
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of cybernetics

Fast Computation of Visibility Polygons

Bc. Jakub Rosol

Supervisor: RNDr. Miroslav Kulich, Ph.D.
Field of study: Cybernetics and Robotic
January 2023

ii

Acknowledgements

I would first like to thank my thesis ad-
visor RNDr. Miroslav Kulich, Ph.D. of
the Intelligent mobile robotics group at
Czech technical university. Mr Kulich ad-
vised me whenever I ran into trouble or
had a question about writing and kept me
motivated in my research.

I would also like to thank Ing. Jan
Mikula, for introducing me to the initial
state of the problem and giving me helpful
implementation advice.

Finally, I must express my gratitude
to my mother and sister for providing
me with unfailing support and continu-
ous encouragement throughout my years
of study and through the process of re-
searching and writing this thesis. This
accomplishment would not have been pos-
sible without them. Thank you.

Jakub Rosol

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 10. January 2023, Jakub Rosol

iii

Abstract

The computation of visibility regions has
been an important part of computational
geometry since 1979. It finds its use
in many fields, including robot control,
where computational time is crucial. We
introduce one new algorithm for the com-
putation of visibility from a point and one
algorithm for the computation of visibil-
ity from a segment. The state-of-the-art
Triangular expansion algorithm (TEA) is
used as the benchmark for the computa-
tion of visibility regions for points. At
first, we describe an algorithm presented
in the Polyanya project that extends TEA
from triangles to polygons enhancing the
query performance by 20%. Further, we
introduce the first solution (PEA-E) for
continuous computation of visibility re-
gions for segments (until now, they were
computed by sampling the segment with
points). At last, we present an algorithm
for point visibility that builds on PEA-E
and has a twice as fast response to query
than TEA. Proposed algorithms provide
significant advances in the field of visibil-
ity computation.

Keywords: Visibility Region, Triangular
Expansion Algorithm, Iron Harvest
Benchmarks, Polygonal Expansion
Algorithm, Visibility from Segment,
Computational geometry

Supervisor: RNDr. Miroslav Kulich,
Ph.D.
Czech institute of informatics, Intelligent
mobile robotics B-322,
Jugoslávských partyzánů 1580,
Praha 6

Abstrakt

Výpočet oblastí viditelnosti je důležitou
součástí výpočetní geometrie již od roku
1979. Své využití nachází v mnoha ob-
lastech včetně řízení robotů, kde je čas
výpočtu rozhodující. Představujeme nový
algoritmus pro výpočet viditelnosti z bodu
a nový algoritmus pro výpočet viditelnosti
z úsečky. Momentálně nejlepší algoritmus
triangular expansion algorithm (TEA) je
použit jako výchozí srovnávací standard
pro výpočet oblastí viditelnosti bodů. Nej-
prve popisujeme algoritmus prezentovaný
v projektu Polyanya, který rozšiřuje TEA
z trojúhelníků na polygony a zvyšuje vý-
kon o 20%. Dále představujeme první ře-
šení (PEA-E) pro spojitý výpočet oblasti
viditelnosti z úsečky (dosud byly úsečky
nahrazovány konečnou množinou bodů).
Nakonec představujeme algoritmus pro vi-
ditelnost z bodů, který staví na PEA-E
a má dvakrát rychlejší odezvu na dotaz
než TEA. Představené algoritmy posky-
tují nezanedbatelný posun v oblasti výpo-
čtu viditelnosti.

Klíčová slova: Oblast viditelnosti,
Triangular Expansion Algorithm, Iron
Harvest Benchmark, Polygonal
Expansion Algorithm, Viditelnost z
úsečky, Výpočetní geometrie

Překlad názvu: Rychlý výpočet
polygonu viditelnosti

iv

Contents

1 Introduction 1

1.1 Problem definition 2

1.2 Related work 3

2 Triangular expansion algorithm 7

2.1 Motivation . 7

2.2 Definition . 7

2.3 Methodology 8

2.3.1 Initial edges 10

2.3.2 New segments 11

2.4 Summary . 14

3 Polygonal expansion algorithm 15

3.1 Motivation 15

3.2 New expandable segments 16

3.2.1 Implementation 18

3.3 Summary . 19

4 Visibility from segment 21

4.1 Motivation 21

4.2 Definition . 22

4.3 PEA-E introduction 23

4.4 Initial edges 26

4.5 Forward expansion 28

4.5.1 Visibility boundaries 28

4.5.2 Implementation 30

4.6 Backward visibility 31

4.6.1 Computing root 32

4.6.2 Implementation 33

4.7 Numerical stability 36

4.7.1 Stable forward expansion . . . 37

4.7.2 Stable root computation 38

4.8 Summary . 40

5 EdgeVis 41

5.1 Motivation 41

5.2 Bounding by edge visibility 42

v

5.3 Basic structure for EdgeVis 44

5.4 EdgeVis 1: Naive 44

5.5 EdgeVis 2: Always Visible 47

5.6 EdgeVis 3: Online Pruning 48

5.7 Summary . 49

6 Experiments 51

6.1 Iron Harvest maps 52

6.2 TEA vs. PEA 54

6.3 Edge visibility regions 56

6.4 EdgeVis performance 60

6.5 Preprocessing 62

6.6 Robust vs naive orientation 64

7 Conclussion 67

A Bibliography 69

B Attached files 71

C Project Specification 73

vi

Figures

1.1 Expansion algorithms for
computation of visibility region from
point Q. 4

2.1 Full expansion of TEA over initial
edge e. 9

2.2 Orientation to oriented edges of a
triangle. 10

2.3 Visibility region from point Q over
segment s. 12

2.4 Expansion of visibility from Q to
triangle T over segment s 13

3.1 Visibility states defined by
bounded visibility when looking over
a segment AB. 16

3.2 When one vertex is bordering and
the second is not visible, the creation
of a new segment depends on their
mutual position. 17

3.3 Indexing and nomenclature for
forward expansion implementation. 18

4.1 Visibility of segment AB by two
definitions. 22

4.2 If an obstacle is touching the
segment, the area of visibility region
of that segment changes discretely in
the point of touch. 23

4.3 Example of expansion visibility
region from segment with and
without recomputed roots. 25

4.4 PEA-E proceeds as depth-first
search. 25

4.5 Possible definitions of mother
segment in a polygonal mesh. 26

4.6 Visibility states defined by
bounded visibility when looking from
mother segment XY over a segment
AB . 28

4.7 Visibility regions from points
A, B, X and from segment AB when
looking over segment CD. 29

4.8 Indexing and nomenclature for
forward expansion implementation. 30

4.9 Looking back over the last segment
is not enough since it may cause
looking at obstacles (first image).
Backward visibility can be limited by
any segment from the previous
expansion (second image). 33

4.10 Example of how algorithm
computes root for new expandable
segment AB and expands it for new
segment BC. 35

4.11 Numerical errors in intersection
evaluation can cause very strange
results as looking through obstacles
or computing visibility from different
segments than the mother segment. 36

vii

4.12 When only one point that should
define visibility boundary is an
intersection, the boundary can be
defined by the line defining the
intersection. 38

4.13 If both points defining the
boundary are intersections, the
boundary can be defined with a line
defining the point lying on the
mother segment. 38

4.14 The only differently evaluated
case in root computation can occur if
the previous root was an
intersection. 39

5.1 Comparison of complexities when
visibility is computed in polygonal
mesh or on visibility region of visible
edge. 42

5.2 Example that point Y visible from
segment s does not have to be visible
from point Q over s. (By Eq. 2.4 QY
must intersect s, which is not the
case.) . 43

5.3 Conversion of the output of PEA-E
to structure suitable for EdgeVis. . 44

5.4 Example of V(Q) in Vt(Q, e). . . 45

5.5 State machine that represents the
naive version of EdgeVis. 46

5.6 Example of the always visible area
when looking from the entrance
triangle over edge e. 47

5.7 About visibility of vertices can be
decided by the location of boundary
root point R. 49

6.1 Iron harvest sp_pol_04 map. . . 52

6.2 Maps with worst 6.2a and best
6.2bimprovement of PEA to TEA. 54

6.3 Edge visibility region in
mp_2p_01 map. 56

6.4 Maps with few 6.4a and many 6.4b
expansions in PEA-E. 59

viii

Tables

6.1 The specification of testing laptop
MSI GF63 Thin 11UC REV:1.0 . . 51

6.2 Properties of maps in Iron Harvest
dataset. 53

6.3 Comparison of TEA and PEA
performance. 55

6.4 Computation of visibility regions of
traversable edges in a triangular
mesh. 57

6.5 Comparison of EdgeVis variants
with PEA. 61

6.6 Table of preprocessing times for all
algorithms. 63

6.7 Improvement in query the
performance without usage of robust
orientation predicates. 65

B.1 Table of attached folders. 71

ix

Chapter 1

Introduction

The visibility problem has been a high-interest issue in geometrical computing
for a few decades. It has applications in simulations, games, robot control
and many others. Although, in the real world, visibility is not computed but
obtained by sensor systems such as LIDAR, cameras, or eyes, in the case of
humans, in the virtual world, what is visible has to be computed.

In many games, visibility is essential. For example, in shooter games, it is
needed for the evaluation of hits. Strategy games sometimes use fog of war,
which prevents players from seeing parts of the map which are not visible
to their troops. Visibility must then be computed for all units in the game.
The necessity of visibility evaluation can be expressed by a warning known
to many players: "Target is not in the line of sight."

Simulations of complex systems may require visibility not only for image
reasons since it does affect properties other than just visibility. For example,
the strength of a wireless signal can be approximated by computing distances
from the source. However, obstacles between the transmitter and the receiver
may have a dire effect on the actual result. The visibility cannot be omitted
in simulations of autonomous agents whose decisions are based on visual
input.

The usage for robot control is well described in work by J. Mikula [MK22].
Consider a mobile robot with an omnidirectional vision that has to search
a known building floor. To be sure the robot searched the whole floor, it
has to compute its visibility. The path has to be planned so that the robot
sees each part of the floor at least once. Visibility can also be used in robot

1

1. Introduction
localization which is one of the bases for robot control (a robot cannot decide
where to go if it does not know where it is). Consider a real mobile robot with
a LIDAR sensor that measures the distances from obstacles in 360 degrees
around the robot. The robot is placed arbitrarily on a known building floor.
To compute where it is, the algorithm may compare readings from the LIDAR
with simulated visibility in the virtual map of the floor. The robot is most
likely where the simulated vision corresponds to the actual measurement.

The contribution of this thesis lies in a reduction of the Polyanya [CHG17]
project to a standalone library for the computation of visibility regions from
points, in introducing the first algorithm for the computation of visibility
regions for segments, and in presenting a new algorithm for visibility from
points. We stripped Polyanya source from all path-finding related parts and
introduced robust orientation tests to it. The implementation represents
the state-of-the-art expansion algorithm (for triangles in 2014 [BHH+14],
expanded to polygons in 2017 [CHG17]). Further, we introduce polygonal
expansion algorithm for edges (PEA-E) which is the first algorithm able to
compute visibility from a segment without sampling it with points. Our last
contribution lies in presenting a new algorithm EdgeVis for the computation of
visibility from a point. EdgeVis uses PEA-E to precompute visibility regions
for all edges in a mesh and uses those regions as a reduction of the searched
area. We also present experiments which describe the basic properties and
performance of all discussed algorithms. The EdgeVis enhances current state-
of-the-art by 33%. Additionally, we compare robust orientation tests by R. J.
Shewchuk with naive implementation with limited precision.

1.1 Problem definition

The problem of visibility computation can be solved in varying spaces, but
this paper is focused on visibility in two-dimensional space. Let W be a subset
of R2 that represents the environment without any mobility and visibility
restrictions. Then, O = Wc is the rest of the two-dimensional space, and it
is considered an obstacle that cannot be passed or seen through. Point P is
visible from point Q if PQ ⊂W.

One of the most common representations of W is a polygon (with polyg-
onal holes). Its boundaries represent a transition between observable and
unobservable space. Edges of the polygon exterior and all hole boundaries
must form a closed chain without intersecting itself or other boundaries. Some
current algorithms compute visibility graphs that define visibility relations
between vertices in the environment, while others compute visibility region

2

.....................................1.2. Related work

from a query point anywhere in W. The visibility graph G(W) is a structure
storing information about visibility between all vertices in W in a set of all
edges that can be defined by two vertices that see each other. Visibility region
V(Q) of a query point Q is a subset of W where all points are visible from Q:

V(Q) = {∀X ∈W | QX ⊂W}. (1.1)

This work focuses on revising current approaches for the computation of
visibility regions from a query and trying to improve them.

1.2 Related work

In 1979 visibility regions for points in a single polygon were introduced by L.
S. Davis, and M. L. Benedikt [DB79]. The time complexity of the proposed
algorithm is O(n2). In the early ’80s, linear O(n) algorithms were presented
by H. ElGindy, and D. Avis [EA81] and by D. T. Lee[Lee83], but in 1987
B. Joe and R. B. Simpson [JS87] showed that these algorithms might fail
and presented first correct O(n) algorithm for polygons without holes. These
algorithms emulate a sweeping line which follows the boundary vertex by
vertex. The boundary is sorted counter-clockwise, and the line follows its
vertices. If the line moves counter-clockwise, the vertex can be visible and
added to the stack; if the line moves clockwise, some already added vertices
must be swept away.

In realistic scenarios, polygons representing an environment are usually com-
plex, with holes representing untraversable areas. T. Asano first proposed an
algorithm for polygons with h holes with time complexity O(n log h)[Asa85].
Instead of sweeping the polygon based on the boundary, the algorithm sweeps
the plane with a ray intersecting all edges. It starts with computing polar
coordinates of all boundary vertices relative to the query and sorting them.
Then as the ray rotates, the algorithm computes whether a new vertex is
closer to the query point than all currently intersected edges. If the point is
the closest, new points for the final visibility region are generated (usually the
new point and an intersection). In 1995 an optimal O(n + h log h) algorithm
was introduced by P. J. Heffernan and J. S. B. Mitchell [HM95]. A summary
of algorithms proposed since 1979 was published in a book by S. K. Ghosh in
2007 [Gho07].

Many algorithms presented after 2007 were based on tradeoffs between a
preprocessing time and the query’s computation time. For example, A. Zarei
and M. Ghodsi proposed an algorithm with a O(n3 log n) preprocessing and
O((1 + min (h, k) log n + k) query time, where new parameter k represents

3

1. Introduction
the number of vertices defining visibility region from the query. During
preprocessing, the algorithm slices the polygon with holes into a set of simple
polygons on which the visibility region can be computed more efficiently. A
better algorithm on a similar principle was later proposed by R. Inkulu with
S. Kapoor [IK09].

In 2014, F. Bungiu et al. introduced the triangular expansion algorithm
[BHH+14] (TEA). This algorithm has time complexity O(n2) in theory, but
it computes visibility region for a query very efficiently in practice (faster by
two orders of magnitude than Asano’s algorithm). During preprocessing, the
polygon is converted to a triangular mesh. When a query is given, its visibility
is gradually expanded from the initial polygon to others. This algorithm
evaluates only visible parts of the polygon, which is why it performs well
in realistic scenarios. Visibility regions in complex environments are much
smaller than the environment itself. Chapter 2 describes TEA in more detail.

In 2022, our colleague J. Mikula showed that the query performance of TEA
is affected by triangulation [MK22]. He proposed a new triangulation MinTV
on which TEA query performance increased by 5-28% compared to commonly
used CDT. He also introduced d-TEA modification for computing visibility
regions with a limited range of vision. His work presents a state-of-the-art
version of TEA.

In 2017 M. Cui, D. D. Harabor, and A. Grastien presented a new state-
of-the-art algorithm polyanya for path-finding based on visibility in convex
polygons [CHG17]. They are computing the visibility by expanding TEA
to polygons. Since it is only a part of the polyanya project, the authors
do not pay much attention to it. We remove unnecessary code in polyanya
and describe it as a stand-alone algorithm polygonal expansion algorithm
(PEA) introduced in Chapter 3. An example that shows a different number
of expansions for TEA and PEA on the same query is shown in Fig. 1.1.

(a) : TEA - entering triangle T. (b) : PEA - entering polygon P.

Figure 1.1: Expansion algorithms for computation of visibility region from point
Q.

4

.....................................1.2. Related work

Chapters 4 and 5 describe two proposed algorithms. Chapter 4 presents
polygonal expansion algorithm for edges (PEA-E), which computes visibility
regions for segments in polygonal mesh (without sampling the segment).
Chapter 5 describes new algorithm EdgeVis, that uses PEA-E precomputed
structure of visibility regions from edges in the mesh for fast computation of
visibility from a query point.

All algorithms implemented in this paper first need to subdivide polygon W
representing the environment into a polygonal mesh M composed of convex
polygons Pi (resp. Ti for triangular mesh). The creation of the mesh can
affect query performance [MK22]. However, the goal of this work is not to
find the optimal division of W, so the generation of triangular and polygonal
mesh from polyanya project [CHG17] is used. The triangulation is done with
constrained Delaunay triangulation implemented in Fade2D library [Lee19],
and triangles can be further merged to a mesh of convex polygons.

Every algorithm since 1979 must evaluate the position of a point to an
oriented line (also called orientation or winding). The theoretical approach
to compute the position of P to line −−→AB is to compute cross-product O =
(B −A)× (P −B). P is counter-clockwise from −−→AB if O > 0 and clockwise
if O < 0. O = 0 only if P ∈

−−→
AB. Roundoff errors produced by the finite

precision of computers may produce an incorrect result, which may produce
unwanted behaviour of the final application. To eliminate this error effectively,
R. J. Shewchuk produced algorithms and implementations for quick and
correct tests of orientation [She97]. Presented algorithms are implemented
with robust tests from R. J. Shewchuk and elementary tests where rounding
errors are resolved with tolerance constant ϵ.

5

6

Chapter 2

Triangular expansion algorithm

2.1 Motivation

The computation of visibility regions for a query point has been an important
part of computational geometry since 1979. Most of the algorithms introduced
since then evaluate all the points describing the environment. In 2014 Bungiu
et al. presented an expansion algorithm that evaluates only the visible area
[BHH+14]. Even though this algorithm is not optimal in theory, experiments
have shown that it performs very well in realistic scenarios where most queries
see only a tiny portion of the environment. Triangular expansion algorithm
(TEA) is implemented as a benchmark algorithm for this thesis and we
describe it in the following paragraphs.

2.2 Definition

The algorithm works on triangular mesh, so two-dimensional representation
of the environment W has to be divided into a set of triangles Ti. Commonly
W is defined as a polygon with holes that can be transformed to a set of
triangles for example with constrained Delaunay triangulation.

7

2. Triangular expansion algorithm
2.3 Methodology

The algorithm gradually expands the visibility region over visible and traversable
edges, until no expandable edges are available. Usually, it means that the
algorithm reached an obstacle in each direction, but a distance from the query
can also limit it.

Algorithm 1 TEA
1: Inputs:
2: Q: Point for which visibility is computed.
3: W : Polygon representing environment.
4: Output:
5: visibility: Visibility region of Q.
6: Initialization: mesh← CDT (W)

7: expandable← getInitialEdges(Q, mesh)
8: for e in expandable do
9: visibility← Expand(Q, e, mesh)

return visibility

On algorithm startup (Algorithm 1), before any query is given, the mesh is
loaded or computed from W (line 6). For every given query Q, the algorithm
first finds the initial triangle T0 so that Q ∈ T0. Whole T0 is visible from Q,
so all its edges can be used as initial edges for expansion (line 7). Every initial
edge e is then recursively expanded to new triangles until the end condition
is met (lines 8 & 9).

Algorithm 2 TEA-E
1: procedure Expand
2: Inputs:
3: Q: Point for which visibility is computed.
4: e: Segment through which is visibility expanded.
5: mesh: Environment represented as triangular mesh.
6: Output:
7: visibility: Points defining area in mesh visible from s over e.

8: if e is not traversable then
9: return visibility← e

10: newExpandable← getNewSegments(e,s,mesh)

11: for newE in newExpandable do
12: push: visibility← Expand(node) # Next level of recursion

8

.................................... 2.3. Methodology

The recursive expansion procedure in Alg. 2 stops if expanded edge e
is not traversable (does not lead to a new triangle) (lines 8 & 9). If it is
traversable, the algorithm gets two unexplored edges eleft and eright from the
triangle behind e. Visible parts of new edges have to be defined (line 7). New
visible edges or their sub-segments can then be expanded further (line 9). A
straightforward approach to saving visibility is to push end points of edges
leading to obstacles to a list. The resulting list will describe the final visibility
region if segments are expanded in a consistent order. The commonly used
order is eright first, and eleft second (counter-clockwise - CCW).

The algorithm proceeds as a depth-first search as shown in (Fig. 2.1).
Because the whole edge e is visible from Q, the visibility region will start
at point A and end at G. Calls of the procedure Expand are marked with
numbered arrows. Blue arrows represent calls that result in further recursion,
and green ones represent an end of the recursion branch because the obstacle
was reached. If the endpoints of non-traversable edges are saved, and endpoints
of e are used, the resulting list will be {A, A, B, B, C, C, D, D, E, E, F, G}.
After removing duplicate points, the resulting visibility region from expansion
over e is {A, B, C, D, E, F, G}.

Figure 2.1: Full expansion of TEA over initial edge e.

9

2. Triangular expansion algorithm
2.3.1 Initial edges

This section describes the search for the initial triangle and its edges im-
plemented in line 7 of Alg. 1. Because triangles are convex polygons, and
convexity guarantees visibility, all edges of the triangle in which the query
point lies are wholly visible and can be used as initial edges. The problem is
finding the initial triangle.

Lets assume T is a triangle defined with three points in 2D space

T = A, B, C, (2.1)

and Q is an arbitrary point. To decide whether Q ∈ T , orientation of Q
to oriented triangle edges AB, BC, CA has to be evaluated. Q ∈ T only
if orientation of Q to all edges is the same. Figure 2.2 shows the resulting
orientation in different areas around triangle A, B, C. The oriented edges
must define an oriented closed loop for this to apply.

Figure 2.2: Orientation to oriented edges of a triangle.

A naive approach to finding the initial triangle is to loop through all
triangles and check the position of Q as above. The worst-case complexity

10

.................................... 2.3. Methodology

of such initialization is O(t), where t is the number of triangles in the mesh.
Finding the initial polygon is needed for every query, and this naive approach
would harshly affect the performance of TEA on complex maps.

An improvement in query time can be introduced with additional pre-
processing of the mesh. The environment can be overlayed with a uniform
rectangular grid. Unlike triangles in the mesh, the cells in the grid can be
sorted by x and y coordinates.

The cell containing Q can be accessed directly. Assume a map with size (w,
h) in x, y coordinate system. An overlaying grid with dimensions nw×nh have
resolution rw = w

nw
and rh = h

nh
. The ix and iy index of the cell containing

point A = {xA, yA} can be computed as

ix = round(xA

rw
), (2.2)

iy = round(yA

rh
). (2.3)

The result has to be rounded down if the indexing starts at 0 and rounds up
if the indexing starts at 1.

On the triangular mesh, a single cell of overlaying grid overlaps only a
limited number of triangles. Because the initial cell can be accessed directly,
the evaluation if Q lies in a triangle is limited to triangles overlapped by the
initial cell. This information can be preprocessed.

2.3.2 New segments

The main procedure of TEA for the expansion of the visibility region imple-
mented in line 9 in Alg. 1 and line 12 in Alg. 2 is described in this section.
Because the algorithm expands visibility over edges or segments, visibility
region from a point Q over segment s must be defined:

Vt(Q, s) = {∀X ∈W|QX ⊂W ∧QX ∩ s ̸= ∅}. (2.4)

The only difference between the definition 2.4 and the general definition 1.1
for visibility region is that the line connecting two points must not only be in
the open area but also it has to intersect segment s. The visible area from
point Q over segment s = AB is limited by boundary lines −→QA and −−→QB as in
Fig. 2.3.

11

2. Triangular expansion algorithm

Figure 2.3: Visibility region from point Q over segment s.

During expansion to new triangle T , the visibility is expanded over a
segment that lies on one of the triangle’s edges (or is equal to one). The
algorithm knows which part of the expanded edge is visible (it looks over it)
and computes the visibility of the rest edges. The new visible segments can
be expanded further. In figure 2.4 visibility from query point, Q is expanded
to triangle T over edge AB. Because an obstacle blocks vision, the visibility
is expanded only over segment s ⊂ AB defined with points A and B′. Before
computing which parts of the remaining edges BC and CA are visible, the
algorithm must decide whether they can be visible at all. Both edges are at
least partially visible if vertex C ∈ Vt(Q, s). If C is not visible, one edge
is not visible at all, and the second one must be visible partially. In the
figure, C is visible, so the algorithm looks for a visible segment on both
edges. Visibility of A guarantees visibility of whole edge l = CA. On the
right side, the vision was obstructed, and vertex B is not visible. The right
visible segment is defined as r = BnewC, where Bnew is a intersection of edge
BC and boundary

−−→
QB′. New segments r and l will be expanded to adjacent

triangles RT and LT, respectively.

The code for this is in Alg. 3. This procedure assumes that expanded
segment s ⊂ AB and points A, B, C are sorted counter-clockwise. The
algorithm first defines boundaries (lines 7 & 8) and computes the position of
C to them (lines 9 & 10). C is in the bounded area if two new segments are
created (lines 11-14). If C is left to the visibility region, only one new segment
will be created on BC, and if C is right the segment will be created on CA
(lines 15-20). Intersections on lines 13, 14, 17 and 20 must be evaluated
only when relevant point A or B is not visible (otherwise A or B define the
boundary and the intersections are equal to A or B). The procedure always
returns at least one new visible segment.

12

.................................... 2.3. Methodology

Figure 2.4: Expansion of visibility from Q to triangle T over segment s

Algorithm 3 TEA new segments
1: Inputs:
2: Q: Query point.
3: e: Expanded segment e(Le, Re).
4: T : Expanded triangle T (A, B, C).
5: Output:
6: S : Set of new expandable segments.

7: rightBoundary ←
−−→
QRe

8: leftBoundary ←
−−→
QLe

9: rightOrient← winding(rightBoundary, C)
10: leftOrient← winding(leftBoundary, C)

11: if rightOrient == CCW and leftOrient == CW then
12: // C is visible
13: leftSegment← [leftBoundary ∩ CA, C]
14: rightSegment← [rightBoundary ∩BC, C]

15: if rightOrient == CCW and leftOrient == CWW then
16: // C is too left
17: rightSegment← [rightBoundary ∩BC, leftBoundary ∩BC]

18: if rightOrient == CW and leftOrient == CW then
19: // C is too right
20: leftSegment← [leftBoundary ∩ CA, rightBoundary ∩ CA]

return leftSegment, rightSegment

13

2. Triangular expansion algorithm
2.4 Summary

The triangular expansion algorithm was described in this chapter. The
algorithm is designed to compute visibility regions from a query point. Even
though its time complexity is O(n2), in realistic scenarios, it performs in
sub-linear time.

14

Chapter 3

Polygonal expansion algorithm

3.1 Motivation

The query computation time of TEA has a linear dependency on the number
of searched triangles. The idea of polyanya authors for improving TEA is to
merge triangles into convex polygons and expand visibility more efficiently.
Polygonal expansion algorithm (PEA) works on a polygonal mesh, performs
better than TEA, and opens the possibility of research for finding the best
polygonal mesh.

The algorithm is the same as TEA except for expanding to a new polygon
with up to n new edges. The initial polygon and edges can be obtained the
same as the initial triangle in Section 2.3.1. Implementation of PEA is the
same as in TEA Alg. 1 and Alg. 2 with the only difference in computation of
new expandable segments (line 10 Alg. 2). This chapter describes only this
procedure.

15

3. Polygonal expansion algorithm
3.2 New expandable segments

The rules for visibility from point Q over segment s are in Section 2.3.2.
When expanding over a segment, visibility is expanded only to the single
polygon behind the segment. What is visible in this expanded polygon
is computed from the intersection of the polygon geometry and visibility
boundary. Two boundary lines of visibility given by looking from query point
Q over the expanded segment are given as

−−→
QA′ and

−−→
QB′. The polygon’s

geometry is then divided into four categories of visibility. Every vertex of
the expanded polygon can be located between boundary lines, in a counter-
clockwise direction from both lines, in a clockwise direction from both lines,
or it can be located directly on one of the boundary lines (further Visible,
Right, Left, Bordering as in Fig. 3.1).

Figure 3.1: Visibility states defined by bounded visibility when looking over a
segment AB.

At first, the visibility state of each vertex is determined with the computa-
tion of orientation predicates to visibility boundary lines. Vertices are visible
if they are oriented CCW to one line and CW to the other one. Vertices in the
same direction to both lines must be either left (CCW) or right (CW) from
the visibility region over the expanded segment. Vertices that are collinear
with a boundary line (lie on the line) are visible but do not necessarily produce
new expandable segments (as vertex A in Fig. 3.1). That is the reason for
having Bordering visibility state instead of including such vertices in Visible
state.

For example, vertices of polygon K from Fig. 3.1 are split into visible set
V (G, F, E), left set L(I), right set R(B, C, D) and bordering set B(A).

16

............................... 3.2. New expandable segments

After determining the visibility state of all vertices, new expandable seg-
ments can be produced. All edges of the expanded polygon except the edge
containing the expanded segment are evaluated by the following set of rules:

. If both vertices defining the edge are visible, the whole edge is passed as
expandable. (Edges EF and FG in Fig. 3.1.). If one vertex is visible and the second one is bordering, the whole edge is
also passed as expandable.. If one vertex is visible and the second one is right, the new segment
is defined by the visible vertex and the intersection between the right
boundary and the edge. (In Fig. 3.1, this applies to segment PE.). If one vertex is visible and the second one is left, the segment is defined
by the visible one and the intersection between the left boundary and
the edge. (As segment GR in Fig. 3.1.). If one vertex is left and the second one is right, the new segment is
defined by intersections of boundary lines with the edge.. In case both vertices are left or right, the edge is not visible, and any
part of it cannot be expanded.. In case one vertex is bordering and the second one is left or right, the edge
will be expanded only if the first vertex lies on the opposite boundary.
(This is shown in Fig. 3.2 and applies for segment HA in Fig. 3.1.)

Figure 3.2: When one vertex is bordering and the second is not visible, the
creation of a new segment depends on their mutual position.

If the expanded segment is traversable (is not an obstacle), at least one
new expandable segment is always created.

17

3. Polygonal expansion algorithm
3.2.1 Implementation

In the provided implementation, vertices of the expanded polygon are sorted
counter-clockwise, starting with the right vertex of the edge on which the ex-
panded segment (expanded edge) lies. Edges are also sorted CCW starting
with the expanded edge. The indexing is shown in Fig. 3.3.

Figure 3.3: Indexing and nomenclature for forward expansion implementation.

Forward expansion can be implemented as described in Alg. 4. Boundaries
of visibility region Vt(Q, s = (Le, Re)) are −−→QLe and −−→QRe (lines 7 and 8).
With these boundaries, the visibility state of each vertex in an expanded
polygon is computed (lines 9 to 12). The set of rules listed above creates
new expandable edges or their sub-segments, which are then pushed to a list
passed for further expansion (lines 13 to 16).

18

...................................... 3.3. Summary

Algorithm 4 PEA new segments
1: Inputs:
2: Q: Query point.
3: e: Expanded segment e(Le, Re).
4: P: Expanded polygon P (V0, V1...Vn; e0, e1...en).
5: Output:
6: S : Set of new expandable segments.

7: rightBoundary ←
−−→
QRe

8: leftBoundary ←
−−→
QLe

9: for ∀Vi ∈ P do
10: rightOrient← winding(rightBoundary, Vi)
11: leftOrient← winding(leftBoundary, Vi)
12: Vi.state← getVisibilityState(rightOrient, leftOrient)

13: for ∀ei ∈ P, i > 0 do
14: visible← getVisibleSubsegment(Vi, Vi−1)
15: if ∃visible then
16: push : S ← visible

return S

3.3 Summary

In this chapter, polygonal expansion algorithm is derived from triangular
expansion algorithm. The PEA works on a polygonal mesh instead of a
triangular one which allows passing large areas in one expansion instead of
expanding to all triangles filling that area. In theory, PEA on triangles should
perform the same as TEA, but the additional code needed for PEA slows it
down in practice. Experiments show that PEA on polygons is at least 20%
faster than TEA.

19

20

Chapter 4

Visibility from segment

4.1 Motivation

Computing visibility region from a segment opens new possibilities for multiple
research areas. In robot localization and control, it provides a more precise
sensor model. For example, if a robot drives in a sequence of linear motions,
its observations do not have to be sampled to points. Instead, whole trajectory
segments can be computed at once without approximation.

Visibility from a segment is also beneficial for estimating an ideal mesh
pre-processing for TEA in the MinVT algorithm [MK22], where visibility
from an edge is estimated by sampling the edge with points and computing
the visibility region for each of them. Computed visibility from the segment
entirely removes this need for approximation by sampling.

In surveillance applications, computation of visibility from a segment can
simplify decisions where to put cameras to see the whole entrance or a wall
with art pieces.

Last but not least, the new computation of visibility from a point introduced
in this paper uses visibility from segments as its pre-processed structure.

21

4. Visibility from segment
4.2 Definition

The visibility region of a segment can be separated into two categories. The
first one can either look for all points that are visible at least from one point
on the segment (sensor model during motion) and the second one looks only
for points that are visible from all points on the segment (surveillance). The
focus of this research is on the former.

Visible region V from closed line segment s in polygon P ⊂ R2 is defined
as a set of all points that are visible from at least one point on the segment:

∀X ∈ V (s) : ∃Y ∈ s, Y X ⊂ P (4.1)

.

(a) : Visibility of segment AB. (b) : Reduced visibility of segment AB.

Figure 4.1: Visibility of segment AB by two definitions.

A visibility region of a segment can be seen in Fig. 4.1a. The visibility
region of a point on a segment changes continuously as the point moves along
the segment (even when the visibility expands to a new area, the new visible
area is only a line at first and then continuously grows). This continuity can
be broken only if an obstacle touches the line. In the example in Fig. 4.2
the continuity is broken in the middle of a segment, but a similar situation
can occur on segment endpoints as in Fig. 4.1. We provide an alternative
definition Eq. 4.2 which handles this discrete behaviour for the endpoints. If
the touch is between the endpoints, the segment can be split into two at the
point of touch.

22

..................................4.3. PEA-E introduction

Figure 4.2: If an obstacle is touching the segment, the area of visibility region
of that segment changes discretely in the point of touch.

The alternative visibility is shown in Fig. 4.1b. Reduced visibility region
V ′ of closed segment s in polygon P ⊂ R2 is defined as a set of all points
that are visible from at least one point on the open segment s′:

s = [A, B], s′ = (A, B),
∀X ∈ V ′(s) : ∃Y ∈ s′, Y X ⊂ P (4.2)

. The algorithm introduced in this chapter uses the reduced visibility region
definition.

4.3 PEA-E introduction

The new proposed algorithm computes reduced visibility from segments in
polygon subdivided into a set of convex polygons (polygonal mesh). It is
called the polygonal expansion algorithm for edges (PEA-E). The algorithm
gradually expands visibility through edges in mesh until it reaches obstacles
in all directions.

The general schema of the PEA-E is presented in Alg. 5. At first, the
polygon representing the environment is transformed into a polygonal mesh
(line 6). Then, after a mother segment for which visibility should be
computed is given, initial edges from the mesh are prepared for the expansion
(line 7).

23

4. Visibility from segment
Algorithm 5 PEA-E

1: Inputs:
2: s: Segment for which visibility is computed.
3: P: Polygon representing environment.
4: Output:
5: visibility: Reduced visibility region of s.
6: Initialization: mesh← CDT (P)

7: expandable← getInitialEdges(s, mesh)
8: for e in expandable do
9: visibility← Expand(s, e, mesh)

return visibility

The initial edges are all edges of the mesh that are visible from the mother
segment without looking over any segment in the mesh (they are directly
visible and will be the first segment to look over). Then, for each initial edge,
a recursive procedure expanding further until it hits an obstacle is launched
(lines 8 & 9).

Algorithm 6 PEA-E
1: procedure Expand
2: Inputs:
3: s: Segment for which visibility is computed.
4: e: Segment through which is visibility expanded.
5: mesh: Environment represented as polygonal mesh.
6: Output:
7: visibility: Points defining area in mesh visible from s over e.

8: if e is not traversable then
9: return visibility← e

10: newExpandable← Forward(e,s,mesh)

11: for newE in newExpandable do
12: Backward(newE)
13: push: visibility← Expand(node) # Next level of recursion

Alg. 6 describes a recursive procedure that gradually expands through the
polygonal mesh and results in a visibility region from the segment over an
initial edge in the mesh. Before expanding, the algorithm checks whether the
expanded segment is traversable (line 8). Non-traversable segments lead to
obstacles, so they define the end of the visibility region (line 9). Traversable
segments lead to unexplored polygons in mesh and produce at least one new
segment for further expansion (line 10). Unlike using expansion algorithms
for visibility from a point, this algorithm computes backward visibility (root)
of new segments (line 11).

24

..................................4.3. PEA-E introduction

If this step was skipped, the algorithm would try to look over expanded
segments from points that cannot see the segment. The cause of this is
the absence of mutual visibility. By definition of reduced visibility Eq. 4.2,
visibility of the whole area from a segment does not guarantee the visibility of
the whole segment from the area. Fig. 4.3 shows that without computation
of the root, the algorithm could look through obstacles.

(a) : Without computed roots. (b) : With computed roots.

Figure 4.3: Example of expansion visibility region from segment with and
without recomputed roots.

Once the new segment has its root computed, it can be recursively expanded
(line 13). Fig. 4.4 shows that the algorithm proceeds as a depth-first search
where leaves are segments leading to obstacles. The algorithm first expands
the blue path visible through initial blue edge AD to the end (5) and then
proceeds over initial green edge BC which splits to three branches. Red
arrows show where the algorithm evaluates non-traversable segments (Alg. 6:
line 8,9).

Figure 4.4: PEA-E proceeds as depth-first search.

25

4. Visibility from segment
4.4 Initial edges

This section describes a search for initial edges which can be expanded further
(line 7 in Alg. 5).
To start the expansion, the algorithm first needs to find first expandable
edges. Those are all edges wholly visible from the mother segment. Also,
these new edges can’t intersect the mother segment except by sharing the
endpoints. Any other intersection would cause some segments to look over
themselves during forward expansion or during computation of root which is
not defined.

The computation of initial edges depends on the definition of the mother
segment. The easiest case is mother segments defined with an edge of the
mesh because then the directly visible area is just the neighbouring polygons
(Fig. 4.5a). If we define the mother segment with mesh vertices, the situation
is more complicated because it can pass through multiple polygons (Fig.
4.5b). The hardest case is when the mother segment is completely arbitrary
because it must be somehow connected to the mesh structure (Fig. 4.5c).
We’ve implemented the first two cases, but in this thesis only the first and
least complicated one is relevant.

(a) : Mother segment defined with a
mesh edge.

(b) : Mother segment defined with
two mesh vertices.

(c) : Mother segment defined with
arbitrary points.

Figure 4.5: Possible definitions of mother segment in a polygonal mesh.

26

..................................... 4.4. Initial edges

The algorithm computes the visibility region from mother segment m
separately on each half-plane defined by line b, where

m ⊂ b. (4.3)

Both half-planes include boundary line b, so resulting visibility regions might
share a visible segment.

If m is given by an edge on the mesh, it can have up to two neighbouring
polygons. All polygons in the mesh are convex which guarantees visibility
between all points in the mesh including its edges. Initial expandable edges
are then all edges ei of the neighbouring polygons for which

m ̸⊆ ei. (4.4)

With definition Eq. 4.2, where the mother segment endpoints are omitted
rule Eq. 4.4 changes to

∀X ∈ m : X ̸∈ ei. (4.5)

The common initial root of these edges is whole m.

Mother segments defined by two vertices on the mesh can pass through
multiple polygons as in Fig. 4.5b. All edges of polygons crossed by m
that fulfil rule Eq. 4.5 are defined as initial edges (edges that do not share
any points with the mother segment). Initial roots can differ and must be
computed by evaluating the visibility of the initial edge on crossed polygons
(the root of every edge is a subset of m visible from the edge).

Initialization for an arbitrary segment was not tested, so we give only a
proposal. The segment is prolonged until it touches a mesh edge. A new
temporary vertex is created in this virtual intersection splitting the edge in
two. Initial edges and roots are then obtained the same as when the mother
segment is defined by vertices (virtual ones in this case). Initial roots are
then constrained to the original segment. The creation of virtual vertices is
in Fig.4.5c.

Once all initial edges and their roots are prepared, the algorithm can
expand visibility over them.

27

4. Visibility from segment
4.5 Forward expansion

Forward expansion for PEA-E (line 10 in Alg. 6) is derived from the same
procedure for PEA in Section 3.2 (For PEA it is the only core procedure, but
PEA-E also recomputes roots). The only difference in the whole process of
obtaining new visible segments is that looking over segment s from mother
segment m creates different visibility boundaries than looking from point Q
over s. The similarity is clear when comparing Fig. 3.1 with Fig. 4.6.

.
Figure 4.6: Visibility states defined by bounded visibility when looking from
mother segment XY over a segment AB

At first, the visibility boundaries are computed in a specific way for visibility
from one segment over another segment. Then PEA-E determines visibility
states for all vertices in the expanded polygon and by the same rules as PEA
defines new visible segments. This section describes how visibility boundaries
should be obtained and what changed in the implementation.

4.5.1 Visibility boundaries

Visibility boundaries are needed for evaluating which parts of the expanded
polygon are visible.

Two points X, Y in polygon P are mutually visible through segment s if

XY ⊂ P ∧XY ∩ s ̸= ∅. (4.6)

28

.................................. 4.5. Forward expansion

From Eq. 4.6 and Eq. 4.1 follows that visibility from one segment s over
another segment e (V t(s, e)) can be defined as

∀X ∈ V t(s, e) : ∃Y ∈ s, XY ⊂ P ∧XY ∩ s ̸= ∅. (4.7)

This definition also applies to visibility from a point over an edge since
segment s can degenerate to a single point. If all points on segment s see at
least one point on another segment e, visibility from s over e is a union of
visibility regions from all points Yi ∈ s over e.

(a) : Looking over the segment from
points.

(b) : Looking over the segment from
a segment.

Figure 4.7: Visibility regions from points A, B, X and from segment AB when
looking over segment CD.

In Fig 4.7a, both boundary lines for visibility from a single point X over
segment CD begin with X and go through points C and D. These boundaries
define visible cone ∡

←−−→
CXD.

To satisfy Eq. 4.7, the cone part in the same half-plane as X (defined with
line CD) should not be included. However, introduced algorithms work only
in the other half-plane the segment so these simple boundaries are kept.

Moving with point X pivots boundary lines around points C and D. If
segments AB and CD can define convex tetragon t(A, B, C, D), unifying
visibility from ∀X ∈ AB over CD results in visibility from AB over CD.
This can be shown by starting with X = A and moving X to B. This
movement causes boundary line −−→XC to rotate only in a counter-clockwise
direction. When moving X from B to A, boundary −−→XD can rotate only in a
clockwise direction. Combining both observations results in boundaries −→AC

and −−→BD for visibility from segment AB as in Fig. 4.7b.

29

4. Visibility from segment
4.5.2 Implementation

In the provided implementation, vertices and edges of the expanded polygon
are sorted counter-clockwise, starting with the right vertex of the edge on
which lies the expanded segment as in PEA. Because the mother and expanded
segments have to define convex tetragon (Section 4.5.1), we can define the
right and the left point of both segments relative to the direction of expansion
(in Fig. 4.8 points A′ and X are left and points B′ and Y are right.

Figure 4.8: Indexing and nomenclature for forward expansion implementation.

In comparison with PEA (Alg. 4), PEA-E has only two different lines
defining the boundary lines (lines 7 & 8 in Alg. 7. Before expanding the new
segments, their backward visibility has to be computed to satisfy the rule at
the beginning of Section 4.5.1. This rule demands that all points from the
mother segment see at least one point from the expanded segment. Newly
generated expandable segments do not always satisfy this rule.

30

.................................. 4.6. Backward visibility

Algorithm 7 PEA-E Forward Expansion
1: Inputs:
2: s: Mother segment s(Ls, Rs).
3: e: Expanded segment e(Le, Re).
4: P: Expanded polygon P (V0, V1...Vn; e0, e1...en).
5: Output:
6: S : Set of new expandable segments.

7: rightBoundary ← LsRe

8: leftBoundary ← RsLe

9: for ∀Vi ∈ P do
10: rightOrient← winding(rightBoundary, Vi)
11: leftOrient← winding(leftBoundary, Vi)
12: Vi.state← getVisibilityState(rightOrient, leftOrient)

13: for ∀ei ∈ P, i > 0 do
14: visible← getVisibleSubsegment(Vi, Vi−1)
15: if ∃visible then
16: push : S ← visible

return S

4.6 Backward visibility

This section describes the computation of roots for new segments generated
in forward expansion. Root rs is a part of mother edge m which is wholly
visible from segment s (line 12 in Alg. 6):

rs = {Y ∈ m|Y ∈ V(s)}. (4.8)

Visibility of point X from point Q guarantees visibility of Q from X. In
other words, they are mutually visible. Due to this, all points in V(Q) are
mutually visible with Q:

∀X ∈ V(Q) : Q ∈ V(X). (4.9)

Because segments are a set of points, Eq. 4.9 should change

∀X ∈ V(s) : s ⊂ V(X). (4.10)

31

4. Visibility from segment
Definitions of visibility from a segment in Section 4.2 do not guarantee that
all points on s see point X ∈ V(s), so there may be point Y ∈ s such that
X ̸∈ V(Y). From Eq. 4.9 can be deduced that if X is not visible from Y , Y
cannot be visible from X. If such point Y exists, it breaks Eq. 4.10. To be
valid, Eq. 4.10 has to be modified to

∀X ∈ V(s) : ∃r ⊂ s, r ⊂ V(X), (4.11)

where r is the same as root rs in Eq. 4.8. In other words, visibility between a
point and a segment is not mutual. (It is partially mutual, meaning there
has to be mutually visible subsegment, but we have to compute it.)

Fig. 4.3a shows that without computation of roots, boundary −−→Y D would
intersect the obstacle. The visibility region Vt(XY , CD is then computed
larger than it should be and the algorithm will produce a wrong visibility
region. Correct expansion over the new segment with new boundary

−−→
Y ′D is

shown in Fig. 4.3b.

4.6.1 Computing root

According to Eq. 4.7, new segment e is an edge or segment visible from at
least one point on segment m over segment s. Eq. 4.8 for the root of e can
be interpreted as a set of all points on m from which e is visible. It follows
that new root re is visible from e through s:

e ⊂ V t(m, s) =⇒ re ⊂ V t(e, s), (4.12)

where V t(m, s) is visibility region from m through s. The algorithm computes
visibility from mother segment m over segments ei with roots ri. This limits
roots on m as any other points are undesirable.

ri ⊆ ri−1 ⊆ · · · ⊆ r0 ⊆ m (4.13)

From Eq. 4.12 and Eq. 4.13, root can be computed as the intersection of the
previous root and backward visibility region:

re = r ∩ V t(e, s). (4.14)

Fig. 4.9a shows that looking back over the last expanded segment is
insufficient because it can include obstacles to the backward visibility region.

32

.................................. 4.6. Backward visibility

(a) : Looking back over the immedi-
ate predecessor.

(b) : Looking back over the further
predecessor.

Figure 4.9: Looking back over the last segment is not enough since it may cause
looking at obstacles (first image). Backward visibility can be limited by any
segment from the previous expansion (second image).

Because new segments from forward expansion have to be visible through
all previously expanded segments, the roots of new segments have to be also
visible through all previously expanded segments (the segment and its root
are mutually visible). This changes Eq. 4.12 to

ri ⊂ V t(ei, ei−1) ∧ ri ⊂ V t(ei, ei−2) ∧ · · · ∧ ri ⊂ V t(ei, e0) (4.15)

which with 4.14 gives equation

ri = ri−1 ∩ V t(ei, ei−1) ∩ V t(ei, ei−2) ∩ · · · ∩ V t(ei, e0). (4.16)

To compute a new root as in Eq. 4.16, the algorithm looks back through all
previously expanded segments and remembers the most limiting boundaries
as in Fig. 4.9b.

4.6.2 Implementation

Once a new expandable segment ei from forward expansion in Alg. 7 is
provided, a new root must be computed by looking back. New segments
should carry a reference to their predecessor for easier access. The algorithm
computes the area of backward visibility over all predecessors and remembers
the most limiting boundaries (a different predecessor can define each bound-
ary). A part of the previous root, visible in the most strict boundaries, is
saved as the new root. Fig. 4.10 shows an example with four predecessors.

33

4. Visibility from segment
New expandable segment e is passed to Alg. 8. At first, the new root is set

equal to the last one because ri ⊆ ri−1 in 4.13 (line 6, in Fig. 4.10a re = XY).
The algorithm iterates through all previous segments ei always by getting
a reference to the predecessor of the currently evaluated one (lines 7-9). If
boundaries of back visibility V t(e, ei) (lines 10-13) intersect current re, it is
limited by these boundaries (lines 14-18).
Four cycles of the loop on lines 8 to 18 are depicted in images (b)− (e) in Fig.
4.10. The new root is limited in Fig. 4.10d, but boundaries in Fig. 4.10e are
even more strict. The example results in a new root X ′′Y ′′. Looking from
the root over its segment AB generates new segment BC as in Fig. 4.10f.

Algorithm 8 PEA-E Root evaluation
1: Inputs:
2: r : Root of previous segment s(Lr, Rr).
3: e: New segment e(Le, Re).
4: Output:
5: re: New root for e (re ⊆ r).
6: re ← r
7: current← e

8: while ∃ current.predecessor do
9: current← current.predecessor

10: [R, L]← current
11: [X, Y]← re

12: rightBoundary ← LeR
13: leftBoundary ← ReL

14: if leftBounary ∩ re ̸= ∅ then
15: X ← leftBoundary ∩ re

16: if rightBounary ∩ re ̸= ∅ then
17: Y ← rightBoundary ∩ re

18: re ← [X, Y]
return re

34

.................................. 4.6. Backward visibility

(a) : New segment AB from forward
expansion.

(b) : Looking back over segment e3
does not create any limits for root:
r4 = m.

(c) : Looking back over segment e2
does not create any limits for root:
r4 = m.

(d) : Looking back over segment e1
limits root from both sides: r4 =
X ′Y ′.

(e) : Looking back over segment e0
limits root, even more, resulting in
final root: r4 = X ′′Y ′′.

(f) : With new root r4 algorithm can
expand segment AB.

Figure 4.10: Example of how algorithm computes root for new expandable
segment AB and expands it for new segment BC.

35

4. Visibility from segment
4.7 Numerical stability

During expansion, new subsegments can be defined with an intersection
between an edge in the mesh and a boundary line. Evaluation of intersection
belongs to the basics of analytic geometry. Given two lines in R2 defined as
p : apx + bpy + cp = 0 and r : arx + bry + cr = 0 point of their intersection I
can be computed as

I = [xI , yI],
apxI + bpyI + cp = 0,

arxI + bryI + cr = 0,

...

xI = bpcr − brcp

apbr − arbp
, (4.17)

yI = cpar − crap

apbr − arbp
. (4.18)

Roundoff errors of computers cause the computed intersection of two lines to be
only a point near the real intersection. No robust and fast implementation for
the evaluation of intersections has yet been produced. Usage of intersections
burdened by rounding error results in incorrectly computed visibility regions.

Figure 4.11: Numerical errors in intersection evaluation can cause very strange
results as looking through obstacles or computing visibility from different seg-
ments than the mother segment.

Apart from errors in the resulting visibility region, some incorrectly eval-
uated intersections can cause impossible situations as an exchange of root
points depicted in Fig. 4.11. In the example, the expansion to polygon L
resulted in a new short segment AB. The right point of new root Y ′ is then
poorly evaluated due to numerical error and placed left to the right root point
X which breaks the Eq. 4.13 (new root has to be a subset of the old root).

36

.................................. 4.7. Numerical stability

Our first implemented version of PEA-E failed for 30% edges on meshes from
the IronHarvest dataset [HHJ22]. Numerical errors created too unrealistic
situations.

To avoid possibly incorrect evaluation of intersections, a new abstract
representation of intersection points is introduced. Intersections occur only
when the visibility region is limited by the environment in form of an obstacle
vertex. One root point and the obstacle vertex create a boundary line which
together with some mesh edge define an intersection.

The new representation stores four mesh vertices defining the mentioned
line and the intersected edge. Because vertices are a part of the mesh no
numerical error is introduced by them. The algorithm presented so far
builds on computed intersections and thus must be adapted for the new
representation of intersections.

4.7.1 Stable forward expansion

In forward expansion, boundary lines are defined by starting point on the root
(R ∈ r) and the second (directional) point on the expanded edge (D ∈ ei).
R and D can be either vertex or intersection. Because intersections are not
evaluated, both boundaries must be defined by some vertices. Boundaries
are computed separately with the same rules, so changes can be shown on
one general boundary −−→RD.

If both R and D are defined by a vertex, a boundary can be specified
directly as b = −−→RD. If one of the points is an intersection, the boundary line
is defined with the line defining the intersection. Fig. 4.12a shows where root
point R was computed as −−→NP ∩XY after creating a new segment with vertex
N . In the next expansion D = N (meaning D is a vertex), boundary −−→RD is
defined as −−→PD respectively −−→PN where both P and N are mesh vertices. The
same goes for Fig. 4.12b, where D is an intersection, and R is a vertex.

If both R and D are intersections, either one had to be defined as an
intersection first. In case R was first defined as an intersection (Fig. 4.13), an
expansion that generated D was bounded by a line defining R, and thus D is
also defined by the same line. When D was defined as an intersection first, it
was defined by the old root vertex and some vertex from the environment.
The boundary lines are a subset of the expansion visibility region, which is
visible only from the endpoints of the root (Section 4.5.1).

37

4. Visibility from segment

(a) : The root is an intersection.
(b) : The endpoint of the expanded
segment is an intersection.

Figure 4.12: When only one point that should define visibility boundary is an
intersection, the boundary can be defined by the line defining the intersection.

Because D is directly on the boundary line, it is visible only from R, so it
cannot produce any new root defined as an intersection and R must be a
vertex.
Both lines defining intersections R and D have to be equal and can be used
as new boundaries.

Figure 4.13: If both points defining the boundary are intersections, the boundary
can be defined with a line defining the point lying on the mother segment.

4.7.2 Stable root computation

During root computation, boundaries of back visibility can be defined with a
point on the new segment D and a point on one of the previous expanded
segments Ei. In addition, there is root point R, which can either stay the
same or be shifted by backward boundaries. All three points can be either
vertices or intersections.

38

.................................. 4.7. Numerical stability

In the unstable implementation, the position of R relative to backward
boundaries was computed by passing all three points to orientation evaluation,
which stated if R is limited by the boundary or not. With the alternative
representation of intersections, it is not possible.

All cases where Ei is an intersection can be ignored because if Ei is an
intersection, it was limited by some previous expansion Ei−n, which was a
vertex (vertices introduce limitations, intersections only pass them further).
This means only cases where Ei is a vertex are relevant. Further, if D is an
intersection, it was created by the boundary line defined by the last root.
The end of the last Section 4.7.1 shows that if D is an intersection, it cannot
change the root point. This paragraph results in backward boundaries always
defined by vertices (otherwise, they are irrelevant). R defined as vertex can
be passed to winding which decides about new R′.

If R is an intersection, its defining line is most likely not equal to the
current backward boundary DEi, and they don’t even share a defining vertex.
In Fig. 4.14 is old intersection R defined with line b = V D and the new R′

with line b′ = V ′D′. Whether backward boundary
−−−→
V ′D′ limits the root can

be decided by the position of D′ to new helping line
−−→
V ′D. From the end of

the previous Section 4.7.1 follows that D had to be obtained during looking
back, which means it must be used for defining boundary when computing
the root of V ′. This reduces the problem to a question of what boundary is
more strict. When the left root is resolved as in Fig. 4.14, counter-clockwise
winding of points V ′, D, D′ means V ′D′ is more strict than V D and new root
R′ will be created by line V ′D′ (Fig 4.14a). If the winding is clockwise or
the points are in line, new root R′ is also created, but with the line, V ′D,
because D is a vertex of a more limiting obstacle (Fig 4.14b).

(a) : Evaluated obstacle D limits
back visibility and creates new R′.

(b) : Evaluated obstacle D does not
limit back visibility and R′ will be
created by further obstacle.

Figure 4.14: The only differently evaluated case in root computation can occur
if the previous root was an intersection.

39

4. Visibility from segment
4.8 Summary

In this chapter, a visibility region from a segment was defined as a set of
all points that are visible from at least one point in the segment. A more
practical definition of reduced visibility from a segment was introduced to cut
out undesirable bending behind corners. The polygonal expansion algorithm
for edges was introduced as a way to compute reduced visibility region from a
segment on a polygonal mesh. As numerical errors of computers can harshly
affect new algorithms, a more robust implementation was proposed.

40

Chapter 5

EdgeVis

5.1 Motivation

The performance of TEA and PEA depends on how many triangles or polygons
they have passed during the computation. Looking through narrow gaps
creates small but long visibility regions. If the environment is complex enough,
the algorithms must expand through many polygons to reach an obstacle, as
in Fig. 5.1a. The idea behind the new algorithm EdgeVis is to precompute
visibility regions of all edges in the mesh and use them as a structure for the
computation of visibility regions from query points. When a query point is
given, the algorithm locates its initial polygon as TEA or PEA. Instead of
expanding the visibility over initial edges, the precomputed visibility from the
edge is used as a reduction for the environment polygon W . Three methods
for finding the visibility region of Q over the initial edge are discussed in this
chapter. An example reduction of environment complexity is in Fig. 5.1b.

This chapter first shows that visibility from a point over a segment Vt(Q, s)
is bounded by the visibility region of the segment V(s) (only one side is
sufficient):

Vt(Q, s) ⊂ V(s). (5.1)

All discussed methods work better on a triangular mesh. The basic method
is to compute visibility with a query point for each vertex defining V(s). It
is a very naive approach but performs similarly to PEA on polygons.

41

5. EdgeVis

(a) : Small visibility region from Q
can cross many polygons in complex
environment.

(b) : Precomputed visibility from
edge e decrease complexity of the en-
vironment.

Figure 5.1: Comparison of complexities when visibility is computed in polygonal
mesh or on visibility region of visible edge.

The first improved method is to precompute all points that are visible from
any point in the entrance triangle. Visibility for edges in the mesh is solved
separately for both sides, and the entrance triangle is a triangle on the other
side of the edge. Only V(s), which entrance triangle is the same as the query
initial triangle, are evaluated. Because being always visible is quite a hard
condition, only a few vertices are marked as always visible and do not have
to be evaluated. This optimization brings around 5% speed up.
The last discussed method is cutting off surely not visible parts of V(s) online.
For all vertices of V(s), the algorithm precomputes the root as in PEA-E.
When a query is given, the naive method is followed until a vertex is not
visible. Then, a boundary line is created from the last visible vertex and
query Q, and its intersection R with s is evaluated. The not-visible vertex
has its whole root next to R (can be both sides). Until a vertex with a root
containing R or even with a root on the other side of R is reached, all vertices
are marked not visible and can be skipped. The method, as described, adds
around 5% speed up. The low improvement is caused by the high cost of
pruning triggers and the possibility of starting pruning even for one not visible
vertex.

5.2 Bounding by edge visibility

Let us have some observable space W, a segment s and point Q where s ∈W
and Q ∈W. Visibility of Q over s can be defined as

Vt(Q, s) = {∀X ∈W|QX ⊂W ∧QX ∩ s ̸= ∅}, (5.2)

42

...............................5.2. Bounding by edge visibility

and the visibility region of s can be defined as

V(s) = {∀Y ∈W|∃Z ∈ s : ZY ⊂W}. (5.3)

Eq. 5.2 tells that all points in Vt(Q, s) can be connected with Q by a line
that intersects s. Marking the intersection point as P changes Eq. 5.2 to

Vt(Q, s) = {∀X ∈W|∃P ∈ s : QX ⊂W ∧QX ∩ s = P} =
{∀X ∈W|∃P ∈ s : QX ⊂W ∧ P ∈ QX}. (5.4)

Putting Eq. 5.3 and Eq. 5.4 together as is Eq. 5.1 gives

{∀X ∈W|∃P ∈ s : QX ⊂W ∧ P ∈ QX} ⊂ {∀Y ∈W|∃Z ∈ s : ZY ⊂W}.
(5.5)

For a proof by a dispute, we can swap sides

{∀Y ∈W|∃Z ∈ s : ZY ⊆W} ⊂ {∀X ∈W|∃P ∈ s : QX ⊂W ∧ P ∈ QX}.
(5.6)

Because ∀Y ⊂ ∀X, X has to fulfill conditions of Y and it can be substituted
as X = Y :

{∀Y ∈W|∃Z ∈ s : ZY ⊆W} ⊂ {∀Y ∈W|∃P ∈ s : QY ⊂W ∧ P ∈ QY }.
(5.7)

Because Q can be an arbitrary point, Eq. 5.7 can be disproven very easily
with Fig. 5.2.

Figure 5.2: Example that point Y visible from segment s does not have to be
visible from point Q over s. (By Eq. 2.4 QY must intersect s, which is not the
case.)

The reasoning above shows that the visibility region of the segment bounds
all visibility regions from any point over the segment. This is the base stone
of all versions of the proposed EdgeVis algorithm.

43

5. EdgeVis
5.3 Basic structure for EdgeVis

Let us assume visibility regions for edges were computed by numerically stable
PEA-E. The output is a list of non-traversable segments whose endpoints
are defined either as a vertex in mesh or as an abstract intersection. This
representation is not very useful, so the algorithm splits the segments into
endpoints and computes roots for them (as in PEA-E root is a subsegment
on s fully visible from point X ∈ V(s)). In Fig. 5.3a is one output segment
of PEA-E for edge XY . Preprocessing is common for all versions of EdgeVis,
splits the segment to endpoints and computes their roots as shown on segment
AB in Fig. 5.3. Endpoint X can be visible only if query Q is in its visibility
region over its root (in Fig. 5.3b A is not visible from Q):

X ∈ V(Q) : Q ∈ Vt(X, rx). (5.8)

The set of all converted vertices with their roots is called SV (T, e), where T
is an entrance triangle and e is an edge. The algorithm loops through the
vertices counter-clockwise.

(a) : PEA-E output end segment
with root.

(b) : EdgeVis input single points
with roots.

Figure 5.3: Conversion of the output of PEA-E to structure suitable for EdgeVis.

5.4 EdgeVis 1: Naive

The naive approach is to go through all vertices of SV (T, e) and evaluates
their visibility from Q. The computation can result in visible, left, and right
states. The left/right state means that vertex Xi is left/right to Vt(Q, e).
Because Vt(Q, e) is being computed, the state is computed from position to
Vt(Xi, rXi), which is the opposite. In Fig. 5.3b Q is left (CCW) to Vt(A, rA),
and so its state will be right when looking from Q.

44

...................................5.4. EdgeVis 1: Naive

The visibility of the vertices alone is not enough to define visibility region
Vt(Q, e). When two adjacent vertices are in different states, the segment
between them must be partially visible. Partial visibility triggers intersections
of the segment and some limiting line defined with Q and past or future
vertex. Multiple examples of such intersections are in Fig. 5.4. For example,
point C ′ is defined by previous point B and D′ is defined with future point
E. The intersection is triggered only when leaving the right state or entering
the left state. The last visible point Plast and the last visible segment slast

(at least partially) must be saved for evaluation of the intersections. The
algorithm starts with the right vertex of e, which is always visible and then
follows the diagram in Fig. 5.5.

Figure 5.4: Example of V(Q) in Vt(Q, e).

In Fig. 5.4, V(e) has only eleven vertices, and each of them is used for
computing at least one vertex from Vt(Q, e). In realistic scenarios from Iron
Harvest [HHJ22], the average V(e) has between one and five hundred vertices
and on average half of them have no relation to Vt(Q, e).

45

5. EdgeVis

Figure 5.5: State machine that represents the naive version of EdgeVis.

Applying the diagram in Fig. 5.5 on the example in Fig. 5.4 will produce
following actions on vertices:

A is visible: Vt(Q, e) = {A},

B is visible: Vt(Q, e) = {A, B},

C is right: Plast = B,

D is left: −−−−→QPlast ∩ CD =⇒ C ′; Vt(Q, e) = {A, B, C ′}; slast = CD,

E is visible: −−→QE ∩ slast =⇒ D′; Vt(Q, e) = {A, B, C ′, D′, E},

F is visible: Vt(Q, e) = {A, B, C ′, D′, E, F},

G is visible: Vt(Q, e) = {A, B, C ′, D′, E, F, G},

H is right: Plast = H,

I is visible: −−−−→QPlast ∩HI =⇒ H ′; Vt(Q, e) = {A, B, C ′, D′, E, H ′, I},

J is left: slast = IJ ,

K is visible: −−→QK ∩ slast =⇒ J ′; Vt(Q, e) = {A, B, C ′, D′, E, H ′, I, J ′, K},

L is visible: Vt(Q, e) = {A, B, C ′, D′, E, H ′, I, J ′, K, L},

46

............................... 5.5. EdgeVis 2: Always Visible

5.5 EdgeVis 2: Always Visible

The most expensive part of the vertex evaluation is the computation of two
orientation predicates to obtain the visibility state of a vertex. The idea of
this improvement is to find all vertices of V(e) that are visible from any point
in the entrance triangle Te. The goal is to find all vertices that follow

∀X ∈ V(e) : ∀Q ∈ Te, X ∈ Vt(Q, e). (5.9)

The algorithm checks if the whole entrance triangle is in the visibility region
from X over its root:

Te ∩Vt(X, rx) = Te. (5.10)

This is fulfilled only if rx = e and the vertex of Te opposite to e (Ye) is visible
from X (Ye ∈ Vt(X, rx)). Not many vertices fulfil this condition, so the
computation of orientation predicates may be skipped only for 5-8% resulting
in a 4-7% speedup compared to the naive approach. Fig. 5.6 shows that
vertices B, F, G, K from the example in Fig. 5.4 are visible from any Q in
the entrance triangle.

Figure 5.6: Example of the always visible area when looking from the entrance
triangle over edge e.

47

5. EdgeVis
5.6 EdgeVis 3: Online Pruning

The last discussed method uses the fact, that if the algorithm leaves visible
state, the last visible vertex of V(e) defined a boundary of Vt(Q, e) (true
for entering the right state, but a little more complicated for the left state).
In Section 5.3 is shown that vertex X ∈ V(e) is visible from Q, only if Q is
visible from X over its root. Also, the fundamental definition of visibility
region for a point in Eq. 1.1 is connecting two visible points with a line. This
applies that X is visible from Q only if

QX ∩ rX ̸= ∅. (5.11)

When the visible state is left, the boundary created with Q and the last visible
vertex intersects edge e creating a limiting root point R. Until a vertex whose
root contains R is reached, all vertices can be skipped. (If the root of a vertex
’jumps’ to the other side of R, the state was changed from right to left, and
intersections need to be triggered.)

Fig. 5.7 shows an example of pruning. In Fig. 5.7a A is evaluated as not
visible, and bounding root point R is computed from the last visible vertex O.
In Figs. 5.7b and 5.7c point R is not on roots rB and rC , so vertices B and
C can be marked as not visible without computing orientation predicates. In
last Fig. 5.7d R ∈ rD and vertex D is visible. The intersection between C
and D is computed as in the naive method.

During preprocessing, all roots rX are transformed to normalized interval
(0, 1), which describes on which part of the edge e the root is. For example,
roots in Fig. 5.7 would be represented approximately as rA = (0, 0), rB =
(0, 25), rC = (0, 5), and rD = (0, 1). When R is computed it is converted to
a scalar position on the edge (R = 0.66 in Fig. 5.7). Instead of computing
orientation predicates, vertices are checked by simple ” < ”, ” > ”.

The computation of R is quite expensive, and if it does not cut a lot of
vertices, it is not very worth it. Future research can explore possible decisions
for triggering the pruning procedure.

48

...................................... 5.7. Summary

(a) : Vertex A is right. (b) : Vertex B is right.

(c) : Vertex C is right. (d) : Vertex D is visible.

Figure 5.7: About visibility of vertices can be decided by the location of boundary
root point R.

5.7 Summary

This section introduced a new algorithm EdgeV is, for computing the visibility
region of a point on a preprocessed structure of visibility regions from edges.
Three algorithm variants were discussed, but all were slightly better than
PEA on a polygonal mesh. This algorithm gives many options for future
research due to complex relations in visibility regions for edges.

49

50

Chapter 6

Experiments

This chapter presents the results of the presented algorithms. We did not
optimise every subroutine, but the optimisation level should be the same
for all implementations (TEA and PEA should be affected by additional
optimisation more than EdgeVis variants because EdgeVis has most of its
subroutines in preprocessing). All tests were done on the same machine
(Table 6.1) and in the same conditions (temperature and power supply).

OS Ubuntu 22.04.1 LTS x86_64
Kernel 5.15.0-56-generic
CPU 11th Gen Intel i5-11400H (12) @ 4.500GHz
GPU Intel TigerLake-H GT1 [UHD Graphics]
GPU NVIDIA GeForce RTX 3050 Mobile
RAM 1x {DDR4, 3200 MT/s, 8 GB}

Table 6.1: The specification of testing laptop MSI GF63 Thin 11UC REV:1.0
.

Six experiments on the Iron Harvest dataset [HHJ22] are presented in
this chapter. The dataset is introduced in Section 6.1 together with the
first experiment of CDT and M-CDT mesh preparation. In Section 6.2 a
comparison between TEA and PEA is presented. Section 6.3 shows the
basic performance properties of the computation of edge visibility regions.
The performance improvement of EdgeVis is shown in Section 6.4. The last
sections 6.5 and 6.6 are dedicated to all algorithms’ preprocessing times and
the difference between robust and naive evaluation of orientation predicates.

51

6. Experiments
6.1 Iron Harvest maps

The dataset is a set of complementary representations for 35 different level
maps from the game Iron Harvest. J. Mikula, for his work on TriVis [MK22],
created a new representation where every map is defined by its border and
set of obstacles (n polygons of m vertices). The representation of J. Mikula
is used together with CDT and merged CDT from polyanya paper [CHG17]
to generate triangular or polygonal meshes. All maps in the dataset are
complex enough to provide a sufficiently general environment. (example map
sp_pol_04 is shown in Fig. 6.1).

Figure 6.1: Iron harvest sp_pol_04 map.

The basic properties of all maps and meshes are listed in Table 6.2. The
complexity of the maps is expressed by the number of obstacles and vertices
needed to describe the environment. Polygonal meshes have less than half the
elements as triangular ones, indicating possible performance improvement.

52

.................................. 6.1. Iron Harvest maps

map obstacles vertices triangles polygons

mp_2p_01 263 3184 3673 1716
mp_2p_02 165 2301 2612 1143
mp_2p_03 199 3608 3985 1789
mp_2p_04 63 1932 2051 959
mp_4p_01 407 4110 4859 2136
mp_4p_02 376 6159 6888 2907
mp_4p_03 632 7396 8559 3952
mp_6p_01 376 4999 5680 2519
mp_6p_02 297 5359 5944 2422
mp_6p_03 287 4692 5254 2226
sp_cha_01 174 2413 2747 1184
sp_cha_02 254 3428 3926 1616
sp_cha_03 454 5320 6176 2775
sp_cha_04 623 6570 7768 3374

sp_endmaps 675 7987 9254 4070
sp_pol_01 63 1052 1173 552
sp_pol_02 336 5283 5917 2624
sp_pol_03 558 6775 7836 3308
sp_pol_04 479 6165 7054 3217
sp_pol_05 339 3934 4578 2031
sp_pol_06 679 8236 9508 4293
sp_rus_01 276 3098 3621 1644
sp_rus_02 167 2695 2998 1399
sp_rus_03 372 4855 5574 2499
sp_rus_04 360 5595 6280 2665
sp_rus_05 367 5966 6646 2974
sp_rus_06 598 7875 8986 4028
sp_rus_07 206 3568 3947 1774
sp_sax_01 163 2396 2703 1186
sp_sax_02 368 7002 7700 3478
sp_sax_03 368 6671 7368 3265
sp_sax_04 431 6862 7659 3470
sp_sax_05 65 1948 2070 907
sp_sax_06 269 4358 4849 2169
sp_sax_07 348 4132 4807 2088

Table 6.2: Properties of maps in Iron Harvest dataset.

53

6. Experiments
6.2 TEA vs. PEA

To compare the performance of TEA and PEA, visibility regions were com-
puted for 106 queries for both algorithms. Table B.1 shows that PEA is
approximately 21.32% faster on average with the lowest improvement of
17.0% on map sp_rus_03 and the most significant improvement of 30.6%
on map sp_sax_05. Fig. 6.2 shows that sp_sax_05 is more open and has
significantly fewer obstacles. Large open spaces can be represented with only
a few polygons, even if they are defined with many vertices. This causes PEA
to be more efficient in such areas.

(a) : sp_rus_03 (b) : sp_sax_05

Figure 6.2: Maps with worst 6.2a and best 6.2bimprovement of PEA to TEA.

Table B.1 also shows the difference between average expansions and average
maximal recursion depth for both algorithms. PEA reduces the number of
expansions by more than 50%, but a more complex evaluation of expansion for
PEA results in the final improvement of 21.32%. The reduction of expansions
also provides an upper bound for PEA improvement. If we could optimise
the PEA expansion procedure to the same speed as TEA expansion, the
difference in performance would be the same as the difference in the number
of expansions. However, the creation of polygonal mesh can be optimised as
J. Mikula did for triangulation for TEA [MK22].

54

.................................... 6.2. TEA vs. PEA

map runtime[s] avg. exp.[-] avg. depth[-]
TEA PEA ↑ [%] TEA PEA TEA PEA

mp_2p_01 15.95 12.49 21.7 228 100 47 18
mp_2p_02 14.68 11.15 24.1 213 90 52 20
mp_2p_03 20.80 15.86 23.7 294 125 61 23
mp_2p_04 6.05 4.35 28.0 83 37 32 13
mp_4p_01 16.68 13.80 17.3 232 102 51 21
mp_4p_02 23.13 19.15 17.2 315 132 67 27
mp_4p_03 14.21 11.27 20.6 177 79 46 18
mp_6p_01 18.31 14.64 20.0 251 108 60 25
mp_6p_02 18.61 14.41 22.6 247 101 63 24
mp_6p_03 13.44 10.44 22.3 184 77 53 20
sp_cha_01 23.53 17.63 25.1 346 142 63 25
sp_cha_02 28.23 21.16 25.1 431 187 68 27
sp_cha_03 14.06 11.23 20.1 186 81 52 20
sp_cha_04 14.27 11.62 18.5 188 83 41 17

sp_endmaps 15.51 12.34 20.4 201 93 46 18
sp_pol_01 6.61 4.86 26.5 96 43 27 11
sp_pol_02 9.59 7.64 20.3 126 53 40 15
sp_pol_03 18.83 15.13 19.6 248 103 57 21
sp_pol_04 21.52 17.15 20.3 291 125 61 23
sp_pol_05 11.77 9.68 17.8 164 72 43 17
sp_pol_06 14.95 11.86 20.6 174 77 50 20
sp_rus_01 10.20 8.13 20.3 144 64 40 15
sp_rus_02 6.22 4.86 21.9 87 42 26 11
sp_rus_03 6.51 5.40 17.0 85 38 28 12
sp_rus_04 13.30 10.76 19.1 180 76 46 18
sp_rus_05 14.89 11.71 21.3 194 83 48 19
sp_rus_06 12.95 10.57 18.4 160 71 46 19
sp_rus_07 12.09 9.51 21.3 167 73 45 18
sp_sax_01 10.00 8.01 19.9 144 64 38 16
sp_sax_02 19.24 15.54 19.2 248 107 56 22
sp_sax_03 10.93 8.88 18.7 142 62 36 15
sp_sax_04 10.24 7.88 23.1 129 55 36 14
sp_sax_05 5.75 3.99 30.6 79 32 29 10
sp_sax_06 14.27 11.44 19.9 194 85 53 21
sp_sax_07 10.72 8.20 23.5 147 63 40 15

Average 14.23 11.22 21.32 194 84 47 18

Table 6.3: Comparison of TEA and PEA performance.

55

6. Experiments
6.3 Edge visibility regions

The computation of the edge visibility region introduced in this paper is the
first solution to the given problem (to the best of our knowledge). Fig. 6.3
shows the visibility region for a segment defined with two vertices in a polyg-
onal mesh. Table 6.4 contains measurements of visibility region computation

Figure 6.3: Edge visibility region in mp_2p_01 map.

for all traversable edges in triangular mesh for all maps. This setup is used as
preprocessing for all EdgeVis variants, so it is most relevant for detailed eval-
uation. The average computation time for an edge is approximately one order
of magnitude longer than for a point in the same environment (comparison of
Table 6.4 and Table B.1). The table further shows the number of expansions
and depth of recursion for one side. The higher the number of expansions,
the more connected the map is. Fig. 6.4a shows the map mp_2p_04 with
low expansions. Due to its complexity, only a close neighbourhood is usually
visible. The opposite case is map sp_cha_02 in Fig. 6.4b, where lack of
significant obstacles often causes edges to see large parts of the map. The
recursion depth describes the presence of vision corridors. Maps in Fig. 6.4
have similar recursion depth, which means, that even though mp_2p_04 is
more complex, it has a lot of visible corridors allowing long vision in at least

56

................................. 6.3. Edge visibility regions

one direction. For example, map sp_rus_03 is computed quite fast, even
though it has many edges. Given its low recursion depth and low expansion
count, it is probably a complex map, as shown in the last section in Fig. 6.2a.

map count runtime[s] depth expansions
mean max mean max

mp_2p_01 3900 0.619 34 92 121 946
mp_2p_02 2759 0.490 39 105 135 843
mp_2p_03 4164 0.948 46 144 169 902
mp_2p_04 2108 0.174 27 111 59 271
mp_4p_01 5202 0.979 40 143 145 961
mp_4p_02 7242 1.969 55 155 201 1263
mp_4p_03 9091 1.111 30 125 92 1257
mp_6p_01 5986 1.095 42 147 138 1361
mp_6p_02 6233 1.313 49 154 156 920
mp_6p_03 5530 0.858 40 209 110 1001
sp_cha_01 2908 0.863 44 122 225 1570
sp_cha_02 4171 0.918 40 126 164 4590
sp_cha_03 6579 0.982 36 158 111 941
sp_cha_04 8344 1.166 32 107 108 1720

sp_endmaps 9847 1.313 35 155 97 1107
sp_pol_01 1232 0.094 21 54 59 274
sp_pol_02 6216 0.745 33 124 89 496
sp_pol_03 8340 1.754 44 173 160 1503
sp_pol_04 7465 1.516 37 179 151 2067
sp_pol_05 4884 0.712 35 129 113 1200
sp_pol_06 10102 1.727 43 193 120 885
sp_rus_01 3869 0.433 30 105 84 621
sp_rus_02 3135 0.184 17 55 42 368
sp_rus_03 5922 0.539 26 104 71 663
sp_rus_04 6606 0.912 35 127 103 805
sp_rus_05 6960 0.983 33 129 104 1250
sp_rus_06 9500 1.149 30 114 90 1007
sp_rus_07 4121 0.558 34 111 99 568
sp_sax_01 2848 0.411 33 105 111 1252
sp_sax_02 8031 1.452 39 135 131 1328
sp_sax_03 7698 0.968 31 131 94 714
sp_sax_04 8026 0.875 29 105 82 646
sp_sax_05 2128 0.156 25 93 54 273
sp_sax_06 5072 0.823 41 137 115 709
sp_sax_07 5135 0.620 31 112 90 651

Table 6.4: Computation of visibility regions of traversable edges in a triangular
mesh.

57

6. Experiments

(a) : mp_2p_04 : few expansions

58

................................. 6.3. Edge visibility regions

(b) : sp_cha_02 : many expansions

Figure 6.4: Maps with few 6.4a and many 6.4b expansions in PEA-E.

59

6. Experiments
6.4 EdgeVis performance

Table 6.5 presents improvement in the performance for all EdgeVis variants
relative to PEA. The improvement is computed as

EX ↑ [%] = 100 ∗ (1− tEX

tP EA
), (6.1)

where EX is one of the three variants of the EdgeVis, and talgorithm is total
runtime of an algorithm for 106 queries.

The naive version is 33.1% faster than PEA, and the two improved methods
reduce the query runtime by only a few percentage points, indicating that
the resources put into the implementations are not worth it. However, the
improvement by the second variant, which always precomputes visible vertices,
is significant on some specific maps as sp_sax_05. The second variant is
potent on maps with large areas with no obstacles because many vertices can
be observed from large areas. The improvement of the third variant with
online pruning is more consistent than the second one.

Columns under evaluated v. show the number of vertices from a precom-
puted edge visibility region for which EdgeVis must compute orientation. The
decrease of evaluated vertices between the first and second versions is slight
because the condition of sure visibility is demanding. On the other hand,
the reduction presented by the third variant of EdgeVis is between 30− 50%,
which indicates effective pruning. The reason for the small improvement in
query performance for Edgevis 3 is the high cost of computing the boundary
line for pruning. Therefore, the first improvement that comes to mind is to
start pruning only if it probably saves more time than it spends on computing
the boundary.

Our implementation of the online pruning EdgeVis contains a minor bug
that we could not fix yet. It sometimes omits vertex in the final polygon
if it is defined as an intersection and creates a border between visible and
right state. Column E3 ✓ in Tab. 6.5 shows the success rate for the third
variant, where the query was computed successfully if an area is different
by less than 10−6% from the other algorithms (the difference between areas
from the other algorithms were less than 10−12% which can be attributed to
rounding errors). The measurement is not affected by this bug.

60

................................. 6.4. EdgeVis performance

map ↑ [%] evaluated v. E3 ✓[%]E1 E2 E3 E1 E2 E3

mp_2p_01 33.3 35.7 37.1 291 272 176 100.00
mp_2p_02 33.1 36.2 37.7 274 255 161 100.00
mp_2p_03 38.2 40.0 41.5 356 334 211 100.00
mp_2p_04 21.1 27.9 21.2 106 92 75 99.72
mp_4p_01 38.0 40.3 41.4 298 277 176 99.65
mp_4p_02 44.2 45.9 46.9 383 361 219 100.00
mp_4p_03 34.6 37.5 36.3 219 202 141 99.90
mp_6p_01 40.0 42.1 42.7 303 284 175 100.00
mp_6p_02 42.5 44.5 44.4 281 262 169 99.96
mp_6p_03 35.4 38.5 37.2 220 202 139 99.97
sp_cha_01 38.4 39.8 43.3 423 403 235 100.00
sp_cha_02 30.6 31.4 42.5 707 680 347 99.99
sp_cha_03 36.9 39.8 39.1 225 208 141 100.00
sp_cha_04 32.3 35.1 34.4 235 219 146 100.00

sp_endmaps 28.0 30.5 34.3 336 317 186 100.00
sp_pol_01 23.0 29.5 23.9 117 103 82 100.00
sp_pol_02 29.6 34.3 30.3 151 134 101 100.00
sp_pol_03 37.4 39.4 40.8 313 294 179 100.00
sp_pol_04 38.9 40.7 42.5 367 347 208 99.94
sp_pol_05 33.2 36.6 35.8 203 186 125 99.65
sp_pol_06 38.3 41.4 40.0 217 200 136 100.00
sp_rus_01 28.5 32.3 29.7 174 158 118 100.00
sp_rus_02 21.3 29.5 23.1 111 95 84 99.97
sp_rus_03 22.7 28.7 23.3 106 93 73 100.00
sp_rus_04 33.9 36.7 35.6 221 203 137 99.98
sp_rus_05 36.4 39.1 38.4 234 215 147 100.00
sp_rus_06 36.7 39.9 37.7 191 174 126 100.00
sp_rus_07 33.8 37.1 34.7 199 181 131 100.00
sp_sax_01 31.4 35.5 34.5 187 171 118 100.00
sp_sax_02 41.9 44.1 43.5 298 276 181 100.00
sp_sax_03 33.4 37.4 33.9 171 154 114 100.00
sp_sax_04 28.5 33.2 29.9 158 142 104 100.00
sp_sax_05 18.3 26.0 18.2 93 79 68 100.00
sp_sax_06 36.6 39.3 37.9 231 211 150 100.00
sp_sax_07 28.6 32.6 30.7 181 163 118 100.00

Average 33.1 36.5 35.6 245 227 149 99.96

Table 6.5: Comparison of EdgeVis variants with PEA.

61

6. Experiments
6.5 Preprocessing

Table 6.6 presents the preprocessing times for all discussed algorithms. The
CDT and M-CDT columns contain the loading of a map and the CDT or
M-CDT preprocessing. The M-CDT takes longer but compared to other
necessary preprocessing, it is negligible. The improvement in query perfor-
mance strongly outweighs the preprocessing cost, so PEA should always be
prioritised over TEA.

The computation of visibility regions for all the edges in the mesh is
costly, resulting in 30× longer preprocessing for EdgeVis. Column E1 shows
the additional time added to preprocessing of edge visibility regions for the
naive version of EdgeVis. The additional variants of EdgeVis need further
preprocessing built on the naive version, which is shown in columns E2, E3.
Preprocessing of EdgeVis takes from a few hundred milliseconds up to a
few seconds, which makes it suitable for applications that can afford longer
preprocessing.

62

.................................... 6.5. Preprocessing

map CDT[ms] M-CDT[ms] edges[ms] E1[ms] E2[ms] E3[ms]

mp_2p_01 22 24 619 171 33 51
mp_2p_02 15 17 490 136 25 39
mp_2p_03 24 27 948 266 45 71
mp_2p_04 12 14 174 52 12 17
mp_4p_01 31 34 979 266 48 75
mp_4p_02 46 50 1969 547 88 139
mp_4p_03 64 70 1111 311 61 94
mp_6p_01 36 41 1095 303 54 83
mp_6p_02 38 42 1313 367 60 95
mp_6p_03 34 38 858 245 44 70
sp_cha_01 16 17 863 237 36 59
sp_cha_02 22 25 918 254 41 65
sp_cha_03 40 44 982 277 51 79
sp_cha_04 54 60 1166 321 63 98

sp_endmaps 69 75 1313 377 72 111
sp_pol_01 6 7 94 26 6 10
sp_pol_02 38 42 745 211 42 64
sp_pol_03 53 59 1754 482 84 132
sp_pol_04 50 55 1516 412 69 112
sp_pol_05 28 32 712 195 37 58
sp_pol_06 71 77 1727 502 86 133
sp_rus_01 22 24 433 122 25 39
sp_rus_02 18 20 184 56 14 21
sp_rus_03 36 40 539 149 32 50
sp_rus_04 41 45 912 256 49 76
sp_rus_05 44 49 983 286 53 81
sp_rus_06 65 72 1149 322 64 99
sp_rus_07 24 27 558 159 30 47
sp_sax_01 16 17 411 115 22 34
sp_sax_02 51 57 1452 415 72 119
sp_sax_03 50 55 968 275 54 84
sp_sax_04 52 59 875 247 51 78
sp_sax_05 12 13 156 46 11 16
sp_sax_06 31 34 823 237 43 66
sp_sax_07 30 33 620 176 35 54

Table 6.6: Table of preprocessing times for all algorithms.

63

6. Experiments
6.6 Robust vs naive orientation

All the experiments above were performed with the use of Shewchuk’s robust
orientation test [She97]. Table 6.7 presents an increase in performance if the
naive variant susceptible to rounding errors is used. All the algorithms have
approximately 20% faster query response if the orientation is computed with
limited precision. The resulting areas for robust and naive orientation tests
are compared for 104 queries, and the difference was always less than 10−12%.
This indicates that using orientation tests with limited precision does not
create errors in common scenarios. If an application can afford the risk of
sporadic errors, orientation should be tested with limited precision to achieve
faster query response.

64

.............................. 6.6. Robust vs naive orientation

map TEA[%] PEA[%] E1[%] E2[%] E3[%]

mp_2p_01 23.45 24.69 21.73 18.79 18.82
mp_2p_02 23.93 25.84 23.45 20.04 22.00
mp_2p_03 22.50 24.09 20.19 17.81 18.52
mp_2p_04 23.48 24.82 24.83 19.71 23.91
mp_4p_01 24.02 23.64 20.74 18.47 18.76
mp_4p_02 23.20 22.79 19.98 17.72 17.94
mp_4p_03 21.95 22.44 20.82 17.96 18.41
mp_6p_01 22.72 22.54 19.87 17.58 18.88
mp_6p_02 22.20 23.06 20.40 17.90 18.40
mp_6p_03 21.64 22.97 21.57 18.15 19.83
sp_cha_01 23.68 26.67 20.35 17.96 18.42
sp_cha_02 22.74 26.61 19.87 17.53 19.25
sp_cha_03 22.67 22.37 20.47 17.06 17.86
sp_cha_04 21.67 23.07 20.68 17.90 18.65

sp_endmaps 22.78 22.38 22.50 19.60 20.98
sp_pol_01 23.09 25.79 27.89 22.95 25.99
sp_pol_02 23.45 22.66 22.63 18.58 20.40
sp_pol_03 22.19 21.99 20.52 17.93 17.72
sp_pol_04 22.33 22.75 19.30 17.28 17.05
sp_pol_05 24.06 24.15 21.39 18.05 19.10
sp_pol_06 23.39 19.37 19.86 16.39 17.41
sp_rus_01 22.77 24.63 22.78 19.33 20.49
sp_rus_02 23.74 24.36 26.49 20.23 22.74
sp_rus_03 22.95 22.43 23.20 18.72 21.41
sp_rus_04 21.79 22.98 20.80 18.18 19.27
sp_rus_05 21.84 20.65 21.05 16.49 18.68
sp_rus_06 20.81 21.10 20.59 17.35 18.68
sp_rus_07 23.80 22.22 21.09 17.80 19.14
sp_sax_01 22.03 25.77 23.04 19.11 21.88
sp_sax_02 22.42 21.52 20.03 17.27 18.03
sp_sax_03 21.99 21.80 21.01 16.95 19.41
sp_sax_04 21.68 22.27 22.12 17.65 19.58
sp_sax_05 23.07 22.90 25.79 20.56 23.85
sp_sax_06 21.29 21.98 20.75 17.85 18.21
sp_sax_07 23.19 23.22 21.61 17.90 19.25

Average 22.70 23.22 21.70 18.31 19.68

Table 6.7: Improvement in query the performance without usage of robust
orientation predicates.

65

66

Chapter 7

Conclussion

This paper focuses on the computation of visibility regions for query points
in 2D polygonal environments. We describe the state-of-the-art triangular
expansion algorithm and use it as the benchmark for new algorithms.

First, we expanded TEA from triangular meshes to polygonal ones im-
proving the query performance by 21%. The polygonal expansion algorithm
presented in the Polyanya project [CHG17] expands visibility region to neigh-
bouring convex polygons until it hits an obstacle. On meshes created with
CDT and M-CDT used in the original project, PEA needs approximately
4× fewer expansion steps than TEA. Further optimization of the PEA ex-
pansion routine can increase the performance more than our 20% improve-
ment. However, it is always bounded by the expansion reduction ratio
(4 × fewer expansions ∼ 75% upper bound for optimization). The first im-
provement of PEA is to apply binary search in the expansion procedure as in
the Polyanya project instead of the current linear search implemented by us.
Another promising path is to find optimal polygonal mesh as J. Mikula did
for TEA [MK22].

Next, we provided the first solution for the computation of visibility regions
from segments. Until now, it had to be computed by sampling the segment
with points which gave an approximate result. Our polygonal expansion
algorithm for edges (PEA-E) gives a precise result, and its query performance
is slower than TEA and PEA only by one order of magnitude. The algorithm
works on a polygonal (or triangular) mesh and expands the visibility region
to neighbouring polygons until an obstacle stops it. Unlike PEA, PEA-E
must look back after every expansion to verify from which part of the original

67

7. Conclussion
segment the expanded visibility region can be observed. PEA-E can be
improved with binary search in forward expansion similarly to PEA. Also,
the current backward visibility goes through all previously passed polygons,
which could be most likely also optimized.

At last, we presented a new algorithm EdgeVis for the computation of
visibility regions for points which uses a precomputed structure of visibility
regions from edges in a mesh. In the first naive proposed form, the algorithm
looks from a point over the closest edges in the mesh and evaluates the
visibility of every vertex in the edge visibility region. It is very similar to
early first sweep algorithms, except the environment is reduced to what is
visible from an edge. The first improved version checks whether the vertex of
the edge visibility region is always visible from the entrance polygon. Vertices
marked as such do not have to be evaluated because they must be visible.
The second improvement proposes online pruning, which can skip sections
of not-visible vertices. The naive version enhanced the query performance
of PEA by 33%, and the improved versions of EdgeVis increased the speed
of the naive version by 7-10%. The algorithm builds on new visibility from
edges and opens the possibility of research for its optimization. The first clear
option is to combine the two proposed improvements. Also, the variant with
online pruning could be expanded with some decisions when the pruning is
worth it. Since the computation of the online boundary is costly, it is not
worth computing for cutting off just a few vertices.

Our best algorithm evaluates query twice as fast as the state-of-the-art
algorithm TEA. We also opened a new section of research for computation of
visibility regions for segments. The results of our work are not only valuable
now, but they also create new challenges for the future research.

68

Appendix A

Bibliography

[Asa85] T. Asano, An efficient algorithm for finding the visibility polygon
for a polygonal region with holes, IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences
68 (1985), 557–559.

[BHH+14] Francisc Bungiu, Michael Hemmer, John Hershberger, Kan Huang,
and Alexander Kröller, Efficient computation of visibility polygons,
arXiv preprint arXiv:1403.3905 (2014).

[CHG17] Michael Cui, Daniel Damir Harabor, and Alban Grastien,
Compromise-free pathfinding on a navigation mesh, Proceedings
of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, 2017, pp. 496–502.

[DB79] L. S. Davis and M. L. Benedikt, Computational models of space:
Isovists and isovist fields, Computer Graphics and Image Process-
ing 11(1), 49–72 (1979) (1979).

[EA81] H. ElGindy and D. Avis, A linear algorithm for computing the
visibility polygon from a point, Journal of Algorithms (1981).

[Gho07] S. K. Ghosh, Visibility algorithms in the plane, Cambridge Uni-
versity Press (2007).

[HHJ22] D. D. Harabor, R. Hechenberger, and T. Jahn, Benchmarks for
pathfinding search: Iron harvest, Proceedings of the Fifteenth
International Symposium on Combinatorial Search (SoCS 2022)
(2022).

69

A. Bibliography.....................................
[HM95] P. J. Heffernan and J. S. B. Mitchell, An optimal algorithm for

computing visibility in the plane, SIAM Journal on Computing 24
(1995).

[IK09] Rajasekhar Inkulu and Sanjiv Kapoor, Visibility queries in a
polygonal region, Computational Geometry 42 (2009), no. 9, 852–
864.

[JS87] B. Joe and R. B. Simpson, Corrections to lee’s visibility polygon
algorithm, BIT 27(4) (1987).

[Lee83] D. T. Lee, Visibility of a simple polygon, Computer Vision, Graph-
ics, and Image Processing (1983).

[Lee19] C. Lee, Fade2d library for constrained delaunay triangulation,
https://github.com/Lee0326/Fade2D, March 2019.

[MK22] Jan Mikula and Miroslav Kulich, Triangular Expansion Revis-
ited: Which Triangulation Is The Best?, Proceedings of the 19th
International Conference on Informatics in Control, Automation
and Robotics - ICINCO, INSTICC, SCITEPRESS - Science and
Technology Publications, 2022, pp. 313–319.

[She97] Jonathan Richard Shewchuk, Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predicates, Discrete &
Computational Geometry 18 (1997), no. 3, 305–363.

70

https://github.com/Lee0326/Fade2D

Appendix B

Attached files

EdgeVis (attachment.zip)
paper compressed .zip file with latex source of the thesis

dependencies maps from Iron Harvest dataset
source all the code - structure described in README.md
scripts python script for automatic experiments

README.md file with a short description of the project
CMakeLists.txt root file for CMake project

Table B.1: Table of attached folders.

71

72

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

465842 Personal ID number: Rosol Jakub Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

Cybernetics and Robotics Branch of study:

II. Master’s thesis details

Master’s thesis title in English:

Fast Computation of Visibility Polygons

Master’s thesis title in Czech:

Rychlý výpočet polygonu viditelnosti

Guidelines:

1. Get acquainted with the Polyanya library (https://bitbucket.org/mlcui1/polyanya/src/master/) for an efficient path finding.
2. Modify the library for computation of a visibility polygon from a point on a polygonal mesh.
3. Design and realize an algorithm for computation of a visibility polygon from an edge.
4. Design and realize an algorithm which finds a visibility polygon from a point based on a visibility polygon from an edge.
5. Evaluate experimentally properties of the extended algorithm. Describe and discuss the obtained results.

Bibliography / sources:

[1] Shen, B.; Cheema, M. A.; Harabor, D.; and Stuckey, P. J. 2020a. Euclidean Pathfinding with Compressed Path
Databases. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020,
4229–4235
[2] Cui, M.; Harabor, D. D.; and Grastien, A. 2017. Compromise-free Pathfinding on a Navigation Mesh. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017, 496–502.
[3] Asano, T. (1985). An efficient algorithm for finding the visibility polygon for a polygonal region with holes. IEICE
TRANSACTIONS (1976-1990), 68(9), 557-559.
[4] Bungiu, F., Hemmer, M., Hershberger, J., Huang, K., & Kröller, A. (2014). Efficient computation of visibility polygons.
arXi preprint arXiv:1403.3905.

Name and workplace of master’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D. Intelligent and Mobile Robotics CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 10.01.2023 Date of master’s thesis assignment: 13.09.2022

Assignment valid until: 19.02.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
RNDr. Miroslav Kulich, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

	Introduction
	Problem definition
	Related work

	Triangular expansion algorithm
	Motivation
	Definition
	Methodology
	Initial edges
	New segments

	Summary

	Polygonal expansion algorithm
	Motivation
	New expandable segments
	Implementation

	Summary

	Visibility from segment
	Motivation
	Definition
	PEA-E introduction
	Initial edges
	Forward expansion
	Visibility boundaries
	Implementation

	Backward visibility
	Computing root
	Implementation

	Numerical stability
	Stable forward expansion
	Stable root computation

	Summary

	EdgeVis
	Motivation
	Bounding by edge visibility
	Basic structure for EdgeVis
	EdgeVis 1: Naive
	EdgeVis 2: Always Visible
	EdgeVis 3: Online Pruning
	Summary

	Experiments
	Iron Harvest maps
	TEA vs. PEA
	Edge visibility regions
	EdgeVis performance
	Preprocessing
	Robust vs naive orientation

	Conclussion
	Bibliography
	Attached files
	Project Specification

