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Abstract
While the best practices in digital design
are well covered by literature, the oper-
ating principles of the underlying tools is
described only in scarce, deeply special-
ized publications, if at all. This thesis
aims to explore the algorithmic problems
and their state of the art solutions at the
intersection of digital hardware and soft-
ware with full context, and to provide a
foundation for further inquiry. Its main fo-
cus is on the theory, merit, and accessible
implementations of problems in logic syn-
thesis, formal verification, and physical
design automation. To demonstrate these
software tools, open designs are presented
throughout, including the CTU CAN FD
IP core. In topic conclusions, a case is
built for a fully open flow for education,
research, and commercial development.

Keywords: logic synthesis, formal
verification, physical design automation,
placement, routing, EDA, HDL, FPGA,
ASIC, Yosys, OpenROAD
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Abstrakt
Standardní praktiky návrhu digitální lo-
giky jsou formalizovány v dostupné lite-
ratuře, ale principy fungování potřebných
softwarových nástrojů jsou popsány jen v
omezených, silně specializovaných publika-
cích. Cílem této práce je zanalyzovat algo-
rithmickou problematiku a jejich současná
řešení v průniku digitálního hardwaru a
softwaru v plném kontextu a poskytnout
čtenáři základ pro další zkoumání a expe-
rimentaci. Práce je soustředěná na teorii,
smysl a existující implementace proble-
matiky syntézy logiky, formální verifikace
a fyzickém návrhu integrovaných obvodů.
Pro ukázky těchto softwarových nástrojů
jsou použity otevřené nvárhy včetně CAN
FD IP jádra ČVUT. V závěrech řešených
témat jsou prezentovány argumenty pro
plně open source metodologii pro vzdělá-
vání, výzkum a komerční vývoj.

Klíčová slova: syntéza logiky, formální
verifikace, automatizace fyzického
návrhu, placement, routing, EDA, HDL,
FPGA, ASIC, Yosys, OpenROAD

Překlad názvu: Analýza metod
digitálního návrhu a softwarového vývoje
systémů na čipu

vi



Contents
1 Introduction 1

2 Design 3
2.1 Systems on chip . . . . . . . . . . . . . . . 3
2.2 Hardware description languages . 5
2.3 High level synthesis . . . . . . . . . . . 12

3 Verification 17
3.1 Introduction . . . . . . . . . . . . . . . . . 17
3.2 Functional verification . . . . . . . . . 18
3.3 Modeling synchronous circuits . . 19
3.4 Expressing properties . . . . . . . . . 20
3.5 Bounded model checking . . . . . . . 20
3.6 Temporal induction . . . . . . . . . . . 21
3.7 Proving liveness . . . . . . . . . . . . . . 22
3.8 SMT solvers . . . . . . . . . . . . . . . . . 23
3.9 Theorem proof assistants . . . . . . 26
3.10 Logical equivalence checking . . 26
3.11 Conclusion . . . . . . . . . . . . . . . . . . 26

4 Synthesis 29
4.1 Combinational synthesis . . . . . . . 29
4.2 Sequential synthesis . . . . . . . . . . . 33
4.3 Physical synthesis . . . . . . . . . . . . . 35

5 Physical design automation 37
5.1 Synthesis backends . . . . . . . . . . . . 37
5.2 Floorplanning . . . . . . . . . . . . . . . . 39
5.3 Placing . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Clock tree synthesis . . . . . . . . . . . 45
5.5 Routing . . . . . . . . . . . . . . . . . . . . . 46
5.6 Static timing analysis . . . . . . . . . 52
5.7 Layout vs schematic checking . . 52
5.8 Circuit extraction . . . . . . . . . . . . . 53
5.9 Design rule checking . . . . . . . . . . 53
5.10 Design for testability . . . . . . . . . 54
5.11 Physical design representation . 55

5.12 FPGA placement and routing . 56
5.13 Conclusion . . . . . . . . . . . . . . . . . . 57

A Experiments 59
A.1 Yosys temporal logic

counterexample loop detection . . . . 59
A.2 GHDL PSL bug . . . . . . . . . . . . . . 60
A.3 Amaranth combinational loop

detection . . . . . . . . . . . . . . . . . . . . . . 60
A.4 Minor Yosys bug fixes . . . . . . . . 63
A.5 OpenROAD . . . . . . . . . . . . . . . . . 63

B Attachments 75

C Literature sources 77

D Bibliography 79

vii



Figures
2.1 Unreachable combinational loop . 7
2.2 Compiling C with Clang and

LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Finite automaton with a reachable
and unreachable unsafe state . . . . . 23

3.2 Büchi automaton for “always
eventually green”, adapted [56] . . . 23

3.3 Büchi product automata . . . . . . . 24
3.4 Solver performance benchmark . 25

4.1 Boolean function representing data
structures . . . . . . . . . . . . . . . . . . . . . . 31

5.1 OpenLane design flow [88] . . . . . 38
5.2 Clustered graph adapted [92] . . . 41
5.3 Min-cut placement, adapted [92] 43
5.4 VCC and GND rails in a standard

cell row . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Four routing layers with

alternating direction . . . . . . . . . . . . 47
5.6 L-RST separability, adapted [92] 48
5.7 Intel Arria 10 BEL, “Adaptive

Logic Module”, adapted [134] . . . . 56

A.1 Cell size comparison, adapted
[157] . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 CTU CAN FD IP core physical
design . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 CTU CAN FD IP core physical
design . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.4 CTU CAN FD IP core clock tree
synthesis H-tree . . . . . . . . . . . . . . . . 66

A.5 TinyTapeout physical design, with
PL_BASIC_PLACEMENT . . . . . . . . . . . 68

A.6 TinyTapeout physical design . . . 69
A.7 TinyTapeout physical design . . . 70
A.8 TinyTapeout physical design . . . 70
A.9 TinyTapeout physical design . . . 71

A.10 Pipeline depth sweep . . . . . . . . 73
A.11 Pipeline width sweep . . . . . . . . 74

viii



Tables

ix





Chapter 1
Introduction

This work is the compilation of the results of my search for answers to a
question I have asked myself years ago: what’s the proper way to do digital
SoC design? The answer is fragmented and scattered across several areas of
active research and development, in very few locations, often behind closed
doors. Many of the fragments are specific to software ecosystems of the big
three (Synopsys, Cadence, Siemens) EDA vendors or tied to platform-specific
tools. This motivated me to use open source tools to their maximum potential,
which brought me to a new question: where do the limitations of open source
tools come from? Are the obstacles to reaching quality parity or superiority
to the closed ecosystems insurmountable? This work aims to demystify some
areas relevant to these open-ended questions.
In Chapter 2, I present the ways of describing hardware in hardware de-
scription languages (HDL) in relation to software. Software programming
language development has received a great amount of attention, with heaps of
resources and diverse existing approaches. Meanwhile, HDLs that dominate
the industry are considered canonical and untouchable, only somewhat exten-
sible over time, while a market with software to cope with their limitations at
scale thrives. I examine the levels of abstraction available to designers, and
the varied ways alternative HDLs have been built.
Chapter 3 covers the theory and practice of proving digital design correctness
and hunting for bugs, where open source tools greatly lower the cost of entry
to building confidence in one’s design.
In Chapter 4, I summarize the theory of logic minimization methods as
implemented in ABC [1] and Yosys [2]. Yosys is a powerful open source logic
synthesis toolchain, which allows user freedom in selecting optimization and
conversion passes. It provides most notably a Verilog HDL frontend and
netlist backends for interoperability with other tools. Yosys has been used
internally in industrial EDA tools for small FPGAs [3], [4].
Chapter 5 explores the diverse algorithms needed to convert a synthesised
design to integrated circuit geometry or an FPGA bitstream. Surprisingly,
despite the recent chip availability problems and national security concerns,
and the proposed funding for integrated circuit production capabilities, this
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1. Introduction .....................................
is not a field where Europe plays a significant role. However, open academic
industrial-strength tools have surged in quality, integrated into the Open-
ROAD [5] project. I compare these tools to other open alternatives, and
speculate about their industrial viability.
While smaller examples are presented for illustration of these chapters, I
have used open designs to demonstrate and explore the available tools and to
implement enhancements in Appendix A.
In this work, many general facts about the relevant problems and algorithms
are introduced. In Appendix C I direct the reader to the very thorough
but incomplete published literature and open course materials for further
explanations of concepts not cited directly.
Analog and mixed-signal design represents a significant portion of the engi-
neering effort of integrated systems, it is not within the scope of this work
to delve into it. Automatic analog placement and design has been an open
research topic for a long time, with many proposals and implementations, but
its integration into real workflows remains low [6]. Beyond that, its nature
provides few opportunities for inspiration by software development tooling,
unlike digital design.

2



Chapter 2
Design

2.1 Systems on chip

Systems on Chip (SoCs) are complex integrated devices with general-purpose
processors, memories, input and output cores that often implement communi-
cation protocols, and specialized coprocessors. In practice, an SoC designer
integrates a large amount of separately developed IP blocks to implement
each functionality.
An IP (intellectual property) block is a hardware module made to implement
a specific set of functions conforming to a specification. Its functionality is
defined by a set of hardware description source files. It can contain instances
of other IP blocks, imported from elsewhere. Typically, to meet a wide set of
requirements, it’s parametrized with build-time configuration options. For
example, an FFT IP core may be parametrized with size, internal bit widths
and types, rounding mode, and many more [7]. Some parameters may be
specific to FPGA (e.g. which elements to use as RAM) or ASIC only (e.g.
scan chain insertion). Beyond hardware sources, there may also be synthesis
constraints, and non-synthesizable descriptions like testbenches, simulation
models, and memory map documentation. Hardware description sources may
be obfuscated or encrypted to enforce copyright.
An SoC is simply an IP core with constraints to represent physical inputs
and outputs, additional files for mapping IP core registers into memory, and
synthesis/fabrication files. This makes IP core memory map documentation
particularly interesting, since some IP is exposed to software running on
one or more processor cores. When software is co-developed as hardware
prototypes are built, the software should at all times have a correct map of
the hardware. In the case of “bare metal” code (such as simple firmware
or an early stage bootloader), this typically means generating C header
files. Once an abstraction system like an operating system (OS) or real-
time operating system (RTOS) is introduced, it’s necessary to use whatever
hardware information that system requires, typically, some form of a “device
tree”. For example, the Linux OS, Das U-Boot bootloader, and Zephyr

3



2. Design........................................
RTOS all have a very similarly structured device tree format. C headers are
insufficient when an RTOS or OS use virtual memory, requiring a hardware
driver to request resource access from the RTOS or OS. Device trees do
not actually carry full register maps, only the starting address of a memory
mapped device, so relative register maps still need to be created. Furthermore,
a device tree fragment informs the kernel to load the correct driver, and can
inform a generic hardware driver about the configuration or version of the
hardware, so a single driver can support an entire product line of devices or
cores.
SoCs implemented on an FPGA platform make use of its built-in “hard IP”
blocks. These are stubs and configuration interfaces provided by the FPGA
manufacturer to interface between developer-specified programmable logic
and the fixed function logic in the processing system or in input/output blocks
like serializes and deserializes (SERDES) or fully integrated communication
protocol implementations like USB ULPI, PCIe, or Ethernet RGMII.
Even though SoCs contain numerous interfaces between hardware and soft-
ware, which can be subject to experimental changes at many points in the
development process, especially in the case of designs or prototypes targeting
FPGA, exporting the interface to one block to be seen by another is often
a manual process. Developing software and hardware in parallel is called
hardware/software co-design. This requires interoperability between various
design tools.
The IP-XACT (IEEE standard 1685-2014) [8] establishes a basic level of
IP block interoperability between hardware design tools by carrying tool-
agnostic information about the files required, as well as register memory
map descriptions for software support. The Kactus2 graphical tool [9] uses
IP-XACT to enable system-building capabilities similar to Xilinx Vitis and
similar commercial tools, with no restrictions on the underlying synthesis
and simulation tooling and target technology. For IP-XACT integration
into custom project build systems, the ipyxact [10] Python-based parser can
be used to extract IP metadata and generate C headers and memory map
documentation and is used as a component of the Lattice Propel proprietary
FPGA vendor EDA tool. LiteX [11] is an open HW/SW co-design project
with its own build system for FPGA and ASIC SoCs, capable of instantiating
feature-rich embedded Linux with a wide selection of processor cores and
peripherals on many supported development boards. For IP core packaging
and automatic creation of vendor tool project files, the FuseSoC [12] package
manager integrates with the [13] project file generator. This setup is designed
to kill the practice of downloading fixed version IP cores, and replacing it
with a more software development inspired approach of taking locally made
improvements to IP cores and “upstreaming” them to be shared with other
users, who can easily upgrade to newer versions with fixed bugs.
Overall, the adoption of these open consolidated packaging and build tools
remains low. Professional development teams naturally gravitate to whatever
solution is most explicitly supported by their EDA software providers, while

4



............................ 2.2. Hardware description languages

open source developers, hobbyists, academics, and small commercial teams
keep copy-and-pasting files by hand with builds being done on local machines
instead of continuous integration that would guarantee build reproducibility.
The “best practice” recommended by professionals is building in EDA tool
batch mode directed by manually written TCL scripts, automated with GNU
Make.

2.2 Hardware description languages

The goal of a hardware description language is to allow a user to express
any working circuit in a concise, readable way, that can then be efficiently
understood, processed, and converted by a synthesis tool, with the ultimate
goal of simulation, FPGA programming, or integrated circuit fabrication.
As simulation and programmable logic allow a designer to evaluate their
design choices at speed, it would be wasteful to work with a language that
doesn’t let the designer transparently influence the quality of the results. Also,
it would be wasteful to force the designer to specify things that are arbitrary,
repetitive, and solvable by an automatic tool. The conclusion from these two
observations is clear: a good HDL spans multiple layers of abstraction.
In this chapter we will go through several HDLs, from standard to exper-
imental. The majority of these, just like Verilog once was, don’t provide
a specification of their behavior that all implementations must adhere to,
but only (often limited) documentation of the one existing implementation.
This may disqualify them from formal design processes in engineering due to
reliability concerns, but not from a feature evaluation.

2.2.1 Description architecture

There are multiple philosophies of describing the same circuit which come
into play in different situations. It should be noted that in Verilog and VHDL,
there is no way to restrict a module to only use one type of description—these
are only conventions used as needed. However, in other languages, there may
be limited support for writing on a given level.

Structural

Structural descriptions are close to hardware, in that they consider signals
exclusively as outputs of simple modules with minimal usage of operators
that need to be mapped onto available hardware primitives automatically in
synthesis. There is no concept of a process or loop. This representation is close
to a textual representation of a schematic. There is also some correspondence
to the single static assignment (SSA) form of statements in compiler internal
representations. Single assignment means that conditionally executed blocks
are represented as join nodes in a well-formed graph with each assignment

5



2. Design........................................
an edge. Similarly, instead of if/then/else, structural hardware descriptions
replace multiple conditional assignments with unconditional assignments to
the output of a multiplexing operation. This limited expression power leads
to the use of manually written structural descriptions to situations where a
description needs to reliably map to available hardware elements, such as
instantiating a physical resource on an FPGA or delay sensitive elements
for a memory or programmable logic array implemented in silicon. This
leaves no guesswork and no optimization opportunities to the synthesis tool.
Automatically generated structural descriptions are much more common, since
structural Verilog is commonly the interchange format between EDA tools.
This specifically leads to bugs when multiple tools use different frontends due
to the chaotic nature of Verilog’s specification.

Dataflow

Dataflow architectures loosen the definition of structural architectures by
allowing arithmetical and bit operators, not just modules that implement
them. It can be argued that dataflow is isomorphic functional programming.
In fact, Clash, a Haskell-based HDL, continues on with conventions from
Haskell, where let blocks are discouraged in favor of pure functions or cleaner
constructions like state monads.

Behavioral

Behavioral descriptions correspond to procedural programming.
Blocking assignments in Verilog are “executed” immediately and influence all
subsequent assignments. This is often the natural way one would verbally
describe what a module full of conditions does and saves time from forcing
the programmer to rethink this description.
This can in some cases lead to unfortunate errors. A programmer looking
at part of a module in isolation can miss a later assignment that overrides
assignments seen so far, or leave a signal unassigned. For example, Verilog’s
signal model lets reg signals retain their previous value if not assigned. Con-
sider the following reduced example, taken from a floating point arithmetical
unit [14], in lst. 1.
On its own, o_exponent = o_exponent + 1; would create a logic loop, as
shown in yosys show command output in fig. 2.1. But the code works fine
in simulation. No matter the value of a_exponent and b_exponent, one of
the first three branch conditions evaluate to true, and set o_exponent. Then
the incrementing statement alters it by one. However, some tools might see
that if none of the three conditions hold, there is a combinational loop, after
the required yosys clk2fflogic pass, which replaces the D-latch gating the
combinational loop with a buffer (BUF). It would be theoretically possible
to check if such an assignment is always shadowed by preceding ones, but

6



............................ 2.2. Hardware description languages

always @ ( * ) begin
if (a_exponent == b_exponent) begin

o_exponent = a_exponent;
end else if (a_exponent > b_exponent) begin

o_exponent = a_exponent;
end else if (a_exponent < b_exponent) begin

o_exponent = b_exponent;
end
if(o_mantissa[24] == 1) begin

o_exponent = o_exponent + 1;
end

end

Listing 1: Behavioral Verilog generating a combinational loop

adder

o_exponent

A
B
S

$11
$mux Y

7:0 - 30:23 out

$93

A
B
S

$100
$mux Y

$99

BUF

1'1

A
B

$6
$add Y

A
B
S

$8
$mux Y

b [30:23]

$4_Y
A
B
S

$20
$mux Y

a [30:23]

$3_Y

A
B
S

$26
$mux Y

a [30:23]

$2_Y

o_mantissa [24]

Figure 2.1: Unreachable combinational loop

this would actually in the general case require checking satisfiability on the
condition expressions with a solver. However, it’s easily rectified by changing
the last else if to else, since the developer knows the intent of these
conditions.
This demonstrates an easy programmer error that is enabled by Verilog’s
design. Amaranth takes a different approach: assignments in the combina-
tional domain override previous ones, but don’t use the values of previous
assignments to the signal being assigned to. This means that the equivalent
of o_exponent = o_exponent + 1; will always create a combinational logic
loop, since previous assignments are “shadowed” by this one, like variable
declarations in C, or any definitions in Haskell. The Amaranth documenta-
tion forbids combinational loops. At the time of writing, Amaranth doesn’t
detect logic loops, but it’s a planned feature. I present my proposal for its
implementation in Chapter A.3.
High level synthesis, discussed in Chapter 2.3, can be considered an advanced
form of behavioral architecture description.
In languages like VHDL, modules can have multiple implementations to
support varied targets, for example, simulation and FPGA. This is a powerful
idea, allowing productive composable definitions of hardware on a fine-grained
level allowing for hand-optimized circuitry as well as a readable, easy to

7



2. Design........................................
simulate, abstract level. However, like any functionality duplication, it
creates significant risks of introducing bugs in their inconsistencies. Formal
methods may alleviate this, see Chapter 3.10.

2.2.2 Implementation approaches

Computer languages have similarities in their processing pipelines. As an
example, the compilation pipeline from C source to machine code is illustrated
in fig. 2.2. To generalize, such conversions always require a “front end”,
consuming the typically text-based input, some processing, and a “back end”,
emitting the desired target artifact. This applies not just to programming
languages, but even to things such as Pandoc. Its “Markdown reader” front
end reads this text, builds an abstract syntax tree (AST) out of it, expands
Markdown features into a LATEX file, and runs pdflatex to convert it into the
PDF, which you are reading now. Additional processing steps can be added
in between as “filters” that alter the AST.
In the case of LLVM, cleanly separating the front ends (like Clang), shared
optimizations, and back ends has allowed compiler developers to easily add
support for new languages and new computer architectures while collaborating
on shared optimizations.
Some degree of this approach exists in commercial tools. Since moving code
between various synthesis, simulation, and verification systems is desirable,
software tools by Synopsys and Cadence have outsourced their Verilog front
ends to a third party, Verific Design Automation. It’s a common story that
language support developed in-house inevitably leads to great pain and in-
consistency, exacerbated by Verilog’s often ambiguous or hard to implement
specification and lack of care for VHDL support. As far as commercial back-
ends go, there isn’t much variety. Their outputs are typically undocumented
proprietary formats—since FPGA bitstream formats reveal information about
the architecture, their format is never published by vendors, and published
reverse engineering outputs are considered violations of intellectual property.
On the other hand, ASIC fabrication output formats are open standards.
Within the realm of modern and experimental HDL, tooling has been devel-
oped in notable different ways.

8



............................ 2.2. Hardware description languages

Figure 2.2: Compiling C with Clang and LLVM

2.2.3 Front end

The conventional way to design a language involves formally specifying its
grammar, typically in the Backus-Naur form, or an extended version of it,
and to then use efficient lexer and parser generators to transform the source
to an AST. Some manual code is often needed to handle string literals and
correct error reporting.
However, this demonstrates an opportunity to use existing infrastructure
for a programming language. In fact, it’s possible to extend a programming
language to an HDL without modifying its implementation, as an embedded
domain-specific language (eDSL). They are often implemented as libraries
and define their own types and operations. Their syntax can be limited by
the potential of the host language to be extended. For example, embedding a
language in C forces the programmer to build it using the C macro system,
while embedding it in Lisp or Rust brings much more reliably usable syntactic
macros. Furthermore, DSL-based languages have lower costs to implementing
systems for HW/SW co-design since it’s possible to write software with full
knowledge of the hardware interfaces without needing to extract and convert
hardware metadata, or at least brings down the barrier to developing tools
that do this conversion.
It should be noted that an HDL that looks and feels very similar to a
programming language doesn’t imply it’s implemented as en eDSL. VHDL
may be inspired by Ada and Verilog may be inspired by C, but tools for
neither are necessarily even implemented in those languages.

2.2.4 Back end

The final output of an HDL’s implementation is typically structural Verilog or
an intermediate representation (IR). Language and synthesis tools may have
serializable IRs, which can be used externally for simulation, language support,

9



2. Design........................................
and debugging. As an example, RTLIL is a part of Yosys [2], and FIRRTL
[15] a part of the Chisel [16] language. Both are focused on low-level circuit
representation. Proprietary ecosystems have IRs that aren’t documented
publicly and can only be supported in partnership with the ecosystem owners.
Some cross-language, cross-tooling IRs have been proposed, most notably,
LLVM MLIR [17] provides several “dialects” for targets such as GPUs and
accelerators, including a “HW” dialect, developed by the LLVM CIRCT
project [18]. LLHD [19] is a proposed hardware-specific IR with an interesting
event model scheduling structure, now a part of CIRCT. Cayx [20] is an IR
focused on representing high level synthesis programs for elaboration into
RTL or an RTL-level IR.

2.2.5 Existing languages

The lingua franca of digital design is Verilog [21], a language originally designed
specifically as a simulator frontend language at a time when simulation wasn’t
a basic practice. Its specification contains legacy features that are impractical
and typically unsupported, such as signal drive strength levels. Productivity
in this language is lacking for real-world projects beyond small modules.
Coping with the lack of metaprogramming for example requires SoC designers
to use or build external tools that generate Verilog.
To remedy this, SystemVerilog [22] was designed to provide much of what
was missing. While Verilog does support generate constructs, allowing for
conditional and iterative hardware building, it doesn’t allow the user to pass
build-time parameters to modules. This means inherently parametric designs
such as a FIR filter are not parametrized at the point of instantiation, but in
project files for an external tool. Multi-signal interfaces between modules are
missing as well, so implementing buses such as Wishbone requires the same
9 signals copy-and-pasted to every block with this interface. SystemVerilog
adds interface declarations with modport constructs to define directions for
each role of module on the interface, for example, a stream bus master sees
data as an interface input, while a slave sees it as an output. Even though
SystemVerilog improves on Verilog’s type system, it also inherits from Verilog
a lack of many productive features. For example, there is no notion of a
clock or clock domain. A clock is a regular signal with no safety checks,
even though it’s risky to treat it as such in design. Clock domains are
implemented by manually assigning the clock of a module to its submodule’s
clock input, adding boilerplate, delegating any checks of the sanity of the clock
domain hierarchy to external tools. Also, SystemVerilog is inspired by the C
programming language to its detriment, with include declarations rather than
a module-like system to increase a file’s scope to declarations in other files,
as well as leaving the user to rely on macros to reduce boilerplate in interface
connections. Assignments are also rather unrestricted, presenting risks of
creating glitches and unwanted latches in designs, as shown in Chapter 2.2.1.
SystemVerilog also brings a plethora of strong features with varying levels of
popularity and support, such as an object-oriented programming paradigm
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with inheritance, and powerful assertion constructs. It is common for open
source SystemVerilog implementations to silently skip implementing many
of its features. A notable open implementation is the Slang [23] front-end,
based on LLVM Clang, which fares well in independent support tests [24].
Transaction-Level Verilog (TL-Verilog) [25] adds greatly expressive features
for common design kinds such as pipelines and bus transactions, leading
to more succinct, highly parametric hierarchical code than SystemVerilog,
almost reaching HLS-level abstraction (see Chapter 2.3). It also adds some
safety and consistency by automating away assertion boilerplate on interfaces.
Silice [26] has similar design goals, with a focus on supporting instantiating
hard IP blocks in FPGA.
VHDL [27] provides a level of productivity similar to SystemVerilog with
stronger typing, requiring explicit, well-defined type conversions. Even though
it was designed more deliberately as a design language, it has superior simula-
tion semantics, reducing the opportunity for simulation inconsistencies across
implementations [28]. Sadly, its support level is lower in both commercial
and open source tools than Verilog. GHDL [29] is an open but incomplete
implementation of a VHDL front-end and simulator.
The inconsistencies and inefficiencies inherent to these languages have moti-
vated a great number of experimental languages with varied design goals and
implementation approaches.
Chisel [16] and Spinal [30] are embedded in the Scala programming language.
While Scala offers great language embedding support, leading to metapro-
gramming beyond SystemVerilog’s generate and simple parameters, it can
lead to convoluted errors, revealing the abstract object-oriented internals.
Both support inheriting clock domains, but only Spinal detects illegal clock
domain crossing. Both languages integrate the Verilator simulator, which
transpiles Verilog designs to C++ for fast simulation [31]. Both also provide
formal verification support via Yosys.
Clash [32] is embedded in Haskell, making use of its powerful type system.
However, I have observed the overhead of writing hardware in Haskell to lead
to a programmer experienced in Haskell and a clear idea of the design being
built to spend much more time thinking about the type system rather than
the hardware being built. Bluespec [33] is a Haskell-like HLS language more
focused on practical design and bringing the “atomic transaction” philosophy
from the field of concurrent system design, which fits digital hardware well.
Bluespec Verilog combines these semantics with a SystemVerilog-like syntax.
Amaranth is embedded in Python using operator overloading to express
custom operations, and context managers to construct control flow elements.
Amaranth provides a reasonable level of safety without sacrificing much
expressive power. Modules with synchronous logic inherit clock domains, but
clock signals can still be accessed. Assignments are inherent to a domain, and
can’t be mixed. The difference between a hardware signal and a build-time
Python variable is fairly clear. My experience with Amaranth has shown
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2. Design........................................
that while flexible and safe, the amount of Pythonic boilerplate it imposes
is discouraging, parts of designs silently go missing if the assignment to a
combinational domain is forgotten, and interfaces are currently impractical,
although modules can easily inherit from a class with signaling boilerplate for
an interface. Amaranth targets the Yosys RTLIL IR, optionally generating
Verilog via Yosys, and includes great constructs for supporting development
boards or custom hardware as well as automating proprietary build tools. It
also inherits VHDL’s simulation semantics and implements a Python-based
simulator as well as the CXXRTL simulator which is similar to Verilator.
Experimental proof assistant-based hardware design languages Kôika [34] and
Kami [35] are inspired by BlueSpec and built as a library for Coq [36]. While
evaluating their is difficult due to the nature of programming in Coq, their
scope is unique: hardware designed in Coq is meant to be a proof of its own
correctness.
While limited formal comparisons between alternative HDLs have been pub-
lished [37], it’s hard to know beforehand if a language is sufficient for one’s
design goals. Although hardware description isn’t the problem with hardware
design quality or accessibility, it certainly is a problem, and diverse solution
approaches have been presented in this section.

2.3 High level synthesis

High level synthesis (HLS) is a general name for a diverse set of languages
and tools for hardware development. The goals of these tools are typically

. Ease of use for software developers by using similar language constructs
to programming languages.Direct conversion of computer programs to hardware that is logically
equivalent. Single language, single repository hardware software co-design.Testing and verification on a system level without creating abstract
models such as SystemC. Single definitions for interfaces between hardware and software.Given fixed hardware and software interfaces, automatically determine
what sections of unannotated programs to offload into dedicated hardware
accelerators

The review in Hempel (2019) [38] provides a thorough analysis of the design
of existing high level synthesis languages.
There are many challenges to abstracting hardware away. Most commonly,
the design space is severely constrained by the abstractions and interfaces
chosen by the tool, as the designer loses a lot of direct control. This is
generally desirable, as a good tool can do a better job than a good designer
at certain tasks.
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To illustrate this point, let us review a humble C compiler’s structure as
illustrated in fig. 2.2. First, lexical analysis is performed, which processes
source code into a set of tokens, such as type, variable, assignment operator,
or opening bracket. The code for this stage is called a lexer and its grammar
is specified by regular expressions. From these, the parser builds an abstract
syntax tree (AST), according to syntax rules, defined as a formal grammar
where terminals are lexical tokens. Semantic analysis then assigns types to
expressions and checks if the tree “makes sense”—for example, if methods
are called with correct argument types. At this point, we would be ready to
emit some sort of assembly or machine code. However, if code was generated
directly from the AST, targeting various computer architectures would require
a large degree of redundant code, as they tend to share many characteristics.
Also, the code would be completely unoptimized, and optimizing emitted
code is memory intensive and slow. For this reason, a generic intermediate
representation (IR) is introduced to capture all language constructs. Opti-
mizations then are done on the IR. An IR can be further turned into one that
more closely matches the available instructions by “lowering” it into another
IR with finer operation granularity.
For register based instruction sets, local variables and their temporary prod-
ucts need to be placed into registers to be operated upon by for almost all
instructions to be able to operate upon them. The C programmer isn’t in
control of when and where variables in their code will be allocated. It would
be time-consuming, error-prone, and would lead to slower, unportable code,
if register allocation was specified manually. When it’s necessary, for example
in operating system implementations, assembly language is used instead.
The compiler instead does register allocation automatically. It allocates
variables to virtual registers, and then maps them to physical ones matching
the target architecture. One conventional way to perform this is to build an
interference graph, where two virtual registers are connected (“interfering”)
if their variables should be at some point in time both “alive”. In short, a
variable is alive at all points in the program runtime between its first write
and last read before the next write. These graph nodes must then be “colored”
by as many colors as there are available physical registers, such that no two
interfering registers have the same color. This is a modified instance of the
graph coloring problem, where many rarely used virtual registers may be
stored on the stack and accessed into one dedicated register as needed. This
is called “spilling”. As accesses to memory are orders of magnitude slower
than register accesses, this must be minimized. The graph coloring problem is
NP-hard [39], and even though well-formulated intermediate representations
lead to optimal register assignment being possible in polynomial time, adding
optimizations to remove redundant register moves brings the complexity back
to NP-hard [40]. As a result, heuristic approaches, SAT solvers [41], or deep
learning [42] are used to get decent results in reasonable time, offering superior
results to what a programmer might write by hand.
Similarly, a compiler may analyze several loop over an array, or more easily,
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2. Design........................................
functional declarative iteration methods such as map, filter and reduce, and
not only merge them into one pass (“polyhedral optimization [43]”), but
also process multiple elements in one iteration. This can make use of vector
processing capabilities of a given processor (“automatic vectorization [44]”).
The combination of these techniques often outperforms any manual attempts
by a skilled programmer, aware of the vector capabilities of their processor
[45].
While these techniques are automatic, the programmer can set or limit
their parameters for a given source file or through adding compiler specific
annotations in the code, for example for a single loop. Let us now consider
similar techniques allowed by program behavior abstraction, but in the world
of digital logic.

2.3.1 Pipeline scheduling

Quality of a correct logic design is multifaceted. Most commonly, developers
and software tools optimize the design for power, performance, and area
(PPA). A design can be optimized for a trade-off between these, or strongly
biased towards one or another target.
For example, in the case of a RISC processor, a single-cycle implementation is
quite compact, but has a long critical path. A critical path in a synchronous
design is the signal path from a flip-flop to another, on which the signal
propagation delays add up to the greatest overall delay. The maximum
frequency at which a design can run is inverse to the critical path delay. If the
design was clocked at a higher frequency, signals would not be consistently
settled when sampled by a flip-flop, possibly propagating metastable signals,
leading to undesirable behavior, not described by the design.
When higher throughput is desired, a pipelined implementation can be used.
All paths are now broken up with multiple registers, breaking up the design
into multiple stages. With N stages, we can achieve a maximum speedup
of N, as long as instructions don’t depend on instructions, that haven’t yet
propagated through the pipeline and committed their results to register or
memory. This requires careful testing, since a data or control dependency
arises, a “stall” state must be propagated through the pipeline, until the
results are available.
Data flow designs that do not have this kind of loop are called feed forward.
This presents an opportunity for automatic pipelining, also called pipeline
scheduling. Common use cases include data processing for a feed of audio
or video, or a part of some more general purpose accelerator. In this case,
there is little advantage to forcing the developer to decide and manually tune
which paths to cut where while paying attention to preserving correctness,
avoiding cross-contaminating the stages.
To automatically split a feed forward design into stages, we need to know how
long the critical paths are. For that, we need to model delays of the elements
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they are built out of. Tools such as Google XLS [46] (designed for ASIC)
take data from the PDK (process development kit) for their fabrication node,
evaluate a set of elementary arithmetical and logical operations for a number
of input counts and bit widths. This thorough but limited data is used to fit
parameters for a simple multivariate delay model. This model then gives an
approximate delay for any given element.
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Chapter 3
Verification

3.1 Introduction

Complex digital logic designs such as systems on chip are almost universally
designed using a “globally asynchronous, locally synchronous” architecture.
As the size of the design becomes significant, it is desirable to verify only
each element of a synchronous domain in isolation, and if proper faith in the
final system is desired, to use then those proven properties as assumptions
in verifying the final asynchronous design. For example, if we prove that a
memory module will always respond to a read request of up to length N within
k cycles, we can use that as a simple model of the memory module to model
the entire system out of such well-behaved “black boxes” and evaluate system
performance without modeling unnecessary details. A property is a well-
defined characteristic of a design, informally describable as “something bad
may never happen”. Expressing properties is referred to as “asserting” them.
In the context of digital hardware, “something bad” is some combination of
partially described signal values. We describe this in some sort of formal
logic, as described below. By “never happen”, we mean “there is no set of
input, that would result in the property being true at any point in time”.
This naturally gives rise to a categorization of verification methods, some of
which are fundamentally weaker.

.“No set of inputs” may be too hard to prove: while formal verification ac-
tually proves that there is no set of inputs that triggers a bug, functional
verification in general only checks that the design responds correctly to
some input. This is the extent to which verification is often done (and
taught). While in practice it almost guarantees that even in simple de-
signs there is some case the designer didn’t take into consideration where
bugs can occur, it’s still a valid way of catching bugs early. Functional
verification is performed by feeding a module with manually written
inputs. Testbench is an HDL module or program that instantiates or
interfaces with a module, feeds such inputs into it, and checks safety
properties on the resulting outputs.
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3. Verification .....................................
.“Never” may be too hard to prove: bounded formal verification methods

only find bugs for the first k cycles of a design’s life, while unbounded
methods prove bugs are actually impossible.

“No set of inputs” can also include inputs that are expected to be guaranteed
by whatever module or program is interfacing with the design under test.
For example, if a programmer is instructed to write to the registers of a
microcontroller peripheral in a certain sequence, it might be acceptable to
have bugs reachable when that sequence is performed incorrectly. In that case
to eliminate these false positive failing assertions by “assuming” a property
concerning these inputs. Bounded formal methods become equivalent to
unbounded if the design only has k reachable states or fewer. However, the
state space of many designs is too large to make that a possibility. A design
containing N flip-flops (or N register bits) will have 2N states in total. If
it does any sort of arithmetic, impractically many of these states will be
reachable.
Execution time of automatic verification methods is always an important
consideration. Ideally, the engineer writes assertions while designing, makes
the design work, and no more work is necessary. In practice, it’s common for
small modifications done later to cause regressions, i.e. for assertions passing
on previous design revisions to fail. This must be checked as early as possible.
Similarly to software engineering, this typically takes the form of continuous
integration servers building the design and re-verifying everything, detecting
regressions. This requires a design’s full verification suite to be possible to run
within hours. This even influences the way assertions are written—sometimes
more assertions can rule out false positives with up to exponentially less work.

3.2 Functional verification

3.2.1 Mutation testing

Since testbenches are the most common way of demonstrating that a module
is capable of working, several methods were devised to make them build more
faith in the user in their correctness. First, it should be noted that this is
also almost universally how software is commercially developed. A developer
writes for each minimal functional unit of a program (typically a function)
a “unit test” with fixed inputs and outputs. Additional tests can then run
on the entire program composed of these units. Since software correctness is
in general pretty much impossible to prove automatically, coping with unit
tests’ limitations has lead to some clever techniques. One of them is coverage
analysis, which can be extended to mutation coverage analysis. Let us first
consider what good tests look like. Good tests pass whenever their units
under test behave as desired, and fail when they don’t. This suggests the
following:
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1. Some test must fail, if the unit is modified in any meaningful extent.
Otherwise, some part of the unit is untested and can’t be trusted.

2. Every test must be able to fail, if the unit is modified in some way.
Otherwise, this test is worse than useless, since it creates a false sense of
program correctness.

A weaker version of 1) can be done by analyzing test coverage, that is, the set
of program features that have been explored when the test was run. Features
can mean functions called, statements (reported as lines covered), edges in
the program’s control flow graph, or control flow operator conditions being
evaluated to true at some point and false at another. The tooling for coverage
of programs written in procedural programming languages requires attaching
a debugger and controlling it as well as analyzing its findings with knowledge
from within the compiler.
Writing testbenches as fully specified input sequences (directed testing) is
a time-consuming practice. Generating inputs as completely random will
result in most of the inputs triggering functionally the same behavior cases,
while some cases stay ignored. However, it’s possible to partially specify the
sequences as “constrained random verification”, in which case the developer
tunes the constraints to reach as many distinct modes of function or behavior
cases, and uses coverage information as feedback.
In the case of hardware functional verification, while hardware corresponding
to a higher level model can be checked in simulation similarly for coverage of
the higher level source, it isn’t a common technique. More commonly, explicit
coverage statements written similarly to assertions in the HDL source are
checked. This typically is used to verify that a test successfully triggers some
feature of the hardware, as signified by some internal signal value sequence.
Checking both 1) and 2) requires restricting the sorts of modifications we
can introduce into the artifact, meaning program or circuit to keep the
procedure relatively simple. In software, operators can be replaced with
others, statements can be erased or replaced with constants. In hardware,
similarly, signals can be set to constants or operations on other signals. The
reader may notice that this resembles testing silicon for faults with a stuck-at
model.
An additional benefit of coverage analysis is that not just syntactically but
also potentially functionally dead code can be found.

3.3 Modeling synchronous circuits

As opposed to testbench functional verification, which operates directly on
the description on the circuit, model checking [47] operates on a model of
such a circuit. Any correctly built (deterministic, uninfluenced by external)
synchronous digital logic circuit with finite memory is a finite state machine
(FSM). In design, Mealy and Moore machines are often differentiated. How-
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3. Verification .....................................
ever, this is unimportant for synchronous designs. A Moore machine can
be easily converted to a Moore machine by moving labels from states to
all their incoming edges. The extra expressive power of a Mealy machine
comes from its ability to respond immediately to inputs, corresponding to
a combinational path from an input to an output. As we’re interested par-
ticularly in synchronous modules within systems on chip, it is typical that
all their outputs are registered, so Moore is sufficient. If we were interested
in converting an arbitrary Mealy machine to Moore, we would need to label
states with their incoming edges, creating a machine with outputs delayed by
one cycle. This requires each state to have several copies, up to the size of
the output alphabet, and creating an undefined or arbitrary output in the
first cycle of the Moore machine’s run.
Asynchronous designs in general have to be modeled with Petri nets [48], a
technique known from concurrent system modeling. Asynchronous design is
outside of the scope of this work.
Now we have a synchronous circuit model which can be simulated, but we’re
interested in checking its correctness. From signal values and assertions, we
can build atomic propositions, and label states with boolean vectors with bit
i set if and only if the atomic proposition i holds in the given state.

3.4 Expressing properties

“Invariant” is a property declared to hold at every step and composed of a
first order logic formula built out of single atomic propositions. It has no
notion of time.
“Safety properties” are sequences of formulas recognizable by a finite automa-
ton. Invariants are a special case of safety properties.
“Liveness properties” (assertions of the form “eventually, something happens”)
require us to widen our scope to temporal logic [49], which allows us to describe
properties of infinite words. For synchronous hardware, linear temporal logic
(LTL) is sufficient. For concurrent and asynchronous designs, “branching”
paths have to be considered, which is implemented in computation tree
logic (CTL [50], CTL* [51]). Safety properties are a special case of liveness
properties.

3.5 Bounded model checking

With bounded model checking (BMC), we prove the following: “For the first
N cycles, there is no input, that would trigger a bug”. This isn’t a method to
guarantee circuit correctness, but to find bugs. When state has M bits, and
N is greater than 2M , then BMC proves correctness, because it traverses all
states. However, the state space is typically too large for this approach.
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When dealing with purely boolean variables, the minimum k for which
bounded model checking can prove any linear temporal logic formula has
an upper bound of 2d where d is the diameter of the model state graph [52].
When this is achieved, the method becomes unbounded. As the boolean
type is insufficient for many kinds of digital circuits, we can consider atomic
formulae composed of non-boolean variables to be extra hard-to-evaluate
boolean variables. This aligns with how CDCL(T) SMT solvers work (see
Chapter 3.8).

3.6 Temporal induction

Temporal induction allows us to actually prove safety properties [53]. It
follows a simple scheme:

. Prove BMC of depth k as the base case. If it’s disproven, we have a valid
counterexample.As the inductive step, prove that given k successive states where asserts
hold, k + 1 always holds too

If the inductive step fails, there are three options:

1. Induction starts from a reachable state, and the assertions are proven
not to hold

2. Induction starts from a safe but unreachable state, and increasing the k
will remove this false positive

3. Induction starts from a safe but unreachable state, but contains a loop,
so increasing k won’t remove this false positive

The k sufficient to prove the property isn’t practically knowable. It’s equal to
the longest path in safe unreachable states, and it’s impractical to construct
the state space. Also, in particular, counters cause loops in control logic
to appear as meaningful changes, greatly increasing the required k. Using
temporal induction on designs with counters requires carefully disabling the
counters with a signal asserted in testing.
There are multiple ways of detecting case 3.

. Detect loops in counterexamples.Manually break loops, asserting some of their states to be unsafe.Automatically break loops with “path constraints” [52]

For example, trying to prove the code in lst. 2 with a depth of 20 will lead to
a loop in unreachable states, with the counter variable starting off somewhere
close to 200, and up- and down-counting to it
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module demo(input clk, mode, output reg [7:0] cnt);

always @(posedge clk) begin
if (cnt != 0 && mode == 0)

cnt <= cnt - 1;

if (cnt != 99 && mode == 1)
cnt <= cnt + 1;

end
initial assume (cnt == 5);
assert property (cnt != 200);

endmodule

Listing 2: Correct assertion example

As a simplified illustration, the counterexample caused by the failing inductive
step is similar to a path in fig. 3.1, looping arbitrarily long in the bottom two
safe unreachable states, until it enters the unsafe unrechable state.
Constraining the module in lst. 2 harder with assert property (cnt < 100);
will make all states used to disprove the previous assertion invalid. All
counterexample traces would now have to start with cnt < 100 and can’t
increment beyond 99 because of the cnt != 99 condition.

3.7 Proving liveness

Since liveness properties are statements about infinite words, we need to
introduce a new approach. To check whether sometimes happens infinitely
often, we introduce a finite automaton, which accepts an infinite path, if and
only if it that “something” happens infinitely often. A (non-deterministic)
Büchi automaton (NBA) is an automaton which accepts a path if it infinitely
often passes through at least one accepting state. We can create one that
corresponds to a liveness property, like “the semaphore will always eventually
turn green” in fig. 3.2. To prove this property, we can now take an FSM
model of the semaphore, labeled with atomic propositions like “green” and
“orange” and “red”, and build a new automaton through a modified product
construction. This automaton will have states that are the Cartesian product
of the sets of states in the system model and assertion automaton, but the
automaton consumes as inputs the labels of the model automaton’s states.
Also, its initial state will be the tuple of the model’s initial state and the
assertion automaton state reached when it consumes the label of the model’s
initial state. If we can find a path with a prefix and a loop that doesn’t visit the
accepting state, then this path is a counterexample; otherwise, the assertion
is proven. If we only construct reachable states of the product automaton,
and find strongly connected components (SCC), we can in polynomial time
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Figure 3.2: Büchi automaton for “always eventually green”, adapted [56]

[54] find or disprove the existence of such a loop. If we found the loop,
we can find a path to it with a simple linear-time search. This provides a
counterexample. However, constructing the state space is exponential, and
LTL property checking is PSPACE-complete [55]. The state space can be
explored as it’s being constructed, so counterexamples may be found quickly.

3.8 SMT solvers

Automating BMC and temporal induction requires tools to check the consis-
tency of logical propositions automatically. Initially, binary decision diagrams
[57] (as described in Chapter 4.1.3) were used to compress the state space
being explored, but still were building the state space. To handle reasonably
large designs, “implicit-state” tools are required.
In practice, SMT (satisfiability modulo theory) solvers [56] are used, as
described below. To model assertions about state machines, we need to model
the state machine in the language of formal logic. This can be implemented
by declaring a state variable and defining its transition relation as well as the
initial state. Then, we can convert assertions to satisfiability problems that
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implement BMC or temporal induction by “unrolling” formulas about states
over time.
The Boolean satisfiability (SAT) problem is the problem of determining the
existence of a variable assignment for the Boolean variables a Boolean function
is constructed out of, such that it evaluates to true. Typically, a restriction
is placed on the form (representation) of the function, and often such a
vector is meant to be constructed, not just claimed to exist. Conjunctive
normal form SAT is one of the archetypal NP-complete problems. The Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [58] is a basic automatic
SAT solver scheme, which searches the possible variable assignments and
makes use of opportunities to simplify the problem as it partially specifies the
assignments and backtracks if the simpler constrained problem is unsatisfiable.
The available simplification rules are the following:. Basic simplifications, which apply on formulas with literals, such as

¬⊤⇝⊥, or ⊤ ∨ . . .⇝ ⊤. Unit propagation, which assigns values to single clause literals: [Q ∨ R] ∧
¬Q⇝ [⊥ ∨R]. Pure literal elimination, which assigns values that always appear either
only negated or only not negated: [¬Q ∨ R] ∧ S ⇝ [⊤ ∨ R] ∧ S

In a heuristic tree search fashion, unless the formula simplifies to a literal, a
variable and the literal to set it to is chosen according to a heuristic, and the
more constrained formula is recursed with.
SMT solvers extend SAT solvers with support for formulas on non-boolean
types, for example, arithmetic over integers, bit vectors, or arrays. The DPLL
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approach is insufficient. To illustrate, consider the formula (a > 1000) ∧ (a =
30b). If DPLL was meant to be used, various values for a and b would be
set and backtracked out of, taking a large amount of cycles (unbounded for
arbitrarily large integers), and ignoring the (to a human) obvious constraints
the formula sets for their values. Adding some level of reasoning (“T-solvers”)
about these additional operations like integer addition is called DPLL(T) or
CDCL(T). CDCL, meaning “conflict driven clause learning”, defers solving
problems in the added non-Boolean theories to when it really matters for
the overall satisfiability, and finding conflicts between theory solver results.
These need to integrate tightly to a SAT solver. As an alternative, for some
theories, it’s possible to convert every operation into a Boolean formula on
the individual bits of a binary representation of the types. This is called
“eager” or “bit-blasting”. In such implementations, the SAT solver used
after this conversion can be chosen freely by the user. Neither approach
seems to be obviously better for the theories necessary for typical hardware
design verification, quantifer-free bit vectors (“QF_BV”). The performance of
various solvers can vary greatly theory to theory, problem to problem, circuit
to circuit. For example, the IsaSAT solver won the 2021 EDA Challenge [59]
while coming last in the SAT Competition 2022’s main track [60]. It can
be also be seen in fig. 3.4, which compares several CDCL solvers used with
Yosys. This benchmark is taken from a paper presenting rtlv [61], a symbolic
evaluation tool, applied to the problem of verifying an SoC deterministically
clearing its flip flop state in a set number of clock cycles after asserting a reset.
The SMT solvers used are Boolector [62], [63], CVC4 [64], MathSAT [65],
Yices [66], and Z3 [67]. Because of these performance differences, the open-
sources Symbiyosys [68] verification automation tool based on Yosys provides
the --autotune option, which compares and reports solver performance for
a given verification task. The z3 solver isn’t plotted fully because it crashed
after a few iterations.
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3.9 Theorem proof assistants

Automated theorem proving software like Coq [36] and Lean [69] provide
a way of verifying proofs. While they have been used to prove hardware
design correctness [70], their usage requires a great amount of manual effort.
Their principle of operation is to provide a programming environment for
writing proofs guaranteed to be true, with some automation functionality
with “tactics”. Meanwhile, SMT solvers are just clever exhaustive search
algorithms, but require less user interaction. Also, modifying the specification
or design may require rewriting proofs.

3.10 Logical equivalence checking

Automatic optimization steps in synthesis or manual optimizations can lead to
bugs in the described behavior of a circuit. To detect these, logical equivalence
checking (LEC) can be used. One way of implementing the equivalence of
two circuit implementations is to connect their inputs pairwise and to XOR
their outputs also pairwise. This new output vector then gets OR’d together.
This constructs a “miter” circuit. The miter circuit will have its output set if
the two circuit implementations have any differences in their outputs given a
set of inputs. Now, SAT or SMT can be directly used to find or disprove the
existence of such a set of inputs if it’s a combinational design. A logical circuit
network can be converted into CNF clauses in linear time [71]. If it’s sequential,
temporal induction can be used instead. Yosys implements this for example
with the equiv_add command to add an equivalence declaration between
two signals, equiv_miter to create a miter circuit, equiv_simple to prove
equivalence of simple (combinational) designs with SAT, and equiv_induct
to prove equivalence declarations with temporal induction. In addition,
equiv_opt automates the usecase for verifying correcntess of optimization
steps.

3.11 Conclusion

With a history of great financial losses due to unintended behavior of complex
hierarchical designs, formal verification seems theoretically like a “silver bullet”
to guarantee circuit compliance to specification. However, in practice, its
adoption is limited. It typically has priority over functional testing and BMC
only in highly complex elements like bus arbiters. This is because of its high
cost: formal verification requires a specific skill set to write formal statements
that truly cover the specification and lead to reasonable verification runtimes,
as well as a large degree of experience with the verification tooling. For
this reason, formal verification engineers are often holders of PhD titles
in hardware verification—a scarce resource. For most circuits, constrained
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random functional verification is deemed sufficient, even if it consumes a
large amount of man power. Temporal logics are often an afterthought due
to their reasonably low popularity—found bugs typically are of the sort that
would have been caught with a slightly more detailed or correctly performed
verification effort with simpler tools. Liveness properties are also more relevant
to software, where, for example, the time to fulfill a request can vary greatly
depending on its size and contents. This can be the case with coprocessors
and DMA engines and the like, but moderately weaker assertions with more
assumptions can discover design bugs quite well.
The support by Yosys and automation by SymbiYosys provides a flexible,
adaptable toolkit for verifying safety properties. In the commercial space,
a great amount of verification tooling exists with features to combat the
effort required to gain sufficient faith in design correctness prior to manufac-
ture. Famously, the typical budget for design verification has exceeded the
typical design budget many years ago. Tools like Cadence JasperGold [72]
and Siemens Questa [73] are capable of generating assertions for common
verification tasks like bus correctness, control and status register behavior.
The licensing cost of these tools varies, but estimates suggest that it’s com-
parable to the cost of engineering time required to use them. This presents
an opportunity for open source tools like SymbiYosys: bringing most of the
usefulness at the same level of reliability and drastically lower prices. While
SymbiYosys is licensed permissively, it is also distributed with a proprietary
environment, the Tabby CAD Suite, with a SystemVerilog frontend by Verific
Design Automation.
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Chapter 4
Synthesis

Logic synthesis is the conversion from an RTL circuit description to a network
of simple cells with a trade-off between quality metrics:.Total number of cells, which approximately corresponds to design area

and power. Number of primitive combinational logic cells on paths between clocked
cells, inversely corresponding to maximal frequency, and therefore design
performance. Synthesis runtime and memory usage

Prior to this, the source must be parsed and the syntax tree “elaborated”
by converting its programming constructs like tasks, blocks, assignments,
operators, and conditions into an RTL netlist implementing the language
semantics. This step is also called “RTL synthesis”. The semantics of if-
then-else convert to signal multiplexing, non-blocking (clock-synchronous)
assignments become inputs to D-flip flops, unassigned variables to D-flip flops
or latches depending on the language semantics, unreachable branches and
blocks are eliminated, and assignments in initial blocks become attributes of
the respective signals.

4.1 Combinational synthesis

The resulting network may be limited to a set of gate types, such as AND
gates and inverters, or just NAND gates, because these are all “functionally
complete” sets of Boolean operators. This completeness can be proven by
constructing all 16 truth tables with two inputs and one output, since from
such functions, any function with any number of inputs can be built by
combining them with the ITE (if-then-else) operator which also is built from
2-input operators. Constructing functions with k outputs is equivalent to
building k functions with a single output.
In order to algorithmically manipulate boolean functions, they must be
represented in some scheme. Truth tables are a basic representation of a
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4. Synthesis ......................................
logic function, which lists the output for all combinations of inputs, and
can support any number of outputs and inputs. A truth table of k inputs
and l outputs requires 2k+l−1 bits to be stored and becomes useless as a
representation for actual storage and manipulation of functions in non-trivial
designs. Truth tables are an example of a canonical representation, that is, a
representation that is isomorphic to the function. Therefore, truth tables are
equal exactly if the functions are the same.

4.1.1 Normal forms

Another representations are conjunctive and disjunctive normal forms (CNF,
also called maxterm form, and DNF, also called minterm form). A variable
and a negated variable are the basic building block. A conjunction of their
disjunctions then forms a CNF, and a disjunction of their conjunctions forms
a DNF. The canonical DNF (canonical minterm form) can be constructed
unambiguously from the truth table.

f (x1, . . . , xn−1, xn) =f(0, . . . , 0, 0)x′1 . . . x′n−1x′n

+ f(0, . . . , 0, 1)x′1 . . . x′n−1xn

...
+ f(1, . . . , 1, 1)x1 . . . xn−1xn.

(4.1)

Similarly for the canonical CNF.

f (x1, . . . , xn−1, xn) =[f(0, . . . , 0, 0) + x1 + . . . + xn−1 + xn]
·
[
f(0, . . . , 0, 1) + x1 + · · · + xn−1 + x′n

]
...
·
[
f(1, . . . , 1, 1) + x′1 + · · · + x′n−1 + x′n

]
.

(4.2)

4.1.2 Two-level logic minimization

Any CNF or DNF formula can be expanded into a canonical version and
unambiguously converted to a truth table. This shows the form’s canonicity.
CNF and DNF represent two levels of logic gates (three, including input
inverters) and simplifying them is called two-level logic minimization and
its goal is to minimize the number and length of terms in the normal form.
This was more relevant in the past, when the prevalent programmable logic
technology was PAL/PLA (programmable logic arrays) where inputs and
their negations were brought into a programmable array of AND gates and an
array of OR gates. Arbitrarily small two-level minimization is solved by the
Quine-McCluskey algorithm, if such a solution exists. It has exponential time
complexity in evaluating all input vectors (building a truth table) and requires
solving the NP-complete unate covering problem [74] with methods like branch
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Figure 4.1: Boolean function representing data structures

& bound with some simplification opportunities. More practical are algorithms
that iteratively expand and reduce their product terms (“cubes”) and remove
redundant ones as they appear, such as Espresso [75]. Espresso still requires
exponential operations like checking for redundancy, and contains heuristics
for selecting the directions in which to expand and reduce cubes and the
order in which they are iterated over. Some improvements have been made
to this idea:

. BOOM [76] improves runtime on sparse functions with many inputs.TT-Min [77] copes with dense functions with ternary trees. EXORCISM [78] covers terms with an odd number of XOR gates, im-
proving performance on arithmetic circuits

4.1.3 Graph-based representation and multi-level logic
minimization

Binary decision diagrams [57] (BDD, see fig. 4.1b) are graphs with directed
acyclic graphs (DAG) with non-leaf node out-degrees of 2. Each non-leaf node
is labeled with a variable. When the variable is true, the “1-edge” is followed,
and the “0-edge” otherwise. Evaluating the output of a function given a
vector of inputs is done by this traversal until a terminal node is reached,
which is a literal corresponding to the function’s output value. Edges may be
allowed to be complemented. Many BDDs can exist for a single function, but
under some restrictions, the structure becomes canonical—specifically, when
the ordering of the decision variables on the tree is fixed, and the function is
constructed such that duplicate subgraphs aren’t created. Then the structure
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4. Synthesis ......................................
is called a reduced ordered BDD (ROBDD). While an ROBDD given an
optimal ordering has a size linear with the function’s gate count or CNF/DNF
term count, finding the optimal ordering is NP-complete [79]. In general,
their size is exponential. However, operations on them, otherwise difficult,
like checking if a function evaluates to a constant true or false, or function
equivalence, are constant in time, or linear, such as combining two BDDs
into one by applying a logical operation on them. BDDs can be modified to
better fit some use cases, for example, the zero-suppressed decision diagram is
smaller for functions with few ones in the truth table (= long SOP terms), at
the expense of adding decision nodes that each have their 1-edge and 0-edge
leading to the same node.

f = x · fx + x̄ · fx̄, (4.3)
where

fx = f |x←1 , fx̄ = f |x←0 . (4.4)

AND-inverter graphs (AIG, see fig. 4.1a) are also binary DAGs. Nodes are
conjuctions of children, edges can be inverted, and nodes can be labeled
with what function they represent. Leaves represent input variables and the
constants 0 and 1. Constructing an AIG is done with structural hashing
at depth 1. This guarantees that no two nodes have the same two chil-
dren. However, an AIG constructed in such a way still can have redundant
subgraphs, only expressed differently. To construct a functionally reduced
AIG (FRAIG), [80] a conversion to a BDD or a SAT solver is used to find
and merge functionally equivalent nodes and remove unnecessary subgraphs.
FRAIGs are still not canonical, since one function can have multiple FRAIG
implementations. AIGs don’t suffer from the same size explosion problem
that BDDs do. Further operations are used to simplify or reshape AIGs:. Balancing: Nodes are merged along non-inverted edges to form N-input

ANDs (covering). These are then converted back into networks of 2-
input ANDs, such that the subtree depth is equal. This is equivalent to
minimizing the maximum comb delay assuming equal gate propagation
delays, ignoring inversion delays.. Rewriting: Beforehand, precompute minimal AIGs for all k-input func-
tions that only differ in input permutation, input negation, and output
negation (NPN [81] equivalence class), and associate them with their
hashes. The hashing function must preserve isomorphism between hash
equivalence and function NPN equivalence. For a node (or each node),
find a k-feasible cut. A k-feasible cut of a node is a subgraph rooted in
the node with up to k inputs (subgraph leaves). Compute its function
and replace the cut with the optimal cut.. Refactoring: factoring is a algebraic method where boolean formulas are
treated as polynomials

Similar data structures can be used, sometimes yielding performance and
quality improvements, where ANDs are replaced, and complemented edges
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can be removed, most notably majority-inverter graphs, XOR-AND-inverter
graphs, and XOR-majority graphs. Their benefits vary depending on the
circuit (arithmetic vs more random) and target technology (ASIC vs FPGA).
Multi-valued functions with output vectors can be represented in BDD and
AIG by building a single BDD or AIG and labeling nodes representing each
bit’s function. Often, the behavior of a circuit is “incompletely specified”,
meaning the output can be true or false given a set of inputs. The repre-
sentations listed need to be duplicated to model separately the “ON-set”
(when is the output true) and the “DC-set” (set of inputs when the output
doesn’t matter). Representations that store SOP terms for linear lookup
and evaluation that include “don’t care”s exist, such as ternary trees, which
are similar to decision trees and tries, but with don’t care edges added. If
only a part of a design is analyzed at a time, the preceding logic might only
be able to create certain output vectors (for example, a one-hot encoder
will only set one bit high) and the description of the part analyzed can be
optimized with that knowledge. These are called satisfiability don’t cares
(SDCs) and are compatible, meaning locally computing and making use of
them for optimization of one part of the logic won’t affect the correctness of
such optimizations in the next node. Similarly, the logic that follows might
have input vectors that it isn’t specified for, which makes replacing those
output vectors with DCs valid. These are called observability don’t cares
and aren’t generally compatible between “parallel” parts of the logic, but
can be made compatible by doing a reverse topological order pass through
the network of logic functions and replacing the functions with less specified
ones [82]. While the representations so far only cover combinational logic,
propagation of DCs through a design crosses clocked elements.
ABC [1] implements numerous operations, including all operations listed above,
and is integrated into the Yosys [2] toolchain as the abc and abc9 commands.
The abc9 command has greater timing-aware functionality. ABC uses AIGs
internally for multi-level optimization to a large extent. To return to a logic
network not restricted just to AND gates and inverters, the map command
is used to create these gates in RTLIL (the Yosys internal representation
language), unless mapping to FPGA LUTs or ASIC standard cells is desired
(see Chapter 5.1).

4.2 Sequential synthesis

4.2.1 Finite State Machine Minimization

As stated previously, an entire synchronous circuit is a finite state machine.
Designs with any amount of arithmetic have a huge reachable state space that
makes it futile to do anything requiring enumerating its states. However, often
even such designs include “controller” FSMs which can have only dozens of
states. This presents an opportunity to make use of this knowledge to assign
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4. Synthesis ......................................
state signal values to behaviorally described states such that some property
is improved, for example, the resulting area, or switching power. This is
especially important in always on, low power applications, like the sleep state
wakeup circuitry for a microcontroller. This is called state minimization and
encoding. Which signals represent an FSM state can be specified in the HDL
or it can be extracted from the sequential logic. State minimization combines
equivalent states into a single state. This can be done in polynomial time for
a fully specified FSM. Hopcroft’s algorithm [83] performs it in O(n log n) by
merging each Nerode congruence equivalence class [84] 1 into a single state.
The solution is unique as no arbitrary choices are required. If an FSM has
unspecified behavior given some input symbol in some state, it’s incompletely
specified. This is a situation where the designer has (hopefully deliberately)
specified that in that state such an input symbol is guaranteed not to arrive.
The behavior of the FSM is then allowed to be chosen by the synthesis tool.
State minimization on incompletely specified FSMs is NP-hard. Two states
are said to be “compatible” if both of the following holds for each possible
input:

.Their output DCs can be set to concrete values such that their outputs
are all equal.All their successor states are compatible

If two states are compatible, we can merge them without violating the FSM
specification. Since there may be many such operations, we want to find
the “maximum compatibility sets” by selecting pairs to merge such that the
number of states is minimal. This can’t be done greedily, because compatibility
isn’t an equivalence relation. It isn’t transitive: we can’t generally replace
state A with state B and then state C, even if A is compatible with both
B and C. As an example, let state A have unspecified transitions, B some
specified transitions, and C different from both A and B. While this popular
definition is symmetric, we can’t replace a more specified state with a less
specified one. Plotting the states and their compatibility relations as a graph,
we find ourselves wanting to find a clique and replace it with a single node,
then another, such that the final number of nodes is minimal. The choice of
which clique to replace makes this algorithm NP-hard. STAMINA [85] is an
algorithm which solves this problem exactly as well as through an inexact
heuristic mode.

4.2.2 Retiming

Retiming is a technique to reduce the critical paths or area by moving registers
around. For example, if a 2-input logic gate has each of its input driven by a
register, these registers can be removed, and as long as a register is added
on the output signal, the circuit function is unchanged. The gate has been

1This is the same equivalence as in the Myhill-Nerode theorem used to determine if a
language is regular.
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removed from the timing path containing the downstream gate, and added
to the paths containing the upstream gates. To formalize this process, we
construct a weighted graph, where nodes represent gates and edges represent
connections. Nodes are weighed with approximate propagation times, and
edges with the number of registers on the connection. A retiming operation is
defined as a function assigning an integer to each node. This (often negative)
integer determines the number of registers to move from inputs to outputs.
Performing this retiming changes the weights of each edge (u, v) by adding
r (u)−r (v). The retiming is valid when none of the resulting edge weights are
negative. The goal of minimizing critical path length can now be formulated
as minimizing the path with zero weight edges and the largest sum node
weights. This seems like a branch-and-bound problem, but turns out to have
polynomial solutions [86].
ABC [1] supports the retime operation, which implements linear-time retim-
ing given a target period [87], as well as a heuristic critical path reducing
algorithm, as well as an area minimizing algorithm. ABC finds the initial
register states with SAT, since retiming affects these.

4.3 Physical synthesis

In an ASIC PDK, often several implementations of the same gate are available,
differing in size and drive strength. At the expense of power and intrinsic
delay, high fanout2 nets can be driven with larger gates to decrease the
propagation delay. Using larger gates can also increase the delay due to
larger intrinsic capacitance of the output, and negatively affects the input net
timing because its input is harder to drive as well. Alternatively, the output
of a gate can be buffered, which doesn’t have this drawback, but typically
increases the area and power more than selecting a larger gate. Gates can
also be duplicated, splitting the fanout.

2Fanout is the count of signal sinks connected to the source. High fanout nets are
typically control signals, like clocks and resets.
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Chapter 5
Physical design automation

After a digital circuit meant for integrated circuit fabrication is designed and
verified, a good amount of processing is required to reliably bring it from
RTL netlist to physical geometry of each fabrication layer. Similar to PCB
GERBER files, this data is captured in GDS or Aperture file formats. A
well-integrated example of such a full “design flow” is OpenLane [88], which
automates together several open source tools and programs together with the
place-and-route flow by OpenROAD [5].
Each of the presented components presents a set of algorithmic challenges,
some of which are quite unique. Throughout this chapter, circuits designed
with the SkyWater 130 nm open source process development kit (PDK) will
be used for illustration.

5.1 Synthesis backends

A common approach to physical ASIC design is the standard cell design
style. The designer is provided with a “cell library”, defining a set of cells
for combinational logic, flip-flops, as well as cells that aren’t tied to the logic
design, such as antenna diodes1, tap cells for mitigating CMOS latch-up,
decap cells adding capacitance to the power rails to mitigate voltage drops
and ground bounce, delay cells to meet timing. Standard cells are optimized
for the manufacturing process as well as the target “corner” in the PPA
trade-off. Standard cell design assumes a fixed width for the cells to allow
for a regular routing structure, constraining and simplifying placement and
routing. It increases the need for routing over fully custom designs, but
this problem has been reduced with advancements in fabrication processes
allowing for more metal interconnect layers.
A similar problem in physical design automation for FPGAs is the mapping
of logic networks into its fundamental combinational logic building blocks, the
look-up-table (LUT), which is a reprogrammable read-only memory with a
k-bit data bus, indexed by a k-bit address. The memory is programmed with

1Antenna diodes mitigate charge buildup on long connections in the fabrication process.
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Figure 5.1: OpenLane design flow [88]

the truth table of a logic function. The address bus becomes the function’s
input vector. The inputs and outputs of these basic elements of logic (BEL,
typically also contain registers or adders and multipliers) are then routed to
neighboring cells through multiplexers.
A tech mapping Verilog file for a cell is marked to be compatible
with a cell in RTLIL, and when elaborated, generates a struc-
ture made from simpler tech specific primitives. This mapping
can be conditional, for example, if the tech library only specifies
cells for some bit widths and not others. As an example, the file
pdks/sky130A/libs.tech/openlane/sky130_fd_sc_hvl/rca_map.v in
(correctly setup) OpenLane is marked to match $add Yosys blocks to single
bit full adder technology specific primitives.
Multiple RTLIL cells aren’t merged at this stage. If mapping to larger primi-
tives is necessary, it needs to be explicitly instantiated in the original design,
or the extract run can be used, which searches the design for subcircuits
from a given list, creating a custom cell types. The extract can also be used
without a subcircuit list to “mine” for common subcircuits, which can be used
as information for what cells to additionally add to the cell library to meet
PPA targets. Tech mapping isn’t responsible for generating SRAM cells and
encountered memories will be converted to flip flops, which is much less effi-
cient. Often, not all D flip flop (DFF) cells are implemented in the cell library.
The dfflibmap pass converts unimplemented DFF cells from implemented
ones by invoking dfflegalize, which transforms DFFs by adding inverters
or hard-wiring more complex DFFs to act as simpler ones. Afterwards, abc is
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used for logic optimization and AIG-based to map combinational logic cells,
unlike in FPGA techmapping, where the design is mapped with the techmap
pass, after abc optimizes the design and performs generic LUT mapping,
only given the LUT width. For FPGA designs, DSP blocks are converted to
target-specific nodes with techmap before the generic techmap passes, simi-
larly to for example full adder cells in a PDK. The FlowMap [89] algorithm
is a classical LUT mapping algorithm, which finds “k-feasible cuts” for all
AIG nodes and selects cuts that minimize delay. The if LUT mapper in
abc brings improvements, most notably, linear runtime with AIG size rather
than polynomial, and only selecting “priority cuts”, allowing for a trade-off
between delay and area. Using abc to map to standard cells internally works
the same way. This assumes cells have load-independent (regardless of fanout
and parasitics) timing and relies on gate sizing and fanout optimization (see
Chapter 4.3) to meet this assumption.
The liberty file format defines propagation delays, fanout limits, resistive,
capacitive, and leakage properties, discretized rise/fall waveforms, as well as
power characteristics and operating conditions, all with relation to its input,
output, and clock pins.
The minimal example provided by Yosys documentation [2] is shown in Listing
3. OpenLane extends this with extra techmap calls.

# convert design to (logical) gate-level netlists
techmap
# perform some simple optimizations
opt
# map internal register types to the ones from the cell library
dfflibmap -liberty cells.lib
# use ABC to map remaining logic to cells from the cell library
abc -liberty cells.lib

Listing 3: Example Yosys script

5.2 Floorplanning

The floorplanning phase places cells from a netlist into 2D space with several
considerations determining placement quality. If all I/O pads and macro cells
and macro cells (blackboxed, pre-routed submodules of a known size) are
fixed in place, we consider the task at hand “placement”. If some of them
have flexible dimensions or locations, we consider the additional task prior to
or integrated with placement “floorplanning”.
Before floorplanning is done, it’s often beneficial to introduce artificial hi-
erarchy to the “flat” netlist we take as input. This is called partitioning.
Partitioning is the decomposition of cells into subsets such that connections
crossing subset boundaries are minimized. This is without any notion of 2D
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space yet. The desired size of the subsets needs to be set large enough to
allow for placement and routing quality, but small enough to reduce runtime
and memory usage, since these factors are important for pushing the limit
of maximum feasible circuit complexity given the desired design iteration
duration—often the ideal target is for silicon rebuilds to be done nightly,
meaning under 24 hours. Additional constraints for partitioning include
minimizing the maximum number of times a path is cut (called the delay),
and limits on the terminal count per partition, and on the partition count.
Iterative top-down partitioning works by cutting partitions (sets of nodes)
into equally sized smaller partitions by selecting k lines through the 2D space
such that the number of edges crossing the cut is minimized. The Kernighan
and Lin (KL) [90] algorithm modifies this by generating a random balanced
partitioning first, and swapping pairs of nodes between partitions, with pairs
selected by inspecting the number of cut crossing edges removed and added
and picking the “best” pair. Swapped pairs are then locked in place and not
swapped again. Once there are no more improvements to be made, all nodes
are unlocked, and another iteration is done. These partitioners only minimize
the number of edges cut. The KL algorithm has cubic complexity and is
guaranteed to find partitions balanced in area as a trivial invariant of cell
swaps. The Fiduccia-Mattheyses (FM) [91] algorithm, a modified versions
of KL, uses cell moves instead of swaps, operates on hypergraphs with a
specific representation, and achieves quadratic complexity, while honoring
a set partition area balance constraint. The hypergraph is a graph-like
mathematical structure, practical for the problem of design partitioning. A
hypergraph has a set of nodes similar to an ordinary graph, but its edges
are sets of any positive number of nodes, rather than only 2. A netlist can
be represented as a hypergraph with components (cells) as nodes and nets
as hyperedges. Whenever a hypergraph needs to be treated as an ordinary
graph, its hyperedges need to be replaced with cliques or star graphs.
There are many more approaches to top-down partitioning. One inspects
the spectrum (set of eigenvectors) of the Laplacian matrix (difference of the
degree matrix and the adjacency matrix of the graph) and uses eigenvectors
as 1-dimensional node placement that then can be partitioned easily.
Conversely to top-down partitioning, bottom-up clustering (see fig. 5.2) works
by joining partitions to find their shared parent partition. These partitioners
typically aim to minimize delay added by the partitioning. Delay optimality
is achieved, if the maximum estimated delay summed over a path from a
primary input (PI) to a primary output (PO) is minimal. In the general
delay model, the node delay, intra-cluster path delay, and inter-cluster path
delay estimates are required.
The Rajamaran and Wong clustering algorithm [93] operates on a circuit
DAG and achieves delay optimality under the general delay model. First
is the labeling phase, where nodes are labeled in topological order with the
maximum delay from PI to the node, using the general delay model. As this
is done for each node, a suggested cluster of predecessors of the given node is
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Figure 5.2: Clustered graph adapted [92]

constructed as the set of predecessors furthest away from the PI, therefore
closest to the given node. Afterwards, POs are added to a set L. As long as
there are nodes in L, we remove a node from L, the suggested cluster of the
node becomes a cluster if it isn’t a cluster already, and all input nodes for
the cluster are added to L.
The LUT-mapping tool FlowMap [89] from the FPGA world may be used
for clustering as well. The difference in results is that FlowMap restricts the
maximum number of inputs and outputs to a cluster to a set number, since
it’s meant to merge LUTs to fit into k-input LUTs. This is called the pin
constraint. Also, FlowMap uses the unit delay model, which differs in that it
only considers gate delays. An implementation of FlowMap is available in
Yosys as the flowmap pass.
Multi-level coarsening then chains several clustering and partitioning runs to
create a hierarchical partitioning with improvements in runtime. The hMetis
algorithm [94] first runs k levels of clustering. This creates a small network of
large clusters. This network is then partitioned without cutting the clusters.
The clusters are unclustered within each partition, revealing more nodes.
Each partition is now again partitioned, and so on, until the lowest level
clusters are unclustered and partitioned. This process is called decomposition
and refinement. We arrive at the final result, a hierarchically well-partitioned
circuit. The clustering and decomposition allow the program to only hold in
memory as much circuit complexity as needed for good partitioning results,
reducing runtime and memory requirements. The coarsening steps also
don’t have to be optimal with regards to delay, as they only server to
localize interconnected circuit subsets for better partitioning. Therefore, the
coarsening is done in a faster way than typical clustering.
Additional features are added to some of these algorithms to match industrial
use-cases, such as register retiming, power dissipation considerations, and
semi-manual partitioning according to timing criticality and clock domains.
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5.3 Placing

A placer assigns cells positions on the die, such that total wire length and
area are minimized. While actual wire length is going to be decided by the
router after placement, estimation models are used instead. The minimum
Steiner tree (similar to minimum spanning tree of a graph with edges weighted
with cell distances, but with adding extra vertices allowed) gives a lower
bound for a single net, so the sum can be used as the objective function.
The optimization version of the Steiner tree problem is NP-hard, so instead,
half-perimeter wire length (HPWL) or minimum spanning tree can be used
instead. HPWL is given by the perimeter of the smallest bounding box
covering all pins in the net and be computed in linear time with respect to
pin count and empirically correlates with minimum Steiner tree length. In
practice, other estimations are often used to drive placer decision-making.
If meeting timing is implemented as a constraint, connections are assigned
timing budgets that according to the estimated timing budget of a path.
Timing optimization throughout the design process isn’t only meant to
eliminate negative slacks, but also to minimize positive slacks, allowing for
solutions with smaller area and power. If positive slack is available on some
connections on a path, while another connection has negative slack, it is
possible to redistribute the timing budget to meet timing without necessarily
immediately modifying the solution. An alternative approach is reweighting
the edges according to their criticality and basically optimizing slack as a part
of the placer objective function. This leaves more opportunity for intermediate
placer states that violate timing, but converge to meeting it, and leads to
better runtimes and memory usage as the design grows because the number
of paths to check for violated timing can grow exponentially with the number
of gates.
Congestion is a factor not covered by the wire length estimates. When each
of many nets would ideally be routed through the same area, that area is
said to be congested. If large amounts of congestion are present in the placed
design, then the router is forced to route connections through long bypasses,
adding delay to critical paths, and its runtime can be much longer because of
the difficulty of finding satisfactory solutions.
Min-cut placement [95] (see fig. 5.3) is a method of placing via partitioning
in 2D space. This requires cutting geometrically localized partitions into
smaller partitions along a horizontal or vertical line, until the partitions are
of a desired size, which can be as small as one cell. If it’s larger than one cell,
a process called legalization is required to finish placement, aligning cells to
a desired structure (snapping to rows, see fig. 5.4) without overlaps. This
is often implemented as a part of a “detailed placer” which does additional
local optimizations. The main stage is then called a “global placer”.
The cut direction (horizontal or vertical) can be selected in an alternating
order or depending on the partition aspect ratio. In this approach, only
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Figure 5.3: Min-cut placement, adapted [92]

Figure 5.4: VCC and GND rails in a standard cell row

hyperedges between nodes within a partition are considered. “Global” edge
lengths can be reduced by considering nodes in partitions other than the one
being cut, and swapping them to one of the closest partitions. Alternatively,
a set of adjacent partitions can be considered at a time, resulting in a “sliding
window” approach, which can improve performance. If congestion is present
at the end of placing, free space left in the partitions can be redistributed by
swapping cells further, ironing out congested areas.
Simulated annealing is a general technique popular for finding near-optimal
solutions to combinational problems like the traveling salesman problem. An
initial random input is generated, and a temporary “temperature” variable is
initialized. Iteratively, random alterations are considered. When the objective
function shows an improvement, the alteration is accepted, otherwise, it’s
randomly accepted with a probability depending on the temperature and
objective function change. The temperature is decreased by an amount
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generally non-linearly depending on the objective function value, and another
iteration is performed. Accepting worse solutions allows the method to escape
local minima and solve very non-linear problems. When the temperature
reaches some threshold, the loop is terminated, and small improvements
can be iteratively reached while available. Simulated annealing is applied to
placing by encoding actions like cell swaps, moves, and rotations. A notable
example of using simulated annealing for placement is TimberWolf [96], which
has since its conception been enhanced with multi-level clustering as a part
of the simulated annealing procedure.
Another class, which has gained popularity with great performance, are ana-
lytical placers. Initially, absolute value wire length models were approximated
with quadratic ones to turn the objective function into a continually differen-
tiable convex function, which can be easily minimized by analytically finding
its gradient ahead of time. It should be noted that these objective functions
separate the x and y components of the wire length model. Minimizing their
sum is then done using linear methods such as conjugate gradient descent or
Nesterov accelerated gradient descent. The quadratic approximation doesn’t
lead to minimal wire lengths, so non-linear approximations were introduced,
empirically converging to better solutions. Analytical placers require the
hypergraph to be flattened into a graph, converting each node (net) typically
to either a star or clique graph of size equivalent to the net’s pin count. The
wire length is computed from this flattened graph. Good performance has
been achieved with the Bound2bound net model [97], where, for example for
the x-component, all pins are connected to the leftmost and rightmost pins
in the net. The connections are then weighted with

(xi − xj)2

(p − 1) |xi − xj |
, (5.1)

where p is the net pin count, xi and xj are the coordinates of the pins. The
denominator linearizes the wire length, leading to direct HPWL optimization,
while retaining desirable gradient properties. One major difference is that
while partitioning and simulated annealing guarantee gates don’t overlap
since their locations are constrained and they are typically swapped between
valid locations, analytical placers don’t come with such a guarantee, and
often require some post-processing to push them away from each other, or
additional expressions in the objective function to minimize overlap in each
iteration.
A peculiar type of analytical placers are force-directed electrostatic placers
[98], [99], which measure placement congestion (density) as the potential
energy of a system of charged particles. Each node is given a charge equivalent
to its area. The density gradient then corresponds to electrostatic repulsive
force. The resulting problem is solving Poisson’s equations with Neumann
boundary conditions. To solve it, we need the potential function to be
smooth, which can be achieved by performing smoothing with a bell-shaped
function of some kind, or by decomposing to a limited set of discrete spectral
components. Smooth spreading means cells aren’t swapped to cope with
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congestion, but only pushed away from each other. Penalizing density in
the objective function is equivalent to setting max density as a constraint by
introducing a Lagrangian multiplier, the density penalty factor.
The global placer in OpenROAD [5], a rewrite of the state-of-the-art RePlAce
[100], implements an electrostatics-based analytical placer using the spec-
tral method, and includes a GPU solver implemented in CUDA. The GPU
solver is unused in the OpenLane flow due to OpenLane’s distribution as a
Docker container. RePlAce also includes several optimizations that make it
competitive in standard benchmarks and large real world designs:

. Solver step size is automatically adjusted while the solver runs.When step size is overestimated, the solver backtracks to an earlier state
and adjusts.The density estimation used is obtained by calling the global router
for one iteration, getting its congestion in each “bin” (rectangle area in
a rough grid) and inflating all cells corresponding to the density and
density penalty factor, almost guaranteeing routability.The density penalty factor is increased as the placer improves wire length
over its iterations. This allows connections between cells to play a greater
role at the start of the placement without cells in a strongly connected
part of the design getting “stuck” on the repulsive force of other cells in
the way.Whenever the sum overflow (excess cell area in a bin) over all bins
improves by a set amount, routing slacks are estimated, and an amount
of the worst offending nets are reweighted. This gives the wire length of
critical paths priority in the wire length minimization

The global router routing congestion estimation step dominates the global
placer runtime on larger designs.
The detailed placer in OpenROAD is OpenDP [101]. OpenDP legalizes cell
placement by searching for the nearest (in terms of Manhattan distance)
legal place to move a cell to. OpenDP can also run simulated annealing to
minimize the total displacement needed to find legal placement, which isn’t
implemented in OpenROAD’s implementation. It supports cells that have
mixed height (spanning more than two rows).

5.4 Clock tree synthesis

Only once a final placement is known for all logic cells, the clock tree has
to be created due to the connection length dependence of the required clock
signal buffering and delay matching. Also, since clock signals are a great
source of obstructions in the routing phase, clock tree synthesis (CTS) can’t
be performed after routing is done, because good routing takes into account
all (at least locally) required connections. The skew-minimal clock tree is
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an H-tree, an H-shaped line fractal, which reaches every point in a square
area with a path from its center with equal distance. Equal delay to clocked
cells is important for timing closure, because clock skew reduces the slack for
combinational logic propagation delay between clocked cells, reducing design
performance, increasing down router runtime, or outright causing the router
to fail to find a valid solution. Furthermore, it’s important for chip yield
due to variation in propagation delay due to physical inconsistencies in the
manufacturing process. Also, clock skew can cause hold violations, which
can’t be fixed by reducing the clock frequency2.
However, needlessly providing a clock to all points in a sparsely utilized region
increases power consumption with buffer switching activity and complicates
routing of other signals. In real-world designs, clock trees consume a significant
portion of total design power. A topology that decreases clock tree wire length
at the cost of greater skew is the fishbone topology, with a single trunk in
one direction, and a set of perpendicular wires to cells. The permissible slack
is also not a global parameter, but varies among combinational paths. A
trade off between H-tree and fishbone clock trees can be made by using a
generalized H-tree [102], which is a balanced H-tree with arbitrary branching
depths (number of branching points per path to leaf) and numbers of branches
at branching points.
The CTS tool in OpenROAD is TritonCTS. It hierarchically uses iterative
k-means clustering to find branching points for a set of sinks—this set being
one of the clusters found earlier. Buffers are then inserted as needed, not
necessarily at every branching point of the clock tree.

5.5 Routing

The basic formulation of the routing problem is that for finding a path
between two points in a grid with obstructions. The simplest optimal solution
(finding the shortest paths) is Lee’s algorithm [103], which iteratively in step
i marks all grid points reachable from the source in i steps with the least
number of steps (an integer less than or equal to i) and a list of grid points
the point is reachable from in that number of steps. This propagates a “wave”
through the grid, until the sink is reached. The shortest path which reaches
the sink is now retraced by traversing the lists from the sink to the source.
Its asymptotic complexity is O(hw), which it reaches with long paths, which
force the wave to propagate throughout the entire grid. Soukup’s algorithm
[104] improves this by considering only steps that bring it closer to its target if
possible. While it has empirically much better runtimes, it has the same time
complexity, and isn’t guaranteed to find optimal routes (it might greedily go
through a maze rather than walking around it). The well-known A* algorithm

2This happened to the entire first batch of Google’s OpenMPW program, MPW1, due
to the CTS failing to provide a delay-balanced tree, and the lack of parasitics extraction for
routed wires. Timing was estimated before routing, from placement. This has now been
addressed by the OpenROAD parasitics extraction tool OpenRCX.
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Figure 5.5: Four routing layers with alternating direction

[105] is a modification of Dijkstra’s algorithm for finding the best path to
a single goal, using time-optimal heuristics. Hadlock’s algorithm [106] uses
A* with heuristics based on the “detour number”, the number of steps taken
that don’t decrease the distance from the destination. It’s guaranteed to find
the optimal solution, also has the same time complexity, but empirically has
better run times than either previous solutions.
All solutions mentioned so far are “maze routing” algorithms, which start at
one point, and search for the other, traversing the grid. Notable improvements
can be made by searching from both ends cooperatively, taking leaps spanning
many grid steps at a time. This is how “line-probe” algorithms operate. In
the initial step, a pair of line segments (vertical and horizontal) are emitted
from the source as well as the terminal. These terminate either at the grid
boundary, or at grid points immediately before obstacles in the way, and
are labeled with depth 0. Iteratively, additional line segments perpendicular
to existing ones are added, with increasing depths, while marking whether
they originated from the source or terminal. Once a source segment crosses a
terminal segment, a path can be constructed from these. This general scheme
has been originally implemented in two ways. The Mikami-Tabuchi algorithm
[107] creates new perpendicular segments at all points of existing lines, while
the Hightower algorithm [108] only creates them at points immediately before
obstacles, or immediately after an obstacle is no longer running parallel to
a segment. Both algorithms have the same time complexity, which is linear
with the number of line segments in their found solutions. Mikami-Tabuchi
requires more work to find a path, but is guaranteed to find the optimal one,
while Hightower has no guarantees of finding an optimal solution or even a
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Figure 5.6: L-RST separability, adapted [92]

solution at all.
As previously noted, the minimum Steiner tree gives a wire length lower
bound for a single net. Multi-terminal routing algorithms attempt to find
the routing solution for a given net with minimal wire length or delay. These
algorithms do not consider obstructions, but are still very useful, as will be
explained later. To simplify the problem, we will consider rectilinear Steiner
trees (RST), meaning restricted to horizontal and vertical wire directions.
Since the minimum spanning tree (MST) can be computed in linear time,
given a complete graph weighed by terminal (cell pin) distances. Such a graph
is a clique and can be built in quadratic time. Rectilinear MST (R-MST) is
sufficient to find a routing with at most 3

2 the wire length of an optimal RST
[109]. To optimally route a net, it’s unnecessary to consider all possible grid
points. This is because all optimal solutions have edges on a strict subset of
the grid, the Hanan grid [110], which includes only grid rows and columns
with at least one node present.
The L-RST algorithm [111] (see fig. 5.6) finds an MST, and assigns whether an
“upper L” or “lower L” shape is used to connect the endpoints of an edge in the
MST. It achieves this in linear time by building an R-MST from a separable
MST, meaning only adjacent edges can overlap in the routing grid. This
is guaranteed by making use of the freedom whenever a conventional MST
algorithm has multiple choices. This is implemented by weighing edges with
a 3-tuple rather than just Manhattan distances, and sorting lexicographically
to make optimal choices. When distances are equal, vertically taller edges
are preferred. When their y-distances are equal as well, the edge with the
rightmost node is selected. Once the separable MST is found, a root is
arbitrarily selected, creating a proper tree to be traversed bottom-up. In
this traversal, we calculate the length of overlaps given the edge to parent is
routed as upper L as well as the length given it’s routed as lower L. As each
non-leaf node is considered, overlaps are counted for each of the 2d choices for
routing only the edges incident to the node. To this, we add previously found
overlaps in the subtrees rooted in the considered node, given the routing
selected for the edge to each child node. Since d is the degree of the MST
node, which is bounded in the context of distance graphs in a 2D plane [112],
we are doing constant work on each node, so this bottom-up pass is linear.
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All this is followed by a linear top-down pass, which finally assigns routing
to edges in such a way that overlaps are maximized, finding the minimal
R-MST.
Alternatively, we can aim to directly build a good RST. The simplest way is
by adding Steiner points one-by-one, which is called the 1-Steiner problem
[113] in considering all possible Steiner points to add and computing the wire
length improvement (“gain”). The implementation is as follows: starting
with an MST, for each MST node and edge pair (such that the node isn’t
an endpoint of the edge) consider adding a Steiner point to the closest point
to the node on the rectilinear bounding box of the edge. This adds a cycle
to the graph. Disconnect the cycle by removing its most expensive edge.
The wire length gain is the length of the added edge subtracted from the
length of the removed edge. All such pairs are considered, sorted by gain,
and their suggested Steiner points accepted, if previous Steiner points haven’t
made them infeasible. Whenever a node and edge pair is selected as the
best options, the edge is snapped to the upper or lower L routing defined by
whichever point is closest. Therefore, only as many Steiner points as there are
edges can be added. Overall, this modification [114] of the 1-Steiner algorithm
is quadratic. However, this doesn’t generally generate the minimum RST,
since locally the best Steiner point to select isn’t necessarily present in the
globally best set of Steiner points to add. Solving the RST problem is in fact
NP-hard, but 1-Steiner does build shorter trees than L-RST, at the price of
a longer run time.
The above algorithms minimize total added wire length. However, it’s possible
that their solutions contain a long route between two points that exceeds
slack in an associated critical path. Instead, the longest output-input path in
the net, called the radius, can be minimized to avoid this situation. Achieving
this requires leaving the optimal Steiner trees and formulating the bounded
radius minimum routing tree (BR-MRT) problem, where the minimum wire
length routing is constructed given a radius constraint. An easily implemented
solution is the bounded Prim algorithm (BPRIM). The MST search is started
from the single output (source) present in the net. In general, there may be
tri-state driven pins in a circuit, but are a special case that can be expensively
handled. Random logic is never modeled as tri-state. Whenever an edge is
considered for addition, a relaxed version of the bounded radius invariant is
checked. The relaxation constant is specified by the user and sets the trade
off between meeting the radius bound and minimizing wire length. If the
condition isn’t met, the point is instead connected to a point in the MST
that meets the unrelaxed condition. The edge used to connect it is called
an “appropriate” edge. The radius and wire length both have known bounds
given the given relaxation parameter. The minimal radius is the Manhattan
distance from the source to the furthest sink, which can be computed and
achieved by setting the relaxation parameter to guarantee the radius bound
constraint. Solutions found by BPRIM often have needlessly long appropriate
edges with crossings. An alternative method is the bounded radius bounded
cost (BRBC) algorithm. First, the MST is rooted in the source and labels are
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stored in a list in order of depth-first traversal, with non-leaf nodes present
multiple times. The solution is initialized to the MST. We traverse this list.
The weight of the edge traversed to get to the next node is added to the
integer, unless it’s greater than the distance from the source multiplied by
the relaxation constant, in which case we reset the integer to zero and to the
solution we add an edge from the source to the node. We now have a graph
with cycles. Its shortest path tree is our BR-MRT, which we can obtain in
cubic time.
Whether wire length or radius should be prioritized can be estimated with
Elmore delay [115]. From resistive and capacitive properties of connections
and nodes, an estimate well correlated with the signal propagation delay can
be constructed. Routers can directly optimize for the Elmore delay. The
delay to propagate a signal through a tree where edges represent routing and
nodes represent their forks is formulated as a function of the total capacitance
driven in each subtree, the resistance and capacitance of each edge on the
path through the graph. In the case of a single long connection, the Elmore
delay becomes quadratic with respect to its length. In Elmore routing (ERT)
[116], we root a tree in the source, and iteratively add nodes, such that the
maximum (over all leaves) Elmore delay is minimal. Nodes to consider are
limited to the nearest neighbors of nodes already in the tree. Notice that we
don’t add any Steiner points, only finding the Elmore-optimal MST. This is
changed in Steiner Elmore routing (SERT) [117], where we search for nearest
nodes to edges already in the tree rather than to tree nodes, adding Steiner
points when to build the connection.
While considering each net in isolation is possible, it doesn’t yield the best
results possible. When an infeasible routing is found, which is typically
the case, the offending nets need to be “ripped up and rerouted” (R&R)
to alleviate congestion. Solving multiple nets concurrently can help reduce
congestion directly. One option is formulating routing multiple nets as a
multicommodity flow problem. Conversions to integer linear programming
(ILP) are a common tool in finding solutions to various formulations. However,
prohibitive runtime has been a major drawback. In negotiation-based routers
[118], each node available as a routing resource is associated with a cost based
on its congestion history in previous iterations and number of signals using it.
As the congestion history term increases for congested nodes, nets need to
negotiate over access with priority depending on their slack. This is a form
of R&R routing.
In reality, routing isn’t a 2D problem. With several metal layers available,
the goal becomes finding a valid short timing-based routing solution through
the 3D space, such that the via count is also minimal. Via minimization is
important for yields and failure rates. Directly searching for routes through
the 3D space is computationally infeasible, so 2D global routing solutions are
assigned to layers. However, building Steiner trees and assigning paths to
layers can be implemented with methods that decrease the number of vias
required.
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Similarly to placement, routing is typically split into a global and detailed
phase. Global routers assign each terminal of a placed cell to a tile in a
grid, and search for routes through this small new grid. Many nets can
pass through or have terminals in a single tile, so each net can be routed
almost separately with Steiner tree methods, despite the fact that they do
not consider any obstructions. Cross point assignment (CPA) determines
where on the tile boundaries the nets will pass through. Detailed routing
then connects nets together within each tile, connecting terminals and cross
points. Multi-net methods need to be used at this stage, working on each tile
separately. The detailed router must be able to route the design correctly
with respect to all rules that guarantee manufacturability, which are later
verified with design rule checking (DRC) tool.
The global router in OpenROAD is FastRoute [119]. First, minimal RSTs
are built. To minimize vias and move routing segments away from congested
areas, opportunities for arbitrary segment moves (“segment shifting”) are
used. The Hanan grid isn’t used as a restriction for this. Even before this,
congestion isn’t estimated from the solutions directly, but for each L shape,
both options (upper L or lower L) are applied with half weight. In real
world designs, routing demand for horizontal is often higher than vertical
or vice versa, and this can also be used as a heuristic for selecting minimal
RST implementations, to trade off vertical routing for horizontal. Also, the
maximum routing demand for a row or column is minimized, leading to the
preference of for example two shorter vertical segments at different horizontal
coordinates than a single longer one.
The detailed router in OpenROAD is TritonRoute 4.1 [120]. A detailed router
needs to be aware of DRC rules to find valid routes. To implement this at
speed, look-up tables between vias and track (connections with fixed width,
unlike abstract connections) L-turns. The vias used in detailed routing are
selected according to heuristics that aim to reduce the amount of influence
(obstruction) the via has on its surroundings, given the track orientations.
This is done separately for regular routing and “pin access”. Standard cells
have defined pin shapes on the first metal layer (often called local interconnect,
li1 in SKY130). This layer can’t be used for routing. Pin access [121] is
the problem of finding a valid point on each pin to add a via to the routing
layers and is done as a preprocessing step before detailed routing, which then
sees those vias as the routing targets. TritonRoute finds access points while
ensuring there is a valid direction the track on the first routing layer will then
likely be routed to, including the “up” direction, which corresponds to an
immediate via to the second routing layer. Ignoring this consideration would
lead to pin access creating unroutable points. The detailed routing procedure
itself is then performed as sequential A* R&R, which is penalized, when a
DRC violation look-up table matches the situation.
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5.6 Static timing analysis

The propagation delay between FF in a functional circuit has both an upper
and lower bound defined by the hold and setup times, desired frequency, and
clock skew. Formally, with tcycle = 1

f :

tcycle ≥ tdelay + tsetup + tskew, tdelay ≥ thold + tskew. (5.2)

This must hold for all paths that are possibly active. For example, if states
on a path was guaranteed not to affect the input signal of any FF because,
for example, that would require two outputs of a one-hot encoder to be true
at once, it could be ignored in timing analysis. This would make it a “false
path”. However, only “static” timing analysis (STA) is typically done, which
doesn’t try to determine whether a path is “sensitized” due to the complexity
that would add.
To meet timing constraints (achieve “timing closure”), estimates as accurate
as possible must inform the design process, from synthesis to routing, using
the newly created specific information. For example, clock skew is unknown
until CTS, and can’t be left out after CTS. The combinational logic in a
circuit for the purpose of CTS is represented as a DAG with all FF outputs
as sources and inputs as sinks. Nodes (gates) as well as edges (routing
connections) are weighed with their propagation delay estimates. Checking
for setup violations requires finding the longest path through the DAG, which
can be done with a simple traversal in topological order, assigning signal
arrival times to the nodes on the way as it’s traversed.
Rising and falling signal propagation often differs by significant enough
amounts to warrant separate characterization and consideration in arrival
time and slack calculation. Propagation times aren’t fully deterministic,
can be influenced by surrounding switching activity, and can be modeled
with probability distributions. The basic approach is to use worst-case
characteristics for each step, but for optimizing PPA metrics, it’s possible to
directly model the slack probability distribution, trying to meet timing for a
set low violation probability, and to take into account surrounding signals.
Hold violations are guaranteed not to happen by CTS by buffering and
balancing the tree. However, hold conditions must be rechecked when the
circuit is modified in physical synthesis.

5.7 Layout vs schematic checking

Since bugs may be present in the physical design flow, the standard cell netlist
may implement a behavior different from that specified in the original RTL
description of the circuit. Layout vs schematic checking (LVS) is a step that
ensures consistency or helps find the step which creates inconsistency. In
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OpenLane, the netgen LVS tool from the QFlow [122] project is supported
to perform this taks, as well as the LVS functionality of the KLayout layout
viewer [123].

5.8 Circuit extraction

A placed and routed standard cell based design relies on the correctness of
guarantees by the standard cell library and PDK designers about timing
and power. These might be violated in edge cases not considered. Often
used as a last resort, time-consuming, computationally intensive procedure
when a fabricated chip design is faulty, if the standard cell library provides
the actual geometry, circuit extraction can be performed to recover data for
analog SPICE simulation of quantities like fall and rise times and propagation
delays to track down the source of the hardware fault. The polygon geometry
in the fabrication layers is used to model a section of the chip as discrete
devices, with no knowledge of standard cells. It can also be used as a baseline
characterization of a standard cell based circuit for developing a custom cell.
OpenLane supports the ext2spice circtuit extraction tool provided by the
Magic layout viewer [124].

5.9 Design rule checking

The Design Rule Check (DRC) and Electrical Rule Check (ERC) are critical
for manufacturability. These rules are specified by the foundry. Design rules
are rules about the permissible geometry on each layer and between them.
While the most basic rules are easy to describe, like constraints on the metal
track width, minimum separation between polygons, or requiring a polygon
on the via layer to have metal on both sides, design rules can be scripts with
complex formulations by applying rules conditionally. Academic detailed
routers like OpenDP rely on DEF [125] files with fairly simple rules. The full
complex DRC rules are then checked with an external tool. In OpenLane,
this can be either Magic [124] or KLayout [123], the SKY130 open PDK
provides DRC rule files for both. Passing DRC relies on the standard cell
library being DRC-clean itself and designed with the knowledge about the
design rules in the DEF files. ERC defines electrical rules, like disallowing
unconnected polygons, shorts, and antenna rules. These need to be evaluated
with knowledge about the sources and sinks and helper cells like antenna
diodes. Since DRC and ERC make or break the usability of a design flow, in
development, the tools used for checking them need to be continually tested
with industrial tools [101].
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5.10 Design for testability

In the fabrication process of integrated circuits, due to various manufacturing
errors, the final manufactured layer geometry can have physical defects of
many types. If this defect causes a fault, that is, a modification of the
implemented logic in any way, it’s possible, but not guaranteed, that it will
lead to errors in the behavior of the device. As an example, a dust particle
might cause a metal connection to be broken (a defect), leading to a floating
input pin of a logic gate (a fault). The output of this logic gate will then
no longer fulfill its specification, and cause an error in the computation of
the next state of an FSM. This FSM will then get stuck in an intermediate,
invalid state, and the device’s outputs will no longer fulfill the device behavior
specification, possibly causing a failure of the system the device is integrated
into.
Defects are inevitable. With large designs on advanced manufacturing pro-
cesses, a minuscule chance of a defect on a single gate or connection is
magnified to a high probability that at least one of the chips on a wafer
is faulty. Therefore, integrated circuits must be tested after manufacture
(“off-line tests”). Similarly to functional verification of the design, a test is a
set of input vectors and expected output vectors. If the outputs of the device
match the expected output vectors, the device has passed the test. This is
carried out by specialized equipment (automated test equipment, ATE).
Let’s first consider testing combinational logic only. Testing all possible
input vectors (a “trivial test”) is infeasible, since their number is clearly
exponential with the number of inputs. In mass production, the time spent
on testing each chip adds to its cost. The purpose of a “structural” test is
to use knowledge about the circuit structure to find as many faults on each
connection between gates as possible. A “functional” (black-box) test has
to test all valid situations that can arise when the device is in use, which
typically leads to impractically larger tests. To evaluate how many of the
possible internal faults a structural test covers, we need a model of these
faults. A test covering all modeled faults is a “complete test”. The simplest
model is the stuck-at model, where each connection can have two faults, where
its value is stuck at 0 or at 1. More complex faults, like an input being driven
by a different non-constant signal, can be typically detected by stuck-at tests.
This testing doesn’t take into account faults in signal propagation times or
transient faults. Transient faults can be covered by on-line testing while the
device is in service.
For a fault to be detected by a test, it must change the output. For example,
if we were to test an input of a single OR-gate for being stuck at 0, we would
need to set that input to 1 to “excite” the fault, and set the other input to
0 to “propagate” the fault. For larger circuits, this only partially specifies
the input vector. This allows us to test multiple faults with a single vector.
Some faults may be impossible to observe (“redundant” faults). However,
that also guarantees that these will never lead to errors, as long as only one

54



.............................5.11. Physical design representation

is present. To make automatic test pattern generation (ATPG) feasible, we
only consider each fault in isolation. Notice that synthesis helps eliminate
unnecessary logic and reduces the overall computation needed for ATPG.
Generally, ATPG works by building a fault list, finding reductions between
faults, and iteratively generating test patterns. The reduction step finds
which faults “dominate” others. Fault A dominates fault B if any test for
B also detects A. If two faults dominate each other, they are “equivalent”.
Since finding the equivalency classes of a set of faults is NP-complete [126],
only “structurally equivalent” faults can be searched in the circuit near each
fault. When a test pattern for a fault is generated, it’s then simulated to find
other faults it also covers, and these are removed from the fault list. This
is continued until all faults are covered. Finally, the test can be “statically
compacted” by combining their patterns. Two patterns can be combined if
their specified inputs don’t overlap, for example, 0X and X1 can be combined
into 01, where X represents “don’t care”. Finding these overlaps reduces
to the unate covering problem, which is NP-complete [74]. For storage and
transfer, the test can also be compressed with classic compression algorithms.
Generating test patterns for each fault can be implemented with algorithms
such as PODEM [127] with exponential runtime or its later improvements [128],
[129]. Their runtime can be made manageable by limiting the backtracking
done while exploring the state space of input vectors, which leads to the
algorithm “giving up” on hard to cover faults. ATPG can be also implemented
by LEC (see Chapter 3.10) with SAT and some preprocessing [130]. Also, test
patterns can be generated pseudo-randomly. As a pseudo-random bit pattern
generator, a linear feedback shift register (LFSR) or simple cellular automata
can be used. These require minimal ATE storage for the test inputs. This
is a “dynamic compaction” method, since the test patterns are generated as
the test runs. A combination of either PODEM-based algorithms and SAT
ATPG can find complete or near-complete tests at reasonable runtimes.
Testing synchronous designs requires replacing flip flops with scan chain flip
flops, which enables serially shifting in arbitrary flip flop states from outside
the chip, and reading the values at flip flop inputs.
The unfortunately named Fault [131] is an open source tool for ATPG and
scan chain insertion. It performs ATPG with a psuedorandom generator by
default, but also supports PODEM and Atalanta [132]. While scan chain flip
flops are included in the SKY130 PDK, Fault hasn’t been integrated into the
OpenLane flow yet, despite documentation suggesting otherwise, and can’t
be used for SKY130 due to its support for only three types of flip flop.

5.11 Physical design representation

For interoperability of independent or integrated tools in a physical design
flow, a shared representation of the intermediate states of the design must
be defined and implemented. This representation has the form of a database
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Figure 5.7: Intel Arria 10 BEL, “Adaptive Logic Module”, adapted [134]

(DB). Supported types of objects must cover all the information needed to be
passed between tools not covered by other standards like SDC for timing or
DEF for macros. It can also be advantageous for it to cover the data structures
internal to the tools for consistency. For design checkpoints, deterministic
partial reruns, and solution space exploration to answer the question “how
will this parameter change the final outcome”, the DB must be serializable
to disk. For retrieval and modification performance, it must be possible to
hold it in memory and cache-efficient. To handle real-world designs, it can
be required to be only held partially in memory.
LEF (Library Exchange Format) and DEF (Design Exchange Format) [125]
file formats are an open standard, originally developed by Cadence and
Synopsys. LEF describes the available layers, vias, design rules, cell geometry,
and IO pads. DEF describes the geometry and pins of a macro as composed
from LEF objects. OpenDB [133], the DB for OpenROAD, is capable of
holding and writing the contents of LEF and DEF.
As an example of what detailed routing needs from a DB is shown well in
the TritonRoute paper [120].

5.12 FPGA placement and routing

The problems of physical design automation extend to mapping logic to the
available resources on FPGAs. As described in Chapter 5.1, any combinational
logic can be expressed in a sufficient number of LUTs. In contemporary FPGA
architectures, these are multiplexed with registers and arithmetic circuits into
“basic elements of logic” (BEL) as illustrated in fig. 5.7.
The FPGA place-and-route toolkit maintained by the creators of Yosys is
nextpnr [135]. To prepare the design for nexpnr, the Yosys abc pass is used to
map combinational logic to generic k-LUTs, where k is specific to the target
architecture. These are then directly mapped with techmap to target-specific
LUT primitives. If supported, DSP blocks with multipliers, block RAMs
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(BRAM), or LUTs used to implement RAM (LUTRAM) are also mapped with
techmap beforehand. I/O pads need to be mapped as well with iopadmap.
Nextpnr features two placers: a simple simulated annealing placer, and an
analytical placer [136], which adapts Bound2bound-based SimPL [97]. The
differences between the problem stem from the different constraints on valid
block positions. This is solved by legalizing each type of block separately.
Also, design-specific constraints arise as well, like carry chains in BEL adders
causing some BELs to be required to be placed in a column, because their
signals aren’t routable. For routing, two routers are provided, a simple A*-
based router, and one based on CRoute [137], which a negotiation-based [118]
A* router with a bias to route each source-sink pair closer to the geometric
mean of the net to decrease wirelength by sharing tracks. These routers don’t
have separate global and detailed phases. A timing optimizer [138] to search
for improvements to the legal placement is provided, but only used for the
Lattice iCE40 FPGA family. By default, the analytical placer is used. The
default router varies among supported FPGA architectures.
Once blocks are placed and routed, the design must be converted to a bitstream
to configure the FPGA. Bitstream formats and timing models aren’t published
by vendors3, so timing characteristics need to be inferred from the behavior
of official tooling, and bitstreams need to be reverse engineered by fuzzing
[139]. Most supported FPGA architectures remain only partially supported
and while the quality of placed and routed designs lags significantly behind
official tooling, the runtimes are often far superior. Lattice iCE40 are basically
fully supported by the nextpnr flow and the low runtime has already enabled
a design that would simply be impossible with official tools, the Glasgow
interface explorer [140], a feature-rich logic analyzer with built-in protocol
analyzer support which is selected and reconfigured by rebuilding the RTL
with the fully open source flow and the bitstream written to the device in
seconds.

5.13 Conclusion

OpenROAD is production-ready. It has successfully been used for hundreds
of tapeouts on mature nodes as well as some on advanced nodes, such as a
12 nm Global Foundries tapeout [141]. It’s composed of leading academic
physical design automation tools, many of which have been developed in col-
laboration with major chip vendors, and strongly integrated with flow scripts
for automation, the alternative to which is OpenLane by eFabless. With
its permissive open source license, it is attractive for companies to evaluate
it for even high performance designs with separately designed mixed-signal
macros. It’s timing-aware with tunable performance and reproducibility. The

3This is due to a combination of FPGA architecture intellectual property protection
and, according to an anonymous source, pressure on FPGA vendors by defense customers
to prevent reverse engineering and replication of their products.
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difference between academic and industrial tools seems to be increasingly
limited to the level of utilization of platform and design type specific opti-
mizations. Its runtime goal is a 24-hour full automated chip build with no
human-in-the-loop, which it meets for moderately sized designs.
It should be noted that OpenROAD isn’t the only or first opensource full
chip design flow. QFlow [122] uses Yosys [2] for synthesis, a fork of the
simulated annealing-based TimberWolf [96] place-and-route tool, a simple
detailed router and STA tool. It integrates with the Magic layout viewer
[124] and uses it for circuit extraction and GDS generation. It also features
the netgen LVS tool, also used by OpenLane. The maintainer of QFlow is
now involved in the development of both OpenROAD and OpenLane [142].
Coriolis [143] uses a parallel Bound2bound placer with a conjugate gradient
solver [144]. This global placer, based on SimPL [97], determines the density
penalty between wirelength optimization iterations by reformulating the
density reduction as a transportation problem [145]. placing still look for
improvements to the wirelength, unlike OpenROAD’s “dead simple” and
correspondingly fast detailed placer, which relies more on the global placement
quality. The Katana global router uses a heuristic Dijkstra search with a
distance function penalized for congestion and vias, rather than constructing
rectilinear Steiner trees. The Kite detailed router is a negotiation-based R&R
router. Coriolis has inherited tooling from its predecessor, the Alliance flow,
specifically, the HiTas STA engine, cougar circuit extractor, lvx LVS tool,
and DRuC DRC tool. Coriolis is under active development at the time of
writing.
Both QFlow and Coriolis explicitly state that the user should not expect
them to provide good results in large designs and recent nodes. Neither is
aware of the slack available in nets when placing and are built on design
decisions that might not scale well. QFlow using a maze router for the entire
chip implies it’s more likely to expend large amounts of computational effort
on ripping up and rerouting connections to avoid congested areas, rather than
guiding the maze routing away in the first place with a global router.
Interoperability is limited by the integration of each flow with its own DB.
Additionally, most historic academic publications have stayed closed source
and designed only to operate on academic benchmarking files. Some software
for interoperability between open, academic, and industrial tools has been
developed with various design goals [146]–[148].

58



Appendix A
Experiments

A.1 Yosys temporal logic counterexample loop
detection

The Yosys tool chain supports formal verification flows through the SMT2
backend. This backend converts the internal representation of a circuit
(RTLIL), including formal assertions, assumptions, and coverage statements,
into a set of SMT-LIB v2 clauses, which pose the question of property violation
satisfiability. Afterwards, an SMT solver is automatically invoked. If the
clause set is satisfiable, the solver is extracted to produce a counterexample.
This counterexample is composed of sequences of values of module ports and
signals defined as $anyseq or $anyconst. It’s then dumped as an SMT-LIB
v2 file, as a Verilog testbench to actually drive ports and underspecified
signals, and a VCD file containing the trace of the design running in time
with these signal values.
This process initially wasn’t in any way detecting a loop in the counterexample.
I have experimentally implemented it as a pull request, which has been
accepted [149]. The code changes are limited to smtbmc.py, a Python script
for launching solvers with correct arguments and post-processing their results
into VCD and Verilog. Counterexample loop detection is now available under
the --detect-loops flag for the yosys-smtbmc command and can be easily
added into Symbiyosys workflows. Symbiyosys is a wrapper on top of yosys to
easily declare HDL files and formal methods. Since the time step in temporal
induction doesn’t necessarily correspond to a single concrete clock due to
the required clk2fflogic pass preceding formal passes, it is simply called a
“step”. It’s the number of these steps that the user specifies as the desired
induction length. A list (as long as the induction length) of counterexample
signal value lists is obtained and iterated over. A Python dictionary is a
complex structure with a simple interface: any hashable (primitive and fixed
length, trivially composed of such, or manually supplied with a hash method)
object can be used as a dictionary key. For this reason, the signal value list
must be converted into a tuple, which is hashable. The dictionary then does
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fast insertions and lookups as it’s a generic hash table. To detect duplicate
steps, a set object would suffice. However, it’s clearly helpful to inform
the developer between which two steps does the counterexample trace hold
identical state vectors. For this reason, for each step, the signal value list is
obtained, the states dictionary is searched for it (in constant time). If it
can’t be found, it means no loop has been found yet, and it’s associated in
the dictionary with the step index. When it’s found in the dictionary, the
previous associated step index is retrieved, and presented to the user together
with the current index. These indices show the first pair of identical states in
the counterexample to the user. Initially, only regular signals were considered,
and memories were not. This is because memories are often larger than the
number of signals in a design and therefore can greatly increase the signal
list size and loop detection run time. However, it was straightforward to add
memory, and eliminate the false positives that ignoring it can cause.

Trying induction in step 1..
Trying induction in step 0..
Temporal induction failed!
Assert failed in demo1_mine: demo1_mine.v:13.31-15.32
($assert$demo1_mine.v:13$17)
Writing trace to VCD file: demo1_mine.vcd
Checking for loops in found induction counter example
This feature is experimental and incomplete
Loop detected, increasing induction depth will not help.
Step 2 = step 0
Status: FAILED

Listing 4: Temporal induction counterexample loop detection output, simplified

A.2 GHDL PSL bug

As a part of my preparation of a formal verification setup for the CTU CAN
FD IP core [150], I found a bug in GHDL, where unsupported PSL-defined
verification declarations would cause a crash, rather than being handled and
reported as an error. I reported this bug, which was promptly fixed by the
maintainer [151].

A.3 Amaranth combinational loop detection

Amaranth HDL doesn’t have a specification, but it has documentation for its
single implementation. Here, the user is warned:

The current version of Amaranth does not detect combinatorial
feedback loops, but processes the design under the assumption that
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there aren’t any. If the design does in fact contain a combinatorial
feedback loop, it will likely be silently miscompiled, though some
cases will be detected during synthesis or place & route. This hazard
will be eliminated in the future.

I have joined the discussion around this and proposed a solution of the
primitive form presented in lst. 5 [152].

for every combinational assignment s.eq(e):
for every signal s' in expression e:

add edge (s', s)

Listing 5: Combinational dependency draph building pseudocode

This requires collecting every combination assignment, which isn’t done
until the generate step, where either a Python simulation program or yosys
internal representation is generated. All operations preceding generation are
implemented as tree traversal, modifying the existing design hierarchy, dealing
with clock domains, rewriting clock signals to regular signals, and so on. None
of them require a flattened view of all assignments in the design. For this
reason, I built a tree traversal named CombGraphCompiler, which collects
assignments as it descends the module (specifically, Fragment) hierarchy,
runs my AssignmentGraphBuilder on each statement in the combinational
domain of each Fragment, collects their state—an assignment edge list—and
returns it. It needs to keep a map from Signals to hashable integer IDs, pass
it to AssignmentGraphBuilder calls, and take the modified version to pass
to the next one. It’s also extracted after the CombGraphCompiler finishes in
order to label a possibly found combinational loop with signal names for error
reporting. AssignmentGraphBuilder uses existing methods on assignment
right-hand side expressions (Values) to extract all signals referenced in them.
However, in general, any assignment in a conditional block is also dependent
on all condition signals, so these are pushed onto a stack when a Switch
statement is encountered as the Value tree is traversed. When this is finished,
we have a graph of all combinational dependencies between signals. After
CombGraphCompiler is done, the found edges are depth-first searched from
each unvisited state. If the design is legal, the graph is a forest, and no cycles
will be found. When a cycle is found, an error is returned, and an error is
printed as shown in lst. 6.

amaranth.hdl.cd.DomainError: Combinational loop detected: a,a,o,o

Listing 6: Combinational loop detection output

Adding hierarchically fully qualified names was omitted, as this was a pro-
totype. It worked well, but 11 language unit tests would fail. I traced this
down to the implementation of a gray decoder in the Amaranth standard
library, shown in lst. 7.
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class GrayDecoder(Elaboratable):

def elaborate(self, platform):
m = Module()
m.d.comb += self.o[-1].eq(self.i[-1])
for i in reversed(range(self.width - 1)):

m.d.comb += self.o[i].eq(self.o[i + 1] ^ self.i[i])
return m

Listing 7: Old GrayDecoder implementation

This design is correct when synthesized, as no bit of self.o depends combi-
nationally on itself, but each bit depends on the next, except for the most
significant bit. The loop detection creates a false positive, because my pass
ignores slices, and treats them as references to the entire signal. To be com-
patible with this use case, each bit of every signal would have to be considered
in isolation throughout this pass, increasing the complexity greatly, and re-
quiring special handling of arithmetical operations, while overapproximating
their bit dependencies just to keep the existing functionality, implying an
N-bit integer addition would add N squared edges to my graph instead of
one. This could be done iteratively only once a possible combinational loop is
found, but many such loops could possibly be found, freezing the elaboration
process.
Since GrayDecoder was the only standard library part using this possibly
illegal “hack”, I have rewritten it to make the output dependent only on
inputs, which has been accepted [153]. Since this module is formally verified
against the untouched GrayEncoder implementation, unit tests proved the
correctness of this change.

def elaborate(self, platform):
m = Module()
rhs = Const(0)
for i in reversed(range(self.width)):

rhs = rhs ^ self.i[i]
m.d.comb += self.o[i].eq(rhs)

return m

Listing 8: New GrayDecoder implementation

Several large real-world Amaranth projects (RISC-V CPUs, SoC libraries)
have been tested with my detection. No false positives were found and
slowdown coming from this check is lower than 15% if measurable.
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A.4 Minor Yosys bug fixes

Support for the MathSAT solver [65] was broken. The code responsible for
parsing the solver standard output, had to be modified, which fixed it, and
introduced no change to the functionality for other solvers. I submitted a
pull request, which is still open at the time of writing [154].
A faulty design of mine was asking yosys to synthesize memory with
word width of 0. Memory size in words was being calculated as
GetSize(init.data) / width in kernel/mem.cc. I added an assertion
statement into the check method already invoked at the start of the offending
method Mem::emit to detect this situation and provide clear information
how this I submitted a pull request, which was and accepted and merged
[155].

A.5 OpenROAD

A.5.1 CTU CAN FD IP Core tape-in

The CTU CAN FD IP core [156] is an implementation of the CAN bus with
support for the Flexible Data-rate extension. The core has been developed
at the Department of Measurement at FEE CTU. I have decided to use it
as a case study for the OpenLane flow with OpenROAD physical synthesis.
After synthesis, its size is approximately 18,000 cells, about half of which are
multiplexers, see listing 9. Buffer depths were left at their minimal values by
defaults. In a real tapeout, these buffers should be implemented with proper
SRAM cells to save die area as illustrated in fig. A.1. SRAM cells are included
in the SKY130 open PDK, but implementing SRAM also requires controllers,
address decoders, drivers, precharge circuitry, and sense amplifiers. This is
covered by the OpenRAM [157] project, provides an open tool for generating
these parametrically. OpenRAM is currently only experimentally available
for SKY130. Original plans to include an SRAM memory in the eFabless-
designed Caravel harness that all OpenMPW projects are encapsulated in
are paused, replaced with flip flop based memory.
The physical design process by OpenROAD is illustrated in fig. A.2, fig. A.3,
and fig. A.4 using scripts I published on GitHub, including the design sources
[158], [159].
Since the core is designed with VHDL, I used the GHDL [29] compiler and
simulator as integrated into a plugin for Yosys [160] to convert it to Verilog
with the Yosys write_verilog command in order to build the design with
OpenLane.
CAN bus is standardized as ISO 11898, CAN FD as ISO11898-1:2015. They
are also published with free access. However, the CAN protocols are all
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Figure A.1: Cell size comparison, adapted [157]

patented by Robert Bosch GmbH. For this reason, I have not finalized the
design for Google-sponsored OpenMPW tapeout due to the requirement of
purchasing a CAN bus implementation license.
I also tested ATPG with Fault [131] on this design. Since SKY130 is not
supported, I use the OSU 35nm cell library it comes with. ATPG took 37
minutes on a 6-core Ryzen 3600 desktop CPU, exceeding 20GB of RAM usage.
The ATPG outputs are a .svf file under 1MB containing the test patterns,
and 326MB of JSON I/O metadata.

Number of cells: 17547
$_ANDNOT_ 2627
$_AND_ 266
$_MUX_ 6745
$_NAND_ 580
$_NOR_ 426
$_NOT_ 488
$_ORNOT_ 459
$_OR_ 1760
$_XNOR_ 104
$_XOR_ 611
sky130_fd_sc_hd__dfrtp_2 990
sky130_fd_sc_hd__dfstp_2 91
sky130_fd_sc_hd__dfxtp_2 2400

Listing 9: CTU CAN FD Yosys synthesis cell number report
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(a) : Initial placement (b) : Global placement in progress

Figure A.2: CTU CAN FD IP core physical design

(a) : Global placement done (b) : CTS clusters

Figure A.3: CTU CAN FD IP core physical design
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Figure A.4: CTU CAN FD IP core clock tree synthesis H-tree
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A.5.2 TinyTapeout

As a means of enabling hobbyists and students to create their own silicon,
the TinyTapeout [161] project aims to implement a multi-project chip with
more than a hundred individual designs each on the order of only hundreds of
gates. The inputs and outputs of the designs are connected in a scan-chain,
limiting the maximum frequency to approximately 20kHz.
I have joined the second run with an Amaranth design with two primitive
functionalities, selected by an input pin. The design is publicly available on
GitHub [162].

. Chase the beat: An output (with a presumably connected LED) is always
high. The time delta between two taps of an input button set the period
at which it’s changed which output is high.. Noise generator: All eight outputs are driven each with a linear feedback
shift register output. The outputs should be connected to buffers and
an R-2R ladder for digital to analog conversion. This should create
approximately white audio noise.

The physical design process by OpenROAD is illustrated in fig. A.6 and
fig. A.7.
A shared physical design configuration was initially meant to be used for all
designs. This included PL_BASIC_PLACEMENT to be set to 1, which is a flag
for OpenLane to set options for the OpenROAD global placer to terminate
with 90% acceptable overflow (a measure of cell overlap) and limit the placer
iterations to 20. This was deemed necessary for most extremely small designs
(under about 50 gates). However, some users with larger designs discovered
that removing this flag drastically cut the runtime and resulting area or
removed routing failure. Also, the designs built with the default configuration
had suspicious triangle shapes, with logic cells only at the edge, as shown in
fig. A.5b. I investigated this problem.
Without the flag, extremely small designs such as the Verilog ex-
ample repository would fail in the placement step with the error
RePlAce divergence detected. Re-run with a smaller max_phi_cof
value. The flag was preventing the placer to run for sufficient number of
iterations for the solver to diverge, allowing the flow to typically succeed, but
for example my design required almost 500 iterations to terminate without
the flag. In fact, the global placer was terminating with all cells almost
in the same place as after the initial placement, localized to a small area
(see fig. A.5a). This had a profound impact on the rest of the flow. The
detailed placer in OpenROAD is simple and only searches for closest valid
space to place cells to. The global placer doesn’t just place the logic cells but
also virtual filler cells to make the design well packed. In a proper global
placement run, the filler cells would be pushed away from the logic, since
the logic is optimized for wirelength and the solver keeps connected logic
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(a) : Overflowing global placement result (b) : Routed design

Figure A.5: TinyTapeout physical design, with PL_BASIC_PLACEMENT

cells together. However, the detailed placer would in this case receive a
design with logic and filler cells all in almost the same place. It would then
move all these cells to the nearest (in the Manhattan distance sense) valid
coordinates, which would create a diamond shape if it wasn’t for the I/O
pins causing the initial placement to be near the left edge of the design. The
global and detailed router would then receive logic cells placed in a V shape
with connected cells not being as close as possible. This would lead to long
router runtimes (with up to hours-long hangs in the GDS-building GitHub
Action). For some designs the routing capacity just wasn’t sufficient, causing
the flow to fail. The error suggests lowering max_phi_cof, which forces
smaller iteration steps, preventing solver divergence. However, a very small
one had to be chosen, greatly increasing the number of iterations required,
even for the tiny designs. OpenLane does have an option to cope with solver
divergence on tiny designs, PL_RANDOM_INITIAL_PLACEMENT, but the random
generator Python script doesn’t take a seed from the config file, so it can’t
be used for any actual tapeouts where deterministic builds are obviously
required. I have submitted an issue for all randomness in OpenLane to take
a seed [163]. I have captured an animation of the internal state of the global
placer as an animation, which clearly displays the diverging behavior, which
is included in the attachments.
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(a) : Initial placement (b) : Global placement in progress

Figure A.6: TinyTapeout physical design
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(a) : Global placement done (b) : Detailed placement done

Figure A.7: TinyTapeout physical design

(a) : CTS H-tree (b) : Mixed direction routing on the
first metal layer

Figure A.8: TinyTapeout physical design
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(a) : Global routing Steiner tree (b) : Global routing rectilinear Steiner
tree with layer assignment colors

Figure A.9: TinyTapeout physical design
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A.5.3 Benchmark

OpenROAD presentations declare fast design iterations as a core project
principle. To see how steps in the flow contribute to this outcome, I have
designed a benchmark circuit in Amaranth HDL. It’s a parametrized pipeline
with a variable bit width and number of stages. The inputs to each stage
are constructed each as an AND-inverter graph. Whether each edge is
complemented is random, with a fixed seed. Increasing the pipeline depth
is an easy way of linearly adding more logic without synthesis opportunities
to merge subgraphs between stages. Increasing the width also increases the
amount of logic linearly. I ran a sweep across both of these parameters
separately and plotted the contributions from elements in the OpenLane
flow. Very fast tasks are excluded from the detailed charts. The results are
presented in fig. A.10 and fig. A.11. It is apparent that the total runtime is
even for this small, unconstrained design dominated by the detailed routing
phase. This can be expected, since path finding is a task with no good
shortcuts. A moderate target cell density of 55% was chosen as a typical
target among OpenLane examples. The constant time spent on clock tree
synthesis is something I didn’t find a satisfying explanation, profiling the tool
would be necessary. Most tasks seem to scale approximately linearly. The
depths and widths were limited by the time required to build the Amaranth
design and emit Verilog.
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(a) : Runtime breakdown

(b) : Excluding detailed routing

Figure A.10: Pipeline depth sweep
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(a) : Runtime breakdown

(b) : Excluding detailed routing

Figure A.11: Pipeline width sweep
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Appendix B
Attachments

The attachments contains animations extracted from the OpenROAD global
placer.

. chase.webm: successful placement of my TinyTapeout design.. ctu-can-fd.webm: successful placement of the CTU CAN FD IP core.
It is notable that as a low-overlap solution is found, the state reverts to
an earlier snapshot in a backtracking attempt to improve routability.. demo-diverge.webm: failing placement of the TinyTapeout Verilog exam-
ple project. The solver divergence manifests itself with a back-and-forth
movement and filler cells mixing with the logic cells.

I bulit everything else publicly at the respective git repositories. Specifically:

.TinyTapeout 02 submission [162].OpenROAD modifications needed for visualization I presented [164]. CTU CAN FD translated Verilog and OpenLane modifications needed
for visualization and benchmarking I presented [158].Additional scripts for benchmarking and visualization [159]
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Appendix C
Literature sources

For further explanations of concepts not cited directly, I recommend the
resources presented here. Specifically:

. General statements about logic synthesis problems and logic representa-
tions in “Logic synthesis and verification algorithms” [165].General statements about properties and model checking in Chapter 3
in “Principles of model checking” [55]. Constructing propositions to model and verify systems as well as descrip-
tions of SAT and SMT solvers in “Decision procedures: an algorithmic
point of view” [56]. Detailed and formal definitions and constructions for model checking in
“Model Checking” course lectures at RWTH Aachen [166]. Examples of select physical design algorithm up to 2008 in “Practical
problems in VLSI physical design automation” [92].A wider and deeper tour through physical design algorithms up to 2011
in “VLSI physical design: from graph partitioning to timing closure”
[167].General statements about testing and design for testability in Chap-
ter 5.10 in “VLSI test principles and architectures: design for testability”
[168]
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