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Abstrakt

Strojové učení se díky svým prvotřídním výsledkům v mnoha oblastech stává
stále více populárnější pro řešení nejrůznějších problémů. Díky tomu vývojáři
antivirů začínají začleňovat modely strojového učení i do svých produktů. I
když tyto modely zlepšují schopnosti detekce antivirových programů, mají také
své nevýhody v podobě citlivosti na adversariální útoky. Ačkoli tato citlivost
byla prokázána u mnoha modelů při white-box útocích, pro oblast detekce ma-
lwaru je black-box útok využitelnější v praxi. Proto představujeme black-box
útok, kde má útočník k dispozici pouze výsledek predikce a vzdává se jakých-
koli dalších informací o cílovém klasifikátoru. S využitím algoritmů zpětnova-
zebního učení jsme implementovali útok proti GBDT klasifikátoru natrénova-
ném na EMBER datasetu. Natrénovali jsme několik zpětnovazebních agentů
na datové sadě malwaru pro operační systém Windows. Při modifikování jsme
kladli velký důraz na zachování původní funkčnosti škodlivých vzorků. Dosáhli
jsme úspěšnosti zmýlení cílového klasifikátoru v 58,92 % s využitím PPO al-
goritmu. Kromě toho, že jsme cílili na tento detektor, jsme studovali, jak se
adversariální útok může přenést na jiné modely. Agent dříve natrénovaný proti
GBDT klasifikátoru zaznamenal úspěšnost v 28,91 % případů proti MalConv,
což je model založený čistě na strojovém učení. Vygenerované adversariální
vzorky jsme také otestovali proti špičkovým AV programům a dosáhli jsme
úspěšnosti zmýlení v rozmezí od 10,24 % do 25,7 %. Tyto výsledky dokazují,
že nejen modely založené pouze na strojovém učení jsou náchylné k adversari-
álním útokům a že je třeba přijmout lepší opatření k ochraně našich systémů.

Klíčová slova adversariální vzorky, zpětnovazební učení, detekce malwaru,
PE soubory, statická analýza, strojové učení
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Abstract

Machine learning is becoming increasingly popular as a go-to approach for
many tasks due to its world-class results. As a result, antivirus develop-
ers are starting to incorporate machine learning models into their products.
While these models improve malware detection capabilities, they also carry
the disadvantage of being susceptible to adversarial attacks. Although this
sensitivity has been demonstrated for many models in white-box settings, a
black-box attack is more applicable in practice for the domain of malware
detection. Therefore, we present a black-box scenario in which the attacker
only has the predicted label at his disposal and forgoes any other informa-
tion about the target classifier. Using reinforcement learning algorithms, we
implemented an attack against the GBDT classifier trained on the EMBER
dataset. We trained several RL agents on a dataset of Windows malware with
an emphasis on preserving the original functionality of the malicious samples.
We achieved an evasion rate of 58.92% against the targeted classifier using
the PPO algorithm. In addition to targeting this detector, we studied how
the adversarial attack can be transferred to other models. The agent previ-
ously trained against the GBDT classifier scored an evasion rate of 28.91%
against MalConv, a model based solely on machine learning. We also tested
the generated adversarial examples against top AV programs and achieved an
evasion rate ranging from 10.24% to 25.7%. These results prove that not only
machine learning-based models are vulnerable to adversarial attacks and that
better safeguards need to be taken to protect our systems.

Keywords adversarial samples, reinforcement learning, malware detection,
PE files, static analysis, machine learning
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Introduction

Malicious software, also known as malware, conducts unwanted actions on
infected systems. Protection of our devices is paramount as more and more of
our lives are in the digital world. Cybersecurity professionals are developing
new defence mechanisms to improve the detection capabilities of their antivirus
(AV) programs. However, their opponents are advancing at the same, if not
faster, rate, making the problem of malware detection a never-ending battle
between attackers and antivirus developers.

According to the AV-TEST institute, more than 450,000 new malware
samples are registered daily, totalling more than 150,000,000 new malicious
programs in 2021 [1]. Nowadays, attackers are not focusing only on Windows
devices, but other platforms such as Linux, Mac or Android are also targeted.
However, Windows remain the go-to target for most attackers [2].

Mydoom from 2004 is considered the most harmful malware in history,
with an estimated damage of 38 billion dollars. This program spread itself by
emails and added the infected computers into a net of computers (botnet),
performing DDoS (distributed denial of service) attacks on various institu-
tions. In its heyday, this malware was responsible for 25% of all email traffic
worldwide. A more recent example is the WannaCry ransomware from 2017.
Ransomware is a type of malware that encrypts files on a victim’s computer
and demands a ransom for decrypting them. WannaCry spread rapidly around
the world, infecting over 200,000 computers across 150 countries with an es-
timated impact of four billion dollars. Among the victims were important
organizations such as FedEx, NHS in the United Kingdom, O2 Telefónica in
Spain or the German railway company Deutsche Bahn [3].

State-of-the-art antivirus programs incorporate both static and dynamic
analysis in their inner workings. Traditional static analysis methods are based
on byte sequences (signatures) stored in a database. Signatures reliably iden-
tify known malicious files and are time-efficient. The main weakness of the
signature-based approach is that it cannot classify zero-day malware, and even
slight modifications to malware samples can cause the signature to change,
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Introduction

making them undetectable by AVs. On the other hand, the dynamic analysis
consists of behaviour-based techniques that look for behavioural patterns and
can partially detect unknown and obfuscated malware samples, but with the
added inefficiency of running malware in a secure environment [4].

Using malware detection models based on machine learning (ML) yields
promising results [5]. ML-based detectors are trying to bridge the gap between
traditional static and dynamic analysis in the area of detecting unknown mal-
ware. Nonetheless, ML models are susceptible to adversarial attacks that can
mislead the models [6]. For example, a minor modification of a malware file can
make its feature vector resemble some feature vectors of benign files. Conse-
quently, this can cause the malware classifier to make an incorrect prediction.
Therefore, relying on only one type of defence mechanism to stop incoming
threats is currently not an acceptable option for antivirus developers.

The goal of this thesis is to implement a technique of adversarial attack at
the level of samples, i.e., a technique that would create functional adversarial
samples. This task is considerably more demanding, as typical machine learn-
ing models operate at the level of feature vector, and reliable reverse mapping
from a feature vector back to a binary file is difficult to perform. We chose to
use techniques based on reinforcement learning. These techniques require an
environment and an agent to be implemented. The environment consists of a
manipulator capable of altering binary files and various methods for interact-
ing with the agent. We need to make the modifications at the binary level and
ensure that the original functionality remains untouched. For this task, we
present a method comparing behaviour reports before and after modification.

Our adversarial attack works in a black-box scenario, meaning that no
information about the target classifier apart from the final prediction label
is known to the attacker. We train reinforcement learning agents to modify
Windows malware binaries with the goal of bypassing detection by the targeted
machine learning classifier. Additionally, we test the transferability of our
adversarial attacks to another ML classifier. The trained agents are later
tested against professional antivirus programs.

In this thesis, we target our attack on static malware analysis for numer-
ous reasons. Firstly, dynamic analysis requires executing malware inside a
secure sandbox and recording its behaviour, which is both time and techni-
cally demanding. Secondly, malware authors can incorporate sandbox evading
techniques to detect that their malware is running inside a controlled envi-
ronment and stop its malicious behaviour [7, 8]. Thirdly, static detection is
usually the first line of defence against unwanted threats and is thus a critical
part of any antivirus program.

This work is an extension of our previous research project [9] carried out
as part of the Student Summer Research Program 2021 of FIT CTU in Prague.
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The outline of the thesis

• In Chapter 1, we establish the necessary background. Starting with
an introduction to adversarial machine learning, continuing with a brief
dive into reinforcement learning and finishing with a detailed description
of the portable executable file format.

• In Chapter 2, we define our method in detail. From modification of
binary files and ensuring that they retain their original functionality to
describing our reinforcement learning environment and agents.

• In Chapter 3, we introduce our experimental setup and routine. We
describe the evaluation metrics and datasets used, and we present the
results achieved.

• In Chapter 4, we display related work focusing on the area of adversarial
malware generation and discuss how our results compare with state-of-
the-art methods.

• In Conclusion, we summarize the contributions of our work, address the
shortcomings of our approach to generating adversarial malware exam-
ples and suggest ideas for future research.
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Chapter 1
Background

In this chapter, we outline the necessary background to comprehend this the-
sis. Firstly, we briefly introduce adversarial machine learning. Then we follow
by describing the fundamental principles of reinforcement learning, and we
finish by describing the portable executable file format in detail.

1.1 Adversarial Machine Learning

In recent years, we can see the ever-growing popularity of machine learning
algorithms in many domains, such as advertisement recommendation, image
classification, or playing Go, where the ML models achieve state-of-the-art
results [10, 11]. However, in other areas, such as self-driving cars or disease
diagnostics, both the general public and researchers are still reluctant to trust
the decisions of these models [12, 13]. One of the possible reasons for doubting
ML models is the unexplainable nature of their decisions, and the subsequent
potential fragility and bias of the entire system [14]. Consequently, ML sys-
tems can be sensitive to small changes exploited by adversarial attacks [6].

Adversarial machine learning is an area of machine learning focusing
on improving ML systems to withstand adversarial attacks both from out-
side (evasion attacks) and inside (data poisoning). An adversarial attack is a
carefully created action to mislead the ML model. The victim model is also
called a target model, and the attacker is called an adversary. Nevertheless,
both attacker and adversary are used interchangeably in the current litera-
ture. The object responsible for misleading the target model is referred to
as an adversarial sample. The following sections describe the taxonomy of
adversarial attacks focusing on the domain of malware detection and possible
defence mechanisms against these attacks.

5



1. Background

1.1.1 Taxonomy

In this section, we describe the taxonomy of adversarial machine learning. We
follow the taxonomy presented by Huang et al. [15] since it is one of the most
comprehensive and security-related descriptions on this topic. The adversarial
attacks are described by three main properties: influence, security violation
and specificity.

Influence The first property describes adversaries’ capabilities when attack-
ing a given model. The first category is called causative attacks, where
the attacker can influence the training process of the model, e.g., camou-
flage wrongly labelled malware samples inside the training dataset (data
poisoning). The second category is called exploratory attacks. These at-
tacks do not affect the training phase and thus cannot alter the model
itself. Their goal is to find information about the model and bypass
its detection mechanisms, e.g., malicious file evading detection and thus
infecting the user’s device (evasion attack).

Security violation The second property characterizes the type of security
violation caused by the adversary. If the adversarial attack is causing
an increase in the model’s false negative rate, we call it an integrity
attack, e.g., adversarial malware samples are classified as benign. When
the attack causes an increase in both false negative and false positive
rates, thus making the model unusable for any prediction, it is called an
availability attack. The last type is a privacy attack, where the goal is to
steal the model’s confidential information, such as the training dataset
or configuration of the model. This type of attack is sometimes also
called a model stealing attack.

Specificity Third property indicates the scale of the adversarial attack. Sup-
pose the attack is targeted at a small and specific set of samples. In that
case, we denote it as a targeted attack, e.g., a particular malware pro-
gram bypassing the detection and infecting the device. When the goal is
the misclassification of any sample, the attack is called indiscriminate.

The properties can be combined together to better describe a specific ad-
versarial attack. For example, an exploratory-integrity-targeted attack could
be an attack where the adversary modifies a small set of malware programs to
bypass detection by the targeted antivirus, increasing the false negative rate of
the classifier. Another example could be a causative-availability attack where
the adversary hides a group of mislabelled benign and malware files inside the
training dataset, therefore decrementing the targeted model’s accuracy.

The success of an adversarial attack is dependent on the available knowl-
edge of the targeted system. When the adversary has access to the sys-
tem and can examine its internal configuration or training datasets, we call
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1.2. Reinforcement Learning

this a white-box scenario. On the other hand, if the adversary has lim-
ited knowledge, usually only in the form of the model’s final prediction, e.g.,
malware/benign label for each submitted sample, we call this a black-box
scenario. In between these two is a grey-box scenario where the attacker
has higher access to the system than in the black-box scenario, but the access
is still limited to some parts. For example, the attacker can use the model’s
score or feature space but cannot access and modify its training dataset.

In real-world scenarios, not all types of attacks are feasible in the domain
of malware detection. For example, performing a causative attack against
a commercial antivirus program is extremely difficult because the training
datasets are well-guarded secrets in most security companies. However, an
insider in the development of secure AV could perform a white-box adversarial
attack to explore all possible vulnerabilities inside the system by utilizing the
maximum knowledge possible.

1.1.2 Defence Mechanisms

The most well-known strategy to defend models against adversarial samples is
retraining. This defence approach needs a set of correctly labelled adversarial
samples, which are then used in the model’s training stage. Retraining the
model with these samples can increase the its ability to detect them. This
method was proven to be effective [16, 17, 18] but has its shortcomings when
used thoughtlessly. If the quantity of adversarial samples is high, it can cause a
shift in the distribution of samples and worsen the performance of the classifier
[19].

The second defence mechanism rests on misleading the adversary to craft
non-adversarial samples. One of the methods is identifying the incoming file
as a probe from the adversarial sample generator and blocking or creating a
fake response to fool the generator. The recognition can be done by identifying
suspicious IP addresses or finding repeated patterns in the history of queries.
Another method was presented in [20], where the target classifier is in the
form of an ensemble of models. The predicting model is chosen dynamically
based on internal strategy, thus introducing uncertainty to the attacker.

The third method of defence is designing models that do not depend on
weak features. Sometimes models can use insignificant parts of the feature
vector for their decisions [21]. The interpretability of ML models is a problem-
atic area. Choosing the right features representing the input file and changing
accordingly if the file has been modified is vital to preventing adversarial at-
tacks.

1.2 Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learning where an
agent equipped with a set of actions is learning how to reach its goal. The
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1. Background

agent can be a bot learning to play a computer game or a physical robot
working in a factory. The agent learns which actions are “good” and “bad” in
the current situation based on trial and error and appropriate feedback from
an interactive element called environment. This section is based on the book
Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew
G. Barto [22], where you can find more details and examples on this topic.

Reinforcement learning is a separate area of machine learning since, in
contrast with supervised learning, it does not try to learn from labelled training
sets but rather from interaction with the environment. Although it may seem
like it, RL is also not a subclass of unsupervised learning, as it does not try
to find hidden patterns in the training sets but instead maximises the total
reward provided as feedback from the environment. The crucial challenge
for reinforcement learning is a balance of exploration and exploitation. This
problem is an integral part of any RL algorithm, how to explore enough of the
environment while maximising the reward and reaching its goal.

In addition to the agent and environment mentioned above, there are three
other key elements of reinforcement learning: the agent’s policy, the reward
signal, and the value function. A model of the environment is also included
for some tasks.

The core part of any reinforcement learning agent is its policy. It repre-
sents the agent’s behaviour at a given time. It is a function mapping from the
states of the environment to an action from a set of agent actions. The policy
can be not only in the form of a lookup table or a simple function but also in
the form of an advanced search algorithm. If learned correctly, it should lead
to a strategy that maximises the total rewards the agent receives.

The reward signal is an immediate response to a taken action provided
by the environment. This signal grades action taken at a given state as good
or bad concerning the agent’s goal. The function calculating the reward signal
is a part of the environment and not under any condition it can be altered by
the agent.

The value function estimates how rewarding the current state is. The
ultimate goal of every RL agent is to achieve the highest total reward, also
called return. This goal usually cannot be accomplished by following states
and actions with the highest immediate rewards but rather with the highest
values, as these maximise the cumulative reward. Whereas the reward signal is
usually an easily computable function contained in the environment, the value
function must be learned (recalculated) based on past observations during
training. Along with the policy, it is an essential part of any RL algorithm.

The optional last part of some RL systems is the model of the environ-
ment. This model is a reproduction of the environment that simulates future
states and rewards. The model provides additional input for the agent to de-
cide on future actions. If a complete model of the environment is known to the
agent, the optimal solution to the problem can be found using dynamic pro-
gramming techniques. Needless to say, this can be computationally infeasible.
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1.2. Reinforcement Learning

If an RL agent requires a model of the environment, we call it a model-based
algorithm. Otherwise, we use the term model-free.

Although there are other formal definitions of reinforcement learning, in
this work, we follow the one presented in [22]. Reinforcement learning can be
defined as repeated interactions between agent and environment at discrete
time steps t = 0, 1, 2, . . . T . At time step t, the environment is at a state
St ∈ S where S is a set of all possible states. After the agent is presented with
the state St, based on its policy π, creates a mapping St −→ At ∈ A(St), where
A(St) is a set of all possible actions at state St. In many scenarios, A(St)
can change based on the current state St, but in others, it can remain fixed
depending on the environment. After deciding on the action At, the chosen
action is sent to the environment where it gets executed. The subsequent
response from the environment gets presented to the agent in the form of a
new state St+1, and reward Rt+1 ∈ R ⊂ R, where R is the set of all possible
rewards. Figure 1.1 illustrates the interaction between the agent and the
environment.

Figure 1.1: Interaction between agent and environment.

We call the exchange of actions, states and rewards between the agent and
the environment across time steps t = 0 and t = T an episode. One episode
can be characterised by the following sequence ending in the terminal state ST ,
S0, A0, R1, S1, A1, . . . , RT , ST . Subsequently, the environment is reset, and a
new independent episode begins.

As stated before, the agent’s goal is to maximise the total of rewards
Gt = Rt+1 +Rt+2 + · · ·+RT , also called expected return. For the computation
of expected return Gt, it is common to use a technique called discounting. This
technique allows control over how far into the future agent should look, i.e.,
how much value it should assign to the future states. We calculate discounted
return as follows:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · + γT −t−1RT =
T −t−1∑

i=0
= γiRt+i+1 (1.1)
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1. Background

where 0 ≤ γ ≤ 1 is a parameter called discount rate. If γ = 0 agent only
considers immediate reward, and the closer the γ is to 1, the higher value the
agent gives to the future states.

As mentioned before, the value function represents an estimation of fu-
ture rewards for a given state. Formally, we distinguish between two value
functions, state-value and action-value functions. The state-value function
portrays the expected future return for an agent in a state s and is defined as:

vπ(s) = Eπ[Gt|St = s] (1.2)

where Eπ[·] is the expected value of a random variable with regard to policy π.
Similarly, we define the action-value function that represents the expected
return for state s when action a is performed according to policy π as follows:

qπ(s, a) = Eπ[Gt|St = s, At = a] (1.3)

The relationship between the value of the current state and its subsequent
states can be described by the Bellman equation. It decomposes the value of
the current state into the immediate reward and the value of the expected
future state:

vπ(s) = Eπ[Gt|St = s]
= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s]
= Eπ[Rt+1 + γ(Rt+2 + γ2Rt+3 + · · · )|St = s]
= Eπ[Rt+1 + γGt+1|St = s]
= Eπ[Rt+1 + γvπ(St+1)|St = s]

(1.4)

Both state-value and action-value functions are usually calculated from
past interactions. By following a given policy π and calculating average future
returns for every state, the agent can eventually estimate a reasonable value
of vπ. In the following equations, we denote estimation that converges to vπ

as V , and it can be calculated as follows:

V (s) =
∑T

t=0 1[St = s]Gt∑T
t=0 1[St = s]

(1.5)

where 1[St = s] equals 1 if St = s and 0 otherwise. Likewise, if the agent
keeps separate counts for each action at a given state, it can approximate the
action-value function qπ, later denoted as Q.

The averaging update of the state-value function shown in Equation (1.5)
is appropriate for environments which do not change in time. However, it is
often necessary to give more weight to recent experiences than to old ones.
The update then takes the following form:
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V (St) = V (St) + α
(
Gt − V (St)

)
(1.6)

where α is the learning rate, Gt is the target value, and V (St) is the old
estimate. In other words, the agent is updating the value function by steps of
size α

(
Gt − V (St)

)
, where

(
Gt − V (St)

)
is an error in the old estimate with

regards to the target Gt.
The presented estimation approaches are called Monte Carlo methods. One

of the disadvantages of the Monte Carlo methods is that they have to wait
until the end of the episode to update the value functions since the return Gt

is not known during the episode.
The methods that do not wait for the end of the episode to update the

value functions are called temporal-difference (TD) methods. These methods
still learn from past experiences, but instead of waiting for complete returns,
they use immediate rewards and value function estimates for the update. The
most straightforward state-value function update is:

V (St) = V (St) + α
(
Rt+1 + γV (St+1) − V (St)

)
(1.7)

where α is the learning rate and 0 ≤ γ ≤ 1 is the discount rate. In contrast
with the Monte Carlo update in Equation (1.6), the target used in TD methods
is Rt+1 + γV (St+1), i.e., the value function gets updated towards immediate
reward and added discounted estimate of the subsequent state. By using the
immediate reward Rt+1 and value estimate V (St+1), estimates can be updated
during the episode without waiting for the total return Gt as with Monte Carlo
methods.

1.2.1 Algorithms

In this part, we briefly describe some of the algorithms popular in reinforce-
ment learning, focusing on those we use later in this work. Detailed descrip-
tions can be found in their original publications.

We start with a simple TD algorithm called Sarsa [23]. This algorithm
works by iteratively updating the estimation of action-value function Q(s, a),
also called Q values, in the following manner:

Qnew(St, At) = Q(St, At) + α
(
Rt+1 + γQ(St+1, At+1) − Q(St, At)

)
(1.8)

where α and γ follow the previously mentioned definitions. The agent chooses
actions based on the learned Q values, usually using the ϵ-greedy strategy.
This strategy selects random action with probability ϵ and greedy action
arg maxa∈A(St) Q(St, a) with probability 1 − ϵ. By choosing a random ac-
tion once upon a time, the agent maintains a balance between exploration
and exploitation. Sarsa is part of the family of algorithms called on-policy,
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where the agent follows the current policy when deciding on the subsequent
action.

Another popular TD method called Q-learning was introduced in [24] by
Watkins. This algorithm works by estimating action-value function using the
following formula:

Qnew(St, At) = Q(St, At) + α
(
Rt+1 + γ max

a
{Q(St+1, a)} − Q(St, At)

)
(1.9)

where a belongs to the set of possible actions in the state St, A(St+1). The
maxa{Q(St+1, a)} represents the best value in the following state St+1. The
calculated Q values are stored in a so-called Q table. Q-learning follows the
same ϵ-greedy strategy as the Sarsa algorithm when selecting actions. How-
ever, in contrast, it is an off-policy algorithm where the agent does not use the
current policy for deciding on the next action. That is because the Q value is
updated with the best estimate maxa{Q(St+1, a)} from state St+1, but when
choosing an action in the following state, the agent does not have to follow
the action a that led to the best estimate of Q value used for the update.

Improvement of the Q-learning algorithm called deep Q-network (DQN),
or deep Q-learning, was introduced by Mnih et al. [25, 26]. DQN replaces the
tabular manner of storing all state-action pairs Q(s, t) with a function, usually
taking the form of a neural network. The Q value is then defined as Q(s, a; ξ),
where ξ can be one or more function parameters. Additionally, it introduces
an experience replay buffer and periodically updated target. Experience replay
buffer stores every episode step in the form of quadruplet (St, At, Rt, St+1) in
a memory and the Q updates during training are then done by taking random
samples from this buffer. This approach helps to improve data efficiency as
one entry can be used multiple times and removes the correlation between
subsequent episode steps. Another improvement is in the form of a periodi-
cally updated target, where the target Q values are updated only every Cth
step (C is a hyperparameter), thus improving training stability.

All of the above-introduced algorithms learn the value functions and choose
appropriate actions based on them. Policy gradient (PG) methods optimise
the policy directly [27]. The policy is parametrised by weight vector θ ∈ Rn.
The decision on choosing action a is therefore not only conditioned by the
state s but also by the vector θ. The policy can then be defined as π(a|s, θ),
i.e., the probability of taking action a given that the agent is in the state s
with weight vector θ at time step t. Policy gradient methods use a gradient
ascent algorithm to find the best settings for θ to maximise the total return.

Proximal policy optimization (PPO) is an on-policy algorithm intro-
duced by Schulman et al. in [28]. In contrast with vanilla policy gradient
methods which perform one gradient ascent update of the target policy per
sample, PPO performs multiple repetitions of gradient ascent before updat-
ing the policy vector. As stated in the original paper, this improvement is
easy-to-implement, yet it brings substantial performance improvements.
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1.2.2 Achievements

The popularity of reinforcement learning can be attributed to the successes
in mastering games and surpassing world-class players. In 2013 Mnih. et al.
published [25] where the DQN agent learned to play some of the Atari games
and later further improved already achieved results in the paper [29].

Arguably the most significant recent success was achieved by Silver et al.
by mastering the game of Go with a program called AlphaGo and eventually
beating the highest rank professional players [30]. This accomplishment was
significant for reinforcement learning and whole computer science, as this game
was considered too complex for computers to dominate [31].

Further progress was made by the authors of OpenAI Five in [32], where
they managed to win a 5v5 best-of-three game of Dota2 against the world
champion team. In 2019 Vinyals et al. presented a program called AlphaStar
[33], which ranked 99.8% above all ranked human players in the online game
StarCraft II.

While reinforcement learning may seem mainly used for playing games,
these are usually just stepping stones for other real-world applications, such
as cooling Google’s data centres more efficiently and thus reducing their op-
erating costs [34].

1.3 Portable Executable File Format

Portable executable (PE) is a file format commonly found on Windows
operating systems for various types of files, such as executables (EXEs) or
dynamically linked libraries (DLLs). This file format is based on the Common
Object File Format (COFF) found on Unix operating systems. It contains all
the necessary information for the operating system (OS) loader to correctly
map the PE file to system memory [35].

In this section, we will focus on describing the PE file format used for EXE
files because the usage of some fields might differ from other file types. The
PE file format has a rigid structure defined as follows, starting with the MS-
DOS header and the MS-DOS stub program. Next is the COFF file header,
closely followed by the optional header. The PE file format is concluded
with section headers and respective data sections. Most of the information
presented in this section comes from the official Windows documentation [36].
Visual representation of the file format is depicted in Figure 1.2.

1.3.1 MS-DOS Header and Stub Program

MS-DOS header and stub program are still part of the PE file format for
backward compatibility with older operating systems (MS-DOS). Nowadays,
if a modern Windows executable gets executed on MS-DOS, it should display
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Figure 1.2: PE File Format

some variation of the following message: “This program cannot be run in DOS
mode.”.

MS-DOS header is 64 bytes long and is located at the beginning of the
PE file. The first field of this header is e_magic, also called a magic number.
This field usually contains a value of 0x5A4D, a hexadecimal representation of
the characters MZ, initials of one of the MS-DOS developers, Mark Zbikowski
[37]. This field is followed by several other important fields for the MS-DOS
system, which are not relevant for modern systems. The header is concluded
with the e_lfanew field, which stores a file offset to the COFF file header.

MS-DOS stub program is an actual valid MS-DOS program that would
get executed on the MS-DOS operating system. This stub is located right after
the MS-DOS header, and its size is variable depending on the program.

1.3.2 COFF File Header

Following the MS-DOS header and stub program is the COFF File header.
It is located at the offset found in the e_lfanew field from the MS-DOS header.
Before the actual COFF header starts, there is a 4-byte field called Signature
that identifies the file as a PE file with a value of PE\0\0. The following 20
bytes are the header itself, which contains general information regarding the
PE file:

Machine: CPU type on which the PE file can be run, e.g., AMD64 or i386.

NumberOfSections: Number of entries in the section table.

TimeDateStamp: Date when the PE file was created in Unix time.

PointerToSymbolTable: Offset of the symbol table inside the file. Usually
set to 0.
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NumberOfSymbols: Number of entries in the symbol table. Usually set to 0.

SizeOfOptionalHeader: Optional header size in bytes.

Characteristics: 2-byte flag indicating attributes of the file, e.g., the file
is executable or debug information was removed.

1.3.3 Optional Header

Right after the COFF file header is located the optional header. Although it
is called optional, for many files, such as EXEs, it is mandatory. It integrates
core information for the OS loader. The header size can be found in the
SizeOfOptionalHeader field in the COFF header. This header has three
main parts: standard fields, Windows-specific fields, and data directories.

Standard fields are eight fields used for every COFF file and are defined
as follows:

Magic: Indicates the type of optional header (32-bit/64-bit).

MajorLinkerVersion, MinorLinkerVersion: Linker version numbers.

SizeOfCode: The size of the code section, usually called .text.

SizeOfInitializedData: The size of the initialised data section, tradition-
ally called .data.

SizeOfUninitializedData: The size of the uninitialized data section, usu-
ally called .bss.

AddressOfEntryPoint: Relative virtual address (RVA) of the entry point
(the first instruction when execution begins) after being loaded into
memory.

BaseOfCode: RVA of the code section after being loaded into memory.

The following are 21 fields belonging to the Windows-specific fields
that contain unique information for the Windows operating system. Some of
the fields are:

ImageBase: Preferred address of the beginning of the PE file after being
loaded into memory.

SectionAlignment: Section alignment in memory.

FileAlignment: Section alignment on disk. The section is padded with
zeros.

SizeOfImage: The size of the PE file. It must be rounded up to multiples of
SectionAlignment.
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SizeOfHeaders: Sum of all header sizes rounded up to a multiple of
SectionAlignment.

CheckSum: Checksum value used to validate files such as drivers or DLLs.

NumberOfRvaAndSizes: Number of entries in data directories.

At the end of the optional header are placed the data directories. These
directories form an array of 8-byte structures with two fields: RVA and size of
the directory. There are 15 types of data directories, such as export, import,
debug or certificate tables. The actual content of the directories is stored in
their respective sections. Data directories that are not utilized are set to zero.

1.3.4 Section Headers and Data

Immediately following the optional header and data directories is the section
table, also known as section headers. The position of the section headers
can be calculated as a sum of e_lfanew, the size of the COFF file header
and SizeOfOptionalHeader. Each section header has ten fields, totalling 40
bytes:

Name: Eight bytes representing the name of the section padded with zeros,
e.g., .text\0\0\0.

VirtualSize: Section size when loaded into memory.

VirtualAddress: RVA of the first byte of the section. The headers must
be sorted in ascending order by their corresponding virtual addresses.
Additionally, the value of VirtualAddress must be a multiple of
SectionAlignment.

SizeOfRawData: The size of the section data on disk. It must be multiple
of FileAlignment. If the size is less than VirtualSize, the rest of the
section is padded with zeros.

PointerToRawData: Pointer to the beginning of the section on disk.

PointerToRelocations, NumberOfRelocations: Pointer to the relocations
and number of relocation entries for the section. Set to zero for EXEs.

PointerToLinenumbers, NumberOfLinenumbers: Pointer to the line-numbers
and number of line-number entries for the section. These fields should
be set to zero, as they are deprecated.

Characteristics: 4-byte flag indicating section attributes, e.g., the section
contains executable code or can be shared in memory.
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Figure 1.3: Section Headers and Data

The location and size of the relevant section data are indicated in the
corresponding section header. For executables, section data must be aligned
using the FileAlignment value found in the Windows-specific fields in the op-
tional header. Figure 1.3 shows the relationship between section headers and
section data, i.e., each section header points to the relevant section data. Note
that the image is simplified, and the section names used are only examples.

Ordinary PE file usually has several commonly found sections [35]. Al-
though their names may vary from file to file, their intentions are the same.
The most notable is the .text section, which encapsulates all pieces of code.
Naturally, the AddressOfEntryPoint points to this section and also marks
the end of the import address table, which is also part of this section.

Usually, a program needs some data to perform its intended functionality.
Three types of data sections are commonly found in PE files .bss, .rdata, and
.data, each storing different kinds of data (uninitialized, read-only, . . .).

One of the critical parts of nearly every executable is the import directory
table (IDT), or just the import table. This table is usually stored in the .idata
section and takes the form of an array, with each entry representing one of the
imported DLLs. Since the size of the array is not fixed, the last entry is set
to zero to indicate the end. Each entry contains the RVAs of the name of the
imported DLL and the import address and lookup tables associated with this
DLL. The import lookup table (ILT) is a table of imported function names
from a given DLL. While stored on disk, the import address table (IAT) has
the same structure and content as ILT. However, after the PE file is loaded
into memory, the IAT entries contain the addresses of the imported functions
instead of the function names.

One of the most evident section names is the .debug section, containing
debugging information. Five types of debugging information can be stored,
each with a unique header structure. This section is not memory-mapped
by default, and the PE file format also allows storing the information in a
separate debug file.
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If a program exports some data, these are stored in the .edata section. This
section can usually be found in DLLs. The resources needed for the application
are stored in a multilevel binary tree within the .rsrc section. There are also
other predefined section names, such as .pdata (exception handling) or .reloc
(relocation information), which we will not cover in this work.

When a PE file has a certificate, e.g., to ensure the file’s origin or im-
mutability, the location is specified in a security data directory inside the
optional header. The security data directory points to the beginning of the
attribute certificate table, which contains 20-byte entries for each certificate.
This certificate table is usually not stored in one of the mapped sections but
is appended to the end of the file in a segment typically called an overlay.
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Chapter 2
Proposed Method

We introduce a complete framework for generating adversarial malware sam-
ples called AMG (Adversarial Malware Generator). AMG consists of a tested
PE file modifier, which can be easily expended with additional modifications,
an environment in the Open AI Gym [38] format working with raw binary
files and a set of trained and optimised reinforcement learning agents ready
to use.

Based on the taxonomy presented in Section 1.1.1, our approach falls into
the category of exploratory-integrity attacks. In other words, we are per-
forming an adversarial attack to mislead the targeted model (antivirus) to
classify malware samples as benign. Our objective is to execute small modifi-
cations on PE files that do not alter the original functionality but can make
them unrecognisable to the antivirus. Our attack targets the so-called static
malware analysis, where the detector makes decisions without examining the
executable’s behaviour. We set our adversarial attack in a black-box scenario
where only hard labels (malware/benign) from the target classifier are known.

In our work, we modified the existing framework called gym-malware by
Anderson et al. [39], which provides an environment for training reinforcement
learning agents on binary samples. We rewrote most parts because the exist-
ing code did not meet our vision and goals. In particular, they used the LIEF
[40] library for modifying PE files, whereas we used the pefile [41] Python
library. We found that the LIEF library can make unnecessary changes to the
original binary and that their modifications did not retain the same function-
ality as is shown later in Table 2.1. In addition, in their training setup, the
agent is presented with an observation space that coincides with the feature
space of the targeted classifier. We think that this could bring bias to the
training system and could detriment the transferability of trained agents to
other classifiers. For this reason, we used a different observation space that
is not used by any of the classifiers we targeted. Nonetheless, the work [39]
by Anderson et al. is a key stepping stone for future research as it is one of
the first complete frameworks for deploying RL agents for adversarial malware
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sample generation.
In the following sections, we describe in detail our proposed method, start-

ing with the PE file modifications we use and how we test them. Later, we
introduce our RL environment setup and agents.

2.1 PE File Modifications

For implementing PE file modifications, we used the pefile Python library.
This library provides a simple interface for accessing all parts of the PE file
format, such as file and optional header fields or individual sections. The de-
scription of the PE file format can be found in Section 1.3. We implemented
various modifications of the binary files, all obeying the structure of the PE file
format. While we had taken inspiration from state-of-the-art related works,
such as the gym-malware mentioned above, we also introduced new modifica-
tions. In total, we implemented ten modifications which are described below:

• Break CheckSum: Set the CheckSum field from the optional header to
zero.

• Append to overlay: Append a random benign content to the end of
the file.

• Remove debug: Clear the debug entry in the list of data directories
and remove the respective debug information from the file.

• Remove certificate: Clear the security entry in the list of data direc-
tories and remove the certificate data from the file.

• Add new section: Add a new section to the PE file if possible. Firstly,
it is necessary to check if there is enough free space between the last
section header and the beginning of section data (at least 40 bytes).
If so, we can increase the file size and add a new section header and
data. To preserve the original PE file structure as much as possible, we
also move the old overlay data and, if present, redirect the security data
directory to the new address.

• Append to section: Append benign content to one of the currently
present sections if possible. First, we need to find a section with the
possibility of adding extra content, i.e., the virtual size of the section is
greater than its raw size. If we encounter one, we fill the empty space
with benign content.

• Rename section: Choose one section at random and rename it to one
of the commonly used names in benign files.
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• Increase TimeDateStamp: Increase the value of TimeDateStamp in
the COFF file header by 500 days1.

• Decrease TimeDateStamp: Decrease the value of TimeDateStamp in
the COFF file header by 500 days1.

• Append new import: Add a new section to the PE file with import
data if possible. This process is similar to the preceding add new section
modifications with the only change that the section content is not ran-
dom benign content but import data. If already present, we take the old
IDT table from the PE file and append a new entry, a randomly chosen
DLL. Then we prepare entries for individual imported functions that
get stored in the IAT and ILT tables. All these data are then placed in
a newly added section, and the import data directory is pointed to the
new IDT table.

We omitted to implement packing of an executable as one of the modifi-
cations, as it can be easily detected and reverted with the use of the corre-
sponding packer, such as UPX [42] or Exeinfo PE [43].

2.1.1 Preserving Functionality of PE Files

We believe that preserving the original functionality of executable binary files
is a critical part of generating adversarial malware samples. Without em-
phasising this criterion, we cannot guarantee that the resulting adversarial
example will still be a working executable with the same functionality as the
original file. We have found that more than simply checking the syntax of the
PE file format is needed to maintain functionality, so we implement the fol-
lowing procedure to test modifications to our PE files. However, our method
is not without flaws, as we mention later in Conclusion.

To ensure that the functionality of the file after modification is as close as
possible to the original file behaviour, we used a Cuckoo sandbox. Cuckoo
sandbox is an open-source automated malware analysis tool that can run
malicious files and examine their behaviour. Even though it is predominantly
intended for malware analysis, we use it to analyse benign files as well since
it provides behavioural analysis, which we utilise to track any changes in the
functionality of executables. We decided to use benign files instead of malware
executables for testing the modifications. The reasoning behind this decision
is that malware authors can insert checks into their programs that monitor
whether their malware is running in a sandbox environment and change its
behaviour accordingly [7, 8]. By using benign files, we limit the possibility of
artificial activity of the tested binaries, and thus we can better analyse the
reported behaviour.

1We picked 500 days because it is a considerable period of time and it is not a multiple
of one year.
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From our benign dataset, described later in Section 3.1, we randomly se-
lected 100 benign EXE to test our PE modifications. We made sure that
all files were executable in the sandbox environment. We then launched these
files inside the Cuckoo sandbox and studied their respective behaviour reports.
Namely, we look into three features found in the Cuckoo analysis report: sig-
natures, API calls, and processes:

Signatures Predefined patterns that are used to compare with the analysed
file. They are used predominately for malware detection to cluster mal-
ware into their respective families. Nevertheless, they can also classify
types of actions such as file open/write or access to system files, which
are also encountered in benign files.

API calls Function calls by the program to external libraries in the course
of program execution.

Processes Main process and sub-processes started by the program.

Unfortunately, we found these features unstable, meaning they can change
slightly (or more) during different analysis runs of the same file. To combat
this, we conducted three testing rounds and considered the feature stable if it
got at least 95% agreement between rounds. In the worst case, two features
remained reliable for each of the 100 unmodified benign files used.

The 100 benign files listed above are used as a control dataset to test
whether the functionality of the PE file has changed after modification. We
run three rounds of Cuckoo analysis and compare modified files according to
the same three features as we mentioned before. We consider the modification
a failure if the modified file cannot run in the Cuckoo sandbox. If the file is
executed successfully, we compare the three generated analysis reports with
all three control reports. We look at each feature individually, matching it
with its respective control file. The feature is considered matched if it has an
agreement of at least 95% with one of its control files. Overall, the modified file
is considered successfully modified, i.e., the original functionality is preserved
if it matches at least two of its features with control reports.

We compare our modifications with several PE file modifiers from well-
known frameworks for generating adversarial malware samples. Namely, we
tested gym-malware [39], Pesidious [44] and MAB-malware [45]. Both gym-
malware and Pesidous used the LIEF library for modifying binaries, whereas
MAB-malware same as we used the pefile library. Additionally, the authors
of Pesidous used the PE Bliss [46] C++ library for rebuilding PE files.

We present the results of our functionality preserving testing in Table 2.1.
The first column represents different PE modifications, and the following rep-
resent the PE modifiers from the respective frameworks. Our framework is
denoted as AMG, an abbreviation for Adversarial Malware Generator. The
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Table 2.1: Numbers of files with preserved functionality after modification
from a total of 100 binaries.

action gym-malware Pesidious MAB-malware AMG

break checksum 89 × 100 100
create new entry point 17 × × ×
append new import 20 42 × 66
overlay append 100 99 100 100
remove debug 90 × 100 100
remove certificate 22 × 90 91
add new section 4 85 75 98
append to section 8 × 99 99
rename section 89 89 99 100
upx pack 73 × × ×
upx unpack 100 × × ×
increase TimeDateStamp × × × 100
decrease TimeDateStamp × × × 100

symbol × signifies that the operation was not implemented by the given frame-
work. We can see that our PE modifications equal or surpass all other tested
frameworks. Apart from the modifications mentioned in Table 2.1, authors of
MAB-malware also implemented code randomisation operation. However, we
could not reproduce the code locally for our dataset, so we did not include it
in our testing. Even though we improved the modification append new import
entry to the PE file significantly in comparison with other frameworks, we still
did not manage to achieve a similar score as with other modifications, which
all preserved functionality in more than 90% of cases. Later, in Conclusion,
we propose this as a possible improvement for our framework.

2.2 Malware Environment

As mentioned in Section 1.2, RL algorithms are based on learning through
feedback provided by the environment. We worked with a commonly used
environment format developed by the OpenAI company called Gym [38]. The
gym is an open-source Python library equipped with a standardised API for
agent-environment interaction.

Several essential methods and properties must be defined to deploy our
malware environment. In particular, reset and step methods. The reset
method restarts the environment to an initial state, which in our case, is a new
malware sample. The return value of this method is an observation. Obser-
vation is a feature vector that represents the current state of the environment
presented to the agent. In our work, we came up with an observation that
carries the form of 10,000 raw bytes extracted from the PE binary by taking
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the first and last 5,000 bytes from the binary file and merging them together.
By taking bytes from both ends of the PE file, we hope to cover most of the
binary while keeping a relatively small feature space for the agent to explore.

The step method is the pivotal method for agent-environment interaction
because it is responsible for performing the actions selected by the agent. This
method uses the aforementioned PE file modifications to execute the selected
actions. Additionally, it also tracks the length of the episodes and calculates
rewards for each action. The reward is either 0 if the sample is not evasive
or 100 − penalty if it can bypass detection by the target classifier where the
penalty is a slight handicap reflecting the increase of the executable’s size. We
introduce this handicap, intending to force the agent to minimise the total size
of modifications.

A critical part of the environment is the target classifier, as each action
is rewarded with respect to its predictions. We studied two ML classifiers,
MalConv and GBDT, both freely available online by their respective authors.
MalConv is a deep convolutional network that does not require complex fea-
ture extraction procedures because it uses the entire executable (truncated to
2,000,000 bytes) as an input feature vector [47]. On the other hand, GBDT
is a gradient-boosted decision tree trained using the LightGBM framework
[48] that requires converting the input executable to an array of 2,381 float
numbers. We used pre-trained versions of both classifiers by their respec-
tive authors. Note that we did not directly target the MalConv classifier but
only used it for testing the transferability of adversarial attacks between ML
classifiers.

2.3 Reinforcement Learning Agents
In our work, we experimented with three RL agents, deep q-network, vanilla
policy gradient and proximal policy optimization. We chose these reinforce-
ment learning algorithms because they are well-known in the reinforcement
learning community and represent both on-policy and off-policy approaches.
A more detailed description can be found in the previous Section 1.2.1 and in
the original publications [26, 27, 28].

For the implementation of RL agents, we used a reinforcement learning
library called Ray RLLib [49]. This library contains prefabricated implemen-
tations of many state-of-the-art algorithms. We decided not to go the route
of implementing our own RL agents, i.e., creating unique agents tailored for
modifying PE files. Instead, we focused on optimising the hyperparameters of
existing state-of-the-art algorithms and creating the best possible environment
in which they can learn. Additionally, the Ray RLLib provides a parallelism
layer encapsulating RL agents, allowing us to parallelise and speed up the
training process. Documentation for individual RL algorithms can be found
in RAY RLLib documentation [50].

24



Chapter 3
Evaluation

In this chapter, we describe in detail our experimental setup and how we
approached the evaluation of our adversarial malware generator. We present
our achieved results divided according to the algorithm used and, later, how
the generated attacks transfer to other malware detectors.

3.1 Setup
The principal metric we use in this work is called an evasion rate. This
metric denotes the ratio of misclassified files by the target classifier and is
calculated as follows:

evasion rate = # missclassified

total
(3.1)

where total stands for the total number of files submitted to the target classifier
after discarding files that were already incorrectly predicted before modifica-
tion.

Further, we use a metric called a mean episode reward. This metric
denotes the mean of all rewards received by the agent during a single episode.
It is used predominantly during training to understand how well the agent is
performing. Note that this metric does not compare agents across different
environments, as every environment can define its own reward function.

Another key term used in the subsequent paragraphs is a training itera-
tion. One training iteration consists of one or more episodes depending on the
agent’s configuration, e.g., the size of the training batch. Each agent’s exact
number of episodes during one training iteration can be calculated using the
configuration files from the Ray RLLib.

We use two datasets. A dataset of benign binaries, including more than
4,000 executables, was scrapped from the fresh Windows 10 installation. These
benign files are only used while testing the preservation of functionality after
modification, as mentioned in Section 2.1.1. Second, a dataset of malware files

25



3. Evaluation

was obtained from the VirusShare repository [51]. In total, we operate with
6,000 malware files divided into three parts: a training dataset consisting of
4,000 files and validation and testing sets containing 1,000 files each.

Our experiments were executed on a single computer platform with two
server CPUs (Intel Xeon Gold 6136, base frequency 3.0Ghz, 12 cores), one
GPU (Nvidia Tesla P100, 12 GB of video RAM) and 754 GB of RAM running
the Ubuntu 20.04.5 LTS operating system.

3.2 Experiments

We define the following procedure used in all subsequent experiments for each
RL algorithm. The first step is finding the optimal number of modifications,
also called the maximal number of steps, for a given RL algorithm. This
optimisation is done by limiting the maximum number of calls to the step
method that the agent can make inside the environment. For this part of the
experiment, we leave agent parameters at their default settings as set in the
Ray RLLib. The range we are testing is between 5 and 200 modifications, and
we choose the optimal value based on two criteria. Firstly, we try to maximise
the evasion rate achieved by the agent and secondly, we try to minimise the
increased size of the adversarial sample.

After determining the maximum number of modifications, we conduct a
hyperparameter search using the grid search method over two hyperparame-
ters, the learning rate (lr, α) and the discount rate (gamma, γ), leaving the
rest of the parameters at the default settings as defined by the authors of
Ray RLLib. Based on the highest mean episode reward scored during 100
training iterations, we select the best four agent configurations and let them
train for another 900 iterations. After the training finishes, we test these
agents on the validation set and determine the best agent configuration for a
given RL algorithm.

Subsequently, we introduce our testing dataset, which is presented to the
final RL agent. The results obtained on this set of samples are then used
to compare different RL algorithms and to verify the success of the entire
training process.

In all the experiment steps mentioned above, we consider the GBDT clas-
sifier as our target model. In the penultimate phase, we test the transferability
of adversarial attacks between GBDT and MalConv classifiers. We use the
best-trained agents for each RL algorithm to generate adversarial samples
against the MalConv classifier and measure the difference in performance.

The last step of our procedure is the evaluation performance of the best
RL agents against commercial AV programs. We conduct this assessment on
several well-known AV products such as AVG, Avast, Avira, Bitdefender, G
Data, McAfee, Kaspersky, Symantec (nowadays known as Norton) and VIPRE
using VirusTotal website [52]. We selected these top antivirus programs based
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on the September 2022 antivirus comparative study by the Austrian AV testing
laboratory AV-Comparatives [53]. In order to minimise the possible risk of
misuse of our work, we anonymise the results of each antivirus. Figure 3.1
gives a complete overview of our experiment workflow.

Figure 3.1: Workflow of our training and testing procedure.

3.2.1 Deep Q-Network

The first reinforcement learning algorithm we tested is deep q-network. As
mentioned earlier, we started by searching for the optimal maximum number
of steps (max steps) permitted to the agent. We trained the default configu-
ration of DQN as set by the authors of Ray RLLib for 50 training iterations.
We repeated this process for each value tested as it required a different envi-
ronment setup.
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Figure 3.2: Evasion rate and input size increase based on a maximum number
of steps used by the DQN agent.

Agent’s results on the validation set can be seen in Figure 3.2. In this
picture, we can see that the evasion rate increased rapidly until the value of
50, after which it started to decelerate until a decrease in performance for 200.
The increasing number of modifications puts higher demands on training thus
is possible that 50 episodes were not enough for the agent to train reasonably
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well. Unsurprisingly, the size increase between the original file and generated
adversarial sample kept steadily increasing throughout the testing. Based on
these results, we chose the value of 50 as optimal because the agent recorded a
high evasion rate of almost 80% while maintaining the average increased size
of the adversarial malware sample below 5%.

In the next stage, we optimised the hyperparameters of the deep q-network.
The training results after 100 training iterations can be found in Table 3.1.
The results are sorted by mean episode reward in descending order, thus
putting the most performing configurations in the top rows. We can see that
apart from the first configuration (γ = 0.5 and α = 0.01), the following five
configurations performed similarly. Even though we set the maximum number
of steps to 50, the mean episode length was generally much lower.

Table 3.1: Hyperparameters search results for the DQN agent with the maxi-
mum number of steps limited to 50.

γ α mean episode reward mean episode length

0.5 0.01 93.76 10.69
0.5 0.001 87.85 12.17
0.75 0.001 87.84 12.02
0.99 0.001 86.85 13.08
0.99 0.01 86.84 14.3
0.75 0.01 84.87 14.98
0.99 0.0001 80.88 16.97
0.5 0.0001 79.86 17.53
0.75 0.0001 78.9 16.83

We took the best four configurations from Table 3.1 and trained them for
further 900 iterations. The training progress can be seen in Figure 3.3. We
displayed only the first 250 training iterations for better comprehension of the
training process, as more iterations made the plot unreadable. We can see that
the training process was similar for all configurations. The only exception is
the configurations with γ = 0.99 and α = 0.001, which recorded significant
drops in performance during training. Further, we can see a sizeable perfor-
mance increase was recorded only in the first 100 iterations, with only marginal
improvements in the later stages. These results may signify that the total of
1,000 training iterations was not enough and further gains could be reached if
trained for longer, or that we hit a plateau and different agent configurations
would be needed to achieve a higher reward. Additionally, we can see that the
training progress was not stable, as there were significant differences between
training iterations. The total training time for each configuration was around
25 hours on our setup.

Finally, we selected the best checkpoints from the 1,000 training iterations
based on the highest mean episode reward and measured the performance
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Figure 3.3: Training progress of the first four DQN configurations from Table
3.1 during the first 250 training iterations.

of the respective agents on the validation set. The results are displayed in
Table 3.2, where we can see that the DQN agent achieved the highest evasion
rate with γ = 0.5 and α = 0.01. However, all four configurations performed
similarly, as the differences were negligible. It is necessary to mention that
these results are only slightly better than the results after 50 iterations, as
shown in Figure 3.2. This was already evident during training, as Figure 3.3
indicated that significant improvements were made only in the first iterations.

Table 3.2: Results of the first four DQN configurations from Table 3.1 after
1,000 training iterations.

γ α evasion rate [%] size increase [%] mean episode length

0.5 0.01 79.93 4.64 10.17
0.5 0.001 79.77 4.62 10.27
0.75 0.001 79.28 4.73 10.28
0.99 0.001 79.77 4.66 10.28

3.2.2 Policy Gradients

The second reinforcement algorithm we studied is the vanilla policy gradi-
ents algorithm. The evaluation plan was the same as with DQN. Firstly, we
performed a search over values between 5 and 200 to determine the optimal
maximum number of modifications permitted to the agent. The results are
depicted in Figure 3.4. At first glance, we can see that the results are much
more variable than with DQN. Especially for the higher maximum number of
steps, we can observe different behaviour with a decline in performance be-
tween 50 and 150 modifications. This decrease may be caused by the fact that
50 iterations were insufficient for PG agents to learn a meaningful strategy
and thus used more random actions. Based on Figure 3.4, we proceeded with
20 as the maximum number of modifications, offering both a relatively high
evasion rate (almost 70%) and a low size increase (around 3%).
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Figure 3.4: Evasion rate and input size increase based on a maximum number
of steps used by the PG agent.

After determining the optimal number of steps, we explored the hyperpa-
rameter space the same as with DQN. The training results for the PG algo-
rithm after 100 iterations can be seen in Table 3.3. The best performance was
recorded by PG configuration with γ = 0.5 and α = 0.001. Apart from the
γ = 0.99 and α = 0.0001 configuration, all hyperparameter settings achieved
a mean episode reward higher than 70. Same as with DQN, the mean episode
length was generally much lower than the cap value.

Table 3.3: Hyperparameters search results for the PG agent with the maxi-
mum number of steps limited to 20.

γ α mean episode reward mean episode length

0.5 0.001 85.83 6.25
0.75 0.01 80.89 8.26
0.75 0.001 79.9 8.44
0.99 0.01 79.87 8.19
0.5 0.01 78.9 8.13
0.5 0.0001 77.9 8.36
0.99 0.001 76.86 9.41
0.75 0.0001 71.89 10.49
0.99 0.0001 60.91 12.59

The training progress during 250 training iterations of the first four PG
configurations from Table 3.3 can be found in Figure 3.5. We trained the
agents for 1,000 iterations but omitted the rest of the iterations from this
figure. Overall, the training was more stable than with DQN. However, some
configurations experienced significant drops in performance in the first itera-
tions, which later stabilised with continued training. Unlike DQN, the training
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time was much lower, as less than 12 hours were needed to fully train one con-
figuration.
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Figure 3.5: Training progress of the first four PG configurations from Table
3.3 during the first 250 training iterations.

The trained agents from Figure 3.5 were tested on the same validation set
as DQN. From Table 3.4, we can see that the evasion rate was, on average,
10% lower than with DQN. The best result of 69.33% was recorded by the
PG agent with γ = 0.75 and α = 0.01. The only improvement to DQN is the
smaller increased size of the modified files, which for PG was slightly above
3%. Similarly to DQN, these results are marginally better than the results
achieved with only 50 iterations of training.

Table 3.4: Results of the first four PG configurations from Table 3.3 after
1,000 training iterations.

γ α evasion rate [%] size increase [%] mean episode length

0.5 0.001 69.0 3.31 5.89
0.75 0.01 69.33 3.24 5.84
0.75 0.001 69.17 3.3 5.88
0.99 0.01 69.0 3.24 5.83

3.2.3 Proximal Policy Optimization

The last reinforcement algorithm we tested is another policy gradient algo-
rithm called proximal policy optimization. We followed the aforementioned
experiment protocol, starting with an exploration through a maximum num-
ber of steps between 5 and 200. From Figure 3.6, we can see that the plot
for PPO mimics the same behaviour we saw with DQN in Figure 3.2. Since
the evasion rate is increasing rapidly until the value of 50 and then begins to
stagnate, we decided to proceed with the maximum number of steps set to 50
same as with DQN.

Secondly, we optimised the gamma and learning rate hyperparameters of
PPO. In Table 3.5, we can see the performance on the training set after 100
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Figure 3.6: Evasion rate and input size increase based on a maximum number
of steps used by the PPO agent.

training iterations. Apart from the last configuration with γ = 0.99 and
α = 0.01, the differences in mean episode reward were only minor between
individual hyperparameters. The highest mean episode reward of 87.66 was
recorded by the PPO agent with γ = 0.75 and α = 0.0001. In contrast with
the DQN results presented in Table 3.1, the agents with lower learning rates
performed better.

Table 3.5: Hyperparameters search results for the PPO agent with the maxi-
mum number of steps limited to 50.

γ α mean episode reward mean episode length

0.75 0.0001 87.66 13.08
0.5 0.0001 87.33 13.23
0.99 0.0001 85.91 14.51
0.5 0.001 85.09 13.79
0.99 0.001 84.9 14.04
0.75 0.001 83.76 15.21
0.5 0.01 81.5 17.31
0.75 0.01 79.7 17.4
0.99 0.01 53.47 31.9

We retrained the first four PPO agents from Table 3.5 for 1,000 iterations,
and the training progress during the first 250 iterations can be seen in Figure
3.7. At first glance, we can see that different values of gamma and lr had
little effect on the training progress and that an increased number of training
iterations did not significantly improve the agents’ performance. This may
indicate that the agent is hitting a local optimum. In contrast with DQN and
PG, the training performance was much more stable in most cases, maintaining
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itself above the mean episode reward of 70. The only exception was the
PPO agent with γ = 0.99 and α = 0.0001, which recorded significant dips in
performance during some episodes, but overall performance remained similar
to other configurations. Using the setup mentioned above, we averaged over
60 hours of training time for each PPO agent, most of all RL agents tested.
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Figure 3.7: Training progress of the first four PPO configurations from Table
3.5 during the first 250 training iterations.

Taking the aforementioned trained configurations of PPO agents, we mea-
sured their performances on our validation set of malware samples. The full
result can be found in Table 3.6. The highest evasion rate of 90.38% was scored
by PPO with γ = 0.5 and α = 0.0001. Overall, all PPO configurations per-
formed better than their DQN (Table 3.2) and PG (Table 3.4) counterparts,
recording a minimal evasion rate of 81.4%. It is worth mentioning that apart
from the first agent (γ = 0.75, α = 0.0001), all took longer to build adversarial
samples with more than 20 modifications needed on average, increasing the
size of the binaries significantly.

Table 3.6: Results of the first four PPO configurations from Table 3.5 after
1,000 training iterations.

γ α evasion rate [%] size increase [%] mean episode length

0.75 0.0001 81.4 4.7 9.98
0.5 0.0001 90.38 9.2 20.22
0.99 0.0001 87.77 7.95 21.41
0.5 0.001 87.44 9.02 22.41

3.2.4 Test Results

We introduced a separate test set of 1,000 malware binaries for the final phases
of our evaluation procedure. This set of samples has never been used in our
experiments before, which gives us a clear picture of the agents’ performances.
Based on the results achieved on the validation set, we selected the following
agent configurations DQN (γ = 0.5, α = 0.01), PG (γ = 0.75, α = 0.01) and
PPO (γ = 0.5, α = 0.0001) for the subsequent experiments.
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Firstly, we evaluated the aforementioned training process by measuring the
performance of RL agents on the test set. The results are shown in Table 3.7.
We immediately see significant drops in performance for all agents compared
to performance on the validation set, suggesting possible overfitting. However,
they still achieved decent results. The trend is similar to what we saw on the
validation set, as the highest evasion rate of 58.92% was recorded by the PPO
and the lowest by the PG agent. For the DQN agent, there was a substantial
file size increase, from 4.64% on the validation set to 11.25% on the test set.
To conclude, the overall best RL algorithm against GBDT classifier is the
PPO with γ = 0.5 and α = 0.0001, striking the highest evasion rate while
maintaining a reasonable size increase of adversarial examples.

Table 3.7: Results of the best configuration for each tested RL algorithm on
the test set against the GBDT classifier.

evasion rate [%] size increase [%] mean episode length

DQN 55.95 11.25 21.67
PG 40.14 5.92 10.84
PPO 58.92 9.01 21.07

In the following test, we investigated the potential transferability of an
attack generated against the GBDT classifier to another ML model, MalConv.
This was done by taking the aforestated trained RL agents and introducing
them to MalConv as the target classifier without any prior training with this
classifier. The comparison of results against GBDT and MalConv can be seen
in the subtables of Table 3.8. The last column of the respective tables indicates
the increase or decrease of the measured metric relative to the original value
recorded for the GBDT classifier. Note that all values presented in these tables
are in percentages.

Table 3.8: Transferability of the adversarial attack targeted against GBDT to
MalConv.

(a) Evasion Rate [%]

GBDT MalConv change

DQN 55.95 27.17 -51.43
PG 40.14 18.96 -52.77
PPO 58.92 28.91 -50.93

(b) Size Increase [%]

GBDT MalConv change

DQN 11.25 19.02 69.13
PG 5.92 9.58 61.85
PPO 9.01 18.95 110.24

The average success rate of adversarial samples that bypassed the GBDT
classifier was slightly below 50% when facing the MalConv model. The PPO
agent maintained the highest evasion rate against MalConv but was closely
followed by the DQN agent, achieving evasion rates of 28.91% and 27.17%,
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respectively. However, PPO recorded the highest relative size increase, with
average size increasing from 9.01% to 18.95%, an increase of more than 110%.
Nonetheless, in absolute values, PPO is still the go-to algorithm to attack
MalConv in a black-box setting without any prior training against this model.
These results indicate the possibility of transferring attacks from one ML
classifier to another but with a significant decrease in performance.

The ultimate evaluation step was to measure how the adversarial samples
generated during testing from Table 3.7 transfer to previously unseen commer-
cial AV programs. This is the purest black-box scenario, where neither the
training nor the generation of samples is done against the targeted classifier.

Table 3.9: Evasion rate of the generated adversarial samples against real-world
AV programs.

AV-1 AV-2 AV-3 AV-4 AV-5 AV-6 AV-7 AV-8 AV-9

DQN 8.9 8.9 14.7 9.99 9.65 10.02 7.38 7.83 9.94
PG 9.25 9.25 15.0 9.35 9.27 9.92 16.86 12.5 9.6
PPO 10.24 10.24 25.7 11.31 11.08 10.9 19.8 13.88 11.46

The results against the top nine antivirus products are presented in Table
3.9. Each row indicates one of the used RL algorithms, and each column
represents the evasion rate in percentage achieved against the respective AV.
As stated before, the antivirus products’ names are anonymised, but all AV
programs used are listed in the experiment description above. In line with the
previous results, the PPO agent achieves the highest evasion rate against all
AV products, topping up the evasion rate of 25.7% against AV-3. However,
the performances of DQN and PG were much closer than measured in earlier
experiments, with the PG agent beating DQN against 5 AV programs.
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Chapter 4
Related Work

This chapter summarises related publications that focus on creating adver-
sarial malware attacks. We break down this chapter into several sections
depending on the approach used to generate adversarial samples. We start
by describing the works using the same method as we did, attacks based on
reinforcement learning. Then we present the researches that exploit the back-
propagation algorithm commonly used in training deep neural networks with
so-called gradient-based attacks [6]. Note that most of these gradient-based
attacks classify as white-box attacks since they work directly with the inner
configurations of targeted models. Next, we mention several publications that
relate to adversarial malware attacks but do not fit within these two categories.
Lastly, we discuss our results with respect to state-of-the-art methods.

4.1 Reinforcement Learning-Based Attacks
One of the first works done in the domain of generating adversarial samples
using reinforcement learning was published in 2018 by Anderson et al. [39].
The authors presented a gym-malware framework equipped with RL agents
and an OpenAI gym environment. They targeted a gradient-boosted decision
tree which was trained on 100,000 binary files and achieved an evasion rate
of up to 24%, depending on the dataset used. We already mentioned earlier
in the introduction of Chapter 2 some of the shortcomings of this framework,
with some of them also mentioned in their discussion.

In contrast with our work, the authors of [17] focused on Android as their
platform of choice. They represented Android applications as a feature vector
containing permissions such as reading messages or accessing the location
granted to the given program. The authors limited the maximum number of
modifications to 5 while targeting 8 ML detectors, such as decision tree or deep
neural network. In a white-box scenario, they recorded an average evasion rate
of 44.28%, which was further improved to 53.20% when they trained the RL
agent on various target models in grey-box settings. The authors proposed
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retraining the ML detectors as a countermeasure against their attack and
recorded a decrease in evasion rate by 15.22%–29.44%.

In [16], Fang et al. presented two models, a detector called DeepDetectNet
and a generator of adversarial samples called RLAttackNet. Their detector
is based on the DQN algorithm and managed to bypass their own detector
in 19.13% of cases in a pure black-box scenario. Later the authors used the
adversarial samples to retrain their DeepDetectNet model, and the evasion
rate of RLAttackNet dropped to 3.1%.

Already mentioned MAB-malware framework by Song et al. [45] is one
of the most detailed works we have found in the area of crafting adversar-
ial malware examples. Like we did, they used the pefile library to modify
adversarial samples. To control functionality preservation of their generated
adversarial samples, the authors used Cuckoo sandbox to validate that the file
signatures reported by the sandbox do not change after modification. As an
agent, the authors of MAB-malware used a multi-armed bandit, a simple rein-
forcement learning algorithm that does not consider the order of actions used
during an attack. During training, the authors adjusted the agent’s action
space in real time by adding successful action-content pairs. Further, Song
et al. introduced an action minimisation process, which removes unnecessary
modifications after successful evasion, thus decreasing the final size of adver-
sarial examples. The authors targeted the GBDT by EMBER, MalConv and
several commercial AV detectors. With their approach, they achieved a high
evasion rate of 74.4% against GBDT, 97.7% against MalConv and up to 48.3%
against commercial AVs. Further, the authors evaluated the transferability of
samples between detectors and showed that more than 80% of adversarial ex-
amples are evasive between GBDT and MalConv, but merely 7% of samples
that were evasive on ML detectors were also evasive on commercial AVs.

Rigaki and Garcia in [54] used the aforementioned MAB-malware frame-
work to compare target and surrogate models. A surrogate model is a sub-
stitute model used instead of the target model in scenarios where the original
model is unavailable, e.g., it has a high response time or the querying quota
is limited. Their surrogate models achieved 99% agreement with pure ML
models and 90%–98% with AV products. Their results show that the qual-
ity of the surrogate model highly depends on the overlap of training datasets
between the surrogate and original models. While testing the evasion rate of
adversarial samples generated by MAB-malware on real-world AVs, the au-
thors noticed that the success of bypassing the AVs rests on whether AVs are
connected to their respective cloud systems with significant drops in evasion
rate in online settings.

The authors of [55] worked with the gym-malware framework while target-
ting MalConv, LGBM (LightGBM) and random forest classifiers. The authors
achieved the highest evasion rate of 43.8% against MalConv with a particular
variant of DQN. Nevertheless, after they tested their adversarial samples for
functionality preservation by executing them on Windows 7 virtual machine,
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their evasion rate dropped significantly, as only 18.6% of executable malware
files escaped detection by MalConv after discarding non-executable samples.
Their work further strengthens our results shown in Table 2.1, proving that
some of the modifications included in the gym-malware framework generate
non-functional samples.

Quertier et al. in [56] used reinforcement learning algorithms to attack
MalConv, GBDT by EMBER and Grayscale (convolutional neural network
interpreting PE binaries as images) classifiers in grey-scale settings with avail-
able prediction scores for learning. Further, the authors targeted commercial
AV in a pure black-box environment. They used DQN and REINFORCE (pol-
icy gradient algorithm) agents and achieved a very high evasion rate against
all targeted models. Namely, an 80% evasion rate with REINFORCE against
GBDT, 100% perfect evasion against MalConv with both algorithms and the
most outstanding, a 70% evasion rate against commercial AV with REIN-
FORCE. However, Quertier et al. did not specify what commercial AV they
were targeting, and neither the authors published their work for further use.

4.2 Gradient-Based Attacks

A gradient-based attack on an Android malware detector was proposed in
[19]. Using the gradient descent algorithm, the authors calculated the nec-
essary perturbation for the feature vector, which contained features found in
the Android manifest file. They targeted a self-made detector and scored an
evasion rate of 63%–69%. Further, the authors proposed to retrain the clas-
sifier with adversarial samples but cautioned that this could lead to reduced
classifier performance in specific scenarios.

In [57], the authors proposed a gradient-based attack against a MalConv
malware detector. The feature space of this classifier is in the form of 2,000,000
raw bytes extracted from the PE binary. Their attack only targeted the overlay
part of the file and achieved an evasion rate of 60% while modifying less than
1% of total bytes.

The authors of [58] used a gradient-based attack, limited to injecting small-
scale chunks of bytes into unused parts or at the end of the file. They argued
that these modifications do not change the functionality of the file but without
further evidence. The authors scored a high evasion rate of 99% against the
MalConv classifier.

Another attack on MalConv was carried out by Demetrio et al. in [21].
Using an integrated gradient method, the authors studied which sections of a
binary stimulate the MalConv classifier and thus are sensitive to adversarial
attacks. Demetrio et al. found that MalConv is relaying its prediction on
features found in the DOS header. This is a surprising realisation because, in
modern programs, most of this header is only included for backward compat-
ibility and is not utilised. While the exact numbers are not presented in the
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original paper, the authors say that by slightly modifying the DOS header,
they can achieve a high probability of evasion against the MalConv detector.

A variation on the method introduced in [58] was presented in 2021 by
Yang et al. [59]. The authors treated the input executables as images, which
were fed as input into a convolution neural network. They calculated necessary
byte perturbations for detection evasion, which were then converted into spe-
cific byte sequences. Depending on the location of the given perturbation, the
resulting byte sequence was either a dead-code or API call instruction. The
authors conducted a theoretical examination of the above-mentioned modifi-
cations to confirm that their modifications preserve functionality but without
any real-world testing. Their method decreased the accuracy of several deep
neural models by more than 60% but performed worse against models such as
random forest or linear regression with an accuracy decrease of less than 20%.

4.3 Other Methods

In [18], the authors implemented a greedy search algorithm which modifies
feature vectors representing the API calls made by a given file. The authors
conducted an analysis to determine which API calls contribute to files being
classified as malware or benign and recorded an evasion rate of up to 69.78%
while targeting an unknown ML-based classifier.

A generative adversarial network (GAN) called MalGan was proposed in
[60] as a method of generating adversarial samples. During training, the au-
thors used a substitute detector in the form of a deep neural network, and their
results show high transferability of attack between the substitute and target
model by achieving near-perfect evasion against the random forest, decision
tree or linear regression algorithms. However, they worked in a feature space
of extracted API calls and did not provide a method capable of converting the
adversarial feature vectors back to real-world executables.

One of the few works we have found that tackle the data poisoning issue is
[61]. Even though this work is focused on the Android operating system, the
results could also apply to Windows systems. The authors recorded up to 30%
drops in accuracy after injecting their data while targetting pure ML models.
As a defence mechanism, they introduced a camouflage detector that detects
suspicious samples inside the training dataset and increases the detector’s
accuracy by at least 15%.

Fleshman et al. in [62] presented three black-box adversarial attacks to
validate the strength of targeted classifiers such as MalConv or commercial AV
products. The first attack used random action selection with modifications
taken from [39]. For the second one, the authors studied which parts of the
executable are critical for the decision-making of the targeted classifier. To
detect the pivotal parts, they used a binary search algorithm. After locating
the critical parts, Fleshman et al. changed the corresponding bytes at random
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or used bytes extracted from benign binaries. Adversarial samples generated
with these two types of attacks struggled to bypass detection by pure ML clas-
sifiers, but surprisingly the performance of tested AVs suffered. The last type
of attack was in the form of injecting malicious code inside otherwise benign
binaries. This attack proved extremely difficult to detect for all tested mal-
ware detectors reaching an evasion rate of more than 67%. Nevertheless, some
of these modifications could cause malfunctioning of the generated adversarial
malware samples, which was not tested in this work.

The authors of [63] proposed a generative sequence-to-sequence language
model in the form of a recurrent neural network. This network was trained
on benign binaries to generate adversarial benign bytes. These benign bytes
were then appended to malware executables to generate adversarial malware
examples. Their black-box attack could successfully evade detection by three
state-of-the-art ML malware classifiers, such as MalConv. They achieved an
evasion rate of 82.4% with an average append size of 5%. Their results show
that increasing padding size increases the evasion rate but with diminishing
returns for higher values. The authors conducted a behaviour analysis to
validate that the functionality of malicious executables did not change after
appending generated benign bytes.

In [64], a heuristic Monte Carlo tree search algorithm was proposed to find
the optimal set of modifications to evade detection by the surrogate model in
the form of a decision tree trained on the EMBER dataset. The authors
managed to bypass the surrogate classifier in more than 56% of cases, while
52% of these cases only needed one modification in the form of changing the
certificate signature. When transferring these learned modifications to the
target classifier, they recorded a considerable decrease in evasion success, with
only 8.79% of adversarial malware samples capable of bypassing the detector.
Their work was conducted only inside extracted feature space, not on binary
executables.

Another work by Demetrio et al. [65] presents a black-box attack named
GAMMA. This attack tackles the problem of creating adversarial samples as
an optimisation problem where the main criteria are maximal evasion and
minimal size of inserted content. The optimisation problem is solved using a
genetic algorithm which uses the traditional selection process, cross-over and
mutation. In the training phase, the authors targeted the GBDT classifier to
later attack real-world AVs hosted on the VirusTotal website, bypassing 12
out of 70 detectors on average.

4.4 Comparison with State-of-the-art Methods

It is generally difficult to compare our work with others, given the non-
existence of standardised benchmarks and datasets. Moreover, not all re-
searchers focus on preserving the original functionality of adversarial files, thus
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creating evasive but non-functional samples. Additionally, some authors only
created examples in feature space or targeted different platforms, so compar-
ing their work with our exploratory-integrity attack on PE files is impossible.
Furthermore, while many try to benchmark their adversarial samples on com-
mercially available antivirus, the results are usually anonymised for security
and licencing reasons, thus rendering them incomparable.

Nonetheless, our evasion rate of 58.92% against the GBDT classifier with
the PPO agent is comparable, if not better, than most of the studied re-
lated works. One of the exceptions is the before mentioned MAB-malware
[45]. Their 74.4% evasion rate against GBDT is significantly higher than
our recorded results of 58.92%. Although they achieved higher transferability
(over 80%) compared to our attack (slightly below 50%) between ML models,
our attack transferred better to commercial AVs, bypassing detection more
than 10% of the time and peaking at 25.7%. The possible improvements to
our work are suggested later in Conclusion.
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This thesis aimed to study adversarial machine learning techniques related
to the area of malware detection. We crafter an exploratory-integrity attack
using reinforcement learning algorithms on the space of PE binaries. We im-
plemented an interactive environment in the OpenAI Gym format for training
RL agents. The environment includes a PE file modifier with tested modifica-
tions that maximise the conservation of original functionality. We collected a
dataset of Windows malware executables that we used for training and test-
ing. We experimented with three reinforcement learning algorithms DQN,
PG and PPO. Firstly, we determined the optimal number of modifications
for each algorithm. Next, we fine-tuned various hyperparameters for each RL
agent. Later, we chose the most promising configuration for extended train-
ing. From these configurations, we selected the best representative of each
RL algorithm based on their performance on the validation set. Finally, with
this selection of RL agents, we conducted a comparative study determining
the agent with the highest evasion rate against the GBDT classifier and how
the attacks transfer to another ML classifier and commercially available AV
programs. Furthermore, we compared the method proposed by us and the
results achieved with related research.

We accomplished a promising evasion rate against the GBDT classifier,
peaking at 58.92% with the PPO agent (γ = 0.5, α = 0.0001). The DQN
followed closely behind with an evasion rate of 55.95%, while the PG agent
performed the worst, bypassing the GBDT in only 40.14% of cases. Later,
when we tested how our adversarial attack transferred to other malware clas-
sifiers, we saw significant performance drops of over 50%. The best agent,
PPO, achieved evasion rates of 28.91% and 25.7% against the MalConv and
real-world antivirus, respectively.

To summarize this thesis, we successfully performed an adversarial attack
against various malware detectors using reinforcement learning algorithms.
Our adversarial attack works at the level of samples with a strong emphasis
on preserving the original functionality. This is maximised by our testing pro-
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tocol, which could be used in future studies. More than half of the generated
adversarial samples bypassed the targeted classifier, thus significantly increas-
ing its false negative rate. Without any prior training against commercial AV
programs, our attack carried over reasonably well, as shown by more than 10%
of generated examples capable of evading detection by top antivirus products.

Discussion and Future work

The goal of this thesis was to implement an adversarial attack against a chosen
malware detector. The next logical step would be to introduce a defence mech-
anism against our attack that could be incorporated into current detectors. A
defensive method could be retraining with generated adversarial samples or
in the form of a self-contained classifier of adversarial samples.

However, as we already mentioned in some of the previous chapters, our
proposed approach to generating adversarial samples still has room for im-
provements. Firstly, one of our implemented PE modification (append new
import) did not meet our criteria of conserving the functionality of the original
file. It should be noted that improvements should be made before deploying
this operation to other projects.

Next, comparing the original functionality with the Cuckoo sandbox is
difficult as reported analyses are unstable, changing with repeated execution.
A different comparison method or a more advanced analysis system could give
more trust in generated binaries.

Further, our presented modifications could be extended with more and
improved modifications to provide the agent with a more potent set of actions
to bypass the target classifier. For example, we did not explore the possibilities
of modifying the DOS header or changing the executable’s entry point.

Likewise, the hyperparameters of reinforcement learning algorithms are
known to be challenging to fine-tune. More extensive and granular hyper-
parameter search could be incorporated to optimize current RL algorithms.
Furthermore, a modification or a novel algorithm for working with PE binaries
could be presented.

Additionally, vast improvements could be made in the feature engineering
of PE executables. While we used only raw extracted bytes from the begin-
ning and end of the file, a set of more descriptive features could be found,
e.g., behaviour features. These features could significantly improve malware
classifiers’ capabilities as they would become less susceptible to adversarial at-
tacks. However, behaviour analyses are time-demanding and thus problematic
to include in machine learning models due to prolong training stages.

In this thesis and other related works utilizing reinforcement learning, most
authors utilize a set of hardcoded modifications for the agent. While this is
a rational approach as it introduces external knowledge of the author about
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the subject to the agent, an agent capable of generating its own modification
could bring substantial improvements.

Further, attacking malware detectors in a black-box scenario is inherently
difficult as the only non-zero reward is provided after the generated sample
becomes evasive. This situation puts reinforcement learning agents under a
challenging task to determine which modification or combination of modifica-
tions truly contributed to the evasion. Although we adopted this restricted
approach to simulate real-world situations, model-stealing and subsequent
white-box attack is a promising area for future research.

Finally, one of the unexplored areas of adversarial malware generation is
altering actual malware behaviour while preserving the intended functionality.
Since we only focused on static analysis of malware classifiers, our modifica-
tions were not intended to change behaviour. As a result, our attack would
likely be powerless against dynamic analysis systems.

However, our work provides a solid implementation of reinforcement learn-
ing setup working at the level of samples while generating functional adver-
sarial malware examples. Additionally, our modifications, agents and environ-
ment setup can be easily extended for future improvements.
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Appendix A
Acronyms

API Application Programming Interface

AV Antivirus

COFF Common Object File Format

DDoS Distributed Denial of Service

DLL Dynamically Linked Library

DQN Deep Q Network

EXE Executable (.exe)

FNR False Negative Rate

FPR False Positive Rate

GAN Generative Adversarial Network

GBDT Gradient Boosted Decision Tree

IAT Import Address Table

IDT Import Directory Table

ILT Import Lookup Table

IP Internet Protocol

LGBM Light Gradient-Boosting Machine (LightGBM)

lr Learning Rate

ML Machine Learning

OS Operating System
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A. Acronyms

PE Portable Executable

PPO Proximal Policy Optimization

RL Reinforcement Learning

RVA Relative Virtual Address
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Appendix B
Contents of enclosed DVD

README.md........................Markdown file with thesis description
src........................Directory with implementation source codes

AMG ................................ Directory with AMG framework
PE_file_modifications......Directory with testing of modifications
README.md...........Markdown file with implementation description

text..................Directory with thesis text and LATEX source codes
bib ................................ Directory with bibliography files
fig..........................................Directory with figures
tex .............................. Directory with LATEX source codes
DP_Kozak_Matous_2022.tex..................Main LATEX document
DP_Kozak_Matous_2022.pdf.................. Thesis in PDF format
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