
Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

Evolution of meaning of words in
time

Evoluce významu slov v jazyce

MASTER’S THESIS

Author: Bc. Dominika Zogatová
Supervisor: Ing. Tomáš Mikolov, Ph.D.
Academic year: 2022/2023

Author’s declaration:

I declare that this Master’s Thesis is entirely my own work and I have listed all the
used sources in the bibliography.

Prague, January 4, 2023 ..
Bc. Dominika Zogatová

Acknowledgment:

I would like to express my gratitude to Ing. Tomáš Mikolov, Ph.D. for his expert
guidance.

Bc. Dominika Zogatová

Název práce:

Evoluce významu slov v jazyce

Autor: Bc. Dominika Zogatová

Program: Aplikované matematicko-stochastické metody

Druh práce: Diplomová práce

Vedoucí práce: Ing. Tomáš Mikolov, Ph.D.
Český institut informatiky, robotiky a kybernetiky, ČVUT v Praze

Abstrakt: Jazyk je primárním způsobem komunikace a každý den přijdeme do styku
z mnoha jeho formami. Zaznamenávání a kvantifikování změn významu určitých
slov je dobrým způsobem jak monitorovat vztah veřejnosti k těmito slovům. Tato
práce přestavuje nový způsob jak analyzovat a kvantifikovat evoluci významu slov.
Součástí této diplomové práce je rozsáhlý úvod do strojového učení a zpracování
přirozeného jazyka. Dále tato práce prezentuje zpracování dat Common Crawl z
různých časových období, vytvořené Word2Vec modely a způsob měření změny
významu slova založený na technikách automatického překladu textu.
Klíčová slova: Common Crawl, evoluce významu slov, překlad jazyka, Word2Vec,

zpracování přirozeného jazyka

Title:

Evolution of meaning of words in time

Author: Bc. Dominika Zogatová

Abstract: Language is a primary means of communication and each day everybody
comes into contact with its many forms. Being able to notice and quantify changes
in the meaning of words is a good way of capturing the changes in attitude
towards those words. This thesis presents a new way of analysing and quantifying
evolution of meaning of words. This thesis consists of a theoretical and mathematical
introduction to machine learning and natural language processing. Additionally, this
work presents a form of processing Common Crawl data from different time corpora,
creates multiple Word2Vec models based on those corpora and introduces a method
of analysing the evolution of meaning of words based on automatic translation
techniques.
Key words: Common Crawl, evolution of meaning of words, language

translation, natural language processing, Word2Vec

8

Contents

Introduction 11

1 Introduction to natural language processing 13
1.1 Machine learning . 13

1.1.1 Neural networks . 14
1.1.2 Learning . 18
1.1.3 Performance metrics . 22

1.2 Natural language processing . 24
1.2.1 Tokenization . 25
1.2.2 Word embedding . 25
1.2.3 Recurrent neural networks . 27
1.2.4 Convolutional neural networks 28
1.2.5 Transfer learning . 28

2 Analysis 31
2.1 Common Crawl . 31
2.2 Data and processing . 31
2.3 Data analysis . 31

2.3.1 Time clusters . 33
2.3.2 Models . 35
2.3.3 Language translation . 35
2.3.4 Word mappings . 39

3 Results 41

Conclusion 51

Bibliography 52

Appendix 55

A List of Acronyms 55

9

10

Introduction

Language is something all of us use in our everyday life. Each of us uses language
for various reasons, as a form of exchanging information, for pleasure or as a way of
achieving a goals. There are thousands of languages being spoken today all around
the world and all languages keep on evolving every day.
During recent years there has been a noticeable change in attitude towards many
people, places and other words. The evolution of the semantic meaning of the words
changes and this change can be detected when examining the sentence in which the
word appears. One easy example is seen during the election period. Each candidate’s
name exists in many sentences during the pre-election period. The sentiment of the
sentences in which the name Donald Trump or Joe Biden appeared has evolved
based on the events such as their or their opponent’s speeches, public affairs or
people expressing their support for or criticism of each candidate. Another example
of a word that changes its sentiment as the attitude of people towards it changes
is Bitcoin. In fact, sentiment analysis of textual data linked to Bitcoin was used to
predict the price of this currency many times [8], [13]. The recent energy crisis was
one of the biggest topics of the past year and words such as oil or gas appeared
more in media, and the attitude towards energy has shifted. Being able to capture
this change can help quantify the otherwise unquantifiable phenomenon.
The meaning of a word does not often change drastically. The change in attitude
towards some words, people, brands or companies over time can be leveraged in
economics, politics, finance and many others. Marketing is another example worth
mentioning. The attitude towards a brand over time changes based on information
available to the public and media exposure (good and bad) of that particular brand.
By monitoring the attitude of people towards a brand the company can change and
validate the marketing strategy.

The birth of the machine learning discipline is linked to the publication made in 1943
by logician W. Pitts and neuroscientist W. McCulloch who tried to mathematically
describe the decision-making process in humans. They described a model known
today as a perceptron. Famous computer scientist Alan Turing formalized a test
in 1950, which tells if a machine can be considered intelligent called Turing Test.
During the test, a judge carries two conversations, one with another human being
and one with a machine. If the judge cannot distinguish between a machine and
a human, the machine passed the test and is considered intelligent. In 1957, F.
Rosenblat first implemented a perceptron introduced a few years earlier in 1943 by
Pitts and McCulloch. Developed in 1997, Long Short-Term memory neural networks

11

revolutionized speech recognition later in the first decade of the 21st century. In
2010 Kaggle was founded, a website hosting machine learning competitions and
offering numerous datasets making creating machine learning models more accessible
to the public. Facebook reached another huge milestone in the field of artificial
intelligence in 2014. A team of researchers working at Facebook have created Deep

face, an algorithm which reached the accuracy of 97.35% in recognizing human faces.
This level of accuracy is equal to the performance of humans. Nowadays, machine
learning and neural networks can be used for face recognition, self-driving cars,
fraud detection, dynamic pricing, personalized advertisements or decision-making
and many others. The field of machine learning is one of the most quickly growing
disciplines and there are machine learning tools that can be leveraged to effectively
analyze data called neural networks.
Artificial neural networks Artificial neural network (ANN) are computing systems
inspired by biological neural networks which can be found in human or animal brains.
The use of ANN has changed many industries. Today, neural networks are used in
almost every industry from computer science or biology to weather forecasting or
medicine. Neural networks can be applied to many sorts of data including images,
text, numeric data, videos and speech.
The portion of machine learning which uses neural networks and other tools to
analyze textual data is called natural language processing.
One of the most difficult steps of building any machine learning algorithm is finding
good-quality data that is large enough for the task at hand. Most real-life data
is very sparse, meaning there are not enough data points to describe the whole
feature space model is trying to learn. There are some datasets widely used in
academia and research communities such as MNIST [2] or ImageNet [3]. These
datasets are available to anyone. Using the same data and the same performance
metric makes comparing different models. The biggest source of all the data on the
internet available to the public is the Common Crawl dataset. Common Crawl was
used in the practical part of this thesis.

The goal of this thesis is to give the reader an introduction to machine learning
and natural language processing. Further this thesis aims to develop models which
capture the evolution of meaning of words mathematically and create a way of
measuring the way in which the meaning of a word changes over time.

This thesis is divided into the following chapters. Chapter 1 is an introduction to
machine learning and natural language processing. This chapter also summarizes the
mathematical foundations of both. The most popular neural networks for language
processing are also described in chapter 1. Chapter 2 discusses the data used in
this thesis and provides an analysis of the data and model summaries. Chapter 4
discusses the results and the last chapter concludes.

12

Chapter 1

Introduction to natural language
processing

1.1 Machine learning

Machine learning (ML) can be classified into three categories supervised learning,
unsupervised learning and semi-supervised learning. During supervised learning, an
algorithm is trained on labelled data to predict a correct label and then used to
predict a label of unlabeled data. On the other hand, sets of unlabeled data are used
during unsupervised learning where the algorithm learns patterns in the data. An
example of unsupervised learning can be clustering or Principal component analysis
(PCA). Combination of supervised and unsupervised learning is semi-supervised
learning. During semi-supervised learning, a small labelled data set is used along
with a large unlabeled data set. An example of a semi-supervised algorithm is self-
training. During self-training, a machine learning model learns on a small amount of
labelled data and then makes predictions about large data sets. The large datasets
together with predicted labels are then used again to train the model. Later, this
model makes predictions on test data.
One more class of ML algorithms can be distinguished called reinforcement learning
algorithms. In Reinforcement learning (RL) an agent tries to maximize an objective
function by taking certain actions in the environment that they are in. The agent
learns correct actions by getting rewarded.

Deep learning

Deep learning (DL) is a subset of machine learning. The difference between DL and
ML is that DL is based on artificial neural networks (ANN) whereas ML includes also
algorithms other than ANN. Generally, due to the high number of hyperparameters,
DL algorithms require more data than ML algorithms [15]. ML needs to design
features manually which rapidly increases the time and cost of such methods, DL is
in that way much more scalable [14]. The word deep in deep learning refers to the
depth of a neural network. A network is considered deep if it consists of more than

13

three layers.

Figure 1.1: The relationship between artificial intelligence, machine learning and
deep learning.

1.1.1 Neural networks

Sometimes called artificial neural networks to distinguish them from their biological
equivalent found in the brains of animals, neural networks form the base unit of
any deep learning models. In order to understand what neural networks are, first
one should examine the very basic building block of any artificial neural network, a
perceptron.

Perceptron is the simplest example of a neural network built of only one neuron.
Perceptron is a binary classifier and also an example of a supervised learning algorithm.
Given a number of numerical inputs, the perceptron learns weights of each input
variable to correctly predict the desired output. Different weights of each input
variable correspond to its importance. Figure 1.2 is a visualization of a perceptron.

The perception is constructed in the following way. First, select a threshold t when
the perception gets activated and predicts a positive value. Let xi denote the i-th
input variable of the perceptron and wi a corresponding weight of that variable. All
input variables get multiplied by the corresponding weight and the multiplication
results get summed. If the final sum is greater than the threshold t then the final
prediction is equal to 1 otherwise the output is 0. This can be rewritten mathematically
as follows:

g(x) =

(
1, if w · x =

P
i wixi > t

0, otherwise
(1.1)

Multilayer perceptron (MLP) is a more complex artificial neural network based
on the same principles as a perceptron explained above. MLP consist of at least

14

Figure 1.2: Graphic visualization of a perceptron.

three layers as shown in figure 1.3 an input layer, one hidden layer and an output
layer. MLP is an example of a fully connected neural network which means that
each neuron in one layer is connected to each neuron in the next layer.

Different layers in the MLP can have different activation functions. Let �
(l) be the

activation function of l-th layer and h
(l)
i be the output of a i-th node in the l-th

layer of the MLP. The mechanism of computing the final output can be formulated
mathematically as follows:

h
(1)
i = �

(1)(
X

j

w
(1)
ij xj + b

(1)
i) (1.2)

h
(2)
i = �

(2)(
X

j

w
(2)
ij h

(1)
j + b

(2)
i) (1.3)

yi = �
(3)(

X

j

w
(3)
ij h

(2)
j + b

(3)
i), (1.4)

where h(l)
i denotes the output of the l-th layer and yi is the i-th element of the output

vector.

Artificial neural networks (ANN) are usually composed of a large number
of interconnected computational neurons which collectively learn to optimize the
output. The mechanism is identical to the mechanism described above, the vector is
loaded to the input layer and the hidden layers make decisions based on knowledge
from the previous layer and pass their decisions to the next layer. Nowadays, there
are several types of neural networks such as convolutional neural networks (CNN),
recurrent neural networks (RNN), graph neural networks and others. Some of the
mentioned neural networks will be discussed later in this thesis.

15

Figure 1.3: Graphic visualization of a multilayer perceptron with one hidden layer.

Activation function

The activation function has already been mentioned in the description of MLP
before. The activation function is a tool used to determine whether a neuron should
be activated by a given input or not. The activation function also determines the
value of the output of that neuron. Equation 1.5 shows the application of the
activation function f when calculating the output y. Symbol xi denotes the i-th
element of the input vector and wi is the corresponding weight. bi is a bias. There
are two kinds of activation functions, linear and non-linear, but nowadays non-linear
activation functions are usually used. There are many functions used for this purpose
and the following summary includes some advantages and disadvantages of them.

y = f(
X

i

wi · xi + bi) (1.5)

Linear activation function The linear activation function creates an output
that is proportional to the input of the function. It is sometimes called also as no-

activation or identity function (for a = 1). The mathematical notation of an identity
function is the following:

f(x) = a ⇤ x (1.6)

The range of this function is the whole set of real numbers, f(x) 2 R.

16

The biggest limitation of a linear activation function is the fact that its derivative
is a constant. This means that the derivative does not have any relation to the size
of an input and the gradient used to calculate the new set of weights is a constant
as well.

Non-linear activation function

1. Sigmoid
The formula of a sigmoid function is the following:

f(x) =
1

1 + e�x
=

e
x

1 + ex
. (1.7)

The output of a sigmoid function is always between 0 and 1.

2. Hyperbolic Tangent
The hyperbolic tangent function produces an output in the range from -1 to
1. The formula of this function is:

f(x) = tanh(x) =
e
x � e

�x

ex + e�x
. (1.8)

3. Rectified Linear Unit (ReLU)
The ReLU function is equal to zero whenever the input is smaller than zero
otherwise it is equal to the input.

f(x) = max(0, x) (1.9)

The problem with ReLU is that if many inputs into the ReLU function are
negative the outputs are zeros. This is called the Dying ReLU problem as the
network cannot perform backpropagation.

4. Leaky ReLU
The Leaky ReLU was introduced to solve the dying ReLU problem. In this
case, if input is smaller than zero, the function does not return zero but a small
number very close to zero. The formula of the Leaky ReLU is the following:

f(x) =

(
0.01 · x if x < 0

x else
(1.10)

5. Softmax
Sometimes also called the soft argmax function, the softmax function is a
generalization of a sigmoid function that can be used for multiclass classification.

f(x)i =
e
x
iP

j e
xj

(1.11)

17

Data

All machine learning algorithms rely heavily on data. The data and its quality often
determine the quality of the final model. There are a few phases in which data is used.
First, the model must be trained on some data to predict a label or learn a pattern.
Then different models must be compared against each other and the best one is
selected. In the final stage of the model development, the model’s performance is
evaluated. For those reasons the initial data set is usually divided into three subsets:
training data, validation data and testing data.

1.1.2 Learning

The process in which a neural network updates its weights is called learning.

Loss function

The loss function is a tool used during the training of the neural network to evaluate
how well a particular model fits the data. Common loss functions used in machine
learning algorithms can be classified as regression losses (such as mean square error
or mean absolute error) and classification losses (cross-entropy loss). Let yi be a
label and ŷi prediction of a model.

Mean square error (MSE) is the average of the squared difference between the
predicted value and the real value.

MSE =

Pn
i=1(yi � ŷi)2

n
(1.12)

Mean absolute error (MAE) is the average absolute value of the difference
between the predicted value and the real value.

MAE =

Pn
i=1 |yi � ŷi|

n
(1.13)

Cross entropy loss function comes from information theory. Cross-entropy is a
measure of the difference between two probability distributions and is based on the
information H(x) which can be calculated as :

H(x) = �
X

i

xilog(xi) (1.14)

Cross entropy loss XE can then be calculated as:

XE = �
nX

i=1

(yi log(ŷi) + (1� yi log(1� ŷi)) (1.15)

18

Optimizers

Weights of a neural network get updated during learning process as the loss function
decreases and the predictions get more accurate. One can choose different optimizers
in deep learning to make changes in your weights and learning rate.

Gradient descent (GD) is an optimization algorithm to find extremes of a function.
GD is used in machine learning to minimize the loss function of the ML algorithm.
Two requirements have to be satisfied for GD to work. The function that GD is
optimizing has to be 1) convex and 2) differentiable. Let f be a loss function.
Function f is convex on the set X if 8x1, x2 2 X and � 2< 0, 1 > the following
equation holds true:

f(�x1 + (1� �)x2) �f(x1) + (1� �)f(x2). (1.16)

The function f : X ! R is differentiable in at x1 2 X if the following limit exists:

lim
h!0

f(x1 + h)� f(x1)

h
(1.17)

Function f differentiable at x1 is continuous in x1.

As the name of the GD algorithm suggests, gradient descent relies on the calculation
of a gradient of a given function. Gradient of f(x) is calculated as:

rf =

2

64

@f
@x1...
@f
@xn

3

75 , (1.18)

where x = (x1, ..., xn).

Gradient descent calculates the neural network weights using the current network
weights and gradient scaled by a number, called the learning rate. The calculation
is done in the following way:

wn+1 = wn � ↵ ·rf(wn), (1.19)

where ↵ is a learning rate. A smaller learning rate increases the time needed to reach
the optimum but a learning rate too large might not converge at all.

Stochastic gradient descent (SGD)
Computing a gradient for every point in a dataset may take too much time. This
makes it more difficult to use GD on a large number of data. SGD is a stochastic
approximation of a GD algorithm. SGD calculated the gradient only on a randomly
selected subset of the training data which speeds up the whole training process. Let
x1, ..., xn 2 X be a subset of training data. Weights are updated in the following
way:

19

wS
n+1 = wS

n � ↵ ·r ˆf(wS
n) (1.20)

= wS
n � ↵ ·r 1

n

nX

i=1

f(xi,w
S
n)), (1.21)

where f(xi,wS
n) is a loss function associated with weights wS

n and observation xi 2
X.

Adaptive moment estimation (ADAM) is an another popular optimizer. ADAM
algorithm has 4 parameters: ↵ - the learning rate, �1 - the exponential decay rate
for the first moment, �2 - the exponential decay rate for the second moment and ✏ -
a small number to prevent division by zero. ADAM updates the weights of a neural
network in the following way:

wA
n+1 = wA

n �
↵

p
v̂t + ✏

· m̂t, (1.22)

where estimates m̂t and v̂t are computed from mt and vt which at the beginning of
the algorithm are vectors of zeros. m̂t and v̂t are computed in the following way:

gt = rf(wA
n) (1.23)

mt = �1 ·mt�1 + (1� �1) · gt (1.24)
vt = �2 · vt�1 + (1� �2) · g2

t (1.25)

m̂t =
mt

1� �
t
1

(1.26)

v̂t =
vt

1� �
t
2

(1.27)

Over-fitting

The goal of machine learning models and neural networks is to perform well on
training data as well as new data. Some models fail to generalize and do not perform
well on new data due to over-fitting. This happens when a model learns the training
data too well but does not perform accurately on the evaluation set. The art of
training a model is creating a model complex enough to fit data well a simple
enough to generalize on new data. This is called the bias-variance trade-off.

There are techniques that can be used during the training of a machine learning
algorithm to avoid over-fitting. A very straightforward solution is to train on more
data. Very often this is not possible and one of the following techniques must be
implemented to decrease the chance of over-fitting:

K-fold cross-validation During K-fold cross-validation the initial data set is split
into k subsets. One subset is used for validation and the remaining k�1 subsets are

20

used for training. The training and testing are then repeated k-times using different
data each time. The final error is then calculated as a mean of k errors.

Figure 1.4: Graphic visualization of k-fold cross-validation (k=5).

Adding noise to input data Sometimes, in order to describe the input space
well, one might need a lot of training data. Big datasets might not always be possible.
When the space is not represented well, the model cannot learn how to generalize
and does not perform well on new data. Adding noise to input data often leads to
better generalization abilities of the model and better tolerance to mistakes [12].

Feature selection A more complex model does not guarantee better performance.
Complex models tend to be more prone to over-fitting. Reducing the number of
input data is called feature selection. Not only can feature selection improve the
performance of the model but it also speeds up the training process.

Early stopping This technique stops the model before it over-fits the training
data. The risk of stopping the learning process is that the maximum performance
will not be achieved. The goal of early stopping is to stop training the model when
the performance of the model on validation dataset starts to drop.

Adding dropout layers Another regularization technique which prevents over-
fitting is adding dropout to your model. During training, random connections between
nodes or alternatively whole nodes can be deactivated. This happens in each training
epoch which prevents the model from over-fitting the data.
Let w1, ..., wn be the weights of a network. Then mathematical notation of adding a
dropout is equal to:

wi =

(
0, with probability p

1, with probability 1� p
(1.28)

21

A good way of representing a dropout visually is shown on 1.5. 1.5 shows a simple
fully connected neural network with one hidden layer. After dropout, some connections
were removed from the second neural network on 1.5. Removing connections represents
the weights that were set to zero with probability p.

Figure 1.5: Dropout - deactivating random connections in the neural network.

1.1.3 Performance metrics

To choose the best model for each task one must measure its performance. There are
a few performance metrics to evaluate a model. The following section summarizes
the most common performance metrics.

To simplify the notation, let the classifier K be a classifier with two labels. The
classification made by a classifier can be either a True positive (TP), False positive
(FP), True negative (TN) or False negative (FN). Figure 1.6 explains the meaning
of TP, FP, TN and FN terms.

22

Figure 1.6: Table explaining the meaning of different classification terms.

Accuracy

For binary classification accuracy can be calculated as:

A := Accuracy =
TP + TN

TP + FP + TN + FN
. (1.29)

Generally, accuracy is calculated as a ratio of correctly classified inputs to all
classifications:

A =
CP

AP
=

P
i CP

i
iP

i CP
i
i +

P
i,j IP

i
j

. (1.30)

CP denotes all correct predictions and CP
i
i are all correct predictions of class i.

AP denotes all predictions made by the classifier. IP is the number of incorrect
predictions and IP

i
j is the number of incorrect predictions of class j predicted as

class i. The same notation and indexation are used in the rest of this section.

Accuracy does not take into account the dataset itself and is useful only when there
is an equal distribution of classes on the classification. If the data set is imbalanced
(meaning, it contains more examples of a certain label) the final accuracy does
not describe the true performance of the model well. Let us consider a binary
classification problem with 100 data points in the testing dataset with only positive
labels. A classifier which predicts a positive class for all the input data will have
a high accuracy. Although accuracy is high, the truth is that the model does not
generalize well and does not make decisions in an intelligent manner.

For this reason there are other performance metrics to consider when training a
model.

23

Precision

Precision is calculated as follows:

P := Precision =
TP

TP + FP
. (1.31)

In the case of a model with FP = 0, which means that the model does not classify
any negative objects as positive, the precision of that model is 1. In a multi-class
classification precision of a class i is calculated as:

Pi =
CP

i
i

CP
i
i +

P
j IP

i
j

(1.32)

Recall

Recall is calculated as follows:

R := Recall =
TP

TP + FN
(1.33)

In the case of a model with FN = 0, which means that model does not classify
any negative objects as positive, the recall of that model is 1. In a multi-class
classification recall of a class i is calculated as:

Ri =
CP

i
i

CP
i
i +

P
j IP

j
i

(1.34)

F1 score

Both precision and recall have their drawbacks. Therefore a combination of the two
previous metrics called the F1 score is used. The F1 score is calculated as follows:

F1 = 2 ⇤ P ·R
P +R

. (1.35)

The goal of the F1 score is to create a better metric which would work well on
imbalanced data sets. Again, a higher F1 score of a model indicates better performance.
Medium F1 score is obtained if one of the metrics used is low.
For a multi-class classifier, the F1 score for class i is equal to:

F1i = 2 · Pi ·Ri

Pi +Ri
. (1.36)

1.2 Natural language processing

Language modelling is described by [1] as a process of learning the distribution over
a set of tokens taken from a vocabulary. Let the sequence of tokens be noted as

24

(x1, ..., xn). The goal is to learn the probability P (x1, ..., xn). The join distribution
is usually computed as:

P (x) =
Y

t

P (xt|x<t). (1.37)

x<t are 8xi 2 (x1, ..., xn), where i < t.

1.2.1 Tokenization

Tokenization is an important aspect of working with language data. In order for a
model to understand the human language it needs to be pre-processed first. This is
when tokenization comes into the picture. Tokenization is a way of dividing the text
model is working with into smaller units such as sentences, words or even characters.
These units are called tokens. Tokens are then formed into a set of tokens called a
vocabulary.
Word tokenization is commonly used during data processing. For example, tokenization
can be performed on letter, word or sentence level. The biggest drawback of tokenization
on the word level is that the model can encounter words that are not in the primary
vocabulary. These words are called the Out of Vocabulary (OOV) words. There are
methods to escape the OOV words, but usually, the information the word carries gets
lost in the process. Tokenization on the character level overcomes the OOV problem.
Additionally, the vocabulary on the character level is significantly smaller due to the
limited number of characters in a language. The drawback of this approach is that
the length of input is considerably larger than in word tokenization.
State-of-the-art (SOTA) models in NLP rely on a tokenization method that solved
all of the issues mentioned above. Tokenization on a sub-word level splits words into
multiple parts (sub-words) and in that way tackles both the OOV problem of the
word tokenization as well as the input length issue of the character tokenization.

1.2.2 Word embedding

Word embedding requires no labelled data and is considered to be one of the
most successful applications of unsupervised machine learning. Word embedding
can map large dimensional data into lower dimensions while maintaining semantic
relationships between words. These techniques represent words as vectors in a pre-
defined vector space. Words with similar meanings have similar representations in a
given vector space and in this way, a word meaning is captured.

Word2Vec

One of the most iconic and major works in this field is Word2Vec [9]. Word2Vec
algorithm results in a vector space where words with similar semantic meanings are

25

close to each other. One of the findings of word embedding is that one can perform
mathematical operations with the vectors from its vector space. An example of a
mathematical operation with vectors representing words in vector space is in the
1.8. In 1.8 words represent vectors in the vector space. When the value of a vector
representing the word men is subtracted from the word king and a value of the word
woman is added, the resulting word vector represents (or is very close to) the word
queen.

Team of scientist lead by Tomas Mikolov at Google proposed two model architectures
for learning distributed representations of words that try to minimize computational
complexity. These two architectures are presented on figure 1.7. CBOW uses context
words to predict the value of a given word. On the other hand, Skip-gram uses a
certain word to predict its context. Word2Vec is a shallow, two-layer neural networks.
It is trained to reconstruct contexts of words as explained on figure 1.7. A by product
of learning the context of words are the hidden weights of the model. These weights
are then used as word embeddings.

Figure 1.7: CBOW architecture predicts a word based on the surrounding words,
Skip-gram uses a given word to predict the context words.

Figure 1.8: Example of a relationship between a vector in the vector space.

Following subsections present a few model architectures used in natural language
processing such as recurrent neural networks (section 1.2.3), convolutional neural
networks (section 1.2.4) and a short comment on transfer learning (section 1.2.5).

26

1.2.3 Recurrent neural networks

Recurrent neural network (RNN) was created for processing of sequential data.
RNN’s architecture is derived from feedforward neural networks with addition of
a concept of memory. Ordinary neural networks were create to process independent
data but sequential data such as text or speech rely heavily on previous data. Figure
1.9 visually shows how the concept of memory is represented in RNNs. At each step
RNN’s output is used as an input in the next step.

Figure 1.9: Recurrent neural network

Like many neural networks, RNNs are optimized using back-propagation [16]. During
back-propagation through the recurrent layers, errors decay very fast, this is called
the vanishing gradient problem [6]. The two ideas were introduced to fight the
vanishing gradient problem. Replacing the sigmoid activation function with ReLU
is one of them [5]. The other way how to combat the vanishing gradient is to use a
special kind of recurrent neural network called a Long Short-Therm memory network
[4].

Long short-term memory

Long short-lerm memory (LSTM) neural networks are used to process sequential
data such as text, time series or video data. The biggest disadvantage of the LSTM
is a number of parameters that need to be trained thus slowing the whole process.
For that reason, the Gated recurrent unit was developed as a faster version of the
LSTM neural network [1].

Gated recurrent unit

Even though GRU’s architecture is more simple it can outperform the LSTM on
some tasks [1].

27

1.2.4 Convolutional neural networks

RNNs suffer from being too slow due to the fact that they process data sequentially
[1]. A simple ANN, when given a large number of inputs may easily over-fit on the
training data. Convolutional neural networks were invented to combat problems or
slow training and over-fitting. Traditionally convolutional neural networks (CNN)
were applied to image processing. The main component of CNN are convolutional
and pooling layers. The overall architecture of CNNs is the following:

1. Input layer - numerical data

2. Convolutional layers - extract features

3. Pooling layer - used to reduce the dimension

4. Fully-connected layers - learn to solve the task

The convolutional layers are usually stacked followed by pooling layers. Another
common architecture is repeating two convolutional layers followed by a pooling
layer several times [11]. Convolutional layers are used for extracting features from
the feature space and in NLP are used to extract features from word embeddings [1].
Stacking multiple convolutional layers extracts more complex features. These layers’
parameters focus on the use of learnable kernels [11].
The pooling layers help to reduce the size of the feature space as pooling is equivalent
to dimension reduction. An example of pooling is shown on 1.10, this pooling is
done using the max function and therefore is called max-pooling. For example, a
max-pooling performed with a kernel of 2x2 size applied with stride 2 will reduce
the activation map to 25% of its original size. Stride is the number of pixels the
kernel shifts each time. In the case of a 2D filter the size of the output layer can be
calculated using the following formula:

N � F

S + 1
, (1.38)

where N is the size of the image, F is the size of the filter and S is the stride. In
figure 1.10 the parameters are the following: N = 16, F = 4, S = 2 therefore the
size of the output is 16�4

2+1 = 12
3 = 4.

In image processing the input into a CNN are pixels, in NLP the convolutional
neural network is fed with the matrices made from vectors representing each word.

1.2.5 Transfer learning

Nowadays, the machine learning and deep learning community have to tackle two
problems: data availability and computing resources. Collecting large datasets is
time-consuming and very expensive. For some domains collecting datasets large
enough to train complex neural networks is not possible. Furthermore, the time and
financial costs as well as the environmental costs of training big complex models

28

Figure 1.10: An example of pooling - max-pooling.

are massive. Both of these problems can be reduced using transfer learning. The
goal of transfer learning is to keep the knowledge gained on one task and apply this
knowledge to a different task. In practice, transfer learning is widely used in Natural
language processing (NLP) and computer vision (CV). In both NLP and CV, models
trained on very large data sets learn specific patterns and then this knowledge is
applied to a new task. Transfer learning relaxes the condition that the training and
testing data must be independent and identically distributed [14].

Following the same notation as [1] transfer learning is defined as follows. Let D

be the domain and X be the feature space. Domain D can be defined by a tuple
(X,P (X)), where P (X) is a marginal probability of the feature space X. Let y be the
labels and P (y|x) a conditional distribution that the model is trying to learn. The
task model is trying to solve can be described by a tuple (y, P (y|x)). During transfer
learning two different domain-task tuples can be distinguished, source (Ds, Ts) and
target (Dt, Tt) domain tuples. Using a source domain and task during the learning
process for the target task is called transfer learning.

29

30

Chapter 2

Analysis

2.1 Common Crawl

Common Crawl (CC) is an open-source dataset accessible online to anyone. Data
can be downloaded using Amazon S3 or HTTPS requests. The CC dataset contains
petabytes of high-quality data collected on the internet from 2008 until today. Raw
data is stored using the Web ARChive (WARC) format. Plain text data extracted
from WARC are stored in WET files. WAT files store metadata. Only WET files
were downloaded and analysed for the purposes of this thesis.

2.2 Data and processing

The CC datasets contain petabytes of data. Only a subset of data was processed in
the analysis part of this thesis. Each subset of data was around 10% of the original
dataset. The analysis was done using resources available by Google. The size of
the dataset was too large to process using free resources and additional resources
were purchased. The final storage available for the analysis was 200GB and 32GB
of RAM. The main language analyzed was English. Additionally, data in Spanish
were used for model and method validation.

2.3 Data analysis

A random sample of the Common Crawl data from each month has been downloaded
using HTTPS requests. Only textual data was analyzed, therefore data such as code
or images were not considered. First, the data was cleaned by removing characters
that do not belong to the English language. By doing so, languages such as Russian,
Chinese, Korean, Arabic and many others were filtered out. In the next step sentences
that were too long (longer than 90 words) or too short (shorter than 10 words)
were filtered out as well, as they do not carry much useful information that can be
processed in the next steps. A lot of sentences were duplicated in the dataset due

31

to the nature of the data on the internet, so an important step in data preparation
was the deduplication of sentences.

Two languages were filtered out of the prepared data, English and Spanish. The
English language was used in the main part of the data analysis to capture and
measure the evolution of the meaning of words in time. The Spanish language was
used in to validate the method presented in this thesis and also show that the
implementation of this approach was correct. Both languages were filtered out using
a sets of ten thousand most common words extracted from English and Spanish
data found on the internet. Although using this approach might omit some English
or Spanish sentences, this approach was chosen as it is quicker than using libraries
available in Python.

Graphic visualization of the steps of English language data analysis is shown in
figure 2.1 below.

Figure 2.1: A simple visualization of data processing and analysis (English language).

32

2.3.1 Time clusters

Common Crawl downloads data from the internet regularly. Most often datasets are
created monthly or bimonthly. The number of pages changes over time and does not
necessarily increase. Many web pages get deleted each month and new websites are
added. Each dataset contains new web pages crawled for the first time as well as
older pages crawled in the previous months or years. In the analysis, each crawl was
taken as a separate time cluster. This is the best representation of data available
on the web in any given month. Although web pages and data may be present in
multiple crawls and therefore multiple time clusters, the portion of web pages added
each month is substantially large and will influence the monthly dataset significantly.
In this way, it is possible to capture the evolution of the meaning of words over time.

The evolution of WET file sizes is shown in figure 2.2, figure 2.3 shows the number
of new URLs scraped each crawl, and figure 2.4 shows the total number of pages in
each dataset.

Figure 2.2: Size of compressed data in 2021 and 2022.

Table 2.1 presents information about each dataset and presents a notation that is
used in further analysis. For example, the symbol EN1 denotes the first dataset of
the English language crawled in January 2021. For simplicity symbol, ENi denotes
the English dataset of the i-th crawl as well as the model built on this dataset. The
symbol ES denotes the dataset containing only the Spanish language. In order to
achieve this amount of Spanish data, more than 10% of the January 2021 crawl was
processed.

33

Figure 2.3: New ULRs scraped in each crawl in 2021 and 2022.

Table 2.1: 14 English datasets and one Spanish dataset used to train models.
model date sentences words

EN1 January 2021 14 079 776 29 065 500

EN2 February/March 2021 13 459 793 28 796 000

EN3 April 2021 14 732 509 30 150 500

EN4 May 2021 12 569 176 27 803 500

EN5 June 2021 11 440 936 26 556 000

EN6 July/August 2021 12 098 726 26 590 500

EN7 September 2021 11 635 755 26 296 500

EN8 October 2021 13 898 464 28 869 500

EN9 November/December 2021 11 213 365 26 041 000

EN10 January 2022 12 323 643 27 160 500

EN11 May 2022 11 699 690 26 117 500

EN12 June/July 2022 10 855 253 25 116 500

EN13 August 2022 9 046 566 23 082 500

EN14 September/October 2022 11 968 787 16 165 350

ES January 2021 9 760 899 27 833 000

34

Figure 2.4: Number of pages in crawls in 2021 and 2022.

2.3.2 Models

Word2Vec model was used for the analysis of the data. Models and their different
settings were validated on word analogies and their accuracy is presented in the
tables below. These models were trained on dataset EN1. Word2Vec models were
implemented using Gensim (Python) library and have many parameters but only
some were fine-tuned as they have shown to have a noticeable effect on the accuracy
score on word analogies. Other parameters were set to their default value. Following
parameters were fine-tuned: vector dimension (dim), minimal word occurrence
(min_count) and a number of training epochs. For all models the window was set
to 10 as increasing this parameter made little difference in the final accuracy and
increased the training time. Tables 2.2, 2.3 and 2.4 present the accuracy of 50, 100
and 200-dimensional models with different parameters. For all 50, 100 and 200-
dimensional models higher min_count and more training epochs achieved better
accuracy. Also, the higher the vector dimension, the better the model performs
on word analogies. A summary of the best model from each vector dimension size
is shown in the table 2.5. For further analysis and word mappings, models with
the highest performance on word analogies were chosen. Same dataset was used to
validate these models as it was in [9].

2.3.3 Language translation

Mikolov et al. [10] found that word representations learned in different languages
can be transformed, so the word vectors overlap or are very close to each other. This
method can be used to develop large dictionaries between two languages using little

35

Table 2.2: Accuracy of models with 50-dimensional vectors.
dim window min_count epochs accuracy

50 10 5 5 35%

50 10 5 10 36%

50 10 5 20 37%

50 10 10 5 35%

50 10 10 10 36%

50 10 10 20 37%

50 10 100 5 40%

50 10 100 10 40%

50 10 100 20 41%

Table 2.3: Accuracy of models with 100-dimensional vectors.
dim window min_count epochs accuracy

100 10 5 5 48%

100 10 5 10 49%

100 10 5 20 50%

100 10 10 5 47%

100 10 10 10 50%

100 10 10 20 50%

100 10 100 5 53%

100 10 100 10 54%

100 10 100 20 55%

assumptions about the actual languages.

This method consists of two steps:

1. build two monolingual models on large datasets

2. learn linear projection between the two vector spaces using a smaller dictionary

Let X be a set of vectors representing data available from one language and Y

represent a second language. Let xi, yi
n
i=1 be a dictionary of n translations where

xi 2 X and yi 2 Y . The linear mapping between the two languages (represented by

36

Table 2.4: Accuracy of models with 200-dimensional vectors.
dim window min_count epochs accuracy

200 10 5 5 58%

200 10 5 10 60%

200 10 5 20 60%

200 10 10 5 58%

200 10 10 10 60%

200 10 10 20 61%

200 10 100 5 62%

200 10 100 10 64%

200 10 100 20 65%

Table 2.5: Models with the best accuracy score among 50, 100 and 200-dimensional
vectors.

dim Window min_count epochs accuracy

50 10 100 20 41%

100 10 100 20 55%

200 10 100 20 65%

vector spaces) is learned by finding a transformation matrix W , such as Xxi is yi. In
practice, one tries to find the best approximation. W can be learned by optimizing
the following:

min
W

nX

i=1

||Wxi � yi||2. (2.1)

In the implementation of this method, optimization was done using gradient descent.

In the experiments W was initialized from Gaussian distribution with mean 0 and
variable 0.1, 8i, j,Wij ⇠ N(0, 0.1). Each element of the matrix W was updated
using the gradient descent method. Let Wx be the prediction of the vector y. The
difference between predicted and true value z can be calculated for one word as:

z = Wx� y. (2.2)

The value of Wij element of the matrix W at step n+1 is updated using the gradient
descent described in equation (1.19):

W
n+1
ij = W

n
ij � ↵ · zi · xj, (2.3)

37

where W
n
ij is the Wij element at step n, zi is the i-th element of vector z, xj is the

j-th element of vector x and ↵ is the learning rate.

A dataset of 3 thousand most common Spanish words were extracted and translated
using Google Translate. First 2000 words were used to learn the matrix W , the
remaining were used to validate how well this implementation preforms. Results are
discussed further in this section.

It is worth noting that these resulting models can suffer from the fact that some
word vectors tend to be the nearest neighbours of the abnormally high number of
other words [7]. This problem is called the hubness problem. In this case translations
can be inaccurate.

English to Spanish translation results are summarised in table 2.6. Higher dimensional
vector spaces perform better than lower ones. Symbol A@1 denotes correct translations
within the closest word to the expected position and A@1 correct translations within
the five closest words of the expected position.

Table 2.6: Accuracy of English to Spanish translation of models with different vector
dimensions.

model A@1 A@5

EN50 ! ES50 23% 40%

EN100 ! ES100 30% 51%

EN200 ! ES200 35% 58%

Spanish to English translation results are summarised in table 2.7. Higher dimensional
vector spaces perform better than lower ones. Noticeably better accuracy was achieved
in Spanish to English translation.

Table 2.7: Accuracy of Spanish to English translation of models with different vector
dimensions.

model A@1 A@5

ES50 ! EN50 30% 50%

ES100 ! EN100 39% 56%

ES200 ! EN200 46% 66%

Experiments were run only for two vector spaces of the same dimensions. Additionally,
experiments of translating between different dimensions could be done as they were
done in [10]. Better accuracy in language translation would not benefit the goal of
this thesis and therefore they were not done.

38

2.3.4 Word mappings

The same idea of language translation when applied to multiple datasets of the
same language can be used to measure the distance between the expected and
actual position of a word. Models can assign vectors to words and those vectors
corresponding to the same word can be compared.

The following example between two vector spaces, EN1 and EN2 can be applied
to others as well. Let xi 2 EN2 and yi 2 EN1. The transformation matrix can be
found by optimizing the following:

min
W1,2

nX

i=1

||W1,2xi � yi||2. (2.4)

This optimization was done using gradient descent. In this case, 10 thousand most
common words in our datasets were extracted and 3 thousand were used to learn
the best matrix Wk,l. The remaining words were used to validate the approach.

The hypothesis is that some words, which appear in all monthly datasets ENi, 8i 2
1, ..., 14 can be represented by slightly different vectors in each model corresponding
to each dataset. The difference between vectors of the same words in time can be
one of the ways to represent the change in the meaning of these words.

To validate the method of mapping vectors to one vector space using transformation
matrices accuracy was calculated in the same way as in section 2.3.3. Table 2.8
summarizes the results of the mapping of vector spaces. Symbol A@1 denotes again
the accuracy within the first closest word of the expected position of each word and
A@5 in accuracy within the closest five words. All results perform very well scoring
more than 98% on A@1 each time and more than 99% on A@5.

Using those 13 learnt mappings between ENi, i 2 2, ..., 14 and EN1, all words can
be mapped into one vector space and their vectors can be compared.

39

Table 2.8: Accuracy of monolingual mapping between vector spaces created on
different datasets.

model A@1 A@5

EN1 ! EN2 99.186 % 99.857 %

EN1 ! EN3 99.143 % 99.143 %

EN1 ! EN4 99.086 % 99.771 %

EN1 ! EN5 98.957 % 99.7 %

EN1 ! EN6 98.942 % 99.728 %

EN1 ! EN7 98.557 % 99.614 %

EN1 ! EN8 98.971% 99.742 %

EN1 ! EN9 98.686% 99.571 %

EN1 ! EN10 98.771% 99.571 %

EN1 ! EN11 98.757% 99.614 %

EN1 ! EN12 98.629 % 99.5 %

EN1 ! EN13 98.343 % 99.457 %

EN1 ! EN14 98.614% 99.7 %

40

Chapter 3

Results

In chapter 2 the mappings between two Word2Vec models were trained on the 3000
most common words in the whole portion of the Common Crawl dataset. This
chapter presents results obtained analysing the following 7000 most common words.
Learnt mapping between each two vector spaces was used to predict the expected
vector of a certain word and its actual position in the vector space. To measure the
distance between the two (expected and actual) positions of a vector, two metrics
were used.

Euclidean distance is a way of measuring the change between the expected position
of a vector in one vector space and its actual position. Euclidean distance of two
n-dimensional vectors u and v can be calculated in the following way:

d(u, v) =

sX

n

(ui � vi)2. (3.1)

Let w be a word that is being analyzed. The vector representation of the word w

in model M1 is v1 2 V1 and this word is represented by v2 2 V2 in model M2.
The transformation matrix learned on a small dictionary is W1,2. Then the expected
position of word w in the vector space V1 using the value of vector v2 is:

ṽ1 = W1,2v2. (3.2)

The euclidean distance between vectors ṽ1 and v1 is calculated using equation 3.1
as:

d(v1, ṽ1) =

sX

n

(v1i � ṽ1i)2. (3.3)

Using a euclidean distance to measure the shift between two vectors of the same
word would be a good metric for normalized vectors, but vectors of the Word2Vec
models are not normalized.

Cosine distance is a metric that can be used to measure the distance between two
vectors without needing to normalize them first. The cosine distance between two

41

vectors u and v, is defined as follows:

dcd(u, v) = 1� u · v
kuk2kvk2

. (3.4)

Both euclidean distance and cosine distance were used to measure the change in the
positions of different words. The distance between vectors in each vector space was
determined and the sum of distances were calculated for each word. Words with the
biggest and the smallest change calculated using euclidean distance are in table 3.1.
Table 3.4 shows words with the biggest and the smallest change over all datasets
calculated using cosine distance. These two tables are very similar when it comes
to the words with the biggest change. On the other hand, euclidean and cosine
distances have determined different sets of words with the smallest change.

Nine of the words with the biggest change presented in tables 3.1 and 3.4 were
selected and their frequencies in each model are summarized in table 3.7 and 3.8.
These words are keywords to some world events that happened in the years 2021 and
2022. These words include words linked to the coronavirus pandemic such as delta or
mask and words linked to political events such as hong, kong, or scotland. Possibly,
the word harry could be linked to the events of Prince Harry and the British royal
family. Although the change of these words was quantified in the analysis, there is
no simple way of determining what the change means or if each word is really linked
to the specific event.
Further analysis of the nine words presented in tables 3.7 and 3.8 was done. Each
word from vector spaces of models EN2, ..., EN14 was mapped using the corresponding
transformation matrix to the vector space of the EN1 model. The fourteen obtained
vectors were reduced to two dimensions using the principal component analysis
(PCA). The resulting two-dimensional vectors were plotted in the scatter plots
presented in this chapter. It is important to note that each plot has different axis
sizes for better readability.

42

Table 3.1: The change of English words measured by Euclidian distance.

Table 3.2: Biggest change
word

P
d

1. hong 403

2. kong 393

3. francisco 376

4. diego 356

5. santa 303

6. saudi 302

7. scotland 275

8. escorts 252

9. mold 246

10. erectile 243

11. wheat 238

12. escort 237

13. bearings 237

14. keto 226

15. mask 224

16. harry 224

17. replica 222

18. dysfunction 217

19. acids 215

20. ebook 213

Table 3.3: Smallest change
word

P
d

1. apparently 63

2. realized 71

3. consistently 71

4. essentially 72

5. somewhat 73

6. yesterday 73

7. impressive 74

8. demonstrate 74

9. producing 75

10. hence 76

11. demonstrated 76

12. somehow 76

13. involves 76

14. surely 76

15. sees 76

16. hoping 77

17. initially 77

18. exceptional 77

19. whereas 77

20. gorgeous 78

43

Table 3.4: The change of English words measured by cosine distance.

Table 3.5: Biggest change
word

P
dcd

1. kong 7.76

2. hong 7.56

3. diego 7.37

4. francisco 6.79

5. saudi 5.11

6. santa 4.86

7. replica 4.01

8. harry 3.75

9. delta 3.50

10. louis 3.38

11. wheat 3.32

12. erectile 3.31

13. cape 3.30

14. dysfunction 3.3

15. jean 3.23

16. phoenix 3.21

17. saint 3.13

18. taylor 3.13

19. maria 3.1

20. francis 3.1

Table 3.6: Smallest change
word

P
dcd

1. focuses 0.25

2. behalf 0.26

3. involves 0.27

4. grew 0.27

5. interact 0.27

6. rely 0.27

7. depend 0.28

8. weren (weren’t) 0.29

9. comply 0.29

10. aims 0.3

11. involve 0.3

12. lets 0.3

13. occurs 0.31

14. remained 0.31

15. picked 0.31

16. demonstrate 0.31

17. invited 0.31

18. shouldn (shouldn’t) 0.31

19. ensuring 0.31

20. impressive 0.31

44

Table 3.7: Frequency of interesting words in each dataset.
kong hong diego francisco

EN1 8716 8376 7785 8799

EN2 8166 7946 6366 8150

EN3 9132 8455 8158 8804

EN4 8475 7937 7288 8149

EN5 7254 6991 5631 7346

EN6 6355 6537 5229 7177

EN7 6352 6234 5233 7022

EN8 7881 7710 5568 8304

EN9 6572 6568 4414 6671

EN10 7185 7062 5144 7229

EN11 5827 5500 4588 6595

EN12 6669 6515 4570 6558

EN13 5093 5089 3892 7200

EN14 6019 5828 4731 7327

Figure 3.1: The two-dimensional visualization of the change in the meaning of the
word harry.

45

Table 3.8: Frequency of interesting words in each dataset.
saudi harry delta scotland mask

EN1 5599 7858 4918 11860 34085

EN2 5613 7106 6274 7631 27769

EN3 6154 8460 6108 12677 39133

EN4 4541 6966 5229 6778 27708

EN5 5130 6151 4534 7125 19816

EN6 4220 6268 5258 6872 16154

EN7 4682 5855 5727 6734 12339

EN8 5930 7576 5887 7129 17370

EN9 5225 5762 5536 7487 13610

EN10 4980 7616 5642 12098 12865

EN11 4148 6295 5126 6438 11158

EN12 4423 5068 4766 5624 10691

EN13 3407 4329 4233 4703 7674

EN14 4509 5687 5348 5225 9606

Figure 3.2: The two-dimensional visualization of the change in the meaning of the
word delta.

46

Figure 3.3: The two-dimensional visualization of the change in the meaning of the
word diego.

Figure 3.4: The two-dimensional visualization of the change in the meaning of the
word francisco.

47

Figure 3.5: The two-dimensional visualization of the change in the meaning of the
word hong.

Figure 3.6: The two-dimensional visualization of the change in the meaning of the
word kong.

48

Figure 3.7: The two-dimensional visualization of the change in the meaning of the
word mask.

Figure 3.8: The two-dimensional visualization of the change in the meaning of the
word saudi.

49

Figure 3.9: The two-dimensional visualization of the change in the meaning of the
word scotland.

50

Conclusion

This thesis had two goals. The first goal was to introduce the reader to machine
learning and natural language processing. The second goal was to analyze data
from the internet using techniques described in the theoretical part of the thesis
and create a mathematical method to quantify the change in a particular language.
Word2Vec models created in 2.3.2 proved their quality by accurately understanding
relationships between words (word analogies). Techniques from [10] were implemented
using Python programming language. The results in Spanish to English and English
to Spanish translation have proven to be comparable with the ones produced in [10].
This approach of automatic language translation was used on multiple monolingual
models. These models were trained on datasets created using data scraped from
the internet in different months. Using this technique of monolingual translation

the change in semantic word meaning was captured and measured. Further, a few
interesting words were selected and analyzed more in-depth. The final results do
correspondent with events that happened in the years 2021 and 2022 such as the
pandemic, and many other political and cultural events all over the world.
The analysis of the data had its limitations due to resource availability. Although
the amount of data processed in the data analysis is a good representative sample,
not all Common Crawl data was analyzed. More data would produce more robust
results and create bigger models with possibly better performance on word analogies
and language translation. Additionally, these models might capture the change in
the word meaning more accurately. Results achieved with limited resources could
also be further analyzed and combined with knowledge about the world in 2021 and
2022 might yield more insight. Capturing the change of the word meaning presented
in this thesis involves in-depth machine learning and mathematical knowledge, but
in order to completely understand the evolution of the word, one must be aware of
the world’s political, cultural and economic events.
Despite resource limitations, this work has achieved all its goals and can be used
in future research. Future work could reproduce the data analysis on the whole
Common Crawl dataset from the time interval used in this thesis or create a bigger
time interval and analyze data over many years. Further analysis of the most changed
words including more visualizations could help to understand the evolution of each
word.

51

52

Bibliography

[1] Alyafeai Z., AlShaibani M. S., Ahmad I. A survey on transfer learning in natural

language processing. arXiv:2007.04239. 2020.

[2] Deng, L. The mnist database of handwritten digit images for machine learning

research. IEEE Signal Processing Magazine, 29(6), 141–142, 2012.

[3] Deng J., Dong W., Socher R., Li L.-J., Li K., Fei-Fei L. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition (pp. 248–255), 2009.

[4] Gers F. A., Schmidhuber J., Cummins F. Learning to forget: continual

prediction with LSTM. Ninth International Conference on Artificial Neural
Networks ICANN 99. (Conf. Publ. No. 470), pp. 850-855 vol.2, 1999.

[5] Glorot X., Bordes A., Bengio Y. Deep Sparse Rectifier Neural Networks.
International Conference on Artificial Intelligence and Statistics. 2011.

[6] Hochreiter S. The Vanishing Gradient Problem During Learning Recurrent

Neural Nets and Problem Solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based SystemsVol. 06, No. 02, pp. 107-116, 1998.

[7] Joulin A., Bojanowski P., Mikolov T., Jegou H., Grave E. Loss in Translation:

Learning Bilingual Word Mapping with a Retrieval Criterion. Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 2979–2984, 2018.

[8] McNally S., Roche J., Caton S., Predicting the Price of Bitcoin Using Machine

Learning. 26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), pp. 339-343, 2018.

[9] Mikolov T., et al. Distributed Representations of Words and Phrases and their

Compositionality. NIPS’13: Proceedings of the 26th International Conference
on Neural Information Processing Systems, Vol. 2, pp. 3111–3119, 2013.

[10] Mikolov T., Le Q. V., Sutskever I. Exploiting Similarities among Languages for

Machine Translation. arXiv:1309.4168, 2013.

[11] O’Shea K., Nash R. An Introduction to Convolutional Neural Networks.
arXiv:1511.08458, 2015.

53

[12] Reed R., Marks R. J. Neural Smithing: Supervised Learning in Feedforward

Artificial Neural Networks. The MIT Press. 1999.

[13] Shah D., Zhang K., Bayesian regression and Bitcoin. 52nd Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pp. 409-
414, 2014.

[14] Tan C., Sun F., Kong T., Zhang W., Yang C., Liu C. A survey on deep transfer

learning. ICANN. 2018.

[15] Tehrani S. F., Calvello M., Liu Z., Zhang L., Lacasse S. Machine learning

and landslide studies: recent advances and applications. Nat Hazards 114,
1197–1245, 2022.

[16] Werbos, Backpropagation: past and future. IEEE 1988 International Conference
on Neural Networks, pp. 343-353 vol.1, 1988.

54

Appendix A

List of Acronyms

ANN Artificial neural network . 12

ML Machine learning . 13

DL Deep learning . 13

PCA Principal component analysis . 13

RL Reinforcement learning . 13

MSE Mean square error . 18

MAE Mean absolute error . 18

GD Gradient descent . 19

SGD Stochastic gradient descent . 19

ADAM Adaptive moment estimation . 20

TP True positive . 22

FP False positive . 22

55

TN True negative . 22

FN False negative . 22

RNN Recurrent neural network . 27

LSTM Long short-lerm memory . 27

CNN convolutional neural networks . 28

CV computer vision . 29

NLP Natural language processing . 29

CC Common Crawl . 31

56

	Introduction
	Introduction to natural language processing
	Machine learning
	Neural networks
	Learning
	Performance metrics

	Natural language processing
	Tokenization
	Word embedding
	Recurrent neural networks
	Convolutional neural networks
	Transfer learning

	Analysis
	Common Crawl
	Data and processing
	Data analysis
	Time clusters
	Models
	Language translation
	Word mappings

	Results
	Conclusion
	Bibliography
	Appendix
	List of Acronyms

