

Ústav mechaniky, biomechaniky a mechatroniky

Bakalářská práce

Analýza ohybové tuhosti kompozitního nosníku metodou konečných prvků

Stiffness analysis of composite beam using finite element method

Vašák Martin

2022

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Vašák	Jméno: Martin	Osobní číslo: 382390
Fakulta/ústav:	Fakulta strojní		
Zadávající kater	dra/ústav: Ústav me	chaniky, biomechaniky a mecha	atroniky
Studijní progran	n: Teoretický základ s	strojního inženýrství	
Studijní obor:	bez oboru		
ÚDAJE K BAK	ALÁŘSKÉ PRÁCI		
Název bakalářské	práce:		
Analýza tuhosti	kompozitního nosník	u metodou konečných prvků	
Vázev bakalářské	práce anglicky:		
Stiffness analysi	is of composite beam	using finite element method	
okyny pro vyprac	ování:		
 Modelování kom Vytvořte MKP mo Vyhodnocení ekv Vytvořte grafy zá Výsledky porovní experimentálními da 	oozitního nosníku s mezil odely různých variant třívr ivalentní tuhosti Eeq z M vislosti Eeq na úhlu návir ejte s výpočty tuhosti ana aty	kruhovým průřezem (kompozitní trubk stvého kompozitního nosníku s mezil KP modelů u pro trubky se složením [90°, +α, -α lytickými metodami (klasická lamináto	ka) v programu Ansys kruhovým průřezem], kde α je úhel návinu ová teorie, matice ABD) a známými
Seznam doporuče	né literatury:		
Barbero : Finite eler Laš : Mechanika ko	ment modeling of compos mpozitních materiálů. ZU	site materials.CRC Press 2008 I Plzeň 2008	
lméno a pracovišt	ě vedoucí(ho) bakalářs	ské práce:	
doc. Ing. Tomáš	Mareš, Ph.D. odbo	r pružnosti a pevnosti FS	
Iméno a pracovišt	ě druhé(ho) vedoucí(ho	o) nebo konzultanta(ky) bakalářsk	é práce:
Datum zadání bal	kalářské práce: 24.04	.2022 Termín odevzdání	bakalářské práce: 14.08.2022
Platnost zadání b	akalářské práce:	Manul	Aand
doc. Ing. Tomáš M podpis vedoucí(he	areš, Ph.D.	doc. Ing. Miroslav Španiel, CSc. podpis vedoucí(ho) ústavu/katedry	dog. Ing. Miroslav Španiel, CSc. podpis děkana(ky)
PŘEVZETÍ ZA	DÁNÍ		
Student bere na vědomi Seznam použíté literatur	, že je povinen vypracovat baka ry, jiných pramenů a jmen konzi	alářskou práci samostatně, bez cizí pomoci, s v ultantů je třeba uvést v bakalářské práci.	výjimkou poskytnutých konzultací.
4.5	.2022	Vinin	R
Da	tum převzetí zadání		Podpis studenta

CVUT-CZ-ZBP-2015.1

© ČVUT v Praze, Design: ČVUT v Praze, VIC

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci zpracoval samostatně pouze s využitím podkladů uvedených zde v seznamu zdrojů.

Martin Vašák

Poděkování

Rád bych poděkoval doc. Ing. Tomáši Marešovi, Ph.D. za vedení a konzultace při psaní této práce. Dále patří poděkování konzultantce Ing. Tereze Zámečníkové za rady během psaní a vytváření výpočtových modelů. Samozřejmě děkuji i mé rodině a také Terce za podporu, nejen při psaní této práce.

Anotační list

Jméno autora:	Martin Vašák		
Název BP:	Analýza ohybové tuhosti kompozitního		
	nosníku metodou konečných prvků		
Anglický název:	Stiffness analysis of composite beam		
	using finite element method		
Akademický rok:	2021/2022		
Obor studia:	Teoretický základ strojního inženýrství		
Ústav:	Ústav mechaniky, biomechaniky a		
	mechatroniky		
Odbor:	odbor pružnosti a pevnosti		
Vedoucí práce:	e: doc. Ing. Tomáš Mareš, Ph.D.		
Konzultant:	Ing. Tereza Zámečníková		
Bibliografické údaje:	počet stran: 57		
	počet obrázků: 35		
	počet tabulek: 16		
	počet příloh: 4		

Klíčová slova

Kompozit, ohybová tuhost, Ansys, ACP, MKP, vetknutý nosník, teorie prvního řádu smykové deformace, Kirchhoffova teorie

Keywords

Composite, bending stiffness analysis, Ansys, ACP, FEM, cantilevere beam, first order shear deformation theory, Kirchhoff theory

Abstrakt

Tato práce se zabývá analýzou ohybové tuhosti kompozitového nosníku tvaru trubky. Cílem je určení ekvivalentního modulu pružnosti v ohybu E_{eq} pro tenkostěnné i tlustostěnné trubky pomocí MKP při zatížení ohybovým momentem. V úvahu je brán úhel návinu vláken jednotlivých kompozitních vrstev, průměr trubek a také poměr délek k jejich průměru. V práci je popsáno několik typů výpočtových modelů v programu Ansys 2019R3 a rozdíly ve vyhodnocení jejich výsledků. V rešeršní části je popsána mechanika ohybu vetknutého nosníku, základy teorie prvního řádu smykové deformace a Kirchhoffovy teorie pro kompozitní materiály.

Abstract

This thesis is focused on bending stiffness analysis of composite beam of circular cross section. Aim is to find out the equivalent elastic modulus in bending for different models caused by torque by FEM. Angle of fibers on single composite layers, diameter of tubes and ratio of its length to diameter are considered. In the thesis there are decribed some types of simulation models in Ansys 2019R3 software and the differences in their results. In the theoretical part of the thesis is decribed the theory of bending of cantilevere beam, basics of first order shear deformation theory and Kirchhoff theory applied to composite.

Seznam symbolů

Symbol	Jednotka	Fyzikální význam	
α	[°]	Úhel návinu vláken	
β	[1]	Součinitel nelineárního rozdělení	
		smykových napětí	
γ_{xy}	[1]	Poměrný zkos v rovině xy	
γ^0_{xy}	[1]	Poměrný zkos střední plochy	
γ_{xz}	[1]	Poměrný zkos v rovině xz	
γ_{yz}	[1]	Poměrný zkos v rovině yz	
\mathcal{E}_{χ}	[1]	Poměrná deformace ve směru osy x	
$arepsilon_{\chi}^{0}$	[1]	Poměrná délková deformace ve směru	
		osy x	
ε_y	[1]	Poměrná deformace ve směru osy y	
$arepsilon_{\mathcal{Y}}^0$	[1]	Poměrná délková deformace ve směru	
		osy y	
\mathcal{E}_Z	[1]	Poměrná deformace ve směru osy z	
ν	[1]	Poissonovo číslo	
$\sigma_{\chi\chi}$	$[N \cdot mm^{-2}]$	Normálové napětí ve směru osy x	
σ_{yy}	$[N \cdot mm^{-2}]$	Normálové napětí ve směru osy y	
σ_{zz}	$[N \cdot mm^{-2}]$	Normálové napětí ve směru osy z	
σ_{xy}	$[N \cdot mm^{-2}]$	Tečné napětí v rovině xy	
σ_{χ_Z}	$[N \cdot mm^{-2}]$	Tečné napětí v rovině xz	
σ_{yz}	$[N \cdot mm^{-2}]$	Tečné napětí v rovině yz	
$\sigma_k(M)$	1×3	Matice napětí ve vrstvě elementu	
τ	$[N \cdot mm^{-2}]$	Smykové napětí	
ϕ_x	[°]	Natočení průřezu profilu po	
		deformaci	
$\phi_{\mathcal{Y}}$	[°]	Natočení střednice profilu po	
		deformaci	
A	$[mm^2]$	Průřez plochy profilu	
A_{ij}	$[N \cdot mm^{-1}]$	Koeficient matice tahové tuhosti	

B_{ij}	[N]	Koeficient matice vazební tuhosti
C'_{ij}	$[N \cdot mm^{-2}]$	Koeficient tuhosti vrstvy
D	[mm]	Vnitřní průměr trubky
D _{ij}	$[N \cdot mm^{-1}]$	Koeficient matice ohybové tuhosti
Ε	$[N \cdot mm^{-2}]$	Modul pružnosti v tahu
E_{eq}	$[N \cdot mm^{-2}]$	Ekvivalentní modul pružnosti v ohybu
F	[N]	Zatěžující síla
G	$[N \cdot mm^{-2}]$	Modul pružnosti ve smyku
G _{eq}	$[N \cdot mm^{-2}]$	Ekvivalentní modul pružnosti ve smyku
H _{ij}	$[N \cdot mm^{-1}]$	Koeficient matice mezilaminární smykové tuhosti
J_z	$[mm^4]$	Kvadratický modul průřezu
L	[m]	Délka nosníku v modelu
M_o	$[N \cdot mm]$	Vnější ohybový moment
M_{χ}	[<i>N</i>]	Ohybový moment na jednotku délky v rovině <i>xz</i>
$M_{\mathcal{Y}}$	[N]	Ohybový moment na jednotku délky v rovině <i>yz</i>
M_{xy}	[<i>N</i>]	Krouticí moment na jednotku délky
N	1×3	Matice sil v rovině elementu
N _x	$[N \cdot mm^{-1}]$	Výslednice normálových sil na jednotku délky v rovině elementu ve směru osy <i>x</i>
N _y	$[N \cdot mm^{-1}]$	Výslednice normálových sil na jednotku délky v rovině elementu ve směru osy <i>y</i>
N _{xy}	$[N \cdot mm^{-1}]$	Výslednice smykových sil na jednotku délky v rovině elementu v rovině <i>xy</i>
Q_{ij}'	$[N \cdot mm^{-2}]$	Koeficient redukované matice tuhosti
Q_x	$[N \cdot mm^{-1}]$	Výslednice smykových sil na

		jednotku délky na rovinu yz
Q_y	$[N \cdot mm^{-1}]$	Výslednice smykových sil na
		jednotku délky na rovinu xz
S	$[mm^3]$	Statický moment odříznuté části
		průřezu
Т	[N]	Posouvající síla
U	[/]	Deformační energie
b	[mm]	Šířka průřezu
h	[mm]	Tloušťka jedné vrstvy
k	[1]	Číslo vrstvy
l	[mm]	Délka obecného nosníku
t	[mm]	Tloušťka celého profilu
и	[mm]	Posuv bodu ve směru osy <i>x</i>
u_0	[mm]	Posuv bodu na střednici ve směru osy
		x
ν	[mm]	Posuv bodu ve směru osy <i>y</i>
v_0	[mm]	Posuv bodu na střednici ve směru osy
		у
v_F	[mm]	Průhyb nosníku při zatížení silou
v_{Mo}	[mm]	Průhyb nosníku při zatížení
		ohybovým momentem
W	[mm]	Posuv bodu ve směru osy z
<i>w</i> ₀	[mm]	Posuv bodu na střednici ve směru osy
		Ζ
Ζ	[mm]	Vzdálenost bodu od střednice
Z_k	[mm]	Vzdálenost středu vrstvy od střední
		roviny

Seznam zkratek

zkratka	název
МКР	Metoda konečných prvků
FEM	Finite element analysis
ACP	Ansys Composite PrepPost
FSDT	first oreder shear deformation theory

Obsah

1.	Úvo	d
1	.1.	Motivace
2.	Reše	erše 13
2	.1.	Popis SW13
2	.2.	Mechanika ohybu13
2	.3.	Teorie prvního řádu smykové deformace (FSDT)17
2	.4.	Kirchhoffova teorie
3.	Рор	is úlohy27
4.	Мос	delování nosníku pomocí MKP 29
4	.1.	Model skořepiny modelovaný pomocí systému ACP 30
4	.2.	Model objemové skořepiny modelovaný pomocí systému ACP 34
4	.3.	Skořepina modelovaná pomocí modulu Mechanical v rámci Static Structural
4	.4.	Objemový model v modulu Mechanical v rámci Static Structural
5.	Vyh	odnocení dat
6.	Závě	ěr
7.	Pou	žité zdroje
8.	Sezr	nam obrázků
9.	Pou	žitý software
10.	Se	eznam tabulek
11.	P	řílohy

1. Úvod

Cílem práce je tvorba modelu kompozitních trubek s různou kompozitní skladbou a různými geometrickými rozměry pro zatěžování ohybem. V simulaci se model zatíží vnějším ohybovým momentem, po zatížení bude odečten průhyb nosníku v_{Mo} . Ten je poté přepočítán na ekvivalentní modul pružnosti E_{eq} . V simulaci je možné použít i zatížení silou, ale primárně je v této práci popsáno zatížení vnějším ohybovým momentem.

Všechny hodnoty E_{eq} jsou vyneseny do tabulky pro různé kompozitní skladby trubky, které mají stejnou charakteristiku [90, $+\alpha$, $-\alpha$], kde α [°] je hodnota úhlů návinu. Jednotlivé hodnoty E_{eq} pro různé poměry délky a průměru kompozitních trubek jsou vyneseny do grafu v závislosti na jednotlivých úhlech návinu. Všechny MKP výpočty jsou realizovány v SW Ansys 2019R3. Simulace je použita pro 4 výpočtové modely:

1) Skořepina modelovaná pomocí systému ACP

- 2) Skořepina modelovaná pomocí modulu Mechanical v rámci Static Structural
- 4) Objemová skořepina pomocí systému ACP
- 3) Objemový model modelovaná v modulu Mechanical v rámci Static Structural.

1.1. Motivace

Vzhledem k stále se rozšiřujícímu využití kompozitních materiálů je vhodné najít optimální výpočetní metody. Cílem práce je prověřit, jak pracují jednotlivé modely a jestli se pomocí různých modelů lze dostat ke stejnému výsledku. Případně, které modely jsou vhodnější pro konkrétní aplikace, například s ohledem na možnou parametrizaci a tím pádem rychlejší výpočet a výsledky.

2. Rešerše

2.1. Popis SW

Mezi nejznámější MKP výpočetní programy patří Ansys od stejnojmenné společnosti, založené v roce 1970 v Pensylvánii. O rok později byla uvedena první verze Ansysu. [1] Program samotný obsahuje různé doplňkové moduly, jako například Fluent pro simulaci proudění, nebo modul ACP, pro modelování kompozitů, který byl využíván i při psaní této práce Nejaktuálnější verze je 2022R1. [2]

Velmi rozšířený výpočetní program je Abaqus od francouzské společnosti Dassault Systèmes založené roku 1981. Tato firma patří do skupiny Dassault, která mimo jiné vyvinula i slavné francouzské letouny Mirage III a Mirage 2000. Samotný program byl poprvé uveden v roce 1978. Nejnovější verze je 2021HF8. [3] Další výpočetní program je například Hypermesh od společnosti Altair Engineering, založené v roce 1985 v Michiganu. [4]

Různé MKP funkce jsou součástí i programů, primárně určených pro tvorbu konstrukčních sestav a tvorbu výkresové dokumentace. Například Autodesk Inventor, nebo programy Solidworks a Catia, které patří pod Dassault Systéemes.

2.2. Mechanika ohybu

Při zatížení nosníku silou dochází k působení ohybových a smykových sil. Vlivem smykových sil se jednotlivé elementy zkosí, dojde ke zprohýbání řezů, které byly původně rovinné a kolmé k podélné ose nosníku.

Obrázek 1: Deformace příčných řezů [5]

Bernoulliho hypotéza tvrdí, že příčné řezy zůstávají i po deformaci rovinné. Proto nebude rozložení napětí přesně lineární. Tyto zmíněné odchylky lze zanedbat, pokud převažuje účinek od ohybového momentu nad účinkem posouvajících sil. Což platí hlavně u dlouhých a nízkých nosníků. Viz *obr.* 2 vlevo.

Obrázek 2: Srovnání nosníků [5]

Pak tedy bude průhyb vetknutého nosníku o délce l

$$v_F = \frac{F \cdot l^3}{3 \cdot E \cdot J_z} \tag{1}$$

V případě krátkých a vysokých nosníků (*Obr. 2 vpravo*), kde není možné zanedbat vliv posouvající síly lze použít Žuravského vzorec, kde pro obdélníkový průřez profilu $h \ge 2 \cdot b$ platí [5]

$$\tau_z = \frac{T \cdot S}{J_z \cdot b} \tag{2}$$

kde

 τ_z je smykové napětí

S je statický moment odříznuté části průřezu

Jz je kvadratický moment k neutrální ose průřezu

b je šířka profilu

Pomocí využití Žuravského vzorce a vzorce pro deformační energii

$$U = \int_{V} \frac{\tau^2}{2 \cdot G} \, dV, \tag{3}$$

kde

U je deformační energie

 τ je napětí

G je modul pružnosti ve smyku

Pro obdélníkový profil vychází

$$U = \frac{6}{5} \cdot \int_0^l \frac{T^2}{2 \cdot G \cdot A} dx,$$
(4)

kde A je průřez profilu

T je posouvající síla

Pro obecný tenkostěnný profil platí

$$U = \beta \cdot \int_0^l \frac{T^2}{2 \cdot G \cdot A} dx \tag{5}$$

Vzhledem k tomu, že se nebudou měnit materiálové charakteristiky ani geometrie po délce lze napsat

,

$$U = \frac{\beta}{G} \cdot \frac{1}{2 \cdot A} \int_0^l T^2 \, dx \tag{6}$$

Po integraci

$$U = \frac{\beta}{G} \cdot \frac{T^2 \cdot l}{2 \cdot A} \left[J \right] \tag{7}$$

Po aplikaci Castiglianovy věty lze vyjádřit průhyb od smykových sil

$$v_T = \frac{\partial U}{\partial T} = \frac{\beta}{G} \cdot \frac{2 \cdot T \cdot l}{2 \cdot A} \tag{8}$$

$$\nu_T = \frac{\beta}{G} \cdot \frac{T \cdot l}{A} \tag{9}$$

Celkový průhyb nosníku tedy bude

$$v_F = \frac{F \cdot l^3}{3 \cdot E \cdot J_z} + \frac{F \cdot \beta \cdot l}{G \cdot A},\tag{10}$$

za předpokladu, že T = F [5]

V případě zatížení nosníku vnějším ohybovým momentem bude výsledný průhyb

$$v_{Mo} = \frac{M \cdot L^2}{2 \cdot E \cdot J_z} \tag{11}$$

Zatížení vnějším ohybovým momentem je tedy výhodnější, protože neobsahuje vliv smyku.[6]

2.3. Teorie prvního řádu smykové deformace (FSDT)

Jedná se o jednu z nejčastěji používaných teorií pro výpočet kompozitních materiálů. V angličtině lze najít pod názvem first order shear deforamtion theory, ve zkratce FSDT. Někdy bývá označována jako Hencky-Mindlinova teorie. Většina MKP programů pracuje právě s touto teorií. [7]

Tato teorie pracuje s několika předpoklady:

a) Průřez profilu, který je v nezdeformovaném stavu přímý a kolmý ke střední ploše,
 zůstane přímý i po deformaci.

b) Tloušťka skořepiny zůstává při namáhání konstantní.

Těchto předpokladů lze dosáhnout ve většině skořepin, pokud platí:

a) Nejkratší rozměr desky je minimálně 10x větší oproti tloušťce.

b) Tuhost jednotlivých vrstev se neliší o více než 2 řády. [6], [7]

Obrázek 3: Posuvy bodů v rovině xz [7]

Posuvy bodů v prostoru lze popsat následujícími rovnicemi [7]

$$u(x, y, z) = u_0(x, y) - z \cdot \phi_x(x, y)$$
(12)

$$v(x, y, z) = v_0(x, y) - z \cdot \phi_y(x, y)$$
(13)

$$w(x, y, z) = w_0(x, y)$$
 (14)

Po vyjádření poměrných posuvů a zkosů z předchozích rovnic dostáváme [7]

$$\varepsilon_x (x, y, z) = \frac{\partial u_0}{\partial x} - z \cdot \frac{\partial \phi_x}{\partial x} = \varepsilon_x^0 + z \cdot \kappa_x$$
(15)

$$\varepsilon_{y}(x, y, z) = \frac{\partial v_{0}}{\partial y} - z \cdot \frac{\partial \phi_{y}}{\partial y} = \varepsilon_{y}^{0} + z \cdot \kappa_{y}$$
(16)

$$\gamma_{xy}(x, y, z) = \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} - z \cdot \left(\frac{\partial \phi_x}{\partial y} + \frac{\partial \phi_y}{\partial x}\right) = \gamma_{xy}^0 + z \cdot \kappa_{xy}$$
(17)

$$\gamma_{yz}(x,y) = -\phi_y + \frac{\partial w_0}{\partial y}$$
(18)

$$\gamma_{xz}(x,y) = -\phi_x + \frac{\partial w_0}{\partial x}$$
(19)

$$\varepsilon_z = 0,$$
 (20)

kde členy

 ε_x^0 , ε_y^0 udávají poměrné délkové deformace a člen γ_{xy}^0 udává zkos střední plochy, zatímco členy κ_x , κ_y , κ_{xy} popisují změny křivosti ve skořepině. Protože platí předpoklad, kde průřez profilu skořepiny zůstává přímý vůči střední ploše skořepiny, tak poměrné zkosy γ_{yz} i γ_{xz} jsou nezávislé na tloušťce vrstvy. Pro libovolný bod na k-té vrstvě lze napsat matici tuhosti ve tvaru [8]

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} C_{11}' & C_{12}' & C_{13}' & 0 & 0 & C_{16}' \\ C_{12}' & C_{22}' & C_{23}' & 0 & 0 & C_{26}' \\ C_{13}' & C_{23}' & C_{33}' & 0 & 0 & 36' \\ 0 & 0 & 0 & C_{44}' & C_{45}' & 0 \\ 0 & 0 & 0 & C_{45}' & C_{55}' & 0 \\ C_{16}' & C_{26}' & C_{36}' & 0 & 0 & C_{66}' \end{bmatrix}_{k} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xy} \end{bmatrix},$$
(21)

kde C'_{ij} udávají koeficienty tuhosti vrstvy k.

V teorii desek se uvažuje normálové napětí σ_{zz} zanedbatelné vůči ostatním napětím, proto $\sigma_{zz} = 0$.

Proto lze napsat

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ 0 \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} C_{11}' & C_{12}' & C_{13}' & 0 & 0 & C_{16}' \\ C_{12}' & C_{22}' & C_{23}' & 0 & 0 & C_{26}' \\ C_{13}' & C_{23}' & C_{33}' & 0 & 0 & C_{36}' \\ 0 & 0 & 0 & C_{44}' & C_{45}' & 0 \\ 0 & 0 & 0 & C_{45}' & C_{55}' & 0 \\ C_{16}' & C_{26}' & C_{36}' & 0 & 0 & C_{66}' \end{bmatrix}_{k} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{bmatrix}$$
(22)

,

Tuto matici lze upravit rozdělením tahových a smykových napětí.

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ 0 \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{yz} \\ \sigma_{xz} \end{bmatrix} = \begin{bmatrix} C'_{11} & C'_{12} & C'_{13} & C'_{16} & 0 & 0 \\ C'_{12} & C'_{22} & C'_{23} & C'_{26} & 0 & 0 \\ C'_{13} & C'_{23} & C'_{33} & C'_{36} & 0 & 0 \\ C'_{16} & C'_{26} & C'_{36} & C'_{66} & 0 & 0 \\ 0 & 0 & 0 & 0 & C'_{44} & C'_{45} \\ 0 & 0 & 0 & 0 & 0 & C'_{45} & C'_{55} \end{bmatrix}_{k} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{xz} \end{bmatrix}$$
(23)

Obrázek 4: Zavedení sil působících na 1 element [8]

Obecně lze matici sil v jednom elementu definovat [8]

$$N(x,y) = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_k(M) \, dz,$$
(24)

kde $\sigma_k(M)$ je matice napětí σ_{xx} , σ_{yy} a σ_{xy} v k- té vrstvě.

$$N(x,y) = \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} dz$$
(25)

 N_x a N_y jsou výslednice normálových sil v rovině elementu, zatímco N_{xy} je výslednice sil smykových. Všechny tyto výslednice mají rozměr $[N \cdot mm^{-1}]$. [8]

Obrázek 5: Schéma jednotlivých vrstev [9]

Síly ze všech vrstev lze vyjádřit pomocí sumace předchozího vztahu. [7]

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^N \int_{z_{k-1}}^{z_k} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} dz$$
(26)

Obrázek 6: Výslednice smykového napětí působící na 1 element [8]

Obrázek 7: Výslednice smykových sil působících na 1 vrstvu [8]

Stejným způsobem jsou definovány smykové síly [7], [8]

$$\begin{bmatrix} Q_x \\ Q_y \end{bmatrix} = \sum_{k=1}^N \int_{z_{k-1}}^{z_k} \begin{bmatrix} \sigma_{yz} \\ \sigma_{xz} \end{bmatrix}_k dz$$
(27)

Tyto síly mají opět rozměr $[N \cdot mm^{-1}]$ [8]

Obrázek 8: Ohybové momenty působící na 1 vrstvu [8]

Pro momenty působící na 1 vrstvu platí [7], [8]

$$\begin{bmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \sum_{k=1}^{N} \int_{z_{k-1}}^{z_{k}} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix}_{k}^{z}$$
(28)
$$\cdot dz$$

 M_x a M_y jsou momenty ohybové, zatímco M_{xy} je moment kroutící.

Jejich rozměry jsou [N]. [8]

Rovnice laminátové desky pro síly a momenty v jedné vrstvě desky [7], [5]

$$\begin{cases} Q_y \\ Q_x \end{cases} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{cases} \gamma_{yz} \\ \gamma_{xz} \end{cases},$$

$$\begin{cases} N_{x} \\ N_{y} \\ N_{xy} \\ M_{x} \\ M_{y} \\ M_{xy} \end{cases} = \begin{bmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{pmatrix}$$
(29)

$$\begin{cases} Q_{\mathcal{Y}} \\ Q_{\mathcal{X}} \end{cases} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{cases} \gamma_{\mathcal{Y}z} \\ \gamma_{\mathcal{X}z} \end{cases},$$
 (30)

kde A_{ij} udává tahovou tuhost D_{ij} ohybovou tuhost, B_{Ij} vazební tuhost, a H_{ij} mezilaminární smykovou tuhost

Jednotlivé tuhosti lze rozepsat

$$A_{ij} = \sum_{k=1}^{n} \left(Q_{ij}'\right)_k \cdot h \tag{31}$$

$$B_{ij} = \sum_{k=1}^{n} (Q'_{ij})_k \cdot h \cdot z_k$$
(32)

$$D_{ij} = \sum_{k=1}^{n} (Q'_{ij})_k \cdot \left(h \cdot z_k^2 + \frac{h^3}{12}\right)$$
(33)

Pro všechny tyto tuhosti platí, že hodnoty i,j=1, 2, 6

$$H_{ij} = \sum_{k=1}^{n} (Q'_{ij})_k \cdot \left[h - \frac{4}{h^2} \right] \left(h \cdot z_k^2 + \frac{h^3}{12} \right)$$
(34)

Zde platí i, j=4,5

 Q'_{ij} jsou koeficienty redukované matice tuhosti,

h je tloušťka k-té vrstvy a \boldsymbol{z}_k je souřadnice středu k-té vrstvy

 A_{ij} udává tahovou tuhost, B_{Ij} vazební tuhost. Pokud se jedná o symetrický laminát, pak B=0.

D_{ij} udává ohybovou tuhost a H_{ij} smykovou mezi tuhost mezi jednotlivými vrstvami.
Matice tahové tuhosti A váže složky sil s poměrnými deformacemi ve střední rovině.
Matice tahové tuhosti D vyjadřuje vazbu mezi složkami momentů a křivostí plochy.

Matice vazební tuhosti B váže složky momentů složky poměrné deformace ve střední rovině a zároveň složky vektorů vnitřních sil se složkami křivostí plochy. [6]

2.4. Kirchhoffova teorie

V Kirchhoffově teorii se nad rámec předpokladů pro FSDT uvažuje pro mezivrstevné smykové deformace γ_{yz} a γ_{xz} následující [8]

$$\gamma_{yz} = 0 \tag{35}$$

$$\gamma_{xz} = 0 \tag{36}$$

Tudíž lze napsat

$$\phi_y = \frac{\partial w_0}{\partial y} \tag{37}$$

$$\phi_x = \frac{\partial w_0}{\partial x} \tag{38}$$

Po dosazení do rovnic (15), (16) a (17)

$$\varepsilon_x (x, y, z) = \frac{\partial u_0}{\partial x} - z \cdot \frac{\partial^2 \omega_0}{\partial x^2} = \varepsilon_x^0 + z \cdot \kappa_x$$
(39)

$$\varepsilon_{y}(x, y, z) = \frac{\partial v_{0}}{\partial y} - z \cdot \frac{\partial^{2} \omega_{0}}{\partial y^{2}} = \varepsilon_{y}^{0} + z \cdot \kappa_{y}$$
(40)

$$\gamma_{xy}(x, y, z) = \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} - 2z \cdot \frac{\partial^2 \omega_0}{\partial x \partial y} = \gamma_{xy}^0 + z \cdot \kappa_{xy}$$
(41)

Výhodou této teorie je, že jsou zde pouze 3 proměnné (u_0 , $v_0 a w_0$) oproti 5 u FSDT, což může usnadnit analytické řešení. Na druhou stranu je mnohem složitější řešení numerické, protože se zde vyskytují parciální diferenciální rovnice 2. řádu. [10], [11]

3. Popis úlohy

Bylo provedeno měření kompozitních nosníku tříbodovým ohybem dle schématu.

Obrázek 9: Laboratorní schéma při zatížení silou

Obrázek 10: Laboratorní schéma při zatížení vnějším ohybovým momentem

Pro výpočet byla zvolena náhrada v podobě polovičního modelu vzhledem k symetrii zatížení zkoušky. Byl vytvořen model vetknutého nosníku o délce *L*.

Obrázek 11: Schéma výpočtové úlohy při zatížení silou

Průhyb je dán vzorcem při zatížení silou

$$v_F = \frac{F \cdot L^3}{3 \cdot E_{eq} \cdot J_z} + \frac{F \cdot \beta \cdot L}{G_{eq} \cdot A}$$
(42)

kde člen

$$\frac{F \cdot \beta \cdot L}{G_{eq} \cdot A}$$

zahrnuje průhyb vlivem smykové síly.

Součinitel

$$\frac{\beta}{G_{eq}}$$

je funkcí geometrie a materiálových vlastností. Pro jeho určení lze vypočítat další hodnotu průhybu (například v polovině nosníku) a poté dopočítat pomocí obou rovnic.

Obrázek 12: Schéma výpočtové úlohy při zatížení vnějším ohybovým momentem

Výsledné hodnoty průhybu jsou přepočteny na E_{eq} dle vzorce

$$E_{eq} = \frac{M \cdot L^2}{2 \cdot v_{Mo} \cdot J_z} \tag{43}$$

4. Modelování nosníku pomocí MKP

Prvním krokem bývá popis součásti z fyzikálního hlediska, které zahrnuje především volbu materiálu. V případě, že máme části modelu s různými fyzikálními parametry, jako je například rozdílná hustota materiálu, moduly pružnosti, Poissonova čísla atd. je nutné popsat každý jednotlivý prvek zvlášť. Pokud se skládá sestava z více prvků je nutné je korektně svázat. Dalším krokem bývá rozdělení modelu pomocí sítě na jednotlivé elementy pro výpočet pomocí MKP.

Dále je nutné definovat okrajové podmínky (například uložení součásti, které brání pohybu tělesa) a také vnější zatížení. Důležitou částí je také volba požadované vypočtené hodnoty, jako je například napětí, posuvy atd. [12], [13], [14]

Následující procedury už vykonává software samostatně.

Vypočtení soustavy rovnic podle počátečních podmínek a ve většině komerčních softwarů jsou předchozí kroky seskupeny do 3 fází

1: Preprocesing

Zde se provádí stavba modelů, definují se vlastnosti jednotlivých prvků, a nastaví se uložení součásti a její zatížení.

2: Řešení metodou konečných prvků

Zde probíhá sestavení a vyřešení rovnic a spočtení výsledků pro jednotlivé elementy [15]

3: Postproscesing

Zde se setřídí a zobrazí výsledky [16]

4.1. Model skořepiny modelovaný pomocí systému ACP

Postup lze rozdělit na dvě základní části. V první části jsou v systému ACP, konkrétně v ACP (Pre) definovány parametry modelu a ve druhé části v systému Static Structural parametry mechanické zkoušky.

Prvním krokem pro model trubky bylo určení druhu materiálu. Zde se jednalo o vláknový kompozit a následovalo zadaní požadovaných mechanických vlastností. V tomto případě se jednalo o Poissonovo číslo, modul pružnosti v tahu a ve smyku. Protože vláknový kompozit je ortotropní materiál, je nutné zadat mechanické vlastnosti ve 3 hlavních směrech. [6]

Obrázek 13: Souřadný systém [8]

Tabulka 1: Mechanické	vlastnosti trubky
-----------------------	-------------------

	$E_i [N \cdot mm^{-2}]$	$G_{ij} [N \cdot mm^{-2}]$	v _{ij} [1]
Х	143 120	3 390	0, 26
У	6 672	3 390	0, 26
Z	6 672	1914	0, 26

Následovala tvorba geometrie modelu v modeláři SpaceClaim. Trubka byla vymodelována jako skořepina (3D plocha). Důležitým krokem je zkontrolování směru vnější normály, jestli směřuje ven ze součásti, protože ve směru normály je vrstvena kompozitní skladba.

Obrázek 14: Zkontrolování směru vnější normály (zelená šipka)

Dalším krokem byla tvorba sítě v modulu Mechanical. Nejprve byl zvolen nový souřadný systém v podobě cylindrických souřadnic, který lépe popisuje geometrii trubky. Souřadný systém je volen, aby bylo možné zachovat stejné vlastnosti kompozitního materiálu po celém obvodu trubky.

Obrázek 15: Cylindrický souřadný systém

Poté následovalo samotné vytvoření sítě. Pro většinu trubek byly nastaveny parametry skořepinových prvků s délkou hrany 2 mm. Pro trubky delších rozměrů byly zvoleny prvky s většími délkami hran, jak je uvedeno dále v tabulce (2) Tyto prvky se nazývají Shell 281.

Obrázek 16: Geometrie elementu SHELL281 [17]

Jedná se o objemový element definovaný 8 uzly a 6 stupni volnosti. [17]

Tloušťka prvku je zadávána parametricky a odpovídá kompozitní skladbě materiálu.

Pomocí modulu ACP Setup byla nastavena struktura vláken v podobě 3 vrstev a jejich vzájemného natočení.

Vzhledem k tomu, že zvolený cylindrický souřadný systém definuje osu x ve směru normály z povrchu trubky, bylo nutné přepočítat úhly tak, aby byly v souladu s úhly od osy trubky.

Obrázek 17: Souřadný systém pro úhly návinu [6]

	🛧 🦊 🔜
Fabric	Angle
Fabric.1	-125.0
Fabric.1	-55.0
Fabric.1	0.0

Obrázek 18: Nastavené a přepočítané úhly návinu pro úhel α =35°

Tímto byl dokončen model trubky.

Dalším krokem bylo připojení systému Static Structural, který simuluje mechanické uložení a zatížení součásti. Při propojení se systémem ACP byl zvolen import dat v podobě skořepiny (Shell).

Nejprve se zajistilo vetknutí jedné strany trubky v počátku souřadného systému s nulovými posuvy a natočeními. Na obrázku označeno žlutou konturou.

Poté se v dalším kroku přidalo zatížení vnějším ohybovým momentem o velikosti 10 000 Nm v rovině xy. Na obrázku vyznačeno červenou konturou.

Obrázek 19: Vetknutí a umístění zatížení

Poté už následoval samotný výpočet průhybu a odečtení jeho velikosti pomocí funkce Deformation Probe. Výsledek se získá jako maximální hodnota průhybu bodů sítě na obvodu trubky na jejím volném konci. [18] Jako výsledná hodnota byl zvolen maximální průhyb v ose z.

4.2. Model objemové skořepiny modelovaný pomocí systému ACP

Postup tvorby modelu byl stejný jako v předchozím případě. Trubka byla opět vymodelována jako skořepina a teprve poté byl zvolen příkaz na tvorbu objemového modelu Solid models, kde byla nastavena tloušťka modelu na 3 mm.

Element Sets:	['All_Elements']	
Extrusion Method:	Specify Thickness 🔹	
Max. Element Thickness:	3.0	
Start Ply Groups at:		

Obrázek 20: Nastavení tloušťky trubky

Jako element byl zvolen objemový element. V tomto případě se jednalo o SOLID186.

Obrázek 21: Geometrie elementu SOLID186 [19]

Tento element je definovaný 20 uzly a 3 stupni volnosti, které zajištují posuvy v souřadných osách. [19]

Poté se opět systém ACP propojil se systémem Static Structural, kde byly stejně jako v předchozím případě nastaveny parametry zkoušky. Jediný rozdíl byl v nastavení importu dat. Tentokrát byl zvolen Solid models.

4.3. Skořepina modelovaná pomocí modulu Mechanical v rámci Static Structural

Zde byl zvolen na počátku pouze blok Static Structural

Opět byl vytvořen model skořepiny v modeláři Spaceclaim. Další procedury se prováděly už přímo v komponentě Mechanical. Po vysíťování následovalo nastavení vetknutí a zatížení. Poté byl do příkazu Commands (ADPL) vložen skript, v němž bylo možné parametricky měnit vstupní parametr úhlu natočení vrstvy návinu α . V tomto programu byly také nastaveny mechanické vlastnosti daného materiálu.

4.4. Objemový model v modulu Mechanical v rámci Static Structural

Tentokrát byl vytvořen objemový model s definovaným vnitřním průměrem a tloušťkou 3 mm. Trubka byla rozdělena podélně na 2 části kvůli lepší aplikaci sítě.

Obrázek 22: Objemový model

Při volbě sítě byl zvolen požadavek na volbu sweep metody, kde byl jako typ elementu zvolen Solid Shell (Objemová skořepina). Tento typ pracuje s elementy SOLSH190, které mají vrstvení kompozitní skladby ve směru normály. Má 8 uzlů a 3 stupně volnosti. [20]

Obrázek 23: Geometrie elementu SOLSH190 [20]

Při volbě sítě byla navíc zadána funkce Edge Sizing, který nastavil velikost sítě i po tloušťce trubky.

5. Vyhodnocení dat

Z důvodu omezeného výpočetního výkonu bylo nutné pro některé delší trubky zvolit vyšší rozměry sítě. Aby bylo dosaženo stejných parametrů výpočtu, byly rozměry sítě voleny pro konkrétní poměry L/D stejné vždy pro všechny 4 výpočetní způsoby. Jako referenční hodnota byla zvolena velikost sítě pro objemový modul v systému ACP, který byl výpočetně nejnáročnější.

		rozměr sítě [<i>mm</i>]				
	D [mm]	60	100	150	200	300
	1	2	2	2	2	2
	2	2	2	2	2	2
	4	2	2	2	2	3
L/D[1]	8	2	2	2	3	4
	10	2	2	3	3	5
	15	2	2	3	4	5
	20	2	2	3	4	6
	30	2	3	4	5	7
	40	2	3	4	6	8
	50	2	3	5	6	9

Tabulka 2: Rozměry sítě v modelech pro různé trubky

Byly vyneseny závislosti E_{eq} na poměru L/D pro 4 různé modely při zatížení vnějším ohybovým momentem. Eeq_M_Ansys_Mech představuje skořepinu vytvořenou v systému Mechanical v rámci Static Structural, Eeq_M_Ansys_ACP skořepinu vytvořenou pomocí modulu ACP. Eeq_M_VM_Ansys_Mech zobrazuje objemový model vytvořený v modulu Mechanical v rámci Static Structural, Eeq_M_VM_Ansys_Mech zobrazuje objemový model vytvořený v modulu Mechanical v rámci Static Structural,

Pro všechny poměry L/D bylo změřeno 5 trubek o průměrech od 60 do 300 mm.

Obrázek 24: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 0°

Obrázek 25: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 5°

Obrázek 26: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 15°

	Ansys	s_Mech	Ansys_	ACP	VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ
1	25292	5571,6	15469	4054,08	63816	342,04	59832	2494,83
2	43099	8056,63	28979	7110,39	77782	159,34	75257	1436,87
4	58676	7896,84	44797	8717,72	83376	404,32	82066	395,66
8	69387	6093,63	59381	7887,63	85479	637,84	84838	230,92
10	71855	5449,78	63388	7227,75	85827	691,92	85331	362,69
15	74154	4098,51	67975	5348,18	86457	730,96	86095	521,5
20	77200	3738,62	73223	4760,51	86454	807,06	86239	646,02
30	79389	3313,34	77550	3729,84	86543	933,59	86458	807,53
40	80104	2618,48	79419	2560,27	86700	875,69	86665	787,28
50	80288	2476,86	80446	2093,55	86898	935,05	86888	846,84

Tabulka 3: Zpracovaná data pro úhel návinu α =15°

Obrázek 27: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 25°

Obrázek 28: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 35°

Obrázek 29: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 45°

	Ansy	s_Mech	Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ
1	11627	1833,01	8369	1549,67	21188	429,78	20581	724,57
2	15933	1776,61	12926	1885,35	22000	197,11	21736	345,7
4	18769	1344,42	16697	1638,74	22324	105,41	22201	183,29
8	20396	922,43	19257	1144,59	22462	67,78	22398	115
10	20740	815,27	19846	989,88	22486	60,8	22435	102,18
15	21037	628,3	20478	699,24	22511	55,64	22468	89,06
20	21448	573,89	21119	600,67	22533	47,66	22506	76,81
30	21725	536,17	21609	488,75	22540	45,9	22528	77,91
40	21811	438,5	21810	357,42	22548	38,39	22541	65,36
50	21813	429,5	21900	318,83	22544	37,94	22538	68,17

Obrázek 30: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 55°

Obrázek 31: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 65°

Obrázek 32: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 75°

	Ansys	s_Mech	Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ
1	4975	381,26	4859	387,66	6704	38,48	6721	28,59
2	5886	259,95	5807	279,28	6796	21,03	6803	15,93
4	6374	147,67	6315	170	6819	16,3	6823	12,61
8	6622	75,05	6573	97,35	6825	14,79	6829	11,75
10	6672	59,12	6624	81,31	6825	14,35	6830	11,68
15	6728	34,16	6677	54,53	6822	13,25	6827	10,93
20	6772	25,73	6728	47,42	6825	13,69	6830	11,56
30	6806	15,49	6766	39,05	6825	14,5	6832	12,66
40	6822	8,24	6779	29,62	6823	12,51	6831	11,45
50	6831	4,87	6785	27,23	6820	12,42	6829	12,28

Tabulka 5: Zpracovaná data pro úhel návinu α =75°

Obrázek 33: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 85°

Obrázek 34: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 90°

Obrázek 35: Závislost Eeq na úhlu návinu pro poměr L/D =50

Hodnoty E_{eq} z modelů, vytvořených jako skořepiny, jsou nižší než u objemových modelů. S rostoucím poměrem L/D se tyto rozdíly zmenšují. Jejich směrodatné odchylky jsou také vyšší oproti objemovým modelům.

Pro větší úhel návinu hodnoty rychleji přecházejí směrem k lineárnímu průběhu. Teorie předpokládá lineární průběh, který ale u menších poměrů L/D nenastal. Může to být způsobeno například podmínkou, kdy byl v programu zadán požadavek, aby se průřez na konci nosníku zůstal i po zatížení kruhový, což je v rozporu se skutečností, kde dojde k deformaci do elipsy.

S rostoucím úhlem návinu se hodnoty E_{eq} snižují. U některých sad dat docházelo k tomu, že hodnoty pro úhel návinu 85° byly nižší než hodnoty pro úhel 90°. Toto mohlo být způsobeno nepřesností při výpočtu samotného programu.

Nejmenší odchylky má zhruba do úhlu návinu 55° objemový model modelovaný pomocí Ansys Mechanical. Pro vyšší hodnoty má menší odchylky taktéž objemový model, ale modelovaný pomocí systému ACP.

Pro nulový úhel návinu vychází zhruba 94 000 – 100 000 $N \cdot mm^{-2}$, pro úhel návinu maximální, čili $\alpha = 90^{\circ}$ se průměrné hodnoty E_{eq} pohybují okolo 6 600 $N \cdot mm^{-2}$.

Hodnoty získané z matice ABD pro největší L/D vycházejí zhruba v polovině intervalu mezi hodnotami pro skořepiny a objemové modely.

Na modely vytvářené přímo v Ansys Mechanical byl použit program, který umožnil parametrizaci a tím pádem rychlejší cestu k výsledkům. Nejvíce časově a paměťově náročný výpočet byl objemový model pomocí systému ACP. Při výpočtech nebyla brána v úvahu vlastní hmotnost trubek.

6. Závěr

V rešeršní části byla popsána mechanika ohybu s důrazem na vliv smykových sil. Následovalo shrnutí teorie pro výpočet kompozitů, konkrétně teorie prvního řádu smykové deformace a Kirchhoffovy teorie. Hlavní částí práce byl popis a poté samotné modelování vetknutého nosníku ve tvaru třívrstvé trubky s úhly návinu jednotlivých vrstev [90, $+\alpha$, $-\alpha$] pomocí různých modulů v programu Ansys 2019R3. Jednalo se o 4 modely. Skořepina modelovaná pomocí systému Mechanical v rámci Static Structural, skořepina modelovaná pomocí modulu ACP, objemový model modelovaný pomocí systému Mechanical v rámci Static Structural a objemová skořepina modelovaná pomocí modulu ACP. V simulaci byly odečteny hodnoty průhybu na konci nosníku při zatížení vnějším ohybovým momentem a následně byl z těchto hodnot vypočítán ekvivalentní modul pružnosti v ohybu E_{eq} . Následně byly vyneseny do grafů hodnoty E_{ea} v závislosti na poměru L/D pro různé úhly návinu kompozitních vrstev. Bylo zjištěno, že hodnoty E_{ea} z modelů, vytvořených jako skořepiny, jsou nižší než u objemových modelů. S rostoucím poměrem L/D se hodnoty postupně vyrovnávají. Skořepinové modely mají také mnohem větší rozptyl. S rostoucím úhlem návinu α hodnoty E_{eq} klesají. Pro nulový úhel návinu vychází zhruba 94 000 – 100 000 N · mm^{-2} , pro úhel návinu maximální, čili $\alpha = 90^{\circ}$ se průměrné hodnoty E_{eq} pohybují okolo 6 600 $N \cdot mm^{-2}$.

7. Použité zdroje

[1] 50 years of ANSYS – the early years: from 1970 to 1994. In: Cadfem.net. [online].
[cit. 2022-09-06]. Dostupné z: <u>https://www.cadfem.net/en/cadfem-informs/cadfem-newsroom/cadfem-journal/50-years-of-ansys.html</u>

[2] Products. In: Ansys.com. [online]. [cit. 2022-09-06]. Dostupné z

https://www.ansys.com/products#t=ProductsTab&sort=relevancy&layout=card

[**3**] Dassault Systèmes - Over 40 years of technological innovation. In: Youtube.com. [online]. [cit. 2022-09-06]. Dostupné z

https://www.youtube.com/watch?v=GKT_5qHuEOI

[4] Altair Engineering – Leader in CAE Solutions. In: Designtech.net. [online]. [cit.
 2022-09-06]. Dostupné z

https://www.designtechproducts.com/articles/altair-engineering

[5] MICHALEC Jiří. Pružnost a pevnost I. Praha, České vysoké učení technické v Praze.2010 ISBN 978-80-01-04224-3

[6] LAŠ Vladislav. Mechanika kompozitních materiálů. Plzeň, Západočeská univerzita v Plzni. 2004 ISBN 80-7043-273-X

[7] BARBERO Ever J. Finite element analysis od composite materials. CRC Press.2008. ISBN 978-1-4200-5433-0

[8] BERTHELOT Jean-Marie. Composite Materirals: Mechanical Behavior and Strutural analysis. Springer. 1999. ISBN 0-387-98426-7

[9] BARBERO Ever J. Introduction to composite materials design. CRC Press. 2011. ISBN 978-1-4200-7915-9

[10] ERN, Alecander, GUERMOND, Jean-Luc. Theory and Practice of Finite Elements. Springer. 2004. ISBN 978-0-387-20574-8

[11] BATHE, Klauss-Jürgen. Finite Element Procedures. Prentice-Hall. 1996. ISBN 0-13-301458-4 [12] PIDAPARTI, Ramana M. Engineering finite element analysis. Morgan a Claypool Publishers. 2017. ISBN 978-1627058704

[13] XIAOLIN, Chen, YIJUN Liu. Finite Element Modeling and Simulation with Ansys Workbench. CRC Press. 2014. ISBN 978-1-4398-7384-7

[14]STOLARSKI, Tadeusz, NAKASONE, Yuji, YOSHIMOTO Shigeka. Engineering Analysis with Ansys Software. Elsevier. 2006. ISBN 0 7506 6875 X

[15] KALIAKIN, Victor N. Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods. Marcel Dekker. 2002. ISBN 0-8247-0679-X

[16] ALAWADHI, Esam M. Finite Element Simulations Using Ansys. CRC Press.2010. ISBN 978-1-4398-0160-4

[17] SHELL281. In: Ansyshelp.ansys.com [online]. [cit. 2022-09-06]. Dostupné z: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/a ns_elem/Hlp_E_SHELL281.html?q=shell281

[**18**] Probe Details View. In: Ansyshelp.ansys.com [online]. [cit. 2022-09-06]. Dostupné z:

https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/w b_sim/ds_probe_object.html?q=deformation%20probe%20value

[**19**] SOLID186. In: Ansyshelp.ansys.com [online]. [cit. 2022-09-06]. Dostupné z: <u>https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/a</u> <u>ns_elem/Hlp_E_SOLID186.html?q=solid186</u>

[20] SOLSH190. In: Ansyshelp.ansys.com [online]. [cit. 2022-09-06]. Dostupné z: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/a ns_elem/Hlp_E_SOLSH190.html?q=solsh190

8. Seznam obrázků

Obrázek 1: Deformace příčných řezů [5]	. 14
Obrázek 2: Srovnání nosníků [5]	. 14
Obrázek 3: Posuvy bodů v rovině xz [7]	. 18
Obrázek 4: Zavedení sil působících na 1 element [8]	. 21
Obrázek 5: Schéma jednotlivých vrstev [9]	. 22
Obrázek 6: Výslednice smykového napětí působící na 1 element [8]	. 22
Obrázek 7: Výslednice smykových sil působících na 1 vrstvu [8]	. 23
Obrázek 8: Ohybové momenty působící na 1 vrstvu [8]	. 23
Obrázek 9: Laboratorní schéma při zatížení silou	. 27
Obrázek 10: Laboratorní schéma při zatížení vnějším ohybovým momentem	. 27
Obrázek 11: Schéma výpočtové úlohy při zatížení silou	. 28
Obrázek 12: Schéma výpočtové úlohy při zatížení vnějším ohybovým momentem	. 28
Obrázek 13: Souřadný systém [8]	. 30
Obrázek 14: Zkontrolování směru vnější normály (zelená šipka)	. 31
Obrázek 15: Cylindrický souřadný systém	. 31
Obrázek 16: Geometrie elementu SHELL281 17	. 32
Obrázek 17: Souřadný systém pro úhly návinu [6]	. 33
Obrázek 18: Nastavené a přepočítané úhly návinu pro úhel α=35°	. 33
Obrázek 19: Vetknutí a umístění zatížení	. 34
Obrázek 20: Nastavení tloušťky trubky	. 34
Obrázek 21: Geometrie elementu SOLID186 [19]	. 35
Obrázek 22: Objemový model	. 36
Obrázek 23: Geometrie elementu SOLSH190 [20]	. 36
Obrázek 24: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu	0°
	. 38
Obrázek 25: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu	5°
	. 38
Obrázek 26: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu	15°
	. 39
Obrázek 27: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu	25°
	. 40
Obrázek 28: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu	35°
	. 40
Obrázek 29: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu	45°
	. 41
Obrázek 30: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu	55°
	. 42
Obrázek 31: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu	65°
	. 42
Obrázek 32: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu	75°
	. 43

0brázek 33: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 85°
Obrázek 34: Závislost Eeq na L/D při zatížení vnějším ohybovým momentem pro úhel návinu 90°
Obrázek 35: Závislost Eeq na úhlu návinu pro poměr L/D =5045

9. Použitý software

Při práci byl použit:

ANSYS2019R3

Microsoft Excel

Mathworks Matlab.

10. Seznam tabulek

Tabulka 1: Mechanické vlastnosti trubky	30
Tabulka 2: Rozměry sítě v modelech pro různé trubky	37
Tabulka 3: Zpracovaná data pro úhel návinu $lpha=15^\circ$	39
Tabulka 4: Zpracovaná data pro úhel návinu $lpha=45^\circ$	41
Tabulka 5: Zpracovaná data pro úhel návinu $lpha$ =75°	43
Tabulka 6: Zpracovaná data pro úhel návinu $lpha=0^\circ$	53
Tabulka 7: Zpracovaná data pro úhel návinu $lpha=$ 5°	53
Tabulka 8: Zpracovaná data pro úhel návinu $lpha=15^\circ$	53
Tabulka 9: Zpracovaná data pro úhel návinu $lpha=25^\circ$	54
Tabulka 10: Zpracovaná data pro úhel návinu α=35°	54
Tabulka 11: Zpracovaná data pro úhel návinu α=45°	54
Tabulka 12: Zpracovaná data pro úhel návinu α=55°	55
Tabulka 13: Zpracovaná data pro úhel návinu α=65°	55
Tabulka 14: Zpracovaná data pro úhel návinu α=75°	55
Tabulka 15: Zpracovaná data pro úhel návinu α=85°	56
Tabulka 16: Zpracovaná data pro úhel návinu $lpha$ =90°	56

11. Přílohy

11.1. Zpracovaná data ve formě tabulek

	Ansys_Mech		Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ
1	40563	5275,38	23931	4561,03	74817	444,43	69880	2913,19
2	63562	6351,43	43285	7310,9	90418	192,23	87353	1540,56
4	79056	5233,51	62764	7666,75	96401	597,7	94839	299,84
8	87395	3692,98	77895	5759,07	98550	867,18	97804	423,49
10	89070	3279,56	81618	4954,61	98895	927,11	98321	572,89
15	90558	2488,32	86069	3253,3	99579	955,09	99170	739,18
20	92398	2336,9	90021	2614,02	99504	1046,18	99266	882,02
30	93687	2180,49	93302	1699,27	99561	1199,39	99472	1079,04
40	94045	1805,12	94803	944,82	99730	1119,62	99701	1035,43
50	94072	1771,11	95718	588,97	99965	1191,88	99972	1108,63

Tabulka 6: Zpracovaná data pro úhel návinu α =0°

Tabulka 7: Zpracovaná data pro úhel návinu α =5°

	Ansys	s_Mech	Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ
1	37405	5510,14	21975	4558,79	73089	413,42	68339	2821,39
2	59876	6902,25	40182	7506,31	88762	191,85	85777	1524,48
4	75876	5854,32	59230	8205,23	94839	573,88	93309	315,28
8	84908	4152,4	74661	6458,01	97040	839,44	96305	397,94
10	86768	3675,15	78560	5645,85	97395	898,18	96829	544,22
15	88453	2759,65	83178	3831,89	98085	929,7	97678	709,86
20	90520	2560,99	87526	3159,86	98022	1017,62	97786	852,52
30	91978	2349,26	91122	2175,73	98088	1169,02	98001	1046,7
40	92404	1917,84	92745	1301,36	98260	1090,58	98230	1005,59
50	92468	1864,81	93711	907,36	98492	1161,16	98494	1075,88

Tabulka 8: Zpracovaná data pro úhel návinu α =15°

	Ansys_Mech		Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ
1	25292	5571,6	15469	4054,08	63816	342,04	59832	2494,83
2	43099	8056,63	28979	7110,39	77782	159,34	75257	1436,87
4	58676	7896,84	44797	8717,72	83376	404,32	82066	395,66
8	69387	6093 <i>,</i> 63	59381	7887,63	85479	637,84	84838	230,92
10	71855	5449,78	63388	7227,75	85827	691,92	85331	362,69
15	74154	4098,51	67975	5348,18	86457	730,96	86095	521,5
20	77200	3738,62	73223	4760,51	86454	807,06	86239	646,02
30	79389	3313,34	77550	3729,84	86543	933,59	86458	807,53
40	80104	2618,48	79419	2560,27	86700	875,69	86665	787,28
50	80288	2476,86	80446	2093,55	86898	935,05	86888	846,84

	Ansys	s_Mech	Ansys_	Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	
1	18958	4549,92	12268	3288,76	51113	296,71	48101	2037,3	
2	31846	6499,02	22548	5585,08	59894	122,89	58148	1138,72	
4	43396	6481,55	34406	6723,45	63380	172,4	62497	385,68	
8	51642	5166,04	45248	6060,06	64731	335,57	64295	41,6	
10	53589	4676,29	48214	5566,73	64963	373,29	64621	133	
15	55338	3610,53	51542	4167,14	65367	402,19	65108	239,9	
20	57875	3338,92	55472	3753,84	65386	456,69	65229	327,7	
30	59673	3040,37	58671	3037,33	65451	533,28	65380	424,34	
40	60247	2438,99	60022	2160,76	65554	506,45	65517	423,76	
50	60348	2339,52	60723	1840,16	65674	544,73	65649	459,54	

Tabulka 9: Zpracovaná data pro úhel návinu α =25°

Tabulka 10: Zpracovaná data pro úhel návinu α =35°

	Ansys_Mech		Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ
1	15413	3241,1	10312	2453,93	35683	318,41	33962	1341,43
2	23810	3970,9	17778	3690,43	39136	160,89	38283	687,32
4	30426	3532,06	25383	3908,07	40482	22,57	40073	285,9
8	34717	2648,25	31556	3153,48	41026	65,69	40820	85,52
10	35679	2376,75	33126	2814,76	41121	85,21	40958	47,08
15	36509	1847,38	34860	2045,33	41278	97,74	41147	20,18
20	37730	1704,53	36762	1790,1	41301	126,21	41218	54,43
30	38569	1584,95	38265	1438,21	41327	151,13	41286	81,64
40	38826	1291,56	38894	1026,8	41371	152,48	41345	95,32
50	38840	1257,61	39203	887,19	41409	167,15	41387	107,19

Tabulka 11: Zpracovaná data pro úhel návinu α =45°

	Ansys_Mech		Ansys_	Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E _{eq}	σ	E _{eq}	σ	E _{eq}	σ	E_{eq}	σ	
1	11627	1833,01	8369	1549,67	21188	429,78	20581	724,57	
2	15933	1776,61	12926	1885,35	22000	197,11	21736	345,7	
4	18769	1344,42	16697	1638,74	22324	105,41	22201	183,29	
8	20396	922,43	19257	1144,59	22462	67,78	22398	115	
10	20740	815,27	19846	989,88	22486	60,8	22435	102,18	
15	21037	628,3	20478	699,24	22511	55,64	22468	89,06	
20	21448	573 <i>,</i> 89	21119	600,67	22533	47,66	22506	76,81	
30	21725	536,17	21609	488,75	22540	45,9	22528	77,91	
40	21811	438,5	21810	357,42	22548	38,39	22541	65,36	
50	21813	429,5	21900	318,83	22544	37,94	22538	68,17	

	Ansys	s_Mech	Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E _{eq}	σ	E_{eq}	σ
1	7888	889,1	6438	845,7	11690	199,9	11630	249,76
2	9837	700,16	8766	805,86	12019	111,47	11985	136,67
4	10970	459,28	10310	587,42	12124	82,55	12105	96,08
8	11574	283,98	11202	376,48	12160	72,39	12150	80,86
10	11697	243,71	11391	322,87	12165	70,31	12158	78,3
15	11815	179,18	11584	230,26	12156	67,68	12150	74,99
20	11947	157,63	11781	202,56	12174	66,73	12172	73,18
30	12039	141,05	11927	174,21	12177	72,08	12180	80
40	12073	111,65	11983	134,95	12174	63,4	12179	70,71
50	12081	107,1	12002	126,51	12162	65,16	12168	74,51

Tabulka 12: Zpracovaná data pro úhel návinu α =55°

Tabulka 13: Zpracovaná data pro úhel návinu α =65°

	Ansys_Mech		Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ	E_{eq}	σ
1	5766	482,34	5218	499,43	7755	80,38	7769	76,06
2	6861	332,43	6494	397,04	7929	51,68	7932	49,86
4	7460	190,77	7223	260,17	7975	43,51	7977	41,71
8	7769	98,25	7606	159,69	7987	40,82	7990	39,21
10	7831	77,65	7684	136,58	7988	40,19	7991	38,9
15	7901	46,4	7760	97,24	7980	38,45	7984	37,25
20	7956	34,64	7841	87,17	7990	39,17	7994	38,09
30	7999	21,92	7900	76,58	7991	42,63	7998	42,04
40	8019	12,27	7920	60,76	7987	37,76	7996	37,65
50	8030	8,15	7926	57,88	7980	38,65	7990	39,93

Tabulka 14: Zpracovaná data pro úhel návinu α =75°

	Ansys	s_Mech	Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E _{eq}	σ	E _{eq}	σ	E_{eq}	σ
1	4975	381,26	4859	387,66	6704	38,48	6721	28,59
2	5886	259,95	5807	279,28	6796	21,03	6803	15,93
4	6374	147,67	6315	170	6819	16,3	6823	12,61
8	6622	75,05	6573	97,35	6825	14,79	6829	11,75
10	6672	59,12	6624	81,31	6825	14,35	6830	11,68
15	6728	34,16	6677	54,53	6822	13,25	6827	10,93
20	6772	25,73	6728	47,42	6825	13,69	6830	11,56
30	6806	15,49	6766	39,05	6825	14,5	6832	12,66
40	6822	8,24	6779	29,62	6823	12,51	6831	11,45
50	6831	4,87	6785	27,23	6820	12,42	6829	12,28

	Ansys	s_Mech	Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	E_{eq}	σ	E _{eq}	σ	E_{eq}	σ
1	4809	371,25	4874	369,03	6610	22,26	6624	13,16
2	5709	259,16	5749	255,12	6657	7,52	6662	2,58
4	6191	151,38	6211	148,78	6668	3,47	6672	0,43
8	6435	80,77	6444	79,89	6671	2,27	6675	0,97
10	6484	65,19	6490	64,77	6671	1,89	6675	0,97
15	6537	40,29	6540	40,52	6670	1,46	6676	1,06
20	6582	32,49	6583	33,15	6671	1,3	6676	1,06
30	6616	23,06	6616	24,23	6669	0,72	6676	1,07
40	6631	15,29	6629	16,53	6668	0,64	6676	1,24
50	6638	12,38	6636	13,81	6667	1,06	6677	0,84

Tabulka 15: Zpracovaná data pro úhel návinu α =85°

Tabulka 16: Zpracovaná data pro úhel návinu α =90°

	Ansys	s_Mech	n Ansys_ACP		VM_Ansys_Mech		VM_Ansys_ACP	
L/D	E_{eq}	σ	\overline{E}_{eq}	σ	E_{eq}	σ	\overline{E}_{eq}	σ
1	4798	372,98	4886	369,71	6617	20,19	6631	11,25
2	5700	261,67	5755	254,45	6658	5,79	6664	1,01
4	6182	153,67	6213	147,59	6668	2,06	6672	1,67
8	6428	82,56	6444	78,6	6670	0,8	6674	2,37
10	6477	66,88	6490	63,39	6670	0,59	6674	2,39
15	6530	41,72	6540	39,32	6670	0,66	6675	2,5
20	6575	33,86	6582	31,68	6670	0,86	6675	2,46
30	6610	24,54	6615	22,64	6668	1,04	6675	2,74
40	6624	16,66	6628	15,16	6667	1,73	6675	2,62
50	6632	13,7	6635	12,35	6667	2,48	6676	2,29

11.2. Textový program pro parametrizaci výpočtů

! Commands inserted into this file will be executed just prior to the ANSYS SOLVE command.

! These commands may supersede command settings set by Workbench.

Active UNIT system in Workbench when this object was created: Metric (mm, t, N, s, mV, mA)
 NOTE: Any data that requires units (such as mass) is assumed to be in the consistent solver unit system.

See Solving Units in the help system for more information.

/PREP7

l

```
xpom=mpinqr(0,0,14) !max definovany material
xpom2=sectinqr(0,14) !max definovany section
xpom3=etyiqr(0,14)
```

!***DEFINICE Materialu*** !kompozit_HS(Vf~0.4) uimp,xpom+2,ex,ey,ez,143120.0,6672.0,6672.0 uimp,xpom+2,gxy,gyz,gxz,3390.0,3390.0,1914.0 uimp,xpom+2,prxy,pryz,prxz,0.26,0.26,0.26 !poissonovo cislo

uimp,xpom+2,dens,,,1470e-12 !hustota

!arg1=30.0

!***DEFINICE Sekci skorepiny***
!kompozitni_stena_3mm
sect,xpom2+1,shell,,
secdata, 1,xpom+2,-1*arg1,1
secdata, 1,xpom+2,arg1,1
secdata, 1,xpom+2,90,1
secoffset,bot
cmsel,s,Trubka

emodif,all,secnum,xpom2+1

allsel finish /solu

11.3. 4 Modely v Ansys 2019R3

Modely jsou na přiloženém CD ve formátu Ansys Workbench procejct archive (wbpz).