles ofmatter, somebeyond the StandardModel
(BSM) theories assume the Majorana nature of neutrinos. This would imply that neutrinos are
antiparticles of themselves.

Leptons

Leptons come in three different flavours, called electron, muon, and tauon. The electron neu-
trino 𝜈𝑒 was theorised byWolfgang Pauli in 1930 [17] due to seemingly violated energy conser-
vation in decay𝛽, and in 1956 it was discovered by Clyde Cowan and Frederick Reines [18]. The
muonneutrino𝜈𝜇 wasdiscoveredbyLeonM.Lederman,MelvinSchwartz, and JackSteinberger
in 1962 [19] in an experiment at Brookhaven National Laboratory (BNL). The tauon neutrino
𝜈𝜏 was a direct implication of the existence of the third flavour of leptons [20]. However, direct
observation of the tau neutrino 𝜈𝜏 was performed in 2000 by the DONUT collaboration [21].

There is one phenomenon about neutrinos that the Standard Model cannot explain and that
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is their mass. For all fermions, we can use chirality projection operators to obtain components
with left-handed and right-handed helicity

𝜓𝐿 =
1
2
(1−𝛾5)𝜓, 𝜓𝑅 =

1
2
(1+𝛾5)𝜓, 𝜓𝐿 =𝜓

1
2
(1+𝛾5), 𝜓𝑅 =𝜓

1
2
(1−𝛾5),

where 𝜓 is the Dirac bispinor, 𝜓 = 𝜓†𝛾0 is the adjoint bispinor and 𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 (see A.3 for
more details on gamma matrices 𝛾𝜇). One can formulate the Lagrangian density mass term for
neutrinos as

𝑚𝜈𝜈𝜈 =𝑚𝜈(𝜈𝐿+𝜈𝑅)(𝜈𝐿+𝜈𝑅) =𝑚𝜈𝜈𝐿𝜈𝑅+𝑚𝜈𝜈𝑅𝜈𝐿.

However, since neither a right-handed neutrino nor a left-handed antineutrino was observed,
both terms in the last expression would be zero.

In contrast, kinematic observations of muon and neutron decay energy spectra showed that
neutrinos are not massless. One of the kinematic experiments is the Karlsruhe Tritium Neu-
trino (KATRIN) experiment, whichwas built tomeasure themass of the neutrino on the sub-eV
scale. The combined KATRIN runs from 2019 and 2021 resulted in the upper limit of neutrino
mass 𝑚𝜈 < 0.8 eV at 90% CL [22] and the experiment continues to improve statistical uncer-
tainties.

Furthermore, Pontecorvo, Maki, Nakagawa, and Sakata proposed the neutrino oscillation [23,
24, 25] as a unitary transformation that relates the eigenbasis of the flavour and themass eigen-
basis

𝜈𝑖 =𝑈𝑎
𝑖 𝜈𝑎,

where 𝜈𝑖 are neutrinos with definite mass𝑚𝑖, 𝜈𝑎 are neutrinos with definite flavour (𝜈𝑒,𝜈𝜇,𝜈𝜏),
and𝑈𝑎𝑖 is the Pontecorvo–Maki–Nakagawa–Sakata matrix. The neutrino oscillation is the out-
come of gauge theorywithmassive neutrinos and indeed this oscillationwasmeasured [26, 27,
28, 29, 30].

Majorana neutrinos could solve this dispute. However, the Majorana neutrino mass term also
brings about a violation of lepton-number conservation. This violation would make processes
such as neutrinoless double-𝛽 decay would be possible. Despite all efforts, this neutrinoless
double-𝛽 decay was not yet observed.

Neutrinos interact only through weak interaction. This makes any interaction with matter very
complicated, and they can easily pass through the planet without any interaction very easily.
The amount of neutrino flux from the Sun at Earth is aroundΦ= 7 ⋅1010 cm−2s−1 [31] and they
are hardly detectable.

To complete the set of six leptons, there are three charged lepton flavours named electron 𝑒−,
muon 𝜇−, and tauon 𝜏−. Charged leptons (antileptons) carry a negative (positive) value of the
elementary charge |𝑒| that can be expressed in SI units as |𝑒| = 1.602177 ⋅ 10−19 Q [32]. Their
charge causes a much stronger interaction with matter than in the case of neutrinos. Electron
𝑒− was the very first particle of the StandardModel discovered in 1897 by J. J.Thomson [33] due
to its intense interaction with matter on large length scales.

Positron, an antiparticle of an electron, was predicted in 1928 by Paul Dirac [34] in his famous
paperwherehealso introduced theDirac equation,whichwill bediscussedhere later inSection
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2.2. Thepositronwas discovered byCarl David Anderson in 1932 [35]. Its observable properties
are the same as those for the electron, but the charge of the positron is opposite.

Muon 𝜇− was discovered in 1937 by Carl D. Anderson and Seth Neddermeyer [36]. The muon
is heavier flavour of the electron. The heaviest lepton observed is tauon 𝜏−. This particle was
discovered by Martin Lewis Perl, Yung-su Tsai, and his colleagues [20] at the Stanford Linear
Accelerator Center (SLAC) and Lawrence Berkeley National Laboratory (LBL). The increase in
mass is related to the decrease in the mean lifetime. Both the mass and the mean lifetime for
all the tree electron flavours are shown in Table 2.1.

Table 2.1: Masses andmean lifetimes for charged leptons. All valueswere retrieved
from the Review of Particle Physics 2020 [32]

Flavour Mass𝑚 [MeV] Mean lifetime 𝜏 [s]
𝑒 0.510 > 6.6×1035

𝜇 105.658 2.197×10−6

𝜏 1776.86±0.12 (290.3±0.5)×10−15

Leptons do not interact with a strong interaction. This could make them appear to be not that
important in the case of studying energy loss in the medium. However, the fact that leptons
are essentially connected to electroweak gauge bosons means that we can reconstruct those
bosons with charged leptons. Furthermore, if one were to find an appropriate hadronic jet on
the ”other side” of the same event, one would obtain an energy of the electroweak probe that
corresponds to an energy of the hadronic jet not modified by the medium. Comparing this to
the actual measurement of modified energy of the hadronic jet, one can directly observe the
energy loss inside the strongly interacting medium.

In the case of heavy-ion colliders, neutrinos are the so-called missing energy. This means that
we cannot detect themwell in those experiments because of theirweak interactionwithmatter.
Therefore, we cannot use themmuch for the study of jet energy loss in relativistic heavy-ion col-
lisions. However, they can still remind us that there is something beyond the standard model.

Quarks and hadrons

Quarks as fundamental particles are confined inside the particles called hadrons. Throughout
the last 105 years, numerous hadrons have been discovered that slowly solved the puzzle of
more fundamental physics. The proton was discovered in 1886 because it corresponds to the
hydrogen ion H+. However, from a particle physics point of view, it was identified as a particle
aswenowknow it from1917bynoother thanErnest Rutherford [37]. 15 years after Rutherford’s
experimental observations on the atomic nucleus, James Chadwick discovered the neutron in
1932 [38] as the second component of the nucleus. Later, in 1947 two hadronswere discovered.
The kaon 𝐾, the first strange particle was discovered by George Dixon Rochester and Clifford
Charles Butler [39], and the pion 𝜋was discovered by Cecil Powell, César Lattes, and Giuseppe
Occhialini [40].

This pattern of continuous discoveries made Enrico Fermi and Chen-Ning Yang propose the
Fermi-Yangmodelbasedon the idea thatmesons likepionsareboundstatesofnucleon-antinucleon
pair. Their 1949 paper [41] clearly states the motivation:
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In recent years several new particles have been discovered which are currently assumed to be
“elementary”, that is, essentially, structureless. The probability that all such particles should

really be elementary becomes less and less as their number increases.

This would be in conflict with the Yukawa theory of strong interactions [42], where pion is ex-
changed between nucleons as a force carrier.

This idea was further extended by Shoichi Sakata when Λ and Λ hyperons were discovered.
Sakata model was introduced in 1956 [43] and effectively added Λ and Λ for the Fermi-Yang
model. Although these models did not describe reality, they proposed a correct idea of the in-
ner structure of some hadrons.

This idea of a hadronic inner structure was further explored by numerous physicists like Yval
Ne’eman or Murray Gell-Mann. Their goal was to build a theory of strong interactions upon
some symmetry and assign multiplets to mesons and baryons. Ne’eman [44] and Gell-Mann
[45] independently described the strong interaction with non-Abelian gauge invariance ac-
cording to the Yang-Mills prescription [10] with the underlying symmetry group SU(3) in 1961
[44]. The model assumed the existence of vector mesons, which have not yet been discovered,
and their role was to be force carriers. Furthermore, vector mesons should have self-coupling
interaction and should also carry a charge connected to this theory. Pseudoscalarmesonswere
connected to the octet, and in thismodel𝜋0 and𝜂mesonswere predicted. Later that year, Gell-
Mann revisited his ideas and his eightfold way model began to focus more on categorisation of
hadrons into multiplets as SU(3) representations [46].

With continuous experimental progress, many new resonances such as 𝐾 ∗, Σ∗, 𝜌, Δ, 𝜂, 𝜙, Ξ∗

werediscovered. BothGell-MannandNe’emanwere able tofit thoseobservations to theirmod-
els, and both predicted the existence of a Ω baryon with mass around 1670 MeV. Later, it was
discovered [47] and the actual mass of theΩ baryon is 1672.45±0.29MeV [32].

In 1964, Murray Gell-Mann [48] and George Zweig [49] independently introduced the addi-
tive quark model. Zweig called quarks aces. They should be isospin doublet and singlet, all of
those three should carry baryon number 1

3 , and SU(3)𝑓 should be adopted as a higher symme-
try for strong interactions. It is important to note that the Ne’eman [44] and Gell-Mann [45]
work could very well resemble modern colour symmetry SU(3)𝑐. However, SU(3)𝑓 symmetry is
flavour symmetry connected to aces (quarks). This symmetry was assumed to be universally
broken because of the mass difference among the aces (quarks). Gell-Mann were more de-
tached to making strong statements and wanted to leave the work to experimenters.

Zweig’s aces did not remain in the particle physics nomenclature. This could also be due to
the fact that George Zweig was a fresh postdoctoral researcher and Murray Gell-Mann was re-
spected and established theoretical physicist. He named quarks after the word in the book
FinnegansWake by James Joyce. In the novel, the protagonist sees seagulls that fly behind the
boat in a dream, and they say:

Three quarks for Muster Mark!
Sure he hasn’t got much of a bark

And sure any he has it’s all beside the mark.

Thenumber three in the original text fits the nature of quarks in well-known baryons. Theword
itself in thebook is taken fromaGermanwordof Slavic origin,which represents adairyproduct.
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The flavour SU(3)𝑓 model was powerful in predicting hadrons. This was due to its multiplet
representation. Both baryons and mesons had multiplets. There was baryon octet and decu-
plet with 𝐽𝑃 = 1

2
+ and 𝐽𝑃 = 3

2
+, respectively. The mesons were represented as an octet of pseu-

doscalar mesons with 𝐽𝑃𝐶 = 0−+ and an octet of vector mesons with 𝐽𝑃𝐶 = 1−−. See Figure 2.1.

The mesons are represented as the direct product of the triplet [3] and antitriplet [3] which
are fundamental representations. These two fundamental representations correspond to three
quarks (𝑢, 𝑑, 𝑠) and three antiquarks (𝑢, 𝑑, 𝑠) of flavour symmetry SU(3)𝑓. The Kronecker prod-
uct can be decomposed into the direct sum of multiplets

[3]⊗ [3] = [8]⊕ [1].

This applies to both pseudoscalar and vector mesons. The two octets can be seen with their
respective singlets in the middle in the bottom row of Figure 2.1. The singlets are 𝜂′ for the
pseudoscalar mesons and 𝜙′ for the vector mesons.

Figure 2.1: Baryon octet (top left ), baryon decuplet (top right ), pseudoscalar me-
son octet and singlet (bottom left ), and vector meson octet and singlet (bottom
right ). [50]

Baryons (antibaryons) are made up of three quarks (antiquarks). That is why its representation
is composed from direct product of three fundamental representations [3] ([3]) and is decom-
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posed into direct sum
[3]⊗ [3]⊗ [3] = [10]S⊕[8]M⊕[8]M⊕[1]A,

where two octets withmixed symmetry in flavour are connected by unitary transformation and
thus describe samephysical states. Furthermore, a flavour singlet baryon that is antisymmetric
in flavour cannot exist in the graund state. This leaves thementioned octet [8]M and symmetric
decuplet [10]S. Both can be seen in the top row of Figure 2.1.

The strong interaction based on the flavour symmetry SU(3)𝑓 assumed the existence of three
quarks (𝑢, 𝑑, 𝑠). However, physicists like James Bjorken and Sheldon Glashow theoretically
proposed the fourth quark 𝑐 in 1964 [51]. This would fix the suppression of flavour-changing
neutral current processes and axial anomalies in electroweak interaction. Indeed, it was dis-
covered in the charmonium meson composed of quark 𝑐 and antiquark 𝑐 in 1974 [52, 53]. This
meson was discovered by two independent groups. BNL group led by Samuel Ting gave this
new particle the name 𝐽 [52]. SLAC research group led by Burton Richter called this particle 𝜓
[53]. This resulted in the combined name 𝐽/𝜓.

This obviously introduced a new underlying symmetry for strong interaction models at that
time. A new SU(4)𝑓 symmetry would have fundamental representations of the quartet [4] and
theantiquartet [4]and threegeneratorsofmutual commuting. Thiswould introduce twobaryon
20-plets

[4]⊗ [4]⊗ [4] = [20]S⊕[20]M⊕[20]M⊕[4]A,

and a 15-plet with a singlet for both pseudoscalar and vector mesons as

[4]⊗ [4] = [15]⊕ [1].

Since there are three commuting generators, multiplets can be displayed on a 3D grid, as can
be seen in Figure 2.2.
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Figure 2.2: Baryon20-plets (top row), pseudoscalarmeson15-plet and singlet (bot-
tom left ), and vector meson 15-plet and singlet (bottom right ). [32]

Apart from including a new quark, there were attempts to use flavour-spin underlying sym-
metry. In the case of SU(3)𝑓, this would mean that the symmetry would be extended to the
flavour-spin symmetry SU(3)𝑓 × SU(2)𝑠 = SU(6)𝑓𝑠. Therefore, baryons would be assigned to a
fully symmetric 56-plet, despite fermions having fully antisymmetric wave function.

The model also does not explain why free quarks or other exotic bound states, such as di-
quarks, are not observed. Oscar Greenberg introduced the theoretical concept that quarks are
parafermions of rank three in 1964 [54]. This idea could be connected to the later development
of QCD and colour SU(3) symmetry. In 1966, Yoichiro Nambu constructed a simple colour
confinment model in non-relativistic quantum mechanics [55, 56]. Quarks in this model are
infinitely heavy, mesons and baryons have finite mass because of the attractive super-strong
force mediated by eight gluons, and other bound states are infinitely heavy too because of the
repulsive force. Infinitely heavy states are impossible to observe. More information about this
colour confinement is given in Section 2.3 which is dedicated to QCD.

This was the foundation for the quarks with a colour charge. Another lead was also the exis-
tence of Δ++ baryon with spin 3

2 that was composed of three 𝑢 quarks. The fact that quarks are
fermions and thus follow the fermi exclusion principle. They should have the same spin ori-
entation, which indicates that there is some other quantum number with three levels or more.
This turned out to be exactly three colours due to the measurement of the numerical factor
𝑁𝑐 = 3 in the production ratio of hdrons to the muonic pair 𝜇−𝜇+ in the anihilation of the elec-
tron 𝑒− and the positron 𝑒+ (see Section 4.3 for more information).



CHAPTER 2. THE STANDARDMODEL 24

As the colour of the four quarks was established, a new quark was discovered. Similarly to 𝐽/𝜓,
SLAC announced the discovery of theUpsilonmesonΥ in 1976-1977 [57, 58]. This quarkonium
was composed of a new quark 𝑏 and an antiquark 𝑏. The last quark 𝑡was discovered in 1994 in
multijet events [59, 60]. The bound state of the 𝑡 quark has not yet been discovered.

Quarks experience colour confinement, and thus their bound states have to be colour sin-
glet. The colourless state can be easily reached by combining all three colours, or all three
anticolours, or combining the colour and the counterpart anticolour. This cobination repre-
sents baryons (three quarks 𝑞𝑞𝑞), antibaryons (three antiquraks 𝑞𝑞𝑞), and mesons (quark-
antiquark pair 𝑞𝑞).

Table 2.2: Masses and charges of the quarks. All values were retrieved from the
Review of Particle Physics 2020 [32].

Flavour Mass𝑚 Charge𝑄

𝑢 2.16+0.49−0.26 MeV 2
3𝑒

𝑑 4.67+0.48−0.17 MeV − 1
3𝑒

𝑠 93−11+5 MeV − 1
3𝑒

𝑐 1.27+0.02−0.02 GeV 2
3𝑒

𝑏 4.18+0.03−0.02 GeV − 1
3𝑒

𝑡 172.76+0.30−0.30 GeV 2
3𝑒

There are other ways to construct a colour singlet hadron. For example, tetraquarks that are
two quarks and two antiquark states𝑞𝑞𝑞𝑞, figuratively speaking, two mesons in one state. An-
other possible way is the pentaquark with a combination𝑞𝑞𝑞𝑞𝑞 or𝑞𝑞𝑞𝑞𝑞. Again, figuratively
speaking, this combination would be a meson-baryon or a meson-antibaryon combination.
Both tetraquarks [61, 62, 63, 64, 65, 66] and pentaquarks [67] were discovered.

The six quarks carry the full name up (𝑢), down (𝑑), strange (𝑠), charm (𝑐), bottom (𝑏), top
(𝑡). Their masses and charges can be seen in Table 2.2. All have a colour charge either red 𝑟,
green𝑔, blue 𝑏 and their antiparticle counterparts can have colour charges antired 𝑟, antigreen
𝑔, antiblue 𝑏. Because of their charge, they interact strongly via eight gluons.

2.1.3 Force carriers and Higgs boson

The internal symmetry that essentially defines the StandardModel is the local gauge symmetry
SU(3)𝑐 × SU(2)𝐿 ×U(1)𝑌. SU(3), SU(2), and U(1) are compact reductive Lie groups. SU(3) and
SU(2) are non-Abelian Lie groups andU(1) is the belian Lie group.

Intermediate particles arise from the theory when one assumes local gauge symmetry. Their
kinetic term along with the interaction term is added to the Lagrangian density to fulfil the sta-
tionary action principle, thus making the Lagrangian density invariant.

For each generator of the Lie group, one gauge field has to be added. In total, there are 12
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generators of SU(3)𝑐×SU(2)𝐿×U(1)𝑌 local gauge symmetry. Thismeans that there are 12 gauge
vector fields and thus 12 particles of interaction with spin 1. One generator corresponds to
U(1)𝑌, then there are three generators of SU(2)𝐿, and finally eight generators of SU(3)𝑐 (more
about this in Appendix A.4). Let us unravel SU(2)𝐿×U(1)𝑌 and SU(3)𝑐 apart, since the first one
corresponds to the EWT and the second symmetry describes the QCD.

Electroweak bosons

Each gauge field is introduced to preserve electroweak symmetry SU(2)𝐿×U(1)𝑌. There are the
same number of fields as there are generators of the Lie group. There are three weak isospin
generators 𝑇 𝑖 and one weak hypercharge generator 𝑌. The four Yang-Mills fields that arise
directly from electroweak local symmetry, interestingly, do not correspond to physical elec-
troweak bosons𝑊 +,𝑊 −,𝑍 ,𝛾. There are three gauge fields of SU(2)𝐿 symmetry that are called
weak isospin bosons𝑊 𝑖 and one field connected toU(1)𝑌 called a weak hypercharge boson 𝐵.
Gauge fields are massless vector fields. The mass term in Lagrangian density would violate the
local gauge invariance.

The eigenvalues of the third component of the weak isospin generator 𝑇 3 and the weak hy-
percharge generator 𝑌𝑊 are connected to the charge of the particle as

𝑄 = (𝑇3+
1
2
𝑌).

Eigenvalues of the weak isospin projection and the weak hypercharge of the fermions can be
seen in Table 2.3. They are divided into right-handed and left-handed components due to the
different treatment of those cpmponents in EWT. The weak isospin field 𝑊 𝑖 couples only to
left-handed particles. This is why interaction via 𝑊 ± shows a maximum parity, and thus the
V-A theory works as a low-energy approximation violation. Furthermore, the interaction of the
𝑍 boson with fermions partially violates parity.

Table 2.3: Eigenvalues of the third component of the weak isospin generator 𝑇 3

and the weak hypercharge generator 𝑌𝑊 of quarks and leptons.

Left-handed Right-handed

fermion 𝑇3 𝑌𝑊 fermion 𝑇3 𝑌𝑊

𝑢𝐿,𝑐𝐿, 𝑡𝐿 + 1
2 + 1

3 𝑢𝑅,𝑐𝑅, 𝑡𝑅 0 + 4
3

𝑑𝐿, 𝑠𝐿,𝑏𝐿 − 1
2 + 1

3 𝑑𝑅, 𝑠𝑅,𝑏𝑅 0 − 2
3

𝑒−𝐿 ,𝜇
−
𝐿 ,𝜏

−
𝐿 − 1

2 −1 𝑒−𝑅 ,𝜇
−
𝑅 ,𝜏

−
𝑅 0 −2

𝜈𝐿 + 1
2 −1

When gauge field is introduced into the Lagrangian density, there is a coupling constant in the
covariant derivative that dictates the strength of the given interaction mediated by this gauge
field. There are two couplings in electroweak theory that can be used to determine the coupling
of electromagnetism 𝑒 as

𝑒 =
𝑔𝑔′

√𝑔2+𝑔′2
.
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First, theweak isospin coupling𝑔 dictates the interaction strength of theweak isospin field𝑊 𝑖.
Since Fermi theory was the precursor to EWT, the weak isospin coupling 𝑔 is interlinked with
the Fermi constant 𝐺F as

𝐺F

√2
=

𝑔2

8𝑚2
𝑊

⟹ 𝑔2 =
8𝐺F𝑚2

𝑊

√2
,

where 𝑚𝑊 = 80.4335±0.0094 GeV [68] is the mass of the 𝑊 ± bosons. The weak hypercharge
coupling 𝑔′ represents the strength of the weak hypercharge field 𝐵.

Physical fields 𝑊 +,𝑊 −,𝑍 ,𝛾 emerge as a linear combination of the original Yang-Mills fields
𝐵,𝑊1,𝑊2,𝑊3. Neutral electroweak intermediate particles 𝛾 and 𝑍 are combination of the weak
hypercharge boson 𝐵 and the third component of the weak isospin triplet𝑊 3 by means of the
Weinberg angle 𝜃𝑊 rotation as

( 𝛾
𝑍 ) = ( cos𝜃𝑊 sin𝜃𝑊

−sin𝜃𝑊 cos𝜃𝑊
)( 𝐵

𝑊3
) .

𝑊 ± are simply combined from the first and second components of the weak isospin bosons
triplet

𝑊 ± =
1
√2

(𝑊1∓𝑖𝑊2),

so they are Hermitian adjoint fields to each other𝑊 ± = (𝑊 ∓)†. Weak bosons𝑊 ± are the only
gauge bosons that carry charge 𝑄 = ±𝑒 and have a non-zero third component of the weak
isospin 𝑇3 =±1. All gauge bosons have zero weak hypercharge.

The photon 𝛾 has been established as a particle since Isac Newton. The observation of 𝑊 ±

and 𝑍 had to wait a few centuries. The weak bosons were observed by the UA1 collaboration
led by Carlo Rubbia [69, 70] and UA2 collaboration led by Pierre Darriulat [71, 72] at the Super
Proton Synchrotron (SPS) in 1983.

The weinberg angle 𝜃W is related to electroweak coupling constants

sin𝜃W =
𝑒
𝑔
, cos𝜃W =

𝑔
√𝑔2+𝑔′2

, sin𝜃W =
𝑔′

√𝑔2+𝑔′2
,

or to weak boson masses
cos𝜃W =

𝑚𝑊

𝑚𝑍
.

It important to say once again that masses of weak bosons 𝑚𝑊 = 80.4335 ± 0.0094 GeV [68]
and 𝑚𝑍 = 91.1876±0.0021 GeV [32] do not arise from gauge theory itself. This is also true for
fermions. The reason, as already mentioned, is Lagrangian density invariance. The Standard
Model includes ingenious solution to this issue in the formof spontaneous symmetry breaking.

Higgs field, Goldtone bosons, and spontaneous symmetry breaking

Higgsmechanism, alsoknownasAnderson-Brout-Englert-Guralnik-Hagen-Higgs-Kibble-’tHooft
(ABEGHHK’tH) mechanism [73, 74, 75, 76, 77], along with the scalar field are necessary ingre-
dients to achieve tree-level unitarity and mass terms for fermions and weak bosons without
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violating Lagrangian density invariance.

The Higgs field, or alternatively the Higgs-Goldstone field, is a doublet of the complex scalar
field in the StandardModel. Thismeans that theHiggs-Goldstone fieldΦ has four independent
real components

Φ= (𝜙
+

𝜙0) = (𝜙1+𝑖𝜙2𝜙3+𝑖𝜙4
) .

This scalar field is introduced to the Standard Model Lagrangian density with the usual kinetic
term with covariant derivative, with the so-called potential 𝑉 (Φ), and Higgs-fermion Yukawa
interaction terms.

The Higgs potential reads as
𝑉 (Φ) = −𝜇2Φ†Φ+𝜆(Φ†Φ)

2
.

It has a negative mass term with mass 𝜇 and a quadratic self-coupling term with the coupling
constant 𝜆. The doublet nature of the Higgs-Goldstone field implies Φ†Φ = 𝜙2

1 +𝜙
2
2 +𝜙

2
3 +𝜙

2
4

and thus the𝑂(4) symmetry of the Higgs potential 𝑉 (Φ) in this parameterisation.

Higgs potential shifts the minimum energy density state of the Higgs-Goldstone field so that
it does not lie at zero. The ground state of the Higgs-Goldstone field is described by a non-zero
constant field that is also infinitely degenerate. This minimisation of energy happens for a field
configuration

Φ†
0Φ0 =

𝑣2

2
, where 𝑣 =

𝜇
√𝜆

.

Theposition of the ground state can be determined by one radial component and three angular
components, since the potential possesses O(4) symmetry. The Higgs-Goldstone field can be
effectively rewritten to those components with one massive Higgs field𝐻 and three Goldstone
massless fields 𝜋𝑖 as

Φ= exp(
𝑖
𝑣
𝜋𝑖𝜎𝑖)(

0
1
√2
(𝑣 +𝐻)) ,

where the mass of the Higgs field is 𝑚𝐻 = √2𝜆𝑣 = √2𝜇 = 125.25± 0.17 GeV and 𝜎𝑖 are Pauli
matrices (see Appendix A.4 for more details on Pauli matrices). The Lagrangian density is in-
variant with respect to the symmetry SU(2)𝐿, but the ground state is not. This is called sponta-
neous symmetry braking. There are three unphysical, massless fields that are associated with
the potential. Now, it is possible to employ the SU(2) gauge fixing transformation, that is called
a𝑈-gauge. With this choice, we require 𝜋𝑖 = 0. This will remove unphysical Goldstone bosons
from the Higgs-Goldstone field

Φ𝑈 = (
0

1
√2
(𝑣 +𝐻)) .

As a convenient byproduct, spontaneous symmetry braking will bring the mass terms to elec-
troweak bosons via covariant derivative interaction and constant shift in the Higgs field with
the𝑈-gauge. Bosons 𝐵,𝑊1,𝑊2,𝑊3 will then decouple into𝑊 +,𝑊 −,𝑍 ,𝛾 and the result is three
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massive bosons𝑊 ±,𝑍with masses

𝑚𝑊 =
𝑔
2
𝑣 = (

𝜋𝛼
√2𝐺F

)
1

sin𝜃W
,

𝑚𝑍 =
√𝑔2+𝑔′2

2
𝑣 = (

𝜋𝛼
√2𝐺F

)
1

sin𝜃W cos𝜃W
,

and one massless photon 𝛾. It can also be understood that the massless Goldstone bosons
transformed into the longitudinal polarisations of weak vector bosons and thus obtainedmass.
Since the photon 𝛾 does not have mass, it also lacks longitudinal polarisation in its non-virtual
state.

The Higgs mechanism is the spontaneous braking of the symmetry SU(2)𝐿×U(1)𝑌 to the sym-
metryU(1)EM. Lie groupU(1)EM is the local underlying symmetryofQED.Fromthe four-component
Higgs-Goldstone field, only one physical field remains. It is commonly called the Higgs field
carrying electric charge 𝑄 = 0, mass 𝑚𝐻 = 125.10±0.17 GeV [32], weak isospin is 𝑇3 = 1

2 , and
weak hypercharge 𝑌𝑊 = 1.

It was experimentally confirmed by A Toroidal LHC ApparatuS (ATLAS) experiment [78] and
the Compact Muon Solenoid (CMS) experiment [79] at LHC.

An additional important note is that recent results of𝑚𝑊 = 80.4335±0.0094GeV from the Col-
lider Detector at Fermilab II (CDF II) [68] show a discrepancy between experimental measure-
ment and the Standard Model prediction. This could be an indication of BSM physics.

Gluons

The underlying symmetry of a strong interaction is SU(3)𝑐 with a triplet of colours and an an-
titriplet of anticolours as a representation. Lie group SU(3) has eight generators 𝜆д, where д
and other Cyrillic indices run from 1 to 8. Generators 𝜆д are linearly independent 3×3 trace-
less Hermitian matrices. One possible representation is with Gell-Mann matrices, and in this
thesis 𝜆д will be assumed to represent eight Gell-Mann matrices (see Appendix A.4).

Eight gaugevectorfields are introduced topreserveLagrangiandensity invarianceunderSU(3)𝑐.
The colour representation of the gluons is according to SU(3)𝑐. Gluons carry colour and anti-
colour, and therefore SU(3)𝑐 adjoint multiplet of gluons can be described as

[3]⊗ [3] = [8]⊕ [1].

Here we can see the colour octet [8] that can be expressed in the Gell-Mann matrix representa-
tion

(𝑟𝑏+𝑏𝑟)/√2, −𝑖(𝑟𝑏−𝑏𝑟)/√2,
(𝑟𝑔+𝑔𝑟)/√2, −𝑖(𝑟𝑔−𝑔𝑟)/√2,
(𝑏𝑔+𝑔𝑏)/√2, −𝑖(𝑏𝑔−𝑔𝑏)/√2,
(𝑟𝑟−𝑏𝑏)/√2, (𝑟𝑟+𝑏𝑏−2𝑔𝑔)/√6,

and colour singlet [1] that can be described as a normalised 3×3 unity matrix
1
√3

(𝑟𝑟+𝑔𝑔+𝑏𝑏).
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Colour singlet gluon would not feel colour confinement (see Section 2.3.3). The reason is that
the singlet gluon would be colour neutral. The white gluon would behave more like a photon,
and it would imply an infinite range of the strong interaction. This behaviour was not experi-
mentally observed inQCD.Theexclusionof the colourneutral gluon reflects that theunderlying
symmetry of QCD is SU(3)𝑐 rather thanU(3)𝑐 symmetry.

Unbroken gauge invariance requires that massless gauge bosons. This is also true for𝑊 ± and
𝑍. The mass terms with𝑚𝑊 and𝑚𝑍 are obtained from the Higgs mechanism explained above.
Only three Goldstone bosons are absorbed in the gauge and three mass terms are generated.
The photon 𝛾 and eight gluons remain massless according to the Standard Model.

Ne’eman [44] and Gell-Mann [45] predicted the self-coupling interaction for vector mesons
in their SU(3) strong interaction model. This was a decent prediction for QCD. Eight vector
mesons are replaced by eight gluons, and they can interact with each other because of their
colour charge. This self-interactioneffectively limits the rangeof the stong interaction to∼ 1 fm.
This still makes possible strong interaction between hadrons on short length scales. For exam-
ple, nucleons can be bounded inside the atomic nucleus, but the nuleon density inside the
nucleus shows saturation because of the limited reach of this interaction.

The gluonwas experimentallymeasured by the experiments PLUTO,TASSO,MARK-J and JADE
in anihilation of the electron 𝑒− and the positron 𝑒+[80, 81, 82, 83, 84, 85] between 1978-1980.
BottomoniumΥ decays into three gluons (𝑒−𝑒+ →Υ→𝑔𝑔𝑔) approximately in 97% cases. An-
other measured process, dominant at that time, is 𝑒−𝑒+ →𝑞𝑞𝑔. After the anihilation, the pho-
ton splits into a quark-antiquark pair 𝑞𝑞, and one of the quarks radiates the gluon. In this
process, three jets of hadrons are measured, where two of them are narrow and correspond to
the quark and the antiquark. The last jet is wider and corresponds to gluon.

Gluon radiation is one of the primary sources of energy loss within the medium. When a elec-
trically charged lepton goes through the electromagneticmedium (i.e. atmosphere), it radiates
photons. Similarly to QED, when quarks or gluons, collectively called partons, go through the
medium, they can radiate gluons. At the detector level, it is possible that the energy of this
gluon falls outside the reconstructed jet cone. Energy loss of a composite object like a jet does
notmake sense at the parton level since energy is always conserved. However, wemeasure this
phenomenon at the detector level as out-of-the-cone energy loss.

2.1.4 Summary of particles of the StandardModel

There are three generations of leptons and quarks. Regarding leptons, there are three charged
leptons (𝑒−,𝜇−,𝜏−) and three neutrinos (𝜈−𝑒 ,𝜈−𝜇 ,𝜈−𝜏 ). Six quarks (𝑢,𝑑,𝑐,𝑠,𝑡,𝑏) have electric and
colour charges. On top of that, there are another 12 antiparticles as a counterpart to each par-
ticle of matter. Antiparticles carry opposite electric and colour charges and, in the case of neu-
trinos , they exist with the opposite chirality.

The24particlesofmatter (𝑒−,𝜇−,𝜏−,𝜈−𝑒 ,𝜈−𝜇 ,𝜈−𝜏 ,𝑢,𝑑,𝑐,𝑠,𝑡,𝑏+antiparticles) can interact through
three weak bosons 𝑊 ±,𝑍. Weak bosons can interact with each other as well. Only electrically
chargedparticles can interactwith thephoton𝛾. This essentially excludesneutrinos (𝜈−𝑒 ,𝜈−𝜇 ,𝜈−𝜏 ),
the Higgs boson𝐻, gluons 𝑔, and 𝛾 itself. Higgs cannot interact with the photon 𝛾 and the glu-
ons𝑔. Since there is no experimentally established right-handed neutrino, the StandardModel
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does not recognise the mass of the neutrino, and thus neutrinos do not interact with the Higgs
boson. Finally, the gluons mediate a strong force between themselves and the quarks.

All the mentioned particles (apart from the antiparticles of matter) are visualised in Figure 2.3.
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Figure 2.3: Particles of the Standard Model. [86]

2.2 Quantum FieldTheory

2.2.1 Relativistic quantummechanics introduction

Quantummechanics had great success from the beginning andwas essential in the foundation
of modern particle physics. Max Planck, Albert Einstein, Niels Bohr, Erwin Schrödinger, Paul
Dirac, Max Born, Louis de Broglie,Werner Heisenberg,Wolfgang Pauli, and many others intro-
duced a way of treating the subatomic world between 1900 and 1930.

With the special theory of relativity, Oskar Klein [87] and Walter Gordon [88] introduced their
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equation for a spinless particle in 1926

(□+𝑚2)𝜙 = 0,

where □ is the d’Alambert operator (see Appendix A.2). The wave function 𝜙 represents the
solution of this Klein-Gordon equation for the scalar boson. Shortly after, in 1928, Paul Dirac
introduced [34] his equation for particles with spin 1

2

(𝑖/𝜕−𝑚)𝜓 = 0,

where /𝜕 = 𝛾𝜇𝜕𝜇 is the 4 × 4 differential operator (see Appendix A.3 for more information on
gamma matrices 𝛾𝜇, Clifford algebra Cl1,3(ℝ), or Feynman’s slash notation). This makes𝑚 a di-
agonal 4×4matrix with the mass of the Dirac particle on the diagonal. Finally,𝜓 is a reducible
four-dimensional representation of ( 12 ,0) ⊕ (0,

1
2 ). Both ( 12 ,0) and (0, 12 ) are representations of

the Lorentz group SO(3,1). It is also useful to define the Dirac adjoint 𝜓†(𝑥)𝛾0 = 𝜓(𝑥) of the
spinor field𝜓 for later use.

According to Richard Feynman, when he met Paul Dirac for the first time, after a long silence,
Dirac said [89]:

I have an equation; do you have one too?

The last particle spices that occur in the Standard Model are vector gauge bosons with spin 1.
Alexandru Proca introduced the equation [90] for this particle with mass𝑚 as

𝜕𝜇𝐹𝜇𝜈+𝑚𝐴𝜈 = 0,

where 𝐹𝜇𝜈 is an electromagnetic tensor defined by the exterior derivative of a differential 1-
form expressed as

𝐹 ≡ d𝐴,

where 𝐴𝜇 is a complex 4-potential of the vector boson (see Appendix A.2). Consequently, one
can rewrite this in covariant form as

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈−𝜕𝜈𝐴𝜇.

Relativistic quantummechanics is lacking for our purposes. There is no simple and elegantway
to include multiparticle interaction, and even the two-body problem is rather complicated.
This kind of description is not utilisable for unstable particles or for higher energies, where
pairs of particles can be created. Even energy fluctuations are enough to create and annihilate
particles. There are also some problems with probabilistic interpretations of the Klein-Gordon
equation. This thesis is focused on the evolution of a multiparticle object that interacts with
the medium, where splittings and scatterings of its components often occur. This is why QFT
has to be introduced.

2.2.2 Classical field theory

QFT is built on the classical field theory of Lagrangian and Hamiltonian mechanics. There are
several options to express QFT. Richard Feynman even described it on QED as [89]:

Quantum electrodynamics is made to appear more difficult than it actually is by the very many
equivalent methods by which it may be formulated.
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ThetwocomplementarymethodsareCanonical quantisationandFunctional integral approach.
Both formulations start with the classical Lagrangian density ℒ and evolve into the quantum
field perturbation theory

Lagrangian densityℒ is connected to actionSas

S=
ˆ

d𝑥4ℒ(𝜙𝑖,𝜕𝜇𝜙𝑖),

where 𝜙𝑖 are fields included in classical field theory. It is possible to use variational derivative
calculus to calculate the variation of an action

𝛿S=
ˆ

d𝑥4 [
𝜕ℒ
𝜕𝜙𝑖

𝛿𝜙𝑖+
𝜕ℒ

𝜕(𝜕𝜇𝜙𝑖)
𝛿(𝜕𝜇𝜙𝑖)] =

ˆ
d𝑥4 [

𝜕ℒ
𝜕𝜙𝑖

𝛿𝜙𝑖−𝜕𝜇 (
𝜕ℒ

𝜕(𝜕𝜇𝜙𝑖)
)𝛿𝜙𝑖].

Action S is significant, since the equations of motion of the system can be derived from the
stationary action principle

𝛿S= 0.

This principle leads to a powerful Euler-Lagrange equation

𝜕𝜇 (
𝜕ℒ

𝜕(𝜕𝜇𝜙𝑖)
)−

𝜕ℒ
𝜕𝜙𝑖

= 0. (2.2)

That is the key equation how to derive equations ofmotion in classical field theory. It is possible
to employ it on the classical Lagrangian densities

ℒscalar =
1
2
𝜕𝜇𝜙𝜕𝜇𝜙−

1
2
𝑚2𝜙2, (2.3)

ℒDirac =𝜓(𝑖/𝜕−𝑚)𝜓, (2.4)

ℒgauge =−
1
4
𝐹𝜇𝑣𝐹𝜇𝑣−

1
2
𝑚2𝐴𝜇𝐴𝜇. (2.5)

That leads to the Klein-Gordon, Dirac, and Proca equations. In field theory, the interaction
arises with additional terms in the Lagrangian density. The interaction mediated by vector
bosons 𝐴𝜇 is added via the covariant derivative

𝜕𝜇 →𝐷𝜇 = 𝜕𝜇+𝑖𝑒𝐴𝜇.

This ensures interaction with scalar fields, Dirac fields, and other vector fields. The interaction
between the scalar field and the Dirac fields is carried out through theYukawa interaction

ℒYukawa = 𝑔Y𝜓𝜙𝜓,

where 𝑔Y is a coupling of the Yukawa interaction. [42] Scalar interaction is just simply

ℒint =−
𝜆3
3!
𝜙3−

𝜆4
4!
𝜙4,

where first term denotes a three-point interaction and the second term stands for a four-point
interaction. Other interaction terms like Fermi four-point-fermion interaction do not appear
in the Standard Model.
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Another classical formulation of classical field theory is made in terms of Hamiltonian den-
sityℋ. The relationship between Lagrangian densityℒ and Hamiltonian densityℋ states

ℋ=𝜋�̇�−ℒ,

where 𝜋 is conjugate momentum to field 𝜙 is defined as

𝜋 =
𝜕ℒ
𝜕�̇�

=
𝛿𝑆[𝜙]
𝛿�̇�

.

Now the transition from classical filet theory to quantum field theory can be made.

2.2.3 Canonical quantization

First, commutator of two operators is identified as the Poisson bracket

−
𝑖
ℏ
[�̂�, �̂�] = {𝐴(𝜋,𝜙),𝐵(𝜋,𝜙)}PB ,

where the Poisson bracket for the continuous degrees of freedom is defined as

{𝐴(𝜋,𝜙),𝐵(𝜋,𝜙)}PB =∑
𝑎

ˆ
d3𝑥[

𝛿𝐴
𝛿𝜙𝑎(𝑥)

𝛿𝐵
𝛿𝜋𝑎(𝑥)

−
𝛿𝐴

𝛿𝜋𝑎(𝑥)
𝛿𝐵

𝛿𝜙𝑎(𝑥)
] .

In the Shrödinger picture the canonical commutation relation for scalar are

[𝜋(�⃗�, 𝑡) ,𝜙(�⃗�′, 𝑡)] = −𝑖𝛿(3) (�⃗� − �⃗�′) , and [𝜙(�⃗�, 𝑡) ,𝜙(�⃗�′, 𝑡)] = [𝜋(�⃗�, 𝑡) ,𝜋(�⃗�′, 𝑡)] = 0.

Here, both the fields 𝜙 and 𝜋 are promoted to operators. When the Klein-Gordon equation is
solved and expressed in Fourier expansion

𝜙(𝑥) =∑
𝑝
[𝑎(𝑝)𝑒−𝑖𝑝𝑥+𝑎†(𝑝)𝑒𝑖𝑝𝑥] .

This promotion also includes the creation operator 𝑎(𝑝) and the annihilation operator 𝑎†(𝑝).
The Lorentz invariant momentum measure in the expansion is defined as

∑
𝑝
≡
ˆ

d3𝑝

√(2𝜋)32𝜔𝑝
,

where 𝜔𝑝 ≡√𝑝2+𝑚2. The commutation relations between the creation and annihilation op-
erators are

[𝑎(𝑝) ,𝑎† (𝑝′)] = 𝛿(3) (�⃗� − �⃗�′) .

The Dirac equation can be solved and expanded into a Fourier expansion as

𝜓(𝑥) =∑
𝑝
∑
𝜆
(𝑎(𝑝,𝜆)𝑢(𝑝,𝜆)𝑒−𝑖𝑝𝑥+𝑏†(𝑝,𝜆)𝑣(𝑝,𝜆)𝑒𝑖𝑝𝑥) , (2.6)

𝜓†(𝑥)𝛾0 =𝜓(𝑥) =∑
𝑝
∑
𝜆
(𝑏(𝑝,𝜆)𝑣(𝑝,𝜆)𝑒−𝑖𝑝𝑥+𝑎†(𝑝,𝜆)𝑢(𝑝,𝜆)𝑒𝑖𝑝𝑥) , (2.7)

where 𝜆 denotes helicity

𝜆 =
1
2
�⃗� ⋅

�⃗�
|�⃗�|

.
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Thenfields𝜓(𝑥)and𝜓(𝑥), creationoperators𝑎(𝑝,𝜆),𝑏(𝑝,𝜆)andannihilationoperators𝑎†(𝑝,𝜆),
𝑏†(𝑝,𝜆) are promoted to operators. Positive and negative energy plane wave solutions are rep-
resented by 𝑢(𝑝,𝜆)e−𝑖𝑝𝑥 and 𝑣(𝑝,𝜆)e𝑖𝑝𝑥 respectively.

In contrast to bosons, atomic spectroscopy showed that the wave function of two electrons
is antisymmetric. This was already mentioned in Section 2.1.1 and this is true for all fermions.
For this reason, the creation and annihilation operators must satisfy anticommutation rela-
tions rather than commutation.

The anticommutation relations of the field𝜓 and its conjugate momentum 𝜋 = 𝑖𝜓† are

{𝜓(�⃗�,𝑡) ,𝜋(�⃗�′, 𝑡)} = 𝑖{𝜓(�⃗�,𝑡) ,𝜓† (�⃗�′, 𝑡)} = 𝑖𝛿(3) (�⃗� − �⃗�′) ,

{𝜓(�⃗�, 𝑡) ,𝜓(�⃗�′, 𝑡)} = 𝛾0𝛿(3) (�⃗� − �⃗�′) .

From anticommutation relations and the solutions in equations (2.6) and (2.7) it is easy to de-
rive anticommutation relations of the creation and anihilation operators

{𝑎(𝑝,𝜆) ,𝑎† (𝑝′,𝜆′)} = {𝑏(𝑝,𝜆) ,𝑏† (𝑝′,𝜆′)} = 𝛿(3) (�⃗� − �⃗�′)𝛿𝜆𝜆′ .

Other anticommutation relations between 𝜓, 𝜓, 𝑎, 𝑎†, 𝑏, 𝑏† are equal to zero. In other words,
they are anticommutative.

The similar procedure is applied for vector bosons. The solution of the Proca equation is

𝐴𝜇 (𝑥) =∑
𝑝
∑
𝛼
𝜀𝜇(𝑝,𝛼)[𝑎(𝑝,𝛼)𝑒−𝑖𝑝⋅𝑥+𝑎†(𝑝,𝛼)𝑒𝑖𝑝⋅𝑥] ,

where 𝜀𝜇(𝑝,𝛼) are polarisation unit vectors of polarisation 𝛼. There are two polarisations of 𝛼
for the massless particle and three polarisations for the massive particle. Next, 𝑎 and 𝑎† are
Heisenberg annihilation and creation operators. Since vector particles are bosons, they fulfil
exactly the same commutation relations as scalars.

Thegoal of this theory is to reachperturbation theory. That statswith thenormalised generating
functional, also called partition function

�̃� [𝜂,𝜂, 𝐽 , 𝑗𝜇] =
𝑍[𝜂,𝜂, 𝐽 , 𝑗𝜇]
𝑍[0,0,0,0]

,

where 𝜂 and 𝜂 are Grassmann sources, 𝐽 is an external source of scalar bosons and 𝑗𝜇 is an
external source of vector bosons. The generating functional is an analogue to the moment-
generating function in mathematical statistics.

The generating functional is given by the Gell-Mann-Low formula [91] as

�̃� [𝜂,𝜂, 𝐽 , 𝑗𝜇] =
⟨0|||�̂� [e

𝑖
´
d4𝑥(ℒint+𝜓𝜂+𝜂𝜓+𝜙𝐽+𝑗𝜇𝐴𝜇)

]
|||0⟩

⟨0|||�̂� [e
𝑖
´
d4𝑥ℒint]|||0⟩

,
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where |0⟩ is the true ground state and �̂� [⋅] is time-ordered product. This can be formally rewrit-
ten as

�̃� [𝜂,𝜂, 𝐽 , 𝑗𝜇] =

=
exp (𝑖

´
d4𝑥ℒint [−𝑖 𝛿

𝛿𝜂(𝑥) , 𝑖
𝛿

𝛿𝜂(𝑥) ,−𝑖
𝛿

𝛿𝐽(𝑥) ,−𝑖
𝛿

𝛿𝑗𝜇(𝑥)])⟨0
|||�̂� [e

𝑖
´
d4𝑥[𝜓𝜂+𝜂𝜓+𝜙𝐽+𝑗𝜇𝐴𝜇]]|||0⟩

exp (𝑖
´
d4𝑥ℒint [−𝑖 𝛿

𝛿𝜂(𝑥) , 𝑖
𝛿

𝛿𝜂(𝑥) ,−𝑖
𝛿

𝛿𝐽(𝑥) ,−𝑖
𝛿

𝛿𝑗𝜇(𝑥)])⟨0
|||�̂� [e

𝑖
´
d4𝑥[𝜓𝜂+𝜂𝜓+𝜙𝐽+𝑗𝜇𝐴𝜇]]|||0⟩

||||𝜂,𝜂,𝐽 ,𝑗𝜇=0

,

where 𝛿
𝛿𝜂(𝑥) ,

𝛿
𝛿𝜂(𝑥) ,

𝛿
𝛿𝐽(𝑥) , and 𝛿

𝛿𝑗𝜇(𝑥) denote functional derivatives, also called variational deriva-
tives. One can use Wick’s theorem to rewrite the time-ordered product with the product of
Feynman propagators.

𝑖Δ𝐹(𝑥,𝑦) = ⟨0|�̂� [𝜙(𝑥)𝜙(𝑦)] |0⟩,
𝑖𝑆𝐹(𝑥,𝑦) = ⟨0|�̂� [𝜓(𝑥)𝜓(𝑦)] |0⟩,

𝑖𝑉 𝜇𝜈
𝐹 (𝑥,𝑦) = ⟨0|�̂� [𝐴𝜇(𝑥)𝐴𝜈(𝑦)] |0⟩,

for the scalar field, the Dirac field, and the vector field. The expression for the nonnormalized
generating functional 𝑍[𝜂,𝜂, 𝐽 , 𝑗𝜇] according toWick’s theorem [92] will be

𝑍[𝜂,𝜂, 𝐽 , 𝑗𝜇] =exp(𝑖
ˆ

d4𝑥ℒint [−𝑖
𝛿

𝛿𝜂(𝑥)
, 𝑖

𝛿
𝛿𝜂(𝑥)

,−𝑖
𝛿

𝛿𝐽(𝑥)
,−𝑖

𝛿
𝛿𝑗𝜇(𝑥)

])× (2.8)

×exp[𝑖
ˆ

d4𝑥d4𝑦(𝜂(𝑥)𝑆𝐹(𝑥,𝑦)𝜂(𝑦)−
1
2
𝐽(𝑥)Δ𝐹(𝑥,𝑦)𝐽(𝑦)+

1
2
𝑗𝜇(𝑥)𝑉

𝜇𝜈
𝐹 (𝑥,𝑦)𝑗𝜈(𝑦))] .

This formof generating functional is used to calculateGreen functions inQFT.However, it is not
possible to express exp (𝑖

´
d4𝑥ℒint [−𝑖 𝛿

𝛿𝜂(𝑥) , 𝑖
𝛿

𝛿𝜂(𝑥) ,−𝑖
𝛿

𝛿𝐽(𝑥) ,−𝑖
𝛿

𝛿𝑗𝜇(𝑥)])directly and it is necessary
to use the Taylor expansion. The order of the Taylor expansion is the order of the perturbative
calculation. After calculating �̃� with this perturbative approach, one can use the functional
derivative with respect to the source functions and calculate the (2𝑚 +𝑛 +𝑘)−point Green
function

⟨𝑥1...𝑥𝑚𝑦1...𝑦𝑚𝑧1...𝑧𝑛𝑤1...𝑤𝑘⟩ =

=
𝑚
∏
𝑙=1

(−𝑖
𝛿

𝛿�̄� (𝑦𝑙)
)
𝑚
∏
𝑗=1

⎛

⎝
𝑖

𝛿

𝛿𝜂(𝑧𝑗)

⎞

⎠

𝑛
∏
𝑖=1

(−𝑖
𝛿

𝛿𝐽(𝑥𝑖)
)

𝑘
∏
𝑖=1

(−𝑖
𝛿

𝛿𝑗𝜇 (𝑥𝑖)
) �̃� [𝜂,𝜂, 𝐽 , 𝑗𝜇]

||||||𝜂,�̄�,𝐽 ,𝑗𝜇=0
.

2.2.4 Functional integral

The functional integral formulation starts with the gauge-invariant functional integralmeasure
composedofmeasures of theGrassmanfields𝜓 and𝜓 andof the c-number fields𝜙 and𝐴𝜇 that
are proportional to

D𝜓∼ lim
𝑁→+∞

𝑁
∏
𝑖=1

d𝜓(𝑥𝑖), D𝜓∼ lim
𝑁→+∞

𝑁
∏
𝑖=1

d𝜓(𝑥𝑖),

D𝜙∼ lim
𝑁→+∞

𝑁
∏
𝑖=1

d𝜙(𝑥𝑖), D𝐴 ∼ lim
𝑁→+∞

𝑁
∏
𝑖=1

4
∏
𝜇=0

d𝐴𝜇(𝑥𝑖).
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The proportionality constant is not in the scope of interest, as it is cancelled out by normalisa-
tion of the partition function �̃� [𝜂,𝜂, 𝐽 , 𝑗𝜇]. The generating function �̃� [𝜂,𝜂, 𝐽 , 𝑗𝜇] in the integral
functional representation is expressed as

�̃� [𝜂,𝜂, 𝐽 , 𝑗𝜇] =

´
D𝜓D𝜓D𝜙D𝐴exp (𝑖S[𝜓,𝜓,𝜙,𝐴𝜇]+ 𝑖

´
d4𝑥[𝜓𝜂+𝜂𝜓+𝜙𝐽 +𝑗𝜇𝐴𝜇])´

D𝜓D𝜓D𝜙D𝐴exp (𝑖S[𝜓,𝜓,𝜙,𝐴𝜇])
, (2.9)

where

S[𝜓,𝜓,𝜙,𝐴𝜇] =
ˆ

d4𝑥[ℒscalar+ℒDirac+ℒgauge+ℒint(𝜓,𝜓,𝜙,𝐴𝜇)] =

=
ˆ

d4𝑥[
1
2
𝜕𝜇𝜙𝜕𝜇𝜙−

1
2
𝑚2𝜙2+𝜓(𝑖/𝜕−𝑚)𝜓−

1
4
𝐹𝜇𝑣𝐹𝜇𝑣−

1
2
𝑚2𝐴𝜇𝐴𝜇+ℒint(𝜓,𝜓,𝜙,𝐴𝜇)] .

S[𝜓,𝜓,𝜙,𝐴𝜇] is the action of interacting scalar, Dirac, and vector fields. If vector field 𝐴𝜇 is
a gauge field, then both action and integral measure are gauge invariant. This means that this
naive approachwould integrate over an infinite number of redundant degrees of freedom. This
is solved by introducing the Faddeev-Popov ghost [93]. Introducing the Faddeev–Popov Δ[𝐴]
determinant in the partition function with the functional integral identity

1 = Δ[𝐴]
ˆ

D𝑈𝛿[ℱ(𝐴[𝑈])],

where the Haar measure D𝑈 is on the infinite dimensional Lie group of gauge transformations
𝑈 andℱ(𝐴[𝑈]) as a gauge fixing condition. The partition function for the free gauge filed will
look like this

𝑍[𝑗𝜇] =
ˆ

D𝑈
ˆ

D𝐴(Δ[𝐴]𝛿[ℱ(𝐴)]𝑒−𝑆[𝐴]) .

When the gauge is fixed, there are no longer redundant degrees of freedom, the partition func-
tion is well behaved, and ghost 𝑐 and antighost 𝑐 Grassman fields are introduced in the La-
grangian density. [94] Gauge-fixed Lagrangian density is no longer gauge invariant but is in-
variant under the Becchi-Rouet-Stora-Tyutin transformation. [94] In the functional derivative
approach, the (2𝑚+𝑛+𝑘)-point Green function can be calculated directly as

⟨𝑥1...𝑥𝑚𝑦1...𝑦𝑚𝑧1...𝑧𝑛𝑤1...𝑤𝑘⟩ =

=
´

D𝜓D𝜓D𝜙D𝐴[𝜓(𝑥1)...𝜓(𝑥𝑚)𝜓(𝑦1)...𝜓(𝑦𝑛)𝜙(𝑧1)...𝜙(𝑧𝑛)𝐴(𝑤1)...𝐴(𝑤𝑘)exp (𝑖S[𝜓,𝜓,𝜙,𝐴𝜇])]´
D𝜓D𝜓D𝜙exp (𝑖S[𝜓,𝜓,𝜙,𝐴𝜇])

.

Alternatively, it is possible to obtain (2𝑚+𝑛+𝑘)-point Green function from the partition func-
tion in equation (2.9) in the same manner as in the canonical quantisation formalism shown
in equation (2.8).

The Green function generated from the generating functional �̃� includes connected and dis-
connected diagrams. The disconnected diagram means that the full Green function is made
up of two or more subdiagrams that are not connected via a propagator. To generate only con-
nected diagrams of non-vacuum type, one can use the generating functional𝑊[𝜂,𝜂, 𝐽 , 𝑗𝜇] that
is connected with the original generating functional �̃� [𝜂,𝜂, 𝐽 , 𝑗𝜇] as

�̃� [𝜂,𝜂, 𝐽 , 𝑗𝜇] = exp(𝑖𝑊[𝜂,𝜂, 𝐽 , 𝑗𝜇]) ⇔ 𝑊[𝜂,𝜂, 𝐽 , 𝑗𝜇] = −𝑖 ln𝑍[𝜂,𝜂, 𝐽 , 𝑗𝜇] .
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After obtaining theGreen functions in theposition space, it ismore convenient to transfer them
to the momentum space. Working in a momentum space is often more simple and conve-
nient to describe given processes. Furthermore, it is a great way to connect the Green function
and scattering amplitudes. The Green function in a momentum space is defined as the Fourier
transform of the Green function in a position space. The Green function in momentum space
then reads as

�̃� (𝑝1, ...,𝑝𝑛,−𝑞1, ...,−𝑞𝑚) = (
𝑛
∏
𝑖=1

ˆ
𝑑4𝑥𝑖𝑒−𝑖𝑝𝑖𝑥𝑖)(

𝑚
∏
𝑗=1

ˆ
𝑑4𝑦𝑗𝑒+𝑖𝑞𝑗𝑦𝑗)⟨𝑥1...𝑥𝑛𝑦1...𝑦𝑚⟩,

where 𝑝1,…,𝑝𝑛 are the momenta of the incoming particles and 𝑞1,…,𝑞𝑚 are the momenta of
the outgoing particles. This essentially denotes the 𝑛→𝑚 process.

2.2.5 𝑆-matrix, cross-section, and decay width

We can finally define the scattering amplitudes that are also called 𝑆−matrix

𝑆𝑓𝑖 = 𝑜𝑢𝑡⟨𝑓|𝑖⟩𝑖𝑛 = 𝑖𝑛⟨𝑓|�̂�|𝑖⟩𝑖𝑛,

that describes the transition from the incoming set of particles 𝑖 to the final set of particles
𝑓. The connection between the 𝑆−matrix and the Green function in momentum space is pro-
vided by the Lehmann-Symanzik-Zimmerman (LSZ) formalism [95]. The LSZ reduction for-
mula states that the 𝑆−matrix elements are proportional to the residue of the multipole struc-
ture of the full Green function and the proportionality factor is given by the renormalisation
factor of the wave function 𝑍𝜙. The LSZ formula in the momentum space reads as

𝑆𝑓𝑖 = lim
𝑝2,𝑞2→𝑚2

𝑝

⎛

⎝

𝑛
∏
𝑖=1

−𝑖(𝑝2
𝑖 −𝑚

2
𝑝)

√𝑍𝜙

⎞

⎠

⎛

⎝

𝑚
∏
𝑗=1

−𝑖(𝑞2𝑖 −𝑚
2
𝑝)

√𝑍𝜙

⎞

⎠
�̃� (𝑝1, ...,𝑝𝑛,−𝑞1, ...,−𝑞𝑚)+𝒟.𝒯.,

where 𝑚𝑝 is a physical mass of the external propagator that is in the LSZ formula amputated
from the full Green function in momentum space �̃�. This is also called the amputated Green
function. The ”𝒟.𝒯.” represents the disconnected terms.

If only the interaction is within the scope of the study, it is possible to divide the operator �̂�
into two parts

�̂� = 1+𝑖�̂� ,

where �̂� is called the 𝑇−matrix. This is equivalent to

𝑆𝑓𝑖 = 𝑖𝑛⟨𝑓|�̂�|𝑖⟩𝑖𝑛 = 𝛿𝑓𝑖+𝑖𝑖𝑛⟨𝑓|�̂� |𝑖⟩𝑖𝑛,

where 𝛿𝑓𝑖 represents instances where particles did not interact. The term ⟨𝑓|𝑇 |𝑖⟩ can be ex-
pressed using the LSZ formalism as

⟨𝑓|𝑇 |𝑖⟩ ≡ (2𝜋)4𝛿4(𝑝𝑖−𝑞𝑓)𝑇𝑓𝑖,

where 𝑇𝑓𝑖 is the transitionmatrix. Furthermore,𝑝𝑖 is the totalmomentumof the incoming par-
ticles and 𝑞𝑓 is the total momentum of the outgoing particles. The delta function 𝛿4(𝑝𝑖 −𝑞𝑓)
ensures the conservation of energy and momentum.
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If the conservation of the momentum is implicitly understood and omitted and the external
legs of the Green function are called amputated, we obtain the scattering amplitude ℳ. The
square of the spin-averaged scattering amplitude |ℳ|2 can ultimately be connected to the dif-
ferential cross-section. The most studied is the𝑚1+𝑚2 →𝑚3+𝑚4 process and the differential
cross-section is

d2𝜎
d2Ωc.m.

=
1

64𝜋2𝑠

||�⃗�′
c.m.

||
||�⃗�c.m.

||
|ℳ|2,

where

||�⃗�c.m.
|| =√

𝜆(𝑠,𝑚2
1 ,𝑚

2
2 )

4𝑠
, ||�⃗�′

c.m.
|| =√

𝜆(𝑠,𝑚2
3 ,𝑚

2
4 )

4𝑠
,

𝜆(𝑥,𝑦,𝑧) = 𝑥2+𝑦2+𝑧2−2𝑥𝑦−2𝑥𝑧−2𝑦𝑧.

Alternatively |ℳ|2 can be used to determine the decay width Γ. Specifically for the𝑀 →𝑚1 +
𝑚2 process as

Γ =
1
2𝑀

|ℳ|2 LIPS2,

where
LIPS2 =

|�⃗�|
4𝜋𝑀

, where |�⃗�| =
1
2𝑀

[𝜆(𝑀 2,𝑚2
1 ,𝑚

2
2 )]

1/2
.

Since scattering properties and decay rates are essential in particle physics, especially in the
experimental sector, it is not surprising that they are extensively examined. The cross-section
from the theory is directly measurable; it is a great comparison between theory and data.

All this is a rather complicated process. For this purpose, the scattering amplitudesℳ are usu-
ally not calculated from theGreen functions using the LSZ formalism, which are obtained from
functional derivatives of the generating functional. There is a shortcut with the established set
of rules, called Feynman rules. These can immediately give the scattering amplitudeℳ or the
Green function �̃�(...). On top of that, there are Feynman diagrams that make Feynman rules
much easier to apply.

2.2.6 Regularisation and renormalisation

Processes in QFT have to be treated perturbatively. Interaction is considered as a perturbation
of free theory and is expanded into series. The interaction coupling 𝑔 is the expansion constant
that must fulfil 𝑔 ll 1 so that the series converges. Adding the order of perturbation means
adding another vertex. Virtual particles can be emitted and reabsorbed. This is called a loop,
and it has to be integrated over all possible momenta of the virtual particle. Loop essential
add d4𝑝 to some integral. Even one-loop diagrams in many QFT interactions end up being di-
vergent integrals. Since this divergence is connected to large momenta it is called ultraviolet
divergence. This divergence is fixed by regularisation and renormalisation.

A very popular regularisation in particle physics is dimensional regularisation [96, 97]. The
key to dimensional regularisation is integration in the number of dimensions 𝑑 rather than 4.
The number of dimensions 𝑑 can be any real number. This procedure then continues with a
rotation of the integral into Euclidean space. This is called aWick rotation. After that, integrals
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are usually solvable by established transformations and formulas. Then analytic continuation
is applied and the dimension is said to be approaching 4 as 𝑑 = 4−𝜀. This will give the result

𝒪(
1
𝜀
)+𝒪(𝛾)+𝒪(𝜀)+ ...,

where 𝛾 is the Euler-Mascheroni constant that usually appears in the finite term due to the
presence of the gamma function Γ(𝑥) or the beta function B(𝑥,𝑦). The first term corresponds
to an infiniteness that is undesirable in physical result.

The infinity of ultraviolet divergence can be absorbed by the bare parameters of Lagrangian
density, such as coupling 𝑔B, mass 𝑚B, and external fields. These quantities can also depend
on the cut-off pointΛ and the scale 𝜇. The cutoffΛ defines the applicability of the theory. This
dependence should also be absorbed, and the physical quantity, such as the cross section 𝜎
should not depend on the scale Λ. The energy scale 𝜇 is then taken as some renormalisation
point energy. The renormalisation group [98] is a very popular approach and represents one of
the most conceptual advances in QFT. The renormalisation group is built on the flow equation

𝜇
d𝑔
d𝜇

= 𝛽(𝑔),

function 𝛽(𝑔) is also called the velocity.

There are also two types of so-called mass divergences. This occurs on the other side of the
phase space than theultraviolet divergences. Themassless gaugebosoncancause the so-called
infrared singularity. This canbefixedby introducing themass of the gauge boson. Another type
of mass divergences are parallel singularities, when two out of three particles become parallel
to each other. This is also caused by massless particles and can be solved in a same manner as
infrared divergence.

Higher orders of QFT must be regularised and renormalised. This leads to improved results,
which are necessary to confirm our theories. In fact, QFT is the most successful and accurate
theory that has ever been developed, and perturbation calculations had a great impact on the
development of particle physics. In high-energy physics specifically, it is of great interest to
observe particle collisions at high energies. It is important to support the experimental mea-
surements of those collisions with a theory that describes the interaction between multiple
particles and can produce quantitative results.

Strong force is dominant for ion-ion collisions. QCD is essential since this work is focused on
the description of the interaction of a quark-gluon plasma with hard partons in heavy-ion col-
lisions. The QCD particles (quarks, gluons, and hadrons) have already been introduced. Now,
let us proceed to the following section, where QCD is mathematically formulated in terms of
QFT.

2.3 Quantum Chromodynamics

Quantum chromodynamics (QCD) is a key interaction in HIC. It describes the interaction be-
tweenquarks and gluons that are components ofQGP.QGPcould be found in the early stages of
the universe (10−10−10−6 s), it is suspected to be present in the centre of compact stars, but the
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only way to recreate the conditions that were at the beginning of the universe here on Earth are
high-energetic collisions. We can then study it and compare our experimental measurements
with the theoretical simulations.

QCD is built on the underlying symmetry SU(3)𝑐. This symmetry represents the symmetry be-
tween colours (𝑟,𝑔,𝑏). The field of the quark 𝑞 is a triplet Dirac field

𝑞 ≡
⎛

⎝

𝑞𝑟
𝑞𝑔
𝑞𝑏

⎞

⎠
=
⎛

⎝

𝑞1
𝑞2
𝑞3

⎞

⎠
=
⎛

⎝

𝜓𝑞,1
𝜓𝑞,2
𝜓𝑞,3

⎞

⎠
,

where each component corresponds to colour 𝑟,𝑔, or 𝑏. The field of gluons is described by an
octet of gauge fields

𝐺 д
𝜇 ,

where Cyrillic indices (д,ш,щ,з) run from 1 to 8. Gluons are an octet field due to the Kronecker
product of colour multiplets [3]⊗[3] = [8]⊕[1], where the singlet is a non-existing white gluon.

The classical QCD Lagrangian density reads as

ℒ(cl)
QCD =∑

𝑞
𝑞𝑖(𝑖/𝐷𝑖𝑗−𝑚𝑞𝛿𝑖𝑗)𝑞𝑗−

1
4
𝐺 д
𝜇𝜈𝐺

𝜇𝜈
д , (2.10)

where 𝐺 д
𝜇𝜈 the gluon field strength tensor

𝐺 д
𝜇𝜈 = 𝜕𝜇𝐺

д
𝜈 −𝜕𝜈𝐺

д
𝜇 +𝑔𝑠𝑓дщз𝐺щ

𝜇 𝐺 з
𝜈 ,

where 𝑓дщз is a structure constant and 𝑔𝑠 is a dimensionless coupling constant. Furthermore,
the covariant derivative is the matrix 3×3 given as

(𝐷𝜇)𝑖𝑗 = 𝛿𝑖𝑗𝜕𝜇+𝑖𝑔𝑠(𝐺
д
𝜇
𝜆д

2
)
𝑖𝑗
,

where 𝜆д are eight Gell-Mann 3 × 3 matrices as a representation of SU(3) group. More rela-
tions between Gell-Mann matrices 𝜆д and structure constants 𝑓дщз with their explicit forms
are shown in the Appendix A.4.

With the notation
𝐺𝜇 ≡𝐺 д

𝜇
𝜆д

2
, 𝐺𝜇𝜈 ≡𝐺 д

𝜇𝜈
𝜆д

2
,

it is possible to show the relation between the gluon field strength tensor𝐺𝜇𝜈 and the covariant
derivative𝐷𝜇 as

𝐹𝜇𝜈 =−
𝑖
𝑔
[𝐷𝜇,𝐷𝜈].

The equations of motion from the Euler-Lagrange equation (see Equation 2.2) are

(𝑖/𝐷−𝑚𝑖)𝑞𝑖 = 0, [𝐷𝜇,𝐺 𝜇𝜈] =
𝑔𝑠
4
𝜆д𝑞𝛾𝜇𝜆д𝑞 =

𝑔𝑠
2
𝜆д𝑗𝜇д = 𝑔𝑠𝑗𝜇,

where the first equation is for the quark fields and the second one is equivalent to Maxwell
equations for gluon field.
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The equations of motion are limited and the perturbation theory reached via generating func-
tional

�̃� [𝜂𝑞,𝜂𝑞,𝐴
д
𝜇] =

´
∏𝑞 (D𝑞D𝑞)D𝐴exp{𝑖S[𝑞,𝑞,𝐴д

𝜇]+𝑖
´
d4𝑥[∑𝑞 (𝑞𝜂𝑞+𝜂𝑞𝑞)+𝑗

𝜇
д𝐴

д
𝜇]}´

∏𝑞 (D𝑞D𝑞)D𝐴exp (𝑖S[𝑞,𝑞,𝐴д
𝜇])

,

where action is

S[𝑞,𝑞,𝐴д
𝜇] =

ˆ
d4𝑥ℒ(cl)

QCD =
ˆ

d4𝑥(∑
𝑞
𝑞𝑖(𝑖/𝐷𝑖𝑗−𝑚𝑞𝛿𝑖𝑗)𝑞𝑗−

1
4
𝐺 д
𝜇𝜈𝐺

𝜇𝜈
д ) .

However, asmentioned in Section 2.2, this naive approachwould integrate over infinite redun-
dant degrees of freedom. To avoid this, it is possible to use the Faddeev-Popov approach [93]
that was also mentioned in Section 2.2. In this procedure, one can choose a gauge fix. One
possible option is covariant gauge fixing

ℱ(𝐴) = 𝜕𝜇𝐴𝜇−𝑓(𝑥),

where 𝑓(𝑥) is some arbitrary function of space-time. This leads to partition function

�̃� [𝜂𝑞,𝜂𝑞,𝐴
д
𝜇] =

´
∏𝑞 (D𝑞D𝑞)D𝐴D𝑐D𝑐exp{𝑖

´
d4𝑥[ℒ(cg)

QCD+∑𝑞 (𝑞𝜂𝑞+𝜂𝑞𝑞)+𝑗
𝜇
д𝐴

д
𝜇]}´

∏𝑞 (D𝑞D𝑞)D𝐴D𝑐D𝑐exp (𝑖
´
d4𝑥ℒ(cg)

QCD)
,

whereℒ(cg)
QCD is covariant gauge fixed Lagrangian density [94] according to Faddeev-Popov [93]

ℒ(cg)
QCD =∑

𝑞
𝑞𝑖(𝑖/𝐷𝑖𝑗−𝑚𝑞𝛿𝑖𝑗)𝑞𝑗−

1
4
𝐺 д
𝜇𝜈𝐺

𝜇𝜈
д −𝑐д𝜕𝜇D

дщ
𝜇 𝑐щ−

1
2𝜉
𝜕𝜇𝐴д

𝜇𝜕𝜈𝐴
𝜇
д ,

where Dдщ
𝜇 is octet covariant derivative

D𝜇 = 𝜕𝜇+𝑖𝑔𝑠𝑇д𝐴
д
𝜇 ,

where (𝑇д)шз = −𝑖𝑓дшз is SU(3) adjoint representation of 3× 3 matrices. Finally, 𝜉 is a gauge
parameter. Since the gauge is a free choice, it can depend on some real parameter 𝜉.

Since QCD is built on a non-Abelian group SU(3), it causes the appearance of the 𝑔𝑠𝑓дщз𝐺щ
𝜇 𝐺 з

𝜈
term ingluonfield strength tensor𝐺 д

𝜇𝜈. This is essentially the reasonwhygluons canhave three-
and four-point interactions with each other. This self-interaction has some intensely interest-
ing physical implications.

2.3.1 The lattice QCD

Theprimary ideabehind the latticeQCDis thediscretizationofEuclideanspace-time, (𝑥1,𝑥2,𝑥3,𝑥4),
with metric diag(1,1,1,1), into lattice 𝑥𝜇 = 𝑎𝑛𝜇, where 𝑎 is called a lattice constant. Quark field
𝑞(𝑛) is placed on the lattice site and the gluon field occurs on the lattice links.

In the lattice QCD, the gluon field is defined as

𝑈𝜇 = exp (𝑖𝑎𝑔𝐺𝜇) .
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Here the 𝑎 is also a ultraviolet cutoff that is required to have the gauge-invariant model. The
operator 𝑈𝜇(𝑛) connects the sites 𝑛 and 𝑛+𝜇. Since this operator is unitary, the link with an
opposite direction can be written as𝑈†

𝜇 (𝑛). With the smallest possible loop [94]

𝑈𝜇𝜈(𝑛) =𝑈†
𝜈 (𝑛)𝑈†

𝜇 (𝑛+𝜈)𝑈𝜈(𝑛+𝜇)𝑈𝜇(𝑛),

calledWilson loop. Wilson loop for continuous limit approaches

lim
𝑎→0

𝑈𝜇𝜈 = 𝑖𝑎2𝑔𝐺𝜇𝜈(𝑛)

one can constructWilson gauge-invariant action [99]

S𝑔 =
3
𝑞2 ∑𝑛

∑
1≤𝜇≠𝜈≤4

(1−
1
3
ℜe[tr𝑈𝜇𝜈]) ,

where ℜe[⋅] denotes real part.

Fermions discretization of gauge-covariant derivative𝐷𝜇 can be done as simple symmetric dif-
ference

𝐷𝜇𝑞(𝑥)⟶
1
2𝑎

[𝑈𝜇(𝑥)𝑞(𝑥+𝑎�̂�)−𝑈
†
𝜇 (𝑥−𝑎�̂�)𝑞(𝑥−𝑎�̂�)] .

However, this leads to a naive fermion action that carries the fermion doubling problem with
it. To solve this issue, one has to introduce a more complexWilson’s Dirac operator

𝐷𝑊 =−
1
2𝑎 ∑

1≤|𝜇|≤4
[𝛿𝑚𝑛+𝜇(𝑟 − 𝑖𝛾

𝜇
𝐸 )𝑈𝜇(𝑛)−𝑟𝛿𝑚𝑛 ] ,

where 𝛾𝜇𝐸 are gamma matrices in Euclidean space.

The final partition function then takes the form of

𝑍 =
ˆ

D𝑈∏
𝑞

D𝑞D𝑞𝑒−𝑆𝑔[𝑈]−∑𝑞𝑞(𝐷𝑊[𝑈]+𝑚𝑞)𝑞

Integrating over quark and antiquark fields leads to form that is suitable for simulations

𝑍 =
ˆ

D𝑈𝑒−𝑆𝑔[𝑈]∏
𝑞
𝑞(𝐷[𝑈]+𝑚𝑞)𝑞.

Since the computational power increases exponentially since 1970 (Moore’s law), it is not a
surprise that the latticeQCDbecame themost powerful tool forQCDcalculations from the first
principle. However, even the most powerful non-perturbative tool for QCD has its limitations.

2.3.2 Coupling constant and asymptotic freedom

Since gluons can interact with each other, higher orders of perturbation theory can greatly af-
fect the force mediated by gluons. Higher orders must be renormalised. This was introduced
in the previous Section 2.2. The regularisation and renormalisation procedures are not unique
and there are many possibilities to choose from. Probably the most popular choices are the
dimensional regularisation and the renormalisation group. The strong coupling constant 𝑔𝑠
satisfies the flow equation

𝜇
d𝑔𝑠
d𝜇

= 𝛽(𝑔).
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Inmodifiedminimal subtraction schemeMS [100], velocity𝛽(𝑔) takes a nice formof an expan-
sion

𝛽(𝑔) = −𝛽0𝑔3−𝛽1𝑔5+..., where

𝛽0 =
1

(4𝜋)2
(11−

2
3
𝑁𝑓) , 𝛽1 =

1
(4𝜋)4

(102−
38
3
𝑁𝑓) .

Since both 𝛽0 and 𝛽1 are positive for the number of quark flavours 𝑁𝑓 ≤ 6, velocity 𝛽 is neg-
ative. This means that the coupling constant 𝑔𝑠 decreases as the energy scale increases. This
behaviour for large energy scales is called an asymptotic freedom [101, 102, 103].

It is possible to express the QCD equivalent of the fine structure constant 𝛼. This is also called
the strong coupling constant 𝛼𝑠(𝜇). The same as 𝑔(𝜇), 𝛼𝑠(𝜇) decreases with increasing energy
scale 𝜇. This asymptotic freedom behaviour can be seen in Figure 2.4.

Figure 2.4: The strong coupling constant 𝛼𝑠 is plotted as a function of the energy
scale𝑄 =𝜇. [104]

Higher orders are much more important in the case of a strong coupling constant 𝛼𝑠 than for
the fine structure constant 𝛼. In a first order ofMS calculation, 𝛼𝑠(𝜇) takes a form as

𝛼𝑠(𝜇) =
1

4𝜋𝛽0 ln(
𝜇2

Λ2
QCD

)

⎡
⎢
⎣
1−

𝛽1
𝛽20

ln(ln( 𝜇2

Λ2
QCD

))

ln( 𝜇2

Λ2
QCD

)

⎤
⎥
⎦
,

where ΛQCD is integration constant that has to be determined by experiment. It is also impor-
tant to take into account the number of quark flavours𝑁𝑓. The increasing number of flavours

𝑁𝑓 decreasesΛQCD. QCD scale parameter for three quark flavoursΛ
(𝑁𝑓=3)
QCD = 332±17MeV [105]

is larger than that for five quark flavoursΛ
(𝑁𝑓=5)
QCD = 210±14MeV [32]. All values are with respect

to the modified minimal subtraction schemeMS.
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The fact that𝛼𝑠(𝜇) is small for large𝜇 implies that the perturbation series behaves well for large
energy scales 𝜇. On the other hand, this is not the case for small energy scales 𝜇. We say that
perturbative QCD is not reliable approximately for energy scales 𝜇 ≲ 5 GeV. This divided QCD
into perturbative calculations from the first principle (pQCD) andnon-perturbativemodel cal-
culations (nQCD).

2.3.3 Colour confinement and quark-gluon plasma

Running coupling constant 𝛼𝑠(𝜇) exhibits very different values on the opposite side of the en-
ergy scale 𝜇 spectrum. Figure 2.4 shows how the running coupling constant 𝛼𝑠(𝜇) increases
rapidly for smaller 𝜇. This trend continues for small 𝜇 until pQCD is no longer applicable.

This can be understood as an anti-screening of the colour charge in vacuumas one approaches
closer to the charge. The effective colour charge decreases with decreasing distance. Anti-
screening (𝜀QCD0 < 1) corresponds to paramagnetism (𝜇QCD

0 < 1) of QCD. [94] This is opposite
behaviour to what we see in QED.

High values of 𝛼𝑠(𝜇) for small 𝜇 essentially introduce the concept of colour confinement. If
the interaction increases with distance, quarks and gluons will be bound inside hadrons. This
is why physicists like Gell-Mann, Bjorken, or Gottfried did not believe that the quark model
actually describes physical particles. It should be just a mathematical representation. Quarks
and gluons, indeed, cannot exist separately and are confined inside colour singlet hadrons.

Introducing an extremely hot and/or dense medium for QCD greatly affects the behaviour of
the colour charge. There is no anti-screening and paramagnetism. Colour charges become
quasi-free, and they can travel inside the medium. This happens when hadronic matter con-
verts into quark-gluon plasma (QGP). This occurs at high temperatures or densities. The tem-
peratureatwhichhadronicmatter cannot exist is called theHagedorn temperature𝑇𝑐 ≈ 160MeV.
Rolf Hagedorn extrapolated the density of hadron resonances and calculated this limiting tem-
perature for hadronic matter [106]. It was belied that it is the maximal temperature since the
QGP was not known by then.

The density in which hadronic matter transits to QGP is just a few times higher than ordinary
nuclear matter. It is discussed if larger neutron stars would be able to decouple nuclear mat-
ter inside their centres. There is extensive research [107] and this question will be decided by
experiments. One possible way to experimentally resolve this question is to measure the tail of
the gravitational wave signal of a neutron star merger event.

This extreme state of matter happens to be in the nQCD part of the energy scale 𝜇 spectrum.
This means that its evolution cannot be calculated from the first principles, and it is necessary
to use models.



Chapter 3

Modelling of Quark-Gluon Plasma

In an ideal case, we would like to describe the soft processes in a heavy-ion collision (HIC)
from the first principles. This means using Standard Model as a framework. However, QFT
has its limitations. When the HIC is reduced to only a strong interaction, therefore, within the
QCD framework, there is a condition that the running coupling constant𝛼𝑠 must be sufficiently
small, so the perturbative approach is applicable. This is fulfilled in the case of hard probes like
heavy-flavour hadrons or jets. There is awide range of applications of pQCD for hardprocesses,
and theywill be described inChapter 4. For a small transfer of four-momentum𝑞, the coupling
constant is significantly larger and pQCD cannot be used. This applies to soft radiation and in-
teractions within the medium.

It is a common agreement in the research field that in the early stages of a heavy-ion collision a
medium is formed. With a sufficient number of particles and a short mean free path compared
to the size of the system (Knudsen number), we can assume that the medium will behave as
a fluid, and we can describe it with hydrodynamic approach. Since the collective flow of the
fluid is comparable to the speed of light, we have to take into account the relativistic effects.
Therefore, the framework for simulations of the medium is relativistic hydrodynamics.

Relativistic hydrodynamics is a powerful tool for describing HIC and results in a good agree-
ment with the measured data [108, 109, 110, 111, 112, 113]. This mainly applies to the hadron
𝑝T spectra and Fourier coefficients of harmonics of the azimuthal momentum distribution.

HIC experiments are located at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven
National Laboratory (BNL) and the Large Hadron Collider (LHC) located at the European Or-
ganization for Nuclear Research (CERN) laboratory. It was experimentally confirmed that in
such collisions, small volumes of matter are formed that consist of quasi-free quarks and glu-
ons [114, 115, 116, 117, 118]. Thismatter is called quark-gluonplasma (QGP), and its properties
allow us to describe its evolution with the second-order viscous relativistic hydrodynamics.

This chapter is dedicated to the different stages of the modelling of relativistic heavy-ion reac-
tions that is tided with the QGP. The simulation starts with the initial state. The product of the
initial state is usually an energy density profile 𝜀 or an entropy density profile 𝑠 in mid-rapidity
at the proper time 𝜏0. The initial state can be non-dynamical one; however, it is also possi-
ble to include preequilibrimu dynamics. This corresponds to a transition process between a
non-dynamic initial state (before 𝜏𝑠) and relativistic hydrodynamics (at 𝜏𝑠). The next step is the

45
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fluid stage itself. State-of-the-art is second-order hydrodynamicswith temperature-dependent
shear viscosity over the entropy density 𝜂

𝑠 (𝑇 ) and 𝜁
𝑠 (𝑇 ) and a modern equation of state (EoS) of

nuclearmatter. With the hydrodynamic evolution, we obtain, besides other things, the temper-
ature evolution of themedium. This determines the freeze-out hypersurface at critical temper-
ature𝑇𝑐. At this isotherm, the transition fromfluid to hadronic degrees of freedomoccurs. After
that, hadrons collide with each other and unstable resonances decay. This must also be taken
into account. In this thesis, JETSCAPE framework [9] is used to simulate all stages of heavy-ion
collision.

3.1 The Initial State of Hydrodynamics

The first two segments of the simulation chain correspond to the initial state of the fluid. The
first stage is a non-dynamical model that crates entropy density profile at mid-rapidity region.
There are many models with very different approaches. TRENTo model [1] is a state-of-the-art
non-dynamical model based on a reduced thickness function, where the inputs are physical
parameters such as the impact parameter 𝑏 and the nucleon-nucleon inelastic cross section
𝜎inel
NN . There are also model parameters that will be introduced later along with the model itself.

The second stage is called preequilibrium. This corresponds to a short period, where matter
still experiences evolution, but the QGP is not yet formed. The initial profile obtained from
TRENTo evolves for some time according to the collisionless Boltzmann equation. The code
used in this work is called freestream-milne [2].

Regrettably, the initial state of HIC cannot be directly assessed with hadronic observables. This
leaves us with the fact that this part of the HIC simulation contributes the most to the uncer-
tainty of the final results [119, 120]. It is possible to employ Bayesian analysis to constrain the
model parameters. However, it is still very difficult to test the physical assumptions behind
the model itself. To show that the TRENTo model [1] is more realistic than the Monte Carlo
Glauber model [121], for example, it is necessary to compare them in very specific ultracentral
U+U collisions.

3.1.1 Physics input for non-dynamical initial state models

To produce an initial state of heavy-ion collision, it is necessary to provide some input to the
model. There are physical parameters that are given to the non-dynamical initial state model,
and there are model parameters that arise in the given framework. This section is devoted to
the physical parameters. Namely, impact parameter𝑏, inelastic nucleon-nucleon cross section
𝜎inel
NN , and nuclear density 𝜌𝐴(�⃗�).

Impact parameter

The impact parameter 𝑏 is defined as the perpendicular distance between the projectile tra-
jectories and the target. In the case of classical physics, it is connected with particle scattering
on the spherically symmetric potential 𝑈( ⃗𝑟). In ion-ion collisions, it is the distance between
centre-of-mass of the nuclei in the direction perpendicular to the beam axis.
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Figure 3.1: Impact parameter during heavy-ion collision. [122]

Left-hand side of the Figure 3.1 shows two nuclei flying towards each other. Those nuclei are
contracted into very thin slabs. This is due to the Lorentz contraction caused by the ultrarel-
ativistic velocity. The longitudinal size of the lead ion is approximately 10000 smaller at LHC
energies. The arrow between the centres of the nuclei is the impact parameter 𝑏.

The right-hand side of Figure 3.1 shows how the nuclei collided. Nucleons that remained intact
and did not interact are called spectators, and those that did interact are called participants.
The number of participants 𝑁part is one of the important variables in the initial state simula-
tions. If we collide two nuclei with atomic mass numbers 𝐴1 and 𝐴2, it is clear that there is a
relationship between the number of participants𝑁part and the number of spectators

𝑁spec =𝐴1+𝐴2−𝑁part.

The impact parameter 𝑏 can be related to the centrality 𝑐. It is very difficult to measure the size
of the medium by femtoscopy, and it would be even more challenging to determine the impact
parameter directly from the observables, since it is≲ 20 fm in size and themeasurement would
have to be very accurate. Centrality 𝑐 can be relatively easily estimated using observables, and
this is why the results of the experimental measurements are expressed in terms of centrality 𝑐.

Centrality is defined as a cumulative probability distribution of the impact parameter 𝑏 [123]

𝑐(𝑏) ≡

´ 𝑏
0

d𝜎
d𝑏′d𝑏

′

´∞
0

d𝜎
d𝑏′d𝑏′

=
1

𝜎inel

ˆ 𝑏

0
𝑃inel(𝑏′)2𝜋𝑏′d𝑏′,

where 𝜎inel is the inelastic nucleus-nucleus cross section. 𝑃inel(𝑏′) is the probability function
of an inelastic collision at a given impact parameter 𝑏′. Centrality 𝑐(𝑏) is called b-centrality
because it depends on the impact parameter 𝑏.

The centrality estimation based on the experimental measurement of the observable 𝑛 is de-
fined [123] as the cumulative distribution of observable 𝑛

𝑐 ≡
ˆ ∞

𝑛
𝑃(𝑛′)d𝑛′.

The observable 𝑛must be proportional to the number of participants𝑁part. Fortunately, there
are many observables that meet this condition. An example of this measurement is shown in
Figure 3.2, since the measurement of the distribution of energy deposited in calorimeters Σ𝐸𝑇
is proportional to the number of participants𝑁part.
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Figure 3.2: ATLAS collaboration measurement of FCal Σ𝐸𝑇 distribution for Pb+Pb
at√𝑠NN = 2.76 TeV divided into 10% centrality bins. [124]

Figure 3.3: Histograms of probability𝑃 of observable𝑛 in STAR [125] (dashed line),
ALICE [126] (dots), ATLAS [124] (dash-dotted line), and CMS [127] (solid line).
Au+Au collisions at √𝑠NN = 140 GeV in case of STAR and Pb+Pb at √𝑠NN = 2.76
TeV in case of ALICE, ATLAS, and CMS. Figure was taken from [123].

Theobservable𝑛differs fromexperiment to experiment. [123]The STAR collaboration uses the
numberof chargedparticles𝑁ch detected in themid-pseudorapidity region |𝜂| < 0.5. [128, 125]
CMS experiment uses the value of the energy deposited in two forward calorimeters with two
symmetric acceptance pseudorapidity windows 3.0 < |𝜂| < 5.2. [127] The ATLAS collaboration
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uses the same method as CMS with different symmetric pseudorapidity windows 4.9 < |𝜂| <
3.2. [124] Finally, the ALICE experiment uses two scintillators with asymmetric pseudorapidity
ranges −3.7 < 𝜂 < −1.7 and 2.8 < 𝜂 < 5.1. [126]

Experimental centrality 𝑐 is an estimate of b-centrality 𝑐(𝑏). In reality, there are fluctuations
in the initial state for the given impact parameter 𝑏, and therefore the number of participants
𝑁part fluctuates. Thismeans that the observable𝑛 that is proportional to this quantity also fluc-
tuates. The distribution 𝑃(𝑛) of the observable 𝑛 is made up of overlapping Gaussian peaks.
This is shown in Figure 3.4, where Monte Carlo Glauber [121] was employed. The Monte Carlo
Glauber model introduces the mentioned fluctuations compared to the optical Glauber model
[129].

Figure 3.4: Number of participants 𝑁part obtained from Monte Carlo Glauber
model calculation divided into centrality 𝑐(𝑏) bins. [126]

Table 3.1: Relation between the centrality class 𝑐 and the impact parameter 𝑏 for
PbPb collisions. [130]

(a)√𝑠NN = 2.76 TeV

𝑐 𝑏min [fm] 𝑏max [fm]
0−5% 0.00 3.47
5−10% 3.47 4.91
10−20% 4.91 6.94
20−30% 6.94 8.50
30−40% 8.50 9.81
40−50% 9.81 11.00
50−60% 11.00 12.00

(b)√𝑠NN = 5.02 TeV

𝑐 𝑏min [fm] 𝑏max [fm]
0−5% 0.00 3.49
5−10% 3.49 4.93
10−20% 4.93 6.98
20−30% 6.98 8.55
30−40% 8.55 9.87
40−50% 9.87 11.00
50−60% 11.00 12.10

Since initial statemodels take the impact parameter𝑏 as input and the experimental results are
formulated in terms of centrality 𝑐, it is necessary to randomly generate events in the impact
parameter range that correspond to a given centrality bin that is determined as a cumulative
distribution of the number of participants𝑁part.
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Tables 3.1a and 3.1a relate the centrality classes 𝑐 to the ranges of the impact parameters 𝑏.

Inelastic nucleon-nucleon cross section 𝜎inel
NN

Nucleon-nucleoncross section𝜎tot
NN is a fundamental input fornon-dynamical initial statemod-

els. Specifically, its inelastic component

𝜎inel
NN =𝜎tot

NN−𝜎
el
NN,

where 𝜎el
NN is the elastic nucleon-nucleon cross section. However, this quantity is not calcu-

lable within perturbative QCD calculations. The reason for this is that the nucleon-nucleon
cross section 𝜎𝑁𝑁 includes both hard processes (𝑝T ≳ 2 GeV) and diffractive soft processes

(𝑝T ∼Λ
(𝑁𝑓)
QCD ≈ 250MeV). Processes that have a scale close to theQCD infrared cut-offparameter

Λ
(𝑁𝑓)
QCD are not possible to calculate within pQCD. In the future, it might be possible to compute

it with an nQCD approach. For example, it might be possible with a more sophisticated lattice
QCD that is capable of working outside the pQCD scale. For now, this quantity has to be taken
exclusively from experimental measurements.

At larger center-of mass energy √𝑠 ≳ 100 GeV of two colliding nucleons, there is negligible
dependence on nucleon species. In other words, proton 𝑝, antiproton 𝑝, neutron 𝑛, and an-
tineutron𝑛 are treated the same due to the strong relevance of sea quarks (see Section 4.2.1 for
more details).

The first approach tomeasuring the inelastic nucleon-nucleon cross section𝜎inel
NN is tomeasure

the total nucleon-nucleon cross section 𝜎tot
NN with the optical theorem

𝜎tot
NN ∝ Im [𝑓el(𝑡 → 0)] ,

where where 𝑓el is the elastic scattering amplitude and 𝑡 is the Mandelstam variable (see Ap-
pendix A.5). Then measure the elastic cross section 𝜎el

NN in the Roman pot forward detectors
and then subtract it. This approach is used by the TOTEM collaboration [131, 132, 133], the
ATLAS collaboration with the ALFA detector [134, 135, 136], and the STAR collaboration [137].

The second approach is the measurement of minimum bias inelastic particle production [138,
139, 140, 141, 142, 143, 144, 145, 146, 147, 148]. This includes the use of central detectors for
proton-proton andproton-antiproton collisions. However, this has generally higher uncertain-
ties because the forward region of the phase space is not covered by detectors. This is solved by
an extrapolation dominated by diffractive contributions.

In addition to proton-proton and proton-antiproton collisions in the collider, proton-air col-
lisions from cosmic radiation can also be used [148]. For this purpose, the Pierre Auger Ob-
servatory [148] and Telescope Array Black Rock Mesa with Long Ridge fluorescence detectors
[149] measure the distribution of the depth of the shower maximum 𝑋max. The tail of this dis-
tribution is sensitive to the proton-air cross section 𝜎N−air. The data for reconstruction of the
geometry of the collision can be obtained from fluorescence telescopes and a surface detector
array. With the Monte Carlo Glauber model [121], one can also deduce the inelastic nucleon-
nucleon cross section 𝜎inel

NN . However, the combination of systematic uncertainties and uncer-
tainty from the Monte Carlo Glauber model makes this measurement the least accurate. The
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main benefit of measuring proton-air collisions is the possibility of a very large centre-of-mass
energy per nucleon-nucleon pair √𝑠NN that can reach values such as √𝑠NN = 57 TeV [148] or
√𝑠NN = 73TeV [149]. At this time, it is not possible to reach those values of the centre-of-mass
energy per nucleon-nucleon pair√𝑠NN at colliders.

Figure 3.5 shows the dependence of the inelastic nucleon-nucleon cross section 𝜎𝑁𝑁 on the
centre-of-mass nucleon-nucleon energy √𝑠. It shows the results of 𝑝𝑝 collisions from UA5
[138] measured at√𝑠= 200GeV and√𝑠= 900GeV, Fermilab experiments E710 [139, 140] and
CDF [141, 142] at√𝑠 = 1.8 TeV. Furthermore, the figure shows 𝑝𝑝measurements from ATLAS
[134, 135, 136, 144], TOTEM [131, 132, 133], ALICE [143], CMS [145, 146], and LHCb [147], all
at the LHC energies √𝑠 = 7 TeV, √𝑠 = 8 TeV, and √𝑠 = 13 TeV. In addition to 𝑝𝑝 and 𝑝𝑝 colli-
sions, proton-air collisions from the Pierre Auger Observatory [148] at√𝑠NN = 57 TeV are also
included.

Figure 3.5: Inelastic nucleon-nucleon cross section 𝜎inel
NN as a function of center-

of-mass nucleon-nucleon energy√𝑠. Experimental data are from UA5 [138], E710
[139, 140], CDF [141, 142], ALICE [143], ATLAS [134, 135, 136, 144], CMS [145, 146],
LHCb [147], TOTEM [131, 132, 133], and Pierre Auger Observatory [148]. Retrieved
from [150].

The values of𝜎inel
NN obtained from the fit ln2(𝑠) of all experiments are shown in table 3.2. The un-

certainties were obtained from the difference between the fits ln(𝑠) and ln2.43(𝑠). The reason for
using fm2 units insteadof barns is because the input𝜎inel

NN forTRENTomust be expressed in fm2.
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Increasing the value of the inelastic nucleon-nucleon cross section 𝜎inel
NN as a function of the

nucleon-nucleon centre-of-mass energy√𝑠NN also causes a slightly increased value of the im-
pact parameter 𝑏 for the same centrality class 𝑐 at different energies in Tables 3.1a and 3.1b.

Table 3.2: Inelastic nucleon-nucleon cross section𝜎inel
NN and full inelastic cross sec-

tion of various collision systems relevant for RHIC, LHC, and FCC. The values of
the inelastic nucleon-nucleon cross section 𝜎inel

NN are obtained from the fit ln2(𝑠)
with uncertainties as a difference between the fits ln(𝑠) and ln2.43(𝑠) for multiple
experiments (see Figure 3.5). [150]

√𝑠NN [TeV] System 𝜎inel
NN [fm2] 𝜎inel [103×fm2=b]

0.027 AuAu 3.15±0.07 −
0.0624 AuAu 3.52±0.05 −
0.20 AuAu 4.16±0.06 6.80±0.03
0.20 CuCu 4.16±0.06 3.43±0.03
2.76 PbPb 6.18±0.09 7.57±0.03
5.02 PbPb 6.76±0.06 7.66±0.03
5.44 XeXe 6.84±0.05 5.67±0.02
5.50 PbPb 6.85±0.05 7.67±0.03

10.60 PbPb 7.53±0.07 7.77±0.03
39.00 PbPb 9.05±0.33 7.90±0.03
5.02 pPb 6.76±0.06 2.08±0.01
8.16 pPb 7.25±0.05 2.12±0.01
8.80 pPb 7.33±0.06 2.13±0.01

17.00 pPb 8.06±0.15 2.18±0.01
63.00 pPb 9.65±0.46 2.28±0.01

Nuclear density 𝜌𝐴

Electric charge density inside nucleus can be obtained experimentally via electron-nucleus
elastic scattering. [151, 152] To probe the nucleus with diameter ∼ 10 fm and overcome the
diffraction effects, it is necessary to use electrons with the De Broglie wavelength 𝜆 ≤ 10 fm.
This corresponds to the momentum of the electrons 𝑝 ≥ 100MeV.

In Figure 3.6 one can see the nuclear charge distribution of 4He, 12C, 16O, 40Ca, 48Ca, 90Zr and
227Pb measured by elastic electron scattering compared to mean field calculation. [153]

Several types of experiments can be performed to determine the distribution of nuclear charge
or just parameters such as radius 𝑅. Such as optical isotope shift, X-ray isotope shift, 𝜇 X-rays
or mirror nuclei energy difference. It is also possible to perform experiments where the output
is a distribution of nuclearmatter. This includes both protons and neutrons. Experiments such
as quantum tunnelling through a potential barrier during 𝛼 decay, Rutherford scattering, and
𝜋 X-rays can interact with the nucleus through strong interaction. [154]
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Figure 3.6: Measurements of nuclear charge density by elastic electron scattering
on 4He, 12C, 16O, 40Ca, 48Ca, 90Zr and 227Pb (solid line) compared to a mean field
calculation by Dechargé and Gogny (dashed line). [153]

Furthermore, one can also measure the neutron density distribution from coherent pion pho-
toproduction [155] or from antiprotonic atoms [156]. This actually results in a density profile
that is different from that of the protons. Using different density profiles for protons and neu-
trons is a more realistic approach and also reduces the uncertainties [150], for example, in the
Monte Carlo Glauber model [157].

These experiments agree on several observations. First of all, the nuclear radius scales as

𝑅 = 𝑟0𝐴
1
3 , (3.1)

where 𝐴 is a mass number and 𝑟0 ≈ 1.2 fm is the proportionality constant. [154] Furthermore,
the experiments also agree on the shape of the nuclear matter/charge distribution. It has a
constant plateau due to the saturation properties of the strong nuclear force that has a finite
reach (∼ 2 fm). Then it goes smoothly and relatively quickly to zero, as can be seen in Figure 3.6.

These properties are incorporated by theWoods-Saxon nucleon potential [158]

𝜌(𝑟) = 𝜌0
1+𝑤( 𝑟𝑅 )

2

1+exp ( 𝑟−𝑅𝑎 )
,

where 𝜌0 corresponds to the measured nucleon density in the centre of the nucleus, 𝑎 is a skin
depth, also called diffusivity parameter. The parameter𝑅 is the half-density nuclear radius that
can be simply obtained from the empirical formula (3.1). Finally, a central depression parame-
ter𝑤 is connected to central density depressionor elevation. In this form, theparameterisation
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is called a 3-parameter Fermi (3pF) distribution. For undepressed nuclear densities (i.e. 𝑤 ≈ 0)
this parameterisation is called a 2-parameter Fermi (2pF) distribution and it is a good approx-
imation for the distribution of nuclear matter of nuclei like 63Cu, 63Xe, 197Au, 208Pb. Even when
the results from 2pF are acceptable, the 3pF distribution captures the nuclear density of heavy
nuclei a lot better, since their ground state has a depression in the central density.

Not all nuclei are spherically symmetric or cannot be approximated by a spherically symmetric
nucleon density (so-called near-spherical nuclei) that can be parametrised by 2pF or 3pF. For
fairly deformed nuclei such as 238U or 27Al, the following nucleon density parameterisation is
used [159]

𝜌( ⃗𝑟) = 𝜌0
1

1+exp ( 𝑟−𝑅(1+𝛽2𝑌20+𝛽4𝑌40)𝑎 )
,

where 𝛽2 and 𝛽4 are parameters of spherical harmonics

𝑌20 =√
5
16𝜋

(3cos2(𝜗)−1), 𝑌40
3

16√𝜋
(35cos4(𝜗)−30cos2(𝜗)+3).

There are still some exceptions, such as 32S and deuteron 2d. In the case of 32S the Gaussian
form [159] is used to describe its nuclear density distribution

𝜌(𝑟) = 𝜌0
1+𝑤( 𝑟𝑅 )

2

1+exp ( 𝑟2−𝑅2𝑎2 )
.

Deuteron nuclear density can be described by Hulthén’s form [160, 159, 161, 162] of the poten-
tial

𝜌(𝑟) = 𝜌0 (
e−𝑎𝑟−e−𝑏𝑟

𝑟
)
2

.

3.1.2 TRENTo

TRENTo model was introduced in 2014 in [1]. This model is based on the deposition of entropy
via a reduced thickness function. It is a non-dynamical model that can be used for proton-
proton, proton-nucleus, and nucleus-nucleus collisions.

The benefit ofTRENTomodel lies in its simplicity. The initial entropy is generated and assumed
to correspond to the initial state of a thermalised fluid at a given starting time 𝜏0. Furthermore,
its agreement with ultracentral U+U collisions is quite unique among binary-collision-based
models.

The participant thickness function 𝑇𝐴(𝑥,𝑦) of the nucleus 𝐴 is defined as

𝑇𝐴(𝑥,𝑦) ≡
ˆ

𝜌part𝐴 (𝑥,𝑦,𝑧)d𝑧,

where𝜌part𝐴 (𝑥,𝑦,𝑧) is thenuclear density functionof thematter that participates in the collision.
With this thickness function, the TRENTo model postulates two things.
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• ”The eikonal approximation is valid: entropy is produced if 𝑇𝐴 and 𝑇𝐵 eikonally overlap”
[1].

• ”There exists a scalar field 𝑓(𝑇𝐴,𝑇𝐵) that converts projectile thicknesses into entropy de-
position” [1].

The scalar field 𝑓 mentioned in the second postulate is proportional to the entropy density in
the mid-rapidity region

𝑓 ∝
d𝑠
d𝑦

||𝜏=𝜏0
𝑦=0

,

where 𝜏0 denotes the proper time for hydrodynamic thermalisation.

The most simple prescription for the scalar field 𝑓would be the sum of the thickness functions

𝑓 ∼ 𝑇𝐴+𝑇𝐵.

This actually corresponds to the wounded nucleon model, since participant thickness func-
tions that include only participating nuclear matter are used. In the case of the Glauber model
[121, 129], probably the most used initial state model in the heavy-ion field, the function 𝑓 is

𝑓 ∼ 𝑇𝐴+𝑇𝐵+𝛼𝑇𝐴𝑇𝐵,

where a term𝛼𝑇𝐴𝑇𝐵 represents the addition of multiple inelastic binary collisions. However, as
was mentioned at the beginning of this section, the results from ultracentral U+U collisions at
the STAR experiment [163, 164] do not agree with this type of scaling.

As the dynamics of the ideal fluid conserves the total entropy of the fireball, the total initial
entropy is equal to the total final entropy. The ratio of entropy 𝑆 to the number of particles𝑁 is
only slightly dependent on the temperature 𝑇 and it is possible to say that these two variables
are proportional to each other

d𝑆 ∝ d𝑁.

In other words, the average number of charged particles in the mid-rapidity region is propor-
tional to

⟨𝑁ch⟩∝
ˆ

𝑓d𝑥d𝑦.

The particle production from ultracentral U+U collisions shows that 𝑓 does not scale with the
number of binary collisions. This conclusion excludes the Glauber model. [165]

The function 𝑓 should be scale invariant

𝑓(𝑎𝑇𝐴,𝑎𝑇𝐵) = 𝑎𝑓(𝑇𝐴,𝑇𝐵) ,

as it is expected that there will be the same entropy deposition 𝑎 times nucleon-nucleon col-
lisions as two thickness functions with 𝑁part = 𝑎. This property is violated by the term 𝛼𝑇𝐴𝑇𝐵
in the Glauber model. Then TRENTo model proposes 𝑓 to be the reduced thickness function
defined as

𝑓 = 𝑇𝑅 (𝑝;𝑇𝐴,𝑇𝐵) ≡ (
𝑇 𝑝
𝐴 +𝑇 𝑝

𝐵

2
)
1/𝑝

,

where 𝑝 is a dimensionless parameter of the TRENTo model. This prescription is known as
the generalised mean, also known as the power mean or Hölder mean. This generalised mean
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interpolates betweenmax (𝑇𝐴,𝑇𝐵) andmin (𝑇𝐴,𝑇𝐵) depending on the value of the parameter 𝑝.
For some values of 𝑝 this is known as quadratic, arithmetic, geometric, or harmonic mean:

𝑇𝑅 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

max (𝑇𝐴,𝑇𝐵) 𝑝→+∞,

√𝑇 2
𝐴 +𝑇 2

𝐵 /√2 𝑝 =+2, (quadratic)
(𝑇𝐴+𝑇𝐵)/2 𝑝 = +1, (arithmetic)
√𝑇𝐴𝑇𝐵 𝑝 = 0, (geometric)
2𝑇𝐴𝑇𝐵/(𝑇𝐴+𝑇𝐵) 𝑝 = −1, (harmonic)
min (𝑇𝐴,𝑇𝐵) 𝑝→−∞.

However, those are just specific values and 𝑝 can be any real number.

Fromtheperspective of entropydeposition, asmentioned,𝑝 =+1 corresponds to thewounded
nucleon model. The picture 3.7 shows a collision of two nucleons with a nonzero impact pa-
rameter. As one can see, for 𝑝 = 1, the deposited entropy originating from nucleon-nucleon
collision is wide across both nucleons. For 𝑝 = 0, the deposited entropy corresponds to a nar-
rower profile placed at the midpoint of the collision. The harmonic prescription, 𝑝 = −1, sup-
presses the entropy deposition along the impact parameter even more.

Figure 3.7: Reduced thickness 𝑇𝑅 that corresponds to entropy deposition at mid-
rapidity at equilibrium time for nucleon-nucleon inelastic collision with nonzero
impact parameter. The green line denotes arithmetic prescription𝑝 =+1, the blue
line corresponds to geometric prescription𝑝 = 0, and orange line is harmonic pre-
scription𝑝 =−1. Thegraydashed linesdenote cross sectionofnucleons. Retrieved
from [1].

When one considers the collision of two protons, their probability of collision at a fixed impact
parameter will be [166]

𝑃coll = 1−exp[−𝜎
inel
𝑔𝑔

ˆ
𝑑𝑥𝑑𝑦𝑇 −

𝑝 𝑇 +
𝑝 ] , (3.2)

where 𝑇±
𝑝 denotes the thickness functions of the protons that are shifted by half of the impact

parameter 𝑏. Furthermore, 𝜎inel
𝑔𝑔 denotes an effective inelastic parton-parton cross section.
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The inelastic parton-parton cross section𝜎inel
𝑔𝑔 is taken so that the total inelastic proton-proton

cross section is equal to the measured inelastic nucleon-nucleon cross section 𝜎inel
NN .

The probability in equation (3.2) determines whether the protons collide. If they do, they both
receive the fluctuating thickness

𝑇𝑝(𝑥,𝑦) =𝑤𝑝

ˆ
𝜌𝑝(𝑥,𝑦,𝑧)d𝑧,

where 𝑤𝑝 is an independently generated factor obtained from the gamma distribution with
unit mean

𝑃𝑘(𝑤) =
𝑘𝑘

Γ(𝑘)
𝑤𝑘−1𝑒−𝑘𝑤, (3.3)

where 𝑘 is another parameter of the TRENTo model. This provides the multiplicity fluctuation
that is observed in the experimental data fromproton-proton collisions. The small parameter𝑘
corresponds to a high value of multiplicity fluctuations, and 𝑘≫ 1 suppresses the multiplicity
fluctuations.

In proton-nucleus and nucleus-nucleus reactions, each nucleon-nucleon collision is assumed
to be independent. The nucleons in the nucleus are sampled according to the Woods-Saxon
distribution or with a more realistic configuration if possible [167].

The fluctuating participant thickness function of nucleus 𝐴 is

𝑇𝐴 =
𝑁part

∑
𝑖=1

𝑤𝑖

ˆ
𝜌part𝑝 (𝑥−𝑥𝑖,𝑦−𝑦𝑖,𝑧−𝑧𝑖)d𝑧,

where 𝑁part is calculated during the collision, where nucleons that interacted at least once
participants are labeled and are included in the number of participants 𝑁part. Furthermore,
(𝑥𝑖,𝑦𝑖,𝑧𝑖)are coordinatesof the 𝑖th nucleon. Finally,𝑤𝑖 are theweights sampled fromthegamma
distribution defined in equation 3.3.

The average multiplicity of charged particles is proportional to the integrated reduced thick-
ness function

⟨𝑁ch⟩∝
ˆ

𝑇𝑅d𝑥y.

The number of charged particles𝑁ch follows the Poisson distribution

𝑃(𝑁ch =𝑘) =
⟨𝑁ch⟩𝑘 exp (⟨𝑁ch⟩)

𝑘!
.

This is how the multiplicity in a given event was calculated in Figure 3.8 for 𝑝 = +1,0−1. The
left plot shows the proton-proton collision at√𝑠= 2.36TeV, the middle plot shows the proton-
lead collision at √𝑠NN = 5.02 TeV, and finally, the right plot represents the lead-lead collision
at √𝑠NN = 2.76 TeV. All plots are compared with data from ALICE [168, 169] measured in the
|𝜂| < 1 pseudorapidity range.
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Figure 3.8: 𝑁ch distributions for arithmetic prescription 𝑝 = +1 (green line), geo-
metric prescription 𝑝 = 0 (blue line), and harmonic prescription 𝑝 = −1 (orange
line) computed from TRENTo for proton-proton at √𝑠 = 2.36 TeV (left), proton-
lead at √𝑠NN = 5.02 TeV (middle), and lead-lead at √𝑠NN = 2.76 TeV (right) com-
pared to data from ALICE [168, 169] measured in |𝜂| < 1 pseudorapidity range.
Retrieved from [1].

From Figure 3.8, it is clear that the prescription 𝑝 = 0 favours lead-lead collisions. This is also
why this value is used in this thesis.

Eccentricity harmonics are great tools for testing the initial statemodel. Especially ellipticity 𝜀2
and triangularity 𝜀3 as a function of centrality. In the case ofTRENTomodel, they are calculated
as

𝜀𝑛e𝑖𝑛𝜙 =−
´
𝑟𝑛e𝑖𝑛𝜙𝑇𝑅d𝑥d𝑦´
𝑟𝑛𝑇𝑅d𝑥d𝑦

.

In Figure 3.9, one can see the ellipticity 𝜀2 on the left plot and the triangularity 𝜀3 on the middle
plot. The graph on the right of Figure 3.9 shows the ratio of rms eccentricities

√⟨𝜀22 ⟩

√⟨𝜀23 ⟩
𝜅 ,

where 𝜅 = 0.6 for LHC collisions.

In case of ellipticity 𝜀2 it is clear that it increases with decreasing parameter𝑝. This is caused by
the profile of the deposited entropy during the nucleon-nucleon collision (see Figure 3.7). With
decreasing 𝑝, the deposited entropy is narrower. This causes sharper edges of the asymmetric
regions that are responsible for the elliptical shape and thus higher ellipticity 𝜀2.

The parameter 𝑝 has almost no influence on triangularity 𝜀3 up to semiperipheral collisions
and little impact on peripheral collisions. This means that the ratio follows the same order as
the ellipticity 𝜀2.

Figure 3.9 shows the ratio of the rms of eccentricities √⟨𝜀22 ⟩/√⟨𝜀23 ⟩
0.6

on the right-hand side.
Among all initial condition models, only IP-Glasma was consistently in agreement with the ex-
perimentalmeasurements. The IP-Glasma results are represented by empty circles, and the ex-
perimental results correspond to the grey area [170]. One can see that the TRENTo model with
prescription 𝑝 = 0 agrees with the dynamical model IP-Glasma and the experimental data.
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Figure 3.9: Ellipticity 𝜀2 (left), triangularity 𝜀3 (middle), and the ratio of the rms
eccentricities√⟨𝜀22 ⟩/√⟨𝜀23 ⟩

0.6
for arithmetic prescription 𝑝 =+1 (green line), geo-

metric prescription 𝑝 = 0 (blue line), and harmonic prescription 𝑝 = −1 (orange
line). Grey band represents allowed band by [170]. Empty circles represent IP-
Glasma results for the ratio of the rms eccentricities. Retrieved from [1].

In the case of ultracentral uranium-uranium collisions, we assume only collisions with fewer
than < 1% spectators. The uranium nucleus is greatly deformed. There are two possible ways
in which they can collide with a small number of spectators. The first orientation is the tip-tip
orientation, where the long axes of both spheroids are aligned with the beam axis. The sec-
ond orientation occurs when the long axes of both spheroids are aligned with each other in the
transverse plane. The second orientation has an elliptical profile in the transverse plane, and
thus a larger ellipticity 𝜀2.

Glauber model predicts that the tip-tip orientation produces more binary nucleon-nucleon
collisions than the side-side orientation. The tip-tip orientationhas a smaller ellipticity 𝜀2 com-
pared to the side-side orientation. Furthermore, the Glauber model predicts that there should
be a decreasing trend in ellipticity 𝜀2 as a function of the charged multiplicity 𝑁ch [171] that
should be proportional to the number of binary collisions 𝑁coll. In Figure 3.10, the Glauber
model prediction is shown by a grey line.

However, there is no evidence of this decreasing behaviour in the data [163, 164]. The ellip-
ticity 𝜀2 remains flat as for the Au+Au collision. There was a suspicion that fluctuations in the
Monte Carlo Glauber model could correct its prediction [172], but it was unsuccessful.

The TRENTo model predicts roughly the same number of charged particles in the tip-tip and
side-side orientation. There is no decrease in ellipticity 𝜀2 as a function of charged multiplicity,
and the model agrees with the measured data from the STAR experiment [163, 164]. The blue
dots with error bars represent the calculations produced by TRENTo. The blue lines are linear
fits to TRENTo results.
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Figure 3.10: Ultra-centralU+UandAu+Au collisionwith 0−0.1% spectators (upper
panel) and 0−1% spectators (lower panel). Blue dots with blue error bars repre-
sent TRENTo calculations with blue lines as a linear fits to those results. Grey lines
represent Glauber+NBD model predictions [163]. Retrieved from [1].

Bayesian analysis of TRENTo parameters

Since it is challenging to constrain the parameters of the initial state, it is necessary to use
Bayesianparameter estimationandadvanced statistical analysis techniques toeffectively study
the parameter space. [173, 174]

The first step is to define the prior 𝑃(x) (i.e. uniform distribution) and randomly generate pa-
rameters with the Latin hypercube algorithm [175, 176]. Then the principal component anal-
ysis [177] is performed. This essentially takes the observables (d𝑁ch

d𝜂 , ⟨𝑝T⟩,𝑣2{2},𝑣3{2},𝑣4{2}) and
linearly transforms them into a new set of linearly uncorrelated variables. This reduces the
number of variables that must be evaluated. The emulator is finished with a Gaussian process
[178] that estimates the principal components without running the model. Finally, the Bayes
theorem

𝑃(x ∣ y) ∝ 𝑃(y ∣ x)𝑃(x)

is sampled by Markov chain Monte Carlo importance sampling with the Metropolis-Hastings
algorithm [179, 180]. 𝑃(y ∣ x) is called likelihood and is evaluated by emulator. 𝑃(x ∣ y) is called
posterior.

Optimal parameters of the TRENTo initial state were extracted from a model-to-data compari-
son using Bayesian analysis in [174]. Themodel comprised theTRENToinitial state, followedby
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a 3+1dimensional viscous hydrodynamics, followedby aparticlisation andahadronic cascade.
The hadronic observables were compared with the Pb+Pb data measured by the ALICE collab-
oration [181, 182, 183, 184, 185, 186, 187]. Parameters obtained from this process are shown in
Table 3.3. These specific parameters are used for the medium simulation in Chapter 5.

Table 3.3: Value of normalisation factors 𝑁2.76 and 𝑁5.02 for two LHC energies,
reduced thickness parameter 𝑝, fluctuation 𝑘, nucleon width 𝑤, and minimum
nucleon-nucleon distance 𝑑. The values of the TRENTo parameters were obtained
from Bayesian analysis [173, 174].

Parameter Value
𝑁2.76 13.94
𝑁5.02 18.50
𝑝 0.0
𝑘 1.044
𝑤 0.956 fm
𝑑 1.27 fm

3.1.3 Preequilibrium dynamics

Preequilibriumdynamics describe the stage of the collision before the QGP is formed. This can
be done via kinetic theory. The evolution of the out-of-equilibrium system is described by the
Boltzmann equation.

𝑝𝜇𝜕𝜇𝑓(𝑥;𝑝) = 𝐶[𝑓], (3.4)

where𝑓 is theone-particledistribution function,𝑝 is theon-shell four-momentum,𝑥are space-
timecoordinates and𝐶[𝑓] is the collisionkernel. For collisionless evolution, the collisionkernel
is zero 𝐶[𝑓] = 0. This thesis uses free-streaming preequilibrium dynamics that corresponds to
collisionless evolution.

The Boltzmann equation is formulated in Milne coordinates

𝜏 =√𝑡2−𝑧2, 𝑥, 𝑦, 𝜂𝑠 =
1
2
ln(

𝑡 +𝑧
𝑡 −𝑧

) ;

𝐸, 𝑝𝑥, 𝑝𝑦, 𝑦 =
1
2
ln(

𝐸+𝑝𝑧
𝐸−𝑝𝑧

) .

Solving the Boltzmann equation (3.4) either analytically or numerically leads to the evolution
of the distribution function in the phase space. If we use the initial state distribution from the
TRENTo model as input at the proper time 𝜏0, we can obtain the distribution function at the
proper time 𝜏𝑠. From this free-streaming evolution, we can obtain the full energy-momentum
tensor

𝑇 𝜇𝜈 (𝑥T,𝜂𝑠,𝜏𝑠) =
𝑔

(2𝜋)3

ˆ
𝑑3𝑝
𝐸

𝑝𝜇𝑝𝜈𝑓(𝑥T,𝜂𝑠,𝜏𝑠;𝑝T,𝑦) ,

where 𝑔 is a degeneracy factor. The energy-momentum tensor 𝑇 𝜇𝜈 can be decomposed into
hydrodynamic variables, such as the energy density 𝜀, the (hydrostatic + bulk) pressure �̃�, and
the shear stress tensor 𝜋𝜇𝜈. This will be shown in Section 3.2.2.
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As a last step, the Landau matching condition is utilised

𝑇 𝜈
𝜇𝑢𝜈 = 𝜀𝑢𝜇.

Landaumatching condition defines the fluid rest frame velocity𝑢𝜇 as the time-like eigenvector
of the energy-momentum tensor 𝑇 𝜇𝜈. This condition produces a unique 𝑢𝜇 since the energy-
momentum tensor has only one time-like eigenvector.

All these variables are then inserted into the hydrodynamic code as initial conditions. Free-
streaming code freestream-milne [2] was used to produce observables in Chapter 5.

3.2 Relativistic Hydrodynamics

From the existing observations, we can tell that QGP behaves like an almost perfect fluid. The
energy-momentum tensor of the perfect fluid in a rest frame is only characterised by the energy
density 𝜀 = 𝜌 and the isotropic pressure 𝑃. In a perfect fluid, there would be no shear viscosity,
bulk viscosity, or heat conductivity. Even when the ideal hydrodynamics of the perfect fluid
could make some predictions such as mass ordering of second harmonics 𝑣2 [108], it is still a
simplification. To obtain a more accurate description of the QGP, we have to consider viscous
corrections. This includes shear and bulk viscosity-to-entropy density ratios as dimensionless
quantities and their temperature dependence.

Although the viscosity of QGP is not significantly large, it plays an important role in HIC sim-
ulations. Later, in this section, we will mention how shear and bulk viscosity appear in the
hydrodynamic equations. Unsurprisingly, this implies that viscosity plays a key role in hydro-
dynamic evolution, such as temperature and size, which are very important for the simulation
of jets inside the medium. Viscosity also affects the distribution of the outgoing particles and,
therefore, low transverse momentum hadronic observables [188].

3.2.1 Ideal hydrodynamics

To obtain the ideal hydrodynamic equations, we have to start with the law of energy and mo-
mentum conservation and the 𝑘 number of conserved charge currents

𝜕𝜇𝑇 𝜇𝜈 = 0, (3.5)
𝜕𝜇𝑁

𝜇
𝑖 = 0, 𝑖 = 1, ...,𝑘. (3.6)

Those 4+𝑘 equations with 10+ 4𝑘 variables arise from Noether’s theorem. The energy–mo-
mentum tensor 𝑇 𝜇𝜈 and all charge currents𝑁𝜇

𝑖 are Noether currents.

Since ideal and viscous fluids have different energy-momentum tensors and charge currents,
there will be a subscript ’zero’ that will denote the ideal case. This ideal case will also be part of
the viscous quantities. The ideal energy-momentum tensor has form

𝑇 𝜇𝜈
0 = 𝜀𝑢𝜇𝑢𝜈−𝑃Δ𝜇𝜈,

where 𝜀 is the energy density, 𝑃 is the equilibrium pressure, 𝑢𝜇 = 𝛾(1,v) denotes the four-
velocity of flow and Δ𝜇𝜈 = 𝜂𝜇𝜈−𝑢𝜇𝑢𝜈 is the projection tensor operator. Next, the ideal current
is the conserved charge density multiplied by four-velocity

𝑁𝜇
0,𝑖 =𝑛𝑖𝑢𝜇.
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There can be multiple conserved charges. That is why there is an index 𝑖 as a subscript of the
conserved charge densities 𝑛𝑖.

By construction, Δ𝜇𝜈 and 𝑢𝜇 are orthogonal to each other

𝑢𝜇Δ𝜇𝜈 =𝑢𝜇(𝜂𝜇𝜈−𝑢𝜇𝑢𝜈) = 𝑢𝜈−𝑢𝜇𝑢𝜇𝑢𝜈 =𝑢𝜈−𝑢𝜈 = 0.

The equations of motion

With the orthogonal projection of the energy-momentum conservation equation

𝑢𝜇𝜕𝜈𝑇
𝜇𝜈
0 = 0, Δ𝛼

𝜇𝜕𝜈𝑇
𝜇𝜈
0 = 0

one can obtain the relativistic continuity equation

𝑢𝜇𝜕𝜈𝑇
𝜇𝜈
0 =𝑢𝜇𝜕𝜈(𝜀𝑢𝜇𝑢𝜈−𝑃Δ𝜇𝜈) = 𝑢𝜇𝑢𝜇𝑢𝜈𝜕𝜈𝜀+𝜀𝑢𝜇𝑢𝜇𝜕𝜈𝑢𝜈+𝜀𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇−𝑢𝜇𝜕𝜈(𝑃Δ𝜇𝜈)

𝑢𝜇𝑢𝜇=1=

=𝑢𝜈𝜕𝜈𝜀+𝜀𝜕𝜈𝑢𝜈+𝜀𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇−𝑢𝜇Δ𝜇𝜈𝜕𝜈𝑃 −𝑢𝜇𝑃𝜕𝜈Δ𝜇𝜈 𝑢𝜇Δ𝜇𝜈=0=
=𝑢𝜈𝜕𝜈𝜀+𝜀𝜕𝜈𝑢𝜈+𝜀𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇−𝑢𝜇𝑃𝜕𝜈(𝑔𝜇𝜈−𝑢𝜇𝑢𝜈) =
= 𝑢𝜈𝜕𝜈𝜀+𝜀𝜕𝜈𝑢𝜈+𝜀𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇+𝑢𝜇𝑢𝜇𝑃𝜕𝜈𝑢𝜈+𝑃𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇 =
=𝑢𝜈𝜕𝜈𝜀+ (𝜀+𝑃)𝜕𝜈𝑢𝜈+(𝜀+𝑃)𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇

𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇 =
1
2
(𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇+𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇) =

1
2
(𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇+𝑢𝜇𝑢𝜈𝜕𝜈𝑢𝜇) =

1
2
𝑢𝜈𝜕𝜈(𝑢𝜇𝑢𝜇) = 0

𝑢𝜈𝜕𝜈𝜀+ (𝜀+𝑃)𝜕𝜈𝑢𝜈 = 0 (3.7)

and the relativistic Euler equation

Δ𝛼
𝜇𝜕𝜈𝑇

𝜇𝜈
0 =Δ𝛼

𝜇𝜕𝜈(𝜀𝑢𝜇𝑢𝜈−𝑃Δ𝜇𝜈) = Δ𝛼
𝜇𝜀𝑢𝜈𝜕𝜈𝑢𝜇+Δ𝛼

𝜇𝑢𝜇𝜕𝜈(𝜀𝑢𝜈)−Δ𝛼
𝜇𝑃𝜕𝜈Δ𝜇𝜈−Δ𝛼

𝜇Δ𝜇𝜈𝜕𝜈𝑃 =
=(𝛿𝛼𝜇−𝑢𝛼𝑢𝜇)𝜀𝑢𝜈𝜕𝜈𝑢𝜇+Δ𝛼

𝜇𝑢𝜇𝑃𝜕𝜈𝑢𝜈+(𝛿𝛼𝜇−𝑢𝛼𝑢𝜇)𝑃𝑢𝜈𝜕𝜈𝑢𝜇−𝛿𝛼𝜇(𝜂𝜇𝜈+𝑢𝜇𝑢𝜈)𝜕𝜈𝑃−
−𝑢𝛼𝑢𝜇Δ𝜇𝜈𝜕𝜈𝑃 =

=𝛿𝛼𝜇𝜀𝑢𝜈𝜕𝜈𝑢𝜇+𝛿𝛼𝜇𝑃𝑢𝜈𝜕𝜈𝑢𝜇−(𝜂𝛼𝜈+𝑢𝛼𝑢𝜈)𝜕𝜈𝑃 = (𝜀+𝑃)𝑢𝜈𝜕𝜈𝑢𝛼−Δ𝛼𝜈𝜕𝜈𝑃

(𝜀+𝑃)𝑢𝜈𝜕𝜈𝑢𝛼−Δ𝛼𝜈𝜕𝜈𝑃 = 0. (3.8)

Entropy conservation

The first law of thermodynamics states

𝐸 = 𝑇𝑆 −𝑃𝑉 +∑
𝑖
𝜇𝑖𝑁𝑖.

This can be rewritten in terms of variables per unit volume

𝜀+𝑃 = 𝑇𝑠+∑
𝑖
𝜇𝑖𝑛𝑖. (3.9)

Combining this with the second law of thermodynamics leads to the differential form of this
equation

d𝜀 = 𝑇d𝑠+∑
𝑖
𝜇𝑖d𝑛𝑖. (3.10)
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When we use equation equation (3.9) and equation (3.10) as a prescription for energy density
derivatives and put them in the continuity equation (3.7) we obtain the following

𝑢𝜈𝜕𝜈𝜀+ (𝜀+𝑃)𝜕𝜈𝑢𝜈 =𝑢𝜈 (𝑇𝜕𝜈𝑠+∑
𝑖
𝜇𝑖𝜕𝜈𝑛𝑖)+(𝑇𝑠+∑

𝑖
𝜇𝑖𝑛𝑖)𝜕𝜈𝑢𝜈 =

= 𝑇(𝑢𝜈𝜕𝜈𝑠+𝑠𝜕𝜈𝑢𝜈)+∑
𝑖
𝜇𝑖(𝑢𝜈𝜕𝜈𝑛𝑖+𝑛𝑖𝜕𝜈𝑢𝜈) = 𝑇𝜕𝜈(𝑠𝑢𝜈)+∑

𝑖
𝜇𝑖𝜕𝜈(𝑛𝑖𝑢𝜈),

where𝑛𝑖𝑢𝜈 is the conserved current𝑁𝜈
𝑖 and it is possible to use conservation laws (3.6) and the

sum vanishes. Furthermore, we can define the entropy four-current as

𝑆𝜈 ≡ 𝑠𝑢𝜈.

With continuity equation (3.7) being equal to zero we obtain

𝑇𝜕𝜈𝑆𝜈 = 0.

Sincewe have finite temperature 𝑇, it is possible to divide thewhole expression by 𝑇 and finally
obtain the entropy conservation equation

𝜕𝜇𝑆𝜇 = 0. (3.11)

3.2.2 Viscous hydrodynamics

When assuming viscous effects, one can inspect themicroscopic phase-space distribution and
add a small correction to the equilibrium function

𝑓(�⃗�, �⃗�) = 𝑓0(�⃗�, �⃗�)+𝛿𝑓(�⃗�, �⃗�).

Then energy-momentum tensor and charge currents are connected with the kinetic theory as

𝑇 𝜇𝜈 =∑
𝑖

ˆ
d3�⃗�
𝐸

𝑝𝜇𝑝𝜈𝑓𝑖(�⃗�, �⃗�),

𝑁𝜇
𝑖 =𝑛𝑖

ˆ
d3�⃗�
𝐸

𝑝𝜇𝑓𝑖(�⃗�, �⃗�).

After adding the corrections to the phase-space distribution function, it can be found that the
energy-momentum tensor has an ideal part 𝑇 𝜇𝜈

0 plus a non-equilibrium contribution from 𝛿𝑓

𝑇 𝜇𝜈 = 𝑇 𝜇𝜈
0 +𝛿𝑇 𝜇𝜈.

Furthermore, the conserved currentswith their ideal parts𝑁𝜇
0,𝑖 also obtain respective disipative

flows
𝑁𝜇
𝑖 =𝑁𝜇

0,𝑖+𝛿𝑁𝑖.

There are a few possible correction terms that can be found in the energy-momentum tensor
with respect to covariance conditions. The decomposed energy-momentum tensor with those
correction terms takes form as

𝑇 𝜇𝜈 = 𝜀𝑢𝜇𝑢𝜈−𝑃Δ𝜇𝜈+𝑊 𝜇𝑢𝜈+𝑊 𝜈𝑢𝜇+Π𝜇𝜈. (3.12)

Conserved charge currents with its correction term are

𝑁𝜇
𝑖 =𝑛𝑖𝑢𝜇+𝑉

𝜇
𝑖 .
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Energy-momentum tensor and conserved currents in this form are considered to be Noether
currents. Theyhold theconservationequations (3.5) and (3.6). 𝑇 𝜇𝜈 and𝑁𝜇

𝑖 are frame-independent
quantities. However, a choice of flow velocity 𝑢𝜇 is not unique. There are at least two known
definitions of𝑢𝜇, called Eckart and Landau frames. There canbe found twopossible definitions
of flow within two frames, Eckart frame and Landau frame.

Eckart frame (charge flow):

𝑢𝜇𝐸 =
𝑁𝜇

√𝑁𝜈𝑁𝜈
.

In the Eckart frame [189], the collective flow is defined as the flow of conserved charge. Since
flow is representedas themovementofparticledensity, themainbenefit is that chargediffusion
is zero

𝑉 𝜇
𝐸 = 0.

It is called that the total conserved charge flux is diffusionless. In the Eckart frame, the first-
order theory is unstable due to the limit of relaxation time 𝜏𝑊 → 0. However, second-order
theory can be stable because of the nonzero value of 𝜏𝑊. [190]

Landau frame (energy flow):

𝑢𝜇𝐿 =
𝑇 𝜇𝜈𝑢𝜈

√𝑢𝜌𝑇 𝜌𝜎𝑇𝜎𝜅𝑢𝜅
.

This form of flow represents the movement of the energy and momentum densities. For this
reason, the dissipation of energy is equal to zero

𝑊 𝜇
𝐿 = 0.

Landau frame is used in most HIC numerical simulations.

The difference between those two definitions is

𝑢𝜇𝐿 −𝑢
𝜇
𝐸 =

𝑊 𝜇
𝐸

𝜀𝐸+𝑃𝐸
+𝒪(𝛿2) = −

𝑉 𝜇
𝐿

𝑛𝐿
+𝒪(𝛿2),

where 𝒪(𝛿2) denotes more than the first-order correction in terms of dissipative quantities.
Since there are different definitions of flow, there are also differences in thermodynamic vari-
ables such as energy density 𝜀 and particle density 𝑛 since they are directly related to the defi-
nitions of flow. Their second-order corrections are

𝜀𝐿−𝜀𝐸 =
𝑊 𝜇
𝐸 𝑊

𝐸
𝜇

𝜀𝐸+𝑃𝐸
+𝒪(𝛿3) (3.13)

𝑛𝐿−𝑛𝐸 =−
1
2
𝑉 𝜇
𝐿 𝑉

𝐿
𝜇

𝑛𝐿
+𝒪(𝛿3) (3.14)

Equations (3.13) and (3.14) imply that corrections to theother thermodynamicvariables (𝑃,𝑠,𝑇 ,𝜇)
are also of second order. [190]

For both Eckart and Landau frames, we can split the tensor Π𝜇𝜈 into traceless part and non-
traceless part

Π𝜇𝜈 = 𝜋𝜇𝜈−Δ𝜇𝜈Π,
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where the shear stress tensor 𝜋𝜇𝜈 is a traceless part

𝜋𝜇𝜇 = 0,

and Δ𝜇𝜈 multiplied by thy bulk pressureΠ is the non-traceless part

Δ𝜇
𝜇Π= (𝛿𝜇𝜇 −𝑢𝜇𝑢𝜇)Π = 2Π.

Then, in Landau frame, we can rearrange the energy-momentum tensor (3.12) as

𝑇 𝜇𝜈
𝐿 = 𝜀𝑢𝜇𝑢𝜈−(𝑃 +Π)Δ𝜇𝜈+𝜋𝜇𝜈,

where equilibrium pressure 𝑃 plus bulk pressureΠ can be labelled as total pressure �̃� = 𝑃 +Π.
Since HIC simulations mainly use the Landau frame, there will be no subscript 𝐿 if it is not
explicitly needed.

Notation of relativistic viscous hydrodynamics

The projection tensor operator Δ𝜇𝜈 has already been defined as

Δ𝜇𝜈 ≡ 𝜂𝜇𝜈−𝑢𝜇𝑢𝜈

in contrast to the projection vector operator𝑢𝜇. The projection tensor operatorΔ𝜇𝜈 projects in
a direction perpendicular to 𝑢𝜇, while 𝑢𝜇 projects in a direction parallel to itself.

It is convenient to denote the symmetric and traceless tensor 𝐴⟨𝜇𝜈⟩ constructed from an ar-
bitrary tensor 𝐴𝜇𝜈 that is also perpendicular to 𝑢𝜇 and 𝑢𝜈

𝑢𝜇𝐴⟨𝜇𝜈⟩ =𝑢𝜈𝐴⟨𝜇𝜈⟩ = 0.

From now on the brackets like that will stand for

𝐴⟨𝜇𝜈⟩ ≡ [
1
2
(Δ𝜇

𝛼Δ𝜈
𝛽+Δ

𝜇
𝛽Δ

𝜈
𝛼)−

1
3
Δ𝜇𝜈Δ𝛼𝛽]𝐴

𝛼𝛽.

Tensor constructed like that is indeed traceless

𝐴<𝜇
𝜇> = [

1
2
(Δ𝛼𝜇Δ𝛽

𝜇+Δ𝛽𝜇Δ𝛼
𝜇)−

1
3
Δ𝜇

𝜇Δ𝛼𝛽
]𝐴𝛼𝛽

= [
1
2
(Δ𝛼𝛽+Δ𝛼𝛽)−

1
3
3Δ𝛼𝛽

]𝐴𝛼𝛽

= [Δ𝛼𝛽−Δ𝛼𝛽]𝐴𝛼𝛽 = 0.

Identities Δ𝜇𝜌Δ𝜈
𝜌 =Δ𝜇𝜈 and Δ𝜇

𝜇 = 3were used in last derivation.

Next, the divergence of the flow is denoted as

𝜃 ≡ 𝜕𝜇𝑢𝜇.

This quantity is also called the expansion scalar.
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Since the projection vector and the tensor operators in the local rest frame (LRF) are of the
form

𝑢𝜇LRF = (1,0,0,0),
Δ𝜇𝜈
LRF = (0,−1,−1,−1),

the projections of the gradient operator are denoted as

𝐷≡𝑢𝜇𝜕𝜇,
∇𝜇 ≡Δ𝜇𝜈𝜕𝜈.

𝐷 and ∇𝜇 are called substantial time and space derivatives, respectively. It is not hard to see
that in the LRF those operators are indeed

𝐷LRF = 𝜕𝑡
∇LRF
𝜇 = (0, ∇⃗).

Decomposition of 𝑇 𝜇𝜈 and𝑁𝜇

Decomposition of the energy-momentum tensor with the projection operators 𝑢𝜇 and Δ𝜇𝜈.
The quantities obtained from the decomposition of the energy-momentum tensor 𝑇 𝜇𝜈 are as
follows:

𝜀 = 𝑢𝜇𝑇 𝜇𝜈𝑢𝜈,

�̃� = 𝑃 +Π=−
1
3
Δ𝜇𝜈𝑇 𝜇𝜈,

𝑊 𝜇 =Δ𝜇
𝛼𝑇𝛼𝛽𝑢𝛽,

𝜋𝜇𝜈 = 𝑇 ⟨𝜇𝜈⟩.

From the first two equations, it can be seen that the energy density 𝜀 is obtained from the time-
like components of the energy-momentum tensor 𝑇 𝜇𝜈 and the total pressure �̃� = 𝑃 +Π is ob-
tained from the space-like components. The last equation is not a big revelation since we want
𝜋𝜇𝜈 to be a traceless part of𝑇 𝜇𝜈. This is ensuredby the angular bracket operationon the indices.

The decomposition of𝑁𝜇 is more straightforward. It is possible to obtain the charge density𝑛𝑖
and the dissipative charge current 𝑉 𝜇

𝑖 as follows:

𝑛𝑖 =𝑢𝜇𝑁
𝜇
𝑖 ,

𝑉 𝜇
𝑖 =Δ𝜇

𝜈𝑁𝜈
𝑖 .

Entropy production

When the theory of viscous hydrodynamics is constructed, themain assumption is that the en-
tropy current has dissipative terms in addition to the equilibrium term. The dissipative terms
would be constructed from 𝑉 𝜇,𝑊 𝜇, 𝜋𝜇𝜈, and Π. Within the Landau frame, the first-order cor-
rection reads as

𝑆𝜇 = 𝑠𝑢𝜇+𝛼𝑉 𝜇,
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Because𝑊 𝜇
𝐿 = 0. Furthermore, it is not possible to construct a Lorentz vector from 𝜋𝜇𝜈, and a

term with Πwould violate the second law of thermodynamics. Therefore, a dissipative correc-
tion to the entropy current, whichwould be first-order in dissipative quantities, is not possible.
[108]

For the ideal case, the proven equation (3.11) represents the conservation of entropy. How-
ever, in higher-order hydrodynamics, dissipative corrections are causing entropy production.
The energy-momentum conservation law

𝜕𝜇𝑇 𝜇𝜈 = 0

still holds for the viscous case. The projection of the energy-momentum conservation law in
the direction of flow velocity is

𝑢𝜈𝜕𝜇𝑇 𝜇𝜈 =𝑢𝜈𝜕𝜇𝑇
𝜇𝜈
0 +𝑢𝜈𝜕𝜇𝛿𝑇 𝜇𝜈 = 0,

where 𝑢𝜈𝜕𝜇𝑇
𝜇𝜈
0 can be recognized as 𝑇𝜕𝜇𝑆𝜇, since it was already proven. This leads to

𝑇𝜕𝜇𝑆𝜇 =−𝑢𝜈𝜕𝜇𝛿𝑇 𝜇𝜈 =−𝑢𝜈𝜕𝜇(𝜋𝜇𝜈−Δ𝜇𝜈Π) = ... =

= 𝜋𝜇𝜈 [
1
2
(Δ𝜇

𝛼Δ𝜈
𝛽+Δ

𝜇
𝛽Δ

𝜈
𝛼)−

1
3
Δ𝜇𝜈Δ𝛼𝛽]Δ

𝛼𝛾𝜕𝛾𝑢𝛽−Π𝜕𝜇𝑢𝜇.

The divergence of entropy current reads as

𝜕𝜇𝑆𝜇 =
1
𝑇
(𝜋𝜇𝜈∇𝜇𝑢𝜈−Π𝜃). (3.15)

Due to the non-vanishing dissipative part of the energy-momentum tensor 𝛿𝑇 𝜇𝜈 there is a dif-
ference between the divergence of the entropy current in the ideal case in equation (3.11) and
the first-order theory in equation (3.15). This result indicates the entropy production in ab-
sence of perfect equlibrium.

When considering second-order corrections, we can investigate the divergence of the entropy
current within different frames. The second law of thermodynamics declares that entropy pro-
duction can be expressed in a quadratic form. [190]Then the divergence of the entropy current
in the Landau frame can be written as

𝜕𝜇𝑆
𝜇
𝐿 =−

𝑉 𝐿
𝜇 𝑉

𝜇
𝐿

𝜅𝑉
,

and in the Eckart frame as

𝜕𝜇𝑆
𝜇
𝐸 =−

𝑊 𝐸
𝜇 𝑊

𝜇
𝐸

𝜅𝑊
,

where 𝜅𝑉 is the baryon conductivity, and 𝜅𝑊 is the energy conductivity. Both 𝜅𝑉 and 𝜅𝑊 are
positive

𝜅𝑉 ≥ 0,
𝜅𝑊 ≥ 0.

Due to entropy production (3.15), 𝜅𝑉 and 𝜅𝑊 are related as

𝜅𝑉 = 𝜅𝑊 (
𝑛

𝜀+𝑃
)
2
.
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Divergence of entropy in both frames follows

𝜕𝜇𝑆𝜇 ≥ 0. (3.16)

This result shows how a local second law of thermodynamics is postulated in the context of
relativistic fluid dynamics. The difficulty here is that the entropy current 𝑆𝜇 is difficult to define
outside the global thermal equilibrium, and theUVdivergence is present in the case of working
with the entanglement entropy.

The equations of motion

Derivation of the equations ofmotion in a viscous case follows the samedirection as the deriva-
tion of the equation of motion in an ideal case. This means that the derivation starts with
energy-momentum conservation

𝜕𝜇𝑇 𝜇𝜈 = 0

and follows using projection operators 𝑢𝜇 and Δ𝜇𝜈.

One can start with the flow projection as

𝑢𝜈𝜕𝜇𝑇 𝜇𝜈 = 0

and obtain first equation of motion

𝑢𝜇𝜕𝜇𝜀+ (𝜀+𝑃 +Π)𝜕𝜇𝑢𝜇−𝜋𝜇𝜈 [
1
2
(Δ𝜇

𝛼Δ𝜈
𝛽+Δ

𝜇
𝛽Δ

𝜈
𝛼)−

1
3
Δ𝜇𝜈Δ𝛼𝛽]Δ

𝛼𝛾𝜕𝛾𝑢𝛽 = 0,

where using the previously defined notation will simplify it to

𝐷𝜀 =−(𝜀+𝑃 +Π)𝜃+𝜋𝜇𝜈∇⟨𝜇𝑢𝜈⟩. (3.17)

The second equation is obtained by means of an orthogonal projection Δ𝜇𝜈 of the energy-
momentum conservation

Δ𝜇𝛼𝜕𝛽𝑇𝛼𝛽 = 0.

Then one can obtain the second equation of motion

(𝜀+𝑃 +Π)𝑢𝜈𝜕𝜈𝑢𝜇−Δ𝜇𝜈𝜕𝜈(𝑃 +Π)+Δ𝜇𝛼Δ𝛽𝜈𝜕𝜈𝜋𝛼𝛽−𝜋𝜇𝜈𝑢𝛼𝜕𝛼𝑢𝜈 = 0,

where once again, the same notation can be used to simplify the equation

(𝜀+𝑃 +Π)𝐷𝑢𝜇 =∇𝜇(𝑃 +Π)−Δ𝜇𝛼∇𝛽𝜋𝛼𝛽+𝜋𝜇𝜈𝐷𝑢𝜈. (3.18)

Equations (3.17) and (3.18) lead to relativistic versions of the non-relativistic Navier-Stokes
equations.

Navier-Stokes formalism

Navier-Stokes formalismarises fromthe relativistic generalisationof thenon-relativisticNavier-
Stokes equations

(𝜕𝑡+ ⃗𝑣 ⋅ ∇⃗) ⃗𝑣 = −
1
𝜌
∇⃗𝑃 +

𝜂
𝜌
Δ ⃗𝑣,
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𝜕𝑡𝜌+∇⃗ ⋅ (𝜌 ⃗𝑣) = 0.

Themain idea of this formalism is the linear relationship between dissipative flows and the cor-
responding thermodynamic forces. [108, 189, 191, 192]

Linear relationship in Navier-Stokes formalism is provided by the transport coefficients. There
is a bulk viscosity 𝜁 that is related to the scalar force. Then there is a shear viscosity 𝜂 that is
connected to the traceless tensor force.

The current that corresponds to the bulk viscosity 𝜁 is the bulk pressureΠ and the correspond-
ing force is a negative expansion scalar −𝜃 = −𝜕𝜇𝑢𝜇. This leads to the equation for the bulk
pressureΠwithin the Navier-Stokes formalism

Π=−𝜁𝜃 (3.19)

Shear viscosity 𝜂 can be associated with shear stress tensor 𝜋𝜇𝜈. Shear viscosity ensures lin-
earity between the shear stress tensor 𝜋𝜇𝜈 and the corresponding thermodynamic tensor force
∇⟨𝜇𝑢𝜈⟩. This leads to the equation for the shear stress tensor 𝜋𝜇𝜈 within the Navier-Stokes for-
malism

𝜋𝜇𝜈 = 2𝜂∇⟨𝜇𝑢𝜈⟩. (3.20)

Equations (3.19) and (3.20) are called constitutive equations and are phenomenological defi-
nitions.

Using constitutive equations from Navier-Stokes formalism, one can revisit the entropy pro-
duction equation (3.15)and rewrite it as

𝑇𝜕𝜇𝑆𝜇 =
𝜋𝜇𝜈𝜋𝜇𝜈
2𝜂

+
Π2

𝜁
. (3.21)

Since the shear viscosity 𝜂 and bulk viscosity 𝜁 are positive, this ensures the second law of ther-
modynamics (3.16).

One can also revisit the first equation of motion 3.17 and rewrite it as

𝐷𝜀 =−𝜀𝜃−𝑃𝜃+
Π2

𝜁
+
𝜋𝜇𝜈𝜋𝜇𝜈

2𝜂
.

This equation describes the evolution of the energy density 𝜀. The first term on the RHS de-
scribes the dilution/compression of energy density through the expansion scalar. The second
term describes the work done by pressure. Finally, the third and fourth terms represent the
production of entropy that heats up the system. [108]

The main problem with the Navier-Stokes approach is that the Navier-Stokes equations vio-
late causality. [192, 193, 194, 195] This means that it is not ensured that the information speed
does not exceed the speed of light. Not only this is not ensured, the short-wavelength modes
can propagate with arbitrarily large velocity. However, macroscopic effects in the fluid that are
caused bymicroscopic scatterings should be delayed by a relaxation time that is comparable to
the scattering time. From this causality violation arise the numerical instabilities [192, 193, 194,
195], which makes the Navier-Stokes approach futile for numerical simulations [192]. Causal-
ity violation and thus also numerical instabilities from acausality are solved in the following
Israel-Stewart formalism.
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3.2.3 Israel-Stewart formalism

Entropy production equations

It can be derived [196] that the equilibrium entropy current from equation (3.10) takes form as

𝑆𝜇0 = 𝑃(𝛼,𝛽)𝛽𝜇−𝛼𝑁𝜇
0 +𝛽𝜈𝑇

𝜇𝜈
0 ,

where the thermal potential 𝛼 and inverse temperature 𝛽 are defined by temperature 𝑇, and
the chemical potential 𝜇 as

𝛼 ≡
𝜇
𝑇
, 𝛽 ≡

1
𝑇
, 𝛽𝜇 ≡

𝑢𝜇

𝑇
.

Furthermore, one can also derive [197] off-equilibrium entropy current as

𝑆𝜇 = 𝑃(𝛼,𝛽)𝛽𝜇−𝛼𝑁𝜇+𝛽𝜈𝑇 𝜇𝜈+𝑄𝜇(𝛿𝑁𝜇,𝛿𝑇 𝜇𝜈),

where𝑁𝜇 =𝑁𝜇
0 +𝛿𝑁

𝜇 and 𝑇 𝜇𝜈 = 𝑇 𝜇𝜈
0 +𝛿𝑇 𝜇𝜈 contains first order corrections and𝑄𝜇 as a func-

tion of deviations 𝛿𝑁𝜇 and 𝛿𝑇 𝜇𝜈 contains second and higher order corrections. Taking into
account only first-order corrections from𝑁𝜇 and 𝑇 𝜇𝜈 (i.e., 𝑄𝜇 = 0), one would obtain the en-
tropy production mentioned in equation (3.21).

The Israel-Stewart formulation is the second-order theory of hydrodynamics. That is why 𝑄𝜇

keeps all second-order terms as follows [192, 196, 197, 198]

𝑄𝜇 =−
𝑢𝜇

2𝑇
(𝛽0Π2+𝛽2𝜋𝜇𝜈𝜋𝜇𝜈), (3.22)

where𝛽0 and𝛽2 are phenomenological expansion coefficients. It is good tomention that these
coefficients have nothing to dowith the inverse temperature𝛽𝜇. There is a connection between
the expansion coefficients and relaxation times

𝛽0 ≡
𝜏Π
𝜁
, 𝛽2 ≡

𝜏𝜋
2𝜂

. (3.23)

Since this thesis does not take into account the thermodynamic force caused by the heat con-
ductivity 𝜆, the rest of the expansion coefficients are equal to zero 𝛽1 = 𝛼0 = 𝛼1 = 0 and their
terms are not included in equation (3.22). This would lead us to second-order entropy produc-
tion [196]

𝜕𝜇𝑆𝜇 =−
1
𝑇 [

Π𝜃+𝛽0Π𝐷Π+
1
2
𝑇Π2𝜕𝜇 (

𝛽0
𝑇
𝑢𝜇)]

+
1
𝑇 [

𝜋𝜇𝜈𝜎𝜇𝜈−𝛽2𝜋𝜇𝜈𝐷𝜋𝜇𝜈+
1
2
𝑇𝜋𝜇𝜈𝜋𝜇𝜈𝜕𝜌 (

𝛽2
𝑇
𝑢𝜌)] ,

where the velocity stress tensor 𝜎𝜇𝜈 is defined as

𝜎𝜇𝜈 ≡∇⟨𝜇𝑢𝜈⟩.

To ensure the second law of thermodynamics in the same form as equation 3.21, there are con-
straints for transport coefficients

𝐷Π=−
1
𝜏Π [

Π+𝜁𝜃+Π𝜁𝑇𝜕𝜇 (
𝜏Π𝑢𝜇

2𝜁𝑇
)] , (3.24)

Δ𝜇𝛼Δ𝜈𝛽𝐷𝜋𝛼𝛽 =−
1
𝜏𝜋

[𝜋𝜇𝜈−2𝜂𝜎𝜇𝜈+𝜋𝜇𝜈𝜂𝑇𝜕𝛼 (
𝜏𝜋𝑢𝛼

2𝜂𝑇
)]. (3.25)

Equations (3.24) and (3.25) are second-order hydrodynamic equations and are used in simula-
tions for this work.
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Kinetic theory equations

The kinetic approach for the Israel-Stewart equations arises from microscopic kinetic theory
and consequently from corrections to the equilibrium distribution function

𝑓(𝑥,𝑝) = 𝑓0(𝑥,𝑝)[1+ (1±𝑓0(𝑥,𝑝))𝛿𝑓(𝑥,𝑝)].

Then the Taylor expansion of the correction momentum is performed as

𝛿𝑓(𝑥,𝑝) = 𝜖(𝑥)+𝜖𝜇(𝑥)𝑝𝜇+𝜖𝜇𝜈(𝑥)𝑝𝜇𝑝𝜈+𝒪(𝑝3),

where coefficients 𝜖, 𝜖𝜇, 𝜖𝜇𝜈 can be related to dissipative flows. Since 𝜖𝜇 is connected to the heat
flow 𝑞𝜇 it will not be considered. Furthermore, the coefficient 𝜖 is related to the bulk pressure
Π and the coefficient tensor 𝜖𝜇𝜈 is related to the shear stress tensor 𝜋𝜇𝜈. Those quantities are
calculated using the kinetic prescription for the energy-momentum tensor

𝑇 𝜇𝜈 =
ˆ

d3�⃗�
𝐸

𝑝𝜇𝑝𝜈𝑓(�⃗�, �⃗�).

The conservation laws and the second-order Israel-Steward equations are obtained by using
the Boltzmann equation

𝑝𝜇𝜕𝜇𝑓(𝑥,𝑝) = 𝐶[𝑓],

and applying integration with measure

d3𝑝
(2𝜋)3𝑝0

and weight 𝑝𝜇 in some form.

With this approach, it is possible to obtain conservation laws and Israel-Steward equations
[199] for the bulk pressure Π and the shear stress tensor 𝜋𝜇𝜈 that are obtained with Grad’s 14-
momentum approximation

𝐷Π=
−𝜁𝜃−Π

𝜏Π
−
𝛿ΠΠ
𝜏Π

Π𝜃+
𝜆Π𝜋
𝜏Π

𝜋𝜇𝜈𝜎𝜇𝜈, (3.26)

𝐷𝜋⟨𝜇𝜈⟩ =
2𝜂𝜎𝜇𝜈−𝜋𝜇𝜈

𝜏𝜋
−
𝛿𝜋𝜋
𝜏𝜋

𝜋𝜇𝜈𝜃+
𝜙7
𝜏𝜋
𝜋⟨𝜇𝛼 𝜋𝜈⟩𝛼−

𝜏𝜋𝜋
𝜏𝜋

𝜋⟨𝜇𝛼 𝜎𝜈⟩𝛼+
𝜆𝜋Π
𝜏𝜋

Π𝜎𝜇𝜈. (3.27)

Equations (3.26) and (3.27) are second-order hydrodynamic equations.

3.2.4 Summary of relativistic hydrodynamics

There are several numerical implementations of hydrodynamic equations in simulation codes.
First, both the Landau and Eckart frames can be used for the definition of the flow. Further-
more, in addition to the ideal and Navier-Stokes formalism, the Israel-Stewart formalism can
be introduced in simplified forms [192]. Also, another second-order theory is the Öttinger-
Grmela formalism, which can equivalently explain the evolution of a relativistic fluid. How-
ever, this work uses the second-order Israel-Stewart formalism implemented in MUSIC [3, 200].
Hydrodynamic equations are numerically solvedwith the Kurganov-Tadmor scheme [201, 202]
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together with the Heun method to solve the resulting ordinary differential equations.

The equations derived from relativistic hydrodynamics are not a complete set of equations that
the fluid evolves according to. To complete this set of equations, one has to introduce the equa-
tion of state that connects thermodynamic quantities such as energy density 𝜀, pressure 𝑃, and
baryon chemical potential 𝜇𝐵. Furthermore, transport coefficients are dependent on tempera-
ture and should alsobe consideredas aparameterisation that corresponds tooverall evolution.

3.3 Equation of State

To complete the set of hydrodynamic equations, it is necessary to introduce the equation of
state (EoS). This thermodynamic equation relates the state variables such as pressure 𝑃, tem-
perature 𝑇, energy density 𝜀, chemical potential 𝜇, etc. The first expression of an EoS is from
1662 called Boyle’s law

𝑃𝑉 = constant.

More than a hundred years later, in 1789, Jacques Charles introduced his volume and temper-
ature relation

𝑉1
𝑇1

=
𝑉2
𝑇2

In 1834, Émile Clapeyron combined Boyle’s and Charles’s laws and stated the EoS of an ideal
non-relativistic gas for the first time as

𝑃𝑉 = 𝑛𝑅𝑇 ,

where 𝑛 is the amount of substance in moles and 𝑅 is the universal gas constant.

Since then, many equations of state have been introduced for various systems. The impor-
tant systems for this work are those at the QCD energy scale to describe the hot QGP and the
hadronic resonance gas that are created in the HIC. At the beginning of relativistic hydrody-
namics in 1965 introduced by Landau [203], the only option was the EoS derived in the follow-
ing Section 3.3.1.

When QGP was discovered [114, 115, 116, 117, 118], attempts to reproduce the measurements
started to appear and the first-order phase transition EoS was used. However, the QCD lattice
calculations showed that at small baryon chemical potential 𝜇𝐵 ∼ 0 the transition to the de-
confined phase is the crossover [204]. Today, it is common to use EoS with a crossover phase
transition at high RHIC or LHC energies.

3.3.1 Massless ultrarelativistic gas

The ideal EoS describes non-interacting matter composed of massless particles (𝑚 = 0) or
equivalently particles with ultrarelativistic speed 𝐸 =√�⃗�2+𝑚2 ≈ ||�⃗�|| ≡ 𝑝. The ideal QGP EoS
would include quarks with chemical potential +𝜇𝑞, antiquarks with chemical potential −𝜇𝑞,
and gluons with chemical potential 𝜇 = 0 because there is no limit on the boson number.

Thequarks and antiquarks are fermions, so they followFermi-Dirac statistics (see Section 2.1.1)

𝑓FD(𝑥,𝑝) =
𝑔𝑞

(2𝜋)3
1

exp (𝐸−𝜇𝑇 )+1
,
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where the degeneracy factor of quarks is

𝑔𝑞 = (colour)× (spin)× (flavour) = 3×2×𝑁𝑓.

Furthermore, gluons are bosons that follow Bose-Einstein statistics (see Section 2.1.1)

𝑓BE(𝑥,𝑝) =
𝑔𝑔

(2𝜋)3
1

exp (𝐸−𝜇𝑇 )−1
,

where the degeneracy factor of gluons is

𝑔𝑔 = (colour)× (spin) = 8×2.

Even though the gluon has spin 1, its spin degeneracy is 2 becausemassless gauge bosons have
only two polarisation states without longitudinal orientation with respect to the direction in
which the gluon travels. This is because they are massless particles.

The distribution function 𝑓(𝑥,𝑝) is connected in kinetic theory with particle density

𝑛 =
˚

ℝ3
𝑓(𝑥,𝑝)d3𝑝,

energy density

𝜀 =
˚

ℝ3
𝐸𝑓(𝑥,𝑝)d3𝑝

and pressure

𝑃 =
˚

ℝ3

𝑝𝑧𝑝𝑧

𝐸
𝑓(𝑥,𝑝)d3𝑝,

where instead of the square of the third component of momentum, there can be the square
of any of the three components. However, the third component has a convenient form in the
conventional spherical coordinates.

Starting with massless quarks and antiquarks, the energy density reads as

𝜀𝑞𝑞 = 𝜀𝑞+𝜀𝑞 =
˚

ℝ3
𝐸[𝑓𝑞(𝑥,𝑝)+𝑓𝑞(𝑥,𝑝)]d3𝑝 =

=
𝑔𝑞

(2𝜋)3

˚
ℝ3
𝐸
⎡

⎣

1

exp (𝐸−𝜇𝑞𝑇 )+1
+

1

exp (𝐸+𝜇𝑞𝑇 )+1

⎤

⎦
d3𝑝𝑚=0=

𝑚=0=
𝑔𝑞

(2𝜋)3

˚
ℝ3
||�⃗�||

⎡
⎢
⎣

1

exp( ||�⃗�||−𝜇𝑞𝑇 )+1
+

1

exp( ||�⃗�||+𝜇𝑞𝑇 )+1

⎤
⎥
⎦
d3𝑝 =

=
𝑔𝑞
2𝜋2

ˆ +∞

0
𝑝3

⎡

⎣

1

exp (𝑝−𝜇𝑞𝑇 )+1
+

1

exp (𝑝+𝜇𝑞𝑇 )+1

⎤

⎦
d𝑝 = 𝑔𝑞 (

7𝜋2

360
𝑇 4+

1
12
𝑇 2𝜇2

𝑞+
1

24𝜋2
𝜇4
𝑞)
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and pressure

𝑃𝑞𝑞 = 𝑃𝑞+𝑃𝑞 =
˚

ℝ3

𝑝𝑧𝑝𝑧

𝐸
[𝑓𝑞(𝑥,𝑝)+𝑓𝑞(𝑥,𝑝)]d3𝑝 =

=
𝑔𝑞

(2𝜋)3

˚
ℝ3

𝑝2 cos2𝜗
𝐸

⎡

⎣

1

exp (𝐸−𝜇𝑞𝑇 )+1
+

1

exp (𝐸+𝜇𝑞𝑇 )+1

⎤

⎦
d3𝑝𝑚=0=

𝑚=0=
𝑔𝑞

(2𝜋)3

˚
ℝ3
||�⃗�||cos2𝜗

⎡
⎢
⎣

1

exp( ||�⃗�||−𝜇𝑞𝑇 )+1
+

1

exp( ||�⃗�||+𝜇𝑞𝑇 )+1

⎤
⎥
⎦
d3𝑝 =

=
𝑔𝑞

(2𝜋)3

ˆ +∞

0

ˆ 𝜋

0

ˆ 2𝜋

0
𝑝3 cos2𝜗sin𝜗

⎡

⎣

1

exp (𝑝−𝜇𝑞𝑇 )+1
+

1

exp (𝑝+𝜇𝑞𝑇 )+1

⎤

⎦
d𝜑d𝜗d𝑝 =

=
2
3

𝑔𝑞
(2𝜋)2

ˆ +∞

0
𝑝3

⎡

⎣

1

exp (𝑝−𝜇𝑞𝑇 )+1
+

1

exp (𝑝+𝜇𝑞𝑇 )+1

⎤

⎦
d𝑝 =

𝑔𝑞
3
(
7𝜋2

360
𝑇 4+

1
12
𝑇 2𝜇2

𝑞+
1

24𝜋2
𝜇4
𝑞) .

Similarly, for gluons, the energy density reads as

𝜀𝑔 =
˚

ℝ3
𝐸𝑓𝑔(𝑥,𝑝)d3𝑝 =

𝑔𝑔
(2𝜋)3

˚
ℝ3
||�⃗�||

1

exp ( ||�⃗�||𝑇 )−1
d3𝑝 = 𝑔𝑔

𝜋2

90
𝑇 4

and the pressure

𝑃𝑔 =
˚

ℝ3

𝑝𝑧𝑝𝑧

𝐸
𝑓𝑔(𝑥,𝑝)d3𝑝 = 𝑔𝑔

˚
ℝ3
||�⃗�||cos2𝜗

1

exp ( ||�⃗�||𝑇 )−1
d3𝑝 = 𝑔𝑔

𝜋2

270
𝑇 4.

For both cases there are clear relations between energy density and pressure

𝑃𝑞𝑞 =
1
3
𝜀𝑞𝑞, and 𝑃𝑔 =

1
3
𝜀𝑔.

A gas composed of massless quarks, antiquarks, and gluons has energy density 𝜀 = 𝜀𝑞𝑞+𝜀𝑔 and
isotropic pressure 𝑃 = 𝑃𝑞𝑞+𝑃𝑔.

We can finally introduce the EoS of a gas composed of massless quarks, antiquarks, and glu-
ons

𝑃 =
1
3
𝜀.

This is generally true for any massless gas or if one takes the ultrarelativistic limit (𝐸 ≈ 𝑝). This
EoS is also compatible with black-body radiation. This result also makes the energy–momen-
tum tensor 𝑇 𝜇𝜈0 of the perfect fluid in thermodynamic equilibrium traceless

𝑇 𝜇
𝜇 = (𝜀+𝑃)𝑢𝜇𝑢𝜇+𝑃𝑔

𝜇
𝜇 = 3𝑃 −𝜀 = 0.

3.3.2 Hadron resonance gas and lattice equations of state

Hadron resonance gas prescription for EoS turnedout to be very useful for reproducingparticle
abundancesproduced inheavy-ioncollisions. Hadrongasat very low temperature (𝑇 < 150MeV)
and zero baryon density can be described by interacting pions, since they dominate matter.
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However, the chiral three-loop perturbation calculation produced results similar to those of
the ideal gas of pions [205]. Particle densities are suppressed by their mass𝑚𝑖 as

𝑛𝑖 ∼ exp(−
𝑚𝑖

𝑇
).

Heavier hadrons are less suppressed at higher temperatures, but their interaction is still very
suppressed. The interaction between hadron 𝑖 and hadron 𝑗 is proportional to

𝑛𝑖𝑛𝑗 ∼ exp(−
𝑚𝑖+𝑚𝑗

𝑇
).

The interaction can then be estimated with virial expansion leading to chiral perturbation the-
ory [205, 206]. Experiments showed [207] that rupulsion and attraction are characterised by
negative and positive phase shifts, respectively.

This discovery showed that the interacting hadron gas can be well approximated by includ-
ing free resonances instead. Partition functions 𝑍𝑚𝑖

for mesons and baryons with conserved
charges𝑄𝐴 (electric charge𝑄, baryon number 𝐵, strangness 𝑆, etc.) can be expressed as

ln𝑍M
𝑚𝑖

=−𝑔𝑖
𝑉
2𝜋2

ˆ ∞

0
𝑑𝑘𝑘2 ln[1−exp(∑𝐴𝑄𝐴

𝑖 𝜇𝐴
𝑇

)exp(−
𝜀𝑖
𝑇
)],

ln𝑍B
𝑚𝑖

=+𝑔𝑖
𝑉
2𝜋2

ˆ ∞

0
𝑑𝑘𝑘2 ln[1+exp(∑𝐴𝑄𝐴

𝑖 𝜇𝐴
𝑇

)exp(−
𝜀𝑖
𝑇
)],

where𝑔𝑖 is thedegeneracy factor and𝜇𝐴 are chemicalpotentials connected toconservedcharges
𝑄𝐴. Then it is possible to obtain the pressure of hadron resonance gas

𝑃HRG

𝑇 4 =
1

𝑉𝑇 3 ∑
𝑖∈{M}

ln𝑍M
𝑚𝑖
(𝑇 ,𝑉 ,𝜇𝐴)+

1
𝑉𝑇 3 ∑

𝑗∈{B}
ln𝑍B

𝑚𝑗
(𝑇 ,𝑉 ,𝜇𝐴) ,

where {M} and {B} are mesons and baryons included in the calculation of EoS.

Lattice QCD can estimate EoS for higher temperatures, but its sensitivity to high-momentum
modes causes problematic effects of finite lattice spacing for higher temperatures [208]. This
was improved by the introduction of staggered fermions with higher-order discretisation of
the lattice operators [209, 210]. This improves the situation for higher temperatures, but also
violates the flavour symmetry of continuum QCD. This distorts the hadronic spectrum and in-
troduces unwanted low-temperature effects.

When lattice calculations are performedwith a fixed temporal extent𝑁𝜏 (that is,𝑁𝜏 = 4,6,8, ...),
the temperature changes by varying the lattice spacing 𝑎 as

𝑇 =
1

𝑁𝜏𝑎
.

Thedecreasing temperature𝑇 increases the lattice spacing𝑎 and thus introduces greater cutoff
effects (𝒪(𝛼𝑠𝑎2)) at low temperatures. This causes a distorted hadronic spectra that began to
correspond to experimentalmeasurement after proper continuumextrapolation. On the other
hand, EoS can be calculated very accurately at high temperatures 𝑇.
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The flavours of the quarks are not degenerate with finite lattice spacing 𝑎 > 0. This implies
a violation of the flavour symmetry SU𝑓(𝑁𝑓) and there are flavour-changing effects (𝒪(𝛼𝑠𝑎2)).
This causes unequal masses for the mesons and baryons.

For example, for four flavours𝑁𝑓 = 4, there are eightmultiplets of pseudoscalarmesons charac-
terised by different masses𝑚𝑖

ps, where 𝑖 = 0,1, ...,7. Furthermore, if the quark masses are zero
𝑚𝑞 →0, only the multiplet 0 becomes massless because it is a Goldstone pseudoscalar meson.
The pressure is then calculated as

𝑃𝜋,K

𝑇 4 =
1
16

1
𝑉𝑇 3

7
∑
𝑖=0

𝑔𝑖ps ln𝑍M (𝑚𝑖
ps) ,

where 𝑔𝑖ps is the degeneracy of multiplet 𝑖 and 𝑔0ps = 1. The mass 𝑚𝑖
ps of the multiplet 𝑖 ≥ 1 is

given as
(𝑚𝑖

ps)
2
= (𝑚0

ps)
2
+(𝛿𝑚𝑖

ps)
2
,

where 𝑚0
ps is proportional to the mass of quarks and quadratic splittings (𝛿𝑚𝑖

ps)
2
are propor-

tional to 𝛼𝑠𝑎2 and are calculated via the asqtad action [208, 211, 212]. A similar calculation is
performed for the vector mesons and baryons.

When 𝑃/𝑇 4 is obtained, it is a straightforward path to obtain EoS. First, trace anomaly Θ(𝑇 ) =
𝜀(𝑇 )−3𝑃(𝑇 ) can be connected to pressure difference

𝑃(𝑇 )
𝑇 4 −

𝑃(𝑇low)
𝑇 4
low

=
ˆ 𝑇

𝑇low

d𝑇 ′

𝑇 ′5 Θ(𝑇
′),

where𝑃(𝑇low) contribution canbeneglected for sufficiently small𝑇low. Then the energy density
𝜀 and the entropy density 𝑠 are obtained as

𝜀(𝑇 ) = Θ(𝑇 )+3𝑃(𝑇 ), 𝑠(𝑇 ) =
𝜀(𝑇 )+𝑃(𝑇 )

𝑇
.

Thermodynamic quantities calculated from lattice QCD are affected by low temperature 𝑇 er-
rorsdue tofinitediscretisation. Meanwhile, hadron resonancegas is the low-temperaturemodel.
It is possible to use lattice results for 𝑇 > 250 MeV and hadron resonance gas results for 𝑇 <
180MeV. Since the intermediate temperature region 180MeV< 𝑇 < 250MeV is affected by dis-
cretisation errors for the lattice QCD and the unreliability for the hadron resonance gas it is
inadequate to use either.
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Figure 3.11: The trace anomalyΘ= 𝜀−3𝑃 to 𝑇 4 ratio for lattice QCD calculated via
p4 and asqtad actions (symbols), 𝑠95𝑝-v1 parametrisation (solid line). [208]

The parameterisation of the trace anomaly is fixed by lattice QCD for high temperature and
hadron resonance gas for low temperature. Furthermore, the entropy density in the high tem-
perature region (4𝑇𝑐) is fixed by perturbative pure gauge theory [213, 214, 215, 216] and QCD
[217] to be ∼ 5% less than the ideal gas limit. The intermediate temperature region is then in-
terpolated.

Figure 3.12: The pressure, energy density (left panel) and speed of sound (right
panel) for various EoS parametrisations. Solid curve represents 𝑠95𝑝-v1 .The ver-
tical lines indicate the intermediate temperature region.

The equation of state that was introduced above is called 𝑠95𝑝-v1 [208], where 𝑠95 represents
95% of the entropy density at high temperature compared to the ideal gas and 𝑝 represents the
treatment of interpolation. This equation of state is implemented in MUSIC [3, 200].
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3.4 Transport coefficients

To consistently describe the various experimentally measured hadronic observables (trans-
verse momentum spectra, elliptic and triangular flow coefficients, etc.) using a phenomeno-
logical approach via relativistic hydrodynamics, oneneeds to introduce viscosity. There are two
first-order transport coefficients, shear viscosity 𝜂 and the bulk viscosity 𝜁. For how they act in
hydrodynamic equations, see Section 3.2.2. They are both important and both of them affect
hadronic observables. That is why both viscosities must be thoroughly investigated.

3.4.1 Shear viscosity

Shear viscosity to the entropy density 𝜂
𝑠 is a temperature-dependent quantity. Its temperature

dependence cannot be calculated for a realisticmedium fromfirst-principle physics. However,
the combination of conformal field theory and M-theory can put a physical limit on the shear
viscosity to the entropy density ratio 𝜂

𝑠 . It is important to note that string theory does not have
any experimental evidence that it is a true description of the underlying physics. However, its
thorough development made it a decent model that can describe some phenomena. The anti-
de Sitter/conformal field theory (AdS/CFT) limit

𝜂
𝑠
≥

1
4𝜋

is the only theoretical limit obtained at the QCD temperature. The actual value of 𝜂
𝑠 of QGP is

also expected to be very close to the AdS/CFT limit [188]. This assumption is based on hydro-
dynamic, lattice, and kinetic simulations. In contrast to the bulk viscosity, the shear viscosity
to the entropy density 𝜂

𝑠 can be taken as a constant function of temperature. Usually AdS/CFT
limit 𝜂

𝑠 ≈ 0.08 is multiplied by some numerical factor 𝑐𝜂 = 1,1.5,2, etc.

The effects of constant shear viscosity on hadronic observables have been explored for many
years. The most reliable observables sensitive to viscosity turned out to be the transverse mo-
mentum spectra

1
2𝜋𝑝T

d3𝑁
d𝑦d𝑝T

,

and the harmonic coefficients 𝑣𝑛 obtained from the Fourier expansion of the azimuthal distri-
bution of hadrons

d𝑁
d𝜙

=
𝑁
2𝜋

[1+2𝑣1 cos(𝜙)+2𝑣2 cos(2𝜙)+…].

Those are then compared with the experimental measurements.

In the upper left panel of Figure 3.13, one can see the transverse momentum spectra of pi-
ons and protons at √𝑠NN = 200 GeV for Au+Au collisions at 0 − 5% centrality, measured by
PHENIX [218] and VISH2+1 simulations for several values of shear viscosity [219]. Further-
more, the spectra simulated by VISH2+1 are shown with and without viscous correction for the
distribution function 𝛿𝑓 to see how the constant shear viscosity affects only the hydrodynamic
simulation (without 𝛿𝑓) and the full hadronic spectra (with 𝛿𝑓).
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Figure 3.13: Proton and pion spectra for Au+Au collision at √𝑠NN = 200 GeV at
0− 5% centrality (top left panel). Differential elliptic flow 𝑣2 of charged hadrons
(bottom left panel), pions (top right panel), and protons (bottom right panel) for
Au+Au collision at √𝑠NN = 200 GeV at 20−30% centrality. Results from VISH2+1
with equilibrium proper time 𝜏0 = 0.4 fm/c, initial CGC energy density profile, de-
composition temperature 𝑇dec = 140 MeV and 𝑠95𝑝-PCE EoS are represented by
lines [219]. The multiplication factor 𝑐𝜂 is taken to be either 0, 1, 2 or 3. Further-
more, results are displayed with and without viscous distribution function correc-
tion 𝛿𝑓. This is compared to PHENIX data [218] represented by crosses. Retrieved
from [219].

One can see that the higher values of 𝜂
𝑠 result in flatter spectra. This effect is particularly strong

for protons at low 𝑝T. This is caused by the positive contribution of 𝜋𝜇𝜈 to transverse flow and
effective transverse pressure gradients [219]. Other simulations [220, 221] showed that the sign
of 𝛿𝑓 is fragile and sensitive to EoS, initial state model, and 𝜂

𝑠 value. The results for near-central
collisions 𝑏 ≈ 0 show the highest positive values 𝛿𝑓 at large 𝑝T. This can even lead to a positive
contribution to differential elliptic flow 𝑣2. For a larger impact parameter 𝑏, the contributions
of 𝛿𝑓 to differential elliptic flow 𝑣2 remain negative. This can be seen on the right-hand side of
Figure 3.13.

The constant 𝜂
𝑠 could be a good approximation. However, it was already mentioned that the

shear viscosity-entropy density ratio 𝜂
𝑠 is temperature dependent [188, 222]. Furthermore, pa-

rameterisations incorporating the baryon chemical potential 𝜇𝐵 were introduced [223]. For
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example, parameterisation

𝜂𝑇
𝜀+𝑃

(𝑇 ) = (
𝜂𝑇
𝜀+𝑃

)
min

+𝑎(𝑇𝑐−𝑇)𝜃(𝑇𝑐−𝑇)+𝑏(𝑇 −𝑇𝑐)𝜃(𝑇 −𝑇𝑐), (3.28)

where 𝜃(𝑥) is the Heaviside step function. The quantity on the left-hand side is equal to 𝜂
𝑠 (𝑇 )

for 𝜇𝐵 = 0. Some favourable parameterisations at 𝜇𝐵 = 0 can be seen in Figure 3.14.

Figure 3.14: The four examples of temperature-dependent 𝜂𝑇
𝜀+𝑃 at 𝜇𝐵 = 0. Retrieved

from [223].

In case of LHC energies simulated in this work, the dependence on baryon chemical potential
is not important since the baryon chemical potential is practically zero 𝜇𝐵 = 0. An extensive
Bayesian analysis of a parameterisation at 𝜇𝐵 = 0was provided [224]. Temperature dependent
parameterisation reads as

𝜂
𝑠
(𝑇 ) = (

𝜂
𝑠
)
min

+𝑆HG(𝑇H−𝑇)𝜃(𝑇H−𝑇)+𝑆QGP(𝑇 −𝑇Q)𝜃(𝑇 −𝑇Q).

Compared to the parameterisation of equation (3.28), this parameterisation has a plateau for
𝑇H < 𝑇 < 𝑇Q and is independent of 𝜇𝐵. For the eight free parameters, the posterior probability
distribution of the values of the best-fit parameters was introduced using the Bayes theorem.
Four different parameterisations of the EoS (𝑠83𝑠18, 𝑠87ℎ04, 𝑠88ℎ18, and 𝑠95𝑝) were compared.
Thiswasfitted tofive centrality classes of chargedparticlemultiplicity inmid-rapidity and four-
particle cumulant 𝑝T averaged elliptic flow 𝑣2{4} of Au+Au collisions at √𝑠NN = 200 GeV [225,
226], Pb+Pb collisions at √𝑠NN = 2.76 TeV [227, 228] and √𝑠NN = 5.02 TeV [228, 229], to five
centrality classes of multiplicities in midrapidity, and the average transverse momentum spec-
tra of pions, kaons, and protons in Au+Au collisions at RHIC [230] and Pb+Pb collisions at the
lower LHC energy [231]. The estimated parameterizations for different EoS can be seen in Fig-
ure 3.15.
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Figure 3.15: Temperature-dependent 𝜂
𝑠 (𝑇 ) for four different EoS parametrizations

with the union and intersection of the 90% credible intervals of the distributions
by using Bayesian statistical analysis. Retrieved from [224].

One can see that even though the width of the plateau is a free parameter, the statistical anal-
ysis showed that there is a plateau compared to a parameterisation in equation (3.28) and the
plateau is in the temperature region most relevant for HIC simulations. This, to some extent,
supports the constant parameterisation of 𝜂

𝑠 which is still widely used. This work uses the tem-
perature dependent parameterisation

𝜂
𝑠
(𝑇 ) = 0.21+0.38(𝑇𝑘−𝑇)𝜃(𝑇𝑘−𝑇)+0.38(𝑇 −𝑇𝑘)𝜃(𝑇 −𝑇𝑘),

where 𝑇𝑘 = 110MeV.

3.4.2 Bulk viscosity

For the EoS of a massless ultrarelativistic gas (see Section 3.3.1) with weakly coupled QGP, the
bulk viscosity to entropy density ratio 𝜁

𝑠 vanishes at the classical level due to conformal symme-
try. However, the conformal symmetry is broken inQCD and this results in finite bulk viscosity.
QGP becomes more conformal at very high temperature. This is shown by both perturbative
and lattice QCD calculations of the trace anomaly [232]. Thismeans that 𝜁

𝑠 goes to zero for high
temperatures. For QCD with three massless quark flavours, it is possible to derive the relation
between bulk and shear viscosity [192, 233, 234] as

𝜁
𝑠
∼
𝜂
𝑠
(𝑐2𝑠 −

1
3
)
2
. (3.29)

However, this relationdoesnotholdexactly [235]. Thiswasa startingpoint for theearly temperature-
dependent 𝜁

𝑠 (𝑇 ) parametrizations.



CHAPTER 3. MODELLING OF QUARK-GLUON PLASMA 83

For low temperatures, deep in the hadronic phase (𝑇 ll 150 MeV), it was shown that the bulk
viscosity should be exponentially high

𝜁 ∼
𝑓8𝜋
𝑚5

𝜋
e
2𝑚𝜋
𝑇 ,

where𝑚𝜋 is themass of the pion and 𝑓𝜋 is a decay constant [236]. However, this was derived for
the equilibrium system, where the bulk viscosity is dominated by the rate of number-changing
processes. These processes are very slow, and the bulk viscosity depends on the time scale. In a
HIC system that is slightly out-of-equilibrium, the timescale ismuch shorter, and the changing
processes are not sufficiently fast to contribute to the bulk viscosity so much. This means that
the low temperature 𝜁

𝑠 (𝑇 ) is actually extremely small [237].

Recently, three parameterisations of the temperature-dependent bulk viscosity to entropy den-
sity ratio 𝜁

𝑠 (𝑇 )were introduced. The first parameterisation [238] reads as

𝜁/𝑠 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

𝑐1+0.08exp[
𝑇/𝑇𝑝−1
0.0025 ]+

+0.22exp[𝑇/𝑇𝑝−10.022 ] 𝑇 < 𝑇𝑝
𝑐2+27.55(𝑇 /𝑇𝑝)−

−13.77(𝑇 /𝑇𝑝)
2

𝑇𝑝 < 𝑇 < 𝑇𝑃

𝑐3+0.9exp[
−(𝑇/𝑇𝑝−1)
0.0025 ]+

+0.25exp[
−(𝑇/𝑇𝑝−1)

0.13 ] 𝑇 > 𝑇𝑃,

(3.30)

where 𝑇𝑝 = 180 MeV, 𝑇𝑃 = 200 MeV, 𝑐1 = 0.03, 𝑐2 = −13.45 and 𝑐3 = 0.001. This parameterisa-
tion is actually more than 420 times higher at peak compared to the parameterisation in equa-
tion (3.29) in its explicit form with 𝜂

𝑠 = 0.12. The second parameterisation of the temperature-
dependent bulk viscosity to entropy density ratio was introduced [239] as

𝜁/𝑠 =
⎧
⎨
⎩

𝐵norm exp[−(
𝑇−𝑇peak
𝑇width

)
2
] 𝑇 < 𝑇peak

𝐵norm
𝐵2width

(𝑇 /𝑇peak−1)2+𝐵2width
𝑇 > 𝑇peak,

(3.31)

where 𝑇peak = 165MeV, 𝐵norm = 0.24 and 𝐵width = 1.5. The last parameterisation that was intro-
duced most recently [240] takes the form of

𝜁/𝑠 =
⎧
⎨
⎩

𝐵𝑛 exp[−(
𝑇−𝑇𝜇
𝐵1

)
2
] 𝑇 < 𝑇𝜇

𝐵𝑛 exp[−(
𝑇−𝑇𝜇
𝐵2

)
2
] 𝑇 > 𝑇𝜇,

(3.32)

where 𝐵peak = 0.13, 𝐵1 = 10MeV, 𝐵2 = 120MeV and 𝑇𝜇 = 160MeV. The three mentioned param-
eterisations can be seen in Figure 3.16.
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Figure 3.16: Temperature-dependent parametrizations of 𝜁
𝑠 (𝑇 ). [238, 239, 240]

Large values of 𝜁
𝑠 cause a large negative bulk pressure Π. Since the bulk pressureΠ is negative,

the total pressure �̃� = 𝑃 +Π decreases with larger bulk viscosity. Previously used parameter-
isations introduced small bulk viscous corrections that had a small if not negligible influence
on the evolution of the dense QGP medium. Recent bulk viscosity parameterisations [238, 239,
240] create large bulk viscosity corrections in the formof negative bulk pressure. [241]This sup-
presses the transverse expansion and effectively decreases the average transverse momentum
⟨𝑝T⟩. In addition, bulk viscosity is associated with greater entropy production and thus higher
charged multiplicity 𝑁ch. To support the impact of bulk viscosity, it was shown [242] that the
average transverse momentum ⟨𝑝T⟩ of the identified hadrons is too large with viscous hydro-
dynamics that includes only shear viscosity.

This led to recent improvements in relativistic hydrodynamic simulations and the inclusion
of modern bulk viscosity parameterisations. The exploration of the temperature dependence
of bulk viscosity is in active phase now. The bulk viscosity to the entropy density is also inves-
tigated with the use of Bayesian analysis.

This thesis uses default JETSCAPE parameterisation

𝜁
𝑠
(𝑇 ) =

( 𝜁𝑠 )max
Λ2

Λ2+(𝑇 −𝑇𝜁,𝑐)
2 , where Λ=𝑤𝜁 [1+𝜆sign (𝑇 −𝑇𝜁,𝑐)] ,

where maximum parameterisation ( 𝜁𝑠 )max
= 0.1, width of the peak𝑤𝜁 = 0.05 GeV, temperature

of the peak 𝑇𝜁,𝑐 = 0.18 GeV, and skewness 𝜆 = 0. Those are the default parameter values of the
MUSIC code.
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3.4.3 Second-order transport coefficients

Equations (3.26) and (3.27) are frame-independent. In other words, Israel-Steward second-
order equations in this form are the same in both Landau and Eckart frames. However, the
coefficients are not only frame dependent, but they are also dependent on temperature 𝑇 and
baryon chemical potential 𝜇𝐵. In the case of HIC at higher energies (√𝑠NN ≳ 100 GeV), it is
more significant to explore the temperature dependence of these coefficients than the depen-
dence on the chemical potential, since the baryon chemical potential is small 𝜇𝐵 ∼ 0 for this
type of collisions. The properties of the transport coefficients are extracted from microscopic
theory. Thismeans that one can obtain those coefficients from the relativistic Boltzmann equa-
tion, similarly to one can derive second-order Israel-Steward equations. The coefficients 𝛿𝜋𝜋,
𝜏𝜋𝜋, and 𝜙7 can be calculated from the massless limit [243, 244], since they do not vanish. In
the massless limit, 𝛿𝜋𝜋, 𝜏𝜋𝜋, and 𝜙7 can be written in terms of the relaxation time of the shear
viscosity 𝜏𝜋 and the equilibrium pressure 𝑃 [245]

𝛿𝜋𝜋 =
4
3
𝜏𝜋, 𝜏𝜋𝜋 =

10
7
𝜏𝜋, 𝜙7 =

9
70𝑃

.

Since other coefficients vanish in the massless limit, one has to investigate the limit for the
small mass to temperature ratio 𝑧 ≡ 𝑚

𝑇 . In this limit, it is possible to express the transport coef-
ficients related to both the bulk pressureΠ and the shear stress tensor 𝜋𝜇𝜈. [245] The transport
coefficients related to the bulk pressureΠ are [245]

𝜁
𝜏Π

= 14.55×(
1
3
−𝑐2𝑠 )

2
(𝜀+𝑃)+𝒪(𝑧5),

𝛿ΠΠ
𝜏Π

=
2
3
+𝒪(𝑧2 ln𝑧),

𝜆Π𝜋
𝜏Π

=
8
5
(
1
3
−𝑐2𝑠 )+𝒪(𝑧4).

Then the transport coefficients related to the shear stress tensor 𝜋𝜇𝜈 for the small mass to tem-
perature ratio 𝑧 are as follows [245]

𝜂
𝜏𝜋

=
𝜀+𝑃
5

+𝒪(𝑧2),

𝛿𝜋𝜋
𝜏𝜋

=
4
3
+𝒪(𝑧2),

𝜏𝜋𝜋
𝜏𝜋

=
10
7
+𝒪(𝑧2),

𝜆𝜋Π
𝜏𝜋

=
6
5
+𝒪(𝑧2 ln𝑧).

To summarize it, the transport coefficients are

𝛿ΠΠ
𝜏Π

=
2
3
,

𝜆Π𝜋
𝜏Π

=
8
5
(
1
3
−𝑐2𝑠 ) ,

𝛿𝜋𝜋
𝜏𝜋

=
4
3
, 𝜙7 =

9
70𝑃

,
𝜏𝜋𝜋
𝜏𝜋

=
10
7
,

𝜆𝜋Π
𝜏𝜋

=
6
5
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and the relaxation times are

𝜏𝜋 =
5𝜂
𝑠𝑇

, 𝜏Π =
𝜁

15( 13 −𝑐
2
𝑠 )2𝑠𝑇

.

3.5 Conversion to Particle Spectra

To obtain hadronic observables from relativistic hydrodynamics, each fluid cell must be con-
verted into discrete particles. This process is known as particlisation. The combination of hy-
drodynamics and microscopic simulations is called a hybrid model. Both stages describe dif-
ferent stages of the collision and the outcome is a set of individual particleswith four-momenta
that can be analysed in a way similar to experimentally measured events.

3.5.1 Cooper-Frye formula

The key element of the particlisation procedure is the Cooper-Frye formula [246]

d𝑁 𝑖

𝑝Td𝑦d𝑝Td𝜙𝑝
=

𝑔
(2𝜋)3

ˆ
Σ
d3𝜎𝜇𝑝𝜇 (𝑓𝑖0 (𝑥,𝑝)+𝛿𝑓

𝑖 (𝑥,𝑝)) , (3.33)

where 𝑔 is the spin degeneracy. This formula connects three key aspects. First, particle 𝑖 mo-
mentum distribution on the left-hand side of the Cooper-Frye formula (3.33). The second is
the isothermal freezout hypersurface Σwith the volume element

d3𝜎𝜇 = 𝜀𝜇𝑣𝜌𝜎
dΣ𝜇

d𝑟𝑥
dΣ𝜌

d𝑟𝑦
dΣ𝜎

d𝜂𝑠
⋅d𝑟𝑥d𝑟𝑦d𝜂𝑠.

Finally, local thermal equilibrium distribution function 𝑓𝑖0 (𝑥,𝑝) with out-of-equilibrium cor-
rections 𝛿𝑓𝑖(𝑥,𝑝) [247, 248].

Kinetic theory can be connected with a four-current 𝐽𝜇 flowing through a hypersurface Σ as

𝐽𝜇(𝑥) =
ˆ

d3𝑝
𝐸

𝑝𝜇𝑓(𝑥,𝑝).

Then multiplicity𝑁 is the integrated current 𝐽𝜇 over the hypersurface

𝑁 =
ˆ

Σ
d3𝜎𝜇𝐽𝜇(𝑥) =

ˆ
d3𝑝
𝐸

ˆ
Σ
d3𝜎𝜇𝑝𝜇𝑓(𝑥,𝑝).

This leads to the Cooper-Frye formula (3.33) since

𝐸
d𝑁
d3𝑝

=
d𝑁

𝑝Td𝑦d𝑝Td𝜙𝑝
.

The last thing that needs clarification is the out-of-equilibrium distribution function 𝑓. It is
possible to use the linear transformation matrix [249] for the four-momentum

𝑝𝑖 →𝑝′
𝑖 =𝑝𝑖+∑

𝑗
𝜆𝑖𝑗𝑝𝑗,
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instead of linear corrections 𝛿𝑓. Furthermore, the out-of-equilibrium corrections 𝛿𝑓 are not
unequivocally defined. One of the possibilities to incorporate out-of-equilibrium corrections
is to use the relaxation time approximation (RTA) [249, 250, 251]. Linear corrections with RTA
are

𝛿𝑓 = 𝑓0 (1±𝑓0)
𝜏
𝐸𝑇

[
1
2𝜂

𝑝𝑖𝑝𝑗𝜋𝑖𝑗+
1
𝜁
(
𝑝2

3
−𝑐2𝑠𝐸2)Π].

The explicit forms of the equilibrium distribution functions 𝑓0 for both bosons and fermions
were derived in Section 2.1.1.

A numerical implementation: iSS

Monte Carlo sampler iSS [4, 252] stands for ”iSpectraSampler”. iSS used to obtain particles on
the isothermal freeze-out hypersurface Σ𝜇 using the calculated particle momentum distribu-
tions as the relative emission probability.

The first step is the average total number of particles of species 𝑖 per unit of rapidity. This is
obtained fromequation (3.33). Equation (3.33) is integrated over all freeze-out cells, transverse
momenta of the particles, and the azimuthal angle. An inverse cumulative distribution func-
tion is calculated and the random variables are divided into two sets (𝜏, �⃗�T,𝜂𝑠) and (𝑝T,𝜙𝑝,𝑦).
Spatial information is first sampled with the inverse cumulative distribution function method,
and then the distribution can be evaluated at any spatial point for the probability in momen-
tum space of the particle species 𝑖. Then the direct probability distribution function method is
used to sample in momentum space.

3.5.2 Hadronic afterburner

The hadronic afterburner is a microscopic treatment of particles obtained from particlisation.
At this stage, hadrons are not in equilibrium and have a long mean free path. However, they
still interact with each other. Furthermore, resonances can decay. This changes hadronic ob-
servables, and itmust be included in the simulation. Relativistic hadronic transport SMASH was
used in this thesis.

SMASH

SimulatingManyAcceleratedStrongly-interactingHadrons (SMASH) [5, 253] is a relativistichadronic
transport model. SMASH includes all well-established hadrons up to a mass of ∼ 2 GeV as de-
grees of freedom, and as all transport approaches it is based on the Boltzmann equation

𝜕𝑓
𝜕𝑡

+
�⃗�
𝑚

⋅∇�⃗�𝑓+ �⃗� ⋅
𝜕𝑓
𝜕�⃗�

= (
𝜕𝑓
𝜕𝑡
)
coll

, (3.34)

where 𝑓𝑖(𝑥,𝑝) are the particle density distribution functions for each particle species 𝑖. 𝑓 can
be interpreted as the number of particles per phase space cell

d𝑁𝑖 = 𝑓(𝑥,𝑝)d3�⃗�d3�⃗�.

The term �⃗�
𝑚 ⋅ ∇�⃗�𝑓 describes the free streaming, and �⃗� ⋅ 𝜕𝑓𝜕�⃗� is the external force term. The free-

streaming term is responsible for the free propagation of particles, where particles are propa-
gated according to their momenta along straight lines. The treatment of potentials can be dif-
ferent across the models. SMASH is using the Boltzmann-Ühling-Uhlenbeck (BUU) approach,
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where 𝑓 is represented by test particles. Thismeans increasing the number of particles by some
factor𝒯 and further conserving the dynamics by decreasing the cross section by the same fac-
tor 𝒯. Along with it there is the density-dependent mean field potential 𝑈(𝜌) that changes
dynamics as

𝑑�⃗�
𝑑𝑡

= −∇�⃗�𝑈.

Finally, Boltzmann equations are solved at the limit of𝒯→+∞. Another (not used by SMASH)
treatment of potentials in the system is the quantum molecular dynamics (QMD) approach,
which is also widely used. This assumes that the particles are Gaussian wave packets and that
the potentials are the sum of pairwise potentials. Then QMD solves the many-body Hamilto-
nian.

The right side of the Boltzmann equation (3.34) is the collision integral that is not trivial. It
can be connected with a change in the number of particles in the phase-space cell.

d
d𝑡
𝑁(�⃗�, �⃗�, 𝑡) = d𝑁coll (𝑝′,⋯→𝑝,…)−d𝑁coll (𝑝,⋯→𝑝′,…) ,

where the first term on the right-hand side is the gain of the particles and the second term on
the right-hand side is the loss of the particles. With 2-to-2 scatterings, one gets the collision
integral

(
𝜕𝑓
𝜕𝑡
)
coll

=
ˆ

d3 ⃗𝑝2
(2𝜋)3

(𝑓′1 𝑓
′
2 −𝑓1𝑓2)𝑣𝑟𝑒𝑙

ˆ
𝑑𝜎.

The cross section at the end is obtained from QFT

𝜎12→1′2′ =
1
2𝐸1

1
2𝐸2

1
𝑣𝑟𝑒𝑙

1
𝑆1′2′

ˆ d3 ⃗𝑝′
1

(2𝜋)32𝐸′
1

d3 ⃗𝑝′
2

(2𝜋)32𝐸′
2

||ℳ12→1′2′
||
2 (2𝜋)4𝛿(4) (𝑃1+𝑃2−𝑃 ′

1 −𝑃
′
2) ,

whereℳ12→1′2′ is the appropriate matrix element.

This approach is built on the assumption that the space and time spanof the collisions are small
compared to the mean free path. In contrast to hydrodynamics, the system does not have to
be in local thermal equilibrium.

For the realistic system of ∼ 100 different particle species, the relativistic hadronic transport
approach results in a coupled system of ∼ 100 integro-differential equations

d
d𝑡
𝑓𝜋 = 𝐼coll (𝑓𝜋,𝑓𝑁,𝑓Δ,…)

d
d𝑡
𝑓𝑁 = 𝐼coll (𝑓𝜋,𝑓𝑁,𝑓Δ,…)

d
d𝑡
𝑓Δ = 𝐼coll (𝑓𝜋,𝑓𝑁,𝑓Δ,…)

...

(3.35)

This is impossible to solve analytically, and one needs to resort to the numerical Monte Carlo
approach with an effective description of the different equation terms.

Collision of two particles occurs when the mentioned particles are close. The definition of
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closeness is ambiguous in the relativistic case. This allows for a multiparticle reaction. Another
approach is the geometric collision criterion. This is a commonly used approach in hadronic
transportmodels, including SMASH. It is based on the particle distance criterionwhen collisions
occur

𝑑 ≤√
𝜎
𝜋
.

However, this introduces the time of the closest approach, and the time classification depends
on the reference frame. This causes problems with Lorentz invariance. However, this can be
improved by using the Kodama criterion. Alternatively, in a regime of high particle density, one
can use a stochastic collision criterion. It is the Lorentz-invariant collision probability for par-
ticles in the same phase-space cell.

In addition to particle propagation and intraction with other particles, there is another im-
portant element of transport models, namely resonance decays. For all particles there is a rel-
ativistic Breit-Wigner spectral function

𝒜(𝐸) =
𝑘

(𝐸2−𝑀 2)2+𝑀 2Γ2
,

where 𝑘 is the proportionality constant. It is the probability of producing the resonance at a
given energy 𝐸 with resonance width Γ (inverse mean lifetime). Particles with a small reso-
nance width (Γ < 10 keV) are considered stable.

To summarise all possible interactions, there are 2→ 2 ellastic and inellastic scatterings, 2→ 1
processes, and decays. Furthermore, for high centre-of-mass energy (√ ̂𝑠 ∼ 3GeV) scatterings,
Lund string fragmentation is used, which is implemented in Pythia [6, 254]. For more informa-
tion on Lund string fragmentation, see Section 4.5.1.

SMASH can be used for lower-energy collision simulations, higher-energy hybrid simulations
with relativistic hydrodynamics or for some infinite systems of hadrons. In this thesis it is used
only to simulate rescatterings of hadrons and resonance decays that are obtained from iSS
particlisation.

3.6 Summary of themediummodelling

Heavy-ioncollisionsathighcollisionenergies are rapidexplosiveprocesseswith changingphysics
regimes and degrees of freedom. Therefore, they are simulated with multistep approaches. For
the initial state of HIC, the research community is currently using several models. There are
also several numerical implementations of hydrodynamic equations in the form of simulation
codes. It is possible to use Landau or Eckart frames for the flow velocity definition. Further-
more, there are Öttinger-Grmela formalism and the Israel-Stewart formalism as second-order
hydrodynamics. Hydrodynamics includes parameterisations of the EoS and transport coeffi-
cients. Finally, there are multiple particlisation approaches.

Mediummodellingmay look like an equivocal field. However, different approaches donot usu-
ally contradict each other and are compared quantitatively. Particle spectra are more sensitive
to some parts of the simulations than others. For example, the initial state is harder to access
from the data. However, with the utilisation of Bayesian analysis and other statistical methods,
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it is possible to constrain the parameter space. Bayesian analysis is also very valuable for the
study of the temperature dependence of transport coefficients.

The simulation of the medium has to be very accurate to correctly describe the jet energy loss
inside the medium. The omission of shear viscosity causes a different temperature profile. The
exclusion of bulk viscosity causes different sizes of the medium. The preequilibrium evolution
is connected with the evolution of the jet before the formation of the medium. These steps are
important for simulation of jet evolution.

All simulationspresented inChapter 5useTRENTo initial state, freestream-milnepreequilib-
rium evolution, MUSIC Israel-Stewart hydrodynamics, iSS particlisation, and SMASH hadronic
afterburner were used.



Chapter 4

Hard Probes in Heavy-Ion Collisions

At the beginning of the heavy-ion collision (HIC), quarks and gluons can collide with a high-
momentum transfer 𝑞. These processes can be described by pQCD if they have a sufficiently
large scale 𝑄2 =−𝑞2 ≫ΛQCD. Collectively, this part of the QCD is referred to as improved par-
ton model, and it will be introduced in this chapter. Partons are elementary particles that carry
a colour charge and thus interact via the strong interaction. Thismeans that quarks and gluons
are collectively referred to as partons.

The parton model was introduced by Richard Feynman in 1969 [255]. His motivation was to
describe the inner structure of hadrons that are composed of partons. For example, the proton
is known to be composed of three quarks 𝑢,𝑢,𝑑. We call them valence quarks or constituent
quarks. They are responsible for the quantum numbers of the proton and are real particles.
However, the tree-quark model is just an approximation. Because quarks are not free inside
the proton, they emit and absorb gluons. At higher orders, gluons can create quark-antiquark
𝑞𝑞 pairs [256]. It is understood now that the particles are virtual, and their existence is limited
by the Heisenberg uncertainty principle. We understand that the particles are excitations of
quantum fields. However, in the case of virtual particles, they never reach asymptotic states
and do not contribute to the 𝑆-matrix [257]. This is why we cannot detect them directly, but we
can detect the interaction between real and virtual particles.

The great benefit of an improved parton model is that hard processes can be factorised. The
factorisation theorem can be described as a hard cross section separation process into pQCD
and nQCD processes. For example, the cross section of the production of hadron ℎ can be
factorised as

d𝜎𝑝+𝑝−→ℎ+𝑋

d𝑝𝑇d𝜂
= ∑

𝑎𝑏𝑐
𝑓𝑎/𝑝⋆𝑓𝑏/𝑝⋆�̂�𝑎+𝑏−→𝑐⋆𝐷ℎ

𝑐 , (4.1)

where 𝑓𝑎/𝑝 and 𝑓𝑏/𝑝 are protondistribution functions (PDFs),𝜎𝑎+𝑏−→𝑐 is the parton-parton cross
section, and 𝐷ℎ

𝑐 model dependent hadron fragmentation function. PDF 𝑓𝑎/𝑝(𝑥) describes the
probability of finding a parton 𝑎with a momentum fraction 𝑥within the proton 𝑝. The convo-
lution ⋆ in equation (4.1) represents

𝑓⋆𝑔 = 𝑔⋆𝑓 =
𝛼𝑠(𝑄)
2𝜋

ˆ 1

𝑥

𝑓(𝑦)
𝑦

𝑔(
𝑥
𝑦
)d𝑦. (4.2)

For small momentum transfer processes, it is possible to describe PDF 𝑓𝑎/𝑝 with a three-quark
model. For our purposes, where hard observables have high momentum transfer, it is neces-
sary to include sea quarks 𝑞(𝑠)𝑖 from higher-order gluon interaction and gluons 𝑔 themselves.
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However, PDFs 𝑓𝑎/𝑝 cannot be calculated frompQCD since they are determined by interactions
of partons at large distances. It is possible to measure structure functions from deep inelastic
scattering (DIS) and obtain PDFs 𝑓𝑎/𝑝.

4.1 Deep inelastic scattering

Deep inelastic scattering (DIS) is the scattering of a lepton and a nucleon at high energies,
where the nucleon as a target absorbs some kinetic energy. Thebasic kinematics of this process
is as follows

𝑊 2 = (𝑝𝑁+𝑞)2 =𝑝2
𝑁+𝑞

2+2𝑝𝑁 ⋅ 𝑞,

where 𝑊 is the four-momentum of the target after collision, 𝑝𝑁 is the four-momentum of the
nucleon before collision, and 𝑞 is the four-momentum of the virtual weak boson that is trans-
ferred between lepton and target. Since𝑞2 < 0 since𝑞 is a space-like vector (see Appendix A.2),
a positive square of the exchanged momentum is defined as

𝑄2 ≡−𝑞2

To differentiate deep inelastic scattering from elastic scattering, the Bjorken variable 𝑥𝐵 is in-
troduced as

𝑥𝐵 =
𝑄2

2𝑝𝑁𝑞
,

where 𝑥𝐵 = 1 for elastic scattering, 𝑥𝐵 < 1 for inelastic scattering and 𝑥𝐵 ll1 for deep inelastic
scattering. Finally, the fraction of energy lost by the incoming lepton 𝑦𝐿 is defined as

𝑦𝐿 ≡
𝑝𝑁𝑞
𝑝𝑁𝑘

.

This closes the set of variables (𝑄2,𝑥𝐵,𝑦𝐿) that will be mentioned in this thesis. There is also the
energy loss of the incoming lepton 𝜈𝐿. However, 𝑦𝐿 and 𝜈𝐿 have a trivial relationship and 𝑄2,
𝑥𝐵, and 𝑦𝐿 are sufficient to describe DIS kinematics. It is also important to mention that𝑄2, 𝑥𝐵,
and 𝑦𝐿 are Lorentz-invariant variables.

DIS cross section can be factorised into a leptonic 𝐿𝜇𝜈 and a hadronic𝑊 𝜇𝜈 tensors

d𝜎
d𝑥𝐵d𝑦𝐿

= 𝑥𝐵𝑠
d𝜎

d𝑥𝐵d𝑄2 =
2𝜋𝑦𝛼
𝑄4 ∑

𝑖𝑗
𝜂𝑖𝜂𝑗𝐿

𝜇𝜈
𝑖𝑗 𝑊

𝑖𝑗
𝜇𝜈, (4.3)

Since 𝜎 is proportional to the square of the amplitude, there are two factors 𝜂𝑖 that arise from
the weak vertex. The exact form for each vertex is

𝜂𝛾 (𝑄2) = 1,

𝜂𝑍 (𝑄2) =
𝑔2

(2cos𝜃𝑤)2 𝑒2
𝑄2

𝑄2+𝑀 2
𝑍
=
𝐺𝐹

√2

𝑀 2
𝑍

2𝜋𝛼
𝑄2

𝑄2+𝑀 2
𝑍
,

𝜂𝑊 (𝑄2) =
𝑔2

(2√2)2𝑒2
𝑄2

𝑄2+𝑀 2
𝑊
=
𝐺𝐹

√2

𝑀 2
𝑊

4𝜋𝛼
𝑄2

𝑄2+𝑀 2
𝑊
.

Hardonic tensor𝑊 𝜇𝜈 cannot be calculated from pQCD and it has to be parametrised. Since it
is a Lorentz tensor, there are six possible terms

𝑊 𝜇𝜈(𝑝,𝑞) = −𝑔𝜇𝜈𝑊1+
𝑝𝜇𝑝𝜈

𝑀 2 𝑊2−𝑖𝜖𝜇𝜈𝜌𝜎
𝑝𝜌𝑞𝜎
𝑀 2 𝑊3+

𝑞𝜇𝑞𝜈

𝑀 2 𝑊4+
𝑝𝜇𝑞𝜈+𝑝𝜈𝑞𝜇

𝑀 2 𝑊5+
𝑝𝜇𝑞𝜈−𝑝𝜈𝑞𝜇

𝑀 2 𝑊6.
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Gauge invariance condition 𝑞𝜇𝑊 𝜇𝜈 = 0 impies

𝑊6 = 0, 𝑊5 =−𝑊2
𝑝𝑁𝑞
𝑞2𝑀 2

𝑁
, and 𝑊4 =𝑊1

1
𝑞2

+𝑊2
(𝑝𝑁𝑞)2

𝑞4𝑀 2
𝑁
.

Gauge invariance simplifies the hadronic tensor 𝑊 𝜇𝜈 and can be reformulated in terms of
structure functions

𝐹1 =𝑊1, 𝐹2 =𝑊1
𝑄2

2𝑥𝐵𝑀 2
𝑁
, and 𝐹3 =𝑊3

𝑄2

2𝑥𝐵𝑀 2
𝑁
.

Final form of the hadronic tensor takes the form

𝑊𝜇𝜈 = (−𝑔𝜇𝜈+
𝑞𝜇𝑞𝜈
𝑞2

)𝐹1 (𝑥𝐵,𝑄2)+
�̂�𝜇�̂�𝜈
𝑝 ⋅𝑞

𝐹2 (𝑥𝐵,𝑄2)− 𝑖𝜀𝜇𝜈𝛼𝛽
𝑞𝛼𝑝𝛽

2𝑞 ⋅𝑝
𝐹3 (𝑥𝐵,𝑄2) . (4.4)

The last term violates parity; thismeans that the termwith structure function𝐹3 is zero for pho-
ton exchange.

Three structure functions can be measured in DIS experiments. Different species of leptons
and nucleons can collide, and the inner structure of the proton can be untangled with arith-
metic operations. For example, the second structure function 𝐹2 can be expressed as

𝐹2 (𝑥𝐵,𝑄2) =∑
𝑖
𝑒2𝑖 𝑥𝐵𝑓𝑖/𝑝 (𝑥𝐵,𝑄

2) . (4.5)

Bjorken variable 𝑥𝑏 corresponds to the momentum fraction carried by the parton 𝑥 = 𝑝𝑎
𝑝𝑁

.

4.2 Initial Conditions of Hard Partons

The initial conditions in terms of hard processes represent the four-momenta of specific par-
tons created at the beginning of the collision with a sufficiently large momentum transfer 𝑞.
This means transverse momentum 𝑝T, spatial pseudorapidity 𝜂𝑠, azimuth angle𝜙, and species
of the parton. This can be obtained from the convolution of nuclear parton distribution func-
tions (nPDF) and the multiparton interaction (MPI) cross section.

4.2.1 Parton distribution function

It is possible to determine the parton distribution functions (PDF) using the results of the neu-
tral current DIS cross section measured in H1 [258, 259, 260], ZEUS [261, 262], BCDMS [263],
andNMC [264, 265], inclusive jet cross sectionmeasured inDØ [266, 267] andCDF [268], Drell-
Yan deuteron-proton ratiomeasured in E866 [269] andE605 [270],𝐹2 and𝐹3 measured inCCFR
[271, 272], and finally theW-lepton asymmetry measured by CDF collaboration [273].

Furthermore, the pQCDparametersmust be introduced. That is,𝛼𝑠(𝑀𝑍) = 0.118 [32] andquark
masses. Quarks 𝑢, 𝑑, and 𝑠 can be taken as massless. PDF evolution kernels of the are mass in-
dependent in the𝑀𝑆 scheme, so masses of heavy-flavour quarks should be taken as the scales
at which they are turned on in evolution (𝑄2 ≥ 𝑚2

𝑞). The masses of heavy quarks are taken as
𝑚𝑐 = 1.3 GeV and𝑚𝑏 = 4.5 GeV. [274]
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PDFs can be parametrised and the parameters can be determined by fitting the data. One pos-
sible parameterisation is

𝑥𝑓CTEQ6.1M
𝑖/𝑝 (𝑥,𝑄2) = 𝐴0𝑥𝐴1 (1−𝑥)𝐴2𝑒𝐴3𝑥 (1+𝑒𝐴4𝑥)

𝐴5 .

This parameterisation is called Padé expansion. The singularity at 𝑥 = 0 corresponds to the
Regge behaviour at small 𝑥. Then the singularity at 𝑥 = 1 is associated with the quark-counting
rules at large 𝑥.

Figure 4.1: Overview of the CTEQ6M PDFs 𝑓CTEQ6M
𝑖/𝑝 at𝑄 = 2GeV and𝑄 = 100GeV.

[274]

With the theoretical calculationsandexperimentalmeasurements, PDFscanbederived. CTEQ6M
PDFs [274, 275] at the scale 𝑄 = 2 GeV and 𝑄 = 100 GeV are shown in Figure 4.1. One can see
that the sea quarks located at the small 𝑥 are more prominent for larger values of 𝑄. It can be
interpreted that the interactionwith a highermomentum transfer can probe smaller structures
of the nucleon. This means more fermion loops that are associated with sea quarks.

The evolution of PDFs in𝑄 can be calculated using theDGLAP equation (forsee equation (4.9)).
DGLAPequationwill be introduced in Section 4.3.1. Theevolutionof PDFs is obtained as a con-
volutionofPDFsandsplitting functions. Thesplitting function is aprobability function that can
be calculated within pQCD up to some order. This work considers the next-to-leading-order
(NLO) PDFs derived in the𝑀𝑆 scheme.

Nuclear parton distribution function

Even though the nucleus is made up of individual nucleons, partons are not distributed in the
same manner as individual nucleons. This is why it is necessary to introduce nuclear parton
distribution functions (nPDFs). ThePDFof the nucleon incide nucleus𝐴 can be parameterised
as

𝑓𝑖/𝐴 (𝑥,𝑄2) ≡ 𝑅𝐴
𝑖 (𝑥,𝑄

2)𝑓CTEQ6.1M
𝑖/𝑝 (𝑥,𝑄2) ,
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where𝑅𝐴
𝑖 (𝑥) is the nuclear modification of the PDF of free proton. Parameterisation of nuclear

modification 𝑅𝐴
𝑖 (𝑥) can be expressed as

𝑅𝐴
𝑖 (𝑥) =

⎧⎪
⎨
⎪
⎩

𝑎0+(𝑎1+𝑎2𝑥)[exp(−𝑥)−exp (−𝑥𝑎)] 𝑥 ≤ 𝑥𝑎
𝑏0+𝑏1𝑥+𝑏2𝑥2+𝑏3𝑥3 𝑥𝑎 ≤ 𝑥 ≤ 𝑥𝑒
𝑐0+(𝑐1−𝑐2𝑥)(1−𝑥)−𝛽 𝑥𝑒 ≤ 𝑥 ≤ 1

, (4.6)

where 6 of the 13 parameters are eliminated by matching conditions at points 𝑥𝑎 and 𝑥𝑒 and
one parameter is fixed as 𝑐0 = 2𝑦𝑒.

The outline of the parameterisation of nuclearmodification𝑅𝐴
𝑖 (𝑥) is shown in Figure 4.2. There

are four characteristic regions called shadowing, antishadowing, EMC-effect, and Fermi mo-
tion. The depth of shadowing effect (𝑥 → 0) is associated with the parameter 𝑦0. Position of the
antishadowing maximum 𝑥𝑎 and 𝑦𝑎 ≡𝑅𝐴

𝑖 (𝑥𝑎). The position of the minimum of the EMC-effect
is associated with 𝑥𝑒 and 𝑦𝑒 ≡ 𝑅𝐴

𝑖 (𝑥𝑒). Finally, the parameter 𝛽 is associated with the slope of
the Fermi motion (𝑥 → 1).

Figure4.2: An illustrationof the𝑅𝐴
𝑖 (𝑥)with relevantparameters (𝑦0,𝑥𝑎,𝑦𝑎,𝑥𝑒,𝑦𝑒,𝛽).

[276]

Six parameters (𝑦0,𝑥𝑎,𝑦𝑎,𝑥𝑒,𝑦𝑒,𝛽) of nuclear modification𝑅𝐴
𝑖 (𝑥) depend on the number of nu-

clear masses 𝐴. This 𝐴-dependence is usually parameterised by the power law

𝑑(𝐴)𝑖 = 𝑑(12)𝑖 (
𝐴
12
)
𝑝𝑑𝑖 ,

where 𝑑(𝐴)𝑖 are nuclear modification 𝑅𝐴
𝑖 (𝑥) 𝐴−dependent parameters (𝑦0,𝑥𝑎,𝑦𝑎,𝑥𝑒,𝑦𝑒,𝛽) and

𝑝𝑑𝑖 are power parameters of the 𝐴−dependence. The reference mass number 𝐴 = 12 corre-
sponds to the carbon 12C.
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Parameter space can be eliminated with momentum and baryon number sum rules

∑
𝑖=𝑞,𝑞,𝑔

ˆ 1

0
d𝑥𝑥𝑓𝑖/𝐴 (𝑥,𝑄2

0 ) = 1,
ˆ 1

0
d𝑥[𝑓𝑢𝑉/𝐴 (𝑥,𝑄

2
0 )+𝑓𝑑𝑉/𝐴 (𝑥,𝑄

2
0 )] = 3.

Namely parameters 𝑦0 and 𝑝𝑦0 for the valence quarks 𝑢𝑣 and 𝑑𝑣 and gluons 𝑔 can be removed
from the parameter space that has to be determined by experiments. This means that there are
32 free parameters.

The parameters of nPDF can be obtained with an analysis consisting of ℓ+𝐴DIS experiments,
Drell-Yan dilepton production measured in 𝑝+𝐴 collisions. Finally, since nuclear modifica-
tion of the deuteron can be estimated to be of the order 2% [277], neutral pion 𝜋0 production
measured in d+Au and p+p collisions. Observables of nuclear modification are formulated as

𝑅A
DIS (𝑥𝐵,𝑄

2) ≡
1
𝐴

d𝜎ℓ A
DIS

d𝑄2d𝑥𝐵

1
2

d𝜎ℓ d
DIS

d𝑄2d𝑥𝐵

,

𝑅A
𝐹2 (𝑥𝐵,𝑄

2) ≡
𝐹𝐴
2 (𝑥𝐵,𝑄

2)
𝐹d
2 (𝑥𝐵,𝑄2)

,

𝑅A
DY (𝑥

(1,2)
𝐵 ,𝑀 2) ≡

1
𝐴

d𝜎pADY
d𝑀2d𝑥(1,2)𝐵

1
2

d𝜎pdDY
d𝑀2d𝑥(1,2)𝐵

,

𝑅𝜋
dAu ≡

1
⟨𝑁coll⟩

d2𝑁dAu
𝜋

d𝑝𝑇d𝑦

d2𝑁pp
𝜋

d𝑝𝑇d𝑦

min.bias=
1
2𝐴

d2𝜎dAu𝜋
d𝑝𝑇d𝑦

d2𝜎pp𝜋
d𝑝𝑇d𝑦

,

where𝑀 is the invariant mass of the lepton pair, then 𝑥1,2 ≡√𝑀2

𝑠 𝑒
±𝑦 and ⟨𝑁coll⟩ is the average

number of binary collisions.

Figure 4.3: The kinematical reach of the DIS, Drell-Yan dilepton production, and
an inclusive neutral pion 𝜋0 production. [276]
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All cross sections can be calculated with the collinear factorisation formalism

𝜎ℓ𝐴→ℓ𝑋
DIS = ∑

𝑖=𝑞,�̄�,𝑔
𝑓𝑖/𝐴 (𝑄2)⋆ �̂�ℓ+𝑖→ℓ+𝑋

DIS (𝑄2) ,

𝜎𝑝𝐴→𝑙+𝑙−𝑋
DY = ∑

𝑖,𝑗=𝑞,�̄�,𝑔
𝑓𝑖/𝑝 (𝑄2)⋆𝑓𝑗/𝐴 (𝑄2)⋆ �̂�𝑖𝑗→𝑙+𝑙−𝑋 (𝑄2) ,

𝜎𝐴𝐵→𝜋𝑋 = ∑
𝑖,𝑗,𝑘=𝑞,�̄�,𝑔

𝑓𝑖/𝐴 (𝑄2)⋆𝑓𝑗/𝐵 (𝑄2)⋆ �̂�𝑖𝑗→𝑘+𝑋 (𝑄2)⋆𝐷𝑘→𝜋 (𝑄2) ,

where �̂� are calculable quantities in pQCD and are calculated in NLO.

DIS put constraints on the power parameters for the valence and sea quarks in the range 0.01 ≤
𝑥 ≤ 1. [276] Separation of valence and sea quarks is not possible around the antishadowing
peak (𝑥 ∼ 0.1). DIS is primarily sensitive for valence quarks at high 𝑥 and for sea quarks at
small 𝑥. The Drell-Yan dilepton production can distinguish between valence and sea quarks
around the antishadowing peak (𝑥 ∼ 0.1). [276] Currently, precision for larger 𝑥 is not suffi-
cient to constrain the parameters. Drell-Yan dilepton production for𝑀 2 ≫𝑄2

0 constrains glu-
ons. Finally, the inclusiveproductionofneutral pion𝜋0 has largeuncertainties originating from
the model-dependent number of binary collisions ⟨𝑁coll⟩. However, important constraints on
gluon parameters can be obtained from inclusive production of the neutral pion 𝜋0. Namely,
EMC-effect and shadowing. [276]The kinematical reach of theDIS, theDrell-Yan dilepton pro-
duction, and the inclusive production of neutral pions 𝜋0 are shown in Figure 4.3.

Parameters are obtained through the iteration of minimisation of a global 𝜒2-function. NLO
nuclear modifications𝑅𝐴

𝑖 (𝑥) for lead Pb can be seen in Figure 4.4. Nuclear PDFs obtained from
this process are called EPS09NLO nPDFs [276] and are implemented in Pythia [6, 254].

Figure 4.4: NLO nuclear modifications 𝑅𝑉,𝑅𝑆,𝑅𝐺 for lead at 𝑄2 = 1.69 GeV2 and
𝑄2 = 100 GeV2. [276]
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Pythia initial state

Theinitial stateofpartons (PID,𝑝𝑇,𝑦,𝜙) is obtained fromPythia 8 [6] implemented inJetscape
[9] as PythiaGun. This initial-state generator is a 𝑝𝑇-ordered multiparton interaction (MPI)
[278] Monte Carlo framework with initial-state radiation [279]. A much closer mathematical
description of parton evolution will be given in the following Section 4.3.

Hard 2→ 2 processes can be obtained from the factorisation theorem

𝜎hard =∑
𝑟
∑
𝑖𝑗𝑘𝑙

𝑓𝑖/𝐴 (𝑄2)⋆𝑓𝑗/𝐵 (𝑄2)⋆ �̂�𝑖𝑗→𝑘𝑙
𝑟 ( ̂𝑠, ̂𝑡, �̂�),

where 𝑟 is the subprocess of some order of perturbative theory and ̂𝑠, ̂𝑡, �̂� are mandelstam vari-
ables of quarks. This is accompanied by initial-state radiation, which makes it a 2→𝑛 process.

In Pythia 8, parton emissions are ordered in 𝑝2
T and evolved according to the Sudakov form

factor [280] which will also be introduced in Section 4.3. This makes the transverse momen-
tum squared 𝑝2

T an evolution variable. Pythia framework construct preliminary kinematics of
the unevolved partons explicitly on the mass shell directly after each branching; then the par-
tons acquire virtuality 𝑄. The total transverse momentum and other kinematic variables are
conserved with the recoil partner that can also undergo initial-state radiation.

4.3 Jet evolution in the vacuum

Jet is a collimated cone of hadrons. Jets originate from hard processes with quarks and/or glu-
ons. This essentially means that when the interaction with the high-momentum transferred 𝑞
produces partons, they evolve into a shower of hadrons. This is due to the colour confinement
described in Section 2.3.3. Partons undergo the so-called hadronisation, where the transition
from quarks and gluons to hadrons is made. Hadronisation itself is an nQCD process and has
to be described with a model. This will be introduced in Section 4.5. Since the time scale of the
hard process ∼ 1

√𝑠
is much smaller than the time scale of hadronisation, hadronisation does

not influence the hard vertex and cross sections can be factorised with the factorisation theo-
rem.

Toproperly introduce theconceptof a jet, consider twoFeynmandiagramsof electron-positron
annihilation:

𝑒−

𝑒+

𝑞

𝑞

𝛾∗/𝑍 0

𝑒−

𝑒+

𝑞

𝑔

𝑞

𝛾∗/𝑍 0

The first diagram represents the LO creation of the quark-antiquark pair 𝑞𝑞 from either of the
chargeless electroweak bosons. The seconddiagram represents a similar process, but the quark
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𝑞 radiates the gluon 𝑔. The diagram of the process, where the gluon 𝑔 is radiated by the anti-
quark 𝑞, results in the same cross section and they have to be added together.

When the quark and antiquark are created from a photon 𝛾∗ or zero 𝑍 0 originating from an-
nihilation, they create the so-called back-to-back jets. This event has two jets of hadrons that
have the same absolute transversemomenta𝑝𝑇 with the opposite position at the azimuthal an-
gle 𝜙 space. This originates from the conservation law of three components of the momenta.
If the electron and the positron have the same momentum, the jets will have opposite rapidity
𝑦. However, it is important to note that this does not apply to nucleon-nucleon, nucleon-ion,
or ion-ion collisions because partons inside nucleons can carry a different fraction 𝑥 of the nu-
cleon momentum.

The cross section for the first diagram can be calculated from QED as

𝜎LO (𝑒+𝑒− →𝑞�̄�) =𝑁c
4𝜋𝛼2

3𝑠 ∑
𝑞
𝑒2𝑞 .

It is quite interesting to compare it to muon pair production 𝑒−𝑒+ →𝜇−𝜇+

𝑅 =
𝜎LO (𝑒+𝑒− →𝑞�̄�)
𝜎LO (𝑒+𝑒− →𝜇+𝜇−)

= 𝑁c∑
𝑞
𝑒2𝑞 , (4.7)

since one can obtain direct access to the number of colours𝑁𝑐 and compare it with the experi-
ment. This simple comparison does not work for more accurate measurements. There is a dis-
crepancy between the LO production ratio in equation (4.7). This originates from higher-order
corrections. For example, the NLO cross section of the quark-antiquark pair 𝑞𝑞 production,
also called vertex correction, is

𝜎NLO =𝑁𝑐
4𝜋𝛼2

3𝑠 ∑
𝑞
𝑒2𝑞 (1+

𝛼s

𝜋
),

where renormalisation removes ultraviolet (UV) divergencies.

The second diagram corresponding to the 3-jet event can be calculated from QCD as

𝜎𝑞�̄�𝑔
LO =𝑁𝑐

4𝜋𝛼2

3𝑠 ∑
𝑞
𝑒2𝑞
ˆ

d𝑥1 d𝑥2
4
3
𝛼s

2𝜋
𝑥21 +𝑥

2
2

(1−𝑥1) (1−𝑥2)
. (4.8)

Here, 𝑥1 and 𝑥2 are fractions of energy carried by the quark and antiquark, respectively. The
cross section has infrared (IR) singularities that appear for 𝐸𝑔 → 0. This can be fixed with the
introduction of a gluon mass 𝑚𝑔. This might seem unphysical. However, the Kinoshita-Lee-
Nauenberg theorem [281, 282] states that the Standard Model as a whole is infrared (IR) finite,
andcross sections are independentof unphysicalmasses. For this 3-jet process, thismeans that
if we sum all gluon radiations/absorbtions up to arbitrary order, the result is finite for𝑚𝑔 →0
and independent of the gluon mass 𝑚𝑔. Originally, the total 3-jet cross section was used in
Pythia to generate initial-state partons. Thiswas replacedwithmore sophisticated initial-state
radiation [278]. 3-jet event at thedetector level canbe seen inFigure 4.5, where the jets pointing
left and right are the quark and antiquark jets, and the jet with downward direction is the gluon
jet. However, gluon jets have usually wider angular distribution and more particles with less
momenta.
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Figure 4.5: Three-jet event (𝑞𝑞𝑔) in the JADE detector at DESY from electron-
positron annihilation.

In a sense, the 3-jet event canbeunderstoodas a radiationmodificationof the 2-jet event. Since
partons can split and partonic shower can evolve before hadronisation even in vaccum. Those
effects are much more significant for evolution inside the medium (see Section 4.4), but let us
start with the investigation of the vacuum evolution first.

4.3.1 Splitting functions and the DGLAP equations

Dokshitzer-Gribov-Lipatov-Alterelli-Parisi (DGLAP) are evolution equations of partons. Guido
Altarelli and Giorgio Parisi introduced them in 1977 [283] to western research community. In
the same year, Yurii L. Dokshitzer published the same evolution equation [284] in the Soviet
Union. However, later it was found that Vladimir Gribov and Lev Lipatov introduced an equiv-
alent evolution equation 1972 [285] in the Soviet Union as well.

DGLAP equations are based on the assumption that partons can split and consequently the
probability that parton splits into 𝑛 number of partons is somehow related to the probability
that parton splits into 𝑛−1 number of partons, where this relation is provided with the split-
ting kernel as a probability of parton split. For particle distribution functions, this essentially
means that

𝑓(𝑥) −→ 𝑓0(𝑥,𝑡) = 𝑓(𝑥)+
𝛼𝑠(𝑄)
2𝜋

ˆ 1

𝑥

𝑓(𝑦)
𝑦

𝑃(
𝑥
𝑦
)d𝑦+𝒪(𝛼2

𝑠 (𝑡)) ,

Δ𝑓(𝑥,𝑡) = 𝑓0⋆𝑃,

where 𝑃 is the splitting kernel and 𝑡 is not time, but rather the evolution variable

𝑡 = ln
𝑄2

Λ2
QCD

.
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This behaviour in LO describes the valence-quark model 𝑓0. The distribution function 𝑓0 is also
called primordial or bare and depends only on 𝑥. However, there are higher-order processes
that contribute to the particle distribution functions, and the number of particles is not con-
served. This behaviour can be put into ordinary differential equation

d𝑓(𝑥,𝑡)
d𝑡

=
𝛼𝑠(𝑡)
2𝜋

ˆ 1

𝑥

𝑓(𝑦,𝑡)
𝑦

𝑃(
𝑥
𝑦
)d𝑦+𝒪(𝛼2

𝑠 (𝑡)) = 𝑓⋆𝑃 +𝒪(𝛼2
𝑠 (𝑡)) .

This incorporates this branching behaviour mentioned at the beginning of this section.

Now, in the case of QCD, there are four types of splitting functions.

𝑃𝑞𝑞 =
4
3
[(
1+𝑧2

1−𝑧
)
+
+
3
2
𝛿(1−𝑧)]+𝒪(𝛼𝑠),

𝑃𝑔𝑞 =
4
3
1+(1−𝑧)2

𝑧
+𝒪(𝛼𝑠),

𝑃𝑞𝑔 =
1
2
(𝑧2+(1−𝑧)2)+𝒪(𝛼𝑠),

𝑃𝑔𝑔 = 6[(
𝑧

1−𝑧
)
+
+
1−𝑧
𝑧

+𝑧(1−𝑧)]+
33−2𝑛𝑓

6
𝛿(1−𝑧)+𝒪(𝛼𝑠),

where any of them can be calculated up to some order within pQCD and they are probabilities
of parton splitting. Furthermore, the + subscript notation 𝑔(𝑥)+ represents

ˆ 1

0
𝑔(𝑥)+𝑓(𝑥)d𝑥 =

ˆ 1

0
(𝑓(𝑥)−𝑓(1))𝑔(𝑥)d𝑥,

where 𝑓 is from the test function space.

Finally, we can introduce the DGLAP evolution equations for QCD partons as

d𝑓𝑎(𝑥,𝑡)
d𝑡

=
𝛼𝑠(𝑄)
2𝜋 ∑

𝑏

ˆ 1

𝑥

𝑓𝑏(𝑦,𝑡)
𝑦

𝑃𝑎𝑏 (
𝑥
𝑦
)d𝑦

=∑
𝑏
𝑓𝑏⋆𝑃𝑎𝑏.

(4.9)

4.3.2 Sudakov form factor

It is possible to describe the multi-gluon emission. First, radiated gluons have virtuality 𝑄 or-
dering. Taking into account the initial-state shower, the virtuality𝑄 is the evolution parameter
and increases toward the hard scattering. Now, for the final-state shower, the virtuality of the
emissions decreases, and evolution moves further from the hard scattering. It is possible to
construct the so-called ladder of 𝑛 radiated gluons. The cross section of this is proportional to

𝜎𝑛𝑔 ∼𝛼𝑛
𝑠

⎡
⎢⎢⎢
⎣

𝐴𝑛 ln𝑛 (
𝑄2

𝑛2
𝑔
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Leading logarithm

+ 𝐵𝑛 ln𝑛−1 (
𝑄2

𝑛2
𝑔
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Next-to-leading logarithm

+ ...

⎤
⎥⎥⎥
⎦

,
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where the scale of𝛼𝑠 should be the highest virtuality𝑄𝑘 of all partons interacting in that vertex.
If we consider radiation of the 𝑖 -th gluon, the scale of 𝛼𝑠 should be the virtuality of the incom-
ing quark that carries virtuality 𝑄𝑖−1 from the previous vertex. This makes 𝛼𝑠 (𝑄2

𝑖−1) dependent
on the vertex 𝑖.

Now, if we consider the correction of the first gluon emission as an emission and reabsorb-
tion of another gluon (loop), it will lead to logarithms ln ( 𝜇𝑄𝑖

). Since the scale 𝜇 is chosen as𝑄𝑖,
it will moderate potentially large logarithms. Then it is possible to sum 𝜎𝑛𝑔 with the DGLAP
equations.

The probability of gluon emission increases with𝑛 because there are more positive logarithms.
The probability density of parton branching is

∑
𝑏𝑐
𝐼𝑎→𝑏𝑐(𝑄2) =∑

𝑏𝑐

ˆ 𝑧+

𝑧−
d𝑧

𝛼𝑠
2𝜋

𝑃𝑎→𝑏𝑐(𝑧),

where 𝐼𝑎→𝑏𝑐 is a probability density of a specific event and (𝑧−,𝑧+) is allowed region ofmomen-
tum fraction. Consequently, the probability of no splitting in the (𝑄2

𝑖 ,𝑄
2
𝑓 ) interval is suppressed

and takes the form

𝒮q (𝑄2
𝑖 ,𝑄

2
𝑓 ) = exp

⎛

⎝
−
ˆ 𝑄2

𝑖

𝑄2
𝑓

d𝑄 ′2

𝑄 ′2

ˆ
d𝑧

𝛼s

2𝜋
�̂�qq(𝑧)

⎞

⎠

𝒮g (𝑄2
𝑖 ,𝑄

2
𝑓 ) = exp

⎛

⎝
−
ˆ 𝑄2

𝑖

𝑄2
𝑓

d𝑄 ′2

𝑄 ′2

ˆ
d𝑧

𝛼s

2𝜋
[�̂�gg(𝑧)+ �̂�qg(𝑧)]

⎞

⎠
.

This equation is called the Sudakov form factor and is the foundation ofmanyMonteCarlo sim-
ulators including Modular All Twist Transverse-scattering Elastic-drag and Radiation (MATTER)
model [7, 286] which was used with Pythia [6, 254] initial state to generate 𝑝+𝑝 collisions in
this thesis. Both frameworks were used as a modules implemented in Jetscape [9].

Finally, the specific channel 𝑖 in which parton 𝑗 splits is determined by branching ratio

BR𝑖𝑗(𝑄2) =
ˆ 1−𝑄2

min/𝑄
2

𝑄2
min/𝑄

2
d𝑦𝑃𝑖𝑗(𝑦). (4.10)

This process describes evolution in vacuum from a QCD point of view. Another layer of Monte
Carlo simulation is kinematics. Momentum and energy must be conserved and distributed
between the daugheter particles. If we assume that 𝑦 and (1 − 𝑦) are fractions of momenta
of daughter partons, respectively, their maximum possible virtualities are 𝑄max

1 = 𝑦2𝑄0 and
𝑄max
1 = (1−𝑦2)𝑄0. [287] Their transversemomentum with respect to the original parton𝑘T can

be obtained as
𝑘2T = 𝑦(1−𝑦)𝑄0−(1−𝑦)𝑄1−𝑦𝑄2.

This finalises the vacuum evolution. It is possible to introduce medium modifications to this
process and use MATTER [7, 286] to simulate the evolution of high-virtuality (𝑄0 ≥ 2 GeV) par-
tons inside the medium.
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4.4 Jet evolution inside themedium

This work focusses on heavy-ion collisions, where a hot and dense medium is created. Partons
that travel through this medium experience what is called quenching. This is associated with
energy loss. It is important to note that energy is, in fact, not lost, but conserved. Since partons
originating from the hard interaction vertex are not measured directly, it is unlikely that recon-
structed jets (see Section 4.6 for details on reconstruction) composed of hadrons carry all the
energy of the original parton. In other words, energy is not lost in a physical process but rather
not fully recovered in the jet-reconstructionprocess. Nevertheless, hadronic jets are definedon
the detector level and they still carry information about the medium. The reason is that their
evolution is different compared to the 𝑒−+𝑒+ and 𝑝+𝑝 collisions. Even a simple comparison
between 𝑝+𝑝 and heavy-ion collision can be very valuable (see Chapter 5).

It is important to treathigh-virtualitypartons (𝑄0 ≥ 2GeV)differently compared to low-virtuality
partons (𝑄0 < 2 GeV). The reason is included in the previous Section 4.3.2. The scale in which
𝛼𝑠 is taken is the virtuality of the parton before it splits. This is done to avoid large lograithms.
However, this also means that𝛼𝑠 can grow large for small-scale𝑄 (see Section 2.3.2) and pQCD
is not applicable. However, since virtuality is small due to previous splittings, it is possible to
use an on-shell approach with evolution according to the linear Boltzmann equation.

4.4.1 Medium-modified vacuum evolution

When a jet parton travels through the medium, it experiences elastic or inelastic interactions
withmediumpartons. For high-virtuality partons (𝑄0 ≥ 2GeV), medium effects can be consid-
ered as a perturbation of their vacuum evolution [288, 289, 290]. As such, splitting function is
modified as

𝑃𝑖(𝑦, �̃�2) = 𝑃vac
𝑖 (𝑦)+𝑃med

𝑖 (𝑦, �̃�2),

where𝑃med
𝑖 (𝑦, �̃�2) ismediummodification of splitting function [291, 292, 293, 294] in a higher-

twist formalism, takes the following form

𝑃med
𝑖 (𝑦, �̃�2) =

𝑃vac
𝑖 (𝑦)

𝑦(1−𝑦)�̃�2

ˆ 𝜏+𝑓

0
𝑑𝜁+�̂�(𝑟+𝜁)[2−2cos

⎛

⎝
𝜁+

𝜏+𝑓

⎞

⎠
−2

𝜁+

𝜏+𝑓
sin

⎛

⎝
𝜁+

𝜏+𝑓

⎞

⎠
+2

⎛

⎝
𝜁+

𝜏+𝑓

⎞

⎠

2

cos
⎛

⎝
𝜁+

𝜏+𝑓

⎞

⎠
],

where �̂� is the gluon jet transport coefficient. This denotes its transverse momentum broaden-
ing squared per unit length due to elastic scatterings with medium partons. The transport co-
efficient �̂� is evaluated at the location of the scattering 𝜁+ = ⃗𝑟 +�̂�𝜁, where �̂� denotes �̂� = �⃗�/|�⃗�|.
The offset of the location of the splitting 𝜁+ is obtained from the Gaussian distribution with the
mean value as the formation time 𝜏+𝑓 . This distribution then takes the form

𝜌(𝜁+) =
2

𝜏+𝑓 𝜋
exp

⎡

⎣
−
⎛

⎝

𝜁+

𝜏+𝑓√𝜋

⎞

⎠

2⎤

⎦
.

Finally, the mean formation time 𝜏+𝑓 is defined as

𝜏+𝑓 =
2𝑝+

�̃�2
,

where 𝑝+ = 1
√2

(𝑝0+�̂� ⋅ �⃗�).
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The splitting channel 𝑖 of parton 𝑗 is obtained by branching ratio

BR𝑖𝑗(𝑄2) =
ˆ 1−𝑄2

min/𝑄
2

𝑄2
min/𝑄

2
d𝑦𝑃𝑖𝑗(𝑦,𝑄2).

This approach is again similar as for the vacuum case in equation 4.10, however, there are cor-
rections 𝑃med

𝑖 (𝑦, �̃�2).

Thehigher twist formalismcan fairlywell describe some jetmodifications in relativistic nuclear
collisions with high transverse momentum 𝑝T at RHIC and LHC with the assumption that par-
tons with low virtuality (𝑄 < 1GeV) are absorbed by themedium. However, this is not the case.
A low-virtuality parton can carry high transverse momentum 𝑝T. It is possible to use on-shell
evolution within a linear Boltzmann transport model.

In the hydrodynamic simulation, the medium is continuous and is not composed of individ-
ual partons. However, this is just a viable approximation with sufficiently small Knudsen and
Reynolds numbers. For practical calculations, one typically considers the medium as a set of
scattering centres and samples elastic and inelastic interactions between the jet parton and
medium partons on its way. It may happen that the medium parton acquires a significant kick
and becomesmore energetic than a typicalmediumparton. As such, the affectedmediumpar-
ton should be treated as a part of the jet rather than as a constituent of the medium, from the
moment of interaction. For the purpose of overall energy conservation in the process, a hole is
introduced in the place of the originalmediumparton, such that the energy of the incoming jet
and medium parton equals to the sum of energies of the outgoing jet parton, medium parton,
and the hole (which by construction possesses negative energy).

4.4.2 Linear Boltzmann transport model

Low-virtuality treatment canbedescribedwith the linearisedBoltzmann transport (LBT)model
[8, 295, 296, 297]. As the name indicates, this model is based on the Boltzmann equation (al-
ready introduced in Section 3.1 and Section 3.5) with the elastic and inelastic collision integrals

𝑝𝜇𝜕𝜇𝑓(𝑥;𝑝) = 𝐸𝐶el[𝑓]+𝐶inel[𝑓].

Elastic integral can be expressed as

𝐶el [𝑓] ≡ ∑
12→23

ˆ
d3𝑘[Γ12→34 (�⃗� + �⃗�, �⃗�)𝑓(�⃗� + �⃗�)−Γ12→34 (�⃗�, �⃗�)𝑓(�⃗�)] ,

where Γ12→34 describes the elastic 2→ 2 scattering as
ˆ

d3𝑘Γ12→34 (�⃗�, �⃗�) =
𝛾2
2𝐸1

ˆ
d3𝑝2

(2𝜋)32𝐸2
d3𝑝3

(2𝜋)32𝐸3
d3𝑝4

(2𝜋)32𝐸4
𝑓2 (�⃗�2) [1±𝑓3 (�⃗�3)] [1±𝑓4 (�⃗�4)]×

×𝑆2(𝑠,𝑡,𝑢)(2𝜋)4𝛿4 (𝑝+𝑝2−𝑝3−𝑝4) ||M12→34
||
2 ,

where the signs ± represent the Bose enhancement or Pauli blocking. Furthermore, M12→34
is the LO scattering amplitude obtained from QCD and factor 𝑆2(𝑠,𝑡,𝑢) is introduced to avoid
possible divergence of the amplitude for small angles as

𝑆2(𝑠,𝑡,𝑢) = 𝜃(𝑠 ≥ 2𝜇2
D)𝜃(−𝑠+𝜇

2
D ≤ 𝑡 ≤ −𝜇2

D) .
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Debye screening mass in QGP medium for massless partons takes form

𝜇2
D =

𝑔2𝑠
3
𝑇 2 (𝑁𝑐+

𝑁𝑓

2
) ,

where𝑁𝑐 = 3 is the number of colours and𝑁𝑓 is the number of active quark flavours.

For the inelastic part, it is possible that the parton travelling through the medium radiates the
medium-induced gluon. The average number of gluons radiated by parton which carries en-
ergy 𝐸 can be obtained from higher-twist framework as

⟨𝑁𝑔⟩ = Δ𝑡
ˆ

d𝑥d𝑘2T
d3𝑁𝑔

d𝑥d𝑘2Td𝑡
,

where 𝑇 is the temperature of the medium and Δ𝑡 is a time step. The distribution of radiated
gluons can be calculated [291, 292, 298] as

𝑑𝑁𝑔

𝑑𝑥𝑑𝑘2T𝑑𝑡
=
2𝛼𝑠𝐶𝐴�̂�𝑃(𝑥)𝑘4T
𝜋(𝑘2T+𝑥2𝑚2)4

sin(
𝑡 −𝑡𝑖
2𝜏𝑓

) ,

where 𝜏𝑓 is the formation time of the radiated gluon defined as

𝜏𝑓 =
2𝐸𝑥(1−𝑥)
𝑘2T+𝑥2𝑀 2 ,

where𝑀 is the mass of the parent parton.

It is possible that there are multiple gluon radiations since ⟨𝑁𝑔⟩ can be of order of one. This
multigluon radiation is incorporated in the LBT with the Poisson distribution

𝒫(𝑛) =
⟨𝑁𝑔⟩

𝑛

𝑛!
𝑒−⟨𝑁𝑔⟩.

Now, the probability of radiating at least one gluon is

𝑃inel = 1−𝑒
−⟨𝑁𝑔⟩. (4.11)

This essentially states the probability of the inelastic scattering and is used inMonte Carlo sim-
ulation to determine if the gluon is radiated.

Since gluon radiation is medium-induced, before the parton undergoes inelastic scattering,
it has to interact elastically with the medium. Then if the sampling of the probability 𝑃inel in
equation 4.11 is positive, then the Poisson distribution determines the number 𝑛 of radiated
gluons, and then this inelastic process is 2→ 2+𝑛.

Figure 4.6 shows a comparison of the elastic and inelastic energy loss of heavy quarks 𝑐 and𝑏. It
shows that even though they are comparable at an early time, the inelastic scattering (2→ 2+𝑛)
modify the energy of the original parton more than the elastic processes (2→ 2). This is the ex-
pected result and shows the importance of inelastic processes. Also, a lighter quark 𝑐 loses less
energy than a heavier quark𝑏. This is due to themass effect, which is present in both processes.
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Figure 4.6: [299]

Mediumpartons that are called thermalpartons canbeejected fromthemediumby jet partons,
also called leading partons. When a thermal parton is scattered out of the medium, a hole is
created. Leading and ejected partons are evolved according to the framework described above.
Holes travels freely through the medium. Leading partons and ejected thermal partons are
hadronised together and produce usual hadrons. Holes, however, are separated and in LBT
they hadronise into hole hadrons. This represents energy that is missing from the medium.
Treatment of those negative hadrons at the notional detector will be described in the Section
4.6.2. But there is one more step between jet evolution inside the medium and analysis of the
observable hadrons and that is hadronisation.

4.5 Hadronisation

Whenfinal-state partons are collected from evolution frameworks, they have to be hadronised.
This is the process in which the quarks are transformed into an observable hadronic shower.
This is an nQCD process since the hadronisation energy scale is well below ΛQCD. This is actu-
ally the least understoodpart of the hard process during the collision, and it has to be described
by the models.

The first popular approach was the independent fragmentation model [300]. This model is
based on independent fragmentations of the partons. The quark-antiquark pair is produced
independently in vacuum, and one of the partons is paired with the original parton. This cre-
ates the so-calledprimarymesonwith the fractionofmomentum𝑥 and theotherparton carries
the rest of the momenta (1-x). This is iterated until some cut-off point is reached.

Since the creation of the quark-antiquark pairs is independent, the probability that hadronℎ is
createdmust be defined,This is incorporated in the fragmentation function𝐷ℎ

𝑖 (𝑧) that appears
in the factorised cross section of hadron ℎ production

d𝜎𝑝+𝑝−→ℎ+𝑋

d𝑝𝑇d𝜂
= ∑

𝑎𝑏𝑐
𝑓𝑎/𝑝⋆𝑓𝑏/𝑝⋆�̂�𝑎+𝑏−→𝑐⋆𝐷ℎ

𝑐 .



CHAPTER 4. HARD PROBES IN HEAVY-ION COLLISIONS 107

Fragmentation functions𝐷ℎ
𝑖 (𝑧)are actuallymodel dependent andalso satisfy theDGLAPequa-

tions

𝑄
d𝐷ℎ

𝑐

d𝑄
=∑

𝑑
𝑃𝑑𝑐⋆𝐷ℎ

𝑑 .

Independent fragmentation model was the starting point of the hadronisation description and
it is no longer used.

One of the two most popular models nowadays is the cluster model [301]. It is based on the
preconfinement flow of the colour charge. There are colour-neutral clusters that decay into
known resonances and hadrons. This naturally brings up suppression of the heavier hadrons,
baryons, and strangeness. This model is implemented in a well-known Monte Carlo generator
Herwig. The illustration of the cluster model event can be seen in Figure 4.7.

Figure 4.7: Illustration of cluster model (left) implemented in Herwig and Lund
string model (right) implemented in Pythia. Left figure is from D. Zeppenfeld.
Right figure retrieved from [302].

Another popular hadronisation model is the Lund string model [303] implemented in Pythia
[6, 254]. It is basedon theassumptionof quark-antiquarkspairs𝑞𝑞being connectedbya string,
andwhen sufficient energy is exceeded, a quark-antiquark pair𝑞𝑞 is created. Pythia and con-
sequently the Lund string model is used in this thesis to hadronise hadrons. This is why it is
described more closely later in this section. The illustration of the Lund string model event can
be seen in the right panel of Figure 4.7.

In Table 4.1, there is a comparison between hadronisation models of Pythia and Herwig. You
can see that theLund stringmodel is focusedonacorrect descriptionof the energy-momentum
picture with just a few parameters. However, it is not very predictive with regard to the flavour
of the hadrons. The cluster model is much better for studying the flavour of the hadrons and
jets. Both benefits for the respective models arise from their construction.
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Table 4.1: Overview of strengths and weaknesses of the Pythia and Herwig Lund
string and cluster hadronisation models, respectively.

Framework Pythia Herwig
Model Lund string Cluster

Energy-momentum
picture

Predictive
Powerful

Unpredictive
Simple

Energy-momentum
picture parameters Few Many

Flavour composition
picture

Unpredictive
Complicated

Adequate
Simple

Flavour composition
picture parameters Many Few

4.5.1 Lund stringmodel hadronization

Lattice QCD calculations can fairly easily show colour confinement with the approximation
as time-independent potential 𝑉 of the quark-antiquark pair 𝑞𝑞, where the distance between
quark 𝑞 and antiquark 𝑞 is 𝑅.

The Euclidian actionS𝐸 of the time-invariant potential reads

S𝐸 =
ˆ

d𝑡𝑉 (𝑅) = 𝑇𝑉 (𝑅).

Then the partition function is consequently

𝑍 = exp [−𝑇𝑉 (𝑅)] .

External current of this static system can be described as 𝑗𝜇(𝑥), where 𝑗0(�⃗�) = 𝛿(�⃗� − �⃗�) − 𝛿(�⃗�)
and action that describes gluon interaction of static pair can be calculated as

S𝐸 =−𝑖𝑔
ˆ

d4𝑥𝑗𝜇(𝑥)𝐴𝜇(𝑥) = −𝑖𝑔
ˆ

𝑑𝑡[𝐴𝜏(𝑅)−𝐴𝜏(0)]

Then with the assumption 𝑇 ≫𝑅, we can obtain the average value of the path-ordered links as

𝑊(𝑐) =
´

D𝑈𝑒−𝑆𝐸[𝑈]Tr [∏𝑖𝑈(𝑐𝑖)]´
D𝑈𝑒−𝑆𝐸[𝑈] = exp(−

𝑅𝑇
𝑎2

ln𝑔2𝑠 ) ,

and relate it to the original partition function

exp [−𝑇𝑉 (𝑅)] = exp[−
𝑅𝑇
𝑎2

ln𝑔2𝑠 ] ,

𝑉 (𝑅) =
ln𝑔2𝑠
𝑎2

𝑅 = 𝜅𝑅,

where 𝜅 can be estimated [304] as 𝜅 ≈ (0.42 GeV)2 = 0 = 0.9 GeVfm−1

This result outlines two important observations. The first is the colour confinement for large
distances. Since the potential increases with the distance, there is a point where the potential
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energy will be greater than 2𝑚𝑔 and the quark-antiquark will be created. The second observa-
tion is that we can approximate the interaction between the quark 𝑞 and the antiquark 𝑞 on a
large distance with a string potential 𝑉 (𝑅) = 𝜅𝑟.

The actual form of the nQCD potential was introduced byYoichiro Nambu [56] as

𝑉QCD =−
4
3
𝛼𝑠
𝑟
+𝜅𝑟 + ...,

where ”...” are corrections like hyper-fine term, spin-orbit term, etc. Nambu actually proposed
colour confinement [55] and this model could incorporate it. Furthermore, the Coulomb term
(the first term on the right-hand side) is important for the inner structure of the hadrons. This
potential was used to describe heavy non-relativistic quarkoniawith the Schrödinger equation,
and it had great success.

The QCD potential model is still widely used. Arguably, the most extensively used is to model
hadronisation is the Lund string model [303]. If we consider only the lenear part of the nQCD
potential model energy and momentum fulfils

||||
d𝐸
d𝑧

|||| =
||||
d𝑝𝑧
d𝑧

|||| =
||||
d𝐸
d𝑡
|||| =

||||
d𝑝𝑧
d𝑡

|||| = 𝜅.

This means that energy–momentum quantities can be read off from space–time.

String breaking mechanism should be responsible to reproduce the data as well as possible.
This means common Gaussian 𝑝T spectrum and suppression of heavy quarks

𝑢�̄� ∶ 𝑑�̄� ∶ 𝑠 ̄𝑠 ∶ 𝑐�̄� ≈ 1 ∶ 1 ∶ 0.3 ∶ 10−11.

This is fulfilled with the production probability using theWKB approximation

1
𝜅
d𝒫𝑞

d2𝑝⟂
∝ exp

⎛

⎝
−
𝜋𝑚2

⟂𝑞

𝜅
⎞

⎠
= exp(−

𝜋𝑝2
⟂

𝜅
)exp(−

𝜋𝑚2
𝑞

𝜅
).

Baryons are produced as if diquarks would break break inside wrong-colour region. This gives
a modified fragmentation function as

𝑓(𝑧)∝
1
𝑧
𝑧𝑎𝛼 (

1−𝑧
𝑧

)
𝑎𝛽
exp(−

𝑏𝑚2
⟂

𝑧
) .

Finally, gluons are treated as a kink on the string. Model states the ratio of gluons to quarks and
it is taken as 2 since

𝑁𝑐

𝐶𝐹
=
9
4

𝑁𝑐→+∞
−−−−−−→2.

This treatment reproduces the behaviour of gluon jets as they havemorehadronswith a smaller
momentum and wider angular distribution. There are no additional parameters for the gluon
jets, but there are 10-20 parametes in this model. Lund string model has no predictive power
regarding understanding the effects of hadron masses and, as was already mentioned, it does
not describe the flavour of the hadronswell. However, those are noproblems for the research of
this thesis. Lund stringmodel implemented in Pythia [6, 254] can hadronise partons obtained
from LBT [8, 295, 296, 297] and MATTER [7, 286] and produce observable hadrons. Hadrons can
be later analysed with sophisticated algorithms to produce jet observables.
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4.6 Jet reconstruction

From the beginning of jet physics, it was necessary to analyse the data obtained from the de-
tectors to obtain information about the original parton and essentially about the hard vertex
for elementary collisions. Accessing a vertex like that wouldmean a direct connection between
measurements and theory, but jetswouldhave tobe reconstructed asprecisely as possible. This
is essentially not possible even for the simplest collisions like 𝑒−𝑒+ →𝑞𝑞. The reason is colour
confinement and the fact that we do not observe individual partons but hadronic jets. Since
one parton with a colour charge cannot produce a colour neutral hadronic jet, it is not possi-
ble to make this perfect connection between the detector level and the hard parton (see Figure
4.8). This makes jet reconstruction not universal procedure.

There are several algorithms that are used to reconstruct jets, subtract background, and in-
spect jet substructure. Most of them can be classified into two families: cone algorithms and
sequential clustering algorithms. The jet algorithms have a parameter 𝑅 that dictates the size
of the shower in (𝑦 −𝜙) or alternatively (𝜂 −𝜙) space. This parameter is called the jet radius
𝑅. The name originates from earlier simple algorithms that considered a jet a cone with ra-
dius 𝑅 = √𝜂2jet+𝜙

2
jet that meets some criteria in the form of cuts. This was called a fixed cone

approach.

Figure 4.8: Illustration of the difference betweenparton level and detector level jet.
Figure credit to Ben Nachman.

Those simple algorithms usually had a few issues. They were not infrared (IR) or collinear safe.
Those two are very important properties. IR safety essentially means that the jet remains un-
changed if soft radiation is added. Similarly, collinear safety stands for the insensitivity of re-
construction to collinear splitting when collinear splitting occurs. Collectively, those condi-
tions are referred to as IRC safety.

IRC safety is very important. In Section 4.3 it was mentioned that collinear-gluon radiation
causes divergency of the cross section in equation 4.8. This divergency is cancelled when the
vertex correction loop is included in pQCD calculations. If collinar splitting would modify the
jets, divergences would not cancel and it would lead to infinities in cross section obtained from
pQCD. Both soft radiation and collinear splitting cause divergence and are present in the pQCD
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and nQCD stages of jet evolution. Furthermore, the effects of soft radiation and collinear split-
ting are hard to predict [305, 306]. This is a good motivation to use the IRC safe algorithm for
jet reconstruction.

Cone algorithms such as the progressive removal IC-PR [307] or the split-merge IC-SM [308] it-
erative cone algorithmswere previously used to reconstruct jets. Theywere easy to implement,
and they were preferred by experimentalists. However, IC-PR is collinear unsafe and IC-SM is
not IR save. This issue was solved for cone algorithms using the seedless cone algorithm SIS-
Cone [309].

Cone algorithms had easier implementation and seemed to be faster than their counterpart
group sequential clustering algorithms. However, this changed when they were properly im-
plemented inFastJet [310] and rapidly became standardalgorithms that areused for inclusive
reconstruction, background subtraction, and jet substructure inspection. Sequential cluster-
ingalgorithmsarebasedon theassumption thatparticles in the jetwill havea similar transverse
momentum 𝑝T and will be relatively close to each other in the (𝑦−𝜙) plane. The framework
is built upon 1

2 (𝑛+1)
2 distance variables for the event with 𝑛 hadrons. The first is the particle

𝑖-beam distance
𝑑𝑖𝐵 =𝑝𝑎

T𝑖,

where𝑎 is free parameter anddefines the specific algorithms thatwill be introducedbelow. The
second distance variable is distance between two particles 𝑖-𝑗

𝑑𝑖𝑗 =min(𝑝𝑎
T𝑖,𝑝

𝑎
T𝑗)

𝑅2
𝑖𝑗

𝑅
,

where𝑅𝑖𝑗 =√(𝑦𝑖−𝑦𝑗)2+(𝜙𝑖−𝜙𝑗)2. It is easy to see that the distance variables𝑑𝑖𝐵 and𝑑𝑖𝑗 donot
denote the space-time distance but rather some sort of distance in the (𝑝T,𝑦,𝜙)-space. That is
exactly what we would expect since the assumption of the sequential clustering algorithms is
the closeness of hadrons in this 3D space. The parameterisation of what is close provides pa-
rameters 𝑎 = 2,−2,0, ... and 𝑅 =√𝑦2jet+𝜙

2
jet.

The algorithm iteratively calculates minima from the 1
2 (𝑛+1)

2 set {𝑑𝑖𝑗,𝑑𝑖𝐵}. If 𝑑𝑖𝑗 is determined
as the minimum, the four-momenta of particles 𝑖 and 𝑗 combine. Then there are𝑛−1 particles
and affected elements of the set {𝑑𝑖𝑗,𝑑𝑖𝐵} are recalculated for a new ”𝑖 + 𝑗” particle. If 𝑑𝑖𝐵 is the
minimum, then the particle 𝑖 is considered as a jet and removed from the set. The particle 𝑖 can
be composed of several physical hadrons fromprevious iterations. This process is repeated un-
til there are no particles in the set.

Sequential clustering algorithms do not have to resemble the cone shape, and this applies to
SISCone aswell. This canbe seen in Figure 4.9. However, for historical reasons,𝑅 is still referred
to as cone radius.

All sequential clustering algorithms are IRC safe and have wide applications in jet physics.
There are three choices of power parameter 𝑎 that are preferred in the field. The best option
for inclusive jet reconstruction is 𝑎 =−2 and is called anti-𝑘T [311, 310].
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Figure 4.9: A sample parton-level event reconstructed by three sequential cluster-
ing algorithms (𝑘T [312], Cambridge-Aachen [313], anti-𝑘T [311]) and one cone
algorithm (SISCone [309]). Retrieved from [311].

4.6.1 Anti-𝑘T algorithm

Sequential clustering algorithms with choice 𝑎 =−2 particle distances take form as

𝑑𝑖𝑗 =min
⎛

⎝
1
𝑝2
T𝑖
,
1
𝑝2
T𝑗

⎞

⎠

𝑅2
𝑖𝑗

𝑅2 ,

and
𝑑𝑖𝐵 =

1
𝑝2
T𝑖
.

This algorithm is called anti-𝑘T [311, 310] and favours the clustering of hard particles first. This
arises from the minimum function in 𝑑𝑖𝑗. This means that jets grow from the hard centre out-
wards. This is very effective for inclusive jet reconstruction. This is a collinear safe growth as a
consequence of the involvement of energy and angle in its distance.

The area of the jet 𝐴jet fluctuates only slightly for anti-𝑘T. This is shown in figure 4.9, where
event reconstructed with the anti-𝑘T has the most circular shape.

Reconstruction with anti-𝑘T is not sensitive to pile-ups or underlying events. This makes it
well suited for inclusive jet reconstruction.
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4.6.2 𝑘T background subtraction and hole treatment

In case of 𝑒−𝑒+ → jet+𝑋 or 𝑝𝑝→ jet+𝑋, it is fairly straightforward to reconstruct jets. The jet
reconstruction algorithm is used and cuts are applied, such as a minimum transverse momen-
tum of the jet transverse momentum𝑝jet

T , a transverse momentum of the leading particle𝑝lead
T ,

or a rapidity cut |𝑦| < 𝑦range −𝑅. For heavy-ion collisions, the situation is much more compli-
cated. The highly fluctuating background can be comparable to the signal. Figure 4.10 shows
Au+Au event at√𝑠NN = 200 GeV.

Figure 4.10: Jet event measured in experiment STAR. Tracks from time projection
chamber are shown with light brown colour and calorimeter towers are repre-
sented by light blue rectangles. Figure credit to Alexander Schmah.

Looking at Figure 4.10 with the naked eye, there are some indications of jets. However, it is also
visible that the background is a large portion of the data. We can use anti-𝑘T algorithm to re-
construct jets, but since it is only slightly susceptible to background, the signal will be polluted.

It is possible to use 𝑘T algorithm [312, 310] to subtract unwanted background [314, 315, 316,
317]. 𝑘T algorithm is the sequential clustering algorithms with 𝑎 = 2. Particle distances take
the form of

𝑑𝑖𝑗 =min (𝑝2
T𝑖,𝑝

2
T𝑗)

𝑅2
𝑖𝑗

𝑅2 ,

and
𝑑𝑖𝐵 =𝑝2

T𝑖.
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Since there is a positive power in the minimum function, it is clear that the 𝑘T algorithm clus-
ters the soft particle first. This is actually a reverse direction, as is the evolution of the jet. This
factmakes the𝑘T reconstruction compatible with the jet evolution, as particles should be clus-
tered in opposite direction to the evolution.

First, the 𝑘T algorithm [312, 310] is used to cluster particles in the event and find jets with un-
corrected momentum 𝑝raw,𝑖

𝑇 , jet . Furthermore, the ghost particle algorithm [310] will determine
the area of the jet 𝐴. The event-by-event background density is then measured as the median
of the jet momentum density

𝜌 =median
⎧
⎨
⎩

𝑝raw,𝑗
T, jet

𝐴𝑗
jet

⎫
⎬
⎭
,

where 1-2 hardest jets are excluded from the median calculation. The number of excluded jets
depends on the centrality class. Then, the particles are clustered by anti-𝑘T [311, 310] and the
ghost particle algorithm [310] will determine the area of the jet 𝐴 again, this time for anti-𝑘T
jets. The background density is then subtracted as

𝑝T,jet =𝑝raw
T,jet−𝜌𝐴.

This is a necessary procedure in the experiment. It is easier to measure very hard jets (𝑝T,jet ≳
100 GeV) in ATLAS or CMS than to measure softer jets in ALICE or even STAR. The reason is
a large background-to-signal ratio with large event-to-event fluctuations. In simulations, we
can almost omit background that originates mainly from the bulk medium. However, there are
hole partons that hadronised into hole hadrons. They originate from a jet-medium interaction,
where a thermal parton was knocked out of the medium. This means that there is less energy
inside the medium. This would be visible in the absence of the energey in the background that
would be subtracted. Hole hadrons with negative energy can substitute for this. The holes are
subtracted from the final shower as

𝑝𝜇
jet =𝑝𝜇

shower − ∑
𝑖∈ holes
Δ𝑟𝑖<𝑅

𝑝𝜇
𝑖 ,

where shower is composed of jet and thermal partons that hadronised into ordinary hadrons.
In case of exclusive observables, where we consider the distribution of jet constituents, holes
are taken with weight −1.



Chapter 5

Results of High Energy Collision
Simulations

Multistage simulation of the heavy-ion collision was outlined in the two previous chapters.
Chapter 3 introduced the concept ofmediummodellingby relativistic hydrodynamics. Thefirst
two stages simulated the initial profile thatwas plugged into thehydrodynamic code, where the
evolution of the medium is obtained.

Chapter 4describedhow jets canbe simulated. Startingwith the initial-statepartons andevolv-
ing them according to three theoretical frameworks: vacuum, high-virtuality in-medium and
low-virtuality in-medium evolution.

This procedure can produce many soft and hard hadronic observables. An example of repre-
sentative observables could be a transverse momentum 𝑝T distribution of identified hadrons
for the soft sector (𝑝T < 5 GeV) or jet nuclear modification factor 𝑅jet

AA (𝑝
jet
T ) in the hard sector

(𝑝jet
T > 60 GeV).

Except for the general interest in soft observables, they provide control over accuracy medium
simulations. Measurements of medium size (i.e., femtoscopy) or medium temperature (i.e.,
quarkonia) directly brings uncertainties that are too large to distinguish a few percent varia-
tions that are caused by bulk and shear viscosity, for example. If bulk and shear viscosity repro-
duce soft hadronic observables well enough, it is possible that the description of the medium
is close to reality and we do not have to left with medium parameterisations.

Before hadronic observables are introduced in Section 5.2 (soft) and Section 5.3 (hard) , we
will investigate the space-time evolution of the medium.

5.1 Medium simulation results

Medium evolution is simulated with three-stage chain. The first stage is the non-dynamical
model TRENTothat produces an initial entropy profile at the proper time 𝜏0. The dynamic IP-
Glasma model predicts a high initial transverse flow velocity profile [318, 319]. However, the
validity of the assumptions made into the IP-Glasma model is not completely proven.
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However, it was shown that the initial transverse flow velocity could increase the quality of
the reproduced hadronic observables [320]. It is possible to employ a simple approach - free-
streaming, where the initial state profile obtained from TRENTo is evolved according to the
collision-freeBoltzmannequations. The ideabehind free-streaming is thatbeforeQGP is formed,
the medium evolves with a much longer mean free path. This can also be handled with hy-
dro (𝜏𝜋 → +∞) or RTA [321]. There is no wide consensus on how preequilibrium should be
handled. Free-streaming is a good approximation but there is some space for improvement in
future work.

Figure 5.1: Initial temperature profile at switching proper time 𝜏𝑠 = 1.16 for 0-10%
PbPb collisions at √𝑠NN = 2.67 TeV (left) and √𝑠NN = 5.02 TeV (right) obtained
from TRENTo [1] + freestream-milne [2] + MUSIC [3] implemented in Jetscape
[9].

Preequilibrium is important for the medium simulation with respect to jet observables. It af-
fects medium evolution, temperature, and frezze-out hypersurface. However, it can also delay
medium formation (about 𝜏𝑠 ∼1 fm for LHC energies [173]). However, this is 5 − 10% of the
evolution time and if jet partons evolve freely too, their energy loss can be shifted.

Further investigationon this topicwill benecessary. Fornow,wecanassume that free-streaming
indirectly affects simulated jet quenching.

Figure 5.1 shows the initial temperature profile in the transverse plane at 𝜏 = 𝜏𝑠 that is obtained
essentially fromTRENToand freestream-milne and is plugged into the 𝑠95𝑝-v1 EoS [208] im-
plemented in MUSIC [3, 200].

The left-hand side of Figure 5.1 shows the temperature profile for central PbPb√𝑠NN = 2.67TeV.
The right-hand side of the Figure 5.1 represents same collision system at√𝑠NN = 2.67 TeV.

You can see that the contour scales differently for the temperature profiles 𝑇 in Figure 5.1. The
highest value on the temperature 𝑇 axis corresponds to the highest value in the temperature
profile. You can see that even though the collision energy is ∼ 1.8 times higher, there is only
a few MeV difference in the highest initial temperature. This will also be visible in the average
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temperature introduced later, and this fact will be also important for a later discussion.
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Figure 5.2: Temperature evolution (upper plots) and freeze-out hypersurface evo-
lution (lower plots) for 0-10%PbPb collisions at√𝑠NN = 2.67TeV (left) and√𝑠NN =
5.02TeV (right) obtained fromTRENTo [1] +freestream-milne [2] +MUSIC [3] im-
plemented in Jetscape [9].

Next, we examine the evolution of the medium according to the Israel-Steward hydrodynamic
equations and 𝑠95𝑝-v1 EoS [208]. The evolution of temperature and freeze-out hyperfurface
is shown in Figure 5.2. The medium created during the collision at√𝑠NN = 2.67 TeV is slightly
smaller in transverse size and has a very similar lifespan. Let us now proceed to the discussion
of the medium evolution.

The choice of EoS is very important. Different EoS can easily produce a difference of ∼ 1 fm
in femtoscopy radii [322]. EoS used in this thesis, 𝑠95𝑝-v1 is the default EoS in MUSIC [3]. Rel-
atively recently, the authors of 𝑠95𝑝-v1 EoS produced new EoS parameterisations 𝑠83𝑠18 and
𝑠88ℎ18 [224], where the peak of the trace anomaly of 𝑠95𝑝 is approximately 1.5 and 1.3 times
larger compared to 𝑠83𝑠18 and 𝑠88ℎ18, respectively.

Furthermore, sice EoS relates pressure 𝑃 and energy density 𝜀, it also has a great impact on
the temperature of themedium. The indirect impact of EoS on hard observables was not inves-
tigated in depth in this thesis, and it is important to note that 𝑠95𝑝 proved to be reliable EoS.
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However, this part of the heavy-ion collision can be further investigated and improved in future
work.

Next are the transport coefficients. Since second-order transport coefficients are not well con-
strained, they will not be part of this discussion. However, bulk and shear viscosity are highly
investigated. Inclusion of both shear and bulk viscosity arguably improved hydrodynamic cal-
culations from qualitative to quantitative in many aspects.
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Figure 5.3: Temperature-dependent parameterisations of the bulk viscosity to en-
tropy density rario 𝜁

𝑠 (𝑇 ) (blue line) and the shear viscosity to entropy density rario
𝜂
𝑠 (𝑇 ) (red line) used in this thesis.

Bulk viscosity plays an important role in terms of the size and lafespan of themedium. Modern
large bulk viscosity parameterisations [232, 236, 237] have been shown [241] to have a great im-
pact on size at a later proper time. Themediumwithout bulk viscosity can be up to 20% smaller
at the time of the peak of the freeze-out hypersurface radius compared to the simulation with
large bulk viscosity parameterisations [241]. In addition, the useful life of the medium can be
shorter up to 10% [241]. This implies that partons can spend more time in the medium, and
quenching of the jet could be larger. This aspect will also require further investigation. The
bulk viscosity parameterisation used in this thesis is shown in Figure 5.3

The shear viscosity affects the average medium temperature up to ∼ 5 MeV at intermediate
times [192]. This may seem insignificant, but keep in mind that the difference of the higest
temperature between√𝑠NN = 2.67 TeV and√𝑠NN = 5.02 TeV is only 18 MeV. However, later, it
will be shown that those temperature corrections probably do not play a significant role.

Shear viscosity also affects the homogeneity and flow velocity of the medium. This might be
insignificant for current Jetscape framework but very recent models showed jet-broadening
effects from inhomogenity and flow velocity effects. Shear viscosity parameterisation used in
this thesis is shown in Figure 5.3
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Figure 5.4: Average freeze-out hyperspace and its polynomial parametrisation for
0-10% PbPb collisions at √𝑠NN = 2.67 TeV (left) and √𝑠NN = 5.02 TeV (right) ob-
tained from TRENTo [1] + freestream-milne [2] + MUSIC [3] implemented in
Jetscape [9].

For later use, it is necessary to parameterise the average freeze-out hypersurface in Figure 5.4.
Parameterisation is made with the sixth and fifth order of polynomial fit for √𝑠NN = 2.67 TeV
(left) and√𝑠NN = 5.02TeV respectively. More sophisticated functions were tried to properly fit
the freeze-out hypersurface, but simple polynomial fit was much more reliable.

5.2 Simulated soft observables

It was already mentioned in the Introduction to this chapter that the soft observables can pro-
vide us with information that leads to constraints on models. In this section there are a few
observables that show general agreement with the experimental data.
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Figure 5.5: Transverse momentum 𝑝T distribution of protons 𝑝,𝑝, kaons 𝐾±, and
pions 𝜋± for 0-10% PbPb collisions at√𝑠NN = 2.67 TeV (left) and√𝑠NN = 5.02 TeV
(right) obtained from TRENTo [1] + freestream-milne [2] + MUSIC [3] imple-
mented in Jetscape [9].

Hadronisation was obtained from iSS [4] and SMASH [5]. The reason for the two-stage conver-
sion from fluid to obtain the final hadronic shower is that hadrons can evolve further after they
are sampled into the Cooper-Frye formula in equation (3.33). Several thousand hadrons can
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rescatter with each other, and resonances naturally decay. This is actually an important part of
the simulation in order to obtain the correct final hadronic spectra.

The first observale is shown in Figure 5.5 and it is transverse momentum 𝑝T distribution of
𝑝,𝑝, kaons𝐾±, and pions 𝜋±, where the shape and overall order correspond to the experimen-
tal measurements [183, 323, 324].

The second observable is the mid-rapidity multiplicity of several identified hadrons shown in
Figure 5.6. Here, we can also see a comparison with the experimental data [325] measured in
the ALICE experiment. One can notice the inconsistency with the Λ and Λ baryons. This is
probably due to contributions from Σ and Σ∗.
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Figure 5.6: Mid rapidity multiplicity of several identified hadrons for 0-10% PbPb
collisions at √𝑠NN = 2.67 TeV (left, red circles) and √𝑠NN = 5.02 TeV (right) ob-
tained from TRENTo [1] + freestream-milne [2] + MUSIC [3] implemented in
Jetscape [9]. ALICE measurements of mid rapidity multiplicity for 0-10% PbPb
collisions at√𝑠NN = 2.67 TeV (left, green bars)
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Figure 5.7: Average transverse momentum ⟨𝑝T⟩ of protons 𝑝,𝑝, kaons 𝐾±, and pi-
ons 𝜋± for 0-10% PbPb collisions at √𝑠NN = 2.67 TeV (left) and √𝑠NN = 5.02 TeV
(right) obtained from TRENTo [1] + freestream-milne [2] + MUSIC [3]imple-
mented in Jetscape [9].

The last hadronic observable is the average transverse momentum ⟨𝑝T⟩ of protons 𝑝,𝑝, kaons
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𝐾±, and pions𝜋±. This plot fairly well represents themagnitude of a large fluctuating soft back-
ground. It is important to study the background of hard observables so that proper medium
subtraction can be performed.

5.3 Jet simulation results

Chapter 4 described how partons evolve into fully reconstructed jets at the detector level. This
section presents the simulation results of reconstructed observables, such as the nuclear mod-
ification factor 𝑅jet

AA (𝑝
jet
T ).

The first step of the jet simulation is the initial state. There is a multi-parton interaction (MPI)
at the beggining of the collision. The result is a several (≥ 2) initial-state parton. Parton-level
jets are connected to hadron-level jets by using the reconstruction procedure on both. In other
words, we can identify these multiple partons as unquenched jets based on their transverse
momentum𝑝T, rapidity 𝑦, and azimuthal angle𝜙𝑝 with the help of anti-𝑘T [311] implemented
in FastJet [310].

It would not be wise to consider each parton as an individual jet since MPI can include soft-
gluon emission, and all arise from a single interaction 2 → 𝑛. This is the benefit of initial sim-
ulation that we can have one hard vertex for a single event. However, we cannot treat them as
back-to-back jets either, since it is possible that the eventwill be a three-jet event thatwas intro-
duced in Section 4.3. Furthermore, the sum over their transverse momentum should be zero.
The reasonable way to treat the initial state of the jets is through the mentioned reconstruction
procedure.
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Figure 5.8: Initial position of jets in the transverse plane for 0-10% PbPb collisions
at √𝑠NN = 2.67 TeV obtained from Pythia [6] implemented in Jetscape [9] and
reconstructed wit anti-𝑘T algorithm [311] implemented in FastJet [310].

Figure 5.8 shows the spatial distribution of the jets in the transverse plane. It can be seen that it
is well correlated with the temperature distribution in Figure 5.1. At first glance, it would seem
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that all partons experience medium to at least some extent. However, in the case of LHC ener-
gies, the collision is almost instant compared to the time scale of the simulation. The reason is
the Lorentz contraction of the nuclei.

Hard collisions occur at the beginning of the collision and start to evolve instantly. On the other
hand, there is an equilibrium proper time that is connected with the formation of the medium.
This means that some jets should be able to escape the medium before the formation of QGP.

Sinceweconsider the free-streamingpreequilibriumfor theenergy-momentumtensormedium
𝑇 𝜇𝜈, it is reasonable to assume that hard partons can also evolve freely. In case of partonic evo-
lution, free means vacuum evolution.

If we go back to the medium simulation, we obtained a freeze-out hypersurface evolution in
Figure 5.2. Later, we parameterised its average with a polynomial fit in Figure 5.4. We can sim-
plify the jet as a single light-like object, and we can calculate the proper time 𝜏med distribution
of how approximately long the jet evolved in the medium. The jet starts to evolve from the start
of the collision, but experiences a medium from the switching proper time 𝜏𝑠 = 1.16 fm. The
𝜏med distribution for the 0-10% PbPb collisions is shown in Figure 5.9.
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Figure 5.9: Initial position of jets in the transverse plane for 0-10% PbPb collisions
at √𝑠NN = 2.67 TeV (left) and √𝑠NN = 5.02 TeV (right) obtained from TRENTo [1]
+ freestream-milne [2] + MUSIC [3] + Pythia [6] implemented in Jetscape [9].
Orange dashed line denotes the averege of the distribution.

The distribution of 𝜏med can show us the average time the jet travels through the medium.
This can be used to simulate the so-called brick simulation, where themedium evolution is not
considered.

5.3.1 Jet evolution inside the brick simulation

Brickmedium is themediumwith simplified evolution (i.e. Bjorken expansion) orwith no evo-
lution at all. We consider the medium to be constant in temperature and size. The size of the
brick medium can be obtained from Figure 5.9 as ⟨𝜏med⟩ since it is reasonable to assume mass-
less partons.

The temperature of the constant brick medium can be obtained from hydrodynamic simula-
tion. The benefit of this is that the hydrodynamic simulation has to be performed only once.
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The disadvantage of this is that it is a very strong approximation.

Figure 5.10 shows the average temperature of the medium in the transverse plane and the in-
tegrated average of this as

⟨𝑇med
ave ⟩(𝜏) =

´ 𝜏0
𝜏 𝑇med

ave (𝜏′)d𝜏′

𝜏
.

When we evaluate this average temperature at average medium time as ⟨𝑇med
ave ⟩ (⟨𝜏med⟩), we

obtain the brick temperature 𝑇brick. We can see that the difference of 𝑇brick between √𝑠NN =
2.67 TeV and√𝑠NN = 5.02 TeV is actually comparable to what shear viscosity introduces to the
evolution of themedium. Thismeans thatwe can also study these small temperatuche changes
and how they affect the jet observables.
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Figure 5.10: Temperature 𝑇 averaged over transverse plane (blue line), 𝑇 averaged
over transverseplaneandproper time (red line), andestimatedbrickmediumtem-
perature 𝑇brick (black dotted line) for 0-10% PbPb collisions at √𝑠NN = 2.67 TeV
(left) and√𝑠NN = 5.02TeV (right) obtained fromTRENTo [1] + freestream-milne
[2] + MUSIC [3]implemented in Jetscape [9].

Finally, we can simulate the parton without hydrodynamics in homogeneous medium with
constant temperature and size. We sample partons in the ”centre” of this brick with pythia MPI
initial state. This initial state is also obtained from the nPDFs [276], and we perform a full par-
ton cascade evolution with MATTER [7] for high-virtuality (𝑄 ≥ 2 GeV) partons and LBT [8] for
low-virtuality (𝑄 < 2 GeV) partons.

After evolution reaches the time ⟨𝜏med⟩, partons are considered on-shell and final. Then hadro-
nisation is performed by Pythia [6]. The hadrons are reconstructed with anti-𝑘T algorithm
[311, 310] with𝑅 = 0.4. Holes from the jet-medium scattering are treated as particles with neg-
ative energy.

This procedure simulates the detector-level jets. In the experiment, there is some rapidity rea-
gion that is covered by the detector. It is also important to introduce some cuts for the simu-
lation. First, it has to be compatible with the experimental data. Second, the applicability of
hydrodynamics decreases with the increasing rapidity.

It is now possible to obtain jet observables. First of all, we can calculate transverse momen-
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tum spectra
1
𝑁ev

𝑑2𝑁jet

2𝜋𝑝jet
T 𝑑𝑝jet

T 𝑑𝑦
.

This is inclusive observable. This means that the jet is treated as a single object. We can com-
pare this to the collisions of 𝑝𝑝 obtained from Pythia [6] + MATTER [7] and obtain the nuclear
modification factor

𝑅jet
AA =

d2𝑁 jet
AA

d𝑦 d𝑝jetT

⟨𝑇AA⟩
d2𝜎INELpp

d𝑦 d𝑝jetT

Figure 5.11 shows the jet nuclearmodification factor𝑅jet
AA. Although this overestimates the value

of 𝑅jet
AA, it could be with an increase in the value of the free parameter 𝛼𝑠 (see Appendix C). Fur-

thermore,wecan see that the slight temperaturedifferencecausedbydifferent√𝑠NN didnot af-
fect𝑅jet

AA above the statistical uncertainty. This indicates that temperature corrections caused by
shear viscositywouldhave a similar effect. However, jet-broadening effects from inhomogenity
and flow velocity effects are still unkown.
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Figure 5.11: Jet nuclear modification factor 𝑅jet
AA for 𝑝𝑝 collisions (black squares),

and 0-10% (purple squares), 10-20% (blue squares), 20-30% (green squares), 30-
40% (orange squares), 40-50% (red squares) PbPb collisions at √𝑠NN = 2.67 TeV
(left) and√𝑠NN = 5.02TeV (right) obtained fromTRENTo [1] + freestream-milne
[2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape [9].

Another inclusive observable can be seen in the first row of Figure 5.12. It is the jet mass 𝑀 jet

spectrum and its ratio to 𝑝𝑝 collisions. This reproduces experimental fairly well comparison
between small and large systems measured by ALICE [326].
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Figure 5.12: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left) and
ratio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left) and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares), and static
brick medium (brown squares) at √𝑠NN = 2.67 TeV obtained from Pythia [6] +
MATTER [7] + LBT [8] implemented in Jetscape [9].

Then there are two exclusive observables in themiddle and bottomof the Figure 5.12. Themid-
dle row represents the jet fragmentation function𝐷(𝑧). Here we can see fairly well reproduced
behaviour for such a simplified system in the middle region of 𝑧. The steep increase at the end
magnitude but steep increase at the end does not corresponds to data [327]. There is a strong
enhancement for small fraction of momenum 𝑧 due to the larger presence of soft particles.
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The last experimental result for the brick medium is the jet shape 𝑃(Δ𝑟). The tail of this dis-
tribution is sensitive to recoil effects. There are recoil effects included in the brick simulation.
This should cause the enhancment close to the Δ𝑟 ∼ 4. There is an increase at the end of the
spectra and it is indeed associated with the recoil because it is not present for the simulation
without recoil. However, ratio of the jet shape does not rise above one in this region.

5.3.2 Jet evolution with realistic medium

This section presents the results on observables obtained from the entire simulation chain.
Compared to the brick medium, MUSIC [3] 2+1D second order hydrodynamic simulation was
used to simulate the medium. The initial state was obtained from the TRENTo model [1] and
freestream-milne [2] with parameters constrained by Bayesian analysis [173].

Themedium-modifiedvacuumevolutionMATTER [7] and the linearBoltzmann transportmodel
LBT [8] were used to create a partonic cascade that hadronizes and is clusteredwith the anti-𝑘𝑇
algorithm with 𝑅 = 0.4.

Five cetrality bins of PbPb collisions at√𝑠NN = 2.67 TeV and√𝑠NN = 5.02 TeV were simulated
and reconstructed. Figure 5.13 shows jet transverse momentum spectra for the five centality
bins and 𝑝𝑝 collisions simulated with the initial state of the initial state of the Pythia [6] MPI
initial state and MATTER vacuum evolution.
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Figure 5.13: Transverse momentum 𝑝jet
T distribution of the jets for 𝑝𝑝 collisions

(black squares), and 0-10% (magenta squares), 10-20% (blue squares; divided by
101), 20-30% (green squares; divided by 102), 30-40% (orange squares; divided by
103), 40-50% (red squares; divided by 104) PbPb collisions at√𝑠NN = 2.67TeV (left)
and√𝑠NN = 5.02TeV (right) obtained fromTRENTo [1] + freestream-milne [2] +
MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape [9].

Jet transverse momentum spectra in Figure 5.13 are multiplied by powers of ten to make them
more visible. One can see that the jet momentum specra for the centrality bins at √𝑠NN =
5.02 TeV are more flat. The reason is, of course, the higher collisional energy.

In general, the jet transverse momentum spectra correspond to the experimental measure-
ments in the LHC experiments. This can be seen in Figure 5.14 where the jet nuclear modifica-
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tion factor𝑅jet
AA is plotted for thefive centality bins and the twocentre-of-massnucleon-nucleon

energies√𝑠NN along with the experimental measurements from ATLAS [328, 329], CMS [330],
and ALICE [331]. We can see that the simulated data correlate with the experimental measure-
ments. At around𝑝jet

T ∼ 200GeV, simulations underestimate the data. Thismay be due to lower
statistics and a wide bin between 130 and 220 GeV.
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Figure 5.14: Jet nuclear modification factor 𝑅jet
AA 0-10% (magent squares), 10-20%

(blue squares), 20-30% (green squares), 30-40% (orange squares), 40-50% (red
squares) PbPb collisions at √𝑠NN = 2.67 TeV (left) and √𝑠NN = 5.02 TeV (right)
obtained from TRENTo [1] + freestream-milne [2] + MUSIC [3] + Pythia [6] +
MATTER [7] + LBT [8] implemented in Jetscape [9]. Experimental values of jet nu-
clear modification factor 𝑅jet

AA from ATLAS [328, 329] (triangles) ALICE [331] (stars)
and CMS [330] (squares).

Similarly to the brick medium, we calculated the following jet observables. First, in the upper
row of Figure 5.15 there are jet mass𝑀 jet spectra and the mass-dependent jet nuclear modifi-
cation factor𝑅jet

AA (𝑀
jet) for a 30-40% PbPb collision at√𝑠NN = 2.67TeV (see Appendix B). Here,

we can see a relatively steep increase of𝑅jet
AA (𝑀

jet) after𝑀 jet ∼ 10GeV.This does not correspond
to the experimental measurements [326]. The situation is even worse for the central collisions
that are presented in [326].

It is a puzzlingproblem, since thebrick simulation in Figure 5.12 doesnot rise like that. This can
essentially exclude the possibility of some heavy hadron that does not decay in the simulation.
This was the previous issue of the simulation that shifted themass spectra to the right for about
15GeV.However, bothbrick and realistic simulatorshave the samesettings forhadronicdecays.

Middle row of the Figure 5.15 represents jet fragmentation function𝐷(𝑧) and the ratio of frag-
mentation functions𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧). Herewe can see suddendecrease compared to the brick
medium. This result agrees with the data more that the brick medium for large fraction of mo-
menta 𝑧. We can see same enhancement for the small 𝑧 in case of PbPb collisions as for the
brickmedium. Dip of the𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) in the intermedieate 𝑧 agrees with the experimental
measuremets. It is still puzzeling that the tail of the𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) is so much different com-
pared to the brick medium simulation.

Finally, we can see the presence of holes and jet-medium recoil effect on the bottom row of the
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Figure 5.15. There is jet shape 𝑃(Δ𝑟) (bottom left), and ratio 𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟). The enhance-
ment of the tail of the ratio is sensitive to recoil effect. Again, there is a discrapency between
PbPb relaistic medium and the brick medium.
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Figure 5.15: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 30-
40% PbPb (orange squares) at √𝑠NN = 2.67 TeV obtained from TRENTo [1] +
freestream-milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] imple-
mented in Jetscape [9].



CHAPTER 5. RESULTS OF HIGH ENERGY COLLISION SIMULATIONS 129

At the end, Figure 5.16 there are jet scatter plots in the (𝑝jet
T ,𝐸jet) space for different rapidity

intervals |𝑦jet| ≤ 0.9−𝑅, |𝑦jet| ≤ 1.6−𝑅, and |𝑦jet| ≤ 2.4−𝑅 from top to bottom. Those rapidity
intervals were used to produce observables presented in this thesis. Cuts are clearly visible as
the red area of the scatter plots are thin at the top. We can see that we do not lose many high
𝑝jet
T jets for more strict cuts.

Figure 5.16: Jet scatter plots in the (𝑝jet
T ,𝐸jet) space for different rapidity intervals

|𝑦jet| ≤ 0.9−𝑅 (upper row), |𝑦jet| ≤ 1.6−𝑅 (middle row), and |𝑦jet| ≤ 2.4−𝑅 (lower
row) for 0-10% PbPb collisions at √𝑠NN = 2.67 TeV (left column) and √𝑠NN =
5.02 TeV (right column) obtained from TRENTo [1] + freestream-milne [2] +
MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape [9].
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Conclusion

This theses presented the estabilished jet andmedium simulation framework Jetscape [9]. Jet
observables suchas jet transversemomentumspectra, jet nuclearmodification factor𝑅jet

AA (𝑝
jet
T ).

and jet shape 𝑃(Δ𝑟)were obtained from simulations composed of numerous stages.

First, the medium is simulated with second-order hydrodynamics within the MUSIC code [3].
Thedynamical initial statewas simulatedbyTRENTomodel [1] andpreequilibriumfreestream-
milne [2]. It is important to compare soft hadronic observables with experimental measure-
ments to check the reliability of the framework and how well it describes reality. This brings
about twoadditional simulation stages in the formof aiSSparticle sampler andSMASHhadronic
afterburner, the latter simulating interactionsbetweenhadrons in theposthydrodynamic stage.

Observables suchas transversemomentumspectra and theaveragemomentumofpions, kaons,
and protons were obtained. Hadronic observables were compared with the experimental data,
and there is general quantitative agreement. However, there are areas for improvement. For
example, the preequilibrium stage or EoS could be upgraded.

Inputs to the medium simulation can affect medium size, lifespan, or temperature. It is impor-
tant to match them with reality as best we can since jet quenching is driven by those medium
properties.

For example, free-streaming preequilibrium takes up to 10% of the effective lifespan of the
medium. Modern bulk viscosity parameterisations can reduce the length of the medium lifes-
pan by 10% and also its size up to 20% at later time. The shear viscosity slightly alters the tem-
perature of themedium. Although there are significant temperature effects, shear viscosity can
affect the anisotropy of themedium, and the impact of the anisotropy on themedium-induced
gluon spectra could be significant. Different EoS can cause a ∼ 1 fm difference in the fem-
toscopy radii. Furthermore, EoS defines the temperature of the system.

There are unanswered questions on howpreequilibrim, bulk viscosity, shear viscosity, EoS, and
other aspects of medium simulation affect the jet evolution.

The evolution of the jet starts at the hard vertex. This was simulated with Pythia [6] MPI. The
partons obtained from MPI can be identified as jets using the anti-𝑘T algorithm implemented
in FastJet [310]. After that, it is possible to calculate the average proper time that jets spend
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inside the medium. This can be used to create a static medium with size equal to this average
in-medium proper time and average temperature of the hydrodynamic simulation.

Partonic cascades inside the brick medium were simulated with MATTER [7] for high-virtuality
(𝑄 ≥ 2 GeV) partons and LBT [8] for low-virtuality (𝑄 < 2 GeV) partons. For the jet energy loss,
two scenarios were used for background medium: brick medium and realistic medium.

This produced decent results in terms of transverse momentum spectra and consequently nu-
clear modification factor 𝑅jet

AA (𝑝
jet
T ). Similarly, the jet fragmentation function 𝐷(𝑧) had the en-

hancement for large fraction of momenta 𝑧 compared to 𝑝𝑝 collisions. This is not observed in
the experimental data. The ratio of jet shape 𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) increased slightly for large Δ𝑟
for evolution in the brick medium. However, the enhancement at largeΔ𝑟was absent. This en-
hancement is connected to recoil scatterings between jet partons and thermal partons. Those
interactions were present during the partonic evolution.

The realistic medium was simulated with the TRENTo + freestream-milne initial state and
MUSIC2+1Dsecondorderhydrodynamics forfivecentralitybinsofPbPbcollisionsat thecentre-
of-mass nucleon-nucleon energies√𝑠NN = 2.67 TeV and√𝑠NN = 5.02 TeV. Then the same par-
ton evolution was used as for the brick medium, that is, MATTER and LBT.

Transverse momentum spectra and consequently nuclear modification factor 𝑅jet
AA (𝑝

jet
T ) were

successfully reproduced and compared with the experimental data. They are compatible with
each other within the uncertainty. The jet shape 𝑃(Δ𝑟) was also successfully reproduced with
the tail enhancement of the ratio. The jet fragmentation function for realistic medium simula-
tion encapsulates the general behaviour. The puzzeling part was the jet mass spectra. Realistic
medium simulation shows positive shifts of the mass spectra. However, this is not observed in
the experiment. This fact makes the brick medium more predictive about the jet mass.

Future researchon this topicwill be carriedout using thehydrodynamic simulation codevHLLE
[332] as it is a more familiar software and thus more controllable. The goal will be to build a
framework that can simulate jet energy loss with vHLLE as a hydrodynamic simulation code.
It will be easier to implement and modify various details of medium, jet modelling and jet-
medium interaction in such framework.

This work was presented at the 22nd Zimányi school winter workshop on heavy-ion physics
in Budapest in the form of a poster.
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Appendix A

Theoretical Part

A.1 Natural units

Natural units are a system of units based on universal physical constants in some way. The
common way to construct a natural system of units is putting some universal constants equal
to one (i.e., 𝑐 = ℏ = 1). However, there are some relations between constants. For example, the
fine structure constant,

𝛼 =
1

4𝜋𝜀0
𝑒2

ℏ𝑐
= 𝑘𝑒

𝑒2

ℏ𝑐
,

is dependent on speed of light, 𝑐, reduced Planck constant, ℏ = ℎ
2𝜋 , elementary electric charge,

𝑒, and Coulomb constant, 𝑘𝑒 = 1
4𝜋𝜖0

, where 𝜀0 is the permittivity in vacuum. Those relations
put constrains on the systems of natural units. For example, it is not possible to create a system
where 𝑐 = ℏ = 𝑘𝑒 = 𝑒 = 1 since it would mean that 𝛼 = 1 and as the fine structure constant
𝛼 ≈ 1

137 is a dimensionless constant that cannot be rescaled further.

The examples of the most known systems of natural units can be seen inTable A.1. This work is
using the Planck system of natural units. However, the elementary charge 𝑒 is referred as it is,
without expressing it through the fine structure constant relation.

Table A.1: Values of some physical constants in different natural unit systems.

Quantity Planck Stoney Schrödinger Hartee Dirac Stille
𝑐 1 1 1

𝛼
1
𝛼 1 1

ℏ 1 1
𝛼 1 1 1

𝛼
1
𝛼

𝐺 1 1 1 𝐺 𝐺 𝐺
𝑘𝐵 1 1 1 1 1 1
𝑘𝑒 1 1 1 1 1 1
𝑒 √𝛼 1 1 1 1 1
𝑚𝑒 𝑚𝑒 𝑚𝑒 𝑚𝑒 1 1 𝑚𝑒
𝑚𝑝 𝑚𝑝 𝑚𝑝 𝑚𝑝 𝑚𝑝 𝑚𝑝 1

When one puts certain constants equal to one, it has some interesting implications on the
units of some quantities. For example, the familiar relativistic energy formula

𝐸2 = �⃗�2𝑐2+𝑚2𝑐4,

152
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is in natural units (𝑐 = 1) expressed as

𝐸2 = �⃗�2+𝑚2,

where �⃗� is momentum and𝑚 is the mass. Since the squares of the units of those three quanti-
ties must be the same, the units of those quantities follow

[𝐸] = [𝑝] = [𝑚],

where [⋅] gives the units of a given quantity. One has to express all three quantities with the
same units. Those units are units of energy and the consensus is that they are expressed in
electonvolts (eV).With a similar approach, one can continue and use the formulae to express
physical quantities in consistent units.

Table A.2 represents the units of quantities in the International System of Units (SI) and in
the system of Planck’s natural units. Quantities are expressed as some integer power of energy
units. Zeroth power is also included, since some quantities like velocity 𝛽 or angular momen-
tum 𝐿 became dimensionless. Differences between this work and Table A.2 are that the time
and length are expressed in femtometres (fm=10−15×m). This is because the femtometre is the
most convenient scale of nuclear and particle physics. Furthermore, the cross section is ex-
pressed either as fm−2 or barn b.

Table A.2: Physical quantities, their SI units, their natural units, and their corre-
sponding factor for dimensional analysis.

Quantity SI Natural Factor
Energy 𝐸 kg m2 s−2 eV 1
Mass𝑚 kg eV 𝑐−2

Momentum 𝑝 kg m s−1 eV 𝑐−1

Length 𝑙 m eV−1 ℏ𝑐
Time 𝑡 s eV−1 ℏ
Velocity 𝑣 = 𝛽 m s−1 - 𝑐
Angular momentum 𝐿 kg m2 s−1 - ℏ
Cross section 𝜎 m2 eV−2 (ℏ𝑐)2

Force 𝐹 kg m s−2 eV2 (ℏ𝑐)−1

Charge𝑄 C = A s - 1
Temperature 𝑇 K eV 𝑘−1𝐵

It is possible to reverse the process and put the universal constants back into the equa-
tions, so there can be done some quantitative calculations. One can simply use the factors
that are displayed in the Table A.2 or use dimensional analysis. The dimensional analysis is a
powerful tool that can be also used to derive the exact expression of some formulae. For ex-
ample, Bekenstein-Hawking law describes that the entropy of the black hole is proportional to
Schwarzschild area of the black hole. With dimensional analysis, the exact expression can be
simply derived as

𝑆BH =
𝑐3

4𝐺ℏ
𝐴𝑠.
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A.2 Special relativity

The Minkowski metric in this work reads as

𝜂 =
⎛
⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟
⎠

.

In the special relativity there are covariant vectors𝑋𝜇 and contravariant vectors denoted as𝑋𝜇.
It is possible to use Minkowski metric 𝜂𝜇𝜈 = 𝜂𝜇𝜈 to chnge covariant vector to contravariant

𝑋𝜇 = 𝜂𝜇𝜈𝑋𝜇

and vice versa
𝑋𝜇 = 𝜂𝜇𝜈𝑋𝜈,

where this implies𝜂𝜇𝛾𝜂𝛾𝜈 = 𝕀4 as a simple property ofMinkowskimetric. There canbe covariant
and contravariant tensors with arbitrary rank (𝑌𝜇𝜈𝛾... and𝑌 𝜇𝜈𝛾...). However, in special relativity,
the most common tensors are of rank 1 or 2. Rank 1 tensors are called four-vectors.

Lorentz tensors from special relativity are transformed via Lorentz transformation Λ. Every
Lorentz transformation can be expressed as a square 4×4matrixΛ𝜇𝜈. Lorentz transformations
form a group called Lorentz group. Lorentz transformations keep quadratic form

(𝑋𝜇) ⋅ (𝑋𝜈) = 𝑋𝜇𝜂𝜇𝜈𝑋𝜈

invariant. The signature of this quadratic form is (1,3) and it is often incorrectly referred as an
inner product. However, since the axiom (𝑋𝜇) ⋅ (𝑋𝜈) ≥ 0 is not fulfilled, it cannot be called an
inner product. Quadratic formcanbe referred as a pseudo-inner product. If the quadratic form
(𝑋𝜇) ⋅ (𝑋𝜈) > 0, the four-vector 𝑋𝜇 is called a timelike vector since its time component (𝑋0) is
dominant. If the pseudo-inner product (𝑋𝜇) ⋅ (𝑋𝜈) < 0, the four-vector 𝑋𝜇 is called a spacelike
vector since its space components (𝑋 1,𝑋2,𝑋3) are dominant. In the case of nonzero vectors
𝑋𝜇, if (𝑋𝜇) ⋅ (𝑋𝜈) = 0 the vectors are referred as null vectors that are parallel to the light cone.
That is why null vectors are also called light vectors.

From the invariance of the spacetime interval, one can obtain the condition for Lorentz trans-
formation as

𝜂 =Λ𝑇𝜂Λ.

Then one can proceed and transform the vector (𝑋𝜈) as

𝑋 ′
𝜇 =Λ𝜇𝜈𝑋𝜈

or make a reverse transformation of vector (𝑋 ′𝜈)

𝑋𝜇 =Λ−1
𝜈𝜇𝑋 ′𝜈.

Part of the Lorentz group are 3D rotations that are solely represented by SO(3) group. The next
part of the Lorentz group is the boost. Boost is a relative motion with constant velocity trans-
formation without rotation. The Lorentz boost transformation with velocity ⃗𝑣 parallel to the
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𝑥−axis is

Λboost =
⎛
⎜⎜
⎝

𝛾 −𝛾𝛽 0 0
−𝛾𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟
⎠

,

where
𝛾 =

1
√1−𝛽2

, 𝛽 = || ⃗𝑣||.

Equivalently, the Lorentz boost transformation can be expressed with rapidity 𝒴 = arctanh𝛽
as follows

Λboost =
⎛
⎜⎜
⎝

cosh𝒴 −sinh𝒴 0 0
−sinh𝒴 cosh𝒴 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟
⎠

.

The final two components are time reversal and parity transformation

Λtime = (𝑇 𝜇
𝜈) =

⎛
⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟
⎠

, Λparity = (𝑃𝜇
𝜈) =

⎛
⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟
⎠

.

One can use multiple transformations from a given transformation group and the final trans-
formation will be an element of the transformation group. Combination of rotation and boost
is called a proper orthochronous Lorentz transformation. The combination of a proper or-
thochronous Lorentz transformation and time reversal is called a proper antichronous Lorentz
transformation. The combination of a proper orthochronous Lorentz transformation and par-
ity transformation is called an improper orthochronous Lorentz transformation. Finally, the
combination of proper orthochronous Lorentz transformation, time reversal, and parity trans-
formation is called an improper antichronous Lorentz transformation. If one adds translation
transformations to the Lorentz group, then the resulting group is called the Poincaré group.

Four-vector, also called Lorentz vectors, are an essential part of the special theory of relativ-
ity. The most basic four-vector is called an event and it represents a point in the Minkowski
space

(𝑥𝜇) ≡ 𝑥 = (𝑡,𝑥,𝑦,𝑧).

Four-velocity is event under the derivative with respect to the proper time 𝜏

(𝑢𝜇) = (
d𝑥𝜇

d𝜏
) = (𝛾,𝛾 ⃗𝑣),

since the d𝑡
d𝜏 = 𝛾. Four-momentum is defined as four-velocity multiplied by the invariant mass

(𝑝𝜇) ≡𝑚(𝑢𝜇) = (𝐸, �⃗�),

since 𝛾𝑚 = 𝐸. One can analogically derive four-force or four-acceleration. However, they are
not necessary to introduce in this work. Furthermore, one can find the conserved charges like
baryon number or electric charge and define their four-vector. The four-baryon number flux is
defined as

𝑁𝜇 =𝑛𝑢𝜇,
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where 𝑛 is the baryon density. Similarly, the four-current is

(𝐽𝜇) = 𝜌(𝑢𝜇) = (𝜌, ⃗𝑗),

where 𝜌 is charge density and ⃗𝑗 is the current density. Furthermore, in electromagnetism, it is
important to also define the four-potential

(𝐴𝜇) = (𝜙, �⃗�),

where 𝜙 is a scalar electromagnetic potential and �⃗� is the vector electromagnetic potential.
Electromagnetic potential generates the electric and magnetic field

�⃗� = −∇⃗𝜙−
𝜕�⃗�
𝜕𝑡

, �⃗� = ∇⃗�⃗�,

where ∇ = ( 𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦 ,

𝜕
𝜕𝑧 , ) is a vector operator called nabla. In the special theory of relativity, the

electric and magnetic fields are together represented via the electromagnetic rank 2 tensor 𝐹,
also called Faraday tensor. Faraday tensor is the exterior derivative of the electromagnetic four-
potential

𝐹 ≡ d𝐴.

This can be rewritten in component form as

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈−𝜕𝜈𝐴𝜇,

where
(𝜕𝜇) ≡ (

𝜕
𝜕𝑥𝜇

) = (
𝜕
𝜕𝑡
, ∇⃗)

is called the four-gradient. The pseudo-inner product of the four-gradient is called D’Alembert
operator

□≡ 𝜕𝜇𝜕𝜇.

A.3 Clifford algebra Cl1,3(ℝ)

The Clifford algebra Cl1,3(ℝ) is constructed from 𝛾-matrices that must obey relations

{𝛾𝜇,𝛾𝜈} = 𝛾𝜇𝛾𝜈+𝛾𝜈𝛾𝜇 = 2𝜂𝜇𝜈𝕀4, (𝛾𝜇)† = 𝛾0𝛾𝜇𝛾0.

Those conditions satisfy the Dirac representation

𝛾0 =𝜎3⊗𝕀2 =
⎛
⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟
⎠

, 𝛾1 = 𝑖𝜎2⊗𝜎1 =
⎛
⎜⎜
⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟
⎠

,

𝛾2 = 𝑖𝜎2⊗𝜎2 =
⎛
⎜⎜
⎝

0 0 0 −𝑖
0 0 𝑖 0
0 𝑖 0 0
−𝑖 0 0 0

⎞
⎟⎟
⎠

, 𝛾3 = 𝑖𝜎2⊗𝜎3 =
⎛
⎜⎜
⎝

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎟
⎠

,

where 𝜎𝑖 are Pauli matrices (see Appendix A.4) and ⊗ is the tensor product. There are other
representations that are also important, like the chiral representation called theWeyl represen-
tation of 𝛾-matrices. However, they are not essential for this work.
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It is also convenient to denote the product of 𝛾-matrices that is also considered as a 𝛾-matrix
that in Dirac representation reads as

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 =𝜎1𝕀2 =
⎛
⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟
⎠

The essential notation from the Clifford algebra is the Feynman slash notation

/𝐴 ≡ 𝛾𝜇𝐴𝜇,

where 𝐴𝜇 is arbitrary four-vector or four-operator.

The Clifford algebra in Euclidean space (i.e., with metric 𝛿𝜇𝜈 = diag(1,1,1,1)) the 𝛾−matrices
are usually defined as

(𝛾𝜇)E = (𝛾4 ≡ 𝑖𝛾0, �⃗�) .

Matrices defined like that satisfy the relation

{𝛾𝜇E ,𝛾
𝜈
E } = −2𝛿𝜇𝜈𝕀4.

A.4 Lie algebra SU(2) and SU(3)

The (𝑁 2−1) elements of SU(𝑁) group must satisfy the Lie algebra

[𝒜,ℬ] = 𝑖𝑓𝒜ℬ𝒞𝒞,

where 𝑓𝒜ℬ𝒞 is the structure constant.

Essential for this work is SU(2) and SU(3) Lie algebra. In the case of SU(2) the (𝑁 2 − 1) = 3
elements are called Pauli matrices and they are 2×2 complex matrices defined as

𝜎1 =𝜎x = ( 0 1
1 0 ) , 𝜎2 =𝜎y = ( 0 −𝑖

𝑖 0 ) , 𝜎3 =𝜎z = ( 1 0
0 −1 ) .

They satisfy the Lie algebra
[𝜎𝑖,𝜎𝑗] = 𝑖𝑓𝑖𝑗𝑘𝜎𝑘,

where the structure constant 𝑓𝑖𝑗𝑘 = 2𝜀𝑖𝑗𝑘 and 𝜀𝑖𝑗𝑘 is called Levi-Civita symbol. Furthermore, the
Pauli matrices also satisfy anticommutation relations

{𝜎𝑖,𝜎𝑗} = 2𝛿𝑖𝑗𝕀2.

Elements of the SU(3) Lie algebra are called Gell-Mann matrices. They satisfy the Lie algebra

[𝜆з,𝜆щ] = 2𝑖𝑓зщд𝜆д,
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whereCyrillic indices goes from 1 to 8 since𝑁 2−1 = 32−1 = 8. Matrices fromGell-Mannmatrix
representation are defined as

𝜆1 =
⎛

⎝

0 1 0
1 0 0
0 0 0

⎞

⎠
, 𝜆2 =

⎛

⎝

0 −𝑖 0
𝑖 0 0
0 0 0

⎞

⎠
, 𝜆3 =

⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠
, 𝜆4 =

⎛

⎝

0 0 1
0 0 0
1 0 0

⎞

⎠
,

𝜆5 =
⎛

⎝

0 0 −𝑖
0 0 0
𝑖 0 0

⎞

⎠
, 𝜆6 =

⎛

⎝

0 0 0
0 0 1
0 1 0

⎞

⎠
, 𝜆7 =

⎛

⎝

0 0 0
0 0 −𝑖
0 𝑖 0

⎞

⎠
, 𝜆8 =

1
√3

⎛

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎠
.

Finally, the structure constant of SU(3), 𝑓зщд, that is consistent with the mentioned Gell-Mann
matrices is defined as

𝑓123 = 1,

𝑓147 = 𝑓165 = 𝑓246 = 𝑓257 = 𝑓345 = 𝑓376 =
1
2
,

𝑓458 = 𝑓678 =
√3
2
.

The rest of the structure constant can be deduced from its antisymmetric properties.

A.5 Mandelstam variables

Mandelstamvariables areLorentz-invariantquantities that are composedof four four-momenta.
They describe three different channels of 2→ 2 scattering processes that can be seen in Figure
A.1.

Mandelstam variables are defined as
𝑠 = (𝑝1+𝑝2)2 = (𝑝3+𝑝4)2

𝑡 = (𝑝1−𝑝3)2 = (𝑝4−𝑝2)2

𝑢= (𝑝1−𝑝4)2 = (𝑝3−𝑝2)2,

where 𝑝1 and 𝑝2 are four-momenta of incoming particles and 𝑝3 and 𝑝4 are four-momenta of
outgoing particles. The square root of 𝑠 is the center-of-mass energy 𝐸CoM =√𝑠. This is impor-
tant for high energy physics since the energy of the collision is expressed in√𝑠. Furthermore,
𝑡 is known as four-momentum transfer. The sum of the Mandelstam variables is the sum of the
squared masses of participating particles

𝑠+𝑡 +𝑢 =𝑚2
1 +𝑚

2
2 +𝑚

2
3 +𝑚

2
4 .

(a) 𝑠-channel (space-channel) (b) 𝑡-channel (time-channel) (c) 𝑢-channel (u-channel)

Figure A.1: Channels for Mandelstam variables.
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In the ultrarelativistic limit (𝐸 = 𝑝), that neglect the masses of participating particles, the
Mandelstam variables reads as

𝑠 ≈ 2𝑝1𝑝2 ≈ 2𝑝3𝑝4,
𝑡 ≈ −2𝑝1𝑝3 ≈ 2𝑝2𝑝4,
𝑢 ≈ −2𝑝1𝑝4 ≈ 2𝑝3𝑝2.
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Additional simulation results

0(0.00) 1(0.00)(150.00,134.88,4306.85,1)
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6(0.70)(140.41,140.15,67.62,1)

7(0.70)

(1.63,1.26,0.02,21)

8(0.80)(138.41,138.32,20.07,1)

9(0.80)

(2.00,1.99,0.01,21)

10(2.10)(124.19,124.12,13.46,1)

11(2.10)

(14.22,14.21,0.21,21)

12(4.90)(115.89,115.85,5.05,1)

13(4.90)

(8.30,8.29,0.06,21)
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(15.36,15.35,0.09,21)
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2(0.10)(145.05,142.06,852.31,1)

3(0.10)

(4.95,4.23,0.19,21)

4(0.30)(143.02,141.68,367.17,1)

5(0.30)

(2.03,1.69,0.06,21)

6(0.70)(138.30,137.21,290.12,1)
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(4.72,4.66,0.38,21)

8(0.80)
(122.69,122.43,27.07,1)
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(15.61,15.24,3.36,21)

16(8.10)(1.55,1.09,0.00,-3)
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18(8.10)(81.15,81.10,2.89,1)
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(40.59,40.47,0.81,21)
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(9.18,8.93,0.93,21)

14(6.60)(4.94,4.82,0.27,21)

15(6.60)

(4.24,4.11,0.20,21)

Figure B.1: Parton splittings obtained from MATTER for vacuum evolution (upper),
evolution with medium-modified Sudakov form factor (middle), evolution with
medium-modified Sudakov form factor and recoils with medium (lower). Blue ar-
rows are low virtuality partons, green arrows are holes.

160



APPENDIX B. ADDITIONAL SIMULATION RESULTS 161

0
(0
.0
0
)

1
(0
.0
0
)

(1
5
0
.0
0
,1
3
9
.8
0
,2
9
5
5
.6
8
,2
1
)

2
(0
.1
0
)

(1
4
7
.7
5
,1
3
9
.7
6
,2
2
9
5
.5
1
,2
1
)

3
(0
.1
0
)

(2
.2
5
,1
.4
4
,0
.1
9
,2
1
)

4
(0
.2
0
)

(1
4
6
.0
6
,1
3
9
.1
5
,1
9
5
9
.0
7
,2
1
)

5
(0
.2
0
)

(1
.6
9
,0
.6
1
,0
.1
5
,2
1
)

6
(0
.3
0
)

(9
1
.4
0
,8
6
.9
6
,6
5
8
.4
0
,2
1
)

7
(0
.3
0
)

(5
4
.6
6
,5
2
.6
4
,1
4
7
.8
5
,2
1
)

8
(0
.4
0
)

(2
8
.9
3
,2
8
.3
8
,2
5
.7
7
,2
1
)

9
(0
.4
0
)

(6
2
.4
6
,6
0
.2
2
,8
2
.5
9
,2
1
)

1
0
(0
.5
0
)

(1
.1
1
,0
.6
4
,0
.0
2
,2
1
)

1
1
(0
.5
0
)

(5
3
.5
5
,5
2
.5
1
,5
5
.0
2
,2
1
)

1
2
(0
.5
0
)

(2
7
.8
0
,2
7
.4
0
,1
4
.1
6
,2
1
)

1
3
(0
.5
0
)

(1
.1
3
,1
.0
2
,0
.0
4
,2
1
)

1
4
(0
.9
0
)

(1
.6
2
,1
.4
9
,0
.0
4
,2
1
)

1
5
(0
.9
0
)

(6
0
.8
4
,5
9
.2
0
,2
0
.5
7
,2
1
)

2
2
(1
.7
0
)

(1
.3
3
,1
.3
3
,0
.0
0
,-
1
)

2
3
(1
.7
0
)

(1
.1
9
,1
.1
6
,0
.0
0
,-
1
)

2
4
(1
.7
0
)

(1
3
.4
8
,1
3
.2
6
,1
.9
0
,2
1
)

2
5
(1
.7
0
)

(3
9
.9
3
,3
9
.1
5
,2
9
.4
0
,2
1
)

1
6
(1
.0
0
)

(3
.1
5
,3
.0
6
,-
0
.0
0
,-
2
)

1
7
(1
.0
0
)

(0
.1
1
,0
.0
8
,0
.0
0
,-
2
)

1
8
(1
.0
0
)

(1
.5
8
,1
.5
4
,0
.0
5
,2
1
)

1
9
(1
.0
0
)

(2
3
.1
8
,2
2
.8
7
,8
.5
1
,2
1
)

3
0
(3
.6
0
)

(2
.2
1
,1
.0
0
,-
0
.0
0
,2
1
)

3
1
(3
.6
0
)

(1
.9
2
,0
.8
8
,0
.0
0
,2
1
)

3
2
(3
.6
0
)

(1
.8
8
,1
.8
6
,0
.0
0
,2
1
)

3
3
(3
.6
0
)

(0
.2
3
,0
.1
6
,-
0
.0
0
,2
1
)

3
4
(3
.6
0
)

(2
9
.6
8
,2
8
.4
3
,1
.9
9
,2
1
)

3
5
(3
.6
0
)

(2
9
.2
2
,2
8
.8
1
,0
.8
1
,2
1
)

2
0
(1
.4
0
)

(2
1
.9
4
,2
1
.7
7
,3
.3
9
,2
1
)

2
1
(1
.4
0
)

(1
.2
4
,1
.1
9
,0
.0
3
,2
1
)

4
0
(9
.0
0
)

(5
.7
6
,5
.7
2
,0
.2
4
,2
1
)

4
1
(9
.0
0
)

(1
3
.2
1
,1
3
.0
1
,0
.8
1
,2
1
)

3
8
(8
.8
0
)

(1
0
.1
1
,1
0
.0
0
,0
.8
1
,2
1
)

3
9
(8
.8
0
)

(3
.6
8
,3
.6
3
,0
.1
4
,2
1
)

2
6
(1
.8
0
)

(2
.7
5
,2
.7
2
,0
.1
3
,2
1
)

2
7
(1
.8
0
)

(3
7
.1
8
,3
6
.5
2
,1
3
.6
9
,2
1
)

2
8
(2
.7
0
)

(5
.4
4
,5
.4
1
,0
.3
0
,2
1
)

2
9
(2
.7
0
)

(3
1
.7
3
,3
1
.1
0
,6
.6
3
,2
1
)

3
6
(4
.7
0
)

(2
8
.8
9
,2
8
.3
3
,1
.9
3
,2
1
)

3
7
(4
.7
0
)

(2
.8
5
,2
.8
3
,0
.0
5
,2
1
)

4
6
(1
2
.0
0
)

(2
3
.0
7
,2
2
.1
9
,0
.8
1
,2
1
)

4
7
(1
2
.0
0
)

(6
.6
1
,6
.2
4
,0
.1
0
,2
1
)

4
2
(1
1
.9
0
)

(0
.5
7
,0
.4
6
,0
.0
0
,-
1
)

4
3
(1
1
.9
0
)

(0
.1
9
,0
.1
9
,-
0
.0
0
,-
1
)

4
4
(1
1
.9
0
)

(2
0
.4
8
,2
0
.0
0
,0
.8
1
,2
1
)

4
5
(1
1
.9
0
)

(8
.0
3
,7
.8
8
,0
.1
5
,2
1
)

Figure B.2: Parton splittings obtained from MATTER + LBT with leading only op-
tion for LBT and vacuum option for MATTER. Blue arrows are low virtuality partons,
green arrows are holes.
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Figure B.3: Parton splittings obtained from MATTER + LBT with vacuum evolution
for MATTER and full evolution for LBT. Blue arrows are low virtuality partons, green
arrows are holes.
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Figure B.4: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 0-10%
PbPb (magenta squares) at √𝑠NN = 2.67 TeV obtained from TRENTo [1] +
freestream-milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] imple-
mented in Jetscape [9].
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Figure B.5: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 10-20%
PbPb (blue squares) at√𝑠NN = 2.67TeV obtained fromTRENTo [1] + freestream-
milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape
[9].
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Figure B.6: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 40-
50% PbPb (green squares) at √𝑠NN = 2.67 TeV obtained from TRENTo [1] +
freestream-milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] imple-
mented in Jetscape [9].
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Figure B.7: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 40-50%
PbPb (red squares) at√𝑠NN = 2.67 TeV obtained fromTRENTo [1] + freestream-
milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape
[9].
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Figure B.8: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 0-10%
PbPb (magenta squares) at √𝑠NN = 5.02 TeV obtained from TRENTo [1] +
freestream-milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] imple-
mented in Jetscape [9].
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Figure B.9: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 10-20%
PbPb (blue squares) at√𝑠NN = 5.02TeV obtained fromTRENTo [1] + freestream-
milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape
[9].
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Figure B.10: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 20-
30% PbPb (green squares) at √𝑠NN = 5.02 TeV obtained from TRENTo [1] +
freestream-milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] imple-
mented in Jetscape [9].
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Figure B.11: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 30-
40% PbPb (orange squares) at √𝑠NN = 5.02 TeV obtained from TRENTo [1] +
freestream-milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] imple-
mented in Jetscape [9].
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Figure B.12: Jet mass 𝑀 jet spectra (top left), mass-dependent jet nuclear mod-
ification factor (top right), jet fragmentation function 𝐷(𝑧) (middle left), ra-
tio 𝐷PbPb(𝑧)/𝐷𝑝𝑝(𝑧) (middle right), Jet shape 𝑃(Δ𝑟) (bottom left), and ratio
𝑃PbPb(Δ𝑟)/𝑃𝑝𝑝(Δ𝑟) (bottom right) for 𝑝𝑝 collisions (black squares) and 40-50%
PbPb (red squares) at√𝑠NN = 5.02 TeV obtained fromTRENTo [1] + freestream-
milne [2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape
[9].
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Figure B.13: Jet scatter plot in the (𝑝jet
T ,𝐸jet) space for different rapidity intervals

|𝑦jet| ≤ 0.9 − 𝑅 (upper row), |𝑦jet| ≤ 1.6 − 𝑅 (middle row), and |𝑦jet| ≤ 2.4 − 𝑅
(lower row) for 10-20% PbPb collisions at √𝑠NN = 2.67 TeV (left column) and
√𝑠NN = 5.02 TeV (right column) obtained from TRENTo [1] + freestream-milne
[2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape [9].
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Figure B.14: Jet scatter plot in the (𝑝jet
T ,𝐸jet) space for different rapidity intervals

|𝑦jet| ≤ 0.9 − 𝑅 (upper row), |𝑦jet| ≤ 1.6 − 𝑅 (middle row), and |𝑦jet| ≤ 2.4 − 𝑅
(lower row) for 20-30% PbPb collisions at √𝑠NN = 2.67 TeV (left column) and
√𝑠NN = 5.02 TeV (right column) obtained from TRENTo [1] + freestream-milne
[2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape [9].
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Figure B.15: Jet scatter plot in the (𝑝jet
T ,𝐸jet) space for different rapidity intervals

|𝑦jet| ≤ 0.9 − 𝑅 (upper row), |𝑦jet| ≤ 1.6 − 𝑅 (middle row), and |𝑦jet| ≤ 2.4 − 𝑅
(lower row) for 30-40% PbPb collisions at √𝑠NN = 2.67 TeV (left column) and
√𝑠NN = 5.02 TeV (right column) obtained from TRENTo [1] + freestream-milne
[2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape [9].
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Figure B.16: Jet scatter plot in the (𝑝jet
T ,𝐸jet) space for different rapidity intervals

|𝑦jet| ≤ 0.9 − 𝑅 (upper row), |𝑦jet| ≤ 1.6 − 𝑅 (middle row), and |𝑦jet| ≤ 2.4 − 𝑅
(lower row) for 40-50% PbPb collisions at √𝑠NN = 2.67 TeV (left column) and
√𝑠NN = 5.02 TeV (right column) obtained from TRENTo [1] + freestream-milne
[2] + MUSIC [3] + Pythia [6] + MATTER [7] + LBT [8] implemented in Jetscape [9].



Appendix C

Parameter space setup

Parameters used for all simulation results presented in Capter 5. Left column corresponds to
centre-of-mass nucleon-nucleon pair energy √𝑠NN = 2.67 TeV, right column corresponds to
centre-of-mass nucleon-nucleon pair energy √𝑠NN = 5.02 TeV. If there is only left column, it
means that parameters for that specific module are symmetric.

C.1 Soft sector parameters for heavy-ion simulation

C.1.1 TRENToparameters

<Trento>
<PhysicsInputs

projectile='Pb'
target='Pb'
sqrts='2670'
cross-section='6.18'
normalization='13.94'

</PhysicsInputs>
<CutInputs

centrality-low='0'
centrality-high='10'>

</CutInputs>
<TransInputs

reduced-thickness='0.0'
fluctuation="1.044"
nucleon-width="0.956"
nucleon-min-dist="1.27">

</TransInputs>

</Trento>

<Trento>
<PhysicsInputs

projectile='Pb'
target='Pb'
sqrts='5020'
cross-section='6.76'
normalization='18.38'

</PhysicsInputs>
<CutInputs

centrality-low='0'
centrality-high='10'>

</CutInputs>
<TransInputs

reduced-thickness='0.0'
fluctuation="1.044"
nucleon-width="0.956"
nucleon-min-dist="1.27">

</TransInputs>

</Trento>
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C.1.2 Preequilibrium parameters

<Preequilibrium>

<tau0>0.01</tau0>
<taus>1.16</taus>
<FreestreamMilne>

<name>FreestreamMilne</name>
<freestream_input_file>freestream_input</freestream_input_file>

</FreestreamMilne>
</Preequilibrium>

C.1.3 Hydrodynamics parameters

<Hydro>
<MUSIC>

<name>MUSIC</name>
<Initial_time_tau_0>1.16</Initial_time_tau_0>
<T_dependent_Shear_to_S_ratio>3</T_dependent_Shear_to_S_ratio>

<eta_over_s_T_kink_in_GeV>0.21</eta_over_s_T_kink_in_GeV>
<eta_over_s_low_T_slope_in_GeV>-0.38</eta_over_s_low_T_slope_in_GeV>

<eta_over_s_high_T_slope_in_GeV>0.38</eta_over_s_high_T_slope_in_GeV>

<eta_over_s_at_kink>0.11</eta_over_s_at_kink>
<temperature_dependent_bulk_viscosity>1</temperature_dependent_bulk_viscosity>

<freezeout_temperature>0.160</freezeout_temperature>

</MUSIC>
</Hydro>

C.1.4 iSS parameters

<iSS>
<Perform_resonance_decays>0</Perform_resonance_decays>

<hydro_mode>1</hydro_mode>

<iSS_table_path>../external_packages/iSS/iSS_tables</iSS_table_path>
<iSS_particle_table_path>

../external_packages/iSS/iSS_tables

</iSS_particle_table_path>

<afterburner_type>2</afterburner_type>

<number_of_repeated_sampling>1</number_of_repeated_sampling>

</iSS>
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C.1.5 Afterburner parameters

<Afterburner>
<SMASH>

<name>SMASH</name>
<SMASH_config_file>

../external_packages/smash/smash_config.yaml

</SMASH_config_file>
<SMASH_particles_file>

../external_packages/smash/smash_code/input/particles.txt

</SMASH_particles_file>
<SMASH_decaymodes_file>

../external_packages/smash/smash_code/input/decaymodes.txt

</SMASH_decaymodes_file>

<end_time>300.0</end_time>
</SMASH>

</Afterburner>

C.2 Hard sector parameters for heavy-ion simulation

C.2.1 Parton initial state parameters

<Hard>
<PythiaGun>

<pTHatMin>60</pTHatMin>

<pTHatMax>1000</pTHatMax>
<LinesToRead>

HardQCD:all = on
PDF:useHardNPDFA=on
PDF:useHardNPDFB=on
PDF:nPDFSetA=1
PDF:nPDFSetB=1
PDF:nPDFBeamA = 100822080
PDF:nPDFBeamB = 100822080

</LinesToRead>
<eCM>2760</eCM>

</PythiaGun>

</Hard>

<Hard>
<PythiaGun>

<pTHatMin>60</pTHatMin>

<pTHatMax>1000</pTHatMax>
<LinesToRead>

HardQCD:all = on
PDF:useHardNPDFA=on
PDF:useHardNPDFB=on
PDF:nPDFSetA=1
PDF:nPDFSetB=1
PDF:nPDFBeamA = 100822080
PDF:nPDFBeamB = 100822080

</LinesToRead>
<eCM>5020</eCM>

</PythiaGun>

</Hard>
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C.2.2 MATTER parameters

<tStart>1.16</tStart>
<Matter>

<name>Matter</name>
<useHybridHad>0</useHybridHad>

<broadening_on>0</broadening_on>

<brick_med>0</brick_med>
<in_vac>0</in_vac>
<matter_on>1</matter_on>
<recoil_on>1</recoil_on>
<Q0>2.0</Q0>
<vir_factor>0.25</vir_factor>
<T0>0.16</T0>
<hydro_Tc>0.16</hydro_Tc>

<qhat0>-2.0</qhat0>

<alphas>0.25</alphas>

</Matter>

C.2.3 LBT parameters

<Lbt>
<name>Lbt</name>
<Q0>2.0</Q0>
<in_vac>0</in_vac>
<only_leading>0</only_leading>

<hydro_Tc>0.16</hydro_Tc>

<alphas>0.25</alphas>

</Lbt>

C.2.4 Jet hadronisation parameters for brickmedium simulation

<JetHadronization>
<name>colorless</name>
<take_recoil>1</take_recoil>
<eCMforHadronization>

1380
</eCMforHadronization>

</JetHadronization>

<JetHadronization>
<name>colorless</name>
<take_recoil>1</take_recoil>
<eCMforHadronization>

2510
</eCMforHadronization>

</JetHadronization>
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C.3 Parameters for brick simulation

C.3.1 Static brickmedium parameters

<Hydro>
<Brick

bjorken_expansion_on="false"
start_time="0.5">
<T> 0.195 </T>

</Brick>
</Hydro>

<Hydro>
<Brick

bjorken_expansion_on="false"
start_time="0.5">
<T> 0.198 </T>

</Brick>
</Hydro>

C.3.2 Parton initial state parameters for brickmedium simulation

<Hard>
<PythiaGun>

<pTHatMin>60</pTHatMin>

<pTHatMax>1000</pTHatMax>
<LinesToRead>

HardQCD:all = on
PDF:useHardNPDFA=on
PDF:useHardNPDFB=on
PDF:nPDFSetA=1
PDF:nPDFSetB=1
PDF:nPDFBeamA = 100822080
PDF:nPDFBeamB = 100822080

</LinesToRead>
<eCM>2760</eCM>

</PythiaGun>

</Hard>

<Hard>
<PythiaGun>

<pTHatMin>60</pTHatMin>

<pTHatMax>1000</pTHatMax>
<LinesToRead>

HardQCD:all = on
PDF:useHardNPDFA=on
PDF:useHardNPDFB=on
PDF:nPDFSetA=1
PDF:nPDFSetB=1
PDF:nPDFBeamA = 100822080
PDF:nPDFBeamB = 100822080

</LinesToRead>
<eCM>5020</eCM>

</PythiaGun>

</Hard>
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C.3.3 MATTER parameters for brickmedium simulation

<tStart>0.0</tStart>
<Matter>

<name>Matter</name>
<brick_lenght> 6.098 </brick_lenght>

<useHybridHad>0</useHybridHad>

<broadening_on>0</broadening_on>

<in_vac>0</in_vac>
<brick_med>1</brick_med>
<matter_on>1</matter_on>
<recoil_on>1</recoil_on>
<Q0>2.0</Q0>
<vir_factor>0.25</vir_factor>
<T0>0.16</T0>
<hydro_Tc>0.16</hydro_Tc>

<qhat0>-2.0</qhat0>

<alphas>0.25</alphas>

</Matter>

C.3.4 LBT parameters for brickmedium simulation

<Lbt>
<name>Lbt</name>
<Q0>2.0</Q0>
<in_vac>0</in_vac>
<only_leading>0</only_leading>

<hydro_Tc>0.16</hydro_Tc>

<alphas>0.25</alphas>

</Lbt>

C.3.5 Jet hadronisation parameters for brickmedium simulation

<JetHadronization>
<name>colorless</name>
<take_recoil>1</take_recoil>
<eCMforHadronization>

1380
</eCMforHadronization>

</JetHadronization>

<JetHadronization>
<name>colorless</name>
<take_recoil>1</take_recoil>
<eCMforHadronization>

2510
</eCMforHadronization>

</JetHadronization>
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C.4 Parameters for proton-proton collisions

C.4.1 Parton initial state parameters for proton-proton collisions

<Hard>
<PythiaGun>

<pTHatMin>60</pTHatMin>

<pTHatMax>1000</pTHatMax>
<LinesToRead>

HardQCD:all = on
</LinesToRead>
<eCM>2760</eCM>

</PythiaGun>

</Hard>

<Hard>
<PythiaGun>

<pTHatMin>60</pTHatMin>

<pTHatMax>1000</pTHatMax>
<LinesToRead>

HardQCD:all = on
</LinesToRead>
<eCM>5020</eCM>

</PythiaGun>

</Hard>

<Matter>
<Q0> 1.0 </Q0>
<recoil_on> 0 </recoil_on>
<broadening_on> 0 </broadening_on>

<brick_med> 0 </brick_med>
<in_vac> 1 </in_vac>
<vir_factor> 0.25 </vir_factor>

</Matter>

C.4.2 Jet hadronisation parameters for proton-proton collisions

<JetHadronization>
<name>colorless</name>
<take_recoil>1</take_recoil>
<eCMforHadronization>

1380
</eCMforHadronization>

</JetHadronization>

<JetHadronization>
<name>colorless</name>
<take_recoil>1</take_recoil>
<eCMforHadronization>

2510
</eCMforHadronization>

</JetHadronization>
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List of Constants

ℎ = 6.626 070 ⋅ 10−34 JHz−1 Planck constant
ℏ = 1.054 571 ⋅ 10−34 JHz−1 Reduced Planck constant
𝑐 = 299 792 458ms−1 Speed of light in vacuum
√ℏ𝑐5/𝐺 = 1.220 ⋅ 1019 GeV Planck energy
√ℏ𝐺/𝑐3 = 1.616 ⋅ 10−35 GeV Plack lenght
ℏ𝑐 = 197.32MeVfm
𝑘𝐵 = 1.380 649 ⋅ 10−23 JK−1 Boltzmann constant
𝑒 = 1.602 176 ⋅ 10−19 C Elementary charge
𝜇0 = 1.256 637 ⋅ 10−6 NA−2 Magnetic permeability in vacuum
𝜀0 = 8.854 187 ⋅ 10−12 Fm−1 Electric permittivity in vacuum
𝛼 = 7.297 352 ⋅ 10−3 Fine structure constant
𝐺𝐹 = 1.166 378 ⋅ 10−5 GcV−2 Fermi’s coupling constant
𝑚𝑝 = 1.672 621 ⋅ 10−27 kg Proton mass
𝑚𝑝𝑐2 = 938.272MeV Proton rest energy
𝑚𝑛 = 1.674 927 ⋅ 10−27 kg Neutron mass
𝑚𝑛𝑐2 = 939.565MeV Neutron rest energy
𝑚𝑒 = 9.109 383 ⋅ 10−31 kg Electron mass
𝑚𝑒𝑐2 = 0.510 998MeV Electron rest energy
𝑀𝑊𝑐2 = 80.4335±0.0094 GeV 𝑊 ± rest energy
𝑀𝑍𝑐2 = 91.19 GeV 𝑍 rest energy
𝑀𝐻𝑐2 = 125 GeV Higgs boson rest energy
sin2 𝜃𝑊 = 0.222 Sinus squared ofWeinberg angle
Λ𝑁𝑓=3
QCD = 332±17MeV QCD scale with five flavours

Λ𝑁𝑓=5
QCD = 210±14MeV QCD scale with three flavours

𝜏𝜇 = 2.197 ⋅ 10−6 s Muon mean lifetime
𝜏𝜏 = 2.906 ⋅ 10−19 s Tauon mean lifetime
𝜏𝑊𝑍 = 3 ⋅ 10−25 s 𝑊 and 𝑍mean lifetime
𝜌0 = 0.16 fm−3 Nuclear matter density
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List of Acronyms

AdS/CFT anti-de Sitter/conformal field theory
ALFA Absolute Luminosity for ATLAS
ALICE a Large Ion Collider Experiment
ATLAS a Toroidal LHC Apparatus
BES Beam Energy Scan
BNL Brookhaven National Laboratory
BSM Beyond the Standard Model
CDF Collider Detector at Fermilab
CERN Conseil européen pour la recherche nucléaire
CMS Compact Muon Solenoid
DGLAP Dokshitzer-Gribov-Lipatov-Alterelli-Parisi
DIS Deep Inelastic Scattering
EoS Equation of State
EWT Electroweak Theory
HIC Infrared
IR Infrared and Collinear
IRC Heavy Ion Collision
KATRIN Karlsruhe Tritium Neutrino Experiment
LBT Linear Boltzmann Transport
LHC Large Hadron Collider
LRF Local Rest Frame
MS Modified Minimal Subtraction scheme
MPI Multiple Parton Interactions
NLO Next-to-Leading Order
PDF Parton Distribution Function
QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QFD Quantum Flavourdynamics
QFT Quantum Field Theory
QGP Quark-Gluon Plasma
QMD Quantum Molecular Dynamics
RHIC Relativistic Heavy Ion Collider
RTA Relaxation Time Approximation
SI Système international d’unités
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SLAC Stanford Linear Accelerator Center
STAR Solenoidal Tracker at RHIC
TOTEM Total Elastic and Diffractive Cross Section Measurement
UV Ultraviolet
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