
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Creating sketches of virtual worlds for
interactive applications using VR

Bc. Ondřej Perný

Supervisor: Ing. Ondřej Slabý
Field of study: Open Informatics
Subfield: Computer Graphics
January 2023

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

470171Personal ID number:Perný OndřejStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Graphics and Interaction

Open InformaticsStudy program:

Computer GraphicsSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Creating sketches of virtual worlds for interactive applications using VR

Master’s thesis title in Czech:

Tvorba náčrtů virtuálních světů ve VR pro použití ve tvorbě interaktivních aplikací

Guidelines:

Research existing applications dealing with the creation of simplified 3D models and current methods of user interface
design for the purpose of 3D modelling in VR, especially with the aim of creating virtual worlds for interactive computer
applications. Based on this research, identify key properties, advantages and disadvantages of designing virtual worlds
using virtual reality as opposed to traditional 2D interfaces. Design and implement a software tool mainly in C++ using
Unreal Engine and its Blueprint visual scripting system, which will make use of such key properties. The tool should allow
its user to easily sketch a world or its part and provide the ability to naturally navigate the resulting model. The tool should
also be able to work with already existing models and export models in a format which is compatible with popular game
engines, such as Unreal Engine or Unity. Consider the possibility of integrating the tool directly into the Unreal Engine
editor in such a way that makes it possible to extend the resulting integration to editors of other game engines. Test the
resulting application in terms of user friendliness and the degree to which the process of creation of virtual worlds changes
with real users.

Bibliography / sources:

Beever, L., Pop, S. W. & John, N, W. (2020). LevelEd VR: A virtual reality level editor and workflow for virtual reality level
design. 2020 IEEE Conference on Games (24-27th August). 10.1109/CoG47356.2020.9231769
Conesa-Pastor, J.; Contero, M. EVM: An Educational Virtual Reality Modeling Tool; Evaluation Study with Freshman
Engineering Students. Appl. Sci. 2022, 12, 390. https://doi.org/10.3390/app12010390

Name and workplace of master’s thesis supervisor:

Ing. Ondřej Slabý Department of Computer Graphics and Interaction FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 01.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureIng. Ondřej Slabý
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to express my gratitude to my
supervisor Ing. Ondřej Slabý for his con-
tinuous support, guidance, and patience
during this work. Furthermore, I would
like to thank all the people close to me
for providing their support and encour-
agement.

Declaration
I declare that I have worked on this thesis
independently and that I have listed all
used sources in the bibliography.

In Prague 8. January 2023

v

Abstract
This thesis aims to research the poten-
tial of creating level blockout/sketching
virtual worlds for interactive applications
using virtual reality. It identifies key prop-
erties, features, advantages, and disad-
vantages of the virtual reality interface
as compared to traditional 2D programs.
The core of this work is the presented
design of an ideal application for this pur-
pose, based on research and tests of sim-
ilar existing applications. The design is
then used to develop a prototype applica-
tion, called BlockoutVR, using Unreal En-
gine 5 to test the viability of this process
and compare it to standard 2D interfaces.
The possibility of integrating the applica-
tion into game engines through plugins is
discussed.

Keywords: virtual reality, virtual world
sketching, blockout, Unreal Engine 5

Supervisor: Ing. Ondřej Slabý

Abstrakt
Tato práce se zabývá možnostmi tvorby
náčrtů virtuálních světů pro interaktivní
aplikace pomocí virtuální reality. Identi-
fikuje klíčové vlastnosti, funkce, výhody
a nevýhody rozhraní virtuální reality ve
srovnání s standardním 2D rozhraním.
Jádrem této práce je navržení ideální
aplikace pro tento účel, založené na vý-
zkumu a testování podobných existují-
cích aplikací. Tento návrh je poté použit
k vytvoření prototypu aplikace nazvané
BlockoutVR. Prototyp byl vyvinut po-
mocí Unreal Engine 5 a slouží k otestování
použitelnosti tohoto návrhu a jeho srov-
nání s desktopovými programy. Probírá
se také možnost integrace aplikace do her-
ních enginů pomocí pluginů.

Klíčová slova: virtualní realita, náčrt
virtuálního světa, blockout, Unreal
Engine 5

Překlad názvu: Tvorba náčrtů
virtuálních světů ve VR pro použití ve
tvorbě interaktivních aplikací

vi

Contents
Project Specification iii
1 Introduction 1
1.1 Motivation . 1
1.2 Content . 1
2 Analysis 3
2.1 2D versus 3D, advantages and

disadvantages 3
2.2 General VR guidelines 3

2.2.1 Preventing discomfort 4
2.2.2 Vision . 5
2.2.3 Locomotion 6
2.2.4 User Input 6
2.2.5 Rendering 6
2.2.6 User Orientation and Positional

Tracking . 6
2.2.7 Controls and interaction 7

2.3 3D modeling in VR 7
2.3.1 Geometric modeling 7
2.3.2 Designing virtual worlds 9

2.4 User interface in VR 11
2.4.1 Input hardware 12
2.4.2 VR interface position 13
2.4.3 VR specific problems 14
2.4.4 Common VR interface

elements . 15
2.5 Existing applications 17

2.5.1 Evaluated factors 17
2.5.2 Microsoft Maquette 18
2.5.3 Tvori VR 19
2.5.4 Sketchbox 20
2.5.5 Gravity Sketch 21
2.5.6 Blocks by Google 22
2.5.7 Neos VR 23
2.5.8 Other VR tools 24
2.5.9 Missing features (for world

sketching) from existing
applications 24

3 Design 27
3.1 Application definition 27

3.1.1 Functional requirements 28
3.2 User interface and experience . . . 28

3.2.1 Controllers 29
3.2.2 Visual interfaces 30

3.3 Modes . 32
3.3.1 Object mode 33

3.3.2 Other modes 35
3.4 Other features 37

3.4.1 Locomotion 37
3.4.2 Save/Load scene 40
3.4.3 Import models 40
3.4.4 Export scene 40
3.4.5 Import reference images 41
3.4.6 Undo/Redo 41

3.5 States - Settings 41
3.5.1 Surface snapping 41
3.5.2 Grid snapping 42
3.5.3 Angle snapping 42
3.5.4 Grid lines 42
3.5.5 Guide lines 42
3.5.6 Environment 42

3.6 Integration to game engines 43
3.7 Additional feature ideas 43
4 Implementation 45
4.1 Implemented functional

requirements 45
4.2 Unreal Engine 46

4.2.1 C++ . 47
4.2.2 Blueprint 47

4.3 Plugins . 49
4.3.1 VRExpansion plugin 49
4.3.2 RuntimeMeshLoader plugin . 49

4.4 BlockoutVR architecture 49
4.5 Interfaces . 51

4.5.1 VR headsets 51
4.5.2 Input and controllers 52
4.5.3 User interfaces 52

5 Testing 53
5.1 Testing scenarios 53
5.2 Questionnaire 53
5.3 Testing results 54
6 Conclusion 57
6.1 Summary . 57
6.2 Future possibilities 58
Bibliography 59
A Application Manual 63
B Application Samples 65
C File Attachments 69

vii

Figures
1.1 Common modern HMD with

standard pair of controllers, Oculus
Quest 2. [35] . 2

2.1 Sample of basic 3D boolean
operations. [43] 7

2.2 The cube on the left is the default
cube, with the other cubes showing
the effects of moving a vertex, edge,
and face, respectively. 8

2.3 Blockout from Modern
Warfare(2019) level design by Brian
Baker [4]. (blockout of the level on
the top images and corresponding
finalized level below) 9

2.4 Blockout from Valorant level design
by Pearl Hogbash [19]. (blockout of
the level on the top images and
corresponding finalized level below) 10

2.5 Questionnaire results for LevelEd
vs Unity from [5]. 10

2.6 Meta Quest 2 controllers. [49] . . 12
2.7 Quest 2 has in-built hand tracking,

using its camera as input to track the
hands. Gestures such as pinching, as
shown in the image with the right
hand, act as buttons. 13

2.8 Horizontal distribution of the
content zone. [2] 14

2.9 Finding the ideal UI zone position,
depicted by the yellow zone on the
bottom image. [2] 15

2.10 The Meta Quest 2 main menu
interface can be used either as a
standard flat smaller window, as
shown on the left, or as multiple
curved windows as shown on the
right. 16

2.11 Examples of common VR
interface elements. From left, radial
menu, controller attached menu,
object attached menu, floating
window. (images from Advanced
Framework - VR [20]) 16

2.12 Example Maquette scene, small
miniature on the right, controller
with the attached menu on the left. 18

2.13 Example Tvori scene, small
miniature on the left, model and
coloring tools on the right. 19

2.14 Showcase Sketchbox scene called
"Construction training". Controller
with tools on the left. 20

2.15 Example Gravity Sketch scene. 21
2.16 Example Blocks scene. 22
2.17 Example Neos scene. 23

3.1 The design idea for the controller
scheme (when the Object mode is
selected). The underlying controller
sketch was made by [41]. 29

3.2 The upper two images depict
possible interaction components - a
laser and a grip sphere. The images
below show how these components
interact with an object. 31

3.3 Original Main menu draft (used in
the prototype), shown with "Save"
tab selected. 32

3.4 Draft of modes tools and circular
swapping. Yellow nodes represent
tools affecting the objects, while
green affects a landscape. 33

3.5 The VR locomotion typology
defined in [6]. 37

3.6 Visualization of the room-scale
(with its Guardian system) in Meta
Quest. On the right image warning of
the user when they reach the border.
[37] . 38

4.1 This scene in BlockoutVR features
thousands of primitives (each
ramp-shaped object is a single
primitive). 46

4.2 A comparison of logically
equivalent C++ code at the top and
Blueprints script below [13]. 48

viii

4.3 Program architecture. Blue nodes
represent Blueprint entities, grey
nodes are Blueprint entities with a
C++ base class, green nodes are
assets, and yellow nodes are plugins.
Note that this is an abstract
description; some nodes can represent
multiple entities or an entity with a
different name (as the names here are
meant to convey the function of the
node). 50

4.4 Figure showing teleport and laser
functionalities provided by the
TeleportController actor from the
VRE plugin. 51

B.1 BlockoutVR - A standard scene
with controllers and a hidden main
menu. 66

B.2 BlockoutVR - Features a random
creation of cones and highlighted
selection (cyan) and focused object
(violet). 66

B.3 BlockoutVR - Save menu on
swapped controllers. 67

B.4 BlockoutVR - Features a controller
with the import model menu with
another creation from primitives in
the background. 67

Tables
4.1 Overview of implemented features. 46

5.1 Questionnaire for the testing.
Using a Likert scale with 5 options. 55

ix

Chapter 1
Introduction

1.1 Motivation

Virtual reality (VR) is becoming an important field in the entertainment and
professional industries because it provides a better interface for presenting
3D space than regular 2D screens. However, VR is not usually used in the
creation of VR application content. This work aims to understand why this
is the case and whether VR can effectively contribute as a tool for creating
virtual spaces, world sketches, and level design.

The created application will focus on level layout/blockout rather than
complete level design, a more general problem. It is not a generic world-
building application, as that would imply a full set of tools for creating
complete worlds and levels. I suspect that the main reason VR is underutilized
in the creative process is that accessible VR programs are too general in
what they do, failing to provide a productive workflow for specific tasks. For
that reason, the proposed application focuses strongly on only one aspect:
level layout, also known as level blockout, which is defined as a rough draft
level built with simple-shaped objects (primitives) but without any details or
polished art assets [50]. The application proposed in this work will be referred
to as BlockoutVR. The result can be exported as a 3D model for further work
in any model processing software (e.g., Blender, Maya) or directly to a game
engine (e.g., Unreal, Unity).

1.2 Content

This thesis has three main parts. The first chapter is an analysis of all relevant
sources of information on world sketching and blockout in VR or related
tasks, including academic research, guidelines provided by VR distributors,
and similar existing applications. It covers essential topics such as general
VR properties, comfort concerns in VR, comparison with 2D interfaces, VR
user interfaces, and the features and technical solutions for problems related
to world sketching.

The second part of the thesis is the design of an ideal application for
blockout in VR using the knowledge obtained in the analysis chapter and

1

1. Introduction

Figure 1.1: Common modern HMD with standard pair of controllers, Oculus
Quest 2. [35]

personal experience from working on a similar application in the past. This
concept is designed as an abstract template for implementation, defining key
features, locomotion, settings, tools, controller scheme, VR control interface,
user interface, and other features such as importing and exporting models.
Important design decisions were based on specific findings during the analysis
and are often referred to directly in the text. Essential features such as control
schemes are described in detail, while some other settings are defined, but
allow for some flexibility in implementation.

The last part of the thesis is about the implementation of a prototype
application BlockoutVR, based on the design from the previous chapter.
Essential features from the design were selected and implemented, allowing
for testing and comparison with non-VR programs. The testing methodology
is described at the end of the work in the testing chapter.

2

Chapter 2
Analysis

The analysis chapter focuses on previous research, similar applications, related
work, and guidelines for VR or other relevant extended reality (XR) contexts.
As mentioned in the previous chapter, the popularity of VR is relatively recent,
which means that many aspects of it remain unexplored by the academic
community. However, developers of virtual applications have empirically
solved many problems, and their articles, presentations, and applications
are valuable sources of information, particularly regarding the virtual user
interface (UI), design, and architecture of VR software.

2.1 2D versus 3D, advantages and disadvantages

Virtual reality (VR) adds an extra dimension to regular 2D programs, which
has several benefits for 3D modeling. One of the main advantages of VR
is that it allows us to perceive depth and shapes more accurately because
we don’t have to project 3D space onto a 2D screen, thereby preserving all
spatial information. This means we can work directly with 3D objects in
their correct space, scale, and shape, without losing any information due to
projection. In addition, VR allows us to use a 3D cursor for input, so we can
move in all three axes without changing the view or axis guidelines.

The downsides are more limited interface and some input options compared
to regular 2D programs. Head-mounted display (HDM) occludes our full
view, therefore full attention is in VR, which can be mentally taxing and
hinder multitasking (with anything outside VR). Additionally, using VR
controllers or hands for input requires a lot of physical movement, which
can lead to fatigue, especially compared to using a mouse and keyboard or a
tablet. According to a study [30], this can be a problem in VR, but it does
not affect 2D workflow as significantly.

2.2 General VR guidelines

While VR applications offer new possibilities compared to regular desktop
programs, they also come with their own set of challenges and limitations.
One well-known effect called virtual reality sickness is a common phenomenon

3

2. Analysis
associated with using VR. With symptoms similar to motion sickness [29],
including general discomfort, headache, stomach awareness, nausea, vomiting,
pallor, sweating, fatigue, drowsiness, disorientation, and apathy [26], virtual
reality sickness can affect people to varying degrees based on factors such as
age, postural stability, flicker fusion frequency threshold, ethnicity, gender
[26]. Experience with VR systems can build up resistance. When creating a
VR app, it is important to keep these issues in mind and try to prevent them
whenever possible.

Since this work is focused on people with limited or no VR experience, it
is important to include these VR-specific problems, even if some of them are
non-technical in nature. These issues will also play important roles in the
Design chapter.

2.2.1 Preventing discomfort

Virtual reality provider Meta Quest (previously known as Oculus), have
its own guidelines for designing VR apps with important parts devoted to
preventing discomfort. Their Meta Quest Developer Center [36] is a valu-
able resource for basic guidelines to avoid potential pitfalls and unnecessary
discomfort for users.

Each user should set their own session duration respecting both mental
drain (mismatch between virtual and real inputs is straining) and physical
burden (VR often requires standing and moving body). An Application
should incorporate ways to encourage users to take necessary breaks without
disrupting their workflow [36].

The typical cause of discomfort is a sensory mismatch and discontinuities
with real-world experience [34]. Modern VR hardware does a great job
minimizing this problem with minuscule video lag, responsive input, and
smart techniques such as rendering focus based on eye movement (Eye Tracked
Foveated Rendering [42]). Then there are factors dependent on a software
developer. Meta Quest Developer Center [36] describes those comfort risks
and usability issues.

Comfort Risks.Vection - Illusory perception of self-motion, e.g. when the VR character
moves, but the user stands still..Vestibular Sense - Can be described as a sense of balance, and discom-
fort can be induced by rotating or tilting..Visual-Vestibular Mismatches and Comfort - Dissent between
vision and vestibular system (e.g. caused by seasickness).. Proprioception - Awareness of the movement and position of the body.
The VR character should mimic real-life positions.

4

.................................2.2. General VR guidelines

.Disorientation - Losing track of the position in the the virtual envi-
ronment. May occur due to movement factors like teleporting or snap
turns.

Usability Issues. Space Limitations - The size of the area covered by these systems
ranges from small stationary spaces to location-based virtual reality
(LBVR) systems, which can be of arbitrary size.. Fatigue - Working in VR can be physically demanding, for example, VR
games may require users to hold their hands in stretched-out positions
for long periods of time or make excessive swings during combat. To
minimize strain, interface and interactive elements should be within easy
reach and not require complicated body positions, if possible..Accessibility - Certain physical needs may create barriers for some
users, such as the need for prolonged standing sessions.

All the mentioned issues have solutions that will be addressed in a subse-
quent chapter in order to mitigate or solve them.

2.2.2 Vision

Vergence is a process of moving both eyes to track single binocular vision.
Just like in real life, if an object is approaching closer to us, the eyes must
conform to the vergence demand to maintain proper binocular vision. If
an object is too close to the eyes, this can become very straining. In VR,
nothing should be rendered less than half a meter from the headset camera,
ideally over a meter. Unlike in real life, there is generally nothing stopping
the user from putting their head directly in an object in the VR scene, so it
is important to have a mechanism to accommodate this situation if it occurs.

Improper depth representation of objects can break VR immersion. To
prevent conflicting depth signals (such as a visible controller even if it is
behind another object), it is important to respect the depth of objects in the
view during rendering. This is one of the reasons why it is generally best to
avoid any sort of head-up display (HUD) and occluding the view [38].

In addition to stereopsis (the perception of depth based on the disparity
between the viewpoints of each eye), there are other monocular (for one eye
only) depth cues that can be used to improve depth perception, as described
in [38].

Monocular depth cues.Motion parallax - Close objects move faster..Curvilinear perspective - Lines converging in distance..Relative scale - Objects are smaller further in distance.

5

2. Analysis
.Occlusion - Closer objects occlude distant ones..Aerial perspective - Distant objects faint (due to the atmosphere

refraction)..Texture gradients - Texture patterns diminishing in distance.. Lighting - Shadows and highlights.

2.2.3 Locomotion

The intensity of locomotion should be aligned with the user’s VR experience.
Avoid fast acceleration for less experienced users, limit the direction of
movement, and give the user control over movement rather than forcing them
to move in a certain way to avoid simulator sickness [28].

2.2.4 User Input

To avoid sensory disruption, controllers (and other tracking devices) should
match the relative position between real life and VR. In addition, controllers
should use familiar button mapping, and applications should be accessible to
both left and right-handed users [28].

2.2.5 Rendering

To ensure a comfortable VR experience, use a font that is easily readable in UI
and scene elements, and choose a text size that is appropriate for comfortable
reading. Consider using a signed distance field to keep the text size consistent.
Avoid creating the flickering, high-contrast, or flashing elements, as these can
be disruptive to the user. Use geometric models or parallax mapping instead
of normal mapping, as it doesn’t account for binocular disparity or motion
parallax, making flatness more noticeable.

HMDs may suffer from lens distortion, so it is important to use proper
distortion correction through SDK post-processing for the target device. Re-
sponsiveness is critical for VR immersion, so aim to keep latency consistently
under 20ms [31] for a compelling VR experience. Finally, for a smooth feeling,
aim for the highest frames-per-second that the HMD allows, if possible.

2.2.6 User Orientation and Positional Tracking

The user should be allowed to set their own origin point. Positional tracking
should not be disabled or modified. Use room-scale (a defined physical space
where the user can safely move) to stay within the boundaries of the free
space, in order to prevent breaking immersion and keep the user safe from
physical obstacles. The virtual camera allows the user to move into unusual
positions that would be impossible in real life. A head-object intersection can
cause discomfort, so it should be prevented by not allowing the user to get
too close to solid objects [32].

6

.................................. 2.3. 3D modeling in VR

Figure 2.1: Sample of basic 3D boolean operations. [43]

2.2.7 Controls and interaction

Use haptic feedback for additional clarity. Add ray casts to simplify navigation
and selection, they can as well assist users with impaired vision. Visually
represent controller inputs with button highlights. Optionally, offer the option
to personalize controller configurations. The complexity of a controller scheme
should be minimized. Likewise, amount of buttons necessary for each action
should be minimized [33].

2.3 3D modeling in VR

This thesis includes research on existing applications for creating simplified
3D models. In the context of 3D model creation, this work discusses two
different approaches: a direct geometry modeling tool for basic objects and a
world composition tool for creating virtual spaces.

2.3.1 Geometric modeling

Geometric modeling refers to the creation and modification of 3D models. VR
in geometric modeling allows users to interact with and manipulate objects
directly in 3D space, providing a more intuitive and immersive experience
compared to traditional modeling techniques. The goal of this work is a world
sketching application, so not many modeling tools are necessary. There is not
expected to be a full modeling toolset, but only a few functions to support
level creation by modifying existing objects in a scene. Useful types for this
use include solid modeling with Boolean operations and wireframe modeling
for simple changes to an object’s geometry, both in the context of object
modification rather than constructing new objects.

Boolean operations

Boolean operations for 3D models (see Figure 2.1), such as union and inter-
section, can be used to combine multiple objects into a single one. Or to
remove unwanted parts of an object to create the desired shape, by Boolean
subtraction. For example, a level designer can use a union to combine multiple

7

2. Analysis

Figure 2.2: The cube on the left is the default cube, with the other cubes
showing the effects of moving a vertex, edge, and face, respectively.

walls to create a room, or use an intersection to make a hole for a window
in a wall. Other operators can also be implemented. These operations are
the extension of the standard boolean operations to 3D space. The result is
similar to logic operations but applied to models rather than logical meaning.

Level blockout typically consists mainly of primitives. Therefore, it makes
sense to use Boolean operators, as there are many simple solid objects in the
scene.

Boundary modifications

This operation is meant for simple geometry shifts (see Figure 2.2). Moving
the face, edge, or vertex of a model in a scene. This means the topology of
the model vertices stays the same, but the shape can change. One or multiple
faces/edges/vertices can be selected, and by dragging them, changing their
relative position to the rest of the model. The designer can quickly achieve
expected shapes without necessarily combining multiple objects.

Complex VR modeling

One of the papers researching the modeling in VR is "EVM: An Educational
Virtual Reality Modeling Tool; Evaluation Study with Freshman Engineering
Students" by Conesa-Pastor and Contero [8]. It focuses on single objects rather
than scenes or levels but provides useful insight into the vertex geometry tools
in VR. Presents EVM (Educational Virtual Modeling) VR tool for modeling
engineering-related objects. It describes a robust toolset for creating complete
models (mostly engineering parts) from scratch. It works on the basis of
curves and triangulated faces between them, specifically: "a curve is given as
a set of consecutive lines, whereas a surface is defined by a contour formed by
lines and curves and a set of mesh objects responsible for filling and shading
its interior" [8].

One of the most interesting parts of the paper for this thesis is the user study.
The engineering students used this application to rate their VR experience,
compared to similar work in a standard 2D environment (SketchUp). In
terms of the time needed to create a given model, both EVM and SketchUp

8

.................................. 2.3. 3D modeling in VR

performed similarly. However, from an experience perspective, the paper
describes that participants in their comparison between EVM as a VR tool
and SketchUp seemed more enthusiastic and motivated to work in VR as
opposed to the 2D experience.

Possibly, this could be due to participants’ inexperience with VR. However,
it could also indicate a positive trend of preferring VR due to its immersive
and overall better experience over traditional 2D interfaces. It should be
noted that the paper mentions some problems with VR modeling tools, such
as precision issues and missing functionalities for technical objects. However,
since this work does not aim to provide a full modeling tool, these issues can
be overlooked.

2.3.2 Designing virtual worlds

Figure 2.3: Blockout from Modern Warfare(2019) level design by Brian Baker
[4]. (blockout of the level on the top images and corresponding finalized level
below)

The main focus of this thesis and the follow-up BlockoutVR application
is the design of virtual worlds through the process of composing simple
objects (primitives) in space and defining their functions. These objects are
usually basic 3D shapes without any visual details and serve as placeholders
for the final, detailed objects during the level design and blockout phase.
Examples of the blockouts and final scenes are depicted in Figures 2.3 and
2.4, where even simple primitives can clearly convey the overall appearance
and function of the objects. Simple colors can also add distinct characteristics
and specific functions to the models, such as grey for static objects and red
for destructibles. This allows level designers to quickly communicate their
intentions for the level and the interactivity of specific elements.

The research conducted by Beever, Pop, and John in "LevelEd VR: A
virtual reality level editor and workflow for virtual reality level design" [5]

9

2. Analysis

Figure 2.4: Blockout from Valorant level design by Pearl Hogbash [19]. (blockout
of the level on the top images and corresponding finalized level below)

Figure 2.5: Questionnaire results for LevelEd vs Unity from [5].

covers similar topics, but with a focus on the overall level design process rather
than just the blockout phase. Their study compared their VR application,
LevelEd VR, to the Unity game engine through experiment testing.

Test subjects generally liked LevelEd for modeling space for use in VR, as
they were able to perceive the scale of objects and the scene easily. However,
when considering a universal application (not just VR), most participants
voted for Unity, with the rest expressing no preference, as shown in Figure 2.5
along with other survey results. This is an interesting result, as it confirms
that modeling VR programs can be effective in creating virtual space for
VR use. The results are unclear on whether modeling in VR applications
can bring significant advantages over 2D applications for use in 2D, such as
desktop third-person view games.

Opinions on scripting the level logic inside LevelEd are fairly balanced.
Compared to Unity, LevelEd VR’s visual scripting may be more limiting,
but it offers an interesting alternative. An older paper, "MakeVR: A 3D
World-Building Interface" [21], describes another world-building tool that is
simpler than LevelEd VR but provides a useful comparison in terms of toolset
and user feedback. Another similar work, "Genesys: A Virtual Reality Scene

10

................................. 2.4. User interface in VR

Builder" [9], proposes a scene builder with similar goals as the previously
mentioned applications. There are a few more papers from the last ten years
(2012–2022) that focus on world or scene-building, but they have very similar
findings as the papers mentioned above, therefore will not be discussed here.

The previously mentioned "LevelEd VR" paper [5] has a slightly broader
range of focus, including simple geometry modeling and in-app simple visual
scripting. However, among other papers exploring similar topics (world
design), this one is most closely related to this work with its strong focus
on VR workflow, and therefore the knowledge gained there is central to this
thesis.

While individual works differ in some ways, they usually agree on a certain
set of core tools, including spawning, copying, moving, rotating, scaling, and
deleting objects. User interfaces are usually relatively neglected, as they are
seemingly considered a marginal necessity that doesn’t receive enough care
(in contrast to commercial VR programs). Another negative trait commonly
found is impractical or counterintuitive control, as a lot of work was dedicated
to the core functions but not as much to the workflow of their use.

An essential part of a world-building tool is a set of primitives, which are
simple 3D models used to build the scene, such as cubes, spheres, or cones.
However, there is no standardized set of primitives or consensus on which
shapes to use. VR applications don’t usually use custom imported primitives
but rather a limited set of pre-prepared objects or rely on their own modeling
system.

Previous research has solidified the general VR opinions about its advan-
tages and disadvantages. While they set solid core design ideas, the final
products (which are usually done as proof of concepts) suffer from various
shortcomings. The design part of this thesis builds on the core ideas from
these papers while trying to address the mentioned flaws.

2.4 User interface in VR

The "Visual Design Methods for Virtual Reality" [2] provides an excellent and
rather complete overview of the virtual reality interface, backed by experience
in the applications shown throughout the paper. It discusses where interface
elements should be located, what form they should have, and what interactions
they provide to the user. It also covers how specific choices, such as the color
or location of buttons, can affect the user and their decision-making, but most
importantly, how to provide the user with the most intuitive and pleasant
experience.

Aside from this paper, the best sources for interactive VR interfaces are
already existing applications. It doesn’t even have to be a necessary VR
application with the same goal, as general VR interface rules are shared for
all VR uses. While the academic sphere has yet to explore this topic more,
many software developers are already solving related problems and sharing
their solutions. The website "The UX of VR" [14] gathers and provides all
kinds of resources for everything related to the VR user experience (UX),

11

2. Analysis

Figure 2.6: Meta Quest 2 controllers. [49]

with a focus on the UI. In addition, tested applications provide insight into
great user interfaces.

2.4.1 Input hardware

Standard 2D applications usually use a keyboard and mouse. In contrast,
VR usually uses controllers (some VR sets, such as Quest 2 and Quest Pro,
support hand tracking as well) with a somewhat limited amount of buttons.
A regular full-size keyboard has 104 keys, which allows for many shortcuts,
especially in combination with ctrl/alt/shift keys, which modeling software
utilizes extensively.

The main difference and advantage of VR in modeling is the cursor position
control. The mouse can only manage two axes, which is limiting when working
in 3D space. VR controllers, on the other hand, track position in 3D space,
allowing us to control the position on three axes.

There is no standard button layout for controller buttons, but all relevant
VR hardware providers (except for HTC) follow a very similar set of inputs. A
full input set includes five buttons (A, B, Grip, Trigger, Thumbstick button),
thumbstick axes, and a Menu button on each controller. The trigger and grip
buttons provide linear input with a range of zero to one, depending on the
depth of the press. Figure 2.6 shows this layout on Quest 2 controllers. Some
controllers also support capacitive touch for most buttons (the button is not
directly pressed, but the user is physically in contact with it). However, as
this is not universal for all controllers, the proposed application avoids this
option to maintain compatibility with other devices.

12

................................. 2.4. User interface in VR

Figure 2.7: Quest 2 has in-built hand tracking, using its camera as input to
track the hands. Gestures such as pinching, as shown in the image with the right
hand, act as buttons.

Another alternative is hand tracking and hand control. Multiple sources are
actively developing general tracking controllers, but there is no mainstream
solution. Notably, Meta’s Quest 2 and Quest Pro offer in-built hand-tracking
based on computer vision via their camera input 2.7. However, since this is
only available on some headsets, and even within them, usage is quite limited
(e.g., tracking doesn’t work well with any occlusion between the hand palms
and camera). Another limitation is the lack of buttons/grips/triggers and
thumbstick options. While hand tracking may support a few gestures to
compensate for that, it is still lacking in comparison. Due to these reasons,
this input type seems unfit for most current applications.

2.4.2 VR interface position

Researchers define the content zone as the distribution of 3D spacial into
specific zones based on their function with the center [2]. Zones are defined
by the distance from an HDM, vertical viewing angle, horizontal viewing
angle, and the reaching distance of hands. Its goal is to define an ideal
position for content and UI elements. A Figure 2.8 shows the horizontal
distribution. All content that users interact with at a given time should
be within the comfortable content zone. The curiosity zone is for content

13

2. Analysis

Figure 2.8: Horizontal distribution of the content zone. [2]

that is not necessary at the moment but can be easily accessed. The no-no
zone is a space near the user where nothing should be placed, as it can be
uncomfortable for the user. The vertical viewing angle from the HMD should
be below 0 degrees, if possible. Considering this and the reaching distance,
Figure 2.9 shows the process of defining the ideal UI zone.

2.4.3 VR specific problems

Creating a user interface (UI) in VR presents additional challenges compared
to traditional 2D UI. Menus and text cannot be placed directly over the
projection plane because there are two different rendered images, one for
each eye. A simple solution would be to place the interface in the 3D space
directly in front of the head-mounted display (HMD) with a constant offset
from it. However, this approach can cause unpleasant experiences for users
because in VR, people do not expect objects to be anchored to their head
movement. Many sources agree that this is a poor approach [14].

A common approach is to use rectangular windows, which may be curved,
in the virtual space in front of the user. This can be seen in the general Meta
Quest 2 menu 2.10. These windows are generally movable and resizable, and
may even follow the user’s field of view (FOV) horizontally in non-continuous
steps.

Many applications use this approach for their menu implementations, and
it seems to be becoming a standard for menu interfaces. However, even this

14

................................. 2.4. User interface in VR

Figure 2.9: Finding the ideal UI zone position, depicted by the yellow zone on
the bottom image. [2]

approach has its drawbacks. The overlay menu in the application is drawn
on the screen, even if there are objects in the scene that are closer to the
headset, resulting in an unrealistic depth rendering. To prevent nausea, it is
important to maintain a physically realistic view, if possible, which means
ensuring the correct depth of elements and avoiding clipping of UI elements
within the objects in the scene. This can be achieved by embedding the
UI directly into the virtual environment as much as possible. Despite these
issues, this approach is still widely used in cases such as menu overlays, as
there is currently no better solution. Unfortunately, this effect cannot be
properly shown in a monoscopic 2D image, so an example is not included.

2.4.4 Common VR interface elements

VR Interface is one of the most differentiating factors from the 2D interfaces,
as most of them would not work for VR needs. Therefore a couple of popular
VR interface elements emerged.

An interface is one of the most differentiating factors between VR and 2D
programs since most of the 2D interfaces are not suitable for VR. As a result,
a number of popular VR interface elements have emerged.

Floating windows in front of the user are a popular main menu solution,

15

2. Analysis

Figure 2.10: The Meta Quest 2 main menu interface can be used either as
a standard flat smaller window, as shown on the left, or as multiple curved
windows as shown on the right.

Figure 2.11: Examples of common VR interface elements. From left, radial
menu, controller attached menu, object attached menu, floating window. (images
from Advanced Framework - VR [20])

as they provide an intuitive extension from 2D interfaces. The windows
essentially represent monitors in virtual form. A more integrated solution,
and probably the most common one, is controller-attached menus, which use
the other hand for interaction. Menus can also often be seen attached to
specific places or objects in the VR environment. Other trends include radial
menus for fast selection and menus with 3D elements since VR allows for the
proper display of all three dimensions.

The interaction with menus and other UI elements is usually either by
touch (moving the controller directly to the virtual button) or by using a laser
pointer from the controller and a designated button for clicking. Touching is
more intuitive but generally requires larger buttons and UI elements to be
comfortably usable, which may not be practical in all situations. The laser
pointer is more similar to desktop input, as it represents a cursor but in 3D
space.

16

................................. 2.5. Existing applications

2.5 Existing applications

In this section, multiple 3D modeling VR tools are tested and compared,
ranging from sketching to geometry modeling to world composition. These VR
tools are counterparts to standard desktop applications such as game engines
like Unreal Engine and Unity for scene composition, as well as modeling
programs like Blender or Maya. It’s worth noting that there are no clear
boundaries between modeling and scene composition. For example, Blender,
which is mainly a surface modeling tool, can also be used to create entire
scenes. On the other hand, Unreal Engine 5 now includes geometry modeling
tools directly within the editor. These trends can also be observed in VR
tools.

A selection of significant existing VR modeling tools will be compared and
evaluated based on the following factors. If a particular factor is highly valued
for a given application, it will be used as inspiration for the design of the
proposed application. Additionally, some applications offer unique features
not covered by the specified factors. If these attributes are relevant to the
context of this work, they will also be discussed.

2.5.1 Evaluated factors..1. Locomotion - Locomotion - Any type of movement mechanics...2. User interface - Evaluated based on ease of use, intuitive design, clarity,
and access to tools..Comfort and Effectiveness - The comfort level (both mental and

physical) of using the tool and the user’s ability to be effective (e.g.
ease of switching between tools or the number of steps required to
perform a specific action)..Application control and adjustability - The availability and
usefulness of settings provided for the user...3. Toolset - The quality and quantity of available tools for creating block-

outs, their ease of use, and their effectiveness in creating and manipulating
a 3D scene..Object transformations tools - Any tools related to manipulating

primitives.. Import/Export capabilities - Does the application support im-
port and export, and are there any limitations?..4. Additional features - Unique or noteworthy features of a given appli-

cation.

17

2. Analysis

Figure 2.12: Example Maquette scene, small miniature on the right, controller
with the attached menu on the left.

2.5.2 Microsoft Maquette

According to its own description, "Microsoft Maquette is a general purpose
mock-up tool for spatial prototyping within virtual reality." [39]. As of
2022, Maquette appears to be the most complete VR model editor available.
While its primary focus is more general than the goal of this work, it offers
an extensive toolset for modeling virtual space and includes many clever
interaction elements, some of which inspired certain design decisions in this
work. In particular, object manipulation and transformation features in
Maquette are very refined.

Maquette offers two types of locomotion: the standard teleport to the
position of the laser aim, and a motion system that Microsoft calls "swimming".
In short, swimming refers to the action of anchoring controllers in place and
changing the relative position, rotation, and scale (derived from controller
movement) between the user and a scene (see section 3.4.1). This type of
movement will be referred to as swimming further on in this work. While
swimming works well for working on miniature models directly in front of
the user or small-scale scenes (such as a virtual room), it can be tiring for
navigating large scenes or open worlds. Both modes of locomotion feel natural
in VR without causing discomfort, which can be a problem with other types
of locomotion. However, for the world sketching application, fast and simple
navigation through the entire scene is deemed necessary.

This application offers many features, so the user interface has to accom-
modate a slightly more complex menu. There is a controller-attached menu
that is interacted with using the other controller. The menu consists of a

18

................................. 2.5. Existing applications

Figure 2.13: Example Tvori scene, small miniature on the left, model and
coloring tools on the right.

set of windows, some of which switch based on the selected context. From
this menu, users can access all settings, tools, primitives, and everything else.
When it comes to object manipulation, Maquette probably has the widest
toolset, providing all the basic tools for manipulation, duplication, deletion,
multiple selections, coloring, grouping, and many others. On top of that,
there are additional settings for all kinds of object snapping and general
scene positioning. These tools provided inspiration for any sort of object
manipulation tools for the design of BlockoutVR.

In summary, Maquette is an amazing tool with the best features for world-
building among the tested VR applications. There are a couple of additional
features provided, such as object locking to prevent accidental changes on
specific objects and parametric primitives for a wide range of easily accessible
shapes. However, the main problem with Maquette is that development has
been canceled and it seems unlikely to be continued anytime soon. As a
result, it may eventually become obsolete and unusable.

2.5.3 Tvori VR

For locomotion, Tvori [48] uses a combination of swimming and dragging.
Dragging is a simplified form of swimming where one controller is anchored
to the scene and the user is shifted relative to this controller.

The user interface is similar to that of Maquette and other discussed tools,
with the main difference being that when menus are opened, they are not
attached to the controller as in most cases, but rather to a position in space
where they were spawned. They can be moved around arbitrarily, and multiple
menus can be spawned at the same time, which provides fast access to settings

19

2. Analysis

Figure 2.14: Showcase Sketchbox scene called "Construction training". Controller
with tools on the left.

for multiple tools, but on the other hand, it can complicate movement and
work in other areas as the menus have to be moved again. The control of
Tvori is a bit more complicated and seems less user-friendly compared to
other tested applications, as it provides complex additional animation tools.

The toolset of Tvori is similar to that of Maquette in terms of general
object manipulation tools, but it has more limited modeling capabilities.
Tvori focuses on 3D animation prototyping (which Maquette cannot do) and
spatial UX/UI prototyping for AR and VR applications.

Tvori provides many unique additional features, but there is one particularly
useful one: a transformation gizmo for selected objects. This gizmo is similar
to the ones commonly found in desktop applications for moving objects along
specific axes, rotating them, and scaling them. VR applications typically do
not include this feature as users can grab the object directly, but the gizmo
allows for fine changes without making unintended changes in rotation or
position, which can often happen when an object is grabbed directly.

2.5.4 Sketchbox

Sketchbox [45] is a multipurpose sketching tool. Locomotion is done using
a combination of teleport and swimming, similar to Maquette. Its user
interface, while slightly primitive compared to others, has all features and
settings together on one big menu, with one additional pop-up window. The
menu is attached to one controller, and it can be switched to the other
controller for left-handed users. However, the menu is big and seemingly
designed for the left controller, so when attached to the right one, some
buttons are harder to access and the menu is generally a bit cumbersome
to use. During the design of BlockoutVR, care should be taken to prevent
similar issues.

20

................................. 2.5. Existing applications

Figure 2.15: Example Gravity Sketch scene.

The strong point of Sketchbox’s toolset, compared to other programs, is its
ability to perform precise modeling with features such as measuring distances,
space snapping, and placing guides. It is used in professional spheres for any
sort of idea sketching and supports import and export in common formats. It
focuses on line sketching and has a variety of tools for free drawing, straight
lines, and other shapes.

In terms of additional features, Sketchbox is strongly focused on collabora-
tion and is designed for a comfortable workflow for multiple people in one
scene. It also has a range of tools for line drawing and some useful guid-
ing tools for precise drawing in space, which are unique to this application.
One interesting feature is the measuring tool, which allows users to place
measuring lines directly in the scene and displays the distance between their
ends.

2.5.5 Gravity Sketch

Gravity Sketch [17] is an amazing sketching tool with a great UI, providing
easily accessible and usable tools for modeling shapes. It is also the only
one of the main tested programs that can run natively on a standalone VR
headset (Quest2), while other tools require a PC.

In Gravity Sketch, the user is statically set around the environment origin
and the locomotion is very limited. The default room-scale is present, as with
most applications. The only other option is to grab the model and move it
around the user to the desired position. There is no other locomotion available,
such as teleporting or shifting position. In the context of this application, this
seems reasonable, as it focuses on product design and sketching and extensive

21

2. Analysis

Figure 2.16: Example Blocks scene.

scenes are not expected to be built. The user interface is great and extensive
in options, while still being intuitive. There are three menus for different
tasks. Each menu is designed for its purpose. The first one has just a couple
of buttons on the side of the controller for quick saving, help, or exiting the
application. Then there is a settings menu and a tools menu.

The toolset in Gravity Sketch is the most unique among the other tools,
but it is probably the least useful for a level blockout. The tools are mostly for
creating different kinds of lines and surfaces, but the geometry is not connected
among the elements. This clearly targets sketching and the creation of single
models (or small scenes at most), and therefore it is unsuitable for inspiring
the design of a world composition application. It seems clearly focused and
useful for product design, for example, in the automotive industry.

As an application focusing on surface modeling, it provides additional
features such as layers, 2D side views, and the ability to model around axes,
as well as other standard desktop object modeling tools. The modeling tools
use the VR controller smartly, allowing the creation of surfaces between
controllers and the ability to sculpt the shape directly.

Although Gravity Sketch offers one of the most interesting tools, its focus
is far from blockout, and few learnings from this application can be applied
to a world sketching application.

2.5.6 Blocks by Google

Blocks [15] seems like a perfect application for introducing VR modeling to
inexperienced users because of its simplicity and intuitive tools. It also has
a great interactive UI, which is the best among the tested apps. However,

22

................................. 2.5. Existing applications

Figure 2.17: Example Neos scene.

due to its plainness, it is missing some core features for blockout, such as the
ability to import your own models.

The locomotion in Blocks is simple swimming. The user interface is well-
designed. Although Blocks has an advantage in simplicity because it doesn’t
provide as many features as the other applications, the UI is so well-arranged
that it can be easily understood without any previous learning experience. It’s
worth noting that Blocks also provides a tutorial upon opening the application,
making it extremely user-friendly.

The toolset in Blocks is very limited, with only six basic tools for common
transformations, saves, and a couple of provided primitives, without the
ability to import your own models. As additional features, Blocks provides a
simple but powerful Modify tool for geometry modifications, such as extrusion,
subdivision, and moving specific faces, edges, and vertices. Another interesting
idea is the color palette on the back side of the tool menu, which would
otherwise be unused. It is a little bit cumbersome to access as it requires
twisting the hand, but it can be reached quickly without using the menu itself.
Both of these features would be interesting in a world sketching application.

2.5.7 Neos VR

Unlike previous programs, Neos [40] is not a modeling tool, but a metaverse.
A key feature of a metaverse is the ability to create and shape worlds, so
Neos offers a wide range of tools for world modeling, even if it is just a subset
of what it has to offer.

Neos offers a wide variety of locomotion types that can be swapped, in-
cluding HDM-based ground movement, climbing, flying, and teleportation.
The user interface is significantly different from the previous applications.
There are multiple interfaces, including a radial menu on each controller for
quick access to actions such as switching locomotion types, deleting or cloning

23

2. Analysis
objects, and other basic settings and interactions. There is also a dashboard
in the form of a floating window in front of the user, which has multiple tabs
and serves as the main menu, settings, inventory, and interface for basically
anything else that is accessible.

Neos’ toolset provides many tools for modifying objects in various ways,
which are stored in the inventory as equipable tools. Objects are manipulated
using a combination of laser and grip. This seems very useful, and the design
chapter of this work is heavily inspired by Neos’ object manipulation.

As a metaverse, Neos has many additional features compared to previous
applications, but most of them are not relevant to a level blockout. However,
Neos can provide design inspiration for locomotion, UI, toolset, and object
interaction, if we can recognize useful features for this work.

2.5.8 Other VR tools

The sections above provide a description of existing applications that may
offer relevant design ideas for creating the world sketching application. I have
also tested and explored other accessible modeling VR tools, such as Arkio
[3], ShapesXR [44], Adobe Medium [1], and Tilt Brush [16]. However, these
tools either have a very specific focus or are not unique enough compared to
previous programs.

2.5.9 Missing features (for world sketching) from existing
applications

The proposed application differs from most of the tested apps in that it is a
specific solution for blockout and level layout sketches, rather than a general
solution. It is designed for a fast and intuitive workflow and a creation of
large-scale, low-detail scenes, rather than the smaller but more detailed scenes
or models that are more common in other applications. None of the existing
solutions has this primary focus.

Most of the tested applications are designed to allow users to manipulate
objects in a scene using controllers that directly grab the objects. This is
useful for working on smaller models or miniatures, but it can be difficult to
use in cases where the scene is vast, such as when creating a level blockout.
In these cases, the user has to be scaled much larger than the scene objects
to be able to reach everything with their hands. Otherwise, most objects will
be out of reach. This work presents a design that combines direct grab with a
laser pointer to allow users to work with both close and distant objects easily.

There is a significant similarity among the tested VR applications in terms
of their aim for simple control and intuitiveness. Even Tvori VR, which
seemed the most complicated and required a few tutorials on the menu and
user interface, didn’t take more than half an hour to understand. While
simplicity in the workflow is undoubtedly pleasant for beginners, it may hinder
more effective workflow for experienced users. As shown in the figures for each
application, there is always a menu attached to one of the controllers where
you can swap tools. However, for the simple action of spawning, moving,

24

................................. 2.5. Existing applications

scaling, and copying an object, the user needs to re-select the tool at least
three times. This means moving the arm from right to left and back to the
model three times, which can be slow and tiring for continuous work. There
are nearly no professional content creation desktop programs that can be
used intuitively. Whether it’s Blender, Maya, Unreal, Unity, or others, the
learning curve may vary, but all require significant knowledge and the use
of shortcuts for fast context switching. The small number of buttons on the
controllers is not suitable for standard keyboard shortcuts. Therefore, this
work proposes a design focused on fast context switching, which may not be
as user-friendly but is more comfortable and productive for experienced users.

25

26

Chapter 3
Design

This design aims to define the core functionality of an application for building
3D worlds in VR. The core features include the ability to place, move, and
manipulate objects in 3D space, import and export 3D models, and provide
a variety of primitives (simple shape objects) and tools for modifying objects.
The application should also allow the user to save and load their work. The
user interface should be easy to use and meet all VR-specific requirements
and recommendations recognized in the previous chapter. The design presents
an abstract overview of the necessary features and quality-of-life elements
without considering specific implementation details.

The chapter Analysis provides a lot of insight into the design and features
of similar VR applications, particularly the existing applications (see section
2.5). Designing the application involved selecting the best elements from
previous research and applications, as well as my own experience creating a
VR modeling application and assembling these selected elements into a single
functioning unit that provides the best experience for blockout/sketching
worlds, being intuitive and effective. The design chapter serves as a template
for the following implementation, but it is not expected that all the described
features will be implemented, simply due to scope and time limitations.

3.1 Application definition

The previous chapters provided a strong indication of the expectations for
the designed application as the goal of this work, but let’s summarize the key
properties that it is trying to achieve. This includes defining expected control,
features, accessibility, and other factors based on the previous research and
existing applications.

Definition of expected application: A VR application for general HMDs
with two controllers as input devices. It is intended for creating sketches
of virtual worlds (level blockout/world composition) and allows users to
navigate the final scene naturally. It provides a toolset for manipulating and
transforming objects (model transformations, spawn, delete, clone, etc.) and
simple object geometry modifications. It offers a combination of multiple
locomotion types for comfortable and effective navigation through the scene,
suitable for both new and experienced VR users. It has a dynamic control

27

3. Design..
scheme that can be used by both right-handed and left-handed people. The
user interface is friendly and user-friendly. It has settings for object-related
tools and auxiliary tools to control the application (save, load, and other
settings). The tool is able to import existing models and export models (and
the entire scene) in widely used formats that are compatible with popular
game engines. Objects in the scene are arranged in a hierarchical structure.
By default, new objects are unrelated, but users can parent them to each
other.

3.1.1 Functional requirements..1. Intuitive user interface..2. Comfortable locomotion..3. Save/load scene..4. Importing models..5. Exporting scene..6. Undo/Redo object operations..7. Object manipulation tools..8. Geometry tools..9. Parenting objects...10. Group selection...11. Multiple modes...12. Snapping

3.2 User interface and experience

The user interface (UI) and user experience (UX) are integral components
of virtual reality (VR). VR technology allows users to interact with digital
environments in a natural and intuitive way, providing a sense of immersion
and presence. The UI and UX in VR refer to the design of the interface and
the overall experience of using VR technology.

VR UI and UX design focuses on creating intuitive, user-centered interfaces
that enable seamless interaction with virtual environments. This involves
considering factors such as the visual design of the interface, the layout of
controls and buttons, and the use of haptic feedback to provide a sense of
touch. A convincing design can enhance the user’s sense of immersion and
enable them to fully engage with virtual environments, leading to an enjoyable
and intuitive VR experience. Good VR UX should also take into account the
user’s psychological and physiological responses to the virtual space in order

28

............................. 3.2. User interface and experience

Figure 3.1: The design idea for the controller scheme (when the Object mode is
selected). The underlying controller sketch was made by [41].

to prevent discomfort. This includes minimizing motion sickness, a common
side effect of VR use, and providing clear visual and audio cues to guide the
user’s movements and actions.

3.2.1 Controllers

Each controller has a different role and different functions. The first one,
referred to as the Menu controller, has all the supporting functions such
as locomotion, holding the Main menu, the Primitives menu, and context
switching for the other controller, which is called the Tool controller. The
Tool controller has all the tools of the currently selected mode (which is
explained in more detail in section 3.3) and provides interaction with scene
objects.

By default, the left controller is the Menu controller and the right controller
is the Tool controller, but they can be switched at will through the menu
settings. For additional clarity, each controller should have a description
explaining the current function of each button. This description can be
enabled or disabled through the Main menu.

There is one interaction for both controllers that allows the user to change
their scale. By holding both grip buttons and moving the controllers away
from each other, the user will scale up. Similarly, moving the controllers
closer together will scale the user down.

Menu controller

The Menu controller has mostly supporting functions for general navigation,
control, and settings. Due to the limited number of inputs, some functions
change based on the controller’s state. However, the defined behavior for
specific buttons is fixed, unlike on the Tool controller. For example, during

29

3. Design..
teleportation, the thumbstick does not control movement, but rather the
direction of the teleport.

The primary function of the Menu controller is locomotion. The trigger
button is reserved for the teleport function, and an optional teleport direction
can be added using the thumbstick. The thumbstick is also used for HMD-
based movement. The trigger and grip buttons control vertical movement
when the thumbstick is touched. The Y and X buttons (or B and A buttons
on other controller) cycle to the next or previous mode, respectively. The Y
and X buttons also serve as undo and redo functions when the grip button is
pressed. Access to undo button only with a grip press is to prevent accidental
undo calls, which is the issue that some tested VR applications suffered.

The Main menu is attached above the Menu controller. The Primitives
menu, which is used more frequently and therefore has a preferred position,
is attached to the inner side of the Menu controller.

Tool controller

A primary controller for scene interactions, the buttons on this controller
have variable functions depending on the currently selected mode. However,
there is consistency whenever possible. For example, the trigger is always
used for interaction with objects, while other buttons may offer different kinds
of interaction or supporting features. Each mode has a different layout and
specific controls, which will be explained individually in the modes section
3.3.

The controller has two interaction components. The first is the grip hold,
which represents the action of holding an object in hand. The visual cue and
center of the grip’s collider is a small sphere above the controller. The second
component, a laser functioning as a pointer, called laser hold, originates from
the same location as the grip (see Figure 3.2). Both interaction components
are treated similarly in terms of interacting with objects, but the grip hold
has priority over the laser hold. Therefore, if the grip interacts with an object,
the laser is ignored.

3.2.2 Visual interfaces

User interfaces are a crucial difference between standard and VR modeling,
as they must take into account the difference in dimensionality (see section
2.4). This has been thoroughly explained in the analysis.

Main menu

The Main menu is the user interface for settings (general scene and tool-
related) and auxiliary tasks (such as save, import, export, etc.). It is not
designed for frequent use, but rather as a simple way to access all non-
modeling related tasks. It is a simple, curved 2D panel that is attached to the
main controller and rotates to face the user. The tool controller has a laser
pointer for aiming at the menu, and the trigger button serves as a press in

30

............................. 3.2. User interface and experience

Figure 3.2: The upper two images depict possible interaction components - a
laser and a grip sphere. The images below show how these components interact
with an object.

the menu. It provides access to all features and settings described in sections
3.4 and 3.5.

The main menu is expected to have multiple tabs (as shown on draft 3.3),
each for related things. One tab is reserved for showing all objects in the
scene in the form of a scene collection view. This is basically a panel with
text names of objects and visual connections and indentations to depict the
hierarchy, similar to what typical 2D programs offer.

Primitives menu

A 3D panel with available primitives is attached to the Menu controller and
provides a preview of 3D miniatures of all primitives. The primitives can
be selected by pointing at a given primitive or by directly grabbing it. The
panel is hidden in modes where it is not relevant.

31

3. Design..

Figure 3.3: Original Main menu draft (used in the prototype), shown with "Save"
tab selected.

3.3 Modes

To design a control, it is necessary to define the button layout to work with.
In this case, the most common VR controller input, and the one considered in
this work, is depicted previously in the section on controller input (see 2.4.1).

It was mentioned that the amount of input buttons is rather limited, so
not all features can be mapped directly on the buttons. A common solution
in the tested applications was to switch tools in the menu, rather than
assigning specific functions to buttons directly. This makes sense as the issue
of insufficient buttons is moved to the menu, where enough space can be
dedicated to it. However, this can result in an ineffective workflow, since only
one tool can be selected at a time. Even relatively simple operations may
require unnecessarily many tool swaps.

To address this issue, two techniques are combined. The first is defining
modes for context switching. This involves defining sets of logically related
tools and implementing each set of tools together on a single layout. This
way, instead of having many different layouts (one for each tool), only a few
different layout modes are necessary to contain all of the tools. The modes
can then be switched by the user. The second part is fast switching the
context (the mode layouts) not through the usual menu attached to the other
controller, which requires moving the whole arm, but instead via X/Y (A/B)
on the Menu controller directly. This does not require the user to move their
hand or look at the controllers. While moving the arm might not seem like a
big issue, repeating this action many times over during prolonged work can

32

....................................... 3.3. Modes

Figure 3.4: Draft of modes tools and circular swapping. Yellow nodes represent
tools affecting the objects, while green affects a landscape.

cause fatigue, a common problem in VR. It is essential to make it visually
evident which mode is currently selected to prevent any confusion during
mode switching. A simple and effective solution would be to color the Tool
controller mesh in light colors, each color representing a different mode.

The following subsections explain each mode individually. Note that the
specific mode only affects the Tool controller (while the Menu controller stays
the same during any mode). Therefore, buttons such as the trigger always
refer to the Tool controller’s trigger in this section.

3.3.1 Object mode

This is the primary mode, including the essential transformation and inter-
action tools for creating a scene with primitives. It is expected to be used
most of the time. Interaction with the objects is done using a combination
of the laser pointer laser hold and grip grip hold. This allows the user to
comfortably work with both close and distant objects. The tools aim to
provide the same interaction with both laser hold and grip hold if possible,
but this is not feasible in all cases. The following subsections describe the
provided tools, their functions, how they use the different object states for
interaction, and if their interaction differs between laser hold and grip hold.

The objects in the scene may have multiple states: normal, focused, se-

33

3. Design..
lected, and held. Normal is the standard state of the object when nothing is
happening. An object is focused when it is being pointed at with the laser
pointer or within the range of the grip hold. Objects are selected when they
are marked for group selection (more in section 3.3.1). Held is an object that
is being directly interacted with through the trigger button (more in section
3.3.1). In the held state, there can be multiple objects if there were previously
multiple objects in the selected state. These states are not exclusive; for
example, an object can be both focused and selected.

During this mode, the Primitives menu (see section 3.2.2) appears, attached
to the Menu controller, to provide primitives as the building blocks for the
scene.

Selection tool

The ability to select and manipulate multiple objects as a single entity. It
can help to save time and increase productivity, especially when working
with complex models. The capacity to move parts of the scene is essential for
the level design process. While having multiple primitives in a parent-child
hierarchy can support this to some degree, it is often necessary to move
objects that are logically connected but not part of the same hierarchy. For
this purpose, a tool is available to select multiple objects, and other tools can
then be applied to all of the selected objects.

This tool transfer objects to the selected state. When the A button is held
down, every focused object is set to selected. This enables the user to hold
the button and point at all of the objects that they want to select. A single
press of the A button on a selected object will deselect it. A fast consecutive
double press of the A button will release the selection and set the objects to
the normal state. The selected objects are highlighted for visual clarity.

Transformation tool

By pressing the trigger, focused and selected objects become held and their
position and rotation can be changed.

The laser hold can move selected objects to any position that the laser
is aiming at, up to the distance of the initial hold. In addition, by rolling
the Tool controller to the left and right, the selected objects can be rotated
around their local z-axis. With the grip hold, selected objects follow the
controller’s position and rotate with the controller in any of the three axes.

Delete tool

Pressing the B button deletes the focused and selected objects, or the held
objects if any are in an active hold.

34

....................................... 3.3. Modes

Scale tool

Objects that are held can be scaled up by pushing the thumbstick to the
right, and scaled down by pushing it to the left. This works the same for
both the laser hold and the grip hold.

Distance tool

Pushing the thumbstick up and down will increase and decrease the distance
of the held objects, respectively. If the objects are held via the laser hold,
then the range of the laser is extended and shortened accordingly. If the
range decreases to zero, the held interaction type is switched to the grip hold.
Similarly, increasing the distance from the grip hold will result in a transition
to the laser hold.

Clone tool

The clone tool works the same for both holds. There are two ways to use
the copy tool. The first option is to have objects in an active held state. By
pressing the grip, copies of held objects are spawned at the current position,
while the original objects remain in the held state.

Another way to use the clone tool is to hold down the grip (no objects in
held state) and then press the trigger with the focused or selected objects.
Instead of the standard interaction where the focused and selected objects
become held (as explained in 3.3.1), they are copied and the copies become
held, while the original objects remain in the scene untouched and are released
from the selected to the normal state.

Parenting objects

Blockout typically relies on primitive objects to create scenes. The ability to
parent these primitives allows the user to create more complicated objects,
as the parent object and all of its children can be treated as a single entity.

By pressing the thumbstick, the focused object is assigned as the parent of
the selected objects. If the selected objects had a different parent previously,
they are re-parented to the new one. The entire children hierarchy remains
persistent even when the parent is changed or a new one is assigned.For the
same interaction where the focused object is already the parent of the held
objects, the parent-child relationship is removed, and the objects become
individual again.

3.3.2 Other modes

There are four other defined modes. They are described and their features are
outlined, but unlike the primary object mode, there are no specific instructions
on how to implement them. These modes will not be implemented in the
prototype application, but they are important enough for the blockout process
to be included in the design chapter.

35

3. Design..
Geometry mode

From the geometry tools that were researched, there were two that seemed
particularly useful for level blockout in VR. First are Boolean operations,
which are described in section 2.3.1 along with information on how they
work and how they can be useful. The other useful method is the direct
modification of geometry by shifting faces, edges, and vertices, which is
described in section 2.3.1.

There would also be other tools for modifying the object in various ways,
such as scaling along individual axes.

Coloring mode

Colors are important in level blockout because they allow the user to assign
meaning to objects. They can be used to depict important places in a
scene, indicate the expected color or texture of the final material, or express
intentions about the interaction between the user and scene objects. Even
before any logic is implemented, the use of colors can make it clear to the user
how objects will react to them based on their color. The specific meanings of
the colors used are up to the user to define.

Landscape mode

When modeling levels, there are two main types: closed levels and open
levels. Closed levels are enclosed spaces such as a series of connected rooms
or cave dungeons, while open levels are large, accessible environments like a
village surrounded by woods, fields, and mountains. There is no clear border
between closed and open levels, as there can be partially open levels, but the
distinction is based on whether a landscape is used or not. Landscapes are
typically large meshes that represent the land, and they are useful for world
sketching. During the blockout phase, it is possible to simulate a landscape
with primitives instead of using actual landscape tools. However, providing
the correct landscape tools is a useful way to distinguish a world sketching
tool from common VR modeling tools, which do not typically offer anything
related.

The difference between casual primitives and landscapes is that landscapes
can be sculpted. This means there are tools available for adding and sub-
tracting mass to create the desired shape of hills, valleys, and other features
that the designer envisions.

Testing mode

Making a level blockout is not just about how the level will look, but also how
it will feel to play in the game. This mode provides tools for common types
of game locomotion and interactions. while editor movements like floating
and teleporting are great for browsing the level, the player’s experience will
be different if they can for example only walk. This mode aims to provide

36

.................................... 3.4. Other features

Figure 3.5: The VR locomotion typology defined in [6].

the most common experiences that players might recognize in a custom game,
while taking into account the fact that different games have their own unique
characteristics.

3.4 Other features

Core features that are not specific to any mode include locomotion, settings
options, and general features like import/export, load/save, and undo/redo.

3.4.1 Locomotion

Locomotion is essential for many applications, but it can also present po-
tential pitfalls as most of the comfort risks mentioned in section Preventing
Discomfort can be triggered by improper movement techniques. Therefore,
there has been a significant amount of research on this topic. Many studies try
to identify discomforting effects associated with common locomotion systems,
some even attempting to find a new system that eliminates the problems of
existing ones [18]. Others explore how different movements can negatively
impact distance estimations in virtual reality [23]. The VR locomotion typol-
ogy breakdown in Figure 3.5 from [6] provides a breakdown of the locomotion
types.

There is no single best type of moment. For example, continuous motion
can cause motion sickness due to the confounding effect on the vestibulo-ocular
reflex. Teleportation can also lead to spatial disorientation [18]. Some types of
motion may be more comfortable for users, but may not be as efficient. This
is why this design combines multiple approaches, allowing users to choose
what they feel comfortable with.

Room-scale Movement

Room-scale in virtual reality (VR) refers to the ability of the user to physically
move around within a defined workspace while using a VR headset [27].
Physical motion is accurately translated to the virtual space, making it
the most natural and comfortable movement. The only limitations are the

37

3. Design..

Figure 3.6: Visualization of the room-scale (with its Guardian system) in Meta
Quest. On the right image warning of the user when they reach the border.
[37]

size of the physical space and the hardware tracking capabilities. Most VR
applications that involve locomotion support this type of movement, although
the downside is that the room-scale is usually only a few meters in diameter,
which is too small for many VR experiences. Nonetheless, it should be used
whenever possible.

Most VR headsets have room-scale built in. Figure 3.6 shows a visualization
of the Meta/Oculus room-scale mechanism. This feature can be set up for the
headset and specific environment once, and it will then work as an overlay for
any running application. This feature is typically accompanied by a control
mechanism that activates if the user gets too close to the border, alerting the
user to stay within the designated area.

Teleport

Teleport is a widely used VR locomotion method [6] that can be found in
many VR applications that support movement beyond just room-scale. Its
popularity is due to its user-friendliness and comfort, which makes it ideal
for non-casual VR users. Teleport implementation often involves an arc from
a controller to the ground to determine final position.

Sometimes, additional rotation is offered on teleport, which changes both
the position and rotation of the user, providing more variability. Research on
teleport locomotion [7] has found that the direction component can negatively
impact the user experience. To address this issue, some approaches propose
using a two-phase teleport, where the user can use standalone teleportation
with a single button, but can also add direction at will using a thumbstick.
This seems natural, but many existing applications force the user to choose a
direction before teleporting.

The default scene of the blockout application is empty, so teleport is not
suitable as a locomotion method in this case, as there are no objects to be
teleported at. However, it should still be included for sensitive users.

38

.................................... 3.4. Other features

HDM Orientation Based Movement

This type of movement combines thumbstick input with the current head-
mounted display (HMD) rotation. It reads values from the Menu controller’s
thumbstick, with the X-axis value ranging from 1 to -1 for moving forward
and backward, respectively, and the Y-axis for moving left to right in the
same range. These values are combined into a single directional vector, which
defines the orientation of the expected movement. However, this movement
direction vector is then applied to the local coordinates of the HMD (rather
than the global coordinates) and shifts the user in the final direction. This
may seem confusing at first, but it simply allows the user to move forward
in the direction they are looking by pushing the thumbstick forward. This
makes this locomotion type feel relatively natural and easy to use.

Along with teleportation, this is the most suitable type of movement for
long-distance traversal in a scene. However, unlike teleportation, this type of
movement does not require any attachment points in the scene to which the
user is moved.

HMD orientation-based movement is fitting for a world-building editor.
While this type of movement feels natural and is easy to use, it does violate
some of the comfort risks mentioned in the section on preventing discomfort,
notably vection and vestibular sense. This can be unpleasant for new and
sensitive VR users. For those users, there are other movement types available.
For experienced users, however, this type of movement is expected to be the
primary locomotion option.

Vertical Movement

Vertical movement can be seen as an extension of the previous orientation-
based movement. While it allows for vertical movement, it is quite impractical
if the user needs to go directly up or down because turning the head straight
up or down would be straining and could potentially cause the head-mounted
display (HMD) to fall off the head. Therefore, an additional mechanism
for vertical movement is introduced. The Menu controllers’ trigger and grip
buttons move the user vertically up and down, respectively. The user must be
touching the thumbstick to use these buttons, as the standard trigger and grip
buttons are reserved for other purposes. The trigger and grip buttons support
single-axis input so that the vertical movement speed can be determined by
the depth of the press.

Swimming

Swimming refers to the ability to move through a virtual space in a manner
similar to real swimming. In VR, the head-mounted display (HMD) typically
defines the center of the body, and the controllers are positioned in relation to
it. When swimming is active, the controllers anchors to their current position
in the scene, and the user’s virtual body position is moved instead. This
movement is often combined with functions to scale the user based on the

39

3. Design..
distance between the controllers and to rotate the user based on the angle
between the controllers, projected on the horizontal plane (as rotating the
user upside down would be an unwanted action).

This locomotion can also be described as grabbing the whole scene and
moving it around the static user, with locked roll and pitch to allow only
horizontal rotation. It refers to the same movement as described in the
previous paragraph, just from a different perspective.

This type of movement allows for comfortable navigation in small areas
of the scene due to the quick rotation and scaling. While it can be used as
the sole movement type in an application, it is unsuitable for traversing large
scenes.

3.4.2 Save/Load scene

The standard function for continuous workflow with arbitrary closing and
reopening of the application is the save and load functions. The save function
saves the current scene to local storage, which can be extended to save on
cloud storage for increased accessibility and backup. The load function loads
the saved scene from the save file into the application for continuing work.

This mechanism is solely for the user’s convenience and is not intended
for importing or exporting models. As such, the implementation and format
used for the save and load functions are not specified. These functions are
accessible in the Main menu.

3.4.3 Import models

Although blockouts mostly rely on preset primitives, it is important for level
designers to have the option to import their own 3D models. This design
considers that and offers this option. The workflow for using imported objects
is different from that of primitives, as they are not expected to be used as
often, but rather as an additional option.

The imports can be accessed through the Main menu. In order to be
recognized by the application, 3D models must be placed either directly in
the designated folder or defined in the location in the configuration file. An
additional option would be to allow the user to browse folders directly in
the application, but using folder browser in VR is cumbersome and adds
considerable implementation complexity without significant benefits.

The application should be able to load 3D models in common formats such
as FBX and OBJ, and optionally any other existing formats.

3.4.4 Export scene

A key function in BlockoutVR is the ability to export the created scene/world
in a format compatible with game engines, when the blockout is finished.
The default export format selected is glTF, managed by the Khronos group.
"glTF is a royalty-free specification for efficiently transmitting and loading

40

................................... 3.5. States - Settings

3D scenes and models in engines and applications. It minimizes the size of
3D assets and the runtime processing required to unpack and use them." [24].

While glTF is a newer specification, released in 2015, compared to obj or
fbx, it is growing in popularity and is already supported by most relevant
programs. Therefore, considering its pros and cons, it seems like a good choice
for transmitting world sketches due to its efficiency in loading 3D scenes.
Additional export formats can be implemented based on user preferences.

3.4.5 Import reference images

It is common practice to use images as references in 3D modeling. Therefore,
even VR applications should have this feature. A simple ability to import
2D images in standard formats such as PNG and JPEG and place them in
a custom position, rotation and scale in 3D space, with the option to align
them to the world axes, would be sufficient. Both import and axis alignment
settings should be accessible through the Main menu.

3.4.6 Undo/Redo

A basic tool for consecutively undoing or redoing the last changes made in
the scene. Changes in menu settings are not included for undoing. That is
for clarity on what changes have occurred, and the menu is expected to be
simple, so undoing settings there seems unnecessary.

Both when undoing and redoing, the user should be notified of the specific
change that occurred, as some changes can be very minor and not immediately
visible. This notification should take the form of a sentence describing the
action that was reverted or restored for object A, such as "Cube primitive
rotation reverted". This helps the user to understand what has happened and
not worry that a major change has occurred outside of their field of view.

The undo stack should be limited only by the available memory, rather
than a hard-coded limit on the number of changes, as is still common in some
programs.

3.5 States - Settings

There are multiple parameters that can affect manipulations with objects.
Each of the following settings can be enabled or disabled, and some may offer
additional tweaking options.

3.5.1 Surface snapping

Surface snapping is a common technique in CAD applications that constrains
the movement of selected objects to a specific surfaces. This allows the
user to properly align objects. Primitives are typically not designed to use
collisions, so surface snapping can be used as a method for achieving consistent
alignment.

41

3. Design..
Surface snapping can be implemented using a combination of geometric

algorithms and heuristics to determine the closest surface to the selected
objects. The selected objects are then positioned so that the bottom of the
objects intersects (or is slightly above) the closest found surface.

3.5.2 Grid snapping

Grid snapping is another common snapping technique that relies solely on
the 3D space itself - that is, the global coordinate system or a predefined
custom local coordinate system. Objects are snapped to the closest grid point
in a regular grid of points in 3D space. The density of the points can be
determined by their distance from each other on each axis. By using a custom
local system instead of the global one, other factors can be modified, such as
the rotation of the whole grid. This is useful for aligning objects at specific
angles, which would not be possible otherwise.

3.5.3 Angle snapping

Angle snapping is a technique that differs from the previous two because
it doesn’t affect the location of objects, but rather their rotation. It is
particularly useful for creating symmetrical designs and aligning the rotations
of objects with each other. When placing objects, angle snapping locks their
rotation at specific angles only.

3.5.4 Grid lines

Shows a transparent or dashed 3D grid over the whole scene (or at least near
the user). The grid size can be assigned.

3.5.5 Guide lines

Guidelines are visual aids that help position objects. They can generally show
distances from other elements or other values if needed. In combination with
grid snapping, they can be used for precise modeling with proper alignments
and specific lengths.

3.5.6 Environment

To create the image of a complete scene, the application should provide
common scenery elements such as a water plane/ocean, sky (sun and clouds),
daylight, weather, fog, and mountains around the center of the scene. These
elements can easily and effortlessly set the tone of the created world.

Each scenery actor can be individually enabled or disabled through the
menu.

42

.............................. 3.6. Integration to game engines

3.6 Integration to game engines

Part of this work involves considering integration into game engines for
real-time synchronization, specifically the one-way communication from this
application to an engine or other software. This option was researched (for
the Unreal engine) and seemed possible through an Unreal editor plugin
that would update scene information based on the received data through
a network communication channel using TCP. For the best compatibility
with other engines, a reasonable solution is to develop a simple, uniform
communication API for the Blockout application and then create individual
plugins for integration with specific engines using this API.

On any change in the scene, this API would send batch data (in JSON or
any other easy-to-parse format) with all objects whose state (transformation)
was modified, along with the new state (transformation) of each object. The
plugin would then only need to read the data and apply it to the corresponding
objects or create new ones if they don’t exist yet.

Another idea for the API solution was to send operations and a list of
references to which objects the operation is applied, which is a common
practice to reduce the amount of data sent. This would generally require
fewer data to be sent over the network, but it has some significant downsides.
The first proposed API could theoretically struggle with operations on many
objects at once (as more data has to be sent), but modern networks should
have no issues, especially between devices on the local network, which is the
expected use case. In addition to this, the first API has two big advantages.
Firstly, since the actual state of the object is sent, the engine always has correct
and precise information, and there is no risk of accumulated error through
multiple operations. The other advantage is that the implementation of the
plugin for any software is far simpler since it is only necessary to create an
object and set its transformation parameters. The second API would require
implementing all operations in every plugin, making its implementation far
more complex and increasing the risk of introducing a bug and possibly
creating an inconsistency between engines, as each plugin could interpret
operations slightly differently.

This integration would certainly be useful and should be considered as
a possible expansion, but in the context of this work, the possibility of
integration will not be discussed further or implemented in the prototype.
The main focus of this work is on VR modeling, and implementing this
feature would require a lot of network programming, which does not fit within
the scope of this work and would take considerable time away from more
important features.

3.7 Additional feature ideas

This section presents ideas that are not part of the current design but could
be theoretically useful and potentially considered for similar applications in

43

3. Design..
the fture..World map - A panel featuring a top-down (ortographic) map of the

entire scene, with the option to teleport to any location on the map for
fast travel..Drawing tool - The ability to draw in the virtual space using a controller
is a feature that many VR applications offer, and while it may not be
necessary for blockout, some users may find it useful for level design..Biome paint tool - The ability to ’paint’ surfaces such as grass, forests,
fields, etc. by designating an area on objects or within a volumetric space
where surface-specific objects (e.g. tree primitives for a forest surface)
would be spawned could be helpful in populating the environment more
quickly..Custom camera view - Placing a virtual camera at a custom position
in the scene and providing a real-time preview on the UI panel, to allow
the user to see how their build looks from different positions and angles..Chain tool - Instantiating objects along a predefined curve or line.. Figurine model - A 3D model of a human character that can be placed
in a scene for scale and perspective.. Spectator - The ability to detach the camera on the PC screen of the
running application and move it independently to watch the user in the
application from an arbitrary viewing position.

44

Chapter 4
Implementation

The implementation chapter describes the process of creating a prototype
VR application based on the research and design presented in the previous
chapters. This application is referred to as "BlockoutVR" as a simple and
concise reference to its purpose. It was primarily developed as for PCVR
(application running on a PC connected to a headset) for easier testing, but
it was implemented using standard VR techniques and should be possible to
build for standalone devices as well.

The prototype will be released as open-source software under the MIT
license, allowing the use of only self-made assets or assets with a permissive
license that can be used under the selected MIT license. This eliminates the
possibility of using any plugins from the Epic Marketplace, as Unreal Engine’s
EULA does not allow sharing plugins with people who have not signed the
EULA, even if the plugin is released for free. In the end, two external plugins
were used, both released under the MIT license.

BlockoutVR was implemented using the alpha version of Unreal Engine
5.0 and later migrated to the stable UE 5.0 version upon its release. Since
then, a new version 5.1 has been released, but it did not bring any specific
features that would have been useful for this work, so the application remains
on version 5.0.

Performance was not a primary concern for the prototype application, but
common VR performance issues were taken into account during implementa-
tion. The application did not experience any noticeable issues such as frame
drops or slowdowns, in a scene with thousands of primitives and hundreds of
them being interacted with simultaneously (as shown in Figure 4.1). This
was tested on the following hardware: Meta Quest 2 (render target: full
resolution 3664x1920, 90 fps), CPU Ryzen 5 3600, RAM 16Gb dual-channel
DDR4-3600, and GPU AMD Radeon RX 5700 XT.

4.1 Implemented functional requirements

This work includes the development of a prototype for the ideal application
outlined in the design chapter, featuring a reduced set of the features pre-
sented in the design chapter. The design chapter presented the functional
requirements of the ideal application, and Figure 4.1 shows which of these

45

4. Implementation....................................

Figure 4.1: This scene in BlockoutVR features thousands of primitives (each
ramp-shaped object is a single primitive).

have been implemented in the prototype.

Feature Implemented
Intuitive user interface Yes
Comfortable locomotion Yes
Save/load Yes
Importing models Yes
Exporting scene Yes
Undo/Redo object operations No
Object manipulation tools Yes
Geometry tools No
Parenting objects No
Group selection Yes
Multiple modes Partially
Snapping No

Table 4.1: Overview of implemented features.

4.2 Unreal Engine

BlockoutVR is developed as a standalone application using Unreal Engine
(UE). The original idea was to create the application in the form of a plugin
for UE, which would have significant advantages in terms of combining the
VR and 2D editor workflow and synchronizing between them. However, after
researching this option, concerns arose and the decision was made to create an
independent application and use UE only as an engine framework. This was

46

.................................... 4.2. Unreal Engine

mainly because the application needed to be unbiased towards cooperating
programs (game engines or other modeling tools), and the plugin design
would have locked it to use in the UE editor only. Extending integration to
other engines would not have been possible in a reasonable manner.

Programming in the UE can be done using the general-purpose compiled
language C++ or the built-in visual scripting system Blueprint [10]. In UE,
the term "Actor" refers to any object that can be placed in a level. Actors
contain variables, components, and logic (using Blueprint), similar to what
classes do in C++. The term "Widget" refers to a visual UI element used to
display things. Other specific terms should be self-explanatory or will be
explained individually.

4.2.1 C++

C++ is a standard, fast, compiled language with several advantages over
a scripting language. The most apparent factor is performance; compiled
languages tend to be faster in general. When comparing C++ with Blueprints,
the performance difference depends heavily on the specific use case and cannot
be accurately quantified. However, it is worth noting that there is a significant
gap. For this reason, C++ is preferable for performance-critical tasks. C++
code is stored in a simple text form and can be merged and diffed with other
versions of the code, which is not something that is easily possible with a
visual script.

Unreal Engine itself is written in C++, so the language is closely integrated
with the UE API, which means that all engine features are directly accessible
from C++. UE also allows changes to the engine’s code base if the released
version is not suitable for a specific use case, but this can only be done using
C++. Modifying the engine is a rather rare case, but there are more common
actions that Blueprints simply cannot perform. Most notably, integrating
any external libraries and tools in the project is often only possible with C++.
Even for engine features, not everything is exposed to Blueprints and requires
code, usually in fields where performance is critical and C++ is expected to
be used. Common uses of C++ in UE include math functions, networking,
communication with external programs, and integration of external libraries
and tools.

In terms of their capabilities, Blueprints are a subset of C++ but are still
very useful in many cases. While everything can be done in C++, it is generally
more effective to prefer Blueprints over C++, except for the cases described
in the previous paragraph.

4.2.2 Blueprint

Blueprints is a scripting language, as opposed to the compiled C++. The main
advantage of this is a faster creation and iteration process, as small changes do
not require re-compiling the code, which can be a slow and tedious process in
Unreal, especially when making many small tweaks and changes while tuning
any features. As a visual language, the flow of execution is clearly visible

47

4. Implementation....................................

Figure 4.2: A comparison of logically equivalent C++ code at the top and
Blueprints script below [13].

and logical mistakes are more obvious. This allows even non-programmers to
make some changes without understanding the code. Additionally, as a closed
system relying on pin connections, Blueprints will not allow connections that
do not make sense, such as passing an integer to a vector value, which can
save time by preventing mistakes that would otherwise only be found later
during compilation.

Since Blueprint is a visual language, programming is done using a series
of nodes, sometimes called node-based programming. The appearance of
Blueprints and their comparison to C++ are shown in Figure 4.2. Instead
of writing code, custom logic and behavior is created by combining a set of
pre-defined nodes and functions. These nodes and functions are organized
into a flowchart-like structure, which makes it easy to see the overall structure
and behavior of your Blueprints. Programmers can drag, move, add, or
remove nodes and connect them arbitrarily via input and output pins on each
node. Each node represents a different action, condition, or operation, and
the wires connecting them define the flow of execution. The Unreal editor
provides a debugger for real-time previewing of values, states, and flow at
every step of the execution of the Blueprints.

Custom nodes can be created in both Blueprints and C++, which allows

48

....................................... 4.3. Plugins

for seamless cooperation between the two languages. A common workflow is
to program computationally heavy functions in C++ as Blueprint nodes and
then call them from the Blueprints. This way, both languages can be used
together to their best advantage. Another approach is to create a Blueprint
class that inherits from a C++ class and use the C++ class as the core, allowing
Blueprints to be built on top of it.

Blueprints are great for game logic, control, and general workflow, basically
everything outside of the special cases described in the C++ section above.
For this reason, this work relies heavily on Blueprints.

4.3 Plugins

4.3.1 VRExpansion plugin

Unreal Engine offers an interface for VR, but it does not have many common
features implemented; only a simple VR template is provided by Epic Games.
This is why it seemed useful to start with the VRExpansionPlugin (VRE)
[46]. VRE is a plugin that provides common VR features, such as locomotion,
general VR interaction, networking, and more. After spending a considerable
amount of time programming and using the plugin, it turned out that using it
for BlockoutVR was not as useful as predicted. Most of the features provided
by the plugin went unused, and the needed functionalities were not provided in
a way that they could be effectively used. The features only that BlockoutVR
does use are teleportation (but modified) and laser interactions.

Still, there is merit in using the plugin for possible future extensions
of this work, especially features like multiplayer, which would be easier to
implement using this plugin as most of the necessary tools are already included.
BlockoutVR is based on the VRE example project, which is why there are
parts of the code/blueprints from the VRE plugin in the project. Most of
these parts were left in the project, even if they are unused, for the possible
expansion of features.

4.3.2 RuntimeMeshLoader plugin

The RuntimeMeshLoader [22] is a simple plugin that utilizes the Assimp
library to read common 3D model formats into Unreal Engine. The original
plugin was loading the models into UE as procedural meshes, which had some
issues, mostly related to performance and different interactions. Therefore,
the plugin was modified to load static meshes, which were more suitable for
the BlockoutVR use case.

4.4 BlockoutVR architecture

As a project based on the VRE example project, I tried to separate my assets
from the ones provided by the VRE plugin as much as possible, but it was not

49

4. Implementation....................................

Figure 4.3: Program architecture. Blue nodes represent Blueprint entities, grey
nodes are Blueprint entities with a C++ base class, green nodes are assets, and
yellow nodes are plugins. Note that this is an abstract description; some nodes
can represent multiple entities or an entity with a different name (as the names
here are meant to convey the function of the node).

completely possible for some of them that were used as a base for BlockoutVR
actors. For simple separation, the logic (C++/blueprints) that is not directly
used can be regarded as not done by me, and the one that is used and not
done by me will be pointed out in most cases. Below, some specific assets
will be described, but for precise separation, the BlockoutVR project can be
compared with the original VRE 5.0 example project [47].

VRCharacter is a modified character actor, the name of the asset in the
project is BlockoutVR_VRCharacter. This actor is the centerpiece of the
BlockoutVR application and contains most of its logic and connections to
other actors and components. VRCharacter is based on the Character from
the VRE plugin, so it also contains quite a lot of VRE’s logic. The input
system described in section 4.5.2 is there to provide inputs. This actor
contains both VR controllers as its components (among a few other but
rather unimportant components), so most of the tools’ interaction logic is
there. It also contains locomotion logic, except for teleportation, which is
implemented in the TeleportController (see Figure 4.4, there is one for each
controller) actor, which also provides laser interactions.

VR locomotion was one of the reasons for using the VRE plugin. Unfortu-
nately, the main locomotion type of the HDM-based movement included in
the plugin was locked on ground movement on the NavMesh, which is not
usable in this case. Therefore, a new movement called Ghost Movement in
the project was developed to fit the one described in design 3.4.1. Similarly,
the vertical moves described in 3.4.1 had to be made. Teleport was used
from the VRE plugin but had to be modified to fit the control scheme of

50

...................................... 4.5. Interfaces

Figure 4.4: Figure showing teleport and laser functionalities provided by the
TeleportController actor from the VRE plugin.

BlockoutVR, and the option to turn while teleporting was modified as well.
Importing and exporting are mostly done through plugins. Unreal provides

a great toolset for exporting glTF from the application [11]. In version
5.0, it is provided as a built-in plugin, which is already part of the Unreal
download package but needs to be manually enabled. From version 5.1, these
functionalities are built into the engine directly. This allows for relatively
easy exporting of glTF models from the application, it just needs the correct
settings and provided objects to export. Importing was solved through the
modification of a different plugin (see section 4.3.2).

Both the Main menu (a direct component) and the Primitives menu (a
controller-attached component) are part of the VRCharacter actor.

4.5 Interfaces

4.5.1 VR headsets

VR headsets use software runtimes to provide necessary support and resources
to connect to and interact with a computer, and enable the headset to display
video and track the space. Historically, VR hardware manufacturers provided
their own software for their headsets. Fortunately, in 2019, the Khronos
group released the stable version of the OpenXR open API standard for VR
[25], which is supported by multiple relevant VR headset providers.

The application was developed and tested on the Quest 2, so it is guaranteed
to work properly on this headset. It is expected that other Meta devices using
the same inputs should also work. In addition, Vive, Windows Mixed Reality,

51

4. Implementation....................................
and Valve Index should work, but these devices have not been tested and
no guarantees can be given. However, for the best accessibility, BlockoutVR
uses the OpenXR API, so it should be compatible with all standard headsets.
Some inputs may not work properly and may require adjustments to the
Unreal input mapping to function as intended, but these should be simple
and fast tweaks.

4.5.2 Input and controllers

One of the implemented features is the ability to swap the Menu and Tool
controllers as an accessibility feature for left-handed users. Swapping controller
inputs during runtime is a non-trivial task in Unreal. In fact, UE5 provides a
plugin specifically for "complex input handling or runtime control remapping,
and backward compatibility with UE4 default input system" [12]. However,
after some research and testing, it seemed that this plugin was more complex
(especially for VR with multiple different hardware inputs) than was needed,
both in terms of provided features and setting up the inputs. As a result, I
opted for a more straightforward solution. I mapped all inputs directly to the
buttons, but kept a flag for which hand is the Menu controller. I also made
custom events for each input used in the application and changed the flag
to remap all custom input events to the other controller. When any input
is used, the corresponding proper action event is called. This was still quite
a lot of manual work, but it works properly and is easier compared to the
other options.

4.5.3 User interfaces

The Main menu and other elements with text are implemented using Unreal
Motion Graphics (UMG), a built-in visual scripting system for creating visual
widgets and building user interfaces in UE. It provides interactive and highly
customizable UI elements such as buttons, text fields, and sliders, among
others, to create interfaces such as menus and bind these elements to the
backend logic. The UMG widget MainMenu is set in the actor Menu, which is
attached to the Menu controller. Then, there is the Primitives menu, a 3D
menu for providing primitives to the user. The most important part of the
interface are the controllers and their input elements, which are described in
detail in section 3.2.1.

52

Chapter 5
Testing

This chapter describes the testing methodology. The people participating
in the testing will be referred to as testers. Testers are expected to have
experience with 2D modeling software, ideally with level blockout directly,
but this is not required. Only BlockoutVR will be tested, and it will not
be directly compared to the desktop application during the testing, as it
is assumed that the testers have experience with the standard modeling
software.

5.1 Testing scenarios

The testing process will involve two scenarios. The first one is a learning
scenario, which involves going through all provided features and tools and
building a very simple scene to familiarize the tester with the application.
Every step will be accompanied by an instructor.

The second scenario will provide a 3D model of a small, level-like scene.
The task will be to import the model and, using it as a reference, build a
human-scale replica of the model from the provided primitives as precisely and
efficiently as possible. Efficiency is defined as avoiding unnecessary actions,
as the application supports using multiple tools at once, and this scenario is
meant to encourage testers to use them in this way. An instructor no longer
accompanies this scenario directly, but the testing is primarily for judging
the efficiency of the workflow and overall experience.

Testers can be given hints if they are experiencing trouble related to the
control of the application. However, hints can only be given for the controllers’
inputs (as they are not directly marked in the prototype, and the tester can
forget the layout). Hints cannot be given for controlling user interface elements
(such as the main menu and primitives menu) as this is part of the testing.

5.2 Questionnaire

The testing ends with a questionnaire (see Table 5.1) to find out the testers’
thoughts about the application. The questionnaire and previous observations
will be evaluated to produce the final testing output. Any discrepancies or

53

5. Testing
contradictions between the observations of the user and their responses on
the questionnaire can be used to judge the tester’s reliability. Additionally,
any other feedback from testers is noted for evaluation, especially if there are
any concerns or positive surprises that the tester may have experienced and
the questionnaire did not cover.

5.3 Testing results

Due to organizational reasons and after consulting with my supervisor, testing
will be carried out after the submission of the thesis. The results of the testing
will be presented at the thesis defense.

54

.................................... 5.3. Testing results

BlockoutVR is user friendly.
Strongly agree agree neutral disagree strongly disagree

My workflow in BlockoutVR is efficient.
Strongly agree agree neutral disagree strongly disagree

I would consider using BlockoutVR for level blockout
instead of a desktop program.
Strongly agree agree neutral disagree strongly disagree

I believe that using VR for work in 3D can be advantageous
compared to desktop applications with a 2D interface.
Strongly agree agree neutral disagree strongly disagree

I am missing some features.
Strongly agree agree neutral disagree strongly disagree

(if disagree/strongly disagree in previous answer)
The missing features are among the designed features.
Strongly agree agree neutral disagree strongly disagree

(if disagree/strongly disagree in previous answer)
What specific features are you missing?

How would you rate BlockoutVR user interface?
Strongly positive positive neutral negative strongly negative

How would you rate your experience with BlockoutVR?
Strongly positive positive neutral negative strongly negative

Table 5.1: Questionnaire for the testing. Using a Likert scale with 5 options.

55

56

Chapter 6
Conclusion

6.1 Summary

The goal of this work was to design an ideal world sketching/level blockout
application for virtual reality, implement a prototype, and test its viability
compared to standard desktop applications. Therefore, initial research began
with finding all relevant papers, which provided valuable information, espe-
cially the reactions of users from conducted testing. However, this alone did
not provide enough information to design the entire application. The other
important data came from other existing applications focused on any part
of 3D modeling. Over ten applications were tested and analyzed, seven of
which were discussed in detail as they provided valuable data. The features,
functionalities, and user interfaces found in these applications were used to
shape the design into a complete set necessary for an ideal application of this
focus.

Since virtual reality has a very different interface than a standard computer,
additional issues had to be considered. Meta Quest guidelines proved to
be an invaluable source of information for general VR application design,
especially to avoid any pitfalls such as nausea-inducing factors that many
VR applications suffer from. With these three types of sources, a meaningful
design of such an application was successfully created and described in
detail. The design seemed promising, but a real application had to be
created for testing purposes. A prototype application called BlockoutVR was
implemented using the essential parts of the design as a template. Some other
ideas, such as integration with game engines, were considered and discussed.

Based on the research contained in this thesis and my experience with
BlockoutVR, I believe in the potential of the application, and its ability to
be a better tool than its desktop counterparts, in some cases. However, to
get an independent opinion and prove its usefulness, further testing will have
to be carried out.

57

6. Conclusion......................................
6.2 Future possibilities

The research of academic works and existing similar projects showed state-of-
the-art VR techniques and elements that were used in designing this work,
but as VR is constantly changing, there are likely new improvements that can
be directly applied to this work and BlockoutVR. From the perspective of the
application alone, there are many possibilities for future improvements. The
most obvious is implementing the rest of the features presented in Table 4.1
of the currently implemented features, which is something I am considering
continuing to work on even after finishing this thesis. In addition, there are
ideas presented in section 3.7. However, two big features stand out and should
be expressed.

The first one is the implementation of online multi-user sessions in the
application. While not essential for level blockout, some of the tested appli-
cations provided this feature, and it could be interesting for collaboration
during the blockout phase.

The other feature is live synchronization with game engines, as described
in section 3.6.

58

Bibliography

[1] Top 3D sculpting tools for virtual reality authoring | Medium by Adobe.
[Online; accessed 27. Nov. 2022]. Nov. 2022. url: https://www.adobe.
com/products/medium.html.

[2] Mike Alger. “Visual design methods for virtual reality”. In: Ravens-
bourne. http://aperturesciencellc. com/vr/VisualDesignMethodsforVR_MikeAlger.
pdf (2015), pp. 1–98.

[3] Arkio - Collaborative Spatial Design. [Online; accessed 27. Nov. 2022].
Nov. 2022. url: https://www.arkio.is.

[4] Brian Baker. Brian Baker on Twitter. [Online; accessed 16. Nov. 2022].
Nov. 2022. url: https : / / twitter . com / JrBakerChee / status /
1182384066881916928.

[5] Lee Beever, Serban Pop, and Nigel W John. “LevelEd VR: A virtual
reality level editor and workflow for virtual reality level design”. In:
2020 IEEE Conference on Games (CoG). IEEE. 2020, pp. 136–143.

[6] Costas Boletsis. “The new era of virtual reality locomotion: A systematic
literature review of techniques and a proposed typology”. In: Multimodal
Technologies and Interaction 1.4 (2017), p. 24.

[7] Evren Bozgeyikli et al. “Point & teleport locomotion technique for
virtual reality”. In: Proceedings of the 2016 annual symposium on
computer-human interaction in play. 2016, pp. 205–216.

[8] Julián Conesa-Pastor and Manuel Contero. “EVM: An Educational
Virtual Reality Modeling Tool; Evaluation Study with Freshman Engi-
neering Students”. In: Applied Sciences 12.1 (2022), p. 390.

[9] Josen Daniel O De Leon et al. “Genesys: A virtual reality scene builder”.
In: 2016 IEEE Region 10 Conference (TENCON). IEEE. 2016, pp. 3708–
3711.

[10] Blueprints Visual Scripting. [Online; accessed 8. Dec. 2022]. Nov. 2022.
url: https://docs.unrealengine.com/5.0/en-US/blueprints-
visual-scripting-in-unreal-engine.

[11] Exporting Unreal Engine Content to glTF. [Online; accessed 31. Dec.
2022]. Dec. 2022. url: https://docs.unrealengine.com/5.1/en-
US/exporting-unreal-engine-content-to-gltf.

59

https://www.adobe.com/products/medium.html
https://www.adobe.com/products/medium.html
https://www.arkio.is
https://twitter.com/JrBakerChee/status/1182384066881916928
https://twitter.com/JrBakerChee/status/1182384066881916928
https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine
https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine
https://docs.unrealengine.com/5.1/en-US/exporting-unreal-engine-content-to-gltf
https://docs.unrealengine.com/5.1/en-US/exporting-unreal-engine-content-to-gltf

6. Conclusion......................................
[12] Enhanced Input. [Online; accessed 31. Dec. 2022]. Dec. 2022. url:

https://docs.unrealengine.com/5.0/en-US/enhanced-input-in-
unreal-engine.

[13] Alex Forsythe. Blueprints vs. C++, How They Fit Together and Why
You Should Use Both. [Online; accessed 25. Dec. 2022]. Mar. 2021. url:
https://awforsythe.com/unreal/blueprints_vs_cpp.

[14] Max Glenister. The User Experience of Virtual Reality. [Online; accessed
6. Mar. 2022]. Mar. 2022. url: https://www.uxofvr.com.

[15] Blocks - Create 3D models in VR - Google VR. [Online; accessed 26.
Nov. 2022]. Nov. 2022. url: https://arvr.google.com/blocks.

[16] Tilt Brush by Google. [Online; accessed 27. Nov. 2022]. Nov. 2022. url:
https://www.tiltbrush.com.

[17] Gravity Sketch | 3D design and modelling software. [Online; accessed
26. Nov. 2022]. Apr. 2022. url: https://www.gravitysketch.com.

[18] MP Jacob Habgood et al. “Rapid, continuous movement between nodes
as an accessible virtual reality locomotion technique”. In: 2018 IEEE
conference on virtual reality and 3D user interfaces (VR). IEEE. 2018,
pp. 371–378.

[19] Pearl Hogbash. Pearl "ManWolfAxeBoss" Hogbash on Twitter. [Online;
accessed 16. Nov. 2022]. Nov. 2022. url: https://twitter.com/
Pearl_Hogbash/status/1583165252362829825.

[20] Advanced Framework - VR, Mobile & Desktop. [Online; accessed 2. Jan.
2023]. Jan. 2023. url: https://www.unrealengine.com/marketplace/
en- US/product/advanced- vr- framework?sessionInvalidated=
true.

[21] Jason Jerald et al. “Makevr: A 3d world-building interface”. In: 2013
IEEE Symposium on 3D User Interfaces (3DUI). IEEE. 2013, pp. 197–
198.

[22] Christopher Jürges. RuntimeMeshLoader. [Online; accessed 8. Jan. 2023].
Jan. 2023. url: https://github.com/Chrizey91/RuntimeMeshLoader.

[23] Julian Keil et al. “Effects of virtual reality locomotion techniques
on distance estimations”. In: ISPRS International Journal of Geo-
Information 10.3 (2021), p. 150.

[24] glTF - Runtime 3D Asset Delivery. [Online; accessed 29. Nov. 2022].
Dec. 2020. url: https://www.khronos.org/gltf.

[25] Khronos Releases OpenXR 1.0 Specification Establishing a Founda-
tion for the AR and VR Ecosystem. [Online; accessed 31. Dec. 2022].
July 2019. url: https://www.khronos.org/news/press/khronos-
releases-openxr-1.0-specification-establishing-a-foundation-
for-the-ar-and-vr-ecosystem.

[26] Eugenia M Kolasinski. Simulator sickness in virtual environments.
Vol. 1027. US Army Research Institute for the Behavioral and Social
Sciences, 1995.

60

https://docs.unrealengine.com/5.0/en-US/enhanced-input-in-unreal-engine
https://docs.unrealengine.com/5.0/en-US/enhanced-input-in-unreal-engine
https://awforsythe.com/unreal/blueprints_vs_cpp
https://www.uxofvr.com
https://arvr.google.com/blocks
https://www.tiltbrush.com
https://www.gravitysketch.com
https://twitter.com/Pearl_Hogbash/status/1583165252362829825
https://twitter.com/Pearl_Hogbash/status/1583165252362829825
https://www.unrealengine.com/marketplace/en-US/product/advanced-vr-framework?sessionInvalidated=true
https://www.unrealengine.com/marketplace/en-US/product/advanced-vr-framework?sessionInvalidated=true
https://www.unrealengine.com/marketplace/en-US/product/advanced-vr-framework?sessionInvalidated=true
https://github.com/Chrizey91/RuntimeMeshLoader
https://www.khronos.org/gltf
https://www.khronos.org/news/press/khronos-releases-openxr-1.0-specification-establishing-a-foundation-for-the-ar-and-vr-ecosystem
https://www.khronos.org/news/press/khronos-releases-openxr-1.0-specification-establishing-a-foundation-for-the-ar-and-vr-ecosystem
https://www.khronos.org/news/press/khronos-releases-openxr-1.0-specification-establishing-a-foundation-for-the-ar-and-vr-ecosystem

.................................. 6.2. Future possibilities

[27] Eike Langbehn et al. “Application of redirected walking in room-scale
VR”. In: 2017 IEEE Virtual Reality (VR). IEEE. 2017, pp. 449–450.

[28] Michael LaRocco. “Developing the ‘best practices’ of virtual reality
design: Industry standards at the frontier of emerging media”. In:
Journal of Visual Culture 19.1 (2020), pp. 96–111.

[29] Joseph J LaViola Jr. “A discussion of cybersickness in virtual environ-
ments”. In: ACM Sigchi Bulletin 32.1 (2000), pp. 47–56.

[30] Marcello Lorusso, Marco Rossoni, and Giorgio Colombo. “Conceptual
modeling in product design within virtual reality environments”. In:
Computer-Aided Design & Applications, 18(2) (2021), pp. 383–398.

[31] Rendering | Oculus Developers. [Online; accessed 4. Dec. 2022]. Dec.
2022. url: https://developer.oculus.com/resources/bp-rendering.

[32] User Orientation and Positional Tracking | Oculus Developers. [Online;
accessed 4. Dec. 2022]. Dec. 2022. url: https://developer.oculus.
com/resources/bp-orientation-tracking.

[33] VR Accessibility Design: Controller Mapping, Input, and Feedback | Ocu-
lus Developers. [Online; accessed 4. Dec. 2022]. Dec. 2022. url: https:
//developer.oculus.com/resources/bp-rendering/#visually-
represent-controller-inputs-with-button-highlights.

[34] Meta/Oculus. Comfort and Usability | Oculus Developers. [Online;
accessed 7. Nov. 2022]. Nov. 2022. url: https://developer.oculus.
com/resources/locomotion-comfort-usability.

[35] Meta/Oculus. Meta Quest 2: Immersive All-In-One VR Headset |
Meta Store. [Online; accessed 1. Jan. 2023]. Jan. 2023. url: https:
//www.meta.com/quest/products/quest-2.

[36] Meta/Oculus. Resources. [Online; accessed 13. Mar. 2022]. Mar. 2022.
url: https://developer.oculus.com/resources.

[37] Meta/Oculus. Set up Guardian for Meta Quest | Meta Store. [Online;
accessed 26. Dec. 2022]. Dec. 2022. url: https://www.meta.com/help/
quest/articles/in-vr-experiences/oculus-features/oculus-
guardian.

[38] Meta/Oculus. Vision | Oculus Developers. [Online; accessed 26. Nov.
2022]. Nov. 2022. url: https://developer.oculus.com/resources/
bp-vision.

[39] Microsoft Maquette on Steam. [Online; accessed 6. Mar. 2022]. Mar. 2022.
url: https://store.steampowered.com/app/967490/Microsoft_
Maquette.

[40] Neos Metaverse. [Online; accessed 28. Nov. 2022]. Nov. 2022. url:
https://neos.com.

[41] Patrick Owens. Oculus Controller Diagram | Figma Community. [On-
line; accessed 5. Jan. 2023]. Jan. 2023. url: https://www.figma.com/
community/file/990323039387125706.

61

https://developer.oculus.com/resources/bp-rendering
https://developer.oculus.com/resources/bp-orientation-tracking
https://developer.oculus.com/resources/bp-orientation-tracking
https://developer.oculus.com/resources/bp-rendering/#visually-represent-controller-inputs-with-button-highlights
https://developer.oculus.com/resources/bp-rendering/#visually-represent-controller-inputs-with-button-highlights
https://developer.oculus.com/resources/bp-rendering/#visually-represent-controller-inputs-with-button-highlights
https://developer.oculus.com/resources/locomotion-comfort-usability
https://developer.oculus.com/resources/locomotion-comfort-usability
https://www.meta.com/quest/products/quest-2
https://www.meta.com/quest/products/quest-2
https://developer.oculus.com/resources
https://www.meta.com/help/quest/articles/in-vr-experiences/oculus-features/oculus-guardian
https://www.meta.com/help/quest/articles/in-vr-experiences/oculus-features/oculus-guardian
https://www.meta.com/help/quest/articles/in-vr-experiences/oculus-features/oculus-guardian
https://developer.oculus.com/resources/bp-vision
https://developer.oculus.com/resources/bp-vision
https://store.steampowered.com/app/967490/Microsoft_Maquette
https://store.steampowered.com/app/967490/Microsoft_Maquette
https://neos.com
https://www.figma.com/community/file/990323039387125706
https://www.figma.com/community/file/990323039387125706

6. Conclusion......................................
[42] Anjul Patney et al. “Towards foveated rendering for gaze-tracked virtual

reality”. In: ACM Transactions on Graphics (TOG) 35.6 (2016), pp. 1–
12.

[43] Mesh Boolean — PyMesh 0.2.1 documentation. [Online; accessed 27.
Dec. 2022]. Jan. 2021. url: https://pymesh.readthedocs.io/en/
latest/mesh_boolean.html.

[44] ShapesXR—VR Creation and Collaboration Platform for Remote Teams.
[Online; accessed 27. Nov. 2022]. Nov. 2022. url: https : / / www .
shapesxr.com.

[45] Creation Tools. [Online; accessed 26. Nov. 2022]. Nov. 2022. url: https:
//design.sketchbox3d.com.

[46] Morden Tral. VR Expansion Plugin – A Virtual Reality Tool Kit. [Online;
accessed 9. Dec. 2022]. Dec. 2022. url: https://vreue4.com.

[47] Morden Tral. VRExpansionPlugin. [Online; accessed 8. Jan. 2023]. Jan.
2023. url: https://github.com/mordentral/VRExpansionPlugin/
tree/5.0-Locked.

[48] Tvori – Design and Collaboration Platform to Prototype Interfaces,
Products, and Experiences, Previzes, Animatics or VR films. [Online;
accessed 26. Nov. 2022]. Aug. 2022. url: https://tvori.co.

[49] Quest 2 Controllers: Full Specification - VRcompare. [Online; accessed
19. Nov. 2022]. Oct. 2020. url: https://vr-compare.com/accessory/
quest2controllers.

[50] Robert Yang. Blockout. [Online; accessed 27. Mar. 2022]. Mar. 2022.
url: https://book.leveldesignbook.com/process/blockout.

62

https://pymesh.readthedocs.io/en/latest/mesh_boolean.html
https://pymesh.readthedocs.io/en/latest/mesh_boolean.html
https://www.shapesxr.com
https://www.shapesxr.com
https://design.sketchbox3d.com
https://design.sketchbox3d.com
https://vreue4.com
https://github.com/mordentral/VRExpansionPlugin/tree/5.0-Locked
https://github.com/mordentral/VRExpansionPlugin/tree/5.0-Locked
https://tvori.co
https://vr-compare.com/accessory/quest2controllers
https://vr-compare.com/accessory/quest2controllers
https://book.leveldesignbook.com/process/blockout

Appendix A
Application Manual

Upon application start, the user is automatically in the empty scene with all
tools ready.

The manual describes the default situation where the Menu controller is
the left controller, and the Tool controller is the right controller. On the
left controller, the thumbstick controls direct movement in the direction of
the HDM. The left trigger invokes teleporting, and on release, the user will
teleport to the position if it is a valid position. While holding the left trigger,
the left thumbstick can control the rotation of the user after the teleport.
When the user is touching the left thumbstick, holding the left trigger moves
the user vertically up, and holding the grip moves the user down.

As for the right/Tool controller, the right trigger is the main interaction
button for holding/moving focused and selected objects. Focused is an object
that the user aims the laser at or is within range of the gripping sphere,
which is depicted as a small sphere in front of the controller. The interactions
differ based on whether the hold is done by the grip sphere or laser. Both
interactions are invoked with the trigger, with the grip sphere having priority.
Holding an object with the grip sphere simulates a real-life hold of the object,
allowing it to be arbitrarily moved and rotated. A laser hold does not rotate
the object but rather changes its location to the end of the laser. However,
the distance of the laser hold object can be increased or decreased by pushing
the right thumbstick up or down, respectively. Then there is button A for
selection. Holding A will select (and visually highlight) every object that is
either pointed at with the laser or within range of the grip sphere. One press
of the A button over a selected object will remove it from the selection. A
fast double press of the A button will deselect all selected objects. When
multiple objects are selected, the tools affect all of them. Button B is for
deleting objects, either only the focused object or multiple objects from the
selection. When holding any objects, moving the right thumbstick to the left
or right will decrease or increase size, respectively. Lastly, there is the right
grip button for making copies of objects. To use this tool, either hold any
object and press the right grip to leave a copy in the place where the held
object was at that moment. Alternatively, hold the right grip and use the
right trigger to hold any object, which will leave the object in the scene, and
pull a new copy to be held.

63

A. Application Manual..................................
The Primitives menu is a 3D panel with primitives attached to the left

controller. The right controller can pull primitives from the panel into the
scene. Primitives can be pulled either by the grip sphere hold or the laser
hold, based on which interactor was interacting with the primitive at the
moment the trigger was pressed.

The user interface is a menu above the left controller. The Y button
can close and open the Main menu, so it doesn’t get in the way when
not necessary. The menu has three tabs: the first tab, Menu, contains a
button for switching controllers, which swaps all functionalities between the
controllers described above. The middle tab, Model, contains buttons for
importing a model. The application expects to find models in the path
".../Documents/RuntimeMeshLoader/" with each model in its own folder.
Then, the application automatically shows the models available for import in
the menu. Objects should be in a common 3D format, preferably in FBX.
The right tab, Save, is for saving, loading, restarting, and exporting the level.

64

Appendix B
Application Samples

65

B. Application Samples

Figure B.1: BlockoutVR - A standard scene with controllers and a hidden main
menu.

Figure B.2: BlockoutVR - Features a random creation of cones and highlighted
selection (cyan) and focused object (violet).

66

.................................. B. Application Samples

Figure B.3: BlockoutVR - Save menu on swapped controllers.

Figure B.4: BlockoutVR - Features a controller with the import model menu
with another creation from primitives in the background.

67

68

Appendix C
File Attachments

readme.txt.............................the file with SD card contents
thesis.pdf the thesis text in PDF format
thesis_src...........................LATEX source files for this thesis
BlockoutVR................................BlockoutVR project folder

BlockoutVR.uprojectUnreal engine project file
Contentmain folder with content
Pluginsfolder containing a plugins
LICENSE.txt ... license
... other files and folders necessary for UE project

69

	Project Specification
	Introduction
	Motivation
	Content

	Analysis
	2D versus 3D, advantages and disadvantages
	General VR guidelines
	Preventing discomfort
	Vision
	Locomotion
	User Input
	Rendering
	User Orientation and Positional Tracking
	Controls and interaction

	3D modeling in VR
	Geometric modeling
	Designing virtual worlds

	User interface in VR
	Input hardware
	VR interface position
	VR specific problems
	Common VR interface elements

	Existing applications
	Evaluated factors
	Microsoft Maquette
	Tvori VR
	Sketchbox
	Gravity Sketch
	Blocks by Google
	Neos VR
	Other VR tools
	Missing features (for world sketching) from existing applications

	Design
	Application definition
	Functional requirements

	User interface and experience
	Controllers
	Visual interfaces

	Modes
	Object mode
	Other modes

	Other features
	Locomotion
	Save/Load scene
	Import models
	Export scene
	Import reference images
	Undo/Redo

	States - Settings
	Surface snapping
	Grid snapping
	Angle snapping
	Grid lines
	Guide lines
	Environment

	Integration to game engines
	Additional feature ideas

	Implementation
	Implemented functional requirements
	Unreal Engine
	C++
	Blueprint

	Plugins
	VRExpansion plugin
	RuntimeMeshLoader plugin

	BlockoutVR architecture
	Interfaces
	VR headsets
	Input and controllers
	User interfaces

	Testing
	Testing scenarios
	Questionnaire
	Testing results

	Conclusion
	Summary
	Future possibilities

	Bibliography
	Application Manual
	Application Samples
	File Attachments

