
Title:

Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

Scalable Gaussian processes for surrogate modelling in
Bayesian optimization
Bc. Iveta Šárfyová
Ing. Jiří Vošmik
Informatics
Knowledge Engineering
Department of Applied Mathematics
until the end of summer semester 2022/2023

Instructions

Bayesian optimization is a global black-box optimization method suitable for expensive-
to-evaluate objective functions. Gaussian processes (GP) are commonly used as a
surrogate model in a Bayesian optimization framework, where their probabilistic nature
and flexibility are highly desirable, but their cubic training time complexity limits their
deployment to small datasets.

The goal of this thesis is to research scalable Gaussian process architectures and
evaluate their usability in Bayesian optimization tasks with large datasets.
1) Conduct a survey of the state-of-the-art scalable GPs for regression.
2) Experimentally evaluate the predictive performance and computational complexity of
selected scalable GP architectures trained on several publicly available datasets.
3) Experimentally evaluate the performance of selected GP architectures in the context
of simulated Bayesian optimization.

Electronically approved by Ing. Karel Klouda, Ph.D. on 3 December 2021 in Prague.

Master’s thesis

Scalable Gaussian Processes for surrogate
modelling in Bayesian optimization

Bc. Iveta Šárfyová

Department of Applied Mathematics
Supervisor: Ing. Jiří Vošmik

December 21, 2022

Acknowledgements

My sincere appreciation goes out to Ing. Jiří Vošmik for being an incredible
teacher, mentor and friend. Your knowledge, enthusiasm and patience have
been a great source of motivation throughout this journey. I’m grateful for
the guidance and advice you gave me.

Also, I want to thank Tomáš for his unwavering support and encouragement
every step of the way. I appreciate you believing in me, even when I struggled.
I’m thankful that you pushed me, made me smile and helped me get through
challenges when I needed it.

Furthermore, my heartfelt thanks to my family, friends and colleagues. You
bring so much joy and laughter to my life. Your unique personalities and
senses of humour never fail to bring a smile to my face. More importantly,
you make my life brighter and more colourful, even during cloudy days. I
cannot thank you enough.

Special thanks go to all the lecturers and friends participating in Gaussian
Process and Uncertainty Quantification Summer School. I value the effort
put into preparing the presentations and all the insightful discussions that
helped me to further grasp the topic.

Lastly, I would like to thank all the people in my life who have shared their
wisdom and ignited my passion for learning. I’m grateful for all the invaluable
lessons and knowledge you have passed on to me. Thanks for helping me grow!

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.
I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on December 21, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Iveta Šárfyová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Šárfyová, Iveta. Scalable Gaussian Processes for surrogate modelling in Bayesian
optimization. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2022.

Abstrakt

Bayesovská optimalizace je globální optimalizační metoda vhodná pro hledání
extrémů black-box účelových funkcí drahých na vyhodnocení. Jako modely pro
aproximaci takových funkcí se často používají Gaussovské procesy. Jejich ku-
bická časová složitost však omezuje jejich nasazení na aplikace v režimech s
malým počtem dat. Tato práce poskytuje přehled moderních škálovatelných
Gaussových procesů pro regresi. Experimenty provedené v rámci této práce
se zabývají úlohami regrese a bayesovské optimalizace, přičemž v obou přípa-
dech se využívá několik vybraných modelů založených na Gaussových proce-
sech. Vyhodnocení se provádí pomocí více metrik, z nichž některé jsou zvláště
vhodné pro pravděpodobnostní modely. Naše výsledky naznačují, že některé
z modelů konzistentně překonávají ostatní v obou úkolech.

Klíčová slova gaussovské procesy, black-box optimalizace, bayesovská op-
timalizace, regrese, velké datasety

vii

Abstract

Bayesian optimisation is a global optimisation method suitable for finding ex-
trema of expensive-to-evaluate black-box objective functions. Gaussian Pro-
cesses are frequently used as models for approximating such functions. How-
ever, their cubic time complexity limits their deployment to applications in
small-data regimes. This thesis provides an overview of state-of-the-art scal-
able Gaussian Processes for regression. The experiments performed within this
work deal with tasks of regression and Bayesian optimisation, both utilising
several selected Gaussian Process models. Evaluation is done using multiple
metrics, some of which are particularly appropriate for probabilistic models.
Our results suggest that the same few models consistently outperform the
others in both tasks.

Keywords gaussian processes, black-box optimisation, bayesian optimisa-
tion, regression, large datasets

viii

Contents

Introduction 1

1 Bayesian Optimisation 3
1.1 Surrogate Models . 8
1.2 Acquisition Functions . 10

2 Gaussian Process Regression 15
2.1 Kernels . 19

3 State-of-the-art Scalable GPs 25
3.1 Taxonomy of Scalable GPs . 25

3.1.1 Local Approximations 26
3.1.2 Global Approximations 27

3.2 Global Sparse Approximate Methods 27
3.2.1 FITC . 29
3.2.2 VFE . 29
3.2.3 Differences between FITC and VFE 31

3.3 Recent Developments and Extensions 32
3.3.1 SVGP . 32
3.3.2 SSGP . 33
3.3.3 OIPS . 35
3.3.4 PIPS . 36

3.4 Other Research Directions . 39

4 Experiments 41
4.1 Datasets . 42
4.2 Technologies . 43
4.3 Regression Task . 44

4.3.1 Design of Experiments 44

ix

4.3.2 Evaluation . 51
4.3.3 Results and Discussion 52

4.4 Bayesian Optimisation Task . 60
4.4.1 Design of Experiments 61
4.4.2 Evaluation . 63
4.4.3 Results and Discussion 63

Conclusion 69

Bibliography 73

A Acronyms 79

B Supplementary Material to SSGP 81
B.1 Prediction . 81
B.2 Step-by-step from Theoretical to Practical Bound 82

C Experimental Results 85

D Best GP Hyperparameters 87

E Contents of enclosed SD card 91

x

List of Figures

1.1 Illustration of gradient-based optimisation. 4
1.2 Illustration of Bayesian optimisation. 7
1.3 Gaussian Process posterior of an objective function and three types

of acquisition functions with multiple parameter values. 12

2.1 Gaussian Process fit on noisy data with additive Gaussian noise
term (top) and without it (bottom). 17

2.2 Gaussian Process fit and samples from its posterior. 18
2.3 Effects of different length scales demonstrated using SE kernel. . . 21
2.4 Effects of different length scales on the smoothness of samples from

Gaussian Process using SE kernel. 22
2.5 Visual comparison of SE (a), Matérn32 (b) and Matérn52 (c) ker-

nels. Image was generated using unit length scale for every kernel. 22

3.1 An overview of scalable GPs as presented in [13]. 26
3.2 Visual comparison of variance using FITC (a) and VFE (b). 31
3.3 Visualisation of the OIPS decision process on adding a new sample

to the inducing set. 35
3.4 The PIPS prediction, the initial inducing set and the final inducing

set visualised. 38

4.1 Schematically summarised flow of experiments for Pyro models. . . 46
4.2 A visual comparison of the mean SMSE values obtained with the

best-performing VFE and FITC models. 54
4.3 Comparison of all SSGP and OIPS models’ performance after being

trained for one epoch. 55
4.4 Comparison of the best-performing OIPS model with OIPS models

with the same settings except the batch size. 56
4.5 The RMSE values measured for PIPS models during the fine-tuning

experiments grouped by the α value. 57

xi

4.6 The RMSE values measured for PIPS models during the fine-tuning
experiments grouped by the prior probability of inclusion. 58

4.7 Comparison of GP models in terms of trade-off between prediction
quality and training time for the kin40k dataset. 59

4.8 Comparison of GP models in terms of trade-off between prediction
quality and training time for the 3D Road Network dataset. 59

4.9 Comparison of GP models in terms of trade-off between prediction
quality and training time for the Airline dataset. 60

4.10 Function optimised in Bayesian optimisation task within a con-
strained domain. 62

4.11 A visualisation showing the difference in the number of evaluations
required for Bayesian optimisation using the employed GP models. 64

4.12 A visualisation showing the variation in run times for Bayesian
optimization using the employed GP models. 64

4.13 A visualisation of three iterations of the Bayesian optimisation. . . 65
4.14 Comparison of different sampling strategies. 66
4.15 Comparison of different acquisition functions. 66

xii

List of Tables

4.1 Categorisation of the Gaussian Process models based on frameworks. 43
4.2 Number of data samples in training, validation and test set used

in fine-tuning experiments. 44
4.3 Mean metrics values obtained by repeated training and evaluation

of the best models on the kin40k dataset. 53
4.4 Mean metrics values obtained by repeated training and evaluation

of the best models on the 3D Road Network dataset. 53
4.5 Mean metrics values obtained by repeated training and evaluation

of the best models on the Airline dataset. 53
4.6 Minimum time and number of iterations required to find an ade-

quate solution for the most successful runs of the Bayesian optimi-
sation within individual models. 63

C.1 Mean and standard deviation metrics values obtained by repeated
training and evaluation of the best models on the kin40k dataset. . 85

C.2 Mean and standard deviation metrics values obtained by repeated
training and evaluation of the best models on the 3D Road Network
dataset. 85

C.3 Mean and standard deviation metrics values obtained by repeated
training and evaluation of the best models on the Airline dataset. . 86

D.1 Hyperparameters of standard GP models used for final repeated
training and evaluation on each dataset. 87

D.2 Hyperparameters of VFE models used for final repeated training
and evaluation on each dataset. 87

D.3 Hyperparameters of FITC models used for final repeated training
and evaluation on each dataset. 88

D.4 Hyperparameters of SVGP models used for final repeated training
and evaluation on each dataset. 88

xiii

LIST OF TABLES

D.5 Hyperparameters of SVGP* models used for final repeated training
and evaluation on each dataset. 88

D.6 Hyperparameters of SSGP models used for final repeated training
and evaluation on each dataset. 88

D.7 Hyperparameters of OIPS models used for final repeated training
and evaluation on each dataset. 89

D.8 Hyperparameters of PIPS models used for final repeated training
and evaluation on each dataset. 89

xiv

Introduction

Optimisation of nontrivial functions has been vigorously studied for decades
and is still a matter of interest and active research. In real-life scenarios, we
often deal with problems including an almost or entirely unknown objective
function. The sought optimum often represents a perfect design or parameter
choice that will be later applied in some procedure, system or machine. Since
the perfect setup is difficult to reach or come close to due to the nature of
the function, we typically need to test out numerous possible input values.
However, evaluating the function that typically corresponds to or describes
some procedure can be expensive or even destructive.

For instance, tuning the software used daily by thousands of users inappropri-
ately can lead to a loss of money and customers. Randomly selecting values
for testing is particularly unwise because it might cause severe issues, such as
hindering its functionality or leading to an unpleasant user experience. These
outcomes might be very frustrating to users, which could discourage them
from using the product in the future. In the worst case scenario, suffering
from particular software malfunctions may lead to catastrophic consequences.
In critical areas such as healthcare, such a defect or failure of medical devices
could lead to losing users due to literally fatal outcomes.

Optimisation directly affecting living organisms requires special attention and
diligent care due to moral and ethical questions. Many products from the phar-
maceutical industry are tested on animals or people before being released to
the general population and thus demand attentive oversight. Especially drugs
or vaccines ought to be monitored and developed enough not to cause any side
effects at that point. Conducting unnecessary experiments with pharmaceu-
ticals composed of randomly chosen ingredients is considered unacceptable.
Moreover, the number of possible combinations in the search space grows
exponentially with the number of ingredients, which generally leads to an in-
tractable exaggeration of the problem.

1

Introduction

One of the renowned techniques for solving such complex tasks is Bayesian
optimisation, which provides tools for estimating the optimised system or pro-
cedure and approximately simulating its evaluation. There are several models
that are suitable to be used as an estimate of the function. One of the mod-
els that has gained popularity in recent years is the Gaussian Process model.
Gaussian Processes are generally very powerful in terms of providing predic-
tions and expressing uncertainty in these predictions but come short when
working with large data. This limitation has led to extensive research aimed
at developing scalable Gaussian Processes.

This work focuses on research and application of scalable Gaussian Processes
in the tasks of regression and Bayesian optimisation with large datasets. The
thesis is organised into five chapters. First, Chapter 1 describes the core con-
cepts of Bayesian optimisation. Next, Chapter 2 discusses the fundamentals
of Gaussian Process regression. A survey of the state-of-the-art scalable Gaus-
sian Processes can be found in Chapter 3. The experimental part of the thesis
is divided into two parts, both utilising several selected Gaussian Process mod-
els. The first part is dedicated to the regression task, which aims to evaluate
and compare the models on multiple datasets based on their performance and
complexity. The second part is devoted to evaluating the performance of the
models in simulated Bayesian optimisation. The design of the experiments,
evaluation, obtained results and the discussion of the results are presented in
Chapter 4 for both of the tasks. Finally, the last chapter is devoted to the
contribution of this thesis and possible future work directions.

2

Chapter 1
Bayesian Optimisation

Optimisation covers a mathematical field with a broad spectrum of applica-
tions ranging from academic to industrial domains. In general, optimisation is
a process directed towards minimising or maximising an objective function f .
The procedure of finding the location x∗ of the function’s optimum depends
largely on the function’s characteristics. There is an immense number of opti-
misation techniques that can be categorised according to various criteria, and
the function’s properties are one of them. One of the crucial distinctions is
whether the function has a single or multiple optima. Another possibility of
classifying the optimisation problems is based on the function’s differentiabil-
ity.

In the simplest case, we have the closed-form expression of the objective func-
tion, or we at least know it is convex or cheap to evaluate [1]. If the objec-
tive function is convex, finding any local maximum is equivalent to finding a
global maximum. The same applies to searching for the minimum of concave
functions. Convex and concave functions thus belong to a group of optimi-
sation problems with a single optimum. For this scenario, we can employ
gradient-based algorithms such as hill climbing algorithm, which is an iter-
ative method well-suited for finding extrema in such functions. An example
run of a gradient-based algorithm searching for global maximum is illustrated
in Figure 1.1.

However, we might want to utilise different approaches for optimising over
functions with more than one extrema since the hill climbing algorithm is
generally known for being prone to getting stuck in local optima. Which one
of the multiple optima is found depends on the part of the search space from
which the algorithm starts. One possibility to alleviate this problem is to use
hill climbing with restarts, where the algorithm repeatedly starts searching
from various initial locations.

3

1. Bayesian Optimisation

Figure 1.1: Illustration of gradient-based optimisation.

Another option for optimising a function is to use its differentiability. This
approach works if we have access to the derivatives of the function or if we
can estimate them. One way to find the optimal solution using the derivatives
is by analytically solving for the maximum, minimum, or saddle points of the
function. This involves finding the roots of the first derivative, also known
as the critical points, and then determining their nature using the second
derivative. This approach is different from Newton’s method, which involves
an iterative process of updating an initial guess of the optimal solution based
on the gradient of the function at that point. The first approach requires the
function to be twice differentiable, while the second approach only requires it
to be once differentiable in its basic variant.

In many real-world cases, the objective function’s properties are unclear, or
there is only a little information available about the function’s nature. We at-
tempt to find the absolute optimum or come to its immediate proximity while
being aware of possibly having multiple local optima and being restricted to
an input domain. Generally, such a task is called global optimisation. This
category encompasses extremely difficult optimisation tasks. Moreover, the
objective function can be completely unknown, which makes the task more
challenging in practice. When the exact mathematical form is unavailable, it
is often considered to be a black-box optimisation problem.

In cases with a cheap objective function evaluation, there is no need for com-
plex optimisation strategies and the usage of methods that rely almost solely
on random sampling would be sufficient, e.g. Monte Carlo methods. However,
in many real-world situations, any unnecessary sampling is highly undesirable
due to its cost. Therefore, we try to minimise the number of objective function
evaluations. There are several possible ways to interpret the evaluation cost
and why it concerns us when it is expensive in a particular context.

4

One of the common problems that can be encountered is a large computational
demand, which is expensive in regard to both money and time. Wasting money
or resources can also be an issue in cases when each evaluation might have a
destructive effect on the subject of interest due to reasons related to external
factors or exposure to various environmental conditions.

Last but not least, there is a moral cost of repeated evaluations. When a
human or an animal interaction is needed in order to obtain the results, per-
forming as few evaluations as possible can be desired from a moral point of
view with the goal of mitigating possible harmful effects of the evaluations.

To sum up, considering that the evaluations might often be costly but are
needed to learn the objective function, a necessity for an efficient optimisation
strategy emerges. This can be carried out by guided and automated sampling
in the input space.

The appropriate choice of an optimisation strategy for a black-box optimi-
sation is a problem that has been addressed for several decades and has led
to the development of numerous methods. We will distinguish between three
main black-box optimisation types [2]:

• metaheuristics,

• direct search,

• model-based methods.

Each group represents a different strategy for guiding the search for the opti-
mum. Since there is no consensus in classifying the optimisation methods in
categories, any finer division of the methods will be omitted.

Metaheuristics encompass mainly randomised and evolutionary algorithms,
such as simulated annealing or genetic algorithms. It can be demonstrated
that they are often unable to converge near the global optimum and usually
need a significant amount of iterations to find a solution of acceptable quality
[2, 3]. This can be costly or impractical, particularly when evaluations take a
long time. For instance, simulations can be computationally intractable, es-
pecially when a single evaluation takes days or even more. As a consequence
of randomness, there is a chance of repeatedly sampling from the same loca-
tions, which is undesirable given the possibility of being stuck in a suboptimal
part of the search space. On the other hand, metaheuristic methods do not
need to rely on assumptions about the function’s properties and are usually
parallelisable.

5

1. Bayesian Optimisation

The second black-box optimisation type comprises deterministic algorithms.
Unlike the previously mentioned category, direct search methods implement
a sequential evaluation approach according to a specific deterministic strat-
egy. In each step, the next candidate’s selection is conditioned on all earlier
observations. Consequently, in each iteration, the expected improvement is
likely to be more significant compared to using metaheuristics. As a result
of often finding a better solution in fewer iterations, possibly also meaning a
shorter amount of time [2, 4], the deterministic algorithms typically outper-
form metaheuristics. Nevertheless, each iteration can be quite expensive since
we still evaluate the original objective function f directly.

Model-based methods also perform sampling of the evaluation points. The se-
lection of points is based on the estimated objective function’s values obtained
by building an approximation model that indicates what values to expect. In
scientific literature, this model is typically referred to as a surrogate since it
substitutes the unknown objective function. In comparison with the two other
types, model-based optimisation typically requires fewer evaluations to con-
verge [2], and computations are not performed using the objective function f .
This property allows us to use them in the case of expensive evaluations, and
thus they can be applied to a broader spectrum of real-life scenarios.

Bayesian optimisation belongs among the most popular model-based approaches
[5, 6, 7]. By its nature, Bayesian methods depend on a prior distribution,
which means that the way new information is incorporated into a model is
influenced by its initial prior [1]. In other words, a prior represents the basis
on which the method builds as it progresses.

In the Bayesian optimisation framework, the prior over the possible objective
functions is defined by a surrogate model. The surrogate model is sequentially
updated in the light of new data. The more data we observe, the more adrift
we can get from our prior beliefs. As a result of combining prior beliefs with
the data, the surrogate model describes the posterior over possible objective
functions f . At the same time, the uncertainty in function’s values at loca-
tions close to the observed data is often reduced, so the approximation of the
objective function is likely to be more accurate.

Since having a suitable prior is essential, the surrogate model should corre-
spond to our initial beliefs about the function and its plausible characteristics.
Even though the closed-form expression of the objective function is unknown,
we typically have certain expectations, and we can make some assumptions,
e.g. based on domain knowledge. Nevertheless, the selection of the surrogate
model and its subsequent design, including adjustments of hyperparameters,
should be conducted very thoroughly.

6

Figure 1.2: Illustration of Bayesian optimisation. The figure shows a Gaussian
Process mean prediction along with its uncertainty (blue) of a true objective
function (dotted green) over two iterations of Bayesian optimisation. Each
iteration is supplied with a visualised acquisition function (grey) and its max-
imum value (orange).

There are several ways of adjusting a model with new observations. Typi-
cally, a surrogate model employed in Bayesian optimisation is probabilistic
and gets adjusted via Bayesian posterior updating [5, 8]. If the model is non-
probabilistic, e.g. a random forest, the model can be retrained with the new
data points added to data obtained from previous iterations. Specific surro-
gate models will be further discussed in Section 1.1.

The acquisition function is a key component of the Bayesian optimisation
framework. Its role is to choose the next point for evaluation by selecting its
maximum value. Figure 1.2 shows two iterations of Bayesian optimisation on
a 1D dataset.

An acquisition function aims to balance exploration and exploitation. It seeks
to sample from locations where the surrogate model has high uncertainty (ex-
ploration) and where it predicts values that are likely to improve over the
current best solution (exploitation) [1]. This trade-off between exploration
and exploitation allows for an efficient search for the global optimum rather
than conducting a greedy search.

7

1. Bayesian Optimisation

The utilisation of the acquisition function pays off only if its cheaper to eval-
uate than the original objective function f . Another reason to opt for a cheap
acquisition function is that there is often a need to evaluate a vast number
of candidate points [5]. The examples of acquisition functions used within
Bayesian optimisation will be presented in Section 1.2.

In conclusion, the Bayesian optimisation framework is a robust mechanism
with respect to collecting data and modelling functions effectively, though it
comes with many challenges. There are numerous decisions that need to be
made to construct a framework appropriate for a particular problem. As a first
step, it is required to select the two key components, an acquisition function
and a surrogate model. Additionally, both components need to be tuned,
which might often require extensive search or a certain amount of expertise [6].
In the acquisition function, the trade-off between exploration and exploitation
should be adjusted so that we do not end up sampling only from local optima
or keep exploring the input domain without improving for many iterations
[1]. As implied before, the importance of the prior in Bayesian optimisation
cannot be understated, making the selection of a suitable surrogate model
paramount. A significant focus should also be put on designing and tuning its
hyperparameters.

1.1 Surrogate Models
In this section, we discuss the use of surrogate models within Bayesian op-
timisation. In cases when the underlying objective function is unknown, its
approximation is necessary.

The surrogate model represents the prior beliefs about the form, properties,
and possible function values of the objective function. Observed values are
then used to refine the surrogate model sequentially, which should lead to
more accurate estimates of the objective function values. To find the next
candidate points for evaluation, the surrogate model is coupled with an acqui-
sition function. The model is updated during the optimisation process, and
the points sampled for the evaluation should become more informative and
converge to locations near the optimum.

As mentioned above, we can only estimate the objective function’s values or
make educated guesses rather than determine their true values. Modelling the
exact objective function might be an impossible task in general, considering
the uncertainty in the data itself. In reality, it is common for the observed
data to be noisy due to several reasons, such as deviations in measurements
or varying conditions during the data collection process. Being aware of pos-

8

1.1. Surrogate Models

sible flaws present in the data, it is desirable to express the uncertainty in the
obtained predictions.

Several frameworks offer the possibility to yield the expected values along
with the uncertainty in these estimates. According to [5, 7, 9], typical choices
for surrogate models include probabilistic regression models such as Gaussian
Processes (GP) [10], Tree-Parzen Estimators (TPE) [9], and non-probabilistic
Random Forests (RF) [11]. Although it is generally more common to utilise
models with probabilistic nature due to their ability to handle uncertainty,
properly adjusted non-probabilistic models are also a viable option.

In recent years, there has been a trend in employing GPs to model the ob-
jective function [1, 6, 12]. GPs are considered to have superior predictive
performance in the sense of estimated predictions, but especially in the mod-
elled uncertainty measure around these estimates [10]. On the other hand,
capturing the predictive distribution when working with a large amount of
data is associated with significant computational requirements. The method
calculates a matrix inversion, which requires O(n3) time for n data points.

Existing state-of-the-art algorithms address this limitation and modify the
standard GP model in order to reduce the computational burden. Such scal-
able models make approximate calculations with the intention of maintaining
the predictive performance of the standard GP [13]. A detailed description of
model approximation types is provided in Chapter 3.

The Tree-Parzen estimator [9] is a probabilistic model that, thanks to its tree
structure, can handle both discrete and categorical variables. In contrast to
the traditional approach employed in Bayesian optimisation, which models the
probability p(y|x) of the observed value y given the data point x, TPE mod-
els p(x|y) instead. In other words, rather than being interested in capturing
the posterior, we model the probability of the data point given the observation.

To model p(x|y), TPE uses two probability distributions that differ based on
the quality of observations. The observations are split based on a percentile α
(typically set to 15% [12]), resulting in the modelling of the best observations
p(x|y<α) and the rest p(x|y≥α) separately. This allows the TPE algorithm
to focus on the most promising observations, leading to a more efficient opti-
misation. Scalability is not an issue as the algorithm scales linearly with the
number of data points.

Another alternative to avoid scalability issues is to use an RF model. RF is an
ensemble of decision trees belonging to bagging methods, which means that
the models are trained independently without influencing each other. Each
decision tree is trained on a set where each data point is a random sample with

9

1. Bayesian Optimisation

a replacement from the training data. Thanks to this property, the training
process can also be easily parallelised. Fitting the weak learners concurrently
would provide us with faster training but the same performance as training
them one by one, given that trees do not affect each other. The predictions
are obtained by averaging the individual predictions made by weak learners.
However, information about the model’s confidence in these predictions is not
provided. Since the ability of the surrogate model to express the uncertainty
is needed, we must estimate it. The usual approach used to obtain the uncer-
tainty is using the variance of its individual trees predictions [12].

Due to the tree structure of ensemble models, RF can also handle discrete
variables, while GPs are more suitable to work with continuous variables [7].
Another consequence of building the models based on multiple consecutive
hierarchical splits is the ability to handle categorical variables [7]. Every node
in a tree represents a decision rule based on a specific feature selected from
random subsets of the features. The data point that ends up in a node of
the deeper level is already known to be within some range in several attribute
dimensions. Random sampling subsets of data for individual trees and using
only random subsets of features in constructing the decision rule for every
node helps prevent overfitting and handle high-dimensional data, respectively
[5]. Another advantage of RFs is that their time complexity grows linearly
with data points, while GPs scale cubically.

Nevertheless, when it comes to predicting the data points far from the pre-
viously obtained observations, we may observe an undesirable behaviour [5].
Individual decision trees can often output similar predictions, resulting in
small both variance and uncertainty. Although it may seem that the model
is confident in the predicted values, the small uncertainty might be caused by
a lack of ability to handle parts of the search space absent in training data.

1.2 Acquisition Functions
The acquisition function is the mechanism for iteratively selecting the points
to be used by the surrogate model. There are several strategies for utilising
the surrogate model to sample effectively. Generally, acquisition functions
are designed to trade-off areas of search space where the predictions are un-
certain and more promising areas, increasing the possibility to improve over
the current best solution. Considering the maximisation task, the mentioned
areas correspond to locations with large surrogate variance and places with
high surrogate mean, respectively [1]. With regard to the needs of balancing
exploration and exploitation, several functions have been invented and em-
ployed for this purpose.

10

1.2. Acquisition Functions

The upper confidence bound (UCB) [14] chooses the following candidate x for
the evaluation according to the current surrogate model. The selected candi-
date of this function is picked based on the maximum of the upper confidence
bound composed of mean and standard deviations

UCB(x) = µ(x) + κσ(x),

where κ is a non-negative value representing the number of standard devia-
tions that will be used. Mean µ(x) and standard deviation σ(x) at point x
are obtained from the surrogate model’s prediction and its uncertainty. Anal-
ogously, in the case of the minimisation task, the addition in the equation is
replaced with subtraction, and the acquisition function poses in the role of a
lower confidence bound.

The probability of improvement (PI) [15] takes the best observed value τ and
measures the likelihood that a new point evaluation will be higher.

PI(x) = Φ
(

µ(x) − τ − ξ

σ(x)

)
,

where Φ is the standard normal cumulative distribution function and ξ ≥ 0
is a trade-off parameter controlling the degree of exploration. The limitation
of the PI function is that it neglects the magnitude of improvement, so all
possible improvements are, in this regard, equally good [5].

Since the amount by which we can improve over the current best solution
τ can be very different, we want to prefer more considerable improvements.
This problem can be addressed using the expected improvement (EI) [16]
acquisition function.

EI(x) = (µ(x) − τ − ξ)Φ
(

µ(x) − τ − ξ

σ(x)

)
+ σ(x)ϕ

(
µ(x) − τ − ξ

σ(x)

)
,

where ϕ is the standard normal probability density function. The formula is
used as defined except for the case when σ(x) = 0 for which we set EI(x) = 0.
Both PI and EI determine the next candidate point x according to their max-
imum values. Visual comparison of UCB, PI and EI is shown in Figure 1.3.

Instead of maximising the amount of improvement over the current best solu-
tion, we can aim to maximise the information about the maximum x∗ of the
function. This approach is presented by the entropy search (ES) [17] acquisi-
tion function, which attempts to improve the information about the maximum
by minimising the uncertainty in its position. Given n observed data points
D = {(xi, yi)}n

i=1 and some arbitrary point x, we measure the reduction in
entropy after considering this point as a new measurement. The point selected

11

1. Bayesian Optimisation

Figure 1.3: Figure shows a Gaussian Process posterior (blue) of an objective
function (dotted green) and three types of acquisition function with multiple
parameter values. The maximum value of each acquisition function, which
corresponds to the next point to be sampled during Bayesian optimisation, is
visualised with the orange triangle.

for the next evaluation indicates the point with the largest information gain
computed as:

ES(x, D) = H(x⋆|D) − Ey|D,xH(x⋆|D ∪ {(x, y)}),

where the left term stands for the entropy given the available data D and
the right term represents the expected entropy with the arbitrary point x in
addition to D. This expectation is included with regards to the entire set of
values f(x), which could be possibly obtained after evaluating the point x.
Since we evaluate numerous points x and for each consider its every feasible
value f(x), ES acquisition function can be relatively costly.

There are also randomised acquisition functions such as Thompson sampling
[18]. This acquisition strategy samples a function from the posterior distribu-
tion after the surrogate model fits all the observations available so far. The
function’s maximum is used as the next evaluation point.

12

1.2. Acquisition Functions

The acquisition functions mentioned above are commonly used and represent
only a fraction of possible acquisition strategies. The choice of appropriate
acquisition function might be challenging and hard to determine even after
adapting and comparing several acquisition functions [5]. Therefore, instead
of using a single acquisition function during the whole optimisation process,
the acquisition function can be varied, e.g. changed every fixed number of
iterations.

There is also a possibility of using multiple acquisition functions simultane-
ously. One option is adopting a multi-armed bandit strategy and selecting
from a pool of acquisition functions at each iteration [8, 19]. Another alterna-
tive is to use numerous acquisition functions to obtain candidate points and
randomly sample the next point for the evaluation [20]. Multiple acquisition
function strategies have proven to be on par with or even better perform-
ing than the standard approach, but tend to have higher computational time
requirements [5].

13

Chapter 2
Gaussian Process Regression

Gaussian Process (GP) models are suitable for supervised learning tasks, one
of which is the regression problem [21, 22]. A GP can be interpreted as
a probability distribution over all possible functions that fit a set of data
points. More formally, GP is defined as a type of a stochastic process - a
collection of random variables, such that any finite number of which have a
joint (multivariate) Gaussian distribution [22]. Respecting the notation used
in [10], a GP model is given as:

f(x) ∼ GP(m(x), k(x, x′)),

where the parameters are to be interpreted as:

m(x) = E[f(x)],
k(x, x′) = E

[
(f(x) − m(x))(f(x′) − m(x′))

]
.

Hence, a GP is fully determined by its mean function m(x) and covariance
function k(x, x′), where x is a vector of real numbers from a D dimensional
space RD. It is important to note that even though GP is comparable to a
function, the output for any input x is not a single scalar but rather a mean
and variance instead. The two values specify the Gaussian distribution over
the possible function values at input point x.

The mean function m(x) represents the expected value of the distribution over
functions at point x. The mean of the prior is typically set to zero to conduct
the computations related to the inference at a lower cost by using only the
covariance function [22]. To centre the observed function values around zero,
we can subtract their prior mean from all observations before fitting the model
and add it back to the predicted values. Setting the prior to zero at the initial
stage of modelling is not a limitation but rather a matter of convenience, as
the mean of the posterior process is not constrained to any value.

15

2. Gaussian Process Regression

The choice of the covariance function reflects the assumptions about the
points’ influence level on each other, given the distance between the points
and the likely shape of the modelled function. The prior beliefs encoded
within the specific selection of the covariance function limit the distribution
over possible functions and thus imply the family of functions [10]. Since the
covariance function k(x, x′) models the dependency of two input points, it is
crucial in GP regression and will be further discussed in the following Sec-
tion 2.1.

In summary, the entire assumptions about the functions that would likely
fit the data are incorporated into the GP model via a prior distribution over
functions determined by chosen mean and, more importantly, covariance func-
tion. Initially, the prior knowledge about the modelled function is provided
by the set of n available observations, also viewed as the training data X.
Covariances between all training points are written in the covariance matrix
K(X, X) as follows:

K(X, X) =

 k(x1, x1) . . . k(x1, xn)
...

k(xn, x1) . . . k(xn, xn)

 .

This is a valid formulation when the observations are true objective function
values without any noise. Given the noise-free observed data X, zero mean,
chosen covariance function and n∗ test points X∗ we want to predict, the joint
distribution is [

f
f∗

]
∼ N

(
0,

[
K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
,

where K(X∗, X∗) is the covariance matrix between all pairs of test points, the
matrix K(X, X∗) composes of covariances between training and test data set
and the same applies to K(X∗, X). The training outputs f are function val-
ues [f(x1), f(x2), . . . , f(xn)] at training points locations X, and analogously
f∗ = [f∗(x1), f∗(x2), . . . , f∗(xn∗)] are function values of the test set X∗.

The posterior predictive distribution is acquired by constraining the prior
distribution, which is obtained by conditioning the joint prior distribution on
the observed data as follows

f∗|f , X, X∗ ∼ N (µ(f∗), σ2(f∗)),

where
µ(f∗) = K(X∗, X)K(X, X)−1f ,

σ2(f∗) = K(X∗, X∗) − K(X∗, X)K(X, X)−1K(X, X∗).

16

Figure 2.1: Gaussian Process fit on noisy data with additive Gaussian noise
term (top) and without it (bottom).

The function values f∗ at test locations X∗ are obtained by sampling from the
N (µ(f∗), σ2(f∗)) posterior distribution. Both expressions µ(f∗), σ2(f∗) arise
from the rules for deriving conditional Gaussian distribution from joint Gaus-
sian distribution [10].

Prediction of function values at new locations is commonly preceded by tun-
ing the covariance function’s hyperparameters θ since its initial values might
not be the best choice as they often represent only a rough estimate based on
domain knowledge or information inferred from the training data [23].

For a more compact notation, let us denote the probability density p(.) of
the observed training outputs given the hyperparameters and training input
values p(f |X, θ) as L(θ), and rewrite K(X, X) as K. The determinant of
the matrix K is denoted as |K|. A typical approach [10, 23] is to estimate
the hyperparameters θ from the training data by maximising log marginal
likelihood

θ∗ = arg max
θ

log L(θ),

17

2. Gaussian Process Regression

Figure 2.2: Gaussian Process fit and samples from its posterior.

where

log L(θ) = log p(f |X, θ) = −1
2

f⊤K−1f − 1
2

log |K| − n

2
log 2π.

The equation is adapted from the formula for the log likelihood for multivari-
ate Gaussian distribution since f ∼ N (0, K). Computing derivatives of the
log marginal likelihood enables maximising it using gradient-based optimisa-
tion algorithms [10].

The formulas introduced above are applicable only when the observations are
without noise, which can be viewed as a simplification of real-world situations.
Indeed, it is unlikely that the true objective function values would be at our
disposal. Unless the observed values are produced by computer simulation or
some artificial process, they are more likely to be imprecise due to measure-
ments deviations or the collection process itself.

The values we can usually access are noisy observations y of the objective
function instead. Based on implication of the central limit theorem that ran-
dom noise tends to be normally distributed, we consider additive identically
distributed Gaussian noise ε ∼ N (0, σ2

ε) and model the function values as
y = f(x) + ε. With the introduction of the noise term and utilisation of
the identity matrix I, the covariance matrix is extended to K(X, X) + σ2

εI.

18

2.1. Kernels

Gaussian Process fit with the additional σ2
εI term compared to previous for-

mulation can be seen in Figure 2.1. It is apparent that a GP model not taking
the possibility of having noisy data into account is unnecessarily overconfident
in its prediction.

The joint distribution of the training data function values y and the function
values of test inputs f∗ then becomes[

y
f∗

]
∼ N

(
0,

[
K(X, X) + σ2

εI K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
.

The posterior predictive distribution is

f∗|y, X, X∗ ∼ N (µ(f∗), σ2(f∗)),

where the parameters are redefined as

µ(f∗) = K(X∗, X)
[
K(X, X) + σ2

εI
]−1

y,

σ2(f∗) = K(X∗, X∗) − K(X∗, X)
[
K(X, X) + σ2

εI
]−1

K(X, X∗).

The extended expressions may look rather complicated as opposed to the
previous formulations, but the sole difference lies in adding the σ2

εI term to
the equations for modelling noise-free data. Since the distribution of the
training outputs y is now given as y ∼ N (0, K + σ2

εI), the hyperparameters
θ of the covariance function are optimised by maximising the log marginal
likelihood given by

log L(θ) = log p(y|X, θ) = −1
2

y⊤(K + σ2
εI)−1y − 1

2
log |K + σ2

εI| − n

2
log 2π.

An example of an optimised GP model and samples from its posterior are
illustrated in Figure 2.2.

2.1 Kernels
As implied before, the covariance function specifies the family of possible func-
tions. The selection of the covariance function should reflect our assumptions
about the data, such as its smoothness properties or periodic patterns. It is
natural to assume that nearby points have similar function values and distant
points less similar function values. In the sense of similarity, the covariance
function defines how much information of training points close to the test
point we can exploit in its prediction.

19

2. Gaussian Process Regression

In the context of the Gaussian Process, the covariance function is generally
called a kernel. One of the kernel’s required properties is that it needs to
be symmetric k(x, x′) = k(x′, x) [10]. This requirement follows from the
definition of the covariance function computed as

cov(X, Y) = E[(X − EX)(Y − EY)],

where X and Y are random variables. The covariance reflects how the random
variables are related, and switching their positions in the equation does not
affect the result.

The second fundamental requirement for every kernel is positive semidefinite-
ness. A positive semidefinite kernel is a function k : X × X → R, such that
for ∀n ∈ N, ∀x1, . . . , xn ∈ X a matrix G = (Gi,j), where Gi,j = k(xi, xj), is
symmetric positive semidefinite. A symmetric positive semidefinite matrix is
a symmetric matrix with non-negative eigenvalues.

Positive semidefiniteness is a desirable property in many areas, including op-
timisation, since it ensures the correctness of several operations regarding
computation with matrices. One of the reasons why positive semidefinite-
ness of matrices is particularly useful is that numerous algorithms working
with matrices perform Cholesky decomposition, which would fail without this
property. Since the Cholesky decomposition provides a fast and numerically
stable way of performing matrix inversion, it is one of the strategies used in-
stead of direct inversion when implementing the GP algorithm [10].

Other than the requirement for positive semidefiniteness, there is flexibility in
designing a kernel that allows modelling processes of any shape. One of the
modelled properties is the smoothness of a process that can be expressed by
the degree of its mean square (MS) differentiability.

A stochastic process g(t), where t ∈ T ⊆ R, is MS differentiable if

lim
∆t→0

E
[(

g(t + ∆t) − g(t)
∆t

− dg

dt

)2]
= 0.

A subset of stationary covariance functions is a broadly used category of kernel
types [10, 22]. A stationary function can be expressed as a function of x − x′

and is, therefore, invariant to translations in the input space. Moreover, if the
kernel is the function of |x − x′|, then it is invariant to any transformations
(e.g. rotations). The kernels with this property are called isotropic and given
r = |x − x′|, they can be written as a function of a single argument. There
are several isotropic kernels of interest, some of which have become a common

20

2.1. Kernels

Figure 2.3: Effects of different length scales demonstrated using SE kernel.

choice within the application in Gaussian Processes, e.g., squared exponential,
Matérn and rational quadratic kernel.

One of the frequently employed kernels [1, 7] is the squared exponential (SE)
kernel

kSE(r) = σ2 exp
(

− r2

2ℓ2

)
,

where ℓ denotes the characteristic length scale and σ2 represents variance,
which acts as a scaling factor. The kernel is infinitely MS differentiable and
therefore the corresponding process f(x) is generally relatively smooth. The
smoothness is adjusted with the ℓ parameter. A small length scale value results
in more wiggly functions, as we consider only the closest points to be corre-
lated. The further the point is from the observed data, the more uncertain
the predictions. On the contrary, large values of ℓ give smoother functions,
as more distant points are also taken into the account.

An example using SE kernel (also known as Gaussian or RBF) with varying
length scale values is shown in a 1D scenario in Figure 2.3. The effect of using
different length scale values on GPs is shown in Figure 2.4, depicting samples
from GPs and its covariance matrices. Regarding the variance, increasing its
value allows more variation, thus modelling the data further away from the
mean.

The Matérn kernel allows controlling the level of smoothness in the sense of
MS differentiability. While the SE kernel was fixed to be infinitely differen-
tiable, the Matérn kernel introduces parameter ν representing the degree of
smoothness. Typical values of the parameter ν are in the form of ν = i + 0.5
where i ∈ N. Popular choices are ν = 3/2 and ν = 5/2 [7], leading to the

21

2. Gaussian Process Regression

Figure 2.4: Effects of different length scales on the smoothness of samples
from Gaussian Process using SE kernel. Samples from the GP posterior are
shown on the left and their kernel’s covariance matrix is shown on the right.
Smaller length scale is used in the upper part of the image and larger length
scale on the lower part.

(a) SE (b) Matérn32 (c) Matérn52

Figure 2.5: Visual comparison of SE (a), Matérn32 (b) and Matérn52 (c)
kernels. Image was generated using unit length scale for every kernel.

22

2.1. Kernels

following kernel formulations

kν=3/2(r) = σ2
(

1 +
√

3r

ℓ

)
exp

(
−

√
3r

ℓ

)
,

kν=5/2(r) = σ2
(

1 +
√

5r

ℓ
+ 5r2

3ℓ2

)
exp

(
−

√
5r

ℓ

)
.

Such kernels result in process f(x) being MS differentiable once and twice,
respectively. A family of Matérn kernels can also be used when it is assumed
that the objective function is very rough. In that case, the parameter p is set
to zero, resulting in a particular case of Matérn kernel with the corresponding
process not being MS differentiable [22]. As a consequence, the points are
informative only in their immediate proximity. Another special case arises
with setting ν → ∞, which results in the already specified SE kernel.

The rational quadratic (RQ) kernel encompasses the SE kernel as well. Indeed,
the RQ kernel is formed by the sum of SE kernels

kRQ(r) = σ2
(

1 + r2

2αℓ2

)−α

,

where α, ℓ are non-negative parameters. The RQ kernel enables us to combine
multiple SE kernels with different length scales.

There is a large number isotropic kernels, and the above-mentioned kernels
represent only a fraction of them. Other representatives of this kernel class
are, for instance, linear, periodic and polynomial kernels [10].

Another attractive group of kernels includes sparse kernels, often referred to
as compact kernels. The kernel matrix has a sparse representation obtained by
setting the k(xi, xj) to zero when the distance between the xi and xj exceeds
a certain threshold [10]. The sparsity of the matrix allows fast matrix-vector
operations as only non-zero elements are used in the computation. On the
other hand, constructing a valid sparse kernel is problematic as the matrix
has to be positive semidefinite. One possibility of acquiring this property is
using the function from the family of covariance functions with compact sup-
port, such as the Wendland polynomials [24]. Nevertheless, the constructed
kernels are typically valid only for low dimensional data, and thus the com-
putational advantages are feasible in limited use cases.

Even though the stationary kernels are more prevalent in scientific litera-
ture [5, 22], the non-stationary kernels can also be applied. In addition, the
standard kernels may not be sufficient in modelling data with more complex
patterns and structures. The existing kernels can be modified or combined to

23

2. Gaussian Process Regression

create a new kernel with desired properties, as seen before when introducing
the RQ kernel. In that case, the SE kernels are incorporated into a single one
by summation. Other operations, such as kernels multiplication or a combi-
nation of both mentioned operations, can be used as well to create a valid
kernel [10]. Even with the preferred characteristics in mind, we may lack the
confidence to choose the kernel and set the values of its parameters. It is im-
portant to keep in mind that restricting the kernel to a single family of kernels
may still leave numerous parameter combinations.

24

Chapter 3
State-of-the-art Scalable GPs

In many real-world applications, the employment of standard GPs is rather im-
practical considering that the memory and computational requirements grow
with quadratic and cubic complexity, respectively. Such a high time complex-
ity is a consequence of computing the matrix inversion, which requires O(n3)
operations, where n is the number of training points. This key limitation re-
sults in the model being unsuitable for large data. However, the prohibitive
amount of calculations necessary to inverse the matrix does not make the ap-
plication of GPs in big-data domains completely impossible.

Various approaches have been proposed that led to the development of nu-
merous methods to circumvent this shortcoming. Their primary purpose is
to avoid cubic time complexity and perform the calculations at lower com-
putational costs, which is usually O(nm2) time and O(nm) memory, where
m ≪ n. Moreover, the goal is not only to alleviate the computational de-
mands but also to maintain the prediction quality of the standard GP model.
The models that mitigate the issues hampering the practical application of a
standard GP are generally called scalable GPs.

3.1 Taxonomy of Scalable GPs
The strategies used to address the high computational complexity of GP mod-
els can be divided into two main categories [13]. The first approach aims to
tackle the limitation on a global level, while the second focuses on addressing
the issue on a local level. It is unclear which approach is the best or even
the most effective, and some methods combine both approaches in order to
overcome the computational demands of GP models. The taxonomy of the
approximation types and their strategies presented below follows the structure
of the scalable GPs overview presented in [13] as shown in Figure 3.1, which
was among the first to provide an extensive survey and detailed analysis.

25

3. State-of-the-art Scalable GPs
IEEE 3

S
c
a
la
b
le
G
P
s

II
I.
G
lo
b
a
l
a
p
p
ro
x
.

IV
.
L
o
c
a
l
a
p
p
ro
x
.

A. Subset-of-data 1). Prior approx.

V
.
Im
p
ro
v
e
m
e
n
ts

V
I.
E
x
te
n
s
io
n
s

B. Sparse kernels

C. Sparse approx.

A. Naïve-local-experts

B. Mixture-of-experts

C. Product-of-experts

2). Posterior

approx.

3). Structured

sparse approx.

A. Scalability

B. Capability

A. Scalable manifold GP

B. Scalable deep GP

C. Scalable online GP

D. Scalable multi-task GP

E. Scalable recurrent GP

F. Scalable GP classification

Fig. 3. A skeletal overview of scalable GPs.

the mean costs O(n) and the variance costs O(n2) per test

case through pre-computations.

In order to improve the scalability of standard GP for big

data, the scalable GPs have been extensively presented and

studied in recent years. In what follows, we classify current

scalable GPs into global approximations and local approxi-

mations, and comprehensively analyze them to showcase their

methodological characteristics.

III. GLOBAL APPROXIMATIONS

Global approximations achieve the sparsity of the full kernel

matrix Knn, which is crucial for scalability, through (i) using

a subset of the training data (subset-of-data); (ii) removing the

entries of Knn with low correlations (sparse kernels); and (iii)

employing a low-rank representation (sparse approximations).

A. Subset-of-data

Subset-of-data (SoD) is the simplest strategy to approximate

the full GP by using a subset Dsod of the training data D.

Hence, the SoD retains the standard GP inference at lower

time complexity of O(m3), since it operates on Kmm which

only comprises m (m ≪ n) data points. A recent theoretical

work [45] analyzes the error bounds for the prediction and

generalization of SoD through a graphon-based framework,

indicating a better speed-accuracy trade-off in comparison to

other approximations reviewed below when n is sufficiently

large. Though SoD produces reasonable prediction mean for

the case with redundant data, it struggles to produce overcon-

fident prediction variance due to the limited subset.

Regarding the selection of Dsod, one could (i) randomly

choose m data points from D, (ii) use clustering techniques,

e.g., k-means and KD tree [46], to partition the data into m
subsets and choose their centroids as subset points, and (iii)

employ active learning criteria, e.g., differential entropy [47],

information gain [48] and matching pursuit [49], to sequen-

tially query data points with however higher computing cost.

B. Sparse kernels

Sparse kernels [50] attempt to directly achieve a sparse

representation K̃nn of Knn via the particularly designed com-

pactly supported (CS) kernel, which imposes k(xi,xj) = 0
when |xi−xj| exceeds a certain threshold. Therefore, only the

non-zero elements in K̃nn are involved in the calculation. As

a result, the training complexity of the GP using CS kernel

scales as O(αn3) with 0 < α < 1. The main challenge in

constructing valid CS kernels is to ensure the positive semi-

definite (PSD) of K̃nn, i.e., vTK̃nnv ≥ 0, ∀v ∈ Rn [15],

[50]–[52]. Besides, the GP using CS kernel is potential for

capturing local patterns due to the truncation property.

C. Sparse approximations

Typically, we could conduct eigen-decomposition and

choose the first m eigenvalues to approximate the full-rank

kernel matrix as Knn ≈ UnmΛmmUT

nm. Thereafter, it is

straightforward to calculate the inversion using the Sherman-

Morrison-Woodbury formula

(Kǫ
nn)

−1 ≈ σ−2
ǫ In + σ−2

ǫ Unm(σ2
ǫΛ

−1
mm +UT

nmUnm)−1UT

nm,

and the determinant using the Sylvester determinant theorem

|Kǫ
nn| ≈ |Λmm||σ2

ǫΛ
−1
mm +UT

nmUnm|,
resulting in the complexity of O(nm2). However, the eigen-

decomposition is of limited interest since itself is an O(n3)
operation. Hence, we approximate the eigen-functions of Knn

using m data points, leading to the Nyström approximation

Knn ≈ Qnn = KnmK−1
mmKT

nm,

which greatly improves large-scale kernel learning [53], and

enables naive Nyström GP [54]. This scalable GP however

may produce negative prediction variances [55], since (i) it is

not a complete generative probabilistic model as the Nyström

approximation is only imposed on the training data, and (ii)

it cannot guarantee the PSD of kernel matrix.

Inspired by the influential Nyström approximation, sparse

approximations build a generative probabilistic model, which

achieves the sparsity via m inducing points (also referred to

as support points, active set or pseudo points) to optimally

summarize the dependency of the whole training data. We in-

troduce a set of inducing pairs (Xm,fm). The latent variables

fm akin to f follow the same GP prior p(fm) = N (0,Kmm).
Besides, fm is assumed to be a sufficient statistic for f , i.e.,

for any variables z it holds p(z|f ,fm) = p(z|fm). We could

recover the joint prior p(f , f∗) by marginalizing out fm as

p(f , f∗) =
∫

p(f , f∗|fm)p(fm)dfm.

Figure 3.1: An overview of scalable GPs as presented in [13].

It is crucial to point out that this categorisation represents only one of many
ways to perceive these approximations. The following sections describe the
characteristics of several local and global approximation types.

3.1.1 Local Approximations
Local approximations tend to capture local patterns more effectively by di-
viding the data into smaller subsets and building individual models, known as
experts, for each subset. Consequently, the experts focused on the partitioned
data are more likely to achieve better results on data with some particular
characteristics, e.g. non-stationarity, where the global approximation meth-
ods might fail [13]. On the other hand, there is a possibility of overfitting
the individual models, missing the long-term spatial correlations and lacking
continuity in obtained predictions. Within local approximations, we recognise
three approaches.

Naive-local-experts [25] employ each expert independently, resulting in no in-
teraction between the experts’ predictions. The prediction of the test point
is conducted only by a single expert responsible for its neighbourhood, which
leads to discontinuous predictions. For this reason, the preferred strategy is to
gather predictions from multiple experts. Such an approach allows for more
continuous and accurate predictions and will be introduced in the following
text.

The usage of several experts for a single point prediction is applied in the
mixture-of-experts (MoE) [26] and product-of-experts (PoE) [27] methods.
Both techniques belong to ensemble learning methods due to the possibility of
using various models and composing their predictions with a gating function.

26

3.2. Global Sparse Approximate Methods

This function determines the amount of contribution of individual models and
the aggregation type used to produce the final answer. The approach used
in MoE to combine the experts can be seen as summation, while PoE uses a
multiplication of probability distributions. Another factor that contributes to
receiving smoother predictions is partitioning the data space into overlapped
subsets instead of having non-intersecting subspaces for each expert.

3.1.2 Global Approximations
Another approach to approximating GPs is to use global approximations,
which focus on capturing global rather than local patterns. The methods are
of three categories, and unlike the previous approximation type categories,
the individual groups substantially vary in the approach they employ. Never-
theless, the prevalent common aspect lies in the utilisation of inducing inputs
that refer to a subset of some entity, e.g. points selected from the training
data. The literature also refers to these data points as support points, pseudo-
inputs, or active set [13, 28].

The first and most basic method is to use only a subset of the original training
data. Therefore, the kernel matrix is of size m × m instead of n × n, where
m < n, which leads to a reduction in time and memory complexity to O(m3)
and O(m2), respectively [13]. However, the active set can be chosen in many
ways, and naturally, one of them is random selection. A better strategy might
be to use clustering algorithms or learning criteria to ensure a sufficiently rep-
resentative subset.

More sophisticated global approximation type includes usage of sparse kernels.
In this case, the kernel matrix size remains the same, but its elements do not.
The sparsity is achieved by setting many matrix elements to zero. A detailed
explanation of how to construct such a matrix can be found in the Section 2.1.

The third type represents sparse approximations that focus on decreasing the
complexity of the matrix inversion. This approach is gaining popularity in
the GP community due to its potential to improve computational efficiency
while retaining good prediction accuracy. Therefore, the following section will
be devoted solely to the global sparse approximation, including a comprehen-
sive characterisation of particular GP models of this type later employed in
experiments.

3.2 Global Sparse Approximate Methods
Global sparse approximations attempt to construct a low-rank representation
of the kernel matrix and thus reduce the computational burden of the matrix
inversion. A common way to achieve this is to use eigenvalue decomposition

27

3. State-of-the-art Scalable GPs

requiring O(n3) operations. However, this is highly undesirable. Therefore,
the eigenvalue decomposition is approximated using Nyström approximation

Knn ≈ Qnn = KnmK−1
mmK⊤

nm,

taking O(m2n) time when using m inducing points u at input locations Z,
where covariance matrices Knn = K(X, X), Knm = K(X, Z), Kmm = K(Z, Z)
and the inducing points u ∼ N (0, Kmm). The joint distribution of the training
outputs y and inducing outputs u is given by[

y
u

]
∼ N

(
0,

[
Knn + σ2I Knm

Kmn Kmm

])
.

Given u, assuming that the training outputs y and the test outputs f∗ are
conditionally independent leads to the dependency between y and f∗ being
induced via u [28]. Derived conditional Gaussian distributions have the fol-
lowing forms:

training conditional p(y|u) ∼ N (KnmK−1
mmu, Knn − Qnn + σ2

nI),
test conditional p(f∗|u) ∼ N (K∗mK−1

mmu, K∗∗ − Q∗∗),

where K∗m = K(X∗, Z) and K∗∗ = K(X∗, X∗). Both conditionals, also re-
ferred to as inducing conditionals, serve as a baseline for numerous global
sparse approximations. For this reason, we introduce notation p(.) for a prob-
ability density function defining a probability distribution and and q(.) for
a probability density function defining approximate probability distribution.
Employing the exact inducing conditionals causes no speed up since there
is still the need for a full matrix inversion. Various sparse approximation
methods can be obtained by performing further approximations of inducing
conditionals via modifying covariance matrices [28].

Global sparse approximations can be further subdivided into three categories:

• prior approximations,

• posterior approximations,

• structured sparse approximations.

The latter approximation type employs a strategy of overcoming the com-
putational limitations by utilising matrix-vector multiplication. One of the
well-known methods from this group is the Structured Kernel Interpolation
(SKI) [29]. A detailed explanation of this model will be omitted since the
number of inducing points grows exponentially with dimensions, and there-
fore SKI is rather suitable for lower-dimensional problems [30].

28

3.2. Global Sparse Approximate Methods

Prior approximations approximate the joint prior but perform the exact infer-
ence. The likely most influential representant from the prior approximation
category is the Fully Independent Training Conditional (FITC) [31, 32]. On
the other hand, the posterior approximations keep the prior exact, but approx-
imate the posterior resulting in approximate inference. A particularly popular
posterior approximation is the Variational Free Energy (VFE) [33, 32]. The
following sections will provide an in-depth explanation of both approaches.

3.2.1 FITC
As opposed to the baseline conditionals introduced for global sparse approx-
imations, the change proposed within the FITC model includes further ap-
proximating the training conditional while retaining the same test conditional
[28]. The form of the covariance matrix is restricted to a diagonal matrix,
which results in

q(y|u) = N (KnmK−1
mmu,diag [Knn − Qnn] + σ2

nI).
To highlight the difference between the baseline and the FITC approximation
stated above, let us derive the corresponding joint distribution using the com-
mon rules for deriving joint Gaussian distribution from conditional Gaussian
distribution [10]. The joint distribution in the FITC model is given as[

y
u

]
∼ N

(
0,

[
G + σ2I Knm

Kmn Kmm

])
,

where G = Qnn + diag [Knn − Qnn] and y ∼ N (0, G + σ2
nI). Respecting

the notation introduced in Chapter 2, we denote log marginal likelihood max-
imised to train the model as log L(θ) = p(y|X, θ). Using the above obtained
expression, log L(θ) is for FITC accordingly modified to

log L(θ) = −1
2

y⊤(G + σ2
nI)−1y − 1

2
log |G + σ2

nI| − n

2
log 2π.

3.2.2 VFE
A more recent approach is to employ posterior (as opposed to prior) approx-
imations performing inexact inference rather than approximating the model
itself [30, 32]. Since the posterior approximations maintain the prior in its
exact form, the inducing conditionals in VFE remain unchanged. The usage
of approximate inference is indicated in the VFE model name itself through
the word variational. In general, variational inference refers to methods for
approximating distributions due to the exact distributions being computation-
ally intractable for practical usage [34]. Again, the distribution that we use
to approximate the intractable one is also called a variational distribution.
Terms “approximate” and “variational” are both, often interchangeably, used
in GP literature [13, 28, 32].

29

3. State-of-the-art Scalable GPs

The methods using variational inference try to find a variational distribution
from a family of tractable distributions that is the closest to the approximated
distribution. Employing variational inference in GPs results in the approxi-
mation achieved by constructing a lower bound to the log marginal likelihood
as

log L(θ) = log
∫

f ,u
p(y|f)p(f |u, X, Z)p(u|Z)

≥
∫

f ,u
q(f , u) log p(y|f)p(f |u, X, Z)p(u|Z)

q(f , u)
,

where q(f , u) is variational posterior distribution to approximate p(f , u). Within
the VFE model, it is proposed to use q(f , u) = p(f |u, X, Z)q(u) as the varia-
tional posterior, so the variational lower bound is given by

log L(θ) ≥
∫

f ,u
p(f |u, X, Z)q(u) log p(y|f)((((((

p(f |u, X, Z)p(u|Z)
((((((
p(f |u, X, Z)q(u)

≥ ⟨log p(y|f)⟩p(f |u,X,Z)q(u) − KL(q(u)∥p(u|Z)),

where KL stands for the Kullback-Leibler divergence used to measure how
much one probability distribution differs from the second one. During the vari-
ational inference, KL terms needed for the computations are often intractable.
In practice, a tractable term called the evidence lower bound (ELBO) is used
instead. Maximising the ELBO is equivalent to minimising the KL divergence
term.

The notation ⟨.⟩p(.) is adapted from the GP literature [13, 30, 35] and rep-
resents the expectation over the distribution p(.). The cancellation of terms
leads to an approximation [33] where the lower bound to the log L(θ) is con-
structed in a way that gets rid of all the terms containing K−1

nn [32]. As a result
of approximating the inference, the VFE method is trained by maximising

log L(θ) = −1
2

y⊤(Qnn + σ2
nI)−1y − 1

2
log |Qnn + σ2

nI| − n

2
log 2π − 1

2σ2
n

tr(T),

where T = Knn −Qnn and y ∼ N (0, Qnn +σ2
nI). An additional trace term in

the VFE is put in place to guarantee a lower bound of the true log marginal
likelihood. Moreover, the trace term serves as a regulariser that makes the
model more resilient to overfitting the training data and helps find suitable
locations for inducing inputs [32].

30

3.2. Global Sparse Approximate Methods

(a) FITC (b) VFE

Figure 3.2: Visual comparison of variance using FITC (a) and VFE (b).

3.2.3 Differences between FITC and VFE

Apart from the obvious similarities that FITC and VFE models share due to
their common nature, they differ in their levels of susceptibility to certain be-
haviour. This section attempts to summarise some of the known distinctions.
Even with the additional trace term improving the training of VFE, this ap-
proximation method still faces optimisation issues, and it has been shown
that it is generally harder to optimise than FITC [32]. However, in the light
of the fact that numerous experiments demonstrated the tendency of prior ap-
proximations to provide poorer predictions than the posterior approximations
[30, 32], researchers often suggest using VFE, albeit dedicating more time to
fine-tuning the model. This drawback is also outweighed by other qualities
of VFE, such as being able to approximate the standard GP more accurately
than FITC.

Moreover, while VFE is likely to underfit if not appropriately adjusted, FITC
is prone to overfitting, which seems to be more problematic [32]. Overfitting
is often detectable from variance, which is one of the indicators of a good fit
since it can be interpreted as the uncertainty of the model. If the uncertainty
is small, it can be an undesirable outcome even when it may seem counterin-
tuitive. This possibly culminates in an underestimation of uncertainty since
it can reach near-zero values even in sparsely covered regions. An example of
the FITC model being more confident in its predictions compared to the VFE
model can be seen in Figure 3.2.

Another difference lies in the placement of the inducing points. Even when
we would expect the model to improve with a higher number of inducing
points, there is a chance we may not witness this behaviour using FITC. In-
ducing inputs are likely to be placed in the immediate proximity of each other,
creating clusters or even overlapping. Mentioned characteristics and typical

31

3. State-of-the-art Scalable GPs

exhibited behaviour of models are well explained and thoroughly justified in
[32] along with other noteworthy differences and remarks regarding VFE and
FITC models.

3.3 Recent Developments and Extensions
The extensive and successful application of scalable GPs has led to the growth
of the GP community and an increased interest in improving the scalability
even further. The desire to alleviate the computational complexity we face
when working with GPs triggered an evolution of scalable GPs in several
directions. With the demand for improvement, various extensions and hybrid
models of approximate GPs emerged, the development of which is still a matter
of ongoing research. One of the incentives to create new models and build on
the present work is undoubtedly the possibility of employing scalable GPs
in various fields, from finance and economics to engineering and computer
science. However, many potential research avenues yet remain undiscovered.

3.3.1 SVGP
One of the standard approximate models that researchers use to base their
novel ideas on is VFE. The introduction of the extended VFE model known un-
der the name Stochastic Variational Gaussian Process (SVGP) [36] enabled it
to handle large amounts of data in batches. The improvement lies in replacing
the original so-called collapsed bound utilising integral with the uncollapsed
bound using a summation term instead. Moreover, the KL term becomes
data-independent. The uncollapsed bound is less tight [30] and is obtained as

log L(θ) ≥ ⟨log p(y|f)⟩p(f |u,X,Z)q(u) − KL(q(u)∥p(u))

≥
n∑

i=1

〈
log N

(
yi|fi, σ2

)〉
q(fi|xi,Z)

− KL(q(u)∥p(u)).

The bound is further adjusted to be suitable for batch training by approxi-
mating the summation over the whole dataset with a summation over batches.
Let p̃ denote the distribution of x, y values within a single batch [13, 35], then
we can write the bound as follows

log L(θ) ≥ n

b

∑
xj ,yj∼p̃(x,y)

〈
log N

(
yj |fj , σ2

)〉
q(fj |xj ,Z)

− n

b
KL(q(u)∥p(u)),

where n is the number of training samples and b is the batch size. The right-
hand side term is rescaled accordingly.

Usage of the relaxed bound results in significantly reduced complexity of
O(bm3), where m is the number of inducing points. Nevertheless, since the

32

3.3. Recent Developments and Extensions

optimisation is performed within batches, it leads to a drawback of having
additional O(m2) variational parameters [37]. Naturally, having more param-
eters makes the model calibration more difficult.

Additionally, even though the SVGP model can be used for online data, it is
not well-suited for this task [38]. Its effectiveness relies on having access to
the entire dataset at each stage of training, but this may not be possible due
to memory constraints. This problem can occur with any machine learning
model, but it is particularly relevant for the SVGP model because its perfor-
mance depends on having access to the whole dataset at any time, which is
counterintuitive and not practical in the context of online streaming data. As
a result, another weakness of the model is that it may not be possible to train
it if computational resources are limited, even though its potential application
to streaming settings suggests otherwise.

In addition, suppose we are receiving the data sequentially, and the number
of data points is unknown. In that case, with each new data batch received,
we can either add new data points to the previously obtained data or use only
the latest data. Both approaches are suboptimal since the computational
complexity is constantly increasing, or the information present in older data
is lost. Even though the SVGP model was a breakthrough in enabling the
training on larger datasets to be more affordable, it was unsuitable for their
combination with an online training setting.

3.3.2 SSGP

The authors of the Streaming Sparse GP (SSGP) model [38] got inspired
by VFE and SVGP approaches and tried to satisfy the demand by creat-
ing a global approximation suitable for the application in the streaming data
regime. The SSGP model also considers the possible lack of resources and
utilises the optimisation technique where each batch of data is single use only.
Every new batch updates the model’s hyperparameters and reflects itself into
the locations of inducing points by replacing 30% of them with randomly se-
lected data samples from the batch [39]. The exception is the initial inducing
set consisting exclusively of randomly sampled data points. Utilising some of
the samples from the batch as new inducing locations is supposed to help the
model, particularly in cases where the data are not independent and identi-
cally distributed, and the input domain is not discovered at once. The SSGP
model uses both the old inducing set Za of size ma and the adjusted inducing
set Zb of size mb created after receiving the new batch to compute the next
update. All the conducted experiments presented in the paper [38] use the
same size of inducing sets ma = mb, although it is not required.

33

3. State-of-the-art Scalable GPs

Since the data are at our disposal only once, optimisation is performed by
taking multiple gradient steps with carefully adjusted learning rates [38]. The
described approach enables updating a previously fitted model without seeing
or knowing the amount of the old or the new data. This means that at every
training phase, information from the current batch is incorporated into the
model’s knowledge without directly looking at any other data. Unfortunately,
the computational requirements are not reduced compared to the SVGP model
and remain quadratic.

In this section, the already introduced notation for describing matrices in
Chapter 2 will be neglected in favour of the notation used in [38]. The change
was employed primarily due to the immense number of matrices used to de-
scribe the SSGP model and will hopefully help the reader avoid confusion.
Thus, the indices will no longer describe the dimensions of the matrix but
rather expressions to which the matrix relates. Furthermore, the notation for
the training inputs X and training outputs y will be reused to describe the
data from the current batch. At the same time, the equations listed below are
equally applicable in and do not contradict the scenario where all the data
come simultaneously. Online training of the SSGP model is performed by
maximising the bound defined as

log L(θ) = F + ∆1 + ∆2,

where F represents log marginal likelihood of ŷ ∼ N (0, Kf̂ f̂ +Σŷ) and ∆1, ∆2
are regularisation terms, all given as

F = log N (0, Kf̂ f̂ + Σŷ)

= −n + ma
2

log(2π) − 1
2

log
∣∣Kf̂ f̂ + Σŷ

∣∣− 1
2

ŷT (Kf̂ f̂ + Σŷ
)−1 ŷ,

∆1 = 1
2

(
− log |Sa|

|Kaa| |Da|
+ mT

a S−1
a DaS−1

a ma − tr
(
D−1

a Qa
)

− mT
a S−1

a ma

+ ma log(2π)
)

,

∆2 = − 1
2σ2

y
tr (Qf) ,

where

Kf̂ f̂ = Kf̂bK−1
bb Kbf̂ , ŷ =

[
y

DaS−1
a ma

]
, Kf̂b =

[
Kfb
Kab

]
, Σŷ =

[
σ2

yI 0
0 Da

]
,

Kfb = K(X, Zb), Kab = K(Za, Zb), Da = (S−1
a − K−1

aa)−1, Kaa = K(Za, Za),
Qa = Kaa − KabK−1

bb Kba, Kbb = K(Zb, Zb), and Qf = Kff − KfbK−1
bb Kbf .

34

3.3. Recent Developments and Extensions

max(K(x, Za)) < ρ
x ∈ Bi

batch Bi

xZa

Zb

Za = Zb
yes

no

Figure 3.3: Visualisation of the OIPS decision process on adding a new sample
to the inducing set.

The terms ma, Sa are obtained from the model by predicting the mean and
covariance of the old inducing set Za before seeing the current batch. The
expressions that are used to compute the predictive mean and covariance ma-
trix are stated in Appendix B.1.

The bound proposed above is not used in the implementation as is, but is
instead rewritten to provide better numerical stability. The derivation of the
bound adjusted for practical use from the theoretical bound is demonstrated
step-by-step in Appendix B.2.

3.3.3 OIPS
As indicated earlier, the purpose of inducing points is to represent all of the
data that have been observed accurately. At the same time, this should be ac-
complished while keeping the number of inducing points significantly smaller
than the number of training samples, thus reducing computational complexity.
In a streaming setting, the objective can be more challenging to achieve when
the number of inducing points is fixed beforehand. We may not know the final
number of data points that will be received, making it hard to estimate the
size of the inducing set. Therefore, increasing the number of inducing points
with the growing dataset is likely necessary.

The Online Inducing Points Selection (OIPS) [40] addresses this problem and
extends the SSGP model to scale the model’s capacity as required. The OIPS
extension embraces the changing number of inducing points with each batch
by adding new data points to the inducing set based on their novelty. Data
sample x from the current batch is added to the inducing set if the maximum
value of K(x, Za) is smaller than a threshold parameter ρ [40]. The matrix
computation does not cause an increase in the computational complexity, and
it is the same as in the SSGP model utilising its original inducing points
selection.

35

3. State-of-the-art Scalable GPs

However, the determination of whether to use the data sample x as an inducing
point is not based solely on the selected threshold ρ, where 0 < ρ < 1. The de-
cision is also affected by the kernel, already received data and their structure.
The decision making process is schematically depicted in Figure 3.3. Further-
more, it has been demonstrated that the inducing set grows more rapidly with
larger dimensions, smaller lengthscales of the kernel, and a higher ρ value [40].
The authors also guarantee the deterministic properties of the OIPS technique
for fixed ordering of the data points.

Therefore, instead of creating a new inducing set of the same size by replacing
some of the old inducing points with a fraction of new data samples, the
new inducing set is enriched by new points and contains all of the previously
optimised inducing points. If no data points are added, the initial inducing
set Zb used for training on the current batch is identical to the old inducing
set Za after the optimisation on the previous batch.

3.3.4 PIPS
How many and which inducing points to use was a question that also bothered
the authors of Probabilistic Selection of Inducing Points in Sparse Gaussian
Processes [41], hereinafter referred to as the Probabilistic Inducing Points Se-
lection abbreviated to PIPS. The responsibility of setting a number of inducing
points is, in this case, not entirely left to the user. The determination of the
inducing set and its size is accomplished with the help of two point processes
introduced below, and the dataset itself.

Let Ω be a probability space and T ⊆ R an index set. The system of random
variables

X = {Xt | t ∈ T} , Xt : Ω → R,

is called a random process [42]. The index set T can be used to represent some
measure, e.g. time or space, and is classified as being at most countable or
uncountable, in other words, discrete or continuous. The feasible set of values
of Xt is called the set of states and is noted as S ⊆ R. Similarly, the set of
states S can be discrete or continuous.

A point process is a random process with a continuous index set T and a
discrete set of states S. One of the point processes of great importance is a
Poisson point (counting) process, which, thanks to its properties, has become
a common tool for mathematical modelling [43].

We say that {Nt | t ∈ [0, +∞)} is a Poisson point process with intensity λ if

• N0 = 0 almost surely,

36

3.3. Recent Developments and Extensions

• Nt − Ns ∼ Poisson(λ(t − s)) for all t ≥ s ≥ 0

• Nt has independent increments, i.e. ∀k ∈ N and for all 0 ≤ t0 ≤ ... ≤ tk

Nt1 − Nt0 , Nt2 − Nt1 , ..., Ntk
− Ntk−1 are independent.

As stated earlier, the final selection of inducing points is performed using
two random processes; the prior point process and the variational Poisson
point process (PPP). The prior point process employed in the inducing points
selection is supplied with a candidate inducing set Zc randomly selected from
the training data and a rate α. The α value should express our estimate or
belief of how many points the inducing set should contain. Higher α values
result in stronger pruning, thus the number of inducing points that remain
at the end of the training is lower. Another way of looking at α is to see
it as a tool for adjusting the computational complexity as desired. The goal
of the PIPS model is to recognise a subset Z ⊆ Zc that is informative while
reasonable in size. Favouring a smaller number of inducing points is ensured
by assigning a probability to each subset according to the squared cardinality
of Z [41] in the following way

pα(Z) = Ce−α|Z|2 ,

where C is an optional normalisation term unused in the PIPS implementa-
tion1. The authors also suggest that squared cardinality is only one of several
possible ways of penalising the size of the inducing set.

The PPP assigns each point in the predefined candidate inducing set Zc a
probability of inclusion based on its affiliation to Z

qλ(Z) =
∏

zk∈Z
λk

∏
zk /∈Z

(1 − λk),

with λ = {λk}K
k=1 where K = |Zc|. The assignment of respective probabilities

is carried out repeatedly in iterations as the model gradually learns which
points explain the data well. At the end of the procedure, the inducing points
with zero probabilities are removed from the inducing set.

To sum up, the prior point process is responsible for assigning probabilities
to sets of inducing points, while the PPP is responsible for assigning proba-
bilities to the individual points. This approach allows the model to pick an
inducing set based on the nature of the data. The model utilising the PIPS
technique employs the bound from the SVGP and augments it by adding a
KL divergence term KL(qλ(Z)||pα(Z)) between the two point processes, which

1https://github.com/akuhren/selective_gp

37

https://github.com/akuhren/selective_gp

3. State-of-the-art Scalable GPs

Figure 3.4: The PIPS prediction (light blue), the initial inducing set (black
dots and circles) and the final inducing set (black dots) visualised. Each
inducing point is associated with a probability of inclusion (green) that is
set by the model, as presented in [41]. The upper part of the figure shows
the probabilities assigned to the inducing points during the training and the
lower part of the figure shows the probabilities of those inducing points that
remained after the training and best explain the observed data (grey crosses).

is closed-form computable [41]. Such a constructed bound can be optimised
through score function estimation. The score function is defined as a gradient
of the log-likelihood function.

The training of the model has proven to be efficient when carried out in
three phases. The initial inducing set is created by random selection from
the training data while respecting the inducing set size set by a user. Then,
the first training stage is conducted without the use of the PPP. The second,
main phase, is executed by including the PPP in training. Ultimately, the
uninformative points with zero probability are completely removed, and the
model is additionally trained with the final inducing set without the PPP.
Note that the so-called pre-training and post-training phases are as important
as the main phase and should not be omitted. Lastly, the original PIPS
implementation builds upon the SVGP, but it is possible to be employed in
other sparse approximation models as well.

38

3.4. Other Research Directions

3.4 Other Research Directions
As the selection of the GP models presented in this chapter suggests, global
approximations are a common choice to base novel ideas on. However, pos-
terior approximations are not the only group of models growing in size. For
example, some GP models were inspired by the prior approximation FITC
[44] or were developed by combining global and local approximations into a
single framework [45].

Some researchers were highly motivated by the historical application of various
Gaussian models to non-Gaussian problems. This approach seemed promis-
ing, also thanks to some well-known use cases, such as Kalman filters for the
Apollo program [46]. Hence, another research direction covers attempts to
bend the GP model, trick it into forgetting its Gaussian nature and use it to
model non-Gaussian data.

Furthermore, a popular field of application is modelling hierarchical data us-
ing multilayer GPs with a hierarchical structure. With enough computational
resources, the whole model can learn faster when training the GPs in the
same hierarchical levels in parallel. Besides, it is possible to employ differ-
ent approximation types and thus utilise GPs with desired properties at each
level. Nevertheless, one issue that needs to be considered is dividing data
into chunks for the GPs within one level. The data division can be performed
using some clustering technique of choice, which can improve along with the
model itself, as seen in [45].

Up to this point, we have considered only single output GPs. Nonetheless,
a large number of multioutput regression problems gave rise to Multioutput
Gaussian Processes (MOGPs), which became popular and largely studied [47].
One fundamental and valuable property of MOGPs is their ability to leverage
information from one output to predict another. The MOGPs use correlations
between the outputs to deliver more reliable predictions than obtaining them
with one GP for one output. Even though the correlations improve the pre-
diction quality, they put an even bigger computation burden on an already
computationally expensive model. When using standard GP, the computa-
tional complexity O(n3) given for single output datasets changes to O(n3p3)
for datasets with p outputs. Similarly to training on large datasets, there is
a need for approximate modelling. To put this scenario into a more general
machine learning context, sharing valuable information across outputs leads
to MOGPs being categorised as transfer learning methods [47].

39

Chapter 4
Experiments

In this chapter, we describe the experiments that were carried out to meet
the objectives of this thesis. We provide a detailed description of the exper-
imental design and the obtained results and offer possible interpretations of
the findings.

One of the aims of this thesis is to experimentally evaluate the predictive per-
formance and computational complexity of scalable Gaussian Process (GP)
architectures trained on several publicly available datasets. The chosen mod-
els include standard GP as well as state-of-the-art approximations such as
VFE, FITC, SVGP, SSGP, OIPS and PIPS. The motivation for choosing
these methods is that they are among the most feasible and state-of-the-art
approaches for scalable GP architectures. By conducting the experiments,
we aim to gain a better understanding of the performance and capabilities
of these methods in real-world applications. The results of these experiments
will be presented both numerically and visually in Section 4.3.

This chapter not only assesses the performance of selected GP architectures
on regression tasks, but also investigates their effectiveness in the context
of simulated Bayesian optimisation, which is another established goal of this
work. The GP models chosen for this task are be a subset of those used in
the regression task, and the reasoning behind this choice is be provided later
in the thesis. The demonstration of this scenario is supported by several vi-
sualisations along with the results of the conducted experiments in Section 4.4.

In addition to detailing our experiments, this chapter also includes informa-
tion about the datasets and tools used. In Section 4.1, we provide a thorough
description of the datasets employed in our study. In Section 4.2, we outline
the software and hardware that were used to conduct the experiments. By
providing this information, we aim to make our procedure and results trans-
parent and replicable.

41

4. Experiments

4.1 Datasets
The experiments for the regression task were conducted using three publicly
available datasets: kin40k [48], 3D Road Network [49] and Airline dataset [36].
All of the datasets are multidimensional, with one target variable, and contain
thousands of samples. The datasets were used in a way to be as comparable
as possible with other publications employing them. The fourth dataset was
manually assembled for the Bayesian optimisation task.

The kin40k dataset is a widely used benchmark for GP regression models [33,
48, 50] and consists of 40000 samples describing the position of a robotic arm.
The data collected from the control input have 8 input dimensions. We ob-
tained the data from a repository published at GitHub2. Employment of this
dataset in several studies allows fine comparison with the results obtained in
our experiments.

The second dataset we experimented with is the 3D Road Network that comes
from the UCI repository3, which contains many datasets used in the machine
learning community. The dataset contains more than 400000 very precise
measurements of the height above the sea level covering the region of North
Jutland in Denmark. It is stated that the dataset is especially appropriate
for tasks such as eco-routing and constructing cyclist routes, but it is also
suitable for regression tasks. We use longitude and latitude as predictors and
altitude as the predicted variable, but exclude the ID of the landscape segment.

The Airline dataset has almost 2 million flight records, making it the largest
dataset we work with in terms of sample size. The records contain detailed
information about every commercial flight in the USA from January 2008 to
April 2008. The Airline data were introduced in a paper demonstrating Gaus-
sian Processes for big data [36] in regression task predicting delay, which is the
difference in minutes from the original planned arrival. The authors of the pa-
per made the dataset available via the pods software4 and thus enabled other
researchers to replicate the experiments accurately [37]. By using the default
settings in the download function, you will get a dataset with 700000 training
and 100000 testing records, selected randomly from the larger dataset. This
data matches the one used in the original paper. This dataset also has 8 input
dimensions which represent the month, day of the month, day of the week,
departure time, arrival time, time spent in the air, distance to travel and the
age of the aircraft.

2https://github.com/trungngv/fgp
3https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+%28North+Jutland%

2C+Denmark%29
4https://github.com/sods/ods

42

https://github.com/trungngv/fgp
https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+%28North+Jutland%2C+Denmark%29
https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+%28North+Jutland%2C+Denmark%29
https://github.com/sods/ods

4.2. Technologies

Table 4.1: Categorisation of the Gaussian Process models based on frame-
works.

Framework Pyro GPflow GPyTorch
Model GP VFE FITC SVGP SSGP OIPS PIPS

The last two datasets have been additionally preprocessed to have zero mean
and unit variance. Standardisation was performed independently on each
input and output variable. This operation is performed by computing the rel-
evant means and standard deviations using exclusively the training samples
and then subtracting the mean and dividing by the standard deviation to en-
sure the described properties. Even though standardisation is not absolutely
necessary, it is deemed to be a standard procedure [30, 33] and good practice
for numerical reasons, as argued in [51]. No further adjustments were made to
the kin40k dataset since all features, including the target variable, are spread
around zero and have a unit standard deviation.

The synthetic dataset used for the Bayesian optimisation task is generated
from a one-dimensional function sampled from a multivariate normal distri-
bution with a zero mean and a covariance matrix created using SE kernel with
ℓ = 0.6 and σ = 5. Each evaluation of the function f at an arbitrary point x is
corrupted by additive Gaussian noise in the following manner: y = f(x) + ε,
where ε ∼ N (0, 0.022).

4.2 Technologies
This section briefly describes the software and hardware used for the purposes
of design and evaluation of the experiments. All computations regarding re-
gression experiments are run on a computer with an Intel Xeon E5-2650 v4
processor with 24 cores/48 threads, 270GB available RAM and NVIDIA Tesla
V100 graphics card with 16GB of memory. The computations needed for the
Bayesian optimisation task are run on a computer with IntelCore i9-9900K
processor with 8 cores/16 threads, 64GB available RAM and GeForce GTX
1080 Ti graphics card with 11GB of memory. The code for evaluating the
experiments is written in Python 3.7 [52], which provides the necessary tools
for numerical computations and data handling. The choice of this version was
based on the version of Python used in the implementation of the PIPS model.

Regarding the standard GP, VFE, FITC and SVGP models, we use the imple-
mentations available in a GP dedicated module within the Pyro probabilistic
language5, which is built upon the PyTorch framework [53]. For the rest
of the selected models, we use original implementations from their authors.

5https://pyro.ai/

43

https://pyro.ai/

4. Experiments

Table 4.2: Number of data samples in training, validation and test set used
in fine-tuning experiments.

Training data Validation data Test data
15000 7500 7500

The SSGP model was implemented using a TensorFlow6 based library called
GPflow [54], and the implementation of the PIPS model utilises the GPyTorch
[55] library with a PyTorch backend. The summary of models and frameworks
they are implemented in is provided in Table 4.1. The standard GP model is
in the provided overview abbreviated and referred to as GP.

4.3 Regression Task
This section describes the details of the conducted regression experiments, the
metrics used to evaluate the models’ performance and the obtained results. All
numerical results are presented in tables, and their interpretation supported
with several visualisations.

4.3.1 Design of Experiments
The experiments described in this section are divided into subsections primar-
ily according to the frameworks in which the GP models are implemented, as
shown in Table 4.1. The SSGP model and its expansion using OIPS each have
their own dedicated section.

Despite being outlined in separate sections, the regression experiments all
share the same data. The sizes of the datasets were chosen with the time and
computational limitations in mind, while still being considered large. Con-
cerning Gaussian Processes, a large dataset consists of at least a few thousand
data points [36]. Each dataset was split into the train, validation and test set.
Sizes of each set are invariant with respect to datasets and are presented in
Table 4.2. The subsets were created by randomly sampling the data in a way
that ensures there is no overlap between them.

All of the experiments conducted in this study followed the same two-phase
structure, with some models potentially undergoing additional experimental
stages. During the fine-tuning phase, the models were trained until their
performance on the validation data stopped improving, at which point the
training process was terminated. The final follow-up stage involved evaluating
the best-performing models using the test set. The selection and evaluation
of these models will be discussed in greater detail in Section 4.3.2. This

6https://github.com/tensorflow/tensorflow

44

https://github.com/tensorflow/tensorflow

4.3. Regression Task

section focuses on the evaluation phase and the metrics used to assess the
performance of the models. Additional experimental stages beyond these two
phases, if applicable, will be discussed in further detail in the relevant sections
of the thesis.

4.3.1.1 Pyro GPs

The Pyro library was utilised to deploy the standard GP and three benchmark
state-of-the-art approximations VFE, FITC and SVGP. We used the SVGP
in both full and batch training regimes, giving us a total of 5 models to train
on 3 datasets, resulting in 15 scenarios overall.

We divided our experiments with Pyro GP models into three parts and con-
ducted them in consecutive order. Therefore, in contrast to the experiments
with other models, we included an additional stage prior to the common ex-
perimental stages conducted for all regression experiments. The first part,
the coarse experiments, used smaller, randomly selected data sets that did
not overlap with the data used in the fine-tuning experiments to explore the
hyperparameter space. The second part, the fine-tuning experiments, used the
findings from the coarse experiments to train models on the data described
earlier in Section 4.3.1. The best of these models are then evaluated in the
final stage of the experiments, which is conducted in the same manner for
all regression experiments. The described experimental flow is visualised in
Figure 4.1.

To begin, we perform coarse experiments for several options of each model
setting. However, a vast number of possible settings regarding the training
and the model itself suggests a need for an enormous number of experiments
in each scenario. Performing an exhaustive search in hyperparameter space
with numerous options for each setting, such as trying out five various opti-
mizers and ten different learning rates, is impossible within the scope of this
thesis due to limited time and resources. With countless options of settings’
values available, we acknowledge that the number of combinations we try out
is relatively small, but we do not believe this harms the overall message of
our results. However, we want to make it clear to the reader that given the
constraints of this work, we have not rigorously explored the hyperparameter
space.

To give an example, in spite of being aware of many different kernels and
the possibility of combining them, we settled on employing no more than
three: SE, Matérn 3/2 and Matérn 5/2. Besides, the kernel’s parameters,
lengthscales and variances, need to be selected as well. The selection of these
parameters can be made using various techniques, e.g. heuristics or drawing
values from different prior distributions. At the same time, some of the strate-

45

4. Experiments

coarse fine-tuning
experimentsexperiments

hyperparameter
adjust

space
select

the best model

10 times

training
and

evaluation

Figure 4.1: Schematically summarised flow of experiments for Pyro models.

gies for the parameter selection are not always efficient, as was shown in [23],
where the authors observed that priors of the parameters have only a little im-
pact in relation to GP models trained on real-world regression datasets. Thus,
we opted for the simplest option and decided to use default kernel parameter
values.

In addition to settings that all models have in common, sparse models have
more parameters to be set, such as settings related to inducing points. Not
only their number but also the locations of the initial inducing points can play
a crucial role in the model’s capacity and performance. Regarding the num-
ber of inducing points, we followed the strategy presented in [33] and tried
out sizes of inducing sets changing in powers of two ranging from 27 to 213.
The upper bound was determined with regard to the training set size, which
never exceeded ten thousand samples. The initialisation of the locations was
performed with a simple grid in order to save computational resources in com-
parison with more elaborate techniques such as k-means or Latin hypercube
sampling.

We split each data chunk for the coarse experiments into a training and test
set and trained the models via variational inference for a fixed number of
epochs, which were set to be large enough to converge on the given dataset.
As mentioned in the theoretical part of this thesis, variational inference typ-
ically uses ELBO loss during its computation. The Pyro framework offers
several different modifications of ELBO that allow the losses and gradients to
be computed in different ways. We employ two types of losses, one of which
is Trace_ELBO, the most commonly used within this framework. The second
one is TraceMeanField_ELBO, the only one in Pyro that uses analytic KL di-
vergence terms when available, which will be later referred to as TMF_ELBO.
Regarding the optimisers, we opted for two commonly used options, Adam
and RMSprop. We test out four different learning rates ranging from 0.001 to
0.01 for both of these optimisers. Additionally, since GP models are prone to
numerical instability, we utilised jitter added to the diagonal elements of the
covariance matrix. If training fails even after adding jitter, we try to increase
it and train the model again. This attempt is repeated at most two times.

46

4.3. Regression Task

In conclusion, the evaluation of the test data chunk helped us identify less
promising settings values for each model and determine which settings have
little or no impact on their performance. For instance, coarse experiments
helped reveal that kernel type often has negligible influence on performance.
Therefore, we opted for the SE kernel as a default choice for fine-tuning ex-
periments. Regarding the inducing set, sparse approximation models FITC,
VFE, and SVGP for the kin40k and the 3D Road Network datasets performed
better with a higher number of inducing points. However, the models trained
on the Airline dataset behaved differently, indicating that a smaller size of
the inducing set may be preferable. Therefore, the domain of inducing set size
was only slightly altered for fine-tuning experiments.

The influence of the values of the hyperparameters not mentioned in the pre-
vious paragraph, which summarised several findings, did not remain undis-
covered. To sum up, we thoroughly examined all of them and adjusted the
domain of each hyperparameter for each model based on its results across the
three datasets. The modifications made to the hyperparameter space and the
code for the coarse experiments are part of the repository belonging to this
thesis.

Another observation made in the course of the first experimental part is that
the results obtained from the SVGP model using batch training were mostly
worse than those produced by other models. In an effort to improve the re-
sults, we decided to try out an alternative strategy that involved taking more
gradient steps per batch rather than adhering to the standard approach of
making only a single gradient update per batch [38] as was also presented in
Pyro’s demonstration of the SVGP usage7. This alternative approach proved
to be slightly or significantly worse depending on the dataset and is not em-
ployed in the fine-tuning experiments.

Finally, we performed the fine-tuning experiments. In these experiments, we
limited the possible initialisation and training configurations to a smaller set
of hyperparameters based on the findings from the coarse experiments. This
allowed us to focus on potential model configurations that were more likely
to yield successful results. Even with the constrained hyperparameter space,
the number of models trained is still significant. For each dataset, we train 2
standard GPs, 16 VFE and FITC each, 20 SVGPs and 50 SVGP* models.

7https://docs.pyro.ai/en/stable/contrib.gp.html

47

https://docs.pyro.ai/en/stable/contrib.gp.html

4. Experiments

4.3.1.2 SSGP

The authors of the SSGP made the implementation of the model publicly
available in a GitHub repository8. However, the versions of libraries stack
primarily used for the implementation, GPflow and Tensorflow, was too old
and could not be used. The GPflow version 0.4.0 used for the implementation
is not backward compatible with the latest version and, to the best of our
knowledge, is no longer available.

For the purposes of direct comparison and consistency, we decided to imple-
ment the SSGP model in the Pyro framework. The implementation was based
on the equations given for the theoretical bound. Unfortunately, the perfor-
mance of the SSGP rewritten to Pyro was very poor due to frequent training
failures. Every attempt of training the model on the 3D Road Network dataset
failed even when trying more settings than presented in the paper. For in-
stance, all the demonstrated experiments employed SE kernel, while we also
used Matérn 3/2 and Matérn 5/2, all without success. The performance of
the model on the other two datasets was also highly unsatisfactory.

After a repeated and thorough examination of the equations and the original
code, we thought we discovered a mistake in the equation for predictive co-
variance. Our suspicion was confirmed by the authors in a publicly available
issue9 that we submitted to their repository. The correct version can be found
in Appendix B.1. After fixing this error in the code, the performance of our
reimplementation slightly improved but was still inferior.

The SSGP model in Pyro was additionally partially rewritten based on the
practical bound presented in B.2 as an effort to increase its numerical sta-
bility. The practical bound emerges from the theoretical one by adjusting
terms to obtain desirable forms for terms to cancel out or be calculated easily
and more stable. Therefore, the practical bound is more compact and cannot
be split into parts that clearly belong to the distribution and the two regu-
larisers. Since the Pyro framework requires separation of regularisation terms
and terms related to the distribution, we considered fully rewriting the model
to be unattainable. The partially numerically optimised SSGP Pyro model
proved to be more stable than the model rewritten solely based on theoretical
bound, but the number of training failures due to numerical errors was still
significant and the performance very poor.

After all, attempts to stay within one framework proved to be both incredi-
bly time-consuming and challenging. The plan to have SSGP implemented in
Pyro was abandoned in favour of rewriting the original implementation with

8https://github.com/thangbui/streaming_sparse_gp
9https://github.com/thangbui/streaming_sparse_gp/issues/5

48

https://github.com/thangbui/streaming_sparse_gp
https://github.com/thangbui/streaming_sparse_gp/issues/5

4.3. Regression Task

newer versions of the libraries. The model was rewritten with the minimum
changes possible to transfer to an upgraded version and was supplemented
by enhancement of the former brief documentation. The intention to later
contribute to the original repository with our reimplementation turned out to
be unnecessary. Surprisingly, after approximately four years of inactivity, the
authors published the upgraded version in October 2022. We found out about
this latest contribution to the repository only a few days after it was released
only by accident when reviewing the correctness of the training procedure that
we replicated based on the published experiments. However, since we were
already familiar with the changes that we made in our newer SSGP, tested its
functionality and already started with our experiments, we decided to keep
using our reimplementation. The investigation of their code has shown only
very few changes were made to switch to newer versions and confirmed its
similarity with our reimplementation.

Since we utilised principally the same implementation as used in the paper, we
took inspiration from the conducted experiments and training procedure used
by the authors. Some of the settings were fixed and used throughout all the
demonstrated experiments with both synthetic and real-world datasets, and
we did not see a reason to do it another way. We believe that the settings and
variational inference used across all experiments by the creators of the model
themselves would not be of any limitation for a fair comparison. Adapted
techniques include utilising only the SE kernel or using 1000 training data
samples as an initial training set for pre-modelling with the VFE to obtain
reasonable initial settings for the SSGP. The pre-modelling is considered to
be a part of the whole training procedure and is included in the time mea-
surements of the SSGP algorithm. It should be stressed that there might be
better suited values of the settings regarding performance optimality. Also,
in order to make all the employed GP models perfectly comparable it would
be required using the same or akin frameworks and as much as possible over-
lapping hyperparameter space in every case.

The parameters that we experimented with are batch size and the number of
inducing points. The considered range of these parameters match the default
sets for coarse experiments. Specifically, default values for batch size range
from 200 to 1000 with a step size of 200, and the number of samples in an
inducing set range from 27 to 213 changing in powers of two. Accordingly,
we train 5 × 7 = 35 models for each dataset. As employed in all fine-tuning
experiments, the convergence of the models is monitored using validation data.
However, the maximum number of epochs is set lower compared to other
models since the SSGP was designed for a streaming setting where the data
can be processed only once. Accordingly, the introduced training procedure
includes very thorough processing and learning from each batch and should
perform well after a single epoch.

49

4. Experiments

4.3.1.3 OIPS

Another group of experiments with the SSGP model was performed in com-
bination with OIPS extension. Such an extended model does not have a fixed
size of the inducing set. However, there is a need to set an initial size, for
which we try values from the same range as from the original inducing set
range, i.e. increasing powers of 2. The initial size is set at the beginning of
the training procedure and remains unchanged during pre-modelling with the
VFE model.

Once the training of the SSGP model starts, the inducing set grows based on
data and model characteristics and a threshold parameter ρ. Its domain is
set to {0.3, 0.6, 0.9}, where larger values cause the inducing set to grow more
rapidly. However, it needs to be stated that models with higher ρ values are
more prone to training failure due to insufficient memory capacity compared
to the rest of the employed GPs. The selection of the particular points added
to the current set of inducing points is implemented based on the pseudocode
available in [40]. The number of SSGP models enhanced by OIPS that we test
out is for each dataset equal to 5 × 7 × 3 = 105.

4.3.1.4 PIPS

The last model utilised in the regression experiments is PIPS. We followed the
experimental setup proposed in the paper [41] and used the same values for
the settings fixed in all demonstrated experiments as the authors described in
the appendix dedicated to their design. We adapted settings such as kernel
type, optimiser and learning rates. Since the training is split into three phases
which include pre-training and post-training, early stopping is not included
in the training procedure. The number of epochs is set individually for each
training phase. We utilise numbers of epochs for each of the three stages pre-
sented in the paper for experiments carried out on real-world datasets.

The settings we experimented with include the initial size of the inducing
set, α value and the inducing points prior probability of inclusion. Again,
the initial sizes of the inducing set are the same as the default inducing set
sizes. The domain of the prior probability of inclusion set before the second
training phase and the domain of the α value are limited to {0.3, 0.6, 0.9} and
{0.1, 0.2}, respectively. Altogether, we train 7 × 3 × 2 = 42 PIPS models
for each dataset. We fully utilised the original implementation available in a
publicly available GitHub repository10.

10https://github.com/akuhren/selective_gp

50

https://github.com/akuhren/selective_gp

4.3. Regression Task

4.3.2 Evaluation
In the course of the regression experiments, we evaluated the performance
of the model using three metrics. The first technique used to measure the
prediction quality is Root Mean Squared Error (RMSE), which is commonly
employed for evaluating the error of regression models. The RMSE metric is
computed as

RMSE =

√√√√ 1
n

n∑
i=1

(ŷi − yi)2,

where ŷi is a predicted value, yi is a true value and n is the number of pre-
dicted samples. To put the above formula into words, RMSE is a square
root of Mean Squared Error (MSE) computed as the average value of squared
residuals between the estimated and the true values.

Another metric used for the evaluation of the GP models is Standardized
Mean Squared Error (SMSE), which is obtained by dividing the MSE by the
variance of the true target variable values. Using SMSE rather than MSE is
sometimes the preferred option since MSE is sensitive to the range of values
that the target variable can acquire [10].

However, both previously mentioned metrics ignore that we are also provided
with the model’s uncertainty in its prediction. The third performance measure
utilised for the evaluation considers that the regression models used in this
thesis are probabilistic, and thus they do not output only predictive mean ŷ
but also predictive standard deviation σ̂. The Mean Standardised Log Loss
(MSLL) value can be understood as the average value of the negative log
likelihood of predicted samples under the model [10]. The expression for
MSLL is given as

MSLL = 1
n

n∑
i=1

1
2

log
(
2πσ̂i

2
)

+ (yi − ŷi)2

2σ̂i
2 .

In fine-tuning experiments, each type of model is trained on various setting
combinations from hyperparameter space. Afterwards, the models that take
longer than one day to train are filtered out, and the rest is sorted based
on RMSE and MSLL in this exact order. For each of these metrics, a lower
value means a better fit. In case of multiple models being equally good, the
models are additionally sorted based on the time they needed to converge.
The model with the best metrics values and lowest training time is repeatedly
trained with the same settings. Its final performance is obtained as an average
of these fits.

Another indicator of the goodness of the fit employed for informative purposes
is the percentage of data points that lie within two standard deviations σ̂ of the

51

4. Experiments

mean ŷ. For any given Gaussian distribution, data points within the bounds
should cover approximately 95% of the data. We treat this performance mea-
sure as a metric, though it is actually more of an empirical heuristic.

4.3.3 Results and Discussion
This section presents the procedure used to obtain the results and their overview
in tables along with visualisations and their possible interpretations. The best
model selection for each GP type was accomplished based on the performance
achieved on the validation data in fine-tuning experiments. Finally, the best-
performing models were trained ten times and evaluated on the test data.
Their hyperparameters are demonstrated in Appendix D. The main objective
of the experiments was to examine the quality of each model’s predictions and
detect GPs with superior performance.

Performances and training times measured for the best models are for each
dataset considered available in Tables 4.3 to 4.5. Each cell represents the
mean value for the corresponding metric calculated by averaging the results
obtained from repeated training and evaluation of the best model. For for-
matting purposes, in every table and visualisation demonstrating the models’
performance, the standard GP will be referred to as GP, SSGP with OIPS
extension simply as OIPS and SVGP in batch training regime as SVGP*. In
addition, the best value within each metric is highlighted. The tables’ versions
extended with standard deviation measurements for each of the evaluation cri-
teria are presented in Appendix C.

Firstly, let us present the results obtained for the kin40k dataset used com-
monly as a benchmark in GP literature. It is of no surprise that the standard
GP model is superior in RMSE, SMSE and MSLL metrics. On the other hand,
it is also one of two models that required significantly more training time than
the rest. Regarding the percentage of samples covered within the prediction
bounds, the computed value is very close to the desired 95%, but the SVGP
model performed even better. Also, the SVGP took the least amount of time
to train. In terms of RMSE, SMSE and MSLL, the second-best model is the
VFE, and the third-best is the FITC. Both of these models required less than
a third of the time that was needed to train the standard GP. The model with
the poorest performance according to each criterion is undoubtedly PIPS. The
performance of each of the eight GPs is summarised in Table 4.3.

Experiments with the 3D Road Network dataset have also shown that the
standard GP model has the best prediction quality, as demonstrated by its
superior performance in terms of RMSE, SMSE, and MSLL metrics, as well
as the higher percentage of samples within its prediction bounds. Although
the VFE and OIPS models have slightly lower prediction quality than the

52

4.3. Regression Task

Table 4.3: Mean metrics values obtained by repeated training and evaluation
of the best models on the kin40k dataset.

Model Performance measure Training
time (s)RMSE SMSE MSLL Covered (%)

GP 0.0971 0.0093 -1.0448 94.2133 22309.2132
VFE 0.1109 0.0122 -0.8362 96.3413 6045.4770
FITC 0.1303 0.0168 -0.7403 98.6853 702.2540
SVGP 0.1641 0.0267 -0.7093 95.0493 432.1855
SVGP* 0.1911 0.0361 -0.1253 99.5840 553.3067
SSGP 0.1725 0.0294 0.0973 99.9320 9859.5440
OIPS 0.1385 0.0190 -0.1563 99.7413 26689.6728
PIPS 0.2130 0.0449 -0.0265 87.9413 557.6066

Table 4.4: Mean metrics values obtained by repeated training and evaluation
of the best models on the 3D Road Network dataset.

Model Performance measure Training
time (s)RMSE SMSE MSLL Covered (%)

GP 0.2719 0.0729 -0.0039 94.9867 9383.9991
VFE 0.2960 0.0864 0.1852 94.9400 6224.6407
FITC 0.4033 0.1604 0.0180 93.3627 927.0813
SVGP 0.4825 0.2296 0.2751 97.6893 2462.5867
SVGP* 0.4242 0.1775 0.1931 97.3787 31855.4244
SSGP 0.5221 0.2689 3.7316 81.1920 1307.2037
OIPS 0.3072 0.0931 1.8539 79.0107 6444.0499
PIPS 0.5346 0.2821 15.7997 52.7200 499.9772

Table 4.5: Mean metrics values obtained by repeated training and evaluation
of the best models on the Airline dataset.

Model Performance measure Training
time (s)RMSE SMSE MSLL Covered (%)

GP 0.9305 0.8286 1.3440 95.3467 5424.2358
VFE 0.9375 0.8409 1.3530 95.3107 2835.3271
FITC 0.9381 0.8421 1.1763 95.0413 466.4226
SVGP 0.9498 0.8633 1.3315 92.5520 983.9290
SVGP* 0.9568 0.8760 1.1522 95.0200 352.0852
SSGP 0.9419 0.8490 26.5962 42.7440 7579.0588
OIPS 0.9420 0.8492 39.6042 37.0533 687.6577
PIPS 0.9409 0.8471 58.4339 29.7493 516.5287

53

4. Experiments

Figure 4.2: A visual comparison of the mean SMSE values obtained with the
best-performing VFE and FITC models.

standard GP model, they have faster training times. In contrast, the FITC
model may have the quickest training time among all the models tested, but
its prediction quality falls short compared to many of the other models in our
experiments. The results are summarized in Table 4.4.

It is clear from the results in Table 4.5 that the models performed worse on
the Airline dataset compared to the other two datasets. Additionally, the per-
formance of the models on the Airline dataset was relatively consistent, with
the standard GP, VFE, and FITC models performing the best. While the
standard GP model took longer to train, the VFE and FITC models showed
similar performance to the standard GP model in a much shorter amount of
time. The fastest model was SVGP*, which also had the best performance in
terms of the MSLL metric and the percentage of data points covered.

Now, let’s take a closer look at each model and discuss its performance and
results. To begin with, it is clear that the standard GP model was the stand-
out performer, surpassing the other models in every scenario. Although this
impressive performance came at the cost of longer training times compared to
the majority of the other models. This outcome was to be expected.

Generally, the second best performing model was VFE, which consistently
came in second place after the standard GP model. The predictive power

54

4.3. Regression Task

Figure 4.3: Comparison of all SSGP and OIPS models’ performance after
being trained for one epoch. The RMSE values are measured during fine-
tuning experiments using validation data for the 3D Road Network dataset.

of VFE was almost as good as that of a standard GP, but at a much lower
computational cost. Also, it has been previously observed through coarse ex-
periments that VFE models with higher numbers of inducing points tend to
perform better on the kin40k and 3D Road Network datasets, while the op-
posite is true for the Airline dataset, where lower numbers of inducing points
tend to produce better results. These findings are supported by the sizes of
inducing sets in the best VFE models, as shown in Table D.2.

In the best-performing FITC models, the sizes of inducing sets also match
earlier discoveries. Based on the obtained MSLL values, it appears that the
possible underestimation of uncertainty, as mentioned in Section 3.2.3, did not
occur in this case. The percentages of points lying within two standard devi-
ations from the predictive means also do not indicate any significant issues.
Regarding the overall predictive power, the FITC model consistently performs
worse than the VFE model, as shown in Figure 4.2. The performances vary,
with some instances showing only a slight difference. Additionally, FITC
tends to favour higher learning rates compared to the VFE model.

The evaluation of the results of the SVGP model showed that it did not stand
out as either the best or the worst among the models considered. In terms of
convergence time, it was not the fastest but also not the slowest. Interestingly,
the sizes of the inducing sets of the best SVGP models matched those of the
best VFE and FITC models.

Next, we will discuss the last one of Pyro models. In the Airline dataset, the
SVGP* model performed the best in terms of MSLL and the percentage of
points covered, and was the fastest among all models. However, in the 3D

55

4. Experiments

Figure 4.4: Comparison of the best-performing OIPS model (dark blue) with
OIPS models with the same settings except the batch size. The RMSE values
are measured during fine-tuning experiments using validation data for the 3D
Road Network dataset.

Road Network and kin40k datasets, the SVGP* model was among the worst
performers. Additionally, its training process took an exceptionally long time
on the 3D Road Network dataset compared to the other models. The differ-
ences in the number of inducing points for different datasets were particularly
pronounced for the SVGP* model, as can be seen in Table D.5.

The SSGP model, similar to the SVGP model, generally performed at a
mediocre level, neither the best nor the worst among the models considered.
As shown in Table D.6, the hyperparameters of the best models used in the
final repeated evaluation do not follow a clear pattern. Both the inducing set
and batch sizes varied, ranging from smaller to larger values.

Since the OIPS model builds upon SSGP, it would be reasonable to expect
its superiority. This assumption has turned out to be true in two times out
of three. The OIPS model performed worse than SSGP only when predicting
the Airline dataset, though the difference is not significant. The RMSE values
computed for all SSGP and OIPS models trained on the 3D Road Network
dataset for one epoch during fine-tuning phase are depicted in Figure 4.3.
The visualisation indicates that the OIPS model is able to achieve much lower
RMSE values compared to the SSGP model.

56

4.3. Regression Task

Figure 4.5: The RMSE values measured for PIPS models during the fine-
tuning experiments grouped by the α value. The models were trained on the
kin40k dataset.

The hyperparameter values of the best-performing OIPS models, shown in Ta-
ble D.7, indicate that it performs better with higher batch size values, which
we tested in the range of 200 to 1000. This assumption is supported by Figure
4.4 , which shows a comparison of the best-performing OIPS model with OIPS
models that have the same settings on the Airline dataset, except for the batch
size. Some batch sizes are not shown due to training failures. The values of
the hyperparameter ρ show a trend, indicating that the OIPS model performs
better with larger ρ values. Additionally, the OIPS model appears to prefer
very small initial inducing set sizes, such as 128 and 256. Even when starting
only with a small number of inducing points, the final inducing set size for
the kin40k dataset exceeds 2300 points, 900 points for the Airline dataset and
4600 point for the 3D Road Network dataset.

The last GP model that we experimented with in the regression experiments
is PIPS. Based on the results from the fine-tuning experiments, the hyperpa-
rameter settings chosen for the final repeated training and evaluation of PIPS
models demonstrate that some hyperparameter values are generally better
than others. For every dataset, the best-performing models have α equal
to 0.1. All models that were trained during the fine-tuning experiments for
the kin40k dataset are split into two groups based on the α value, and their
performance in RMSE metric is visualised in Figure 4.5. The RMSE values
obtained from the evaluation of the validation data show a notable differ-
ence between the two groups and demonstrate a significant influence of the
α hyperparameter. Furthermore, PIPS models performed better with smaller
inducing set sizes and bigger prior probabilities of inclusion. The influence of
the different values used for the prior probability of inclusion is demonstrated
for the kin40k dataset in Figure 4.6. The overview of all three hyperparameter

57

4. Experiments

Figure 4.6: The RMSE values measured for PIPS models during the fine-
tuning experiments grouped by the prior probability of inclusion. The models
were trained on the kin40k dataset.

values used for the best PIPS models is presented in Table D.8. Regarding
performance, PIPS models achieved generally very poor results in the MSLL
metric. The obtained results also show that PIPS covers fewer data points
than the rest of the employed models. Such inferior performance is surprising
primarily because PIPS, together with OIPS, is among the latest published
models employed in this work. However, PIPS models are among the models
with lower training times in every case.

4.3.3.1 Trade-off between Speed and Accuracy

In this section, we discuss the performance of the GP models from the per-
spective of a trade-off between speed and accuracy. We analyse the training
times and RMSE values in an attempt to identify the best compromise be-
tween these two factors. We show comparisons of GP models in all three
datasets and, additionally few comparisons within a model type.

From the results of the kin40k dataset visualised in Figure 4.7, it is clear that
the PIPS, SVGP, and SVGP* models have slightly lower training times than
FITC but significantly worse performance. The VFE and standard GP mod-
els also offer a good balance between performance and time. The SSGP and
OIPS models, on the other hand, provide the worst trade-offs. Overall, these
results indicate that the SVGP, FITC, VFE and standard GP models form
the Pareto front and thus are efficient performers for the kin40k dataset.

For the 3D Road dataset, using the PIPS, SSGP, or SVGP models would not
be beneficial as they have higher RMSE values than the FITC model with
very similar training times as is apparent from Figure 4.8. However, the PIPS
belongs to the Pareto front as well. A sound trade-off is also offered by the

58

4.3. Regression Task

Figure 4.7: Comparison of GP models in terms of trade-off between prediction
quality and training time for the kin40k dataset.

Figure 4.8: Comparison of GP models in terms of trade-off between prediction
quality and training time for the 3D Road Network dataset.

VFE and standard GP models. The OIPS model is not worthwhile due to its
longer training time and inferior performance compared to the VFE model.
The very poor performance of the SVGP* model once again confirms that a
longer training time does not necessarily lead to better results.

The Figure 4.9 for the Airline dataset shows that the differences in RMSE
values are negligible, while the training time values are more diverse. Based
on this visualisation, the SSGP model may not be the best choice for this

59

4. Experiments

Figure 4.9: Comparison of GP models in terms of trade-off between prediction
quality and training time for the Airline dataset.

dataset as it has the worst balance of speed and prediction quality among
all models. When considering the numerical results in Table 4.5, we can see
that the SVGP*, FITC, VFE, and standard GP models offer the highest level
of accuracy for the Airline dataset within the same or shorter training time
compared to the other models.

In conclusion, our results show that the Pareto front always contains the
standard GP, VFE, and FITC models, which offer the best trade-off in terms
of prediction quality and training speed and are superior performers compared
to the other models considered in this study. We consider examining the trade-
off between training time and prediction quality of GP models essential, as
a model with high prediction quality but a long training time may not be
practical for many applications. On the other hand, a model with a shorter
training time and slightly worse performance may still be useful. By examining
the models from this perspective, we can identify which models offer the best
balance between training time and prediction quality and thus make informed
decisions about which model to use for a given task rather than deciding solely
based on their performance.

4.4 Bayesian Optimisation Task
This section covers the specifics of the experiments with several GPs in sim-
ulated Bayesian optimisation that were carried out, the methods employed to
determine the sufficient quality of the found solution and the results along
with their interpretation.

60

4.4. Bayesian Optimisation Task

The problem we are addressing involves finding the maximum of a function
when only a few evaluations are available initially. Since we lack the training
data, the fact that SSGP, OIPS and PIPS each sample an initial inducing set
from them is an obstacle. At the same time, SSGP and OIPS require data for
the pre-modeling phase, and this data should not overlap with the data used
later during model’s training. Given that we have only units of data samples
at the beginning, we cannot afford to separate a subset, let alone big enough
to be able to obtain a reasonable starting point for the models during the
pre-modelling phase. Therefore, due to these reasons, the experiments in this
chapter are conducted using standard GP, VFE, FITC, SVGP and SVGP*.

4.4.1 Design of Experiments
The experiments presented in this section were conducted after those related
to the regression task. At this point, we already had an intuitive understand-
ing of the models and the influence of the hyperparameters’ values on their
performance. We exploited the knowledge gained from previous experiments
with the GPs and reused the settings used for the the fine-tuning phase of
regression task.

Our optimised objective function is multimodal, and we will attempt to find
a data point in an immediate proximity of its maximum. Therefore, it will
most likely require evaluating a large number of samples during the Bayesian
optimisation run, and the training data will grow to thousands of data points,
as was the case with regression datasets. For this reason, reusing the settings
should not pose an obstacle. In Section 4.1, we present the optimised function
alongside other datasets, and through the use of Bayesian optimisation, we
constrain the function’s domain to the range of 0 to 35, as depicted in Fig-
ure 4.10.

Prior experiments with GPs allowed us to obtain most of the settings that are
experimented with in relation to the surrogate models easily. In the Bayesian
optimisation task, it is necessary to additionally set the number of epochs for
which the model is trained:

• on the initial training data,

• after each dataset augmentation.

The number of epochs used for the training on the initial dataset of size 15 is
fixed at 100. All 15 data points are equally spread across the whole domain.
During each iteration of the Bayesian optimisation algorithm, the model is
updated by being trained on the dataset augmented with a new objective
function’s evaluation for 10 epochs. The exception is the SVGP* model for

61

4. Experiments

Figure 4.10: Function optimised in Bayesian optimisation task within a con-
strained domain.

which is the number of epochs per iteration set to 3. Moreover, as described
in Section 4.1, all function evaluations are corrupted by noise by default. To
sum up, the simulation is performed by gradually supplying GP models with
data points from the synthetic dataset.

Still, there is a need to make design choices associated with the second key
ingredient of Bayesian optimisation, an acquisition function. We decided to
test out three types of acquisition functions presented in Section 1.2: UCB,
PI and EI. In addition, each of the selected acquisition functions has a hyper-
parameter that needs to be specified. For UCB, we set κ = 2, and for PI and
EI, hyperparameter ξ was fixed to 0.01 as suggested in [56].

Since we deal with maximum optimisation, the acquisition function is max-
imised in order to decide where to evaluate the objective function next. In a
sense, we have an optimisation problem within another optimisation problem.
However, there are several possibilities of approaching this. Instead of using
gradient-based optimisation algorithms, we opted for two simpler strategies.
The first is a random selection, and the second uses a grid with additive noise.
In both cases, we generate 80 candidates for subsequent evaluation of the ob-
jective function. The selected point is the candidate with a maximum value
when evaluated using an acquisition function. Repeated evaluation of the ac-
quisition function does not constitute an issue since it is cheap to evaluate.

Altogether, with all possible combinations of setting related to the surrogate
model and the acquisition function, we run Bayesian optimisation 12 times
with the standard GP, 96 times with VFE and FITC each, 120 times for
SVGP and 300 times for SVGP*.

62

4.4. Bayesian Optimisation Task

Table 4.6: Minimum time and number of iterations required to find an ade-
quate solution for the most successful runs of the Bayesian optimisation within
individual models.

Model
GP VFE FITC SVGP SVGP*

Time (s) 95.6946 9.0157 9.2546 11.1699 4.1552
Number of
iterations 521 41 41 51 21

4.4.2 Evaluation

For Bayesian optimisation experiments, the number of evaluations of the ob-
jective function is upper-bounded. Specifically, the maximum number of it-
erations for each Bayesian optimisation run is set to 8000. The algorithm is
stopped if the found solution is close to the maximum, which is defined as
being within a distance of 2 × 10−4. If no such solution is found, the search
is considered unsuccessful. For each GP type, the best combination of the
model and the acquisition function is selected from the successful runs based
on the time required to find the point close enough to the true maximum.

4.4.3 Results and Discussion

In this section, we present the results of our experiments on Bayesian opti-
misation using selected GP models. We conducted a series of experiments to
evaluate the performance of different GP models and acquisition functions in
finding the maximum of an objective function. The results of these experi-
ments allowed us to identify the most effective combinations of GP models
and acquisition functions and compare their performance in terms of speed
and the required number of evaluations.

Table 4.6 indicates that all GP model types except for the standard GP were
able to find an adequate solution in a relatively short time. However, this
does not necessarily mean that using these models in Bayesian optimisation
will consistently lead to quick solution finding. On the other hand, Figure
4.11 suggests that each best solution presented in Table 4.6 is only the result
of one successful setting combination among many. Additionally, it is possible
that the success of these solutions is influenced by the random sampling of
candidate points for evaluation. In fact, the best solutions found using the
standard GP, VFE, and FITC models all employed the random sampling
strategy, and they all utilised the UCB acquisition function. The solutions
found using the SVGP and SVGP* models, on the other hand, were found
using the EI acquisition function and the grid sampling strategy. In all of the
sparse models, the number of inducing points was set to 8192.

63

4. Experiments

Figure 4.11: A visualisation showing the difference in the number of evalua-
tions required for Bayesian optimisation using the employed GP models.

Figure 4.12: A visualisation showing the variation in run times for Bayesian
optimization using the employed GP models.

Despite the initial impression that the standard GP model is the least effective
due to the higher minimum number of evaluations needed to find a solution
compared to other models, Figure 4.11 does not support this conclusion. In
fact, the standard GP model was the only one that consistently required fewer
than 3500 objective function evaluations. Although the standard GP model
generally required fewer evaluations to find a solution, it took longer to do
so compared to the other models, as demonstrated in Figure 4.12. Three
iterations of the Bayesian optimisation process using a standard GP model,
which ultimately resulted in a solution after 521 iterations, are illustrated in
Figure 4.13.

64

4.4. Bayesian Optimisation Task

Figure 4.13: A visualisation of three iterations of the Bayesian optimisation
using the standard GP surrogate model.

65

4. Experiments

Figure 4.14: Comparison of different sampling strategies used for the Bayesian
optimisation runs with the standard GP model.

Figure 4.15: Comparison of different acquisition functions used for the
Bayesian optimisation runs with the standard GP model.

While the VFE and FITC models were able to find solutions in less time
on some occasions, they also needed more time to find solutions on other
occasions. There were also some outliers that required significantly more
evaluations to approach the true maximum, with one instance of Bayesian
optimisation using the FITC model being unsuccessful in finding a solution
(the maximum number of allowed evaluations was 8000). Despite the varying
number of evaluations required to find a solution, the VFE and FITC models
consistently needed less time than the standard GP model. Lastly, the SVGP
and SVGP* models often failed to find points close to the optimum, as seen
in Figure 4.11. In addition, Figure 4.12 suggests that they required a longer
runtime.

66

4.4. Bayesian Optimisation Task

In order to gain a more detailed understanding of the runs with the three
models (standard GP, VFE, and FITC) that were able to find a solution each
time (with one exception), it is worth examining the influence of different
settings. Regarding sampling strategies, random sampling sometimes allowed
for quick solution finding, but it also sometimes led to slow solution finding,
as can be seen in Figure 4.14, which visualises runs of Bayesian optimisation
with the standard GP model divided by sampling strategy. The differences in
the use of various sampling strategies are also evident, but to a lesser degree,
in instances using VFE and FITC models.

The differences in the use of various acquisition functions were not significant
in most cases. The only noticeable effect was with the standard GP model,
where the EI acquisition function was the most successful as shown in Fig-
ure 4.15. However, it should be noted that there were only 12 instances of
Bayesian optimisation using the standard GP model, so if more experiments
were conducted, it is possible that the differences would be less pronounced.

67

Conclusion

This chapter reviews the undertaken steps and work that was performed to
fulfil our goals and discusses possible future work directions. As described at
the very beginning of this thesis, we established three objectives.

The first goal was to conduct a survey of state-of-the-art scalable GPs, which
is provided in Chapter 3. We present one of possible taxonomies of scalable
GP models and provide a concise description of their main representatives.
Among all the introduced groups, special attention is given to the global
sparse approximation methods and models belonging to this category. A de-
tailed description is provided for several influential and recent global sparse
GP models, some of which are later employed in the experimental part of the
thesis.

Our contribution primarily lies in adapting multiple selected GPs and their
application in tasks of regression and Bayesian optimisation. The experiments
and evaluation of models’ performance in both contexts fulfil the second and
third objectives stated in this thesis. In the regression task, we demonstrate
the models’ prediction quality on various datasets and compare their perfor-
mance measured using several metrics. The results of the conducted exper-
iments indicate that standard GP, VFE, and FITC models, in that order,
have superior predictive capabilities compared to the other GP models used
in the experiments. However, there were some datasets, such as the Airline
dataset, that proved challenging for all of the GP models, resulting in similar
prediction quality for each model.

In the Bayesian optimisation task, we evaluate the ability of various models
to search for the extrema of a function. Several GP models that we employed
in the regression task are unsuitable for usage in our Bayesian optimisation
setup and were thus omitted for this scenario, as explained in Section 4.4. We
found that most of the models performed similarly when using different sam-

69

Conclusion

pling strategies or acquisition functions. However, the choice of a surrogate
model appears to have a more significant impact on the results. The standard
GP, VFE, and FITC models were consistently better at finding an adequate
solution with fewer evaluations.

Nevertheless, there is an immense number of intricacies related to GPs left
unexplored. The following text suggests several directions for extending this
work, which were neglected due to the time and computational limitations.

Firstly, there are many state-of-the-art GP models utilising novel ideas and
approaches, which were not mentioned nor employed. On account of GPs
being appealing to many researchers, their application to various fields is on
the rise. Few examples of other usage are covered in Section 3.4, which in-
cludes only a mere fraction of possible application areas and purposes they
can serve. One of the listed models is the hierarchical GP model proposed
in [45], which is able to combine global and local information in a way that
could be beneficial for certain problems. It might be interesting to consider
using and exploiting the capabilities of this GP model for for addressing the
challenges of our datasets, especially the spatial 3D Road Network dataset.

Even though the experiments we performed took a considerable amount of
time, it would be reasonable to explore the hyperparameter space more thor-
oughly. Particularly interesting might be testing out more kernel types and
their various combinations. Another possible experiment could utilise and
evaluate different strategies for the initial values of kernel’s parameters. Our
strategy used default values, which is not a limitation but does not ensure
a good starting point for the model. Of course, none of the more complex
strategies can guarantee the best possible parameter values, but can be help-
ful in providing initialisation values more advantageous for the model. For
instance, one such technique might be using heuristics to infer the parameter
values directly from the training data.

Another possible future work direction could aim to investigate different hy-
perparameter values of SSGP, OIPS and PIPS models, which were considered
to be fixed within our experiments. The hyperparameter values we used were
taken from experiment descriptions provided by their authors, which does not
necessarily mean there is no possible improvement. It could be daring to find
the best performing values or extend these models and work in some novel
ideas.

Each one of the models listed in the previous paragraph was left out of our
experiments related to the Bayesian optimisation task. The omission of these
models is a consequence of the models’ unfitness for the problem we addressed.
Suppose the scenario is changed to having a lot of points evaluated beforehand

70

and thus having an initial dataset big enough. In that case, these models can
also be employed in the context of Bayesian optimisation. Another experi-
mental design that can be utilised when we lack the data might include the
possibility of obtaining the initial training dataset with different strategies,
such as random selection and evaluation of a few hundred of data points.

Investigating the wealth of potentially promising areas offered by this work
and the current GP literature could take us a step further in our attempts to
overcome the challenges associated with GPs. At the end of the day, what
matters is continuous research and development, striving to improve current
solutions and thus paving the way for groundbreaking discoveries in the near
future.

71

Bibliography

1. BROCHU, Eric; CORA, Vlad M.; FREITAS, Nando de. A Tutorial
on Bayesian Optimization of Expensive Cost Functions, with Applica-
tion to Active User Modeling and Hierarchical Reinforcement Learn-
ing. arXiv:1012.2599 [cs] [online]. 2010 [visited on 2021-08-28]. Available
from: http://arxiv.org/abs/1012.2599.

2. WORTMANN, Thomas {and} Giacomo Nannicini. Black-Box Optimi-
sation Methods for Architectural Design. In: Living Systems and Micro-
Utopias: Towards Continuous Designing, Proceedings of the 21st Inter-
national Conference on Computer-Aided Architectural Design Research
in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 177-
186 [online]. CUMINCAD, 2016 [visited on 2021-09-28]. Available from:
http://papers.cumincad.org/cgi-bin/works/Show?caadria2016_
177.

3. HASANÇEBI, OĞUZHAN; ÇARBAŞ, S; DOĞAN, E; ERDAL, FERİDE;
SAKA, MP. Performance evaluation of metaheuristic search techniques
in the optimum design of real size pin jointed structures. Computers &
Structures. 2009, vol. 87, no. 5-6, pp. 284–302.

4. RIOS, Luis Miguel; SAHINIDIS, Nikolaos V. Derivative-free optimiza-
tion: a review of algorithms and comparison of software implementations.
Journal of Global Optimization. 2013, vol. 56, no. 3, pp. 1247–1293.

5. SHAHRIARI, Bobak; SWERSKY, Kevin; WANG, Ziyu; ADAMS, Ryan
P.; FREITAS, Nando de. Taking the Human Out of the Loop: A Re-
view of Bayesian Optimization. Proc. IEEE [online]. 2016, vol. 104, no.
1, pp. 148–175 [visited on 2021-09-01]. issn 0018-9219, issn 1558-2256.
Available from doi: 10.1109/JPROC.2015.2494218.

6. SNOEK, Jasper; LAROCHELLE, Hugo; ADAMS, Ryan P. Practical
bayesian optimization of machine learning algorithms. Advances in neu-
ral information processing systems. 2012, vol. 25.

73

http://arxiv.org/abs/1012.2599
http://papers.cumincad.org/cgi-bin/works/Show?caadria2016_177
http://papers.cumincad.org/cgi-bin/works/Show?caadria2016_177
https://doi.org/10.1109/JPROC.2015.2494218

Bibliography

7. CANDELIERI, Antonio; PEREGO, Riccardo; GIORDANI, Ilaria; PONTI,
Andrea; ARCHETTI, Francesco. Modelling human active search in opti-
mizing black-box functions. Soft Computing. 2020, vol. 24, no. 23, pp. 17771–
17785.

8. NANDY, Abhilash; KUMAR, Chandan; MEWADA, Deepak; SHARMA,
Soumya. Bayesian Optimization–Multi-Armed Bandit Problem. arXiv
preprint arXiv:2012.07885. 2020.

9. BERGSTRA, James; BARDENET, Rémi; BENGIO, Yoshua; KÉGL,
Balázs. Algorithms for hyper-parameter optimization. Advances in neural
information processing systems. 2011, vol. 24.

10. WILLIAMS, Christopher K; RASMUSSEN, Carl Edward. Gaussian pro-
cesses for machine learning. MIT press Cambridge, MA, 2006. No. 3.

11. BREIMAN, Leo. Random forests. Machine learning. 2001, vol. 45, no. 1,
pp. 5–32.

12. HOOF, Jeroen van; VANSCHOREN, Joaquin. Hyperboost: Hyperpa-
rameter Optimization by Gradient Boosting surrogate models. arXiv
preprint arXiv:2101.02289. 2021.

13. LIU, Haitao; ONG, Yew-Soon; SHEN, Xiaobo; CAI, Jianfei. When Gaus-
sian Process Meets Big Data: A Review of Scalable GPs. arXiv:1807.01065
[cs, stat] [online]. 2019 [visited on 2021-09-24]. Available from arXiv:
1807.01065.

14. SRINIVAS, Niranjan; KRAUSE, Andreas; KAKADE, ShamM; SEEGER,
Matthias. Gaussian process optimization in the bandit setting: No regret
and experimental design. arXiv preprint arXiv:0912.3995. 2009.

15. KUSHNER, Harold J. A new method of locating the maximum point of
an arbitrary multipeak curve in the presence of noise. 1964.

16. MOČKUS, Jonas. On Bayesian methods for seeking the extremum. In:
Optimization techniques IFIP technical conference. 1975, pp. 400–404.

17. HENNIG, Philipp; SCHULER, Christian J. Entropy Search for Information-
Efficient Global Optimization. Journal of Machine Learning Research.
2012, vol. 13, no. 6.

18. THOMPSON, William R. On the likelihood that one unknown probabil-
ity exceeds another in view of the evidence of two samples. Biometrika.
1933, vol. 25, no. 3/4, pp. 285–294.

19. HOFFMAN, Matthew; BROCHU, Eric; DE FREITAS, Nando, et al.
Portfolio Allocation for Bayesian Optimization. In: UAI. 2011, pp. 327–
336.

74

https://arxiv.org/abs/1807.01065

Bibliography

20. LYU, Wenlong; YANG, Fan; YAN, Changhao; ZHOU, Dian; ZENG,
Xuan. Batch Bayesian optimization via multi-objective acquisition en-
semble for automated analog circuit design. In: International conference
on machine learning. 2018, pp. 3306–3314.

21. WANG, Jie. An intuitive tutorial to Gaussian processes regression. arXiv
preprint arXiv:2009.10862. 2020.

22. SCHULZ, Eric; SPEEKENBRINK, Maarten; KRAUSE, Andreas. A tu-
torial on Gaussian process regression: Modelling, exploring, and exploit-
ing functions. Journal of Mathematical Psychology [online]. 2018, vol. 85,
pp. 1–16 [visited on 2021-11-19]. issn 0022-2496. Available from doi:
10.1016/j.jmp.2018.03.001.

23. CHEN, Zexun; WANG, Bo. How priors of initial hyperparameters af-
fect Gaussian process regression models. Neurocomputing. 2018, vol. 275,
pp. 1702–1710.

24. WENDLAND, Holger. Piecewise polynomial, positive definite and com-
pactly supported radial functions of minimal degree. Advances in com-
putational Mathematics. 1995, vol. 4, no. 1, pp. 389–396.

25. KIM, Hyoung-Moon; MALLICK, Bani K; HOLMES, Chris C. Analyzing
nonstationary spatial data using piecewise Gaussian processes. Journal
of the American Statistical Association. 2005, vol. 100, no. 470, pp. 653–
668.

26. JACOBS, Robert A; JORDAN, Michael I; NOWLAN, Steven J; HIN-
TON, Geoffrey E. Adaptive mixtures of local experts. Neural computa-
tion. 1991, vol. 3, no. 1, pp. 79–87.

27. HINTON, Geoffrey E. Training products of experts by minimizing con-
trastive divergence. Neural computation. 2002, vol. 14, no. 8, pp. 1771–
1800.

28. QUINONERO-CANDELA, Joaquin; RASMUSSEN, Carl Edward. A uni-
fying view of sparse approximate Gaussian process regression. The Jour-
nal of Machine Learning Research. 2005, vol. 6, pp. 1939–1959.

29. WILSON, Andrew; NICKISCH, Hannes. Kernel interpolation for scal-
able structured Gaussian processes (KISS-GP). In: International confer-
ence on machine learning. 2015, pp. 1775–1784.

30. LIU, Haitao; CAI, Jianfei; ONG, Yew-Soon; WANG, Yi. Understand-
ing and comparing scalable Gaussian process regression for big data.
Knowledge-Based Systems. 2019, vol. 164, pp. 324–335.

31. SNELSON, Edward; GHAHRAMANI, Zoubin. Sparse Gaussian processes
using pseudo-inputs. Advances in neural information processing systems.
2005, vol. 18.

75

https://doi.org/10.1016/j.jmp.2018.03.001

Bibliography

32. BAUER, Matthias; WILK, Mark van der; RASMUSSEN, Carl Edward.
Understanding probabilistic sparse Gaussian process approximations. Ad-
vances in neural information processing systems. 2016, vol. 29.

33. TITSIAS, Michalis. Variational learning of inducing variables in sparse
Gaussian processes. In: Artificial intelligence and statistics. 2009, pp. 567–
574.

34. BLEI, David M; KUCUKELBIR, Alp; MCAULIFFE, Jon D. Variational
inference: A review for statisticians. Journal of the American statistical
Association. 2017, vol. 112, no. 518, pp. 859–877.

35. DAI, Zhenwen. Scalability of Gaussian Process [The Gaussian Process
Summer School 2021, online]. 2021. Available also from: https://zhenwendai.
github.io/slides/gpss2021_slides.pdf.

36. HENSMAN, James; FUSI, Nicolo; LAWRENCE, Neil D. Gaussian pro-
cesses for big data. arXiv preprint arXiv:1309.6835. 2013.

37. SCHÜRCH, Manuel; AZZIMONTI, Dario; BENAVOLI, Alessio; ZAF-
FALON, Marco. Recursive estimation for sparse Gaussian process re-
gression. Automatica. 2020, vol. 120, p. 109127.

38. BUI, Thang D; NGUYEN, Cuong; TURNER, Richard E. Streaming
sparse Gaussian process approximations. Advances in Neural Informa-
tion Processing Systems. 2017, vol. 30.

39. BUI, Thang D; NGUYEN, Cuong; TURNER, Richard E; JOHN, S T.
Streaming sparse Gaussian process approximations implementation [comp.
software]. GitHub, 2022. Available also from: https://github.com/
thangbui/streaming_sparse_gp.

40. GALY-FAJOU, Théo; OPPER, Manfred. Adaptive inducing points se-
lection for gaussian processes. arXiv preprint arXiv:2107.10066. 2021.

41. UHRENHOLT, Anders Kirk; CHARVET, Valentin; JENSEN, Bjørn Sand.
Probabilistic selection of inducing points in sparse Gaussian processes.
In: Uncertainty in Artificial Intelligence. 2021, pp. 1035–1044.

42. BLAŽEK, Rudolf B. et al. NI-VSM – Vybrané statistické metody: soubor
handoutů. 2022. Available also from: https://courses.fit.cvut.cz/
NI-VSM/lectures/files/NI-VSM-TextBook-Handout.pdf.

43. BLISCHKE, Wallace R; MURTHY, DN Prabhakar. Reliability: model-
ing, prediction, and optimization. John Wiley & Sons, 2011.

44. JANKOWIAK, Martin; PLEISS, Geoff; GARDNER, Jacob. Parametric
gaussian process regressors. In: International Conference on Machine
Learning. 2020, pp. 4702–4712.

76

https://zhenwendai.github.io/slides/gpss2021_slides.pdf
https://zhenwendai.github.io/slides/gpss2021_slides.pdf
https://github.com/thangbui/streaming_sparse_gp
https://github.com/thangbui/streaming_sparse_gp
https://courses.fit.cvut.cz/NI-VSM/lectures/files/NI-VSM-TextBook-Handout.pdf
https://courses.fit.cvut.cz/NI-VSM/lectures/files/NI-VSM-TextBook-Handout.pdf

Bibliography

45. NGUYEN, Thi Nhat Anh; BOUZERDOUM, Abdesselam; PHUNG, Son
Lam. Stochastic variational hierarchical mixture of sparse Gaussian pro-
cesses for regression. Machine Learning. 2018, vol. 107, no. 12, pp. 1947–
1986.

46. RIOS, Gonzalo; TOBAR, Felipe. Compositionally-warped Gaussian pro-
cesses. Neural Networks. 2019, vol. 118, pp. 235–246.

47. LIU, Haitao; CAI, Jianfei; ONG, Yew-Soon. Remarks on multi-output
Gaussian process regression. Knowledge-Based Systems. 2018, vol. 144,
pp. 102–121.

48. NGUYEN, Trung; BONILLA, Edwin. Fast allocation of Gaussian pro-
cess experts. In: International Conference on Machine Learning. 2014,
pp. 145–153.

49. KAUL, Manohar; YANG, Bin; JENSEN, Christian S. Building accurate
3d spatial networks to enable next generation intelligent transportation
systems. In: 2013 IEEE 14th International Conference on Mobile Data
Management. 2013, vol. 1, pp. 137–146.

50. TERRY, Nick; CHOE, Youngjun. Splitting Gaussian Process Regression
for Streaming Data. arXiv preprint arXiv:2010.02424. 2020.

51. DEISENROTH, Marc P; LUO, Yicheng; WILK, Mark van der. A prac-
tical guide to Gaussian processes. Distill (cit. on pp. 79, 100). 2019.

52. VANROSSUM, Guido. Python reference manual. Department of Com-
puter Science [CS]. 1995, no. R 9525.

53. PASZKE, Adam et al. Automatic differentiation in pytorch. 2017.
54. MATTHEWS, Alexander G de G et al. GPflow: A Gaussian Process

Library using TensorFlow. J. Mach. Learn. Res. 2017, vol. 18, no. 40,
pp. 1–6.

55. GARDNER, Jacob; PLEISS, Geoff; WEINBERGER, Kilian Q; BINDEL,
David; WILSON, Andrew G. Gpytorch: Blackbox matrix-matrix gaus-
sian process inference with gpu acceleration. Advances in neural infor-
mation processing systems. 2018, vol. 31.

56. LIZOTTE, Daniel James. Practical Bayesian Optimization. CAN: Uni-
versity of Alberta, 2008. isbn 9780494463659. PhD thesis. AAINR46365.

77

Appendix A
Acronyms

EI Expected improvement

ELBO Evidence lower bound

ES Entropy search

FITC Fully Independent Training Conditional

GP Gaussian Process

MOGP Multioutput Gaussian Process

MS Mean square

MSE Mean Squared Error

MSLL Mean Standardised Log Loss

MoE Mixture-of-experts

OIPS Online Inducing Points Selection

PI Probability of improvement

PIPS Probabilistic Inducing Points Selection

PoE Product-of-experts

RF Random Forests

RMSE Root Mean Squared Error

RQ Rational quadratic

SE Squared exponential

79

A. Acronyms

SMSE Standardised Mean Squared Error

SSGP Streaming Sparse Gaussian Process

SVGP Stochastic Variational Gaussian Process

SKI Structured Kernel Interpolation

TPE Tree-Parzen Estimators

UCB Upper confidence bound

VFE Variational Free Energy

80

Appendix B
Supplementary Material to

SSGP

B.1 Prediction
Let Xs be a matrix of test data points. The predictive mean ms and predictive
covariance Vss are calculated as [38]

Vss = Kss − KsbK−1
bb Kbs + KsbK−1

bb

(
K−1

bb + K−1
bb KbfΣ−1

ŷ Kf̂bK−1
bb

)−1
K−1

bb Kbs

= Kss − KsbK−1
bb Kbs + KsbL−T

b

(
I + L−1

b Kbf̂Σ
−1
ŷ Kf̂bL−T

b

)−1
L−1

b Kbs

= Kss − KsbK−1
bb Kbs + KsbL−T

b D−1L−1
b Kbs,

ms = KsbK−1
bb

(
K−1

bb + K−1
bb Kbf̂Σ

−1
ŷ Kf̂bK−1

bb

)−1
K−1

bb Kbf̂Σ
−1
ŷ ŷ

= KsbL−T
b

(
I + L−1

b Kbf̂Σ
−1
ŷ Kf̂bL−T

b

)−1
L−1

b Kbf̂Σ
−1
ŷ ŷ

= KsbL−T
b D−1L−1

b Kbf̂Σ
−1
ŷ ŷ.

Note that, Kss = K(Xs, Xs), Ksb = K(Xs, Zb), Kbs = KT
sb, Kbf = KT

fb,
Kbb = K(Zb, Zb) = LbLT

b and D = I + L−1
b Kbf̂Σ

−1
ŷ Kf̂bL−T

b . The remaining
terms were already introduced in Section 3.3.2, which is a core section for this
supplementary material, and their redefinition will be therefore omitted.

81

B. Supplementary Material to SSGP

B.2 Step-by-step from Theoretical to Practical
Bound

The authors of the SSGP model [38] presented both theoretical bound and
bound adapted for practical usage. The practical bound is given as

log L(θ) = −n

2
log

(
2πσ2

y

)
− 1

2
log |D| − 1

2σ2
y

yT y + 1
2

cT L−T
b D−1L−1

b c

− 1
2

log |Sa| + 1
2

log |Kaa| − 1
2

tr
(
D−1

a Qa
)

− 1
2

mT
a S−1

a ma − 1
2σ2

y
tr (Qf) .

It can be derived from the theoretical bound as follows:

log L(θ) = log N (0, Kf̂ f̂ + Σŷ) + ∆1 + ∆2,

log L(θ) = −n + ma
2

log(2π) − 1
2

log
∣∣Kf̂ f̂ + Σŷ

∣∣− 1
2

ŷT (Kf̂ f̂ + Σŷ
)−1 ŷ + ∆1 + ∆2,

log L(θ) = −n + ma
2

log(2π) − 1
2

(
log |Σŷ| + log

∣∣∣I + L−1
b Kbf̂Σ

−1
ŷ Kf̂bL−T

b

∣∣∣)
− 1

2
ŷT
(
Kf̂bK−1

bb Kbf̂ + Σŷ
)−1

ŷ + ∆1 + ∆2,

log L(θ) = −n + ma
2

log(2π) − 1
2

(
n log σ2

y + log |Da| + log |D|
)

− 1
2

ŷT
(
Σ−1

ŷ − Σ−1
ŷ Kf̂bL−T

b D−1L−1
b Kbf̂Σ

−1
ŷ

)
ŷ + ∆1 + ∆2,

log L(θ) = −n + ma
2

log(2π) − 1
2

(
n log σ2

y + log |Da| + log |D|
)

− 1
2

(
ŷT Σ−1

ŷ ŷ − ŷT Σ−1
ŷ Kf̂bL−T

b D−1L−1
b Kbf̂Σ

−1
ŷ ŷ

)
+ ∆1 + ∆2,

log L(θ) = −n + ma
2

log(2π) − 1
2

(
n log σ2

y + log |Da| + log |D|
)

− 1
2

(
1
σ2

y
ŷT ŷ + mT

a S−1
a DaS−1

a ma − ŷT Σ−1
ŷ Kf̂bL−T

b D−1L−1
b Kbf̂Σ

−1
ŷ ŷ

)
+ ∆1 + ∆2,

log L(θ) = −n + ma
2

log(2π) − 1
2

(
n log σ2

y + log |Da| + log |D|
)

− 1
2

(
1
σ2

y
ŷT ŷ + mT

a S−1
a DaS−1

a ma − ŷT Σ−1
ŷ Kf̂bL−T

b D−1L−1
b Kbf̂Σ

−1
ŷ ŷ

)

+ 1
2

(
− log |Sa|

|Kaa| |Da|
+ mT

a S−1
a DaS−1

a ma − tr
(
D−1

a Qa
)

− mT
a S−1

a ma

+ ma log(2π)
)

− 1
2σ2

y
tr (Qf) ,

82

B.2. Step-by-step from Theoretical to Practical Bound

log L(θ) = −n + ma
2

log(2π) − 1
2

(
n log σ2

y + log |Da| + log |D|
)

− 1
2

(
1
σ2

y
ŷT ŷ − ŷT Σ−1

ŷ Kf̂bL−T
b D−1L−1

b Kbf̂Σ
−1
ŷ ŷ

)

+ 1
2

(
− log |Sa|

|Kaa| |Da|
− tr

(
D−1

a Qa
)

− mT
a S−1

a ma + ma log(2π)
)

− 1
2σ2

y
tr (Qf) ,

log L(θ) = −n + ma
2

log(2π) − n

2
log σ2

y − 1
2

log |Da| − 1
2

log |D| − 1
2

log |Sa| + 1
2

log |Kaa|

+ 1
2

log |Da| + 1
2

ma log(2π) − 1
2σ2

y
yT y + 1

2
ŷT Σ−1

ŷ Kf̂bL−T
b D−1L−1

b Kbf̂Σ
−1
ŷ ŷ

− 1
2

tr
(
D−1

a Qa
)

− 1
2

mT
a S−1

a ma − 1
2σ2

y
tr (Qf) ,

log L(θ) = −n

2
log(2πσ2

y) − 1
2

log |D| − 1
2σ2

y
yT y + 1

2
ŷT Σ−1

ŷ Kf̂bL−T
b D−1L−1

b Kbf̂Σ
−1
ŷ ŷ

− 1
2

log |Sa| + 1
2

log |Kaa| − 1
2

tr
(
D−1

a Qa
)

− 1
2

mT
a S−1

a ma − 1
2σ2

y
tr (Qf) ,

log L(θ) = −n

2
log

(
2πσ2

y

)
− 1

2
log |D| − 1

2σ2
y

yT y + 1
2

cT L−T
b D−1L−1

b c

− 1
2

log |Sa| + 1
2

log |Kaa| − 1
2

tr
(
D−1

a Qa
)

− 1
2

mT
a S−1

a ma − 1
2σ2

y
tr (Qf) ,

where c = Kbf̂Σ
−1
ŷ ŷ. The definitions of other terms are left out since they are

already stated in Sections 3.3.2 and B.1.

83

Appendix C
Experimental Results

Table C.1: Mean and standard deviation metrics values obtained by repeated
training and evaluation of the best models on the kin40k dataset.

Model Performance measure
RMSE SMSE MSLL Covered (%)

GP 0.0971±0.0000 0.0093±0.0000 -1.0448±0.0000 94.2133±0.0000
VFE 0.1109±0.0000 0.0122±0.0000 -0.8362±0.0000 96.3413±0.0275
FITC 0.1303±0.0002 0.0168±0.0000 -0.7403±0.0003 98.6853±0.0169
SVGP 0.1641±0.0002 0.0267±0.0001 -0.7093±0.0021 95.0493±0.1263
SVGP* 0.1911±0.0000 0.0361±0.0000 -0.1253±0.0045 99.5840±0.0084
SSGP 0.1725±0.0000 0.0294±0.0000 0.0973±0.0013 99.9320±0.0042
OIPS 0.1385±0.0005 0.0190±0.0001 -0.1563±0.0114 99.7413±0.0169
PIPS 0.2130±0.0027 0.0449±0.0011 -0.0265±0.0225 87.9413±0.3909

Table C.2: Mean and standard deviation metrics values obtained by repeated
training and evaluation of the best models on the 3D Road Network dataset.

Model Performance measure
RMSE SMSE MSLL Covered (%)

GP 0.2719±0.0000 0.0729±0.0000 -0.0039±0.0000 94.9867±0.0000
VFE 0.2960±0.0006 0.0864±0.0003 0.1852±0.0029 94.9400±0.0373
FITC 0.4033±0.0053 0.1604±0.0042 0.0180±0.0110 93.3627±0.1571
SVGP 0.4825±0.0020 0.2296±0.0019 0.2751±0.0093 97.6893±0.0503
SVGP* 0.4242±0.0018 0.1775±0.0015 0.1931±0.0006 97.3787±0.0169
SSGP 0.5221±0.0046 0.2689±0.0047 3.7316±0.0195 81.1920±0.0590
OIPS 0.3072±0.0008 0.0931±0.0005 1.8539±0.0268 79.0107±0.1349
PIPS 0.5346±0.0142 0.2821±0.0154 15.7997±2.1049 52.7200±2.0850

85

C. Experimental Results

Table C.3: Mean and standard deviation metrics values obtained by repeated
training and evaluation of the best models on the Airline dataset.

Model Performance measure
RMSE SMSE MSLL Covered (%)

GP 0.9305±0.0000 0.8286±0.0000 1.3440±0.0000 95.3467±0.0000
VFE 0.9375±0.0003 0.8409±0.0006 1.3530±0.0004 95.3107±0.0155
FITC 0.9381±0.0012 0.8421±0.0022 1.1763±0.0020 95.0413±0.0489
SVGP 0.9498±0.0008 0.8633±0.0015 1.3315±0.0083 92.5520±0.1012
SVGP* 0.9568±0.0006 0.8760±0.0012 1.1522±0.0010 95.0200±0.0211
SSGP 0.9419±0.0003 0.8490±0.0005 26.5962±0.1811 42.7440±0.1602
OIPS 0.9420±0.0000 0.8492±0.0000 39.6042±0.0000 37.0533±0.0000
PIPS 0.9409±0.0003 0.8471±0.0006 58.4339±2.4844 29.7493±0.5953

86

Appendix D
Best GP Hyperparameters

Table D.1: Hyperparameters of standard GP models used for final repeated
training and evaluation on each dataset.

Hyperparameter Dataset

kin40k 3D Road
Network Airline

Kernel SE SE SE
Loss function Trace_ELBO Trace_ELBO Trace_ELBO
Optimiser Adam Adam Adam

Learning rate 0.002 0.002 0.002

Table D.2: Hyperparameters of VFE models used for final repeated training
and evaluation on each dataset.

Hyperparameter Dataset

kin40k 3D Road
Network Airline

Kernel SE SE SE
Loss function Trace_ELBO Trace_ELBO Trace_ELBO
Optimiser Adam Adam Adam

Learning rate 0.002 0.001 0.001
Inducing set size 4096 4096 128

87

D. Best GP Hyperparameters

Table D.3: Hyperparameters of FITC models used for final repeated training
and evaluation on each dataset.

Hyperparameter Dataset

kin40k 3D Road
Network Airline

Kernel SE SE SE
Loss function Trace_ELBO Trace_ELBO Trace_ELBO
Optimiser Adam Adam Adam

Learning rate 0.01 0.01 0.005
Inducing set size 4096 4096 128

Table D.4: Hyperparameters of SVGP models used for final repeated training
and evaluation on each dataset.

Hyperparameter Dataset

kin40k 3D Road
Network Airline

Kernel SE SE SE
Loss function TMF_ELBO TMF_ELBO TMF_ELBO
Optimiser Adam Adam Adam

Learning rate 0.01 0.01 0.002
Inducing set size 4096 4096 128

Table D.5: Hyperparameters of SVGP* models used for final repeated training
and evaluation on each dataset.

Hyperparameter Dataset

kin40k 3D Road
Network Airline

Kernel SE SE SE
Loss function TMF_ELBO TMF_ELBO TMF_ELBO
Optimiser Adam Adam Adam

Learning rate 0.001 0.002 0.002
Inducing set size 8192 8192 128

Batch size 1000 200 200

Table D.6: Hyperparameters of SSGP models used for final repeated training
and evaluation on each dataset.

Hyperparameter Dataset

kin40k 3D Road
Network Airline

Inducing set size 1024 512 8192
Batch size 1000 800 400

88

Table D.7: Hyperparameters of OIPS models used for final repeated training
and evaluation on each dataset.

Hyperparameter Dataset

kin40k 3D Road
Network Airline

Inducing set size 128 256 128
Batch size 600 1000 800

ρ value 0.9 0.6 0.6

Table D.8: Hyperparameters of PIPS models used for final repeated training
and evaluation on each dataset.

Hyperparameter Dataset

kin40k 3D Road
Network Airline

Inducing set size 512 512 256
α value 0.1 0.1 0.1

Prior probability
of inclusion 0.9 0.6 0.9

89

Appendix E
Contents of enclosed SD card

README.md.....................the file with SD card contents description
datasets.......................................the directory of datasets
experiments................................the directory of experiments

PIPS...............the directory of experiments with the PIPS model
Pyro_GPs..............the directory of experiments with Pyro models
SSGP the directory of experiments with the SSGP model

thesis.pdf...............................the thesis text in PDF format

91

	Introduction
	Bayesian Optimisation
	Surrogate Models
	Acquisition Functions

	Gaussian Process Regression
	Kernels

	State-of-the-art Scalable GPs
	Taxonomy of Scalable GPs
	Local Approximations
	Global Approximations

	Global Sparse Approximate Methods
	FITC
	VFE
	Differences between FITC and VFE

	Recent Developments and Extensions
	SVGP
	SSGP
	OIPS
	PIPS

	Other Research Directions

	Experiments
	Datasets
	Technologies
	Regression Task
	Design of Experiments
	Evaluation
	Results and Discussion

	Bayesian Optimisation Task
	Design of Experiments
	Evaluation
	Results and Discussion

	Conclusion
	Bibliography
	Acronyms
	Supplementary Material to SSGP
	Prediction
	Step-by-step from Theoretical to Practical Bound

	Experimental Results
	Best GP Hyperparameters
	Contents of enclosed SD card

