
F3 Faculty of Electrical Engineering
Department of computer science

Master’s Thesis

Automation of testing of operating
system backup and recovery

Bc. Anton Voznia
Open informatics

January 2023
Supervisor: RNDr. Pavel Cahyna, Ph.D.

ZADÁNÍ DIPLOMOVÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474440 Osobní číslo:​Anton Jméno:​Voznia Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:​

Softwarové inženýrství Specializace:​

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:​

Automatické testování zálohy a obnovy operačního systému

Název diplomové práce anglicky:​

Automation of testing of operating system backup and recovery

Pokyny pro vypracování:​
The goal of the thesis is to propose solution for automation of testing of offered changes of ReaR (Relax-and-Recover)​
disaster recovery tool source repository (continuous integration testing).​
Guidelines:​
1) Describe requirements to infrastructures for ReaR Continuous integration testing. Examine existing infrastructures (for​
example Travis CI and CentOS CI) for suitability.​
2) Execute at least one test in infrastructure via TMT (Test Management Tool).​
3) Propose a solution for statical code analysis of of the ReaR program code, or alternatively, of unit testing of internal​
functions in the program.​
4) Describe disadvantages of ReaR for CI testing and extend ReaR to overcome them.​
5) Document the result.​

Seznam doporučené literatury:​
1) W. Preston: Backup & Recovery. O'Reilly, 2009.​
2) Jez Humble, Devid Farley: Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment​
Automation (Addison-Wesley Signature Series (Fowler)) 1st Edition​
3) Vladimir Khorikov: Unit Testing Principles, Practices, and Patterns: Effective testing styles, patterns, and reliable​
automation for unit testing, mocking, and integration testing with examples in C# 1st Edition​

Jméno a pracoviště vedoucí(ho) diplomové práce:​

Mgr. Pavel Cahyna, Ph.D. ÚFP AVČR, Za Slovankou 3, 182 00 Praha 8

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:​

Termín odevzdání diplomové práce: 10.01.2023 Datum zadání diplomové práce: 09.02.2022

Platnost zadání diplomové práce: 30.09.2023

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​Mgr. Pavel Cahyna, Ph.D.​

podpis vedoucí(ho) práce​

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to thank my thesis advis-
er RNDr. Pavel Cahyna, Ph.D., for sup-
port, good ideas, and o lot of knowledge
I got from him. I would like to thank
my family, especially thank my mother,
for supporting and advice. Also, thanks
to my colleagues for giving me time for
the master’s thesis, and my friends.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, January 9, 2023

. .

v

Abstrakt / Abstract

Tato diplomová práce popisuje
různé přístupy k testování otevře-
ného soutvarého projektu ReaR. Tady
se ukazuje, jak je možné automatizovat
testování bez manuálního spouštění
testů. V této práci se používá mo-
derní metody pro spouštění testů v
infrastruktuře nebo oblačné systémy
s použitím CI, které jsou populární v
dnešní době. Jsou popsány dvě hlavní
oblasti: testování základní funkcionality
a statická analýza kódu. V dokumentu
jsou uvedeny pokyny pro spouštění
testů v infrastruktuře, a rozšíření exis-
tujících testů pro spouštění v cloudu
a infrastruktuře. Kvůli omezení clou-
dových systémů pro konfigurace, byly
popsány několik metod pro ladění.

Klíčová slova: infrastruktura; ReaR;
relax-and-recover; testování; CI; záloha;
obnova; statická analýza; operačný sys-
tém.

Překlad titulu: Automatické testování
zálohy a obnovy operačního systému

This diploma thesis describes differ-
ent approaches for testing the open-
source project ReaR. It demonstrates
how it is possible to automate testing
without manual test execution. It uses
modern techniques to execute the test-
ing in an infrastructure or cloud systems
by using continuous integration, which
is a trendy method today. Two main
testing fields are described: testing the
basic functionality of ReaR and static
code analysis. In this document was
provide instruction on how it is possible
to execute the tests in infrastructure
and an extension for the tests to run in
available cloud and infrastructures. Be-
cause of restrictions of cloud systems for
modification, this document described
a few methods for debugging.

Keywords: infrastructure; ReaR;
relax-and-recover; testing; CI; continu-
ous integration; cloud; backup; restore;
recovery; disaster recovery; static anal-
ysis; operating system.

vi

/ Contents

1 Motivation 1

2 ReaR 3
2.1 Description 3
2.2 Example with ReaR 3
2.3 ReaR testing requirements 9

3 Infrastructure for ReaR 10
3.1 Continuous integration 10
3.2 Building 10
3.3 Infrastructure for backup

and recovery testing 11
4 ReaR testing in infrastructure 12

4.1 Test Management Tool (TMT) 12
4.2 ReaR, recovery tests 16
4.3 Execute TMT test in an

infrastructure 20
4.4 Testing recovery over NFS . . . 21
4.5 Run test in infrastructure . . . 24
4.6 Type of backup 27
4.7 ISO backup. Modification

recovery test for infrastructure 30
4.8 Debugging 36

5 File name validation 39

6 Static code analysis 41
6.1 ShellCheck 41
6.2 Criteria for static analyzer . . . 43
6.3 Differential ShellCheck 44
6.4 Script for automatic PRs . . . 47
6.5 Script modification 49

7 Conclusion 50

References 51

vii

/ Figures

2.1 Initial parameters of virtual
machine .4

2.2 Make bootable second disk5
2.3 The second disk for backup.5
2.4 lsblk. .5
2.5 lsblk. .6
2.6 Boot menu of ReaR8
2.7 Automatic recover.8
2.8 Rear ask for reboot in auto-

matic mode .8
2.9 Files after recover8
4.1 TMT discover tests 13
4.2 TMT executes simple tests 14
4.3 TMT executes simple tests

on our VM. 15
4.4 No bootable device 19
4.5 VM cloning . 22
4.6 TMT run multi-host tests 24
4.7 Simple test in Testing Farm . . . 27
4.8 Simple test passed. 28
4.9 GRUB, list disks and parti-

tion scheme . 32
4.10 Passed ISO backup test 36
4.11 Failed test, instructions 38

5.1 make validate failed 40
5.2 make validate passed 40
6.1 ShellCheck example 42
6.2 Differential ShellCheck

Checks output 45
6.3 Differential ShellCheck files

changed . 45
6.4 Add new lines into the file 46

viii

Chapter 1
Motivation

Making a backup is an essential and usual process for now. Operating systems became
more complicated. That causes to problems during development or usage it. A bit
changes may crash the whole system, and cause loss of data. To prevent it, a lot of
methods were invented for backup data. Most of them is just an naive data storage
that copies all files on the backup storage.The main problem with such methods is the
lack of disaster recovery. The term “disaster recovery” means an opportunity to restore
the whole system without reinstalling an operating system. For example, in case the
partition table, the boot partition, or some essential files for booting OS (like initrd)
had been lost or broken, before recovery data, we would install a clean image of an OS,
and we could restore data. In most cases, it could be more practical and may take o
lot of time to configure the new system to the previous set-up.

ReaR is an open-source project that has existed since 2006. ReaR means “relax
and recover”. Unfortunately, ReaR does not provide a simple solution for backup and
recovery. It is more complicated to configure and make a backup. Regardless of the
existing complications, ReaR has a lot of advantages. The most important is “disaster
recovery”. The word “relax” in the program’s name means that we can make a backup
and not worry about data loss because ReaR allows us to restore the system at the
moment the backup is made.

ReaR is a very popular and famous project. Every week developers create pull re-
quests on GitHub with solved issues and suggested enhancements. Such an approach
allows fast-evolving projects, adding new features and integrating new ideas. That is
a very strong side of all open-source projects, and simultaneously it has a big disad-
vantage. Every integration goes through a few steps in reviewing and discussing on
GitHub. But it cannot ensure a lack of regressions. For that reason, were developed
different approaches for testing before integration. One of them that is very popular
today is “continuous integration”. It is a set of steps that the product should go through
successfully before changes must be integrated. Though ReaR has existed since 2006,
it does not have strict test rules and tests itself. Unfortunately, in some cases, it caused
a regression.

The main idea of the work is to suggest automatic testing for backup and restoring an
operating system via ReaR. The developers of ReaR should not have manually executed
many times the same test. It would be well to have a solution that could verify if a
change suggested by the maintainer of the project does not break the package build
and does not introduce an obvious regression. Besides regression detection, it should
use static analysis for the code of the project autonomously.

So, in chapter 2, I described what ReaR is and demonstrated an example of how to
make a backup and then restore it. Then in chapter 3, I described the requirements for
automatic testing. I explained why I chose a specific infrastructure. Chapter 4 explains
tests for ReaR that Lukáš Zaoral had already written. In chapter 5, I showed what
framework TMT is and how it may be used for our aims, and in detail, I described
how I extended the tests from Lukáš Zaoral. Chapter 6 contains a description of an

1

1. Motivation .
approach for static analysis. I described existing solutions and how it is possible to
configure them for ReaR, suggested some fixes, and revealed problems in such solutions
and approaches. Unfortunately, static analysis is a very hard and subjective problem;
there are some conversations with ReaR developers about it. 1 2 During the project,
every developer had their own opinion on that. And I found many existing problems. I
documented and described them. Such a solution may be used for ReaR. But we have
not reached an agreement. At least the work may be used as a manual of what was
done and what could be done.

1 https://github.com/rear/rear/issues/1040
2 https://github.com/rear/rear/pull/2756

2

https://github.com/rear/rear/issues/1040
https://github.com/rear/rear/pull/2756

Chapter 2
ReaR

2.1 Description
Relax-and-Recover (ReaR) is an open-source project that provides a simple way to
make backup and disaster recovery. ReaR has a lot of benefits against usual solutions
(coping via dd, rsync ...) for backup. ReaR can store data on different types of boot
media (ISO, USB, eSATA,), and supports network protocols (iSCSI, NFS, ftp, sftp ...).
By default ReaR, besides making of backup, copies the kernel (including all drivers)
of a Linux distribution you are using in a place we can boot from (it may be remote
disk, local disk, ISO image, etc.). Such an approach allows a backup and minimal
bootable system with an interactive interface to restore data in case of a total loss of
your operating system. The minimal bootable system is defines as rescue system.

Because ReaR copies kernel and drivers for interactive restoring, it is possible to
configure and control the whole process of recovery. It supports such protocols as SSH
(Secure Shell); you can connect to the machine (in case it is not disabled in ReaR
configuration) and use it as a typical setup with bit limits.

The most important benefit of ReaR usage is the remaining disk layout. In case
a machine has different disks with varied file systems for every disk, it is possible to
restore the whole system to its original state.

For example, it is possible to make a backup by the command dd. The advantage
of such an approach is simplicity. It is a program that copies block by block a file
into another file. It allows copying a whole disk into another. Or copy a disk into
a file. The disadvantage of this usage is that dd also copies unused blocks on the
disk space. Because of the disk’s defragmentation, the command processes unused disk
space. Another complication of the usage, the program makes just a copy of a disk. It
is not capable of creating a disk layout and restoring it. The user should restore the
data disk by disk, in case of a few disks using its very simple job. It is impossible to
restore if it uses different file systems across a set of disks.

Additionally, ReaR supports just making a backup of data without the need of copy-
ing the rescue system.

I showed an example with a backup on the NFS server in section 4.4. I used the
term “multi-host”. Because we need two machines: the NFS client (a system we want
to backup) and the NFS server (a system where we want to store the backup), I called
such an approach as “multi-host”.

2.2 Example with ReaR
In this section, I will demonstrate an example of how to use ReaR. We will create a
Virtual Machine with Fedora Linux 37, add an additional disk for ReaR backup, make
the backup, and look at the recovery part.

For this example I used QEMU. “QEMU is a generic and open source machine
emulator and virtualizer. QEMU can be used in several different ways. The most

3

2. ReaR .
common is for “system emulation”, where it provides a virtual model of an entire
machine (CPU, memory and emulated devices) to run a guest OS. In this mode the
CPU may be fully emulated, or it may work with a hypervisor such as KVM, Xen,
Hax or Hypervisor.Framework to allow the guest to run directly on the host CPU.
The second supported way to use QEMU is “user mode emulation”, where QEMU can
launch processes compiled for one CPU on another CPU. In this mode the CPU is
always emulated.” 1

To simplify QEMU usage, I installed Virtual Machine Manager. 2 It is a graphical
interface for QEMU (also for KVM, but we do not use KVM).

Fedora 37 was chosen because the author is familiar with the OS and is an active
user of the Linux distribution. I recommend downloading Fedora 37 Server because it
takes a small amount of disk space and doesn’t contain extra packages (such as audio
player, graphical interfaces e.t.c.) that are not needed for our purposes.

Also, I want to mention that all commands I executed as root user, which means a
reader could see “#” at the beginning of the command line.

Figure 2.1. Initial parameters of virtual machine

In the Figure 2.1 is shown a VM with 4GiB RAM, 4 CPUs, and 20.0 GiB space
storage. After installation, we should add a second disk which will be used for a backup
of the system. From my own experience with the ReaR, it would be enough a 5 GiB
for a disk (Figure 2.3).

Figure 2.2 shows that it is needed to make the second disk bootable. To simplify
tests, we can mark that we want to use the boot menu, where we will choose the disk
we want to boot from.

After booting, we need to install ReaR. Be care that all commands I used there are for
Fedora and CentOS distributions. They may not be valid for other Linux distributions.
Before making a backup, we should verify if we have a partition table for the second
disk.

As we can see in Figure 2.4 there is no partition for our disk /dev/vdb From that,
we need to create a partition table in this step.

1 https://www.qemu.org/docs/master/about/index.html
2 https://virt-manager.org/

4

https://www.qemu.org/docs/master/about/index.html
https://virt-manager.org/

. 2.2 Example with ReaR

Figure 2.2. Make bootable second disk

Figure 2.3. The second disk for backup

Figure 2.4. All disks and their partitions

[root@localhost ~]# fdisk /dev/vdb

Welcome to fdisk (util-linux 2.38.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): n
Partition type

p primary (0 primary, 0 extended, 4 free)

5

2. ReaR .
e extended (container for logical partitions)

Select (default p): p
Partition number (1-4, default 1):
First sector (2048-10485759, default 2048):
Last sector, +/-sectors or +/-size{K,M,G,T,P}
(2048-10485759, default 10485759):

Created a new partition 1 of type 'Linux' and of size 5 GiB.

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

Verify via lsblk -f that the partition has been created.

Figure 2.5. vdb contains partition table

Now we can install ReaR and make a backup:

install ReaR
[root@localhost ~]# sudo dnf install rear -y

configuration for ReaR backup
[root@localhost ~]# cat /etc/rear/local.conf

Create a bootable USB disk (using extlinux).
Specify the USB storage device by using USB_DEVICE.
OUTPUT=USB

BACKUP=NETFS

To backup to USB storage device, use
BACKUP_URL=usb:///dev/disk/by-label/REAR-000
or use a real device node or a specific filesystem
label. Alternatively, you can specify the device
using USB_DEVICE=/dev/disk/by-label/REAR-000.
BACKUP_URL="usb:///dev/disk/by-label/REAR-000"

The description of the configuration you can read in detail on the webpage 3

3 https://github.com/rear/rear/blob/master/doc/user-guide/03-configuration.adoc

6

https://github.com/rear/rear/blob/master/doc/user-guide/03-configuration.adoc

. 2.2 Example with ReaR

After ReaR installation, a backup is needed to create a filesystem suited for ReaR
backup. It is possible to do this via the following command # rear format /dev/vdb
Type “Yes” and rear creates ext3 filesystem on the /dev/vdb1 device. It is essential
to note that in my case, the second disk is named “vdb”. In other cases, it may be
different.

The first time I tried to make a backup, I got the following error in a log file
/var/log/rear/rear-localhost.log

2022-12-03 23:32:37.488532799 ERROR: Executable extlinux is missing!
Please install syslinux-extlinux or alike

That means ReaR from the stadard repository doesn’t have dependencies for some
packages. So we can install it and make a backup. Additionally, we make a simple and
naive test to see that ReaR works correctly. Let’s create ten files:

. file0...file4 will be created before backup with content of date creation. file5...file9 will be created after backup with the same content of date creation.

file0...file4 would be exist after recovery, and file5...file9 would be deleted. In such a
way, we can verify that recovery is working correctly.

[root@localhost ~]# for i in {0..4}; do echo $(date) > "file$i"; done

[root@localhost ~]# dnf install syslinux-extlinux -y
...
[root@localhost ~]# rear mkbackup -v
...
[root@localhost ~]# for i in {5..9}; do echo $(date) > "file$i"; done
[root@localhost ~]# cat file*
Sun Dec 4 05:08:08 PM CET 2022
Sun Dec 4 05:08:08 PM CET 2022
Sun Dec 4 05:08:08 PM CET 2022
Sun Dec 4 05:08:08 PM CET 2022
Sun Dec 4 05:08:08 PM CET 2022
Sun Dec 4 05:11:41 PM CET 2022
Sun Dec 4 05:11:41 PM CET 2022
Sun Dec 4 05:11:41 PM CET 2022
Sun Dec 4 05:11:41 PM CET 2022
Sun Dec 4 05:11:41 PM CET 2022

Now reboot the system. After boot, you can see a similar menu in Figure 2.6.
Choose in the Recovery images section localhost.

Let’s use the automatic mode; ReaR will perform the following steps (Figure 2.7).
At the end of the recover, I got the following issue (Figure 2.8). In previous steps, we

selected automatic mode, which means ReaR would be done by itself. But for unknown
reasons, it asks to interact with the interface. But regardless the chosen mode it asks
to interact with the interfcace. It is caused that we did not set the following variable in
the configuration file ISO_RECOVER_MODE=unattended. From the default configu-
ration file /usr/share/rear/conf/default.conf “ISO_RECOVER_MODE=unattended
boots the ReaR recovery system with the ’unattended’ kernel command line option that
runs rear recover automatically plus automated reboot after successful rear recover”

7

2. ReaR .

Figure 2.6. Boot menu of ReaR

Figure 2.7. Automatic recover

Figure 2.8. Rear ask for reboot in automatic mode

Figure 2.9. Files after recover

After recovering and rebooting, we can see the files we suggested they’ll stay (Figure
2.9). File rear-2022-12-04T17:22:24+01:00.log contains log outputs during recover
part. Files file5..file9 were “deleted” because they are not a part of original backup.

8

. 2.3 ReaR testing requirements

2.3 ReaR testing requirements
In the previous sections, I described a simple way to make a backup and restore the
data. The work has aimed at the testing of ReaR.

ReaR needs two primary types of tests: a test of backup and recovery (as I showed
in the previous section) and a static analysis of code.

Automatic testing of backup and recovery would help very fast and in a timely manner
to detect regressions of basic functionality; it allows to speed up development because
of needless manual testing the basic functionality. Also, it can help prevent new bugs
and errors due to the absence of unpredictable and non-obvious testing. Developers
may occasionally miss testing cases because of the changed module that affects others
components of the software.

Every software has its code base and rules on how to write code. But developers
often make similar mistakes in code that conflict with the language specification they
are using. ReaR needs a static analysis for its code base to prevent such errors.

Because of open source, new developers may have reasonable solutions that need to be
corrected. To simplify integrating suggested solutions, ReaR needs to have continuous
integration testing. Such an approach allows making testing regardless of who suggests
changes.

To satisfy the testing described above, we need an infrastructure that allows making
these tests. We need an infrastructure that allows the following:

. install a ReaR package with the changes from the PR. configure the second disk where we will place the backup. possible to reboot the system several times. has enough space to pace backup

9

Chapter 3
Infrastructure for ReaR

In this chapter I defined and described what continuous integration (CI) is, how we can
use it and what type infrastructure we need. I tested few infrastructures and choosed
certain that matches our demands.

3.1 Continuous integration
“Continuous integration was first written about in Kent Beck’s book Extreme Pro-
gramming Explained (first published in 1999). As with other Extreme Pro- gramming
practices, the idea behind continuous integration was that, if regular integration of your
codebase is good, why not do it all the time? In the context of integration, “all the
time” means every single time somebody commits any change to the version control
system.” [1]

Another words, continuous integration is a set of steps that may verify correctness of
our changes, and detect usual errors and mistakes. It includes such steps as building,
installing, and testing. And our requirements is to make it for commited changes. So,
when whoever make any pull request for ReaR project on GitHub, we would like to
have a system setup that allowed to trigger building, installing, testing. And all the
steps must be automated in some way, because our goal is to simplify development and
minimize errors introductions.

In following chapter I am going to introduce a software that allows making CI.

3.2 Building
Since I started the project with Pavel Cahyna who is an employee of Red Hat, they
are using a Packit infrastructure for building packages for Fedora Linux and CentOS
Linux.

“An open source project aiming to ease the integration of your project with Fedora
Linux, CentOS Stream and other distributions.” 1

It is possible to integrate Packit in your project on GitHub. Packit has functions
that triggers building on different actions on GitHub: pushes, making pull requests,
merging... After successful building it reproduces a public link which is possible to use
for installing package with needless to setup your server with repository or download
manually the package. Enough to have an access to internet.

Packit corresponds our requirements for building that is possible to trigger by any
event on GitHub. In the chapter 4 I showed how to set-up Packit building in your
repository on GitHub.

To enable on my GitHub Packit I should ask for accessing to Fedora Account System
account. 2

1 https://packit.dev/
2 https://docs.fedoraproject.org/en-US/fedora-accounts/user/

10

https://packit.dev/
https://docs.fedoraproject.org/en-US/fedora-accounts/user/

. 3.3 Infrastructure for backup and recovery testing

Moreover, Packit has quite interesting features. It can automatically recognize new
pull request that is made into GitHub repository and build with the changes a new
package. Packit supports interaction via GitHub conversation in opened pull requests.
It can be forced to do according command. For example, packit build will force Packit
to build or rebuild packages; packit test will force Packit to run configured tests.

3.3 Infrastructure for backup and recovery testing
The most important part of the work is making automated testing for backup and
recover ReaR usage. There were 3 main infrastructure I have tested:

. Travis CI is a cloud infrastructure that in past was free for open-source projects. 3 I
registered on their web-site and, unfortunately, I had not found a free usage.. GitHub Actions. It is very powerful infrastructure that is integrated into GitHub.
The big benefit of usage GitHub Actions is that simple to build your project, because
the source codes are on the system you have choosen. Another thins is that you do
not need additional settings and manipulating with your project, enough to create a
workflow with a script you want it to run. And another one is that GitHub offers a
variety of Linux distributions for usage. But it has a disadvantage that makes for us
the usage impossible. GitHub Actions are finishing since the machine is rebooted. It
is possible to install ReaR and make backup. But after rebooting the infrastructure
recognize the machine as turned-off. The lack of reboot does not correspond to the
requirements from section 2.3.. Testing Farm. “Testing Farm is a reliable and scalable Testing System as a Service for
Red Hat internal services, Red Hat Hybrid Cloud services, and open source projects
related to Red Hat products. It is commonly used as a test execution back-end of
other services or CI systems. Thanks to its HTTP API it can be easily integrated
into any other service.” 4 From the description it is seen that the infrastructure
corresponds our requirements. ReaR is supported by Red Hat, employees from Red
Hat develop the software. Also, thanks the API and that Packit and Testing Farm are
Red Hat’s products, they have close integrated functionality. We can configure Packit
for execution our tests, and Packit allows execute tests in Testing Farm without
difficult configuration. Along with the building system the Testing Farm looks like
more appropriate infrastructure. Additionally, I verified that Testing Farm supports
reboot of their machines.

Referred to described above, and having experience with Packit, I choosed Testing
Farm as infrastructure for CI.

3 https://www.travis-ci.com/
4 https://docs.testing-farm.io/general/0.1/index.html

11

https://www.travis-ci.com/
https://docs.testing-farm.io/general/0.1/index.html

Chapter 4
ReaR testing in infrastructure

In this chapter, I described how to execute tests in chosen infrastructure in conjunction
with Test Management Tool (TMT). I demonstrated a simple example of how to set
up TMT on a local VM and execute a test. Then I extended existing tests for ReaR
and wrote my tests for backup in an ISO file and on an NFS server.

For part of testing an ISO backup, I mainly showed the steps to get a successful result.
Because I executed the tests in the Testing Farm, which is running in a cloud, I don’t
have access to it; it was challenging to get some log files, understand and investigate
the problems I encountered, and do a debug and invent a technique for that. It is a
familiar approach or method that can be used in some way. The section may be helpful
for people who encounter familiar problems. It is just a list of different techniques and
experiments of myself which I tried.

Although the multi-host (backup on an NFS server as I described it in section 2.1)
has yet to be done, I shortly described the idea of such tests. I tested it and verified
that the test works correctly. Developers from Testing Farm have not done work with
multi-host testing, and that was a reason why I have not tested backup on an NFS
server in the cloud. My supervisor and I contacted the developers of TMT and Testing
Farm with a concept we wanted to test. Then they sent us a concept for multi-host
testing, which I tested for them locally on my own VMs.

4.1 Test Management Tool (TMT)
The TMT tool provides a user-friendly way to work with tests. You can comfortably
create new tests, safely and efficiently run tests across different environments, review
test results, debug test code, and enable tests in the CI using a consistent and concise
config.

The python module and command-line tool implement the Metadata Specification,
which allows storing all needed test execution data directly within a git repository.
Together with the possibility to reference remote repositories, it makes it easy to share
test coverage across projects and distros.

“The Flexible Metadata Format fmf is used to store data in both human and
machine-readable ways close to the source code. Thanks to inheritance and elasticity,
metadata are organized in the structure efficiently, preventing unnecessary duplication.”
1

Let’s say we have a project we want to test with the TMT.

[anton@fedora tmp]$ mkdir simple-project
[anton@fedora tmp]$ cd simple-project/

To initialize the TMT environment in the simple project is needed to execute tmt
init, then the TMT tool creates a sub-directory .fmf with a test version.

1 https://github.com/teemtee/tmt

12

https://github.com/teemtee/tmt

. 4.1 Test Management Tool (TMT)

[anton@fedora simple-project]$ tmt init
Tree '/tmp/simple-project' initialized.
To populate it with example content, use --template with mini,
base or full.
[anton@fedora simple-project]$ ls -la
total 0
drwxr-xr-x 3 anton anton 60 Dec 6 22:34 .
drwxrwxrwt 28 root root 680 Dec 6 22:34 ..
drwxr-xr-x 2 anton anton 60 Dec 6 22:34 .fmf
[anton@fedora simple-project]$ cat .fmf/version
1

Now our project doesn’t contain any tests. Of of the helpful feature of tmt is that
the user can discover all tests in a project by running command tmt run discover. To
be precise, if we skip discover tmt will run all tests we have assigned in the project.

Figure 4.1. Example of TMT discover tests

Let’s add a simple test that prints us system information via command uname -a
and print on the “screen” the following message via echo command echo “Test has
been passed.” TMT supports so-called plans. “Plans, also called L2 metadata, are
used to group relevant tests and enable the CI. They describe how to discover tests
for execution, how to provision the environment, how to prepare it for testing, how to
execute tests, report results and finally how to finish the test job.” 2

We can use the plans to describe exactly where we want to execute tests (on our VM,
or tmt should use our virtual images), the sequence of scripts, and how many machines
we need for the tests (more, for example, with NFS backup).

[anton@fedora simple-project]$ mkdir plans/
...
Create a file which describes our simple test
[anton@fedora simple-project]$ cat plans/main.fmf
provision:

how: virtual
connection: system

execute:
how: shell

2 https://tmt.readthedocs.io/en/stable/spec/plans.html

13

https://tmt.readthedocs.io/en/stable/spec/plans.html

4. ReaR testing in infrastructure .
script:

- uname -a
- echo "Test has been passed."

. provision - describes where we want to execute a test. In this case, “virtual” means
that TMT downloads an image and starts a VM.. executes - describes or, better to say, answers “how” we want to execute our tests
and “what” we want to execute. In this example, I used shell scripts to get system
information and print a string “Test has been passed.” In the next section, I’ll show
how to execute the tests on own VM we have access to.

Now let’s run the test tmt run. As shown in Figure ?? tmt successfully executed
two tests. It corresponds uname -a and echo “Test has been passed.” The logs files of
TMT running is placed in /var/tmp/tmt/.

Figure 4.2. TMT executes simple tests

In my case, the output we can find in the file /var/tmp/tmt/run-013/log.txt:

...
15:29:25 out: Linux testcloud 6.0.7-301.fc37.x86_64 #1
SMP PREEMPT_DYNAMIC Fri Nov 4 18:35:48 UTC 2022
x86_64 x86_64 x86_64 GNU/Linux

14

. 4.1 Test Management Tool (TMT)

...
15:29:25 out: Test has been passed.
...

I’ll demonstrate how to set up and execute the same test on the VM we created in
the first chapter. Start the VM and get the IP:

[root@localhost ~]# ip addr | grep inet
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host
inet 192.168.122.98/24 brd 192.168.122.255
scope global dynamic noprefixroute enp1s0
inet6 fe80::5054:ff:fe4f:2c55/64 scope link noprefixroute

The IP is 192.168.122.98. When I create the VM, I set root password “pswd”. So, if
we want to execute the same test on the VM we created in the first chapter, then the
main.fmf should contain the following provision stage:

template
provision:

how: connect
guest: hostname or ip address
user: username
password: password

for my VM it is
provision:

how: connect
guest: 192.168.122.98
user: root
password: pswd

Now, if we run again tmt run it already executes on our VM (see Figure 4.3)

Figure 4.3. TMT executes simple tests on our VM

Log files /var/tmp/tmt/run-014/log.txt contains similar output as we got before,
exception is for output

...
15:48:18 out: Linux localhost.localdomain
6.0.7-301.fc37.x86_64 #1 SMP PREEMPT_DYNAMIC Fri Nov 4 18:35:48
UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
...
15:48:18 out: Test has been passed.
...

Even if the project aims to execute tests for backup and recovery in infrastructure,
running the tests locally on VM is very useful. It allows us to verify the correctness of

15

4. ReaR testing in infrastructure .
such an approach locally and then use it in the cloud. We spend our time on something
other than necessary debugging and waiting for some responses from the Testing Farm.

4.2 ReaR, recovery tests
In this section, I described ReaR-testing. It is a set of tests that I used as a basis and
extended them. Below you can find an explanation of the tests, and I described the
most important steps. I didn’t write details all steps because that is unnecessary. If
you are interested, follow the link. 3 You can contact me or the test’s author (Lukáš
Zaoral) in case of questions.

rear-testing is a repository created by Lukáš Zaoral. The repository contains a set
of tests for ReaR. It makes a backup and then restores an OS. It helps quickly to find
regression and verify the basic functionality of ReaR. Lukáš Zaoral wrote the tests for
a few boot firmware architectures: BIOS, UEFI, PowerVM, and s390x. The tests are
working on the internal infrastructure of Red Hat. Since I am not an employee of the
company, I do not have access to the infrastructure. That is why I did not use the
actual tests and modified them as a prat of the work.. BIOS. “A basic input output system (BIOS) is the lowest level software component

of a computer’s operating system.” [2]. “UEFI (Unified Extensible Firmware Interface) is a set of specifications written by
the UEFI Forum. They define the architecture of the platform firmware used for
booting and its interface for interaction with the operating system.” 4. “PowerVM is developed by IBM. It is server virtualization without limits. Businesses
are turning to PowerVM server virtualization to consolidate multiple workloads onto
fewer systems, increasing server utilization and reducing cost.” 5. s390x “z/Architecture, initially and briefly called ESA Modal Extensions (ESAME),
is IBM’s 64-bit complex instruction set computer (CISC) instruction set architecture,
implemented by its mainframe computers. IBM introduced its first z/Architecture-
based system, the z900, in late 2000.” 6

PowerVM and s390x are particular architectures and depend on hardware such as
processor architecture. That is the reason why I used BIOS and UEFI. For them, it is
possible to configure VM and run the tests there. During familiarizing myself with the
rear-testing I encountered a problem with UEFI. Further descriptions, investigations,
and developments come out from rear-testing for BIOS.

My first step was to go through the test code and understand it. Then I tried to
execute the tests.

In the head of the file are two includes:
. /usr/bin/rhts-environment.sh || exit 1
. /usr/share/beakerlib/beakerlib.sh || exit 1

“BeakerLib is a shell-level integration testing library providing convenience func-
tions that simplify writing, running, and analyzing integration and black box tests.” 7

BeakerLib allows writing tests that support different journalling phases (preparation,
configuration, execution, getting results, etc.).

The essential features include:
3 https://github.com/lzaoral/rear-testing
4 https://en.wikipedia.org/wiki/UEFI
5 https://www.ibm.com/products/ibm-powervm
6 https://en.wikipedia.org/wiki/Z/Architecture
7 https://github.com/beakerlib/beakerlib

16

https://github.com/lzaoral/rear-testing
https://en.wikipedia.org/wiki/UEFI
https://www.ibm.com/products/ibm-powervm
https://en.wikipedia.org/wiki/Z/Architecture
https://github.com/beakerlib/beakerlib

. 4.2 ReaR, recovery tests

. “Journal - uniform logging mechanism (logs & results saved in flexible XML format,
easy to compare results & generate reports)”. “Phases - logical grouping of test actions, clear separation of setup / test / cleanup
(preventing false fails)”. “Asserts - common checks affecting the overall results of the individual phases (check-
ing for exit codes, file existence & content...)”. “Helpers - convenience functions for common operations such as managing services,
backup & restore”

8

Referring to the above, Lukáš Zaoral used the library for the rear-testing. The whole
code is placed in the scope:

rlJournalStart
...
rlJournalEnd

It is an initialization of journalling functionality. As I wrote above, it is possible to
divide our testing into different phases. That approach is used in the rear-testing.

To print any message rlLog command is used. For example:
rlLog “Select device for REAR” - that will print in log file the message on the right

side from the literal. To execute command is used rlRun. Of course, we can use
usual shell commands without the rlRun but they won’t be visible in the log file that
BeakerLib creates. For example, rlRun is executed in the following way:

rlRun -l "lsblk" 0 "lsblk executed"

-l is an option that says we want to log output of the command via rlLog.
lsblk is a command that we executed.
0 is status which we expect the command o program would return. It may differs if

you use another program. In our case it is 0.
lsblk executed is a comment that describe the rlRun.
rlFileSubmit commands allows to submit a file from the machine we tested on. The

file would appear among logs.
Variable PACKAGES stores a list of packages needed for the testing. Obviously, it

is rear package, and syslinux-extlinux. Package syslinux-extlinux has the following
contents:

[anton@fedora ~]$ dnf repoquery -l syslinux-extlinux
/etc/extlinux.conf
/sbin/extlinux
/usr/lib/.build-id
/usr/lib/.build-id/fc
/usr/lib/.build-id/fc/17033b5213bd5c04a72ff38e4c580ead46c12b
/usr/share/man/man1/extlinux.1.gz

During the test, the machine will be rebooted several times. From the tests’ point
of view, the machine will be rebooted once (after the backup is made). The machine
reboots more times: after backup, after the restore stage, and the last, after relabeling
partitions. The REBOOTCOUNT variable is used to define the number of reboots.
REBOOTCOUNT contains the value of the count of reboots during the test. It is

8 https://github.com/beakerlib/beakerlib/wiki/man

17

https://github.com/beakerlib/beakerlib/wiki/man

4. ReaR testing in infrastructure .
used to know if we just started the test and we need to make a backup, then RE-
BOOTCOUNT is equal to 0. Or we have already restored the system, and we are in
the second stage when we want to decide if the test has been passed or failed, then
REBOOTCOUNT is equal to 1.

Of course, during the test, the tested machine reboots several times. Since the TMT
framework uses ssh protocol for manipulating and executing the commands on the
machine, it sees the booted machine only phase of backup and after the recovery stage.
Because I turned off the ssh daemon process in the configuration file for the rescue
system, TMT does not “think” we boot the system and can continue running the test
scripts in rescue mode. In this way, we reboot the machine once from the TMT side
only.

The following code asserts that all packages in variable PACKAGES are installed:

rlPhaseStartSetup
rlAssertRpm --all

rlPhaseEnd

It uses a second disk for backup store. The following configuration for ReaR match
it:

rlPhaseStartSetup
rlFileBackup "/etc/rear/local.conf"
rlRun "echo 'OUTPUT=USB

BACKUP=NETFS
BACKUP_URL=usb:///dev/disk/by-label/REAR-000
ISO_DEFAULT=automatic
ISO_RECOVER_MODE=unattended' | tee /etc/rear/local.conf" 0\
"Creating basic configuration file"

rlAssertExists "/etc/rear/local.conf"
rlPhaseEnd

ISO_RECOVER_MODE=“unattended” it sets automatically execution of rear re-
cover command and reboot after successful execution. If we also set ISO_DE-
FAULT=“automatic”, the restore will be full-automated. There is no need for any
interaction with the interface.

Before the backup we create a file drive_layout.old which stores information about
block devices:

rlRun -l "lsblk | tee drive_layout.old" 0 "Store lsblk output\
in recovery image"

The file will be a part of a backup. After the restore stage, we should also see the
file. It is possible to configure ReaR not to include some files in the backup. But by
default, /root directory (because in Unix-like systems directory is a file. Actually, all
is a file.) is included.

The next step is to make a backup:

rlPhaseStartTest
rlRun "rear -d mkbackup" 0 "Creating backup to $REAR_ROOT"
rlFileSubmit /var/log/rear/rear*.log rear-mkbackup.log
if ! rlGetPhaseState; then

rlDie "FATAL ERROR: rear -d mkbackup failed.\

18

. 4.2 ReaR, recovery tests

See rear-mkbackup.log for details."
fi
rlPhaseEnd

Variable REAR_ROOT contains the relative path to the block device we make a
backup on. It is just for logging and is not necessary to have such a variable. Also,
we want to submit a log file with info during the backup stage. If the command rear
mkbackup hasn’t been done successfully, we will fail and not continue the test.

After it, we make one more file. This file will not be restored as well because we
created it after the backup stage.

rlPhaseStartSetup
rlRun "touch recovery_will_remove_me" 0\
"Create dummy file to be removed by recovery"
rlAssertExists recovery_will_remove_me

rlPhaseEnd

The last steps before reboot may look complicated for a reader. Because we have the
backup on the second disk, we need to change chain-loading in GRUB. We set in the
GRUB configuration file that, by default, for boot is assigned the second disk. But for
unknown reasons, it failed int boot with the message: “Missing operating system. No
bootable device”, Figure 4.4

Figure 4.4. No bootable device

I spent some time trying to realize why the problem occurred. Eventually, I rewrite
it with extlinux usage. I rewrite the super-block of the boot partition by the extlinux
binary file, and for now, it uses extlinux. You can see the change in the following
commit on GitHub. 9

“EXTLINUX is a Syslinux variant which boots from a Linux filesystem.” 10 “SYS-
LINUX is a boot loader for the Linux operating system which runs on an MS-DOS/Win-
dows FAT filesystem. It is intended to simplify first-time installation of Linux, and for
creation of rescue and other special purpose boot disks.” 11

9 https://github.com/lzaoral/rear-testing/commit/7621cccd842074ea5e6f96a1f49c47f1b87a118c
10 https://wiki.syslinux.org/wiki/index.php?title=EXTLINUX
11 https://wiki.syslinux.org/wiki/index.php

19

https://github.com/lzaoral/rear-testing/commit/7621cccd842074ea5e6f96a1f49c47f1b87a118c
https://wiki.syslinux.org/wiki/index.php?title=EXTLINUX
https://wiki.syslinux.org/wiki/index.php

4. ReaR testing in infrastructure .
So, I used extlinux as a loader instead of GRUB. We have already installed the

package with extlinux (for RPM packages it is syslinux-extlinux package). To initialize
extlinux for boot directory is needed to execute the following command:

extlinux --install /boot/extlinux

extlinux needs entries (similar as GRUB needs it). The main configuration file for
extlinux is To boot from the second disk (hd1 name from extlinux side) that has the
rescue system, we need the following entry:

LABEL rear
MENU LABEL Chainload ReaR from hd1
MENU DEFAULT
COM32 chain.c32
APPEND hd1

chain.c32 - it is a binary program for so-called chain-loading. That allows us to load
another bootloader. In our case, it will load syslinux, which was created by the rear
command, and then boot the rescue system.

MENU DEFAULT - set the entry by default for loading.
MENU LABEL Chainload ReaR from hd1 - menu name for hte entry.
APPEND hd1 - to use the second disk for boot.

I used the following command to replace GRUB loader with the extlinux by rewriteing
super-block:

cat /usr/share/syslinux/mbr.bin > /dev/$ROOT_DEVICE

ROOT_DEVICE - it is a variable with a block device name corresponding to the
boot partition.

Now the test makes reboot by rhts-reboot command.
After reboot, TMT run the test script again, it starts from the begining. We got

to the second part by if-condition that REBOOTCOUNT equals 1. There the test
verifies that the file doesn’t exist, and logs from ReaR and drive_layout.old still are
after restoration. And additionally, the test confirms that doesn’t happen a change
with the list of block devices:

rlAssertNotExists recovery_will_remove_me
rlAssertExists drive_layout.old
rlAssertExists /root/rear*.log

rlRun -l "lsblk | tee drive_layout.new" 0\
"Get current lsblk output"
if ! rlAssertNotDiffer drive_layout.old drive_layout.new; then

rlRun -l "diff -u drive_layout.old drive_layout.new" \
1 "Diff drive layout changes"

fi

4.3 Execute TMT test in an infrastructure
In the second chapter, I described the Testing Farm infrastructure and Packit system,
which allows the building of a package and running tests in the Testing Farm for the
built package. In this section, I described how to set up ReaR GitHub repository to
execute tests for PRs. Lately, we will use it to perform the test described in the previous
section.

20

. 4.4 Testing recovery over NFS

4.4 Testing recovery over NFS
In this section, I described and showed a solution for automatically testing a backup
on NFS server.

“The Sun Network Filesystem (NFS) provides transparent, remote access to filesys-
tems. Unlike many other remote filesystems implementations under UNIXt, the NFS
is designed to be easily portable to other operating systems and machine architectures.
It uses an External Data Representation(XDR) specification to describe protocols in a
machine and system-independent way. The NFS is implemented on top of a Remote
Procedure Call package (RPC) to help simplify protocol definition, implementation,
and maintenance.” [3]

From the description of NFS, such technologies are convenient if we want to make
a backup and store it remotely. ReaR supports a making backups in this way. TMT
supports executing tests on a few machines simultaneously. So it is helpful to start two
machines: the first one may be used as a client which makes backup, and the second
may be used as an NFS server to store the backup. I wrote the test as a proof-of-concept
to demonstrate TMT and Testing Farm developers what kind of usage for TMT and
the infrastructure we needed. Unfortunately, such a solution cannot be integrated into
the current infrastructure. Referred above, I chose Testing Farm for automatic tests.
Pavel Cahyna and I asked TMT and Testing Farm developers if they support that
testing. They confirmed they are working on multi-host support and sent me back a
demo version of TMT with supported multi-host testing. Eventually, I verified their
solution, and it works as we expected, but it still needs to be introduced in Testing
Farm. I am going into this work to show a reader how to set up it, up because it is
essential and valuable for the future expanding variable of testing for ReaR.

To set ReaR to use NFS for backup I used the following configuration:

BACKUP_URL="nfs://$NFS_SERVER_IP/var/tmp/nfsshare"
GRUB_RESCUE=y

. NFS_SERVER_IP - variable contains an IP of NFS server. /var/tmp/nfsshare - path to a directory which is shared via NFS (actually, it is a
path on a server where ReaR places a backup). GRUB_RESCUE=y - I used it to simplify boot. The flag asks the rear to set up in
the GRUB rescue system boot. The rescue image and kernel is placed on the same
disk that is used by the system.

Now we will configure two machines to run a test. Then I described what is different
and what I modified in the rear-testing.

We need to have 2 VMs: NFS - client and NFS - server. It is possible just to clone
in the Virtual Manager machine we created in the first chapter. In the Figure 4.5 is
an example of how to create a copy of the VM. I also copied the disk storage where
Fedora 37 is installed. If we don’t copy the disk, then the client and server will refer
to the same disk, which leads to data corruption. Also, I excluded the disk for backup
because we will store the backup on the server.

Boot the two machines and get the IP. We need it for further configuration. In my
case it was:

client: 192.168.122.98
server: 192.168.122.208

21

4. ReaR testing in infrastructure .

Figure 4.5. VM cloning

Let’s add a plan for ReaR where we placed code to execute tests referred to above
from my GitHub branch test-multihost. 12

I described the process in code-block bellow, with comments marked by ##:

Clone a project from my fork on GitHub
[anton@fedora tmp]$ git clone https://github.com/antonvoznia/rear.git
Cloning into 'rear'...
remote: Enumerating objects: 57078, done.
remote: Counting objects: 100% (254/254), done.
remote: Compressing objects: 100% (145/145), done.
remote: Total 57078 (delta 123), reused 155 (delta 102), pack-reused 56824
Receiving objects: 100% (57078/57078), 10.72 MiB | 4.11 MiB/s, done.
Resolving deltas: 100% (28520/28520), done.
[anton@fedora tmp]$ cd rear/
Create a new branch which we will use for the tesing.
[anton@fedora rear]$ git checkout -b tmt-test-multihost
Switched to a new branch 'tmt-test-multihost'
Create a new plans
[anton@fedora rear]$ mkdir -p plans/multihost
Initiate TMT tool envirenmet for ReaR
[anton@fedora plans]$ tmt init
Tree '/var/tmp/rear/plans' initialized.
To populate it with example content, use
--template with mini, base or full.
[anton@fedora rear]$ cd plans/multihost/
...
Create 2 files. main.fmf contains information

12 https://github.com/antonvoznia/rear-testing/tree/test-multihost

22

https://github.com/antonvoznia/rear-testing/tree/test-multihost

. 4.4 Testing recovery over NFS

about where we want to execute and how.
sanity.fmf refers on a branch in my GitHub repo
rear-testing.
[anton@fedora multihost]$ ls
main.fmf sanity.fmf

rovision:
- name: client

how: connect
guest: 192.168.122.98
user: root
password: pswd

- name: server
how: connect
guest: 192.168.122.208
user: root
password: pswd

prepare:
how: shell
where: server
script:

- dnf -y install nfs-utils
- mkdir /var/tmp/nfsshare
- echo "/var/tmp/nfsshare 192.168.0.0/16(rw,no_root_squash)"\
>> /etc/exports
- systemctl enable --now rpcbind nfs-server
- firewall-cmd --add-service=nfs --permanent
- firewall-cmd --reload

Use the internal executor
execute:

how: tmt
where: client

That is a stage for the configuration NFS server. This will be running before the execute
step. To clarify, the commands may be executed for Linux distribution with the DNF
package manager.. dnf -y install nfs-utils - install utils for NFS server configuration. mkdir /var/tmp/nfsshare - create a directory which will be shared across NFS. echo “/var/tmp/nfsshare 192.168.0.0/16(rw,no_root_squash)” » /etc/exports

- adding in file /etc/exports configuration for a directory we want to share
(/var/tmp/nfsshare). 192.168.0.0/16 represents sub-net with 16 bits of hosts. rw
Allow both read and write requests on this NFS volume. no_root_squash Turn off
root squashing.. systemctl enable –now rpcbind nfs-server - enable daemon process for NFS server.. the 2 last commands are for excepting NFS from firewall checking. In some cases it
can block NFS access.

23

4. ReaR testing in infrastructure .

Figure 4.6. TMT run multi-host tests

Remain to run the command tmt run. The example is in Figure 4.6

4.5 Run test in infrastructure

In this section, I demonstrated how to execute a test in infrastructure. We will write
a simple test for ReaR (to be more clear, the test will not be about ReaR specifics or
ReaR testing, it will be just an example). I have already described Packit. It solves two
problems for us: build a ReaR package with changes proposed by us, and it executes
tests in the infrastructure Testing Farm. It is a very useful and important point. We

24

. 4.5 Run test in infrastructure

want to test precisely the new arrived changes. Packit allows quickly build a package
for the architecture we denoted.

There is a guide on how to set up a Packit for your account, whether on GitHub
or GitLab. It is possible to activate Packit on a certain repository but not for all
repositories.

We need to create a configuration file to force Packit to build and run tests. Packit
uses configuration files in YUML format. Valid names for the configuration files are
restricted by:

. .packit.yaml. .packit.yml. packit.yaml. packit.yml

One of the files I mentioned above needs to be placed in the repository’s root directory.
ReaR project already has enabled Packit. I needed to do the same for my repository.
We need to expand existed .packit.yaml file and add the test we want to execute. In
section 4.1, we wrote a simple test. It is possible to execute the same test in the Testing
Farm infrastructure. Let’s clone the ReaR from my repository and configure Packit.

[anton@fedora tmp]$ git clone https://github.com/antonvoznia/rear.git
Cloning into 'rear'...
remote: Enumerating objects: 57083, done.
remote: Counting objects: 100% (297/297), done.
remote: Compressing objects: 100% (147/147), done.
remote: Total 57083 (delta 163),
reused 198 (delta 143), pack-reused 56786
Receiving objects: 100% (57083/57083), 10.73 MiB | 22.32 MiB/s, done.
Resolving deltas: 100% (28523/28523), done.
[anton@fedora tmp]$ cd rear/
[anton@fedora rear]$ cat .packit.yaml
downstream_package_name: rear
jobs:
- job: copr_build

targets:
- fedora-all
- centos-stream-8-x86_64
- centos-stream-9-x86_64
- opensuse-leap-15.3-x86_64
- opensuse-tumbleweed-x86_64
trigger: pull_request

- job: production_build
scratch: True
targets:
- fedora-latest-stable
- epel-all
trigger: pull_request

specfile_path: packaging/rpm/rear.spec
files_to_sync:
- .packit.yaml
- dest: rear.spec

25

4. ReaR testing in infrastructure .
src: packaging/rpm/rear.spec

upstream_package_name: rear

The most important part of .packit.yaml for us is jobs section. Packit defines the
jobs that needs to do. In the example above are 2 jobs: copr_build and produc-
tion_build. The first corp_build submits a task into Fedora CORP 13.

“ Copr is an easy-to-use automatic build system providing a package repository as
its output.

Start with making your own repository in these three steps:
1) choose a system and architecture you want to build for
2) provide Copr with src.rpm packages
3) let Copr do all the work and wait for your new repo ” targets - a list of distributions

the build is for. In our case, it is for all active releases of Fedora, CentOS 8 and 9,
and 2 versions of OpenSUSE. trigger - an event on GitHub (GitLab) that triggers the
Packit to apply for a job. In the example above, it is a pull request for our repository.
For every new PR Packit applies a new task.

The second job production_build submits a task for another build system - Fedora
Koji build system. 14 targets in the second jobs are Fedora last and stable versions
(it may differ in the future, by now, it is from Fedora 35 up to Fedora 37) and Extra
Packages for Enterprise Linux (EPEL) for CentOS 7, CentOS 8, and CentOS 9.

Now, let’s copy plans/main.fmf from section 4.1 where I showed how to execute the
test with TMT.

[anton@fedora rear]$ tmt init
...
[anton@fedora rear]$ cat plans/main.fmf
provision:

how: virtual
connection: system

execute:
how: shell
script:

- uname -a
- echo "Test has been passed."

To trigger tests to execute in Testing Farm we need add own job:

- job: tests
trigger: pull_request
metadata:
targets:
- fedora-latest-stable
- centos-stream-8-x86_64
- centos-stream-9-x86_64

Now we will commit the change and push it into our repository. Then we should
create a PR against the master branch (it would be a different branch, but I made
it with the most similar branch with minor changes). After a creating PR in it in
sub-section “Checks” we can see the jobs we have defined in .packit.yaml. Figure 4.7

13 https://copr.fedorainfracloud.org/
14 https://koji.fedoraproject.org/koji/

26

https://copr.fedorainfracloud.org/
https://koji.fedoraproject.org/koji/

. 4.6 Type of backup

Figure 4.7. Simple test in Testing Farm

The red “X” means that the test is failed, the status bar - the test is in progress, and
the green check mark - the test is passed. If we open the test for Fedora 37, which had
been passed (Figure 4.8) and click for the log file

In the log-file log.txt are two lines with the output for the shell scripts we used for
the test. For uname -a the output is:

10:22:15 out: Linux
ip-172-31-23-184.us-east-2.compute.internal 6.0.12-300.fc37.x86_64
#1 SMP PREEMPT_DYNAMIC Thu Dec 8 16:58:47 UTC 2022 x86_64
x86_64 x86_64 GNU/Linux

For the command echo “Test has been passed.”:

10:22:15 out: Test has been passed.

4.6 Type of backup
Referred to above, ReaR supports different formats to store rescue image. It is possible
to store an output of rescue image in:

. RAMDISK - create a copy of kernel and initramfs in selected location. ISO - create ISO ISO9660, that is bootable. PXE - create on a remote server wheret PXE or NFS selected files

27

4. ReaR testing in infrastructure .

Figure 4.8. Simple test passed

. USB - create a bootable disk with backup (it dosn’t have to be usb exactly, it may
be another type of disk). RAWDISK - create a bootable raw disk

In section 4.2, I described how to execute the recovery tests for ReaR from Lukáš
Zaoral. It uses a USB format and makes a backup on the second disk. Using the
same test in the Testing Farm infrastructure would be easy. But unfortunately, the
Testing Farm does not yet support the option to add additional hardware. That means
we cannot just add the second disk. Developers from Testing Farm replied that they
would introduce such a feature in the near future. By default, Testing Farm has only
one disk. To get the information about images and setups used in Testing Farm, I wrote
a very simple plan (plans were described in section 4.1):

execute:
script:

- free -h
- df -h
- lsblk

I used it to collect different information about the machines in the infrastructure, such
as free memory (free -h), free and used disk spaces (df -h), a list of block devices
(lsblk). The list of block devices has only one disk nvme0n1 with different partitions.

Filesystem Size Used Avail Use% Mounted on
devtmpfs 4.0M 0 4.0M 0% /dev
tmpfs 1.9G 0 1.9G 0% /dev/shm
tmpfs 772M 572K 772M 1% /run
/dev/nvme0n1p5 39G 772M 38G 2% /
tmpfs 1.9G 4.0K 1.9G 1% /tmp

28

. 4.6 Type of backup

/dev/nvme0n1p2 966M 53M 848M 6% /boot
/dev/nvme0n1p5 39G 772M 38G 2% /home
/dev/nvme0n1p3 100M 12M 89M 12% /boot/efi
tmpfs 386M 0 386M 0% /run/user/0
Shared connection to 18.118.36.202 closed.

The base test storing the backup on the second disk is not suitable for our case. We
could make a backup over NFS. It would work as I described in section 4.4. Also, in the
section, I wrote why it is not yet possible to use the method; Testing Farm still needs
to support the multi-host. I could write two tests that would start simultaneously. The
tests would trigger starting of two independent machines in the infrastructure. One of
the test’s two machines could be used as a server, and another is a client. But there are
a lot of problems like getting IPs of server and client, interconnecting, synchronization
issues, etc.

I mentioned syslinux and extlinux programs in previous sections. One part of the
project (syslinix) is a program memdisk. Memdisk is a binary program that allows boot
different legacy operating systems. And memdisk supports boot ISO images. If we store
a backup and ReaR’s kernel in an ISO image, we may use memdisk to boot from the
image. It would work in the following way: a firmware (let’s say BIOS) will start and
load GRUB, the GRUB has a configuration to load the memdisk, the memdisk has
a configuration to load the image we have set. In our case, it is the ISO file that was
created after backup by ReaR. An advantage of the memdisk usage is that we can just
set a relative path to the ISO file with our backup to memdisk configuration. We do
not need additional hardware. And memdisk is possible to load from GRUB. It means
we do not need to rewrite the super-block in the boot partition.

Probably memdisk is not capable to boot large ISO images. Because the project
aims to boot legacy OS that took just few hundreds megabytes. I encounter a problem
during my work and solve it. I described it in the following section.

Making a backup in ISO image is the most convenient solution for testing in the
infrastructure at this time.

As well, GRUB supports booting from the ISO image but in a different way. GRUB
uses ISO as a file with a path to a bootable kernel. Memdisk allows the use ISO, similar
to CD/DVD driver, because we want to test in a very similar way it would be used in
real cases. And when we set up the GRUB to boot the ISO, we should configure the
path to the rescue image and kernel we want to boot. That means GRUB loads at once
the rescue system at; the menu in Figures 2.6 and 2.7 is not showing. In other words,
we also do not test the whole ISO image. We skip the phase and start the recovery
stage.

Also, there is a reasonable question. If we have a backup in our ISO image on only
one disk, that is the same for our system; and during the restore stage, we will rewrite
the disk and rear the backup from the disk at the same time. That is all cause of data
corruption. So, how can we make restore? We can use ramdisk. It is possible to create
a disk in RAM.

“The RAM disk driver is a way to use main system memory as a block device. It
is required for initrd, an initial filesystem used if you need to load modules in order
to access the root filesystem (see Documentation/admin-guide/initrd.rst). It can also
be used for a temporary filesystem for crypto work, since the contents are erased on
reboot.” 15

15 https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/blockdev/
ramdisk.rst

29

https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/blockdev/ramdisk.rst
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/blockdev/ramdisk.rst

4. ReaR testing in infrastructure .
When ReaR has been booted in memory, we will create a copy of the ISO image in

ramdisk. ReaR will see it as a CD with the label “REAR-ISO.” ReaR will recognize
the disk by the label “REAR-ISO” and start the restore stage. From the ReaR side,
it would look like we use a CD driver, though the ISO is loaded in RAM. Notice we
should create a ramdisk before ReaR starts recovery. Because during the recovery stage,
it formats the disks and deletes the ISO file with the backup.

4.7 ISO backup. Modification recovery test for
infrastructure

In this section, I described how I have modified and extended the tests mentioned
above (recovery tets) to execute them in the Testing Farm infrastructure. I showed the
problems I encountered and what I was trying to solve it. As a basis, I took recovery
tests, which I have already extended for multi-host testing with over NFS. Also, I
demonstrated how it is possible to debug in the cloud platform Testing Farm.

Though the base test exists, we could try to execute them in the infrastructure. The
restriction for the execution of the tests is a lack of modification images in Testing
Farm. Actually, Testing Farm uses AWS (Amazon Web Services) cloud. Currently,
they do not have the option to add additional hardware or modify requirements to the
images we need to use. The test used for testing ReaR needs the second disk where
we place backups with the rescue system. The problem is that we can not (at least
by now) add the second disk in the cloud machine. That is a reason why we need to
extend the tests and adapt them to the Testing Farm infrastructure. Let’s say we need
a “workaround” to set up testing in infrastructure. To solve it, I used a memdisk. It
is a binary program that allows it to boot from an ISO image. memdisk usage makes
us possible to boot from the ISO image and place the ISO file on the same disk the
machine has.

Today most of the clouds use BIOS to boot an OS. The same is valid for the images
used in Testing Farm. That is an argument for why I chose BIOS tests as a basis.

The first step I did was changing the ReaR configuration for backup in the file
/etc/rear/local.conf. We want ReaR after reboot to run automatic restore (needless
interface interaction). So, we keep the following two variables:

ISO_DEFAULT=automatic
ISO_RECOVER_MODE=unattended

To force ReaR to create ISO image with a backup and bootable kernel, which starts
the restoring, we set the following variables:

OUTPUT=ISO
BACKUP_URL=iso:///backup

OUTPUT=ISO says that ReaR will make ISO image, BACKUP_URL=iso:///backup
make a backup a part of the ISO image. Rear allows separate backup from the bootable
kernel of ReaR. In our case, we want to keep it locally. And the best way to make it a
part of the same ISO image.

The following variables make ReaR create backup locally (it does not copy backup
onto the remote server, it keeps them locally)

OUTPUT_URL=null
BACKUP=NETFS

30

. 4.7 ISO backup. Modification recovery test for infrastructure

Notice that variables OUTPUT_URL=null and BACKUP_URL=iso:///backup we
should use together because we want to create a local backup and, at the same time,
make it a part of the ISO image. I removed the value GRUB_RESCUE=y from the
configuration because it is not the usual usage of ReaR. And we want to have a very
similar test to actual case usage. The GRUB_RESCUE enabled was helpful for an
occurrence we have a backup on the NFS server. It forces ReaR to set up GRUB in a
way that it will boot the rescue system after the reboot.

In the previous section, I mentioned that ReaR should use ramdisk to load the ISO
image. That all should be done before ReaR starts restoring. Fortunately, in the ReaR
configuration file might be a set variable containing a list of commands executed before
restoring. The following code is responsible for it:

PRE_RECOVERY_SCRIPT=("mkdir /tmp/mnt;" "mount /dev/vda2 /tmp/mnt/;" \
"modprobe brd rd_nr=1 rd_size=2097152;" \
"dd if=/tmp/mnt/var/lib/rear/output/rear-fedora.iso \
of=/dev/ram0;" "umount /tmp/mnt/;")
ISO_FILE_SIZE_LIMIT=4294967296

The variable PRE_RECOVERY_SCRIPT contains the following steps:

1. mkdir /tmp/mnt - create a temporary directory where we will mount the
partition with root directory.

2. mount /dev/vda2 /tmp/mnt/ - mount the root directory into /tmp/mnt/.
3. modprobe brd rd_nr=1 rd_size=2097152 - it loads the brd (block ram disk)

module, and the disk will be created when the module will have been loaded.
rd_nr=1 - count of disks we want. rd_size=2097152 - the size of the disk in
kilobytes.

4. dd if=/tmp/mnt/var/lib/rear/output/rear-fedora.iso of=/dev/ram0 - copy the
ISO image in ramdisk we have created.

5. umount /tmp/mnt/ - unmount the mounted /dev/dsk/vda2.

After the steps above, we will have the ISO image in ramdisk. ReaR would find it by
the label “REAR_ISO” during the restore stage.

The value ISO_FILE_SIZE_LIMIT=4294967296 extends the standard size of the
ISO image. By default value in ReaR, it is not enough.

The next steps with creating files before and after the command execution rear -v
mkbackup I left the same. Because the basic logic of the test verifies if the default
functions of ReaR works correctly, as before, we expect that after the restore stage,
the file drive_layout.old will remain, and the file recovery_will_remove_me will be
deleted.

The following code adds to the GRUB entry with boot from the ISO:

rlRun "echo 'menuentry \"ReaR-recover\" {
loopback loop \

(hd0,msdos3)/root/var/lib/rear/output/rear-fedora.iso
linux (loop)/isolinux/kernel rw selinux=0 \

console=ttyS0,9600 console=tty0 auto_recover unattended
initrd (loop)/isolinux/initrd.cgz

}
set default=\"ReaR-recover\"' >> /boot/grub2/grub.cfg"

31

4. ReaR testing in infrastructure .
loopback loop - command to mount ISO file, and we can use loop as a reference to

the mounted root files system.
(hd0,msdos3) - the disk (hd0) and partition scheme (msdos3) where is placed root

files system. It follows the path to the ISO file we want to mount. The names “hd0”
and “msdos3” may be different for different platforms. I set it according to my VM con-
figuration. For more information it is possible to see the configuration file for GRUB:
/boot/grub2/grub.cfg and files in the following directory /etc/grub.d/. Also, it is possi-
ble to get in GRUB, where the GRUB is loaded type c. It opens a GRUB console. By
the command ls you can list disks, partition schemes, and stores of the disk. Example
in Figure 4.9

Figure 4.9. GRUB, list disks and partition scheme

The line following after it is information for GRUB that we use Linux kernel to boot
and the path to the kernel; rw - enable write and read during running the system;
disable selinux; console defines a terminal for output and port, or just virtual terminal
(console=tty0); arguments auto_recover and unattended are passed to the kernel for
ReaR that we want to use automatic mode without an interaction with interface.

initrd - driver for the kernel to create a temporary root file system during the boot
process. ReaR place the driver into the ISO file. We assign the path to the ISO file.

set default=“ReaR-recover” - set the entry “ReaR-recover” as default. Since we want
automated testing, we need the entry to be started by default.

The rest of the script is the same as in multi-host testing. Before executing the test
in the infrastructure, I verify the correctness on the local VM. I described how to create
and run the tests on the local VM in detail. For now, I just copied the already installed
and configured VM.

To execute on the local VM we need to create a plan for TMT. In my case, it looks
like that:

summary:
Sanity tests

framework: beakerlib

discover:
how: fmf
path: /var/tmp/rear-testing
name: Sanity/make-backup-and-restore-iso

That corresponds to the local place of the test.

32

. 4.7 ISO backup. Modification recovery test for infrastructure

I ran the test locally, and it worked correctly. As mentioned above, we need to use
memdisk to boot the ReaR kernel. In GRUB, we assigned kernel and initrd manually
by setting the relative path to files isolinux/initrd.cgz and isolinux/kernel. memdisk
allows to use ISO images like a burned CD. It is more close to real cases in practice.

To have memdisk it is necessary to install an additional package. Since I worked with
Linux distributions from Red Hat, which were Linux Fedora, CentOS 8, and CentOS
9, the needed package is syslinux-nonlinux. Just add the package to the following
variable:

ADDITONAL_PACKAGES=("syslinux-extlinux" "syslinux-nonlinux")

Also, since I used GRUB, I needed to copy memdisk in /boot directory that memdisk
would be available to the GRUB, and rewrite the menuentry:

REAR_ISO_OUTPUT="/var/lib/rear/output"
...
rlRun "cp /usr/share/syslinux/memdisk /boot/"
...
rlRun "echo 'menuentry \"ReaR-recover\" {

linux16 (hd0,msdos1)/memdisk iso raw selinux=0\
console=ttyS0,9600 console=tty0 auto_recover unattended

initrd16 (hd0,msdos2)$REAR_ISO_OUTPUT/rear-fedora.iso
}
set default=\"ReaR-recover\"' >> /boot/grub2/grub.cfg"

During the testing, I encountered another problem. memdisk is not developing today.
Unfortunately, it does not support large files. ISO image file with backup might take
up to 3GiB of disk space. And memdisk was not capable of booting from such a large
file. I tried memdisk with different sizes of ISO images. And successful boot was for
files that were less than 1GiB. One possible solution is to create a copy of the ISO
image and remove the backup files from it. The backup files are not needed during the
ReaR boot. They are required in the restore stage only. To modify ISO images exist,
a program xorriso. We need to add the corresponding package:

ADDITONAL_PACKAGES=("syslinux-extlinux" "syslinux-nonlinux" "xorriso")

And then afterm rearm mkbackup -v command make a copy of file and remove backup
directory from it:

rlRun "xorriso -as mkisofs -r -V 'REAR-ISO' -J \
-J -joliet-long -cache-inodes -b isolinux/isolinux.bin\
-c isolinux/boot.cat -boot-load-size 4 \
-boot-info-table -no-emul-boot -eltorito-alt-boot \
-dev $REAR_ISO_OUTPUT/rear-fedora.iso\
-o $REAR_ISO_OUTPUT/small-rear.iso -- -rm_r backup"

The code above will create a new file small-rear.iso with the removed backup.
Also, executing the test on the local VM worked as we expected. To execute the

same test in infrastructure is necessary to add plans with the link on the test. TMT
supports test execution from the GitHub repository. In my case, the plan looked like
this:

[anton@fedora rear]$ cat plans/sanity.fmf
summary:

33

4. ReaR testing in infrastructure .
Sanity tests

framework: beakerlib
discover:

how: fmf
url: https://github.com/antonvoznia/rear-testing
ref: test-iso-to-del

test-iso-to-del - name of git branch that contains test.
Unfortunately, it was not working in Testing Farm as we expected. It looked like

the machine was not booted. We can recognize it because TMT uses ssh protocol
to execute commands on machines. I ran the test several times and always got the
following message:

ssh: connect to host 192.168.1.23 port 22: Connection timed out

It may mean issues with the TCP connection (the TCP driver also might not have
been started). If the TCP driver has already been loaded but ssh there are some
problems with the ssh connection (for example, the sshd daemon is not started), we
would see Connection refused message on the terminal. For example, let’s try to stop
the sshd daemon:

[anton@fedora ~]$ systemctl stop sshd
[anton@fedora ~]$ ssh root@127.0.0.1
ssh: connect to host 127.0.0.1 port 22: Connection refused

I wrote simple plan for TMT to collect more information about the machines used in
Testing Farm:

execute:
how: shell
script:

- df -h
- lsblk
- lsblk -f
- lsblk -l
- free -h
- uname -a
- ls -la /
- ls -la /boot/
- ls /boot/grub2/device.map
- cat /boot/grub2/device.map
- ls /sys/firmware/
- cat /etc/grub2-efi.cfg
- cat /etc/grub2.cfg

The output of the command lsblk -l:

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
zram0 252:0 0 3.8G 0 disk [SWAP]
nvme0n1 259:0 0 40G 0 disk
nvme0n1p1 259:1 0 1M 0 part
nvme0n1p2 259:2 0 1000M 0 part /boot
nvme0n1p3 259:3 0 100M 0 part /boot/efi
nvme0n1p4 259:4 0 4M 0 part

34

. 4.7 ISO backup. Modification recovery test for infrastructure

nvme0n1p5 259:5 0 38.9G 0 part /home
/

Shared connection to 18.118.36.202 closed.

In this setup, images is used NVMe controllers. However, we used the VDA hard-
coded driver. Also, there is a difference in partition schemes. On our local machine, we
used msdos instead of it in the Testing Farm; They are using GPT (GUID Partition
Table). I rewrote the test to make it as much as possible independent of the architecture
we use.

To get a disk that we can mount, I used the following command:

ROOT_DISK=$(df -hT | grep /$ | awk '{print $1}')

Using the variable ROOT_DISK in code won’t depend on the type of disk the system
operates.

On some machines, the relative path to the root is /. On others, it would be /root/.
The same is true for the boot directory. To get the relative paths, I added variables:

ROOT_PATH=$(grub2-mkrelpath /)
BOOT_PATH=$(grub2-mkrelpath /boot)

In some cases, the /root directory and /boot are placed on different partitions. To
simplify the boot, I retrieve the UUID of the partitions and set it to GRUB menu entry
that it finds by itself:

BOOT_FS_UUID=$(grub2-probe --target=fs_uuid /boot)
ROOT_FS_UUID=$(grub2-probe --target=fs_uuid /)

And, to prevent hard-coded names of the machine (because the ISO file name de-
pended on it), I stored the host-name in variable HOST_NAME=$(hostname -s).

To summarize and compile above, we need to modify scripts for the pre-recover stage:

PRE_RECOVERY_SCRIPT=(\"mkdir /tmp/mnt;\"\
\"mount $ROOT_DISK /tmp/mnt/;\" \
\"modprobe brd rd_nr=1 rd_size=2097152;\" \
\"dd if=/tmp/mnt/$ROOT_PATH/var/lib/rear/output/rear-$HOST_NAME.iso\
of=/dev/ram0;\"\
\"umount /tmp/mnt/;\")

Then I rewrote the GRUB menu entry by that:

search --no-floppy --fs-uuid --set=bootfs $BOOT_FS_UUID
search --no-floppy --fs-uuid --set=rootfs $ROOT_FS_UUID
terminal_input serial
terminal_output serial
menuentry \"ReaR-recover\" {
linux16 (\$bootfs)$BOOT_PATH/memdisk iso raw selinux=0\
console=ttyS0,9600 console=tty0 auto_recover unattended
initrd16 (\$rootfs)$ROOT_PATH/$REAR_ISO_OUTPUT/rear-rescue-only.iso
}

At this development step, I had all prepared for execution in the Testing Farm. In
ReaR repository in .packit.yaml files I used configuration:

35

4. ReaR testing in infrastructure .
- job: tests

trigger: pull_request
metadata:
targets:
- fedora-latest-stable
- centos-stream-8-x86_64
- centos-stream-9-x86_64

CentOS 8 and CentOS 9 are very stable distributions of Linux. They do not need to
update critical parts of the kernel more often. That is the reason why I wanted to use
such distributions. fedora-latest-stable it alias always corresponds to the latest stable
versions of Fedora Linux. When I tested, it was Fedora 37.

The passed test for Fedora 37 you can see in the Figure 4.10
There are two links on branches in my GitHub for the testing set-up:

. The ReaR recovery tests for ISO backup 16. Configured ReaR repository 17

Figure 4.10. Passed ISO backup test

4.8 Debugging
During the work on the project I encountered significant problem. Before to run some-
thing in the Testing Farm infrastructure, I tested it on VM. That is easy to get log

16 https://github.com/antonvoznia/rear-testing/tree/test-backup-iso
17 https://github.com/antonvoznia/rear/tree/test-backup-iso

36

https://github.com/antonvoznia/rear-testing/tree/test-backup-iso
https://github.com/antonvoznia/rear/tree/test-backup-iso

. 4.8 Debugging

files from the local VM or just “pause” the execution and get actual files from it. The
same way is not possible when we test something in cloud. As I wrote in the document,
execute in Testing Farm simple script that collect me information about free memory,
disk, partition table and map configuration.

Another problem I’ve run into was that in log files reported about failed test after
making backup and tmt-reboot command. TMT uses ssh protocol for connecting to
the test machine and executing commands via it. The ssh connections failed with
status code 255:

14:15:40 err: ssh: connect to host\
3.142.79.215 port 22: Connection refused
14:15:40 Command returned '255'.

That means that after first reboot ReaR was loaded in memory and it loaded TCP
driver. In case if TCP driver had not been loaded, I would get “Connection timeout...”
message. To prove it I allowed in ReaR configuration file /etc/rear/local.conf ssh
connection in rescue mode:

SSH_FILES=yes
PROGS+=(ps lsblk sleep cat lsattr tmt)
COPY_AS_IS+=(/usr/share/beakerlib \
${TMT_PLAN_DATA/data/discover}/default-0\
/tests/Sanity/make-backup-and-restore-iso)

Because in rescue mode of ReaR is used Linux kernel and minimal count of binary
programs, we need to add additional programs needed for debugging in the variable
PROGS. During rear mkbackup -v ReaR adds the mentioned programs. The last one
line with the variable COPY_AS_IS - it is files that will be accessable in rescue mode.
Because I run the debug in the second stage of rear-testing (after first reboot) via TMT
tool. So for the rescue mode, we need the library “beakerlib” that our test was able to
run such commands like: rlRun, rlLog, etc. The directory $TMT_PLAN_DATA/data-
discover/default-0/tests/Sanity/make-backup-and-restore-iso corresponds to the test we
are running.

For the second stage I rewrote runtest.sh, that I described a modification for ISO
backup in the section 4.7, in the following way:

elif ["$TMT_REBOOT_COUNT" -eq 1]; then
rlRun "{ rear -D recover;\

cat /var/log/rear/rear*.log; dmesg; } &"
rlRun "sleep 500"
rlRun "dmesg";
rlRun "ps -e | grep -i rear";
rlRun "lsblk -f";
rlRun "cat /var/log/rear/rear*.log";
rlRun "tmt-reboot"

...

The script above will be executed after the first reboot that is verifies via the vari-
able TMT_REBOOT_COUNT. It “manually” executes a sequence of command in
background: recovery, printing rear log, and printing kernel ring buffer. The log mes-
sages and outputs of dmesg will be in the TMT summary log file in case if the recovery
will be executed successfully. We do not know in advance if the recovery had been

37

4. ReaR testing in infrastructure .
done or not. That was a reason to run the sequence of commands in background mode.
Then I executed sleep 500 that allowed to my script wait 500 seconds before the script
continue to collect data and information. The value 500 seconds was picked according
to the experience with restoring time. It would be enough for recovery. Then we printed
again dmesg, verify if the rear process is still running (in case if the process hanged
out), prints a list of block devices, get the rear log (we may find out the place where
rear recovery failed), and the last one - I forced the system to reboot.

Similar debugging allows me to find an issues in my ISO backup test. The
file /var/log/rear/rear*.log had an error where prints that in the PRE_RECOV-
ERY_SCRIPT scripts it can’t find the file /var/lib/rear/output/rear-fedora.iso. On
some images the relative path to the system’s root is /, others have /root/. That ex-
plains why we are using the following variable in the section 4.7 ROOT_PATH=$(grub2-
mkrelpath /).

Another problem I was solving was local TMT test execution with image from the
cloud. Testing Farm suggested a list of instructions to run it locally if I got a failed
test. Example in Figure 4.11.

Figure 4.11. Failed test, instructions

38

Chapter 5
File name validation

In this elementary and small chapter, I showed a test for validating the correctness
of the names of source files of ReaR. Though ReaR is a set of bash scripts, it has a
Makefile. It is possible to use different stages: build the project, install, clean, and
validate sources. Validate stage does a few checks:

. Existance of configuration files exist in the directories etc/ and usr/share/rear/conf/.. Existance of “binary” executable rear file.. Correctness of files name for ReaR code. All files (except sub-directories lib, skel, and
conf) should end with 3 digits / 3-tuple. For example, the file usr/share/rear/lay-
out/recreate/default/220_verify_layout.sh. If there were an incorrect file name, the
“make” would fail. Let’s make a copy of the file mentioned above and remove from
the name 1 digit (it will be 2-tuple at the start of the file), then execute make
validate.

[anton@fedora rear]$ cp usr/share/rear/layout/recreate\
/default/220_verify_layout.sh usr/share/rear/layout\
/recreate/default/22_verify_layout.sh
[anton@fedora rear]$ make validate
...
ERROR: script usr/share/rear/layout/recreate/\
default/22_verify_layout.sh must start with 3 digits
make: *** [Makefile:95: validate] Error 1

As we can see above, we got the correct error message.

I set up and enabled such checking for RPM packages. Since the RPM package build-
ing is an automated system, creating a file with the “rules” for building the program
is necessary. For RPM packages that are file with .spec format. For building, I used
Packit. It triggers and uses the .spec file to create a new RPM package. Firstly I added
make in rear.spec requirements. It allows a build system to use the make command.
The second commit contained a change that adds the following code into rear.spec:

%check
%{__make} validate

It creates a new check stage for the building and uses macro %make to run make
validate.

To test it, I create my own repository 2 PRs. One of them was with an incorrect file
name. On GitHub, it is imaged as an error in section Checks. Example in Figure 5.1

The example with correct file names you can see in the Figure 5.2
The suggested changes have been integrated into the source codes.

39

5. File name validation .

Figure 5.1. make validate failed

Figure 5.2. make validate passed

40

Chapter 6
Static code analysis

In this chapter, I described the possible solution for static program analysis. Static
code analysis - it is code analysis of a program without execution of the program. It
was not a part of the work to introduce a new static analyzer or write own. There I
tested already existing solutions for it; I showed the advantages and disadvantages of
them for ReaR. In the first section of this chapter, I described what ShellCheck is and
why it is useful for the project. And then, I described “Differential ShellCheck” and
tested it.

6.1 ShellCheck
“ShellCheck - A shell script static analysis tool.” 1 ShellCheck is an open source project
for static analysis for different versions of shell. It is written in Haskell. The program is
licensed under the GNU General Public License version 3. Such type of licence allows
to use the prgram in others open source projects. Notice: ReaR uses the same licence
“GNU General Public License v3.0.”

Most of the code ReaR is written in specific Shell-bash (GNU Bourne-Again SHell).
That means we can use the ShellCheck to verify a newly introduce code.

ShellCheck supports two very important features:

. We can specify a Shell we want to use. “Specify Bourne shell dialect. Valid values
are sh, bash, dash and ksh. The default is to deduce the shell from the file’s shell
directive, shebang, or .bash/.bats/.dash/.ksh extension, in that order. sh refers to
POSIX sh (not the system’s), and will warn of portability issues.”. Severity. “Specify minimum severity of errors to consider. Valid values in order of
severity are error, warning, info and style. The default is style.”

ReaR uses BASH as a default language. So, we can specify the needed configuration
that ShellCheck prints errors according to the standard.

Let’s try to install ShecllCheck on Fedora 37 and try to execute it on a source file of
ReaR:

dnf install ShellCheck.x86_64 -y
shellcheck --version
ShellCheck - shell script analysis tool
version: 0.7.2
license: GNU General Public License, version 3
website: https://www.shellcheck.net

git clone https://github.com/rear/rear.git
cd rear
ls usr/share/rear/init/default/030_update_recovery_system.sh

1 https://github.com/koalaman/shellcheck

41

https://github.com/koalaman/shellcheck

6. Static code analysis .
usr/share/rear/init/default/030_update_recovery_system.sh

shellcheck usr/share/rear/init/default/030_update_recovery_system.sh

The output is too large, and I attached it as Figure 6.1.

Figure 6.1. ShellCheck example

From the Figure 6.1, you can see some errors the ShellCheck has found. It writes a
code of the error and place.

It is possible to set standard shell:

shellcheck --sehll=bash\
usr/share/rear/init/default/030_update_recovery_system.sh

And, as I wrote above, ShellCheck supports different severities. For example, we can
execute it with the lowest rank of errors:

shellcheck --severity=error\
usr/share/rear/init/default/030_update_recovery_system.sh

42

. 6.2 Criteria for static analyzer

6.2 Criteria for static analyzer

I have discussed the problematic of static analysis with developers of ReaR. They had
few main criteria that are based on own experience with ShellCheck.

. To notify about introduced problems only. As we saw in some examples with an
output of ShellCheck, it prints many errors and warnings. It is irrational to fix all of
them. Some of the code has existed for a long time. Fixing such issues may cause the
introduction of new errors. Or, for example, there is a pull request with 35 modified
files. 2 It would be challenging to go through all files and verify if the errors were
added or existed before.. Minimize the number of false positive errors. It is a very subjective term “false
positive”. But in some cases, the static analyzer may incorrectly mark it as prob-
lematic code. But it may be specific to ReaR code style. There are some examples.
If we run the shellcheck command for file in ReaR code usr/share/rear/init/de-
fault/030_update_recovery_system.sh it prints errors like “SC2168: ’local’ is only
valid in functions”. In the file is used variable that is marked as “local” but is used
outside of a function. But in ReaR code are files that are used inside other files
and in functions. That means the local variable will be used in the scope of any
function. As I noticed before, ReaR uses by default BASH. And, it does not declare
by #!/bin/bash type of shell in all scripts. Since the main script is usr/bin/rear
there is a declared type BASH. Other scripts are imported via source into it. There
is no need to declare the type of shell. But ShellCheck cannot recognize and prints
the following error “SC2148: Tips depend on the target shell, and yours is unknown.
Add a shebang or a ’shell’ directive.”. One of the requirements was “nice to have UI feature”. 3 Any UI interface may
simplify reviewing code.

ReaR code functions are used in the usr/sbin/rear/lib/ directory only. So, it is
necessary to check for local variables only in the directory. And we know that BASH
is a standard type of shell for ReaR. To summarize above, we need exceptions for the
rules. ShellCheck supports exceptions. If we want to disable any checking, we can
place it in the .shellcheckrc file. For example, the following code disables local variable
checking and set BASH by default:

disable=SC2168
shell=bash

So, we can place the file in the root directory of the ReaR code. It allows for avoid-
ing unnecessary warnings about incorrect usage of a local variable and lack of “shell”
directive. So, to enable the rules for lib directory, we need to place another file:

enable=SC2168
shell=bash

Notice that we need again set BASH by default because the .shellcheckrc rewrite the
previous configuration of .shellcheckrc.

2 https://github.com/rear/rear/pull/2625
3 https://github.com/rear/rear/issues/1040

43

https://github.com/rear/rear/pull/2625
https://github.com/rear/rear/issues/1040

6. Static code analysis .

6.3 Differential ShellCheck

Differential Shellcheck is an open-source project developed by Jan Macku. 4 That is a
GitHub Action that uses ShellCheck for shell script checking and uses csdiff utility to
match introduced errors only. “csdiff tool for comparing code scan defect lists in order
to find out added or fixed defects, and the csgrep utility for filtering defect lists using
various filtering predicates.” 5

Differential ShellCheck uses very simple principles. It is possible to configure Differ-
ential ShellCheck to trigger every pull request made in a GitHub repository. It gets
the files that had been changed and executes ShellCheck on them according to severity
before the changes applied and after. The output of the 2-nd ShellCheck’s executions
is stored in different files. At this time, the files have all errors from the ShellCheck
warnings. Then it uses csdiff command to find differences and print them.

Jan Macku suggested such a solution. 6

To add it in the ReaR repository is needed to create a workflow for GitHub in the
directory rear/.github/workflows/differential-shellcheck.yml:

name: Differential ShellCheck
on: [pull_request]
permissions:

contents: read
jobs:

lint:
runs-on: ubuntu-latest
steps:

- name: Repository checkout
uses: actions/checkout@1f9a0c22da41e6ebfa534300ef656657ea2c6707
with:
fetch-depth: 0

- name: Differential ShellCheck
uses: redhat-plumbers-in-action/differential\
-shellcheck@574cfd79f7317593a0a361cf50fec62d744b3c8e
with:
severity: error
token: ${{ secrets.GITHUB_TOKEN }}

Now we need to create a PR against the branch where we have configured the Dif-
ferential ShellCheck. For example, I attended the URL for such PR: 7 We have three
options to check the output.

(i) To check a conversation with the PR. Differential ShellCheck prints it to the com-
ments.

(ii) In the menu tab “Checks” we can open the results of execution. Example 6.2
(iii) In menu tab “Files changed”. Differential ShellCheck marks the code with errors and

prints how it is possible to solve. 6.3

4 https://github.com/redhat-plumbers-in-action/differential-shellcheck
5 https://github.com/csutils/csdiff
6 https://github.com/rear/rear/pull/2847
7 https://github.com/antonvoznia/rear/pull/353

44

https://github.com/redhat-plumbers-in-action/differential-shellcheck
https://github.com/csutils/csdiff
https://github.com/rear/rear/pull/2847
https://github.com/antonvoznia/rear/pull/353

. 6.3 Differential ShellCheck

Figure 6.2. Differential ShellCheck Checks output

Figure 6.3. Differential ShellCheck files changed

In the next section, I will show how I tested it with different severities. It is possible
to assign to parameter severity: error from code above different values: error, warning,
style, and info.

There are some restrictions for Differential ShellCheck/ShellCheck I found. For ex-
ample, if we have an incorrect usage if-else condition (typo), then ShellCheck is not
capable of parsing it correctly. If we have the following code (the last line should be
“fi” instead of “f”):

if [[0 == 0]]; then
...

f

45

6. Static code analysis .
Then ShellCheck will print the following messages: “Couldn’t find ’fi’ for this ’if’.
Couldn’t parse this if expression. Fix to allow more checks. ” And it fails in this
step. It does not continue checking. If our file contains more errors followed by the
incorrect condition, it won’t be found.

Differential ShellCheck cannot correctly recognize the line in which the code was
wrong. I added in the file usr/share/rear/init/default/030_update_recovery_system.sh
the following local variable usage (Figure 6.4).

Figure 6.4. Add new lines into the file

I ran the ShellCheck on the original file and then on the modified file to match the
“local” keyword. Flag –format=gcc will force ShellCheck to print the output in gcc
format, which is used by csdiff. Original | grep local:

shellcheck --format=gcc 030_update_recovery_system.sh | grep local
030_update_recovery_system.sh:33:1: \
error: 'local' is only valid in functions. [SC2168]

030_update_recovery_system.sh:38:1: \
error: 'local' is only valid in functions. [SC2168]

Modified:

shellcheck --format=gcc 030_update_recovery_system.sh | grep local
030_update_recovery_system.sh.1:8:1:\
error: 'local' is only valid in functions. [SC2168]

030_update_recovery_system.sh.1:27:1:\
error: 'local' is only valid in functions. [SC2168]

46

. 6.4 Script for automatic PRs

030_update_recovery_system.sh.1:37:1:\
error: 'local' is only valid in functions. [SC2168]

030_update_recovery_system.sh.1:42:1:\
error: 'local' is only valid in functions. [SC2168]

030_update_recovery_system.sh.1:45:1:\
error: 'local' is only valid in functions. [SC2168]

So, ShellCheck correctly found the local variable we have added. But in such an
output format, finding lines that were modified and not added is impossible. By adding
the new local variable, we shift the other code. The output of csdiff is the following:

Error: SHELLCHECK_WARNING:
./030_update_recovery_system.sh.1:8:1:\
error[SC2168]: 'local' is only valid in functions.

Error: SHELLCHECK_WARNING:
./030_update_recovery_system.sh.1:27:1:\
error[SC2168]: 'local' is only valid in functions.

Error: SHELLCHECK_WARNING:
./030_update_recovery_system.sh.1:37:1:\
error[SC2168]: 'local' is only valid in functions.

Error: SHELLCHECK_WARNING:
./030_update_recovery_system.sh.1:42:1:\
error[SC2168]: 'local' is only valid in functions.

Error: SHELLCHECK_WARNING:
./030_update_recovery_system.sh.1:45:1:\
error[SC2168]: 'local' is only valid in functions.

It just prints all lines again.

6.4 Script for automatic PRs
So, running the Differential ShellCheck on different use cases is necessary. And compare
the behavior of the static analysis. I asked my thesis adviser to send me real examples
where in the code of ReaR were fixed problematic spots code. I got a list of PRs from
GitHub which were approved by the ReaR development team and merged with the
master branch. Using real examples is better than manually adding errors because it
demonstrates how Differential ShellCheck may act for the project. The idea of such
testing is to run the Differential ShellCheck on the PRs. Differential ShellCheck uses
GitHub workflow. That is why it requires creating two branches (1 enabled Differential
ShellCheck and the second is with applying commits from the PR). I want to simulate
a case when developers add the problematic code and verify how our setup is capable
of finding it out. To simplify the testing on the list of PR, I wrote a script which is
following steps:

(i) get all commits from the specific PR

47

6. Static code analysis .
It is possible to get all commits that belong to a PR from the GitHub website and

parse them. The link with commits would be in the following format

https://github.com/rear/rear/pull/pr_number/commits/

Where pr_number - is a number for a specific PR. I used wget command to download
the web-page with commits from the PR, and grep them with string and regex

/rear/rear/pull/$pr_number/commits/[A-Za-z0-9]

All commits have their calculated hash with SHA1 checksum. The hash of length
160 bits is composed of characters and digits. That is the reason why I add such
“[A-Za-z0-9]” regex at the end of the string. Now we have only an array of hashes of
commits. The full link looks like

https://github.com/rear/rear/commit/[A-Za-z0-9].patch

If we add “.patch” at the end of the link, which corresponds to the GitHub link, it
will satisfy the commit patch.

(ii) Create a new branch before applying the commits in step 1
In this step, we need to create a new branch and allow Differential ShellCheck to

check our code. In step 7. we are going to create a new PR with changes from step
1. against to branch with enabled Differential ShellCheck. The idea is to simulate
errors fixing on real PRs that have done it. I made it by the following line:

git checkout --force -b \
"reverse-severity-$severity-$pr_number-no-fix" ${commits[-1]}

severity - variable with 4 possible values: error, warning, info, style.
pr_number - variable I used to mark and distinguish certain PR from the others.
$commits[-1] - a value corresponds to last commit in the array before changes

applies.
(iii) enable usage of Differential shellchecl for ReaR

There I created a small git patch enabling Differential ShellCheck. Having the
patch allows me to modify it and switch the value of the severity parameter. In the
following steps, I can apply the patch.

(iv) Create a new branch with already enabled Differential ShellCheck
For the branch, we are going to apply to commit by commit from step 1. In this

step I create a branch from the branch with enabled Differential ShellCheck:

git checkout --force -b "reverse-severity-$severity-$pr_number-fix"

(v) apply the commits from step 1.
We are not interested in committing messages or considering every commit sepa-

rately. Because the static analysis triggers the whole PR. The static analyzer doesn’t
distinguish which commit an error fixed or added.

(vi) push the two branches (from steps 2. and 4.) into the GitHub repo
Before creating a new PR, we need to have the two branches we want to compare

on GitHub.
(vii) generate a PR with a branch from step 4. against a branch from step 2.

We can do it manually from GitHub via the web interface, or it is possible to use
gh tool. “GitHub CLI, or gh, is a command-line interface to GitHub for use in your
terminal or your scripts.” 8

8 https://cli.github.com/manual/

48

https://cli.github.com/manual/

. 6.5 Script modification

gh helps us to make PR from our script automatically. I used the following script
to make a PR:

gh pr create -R antonvoznia/rear\
-B "severity-$severity-$pr_number-no-fix"\
--title "$full_comment"\
--body "$full_comment"

Where: gh pr create - create a PR.
-R antonvoznia/rear - specify the repository we want to make PR into.
-B “severity-$severity-$pr_number-no-fix” - specify a branch we want to make

PR against. It is a branch with activated Differential ShellCheck but with no the
changes.

–title “$full_comment” - a title of PR. full_comment I generated in the script.
–body “$full_comment” - a body text with the string value full_comment.

6.5 Script modification
While working with the script I described above, it found fixed problems in most cases,
and only a few errors were added. We cannot exactly mark them as an error because
it depends on severity and false-positive mistakes, and what exactly for ReaR style
code is error is not defined. To test on, let’s say “real” example of error introducing,
we can reverse patches and apply them. The patches fix some errors which, whether
Differential ShellCheck found or not. If we apply the patch in the reverse way, that
means we add the errors again, Differential ShellCheck mark them. It would be the
same errors that were recognized as fixed. But for our assurance, we need to test it.
Git supports reverse-applying patches.

git apply -R patch-name.patch

Where argument -R turns on the option to reverse patch file “patch-name.patch”
and apply it. In my script, I loaded from GitHub web-site patches by curl command.
On the output of the curl I used pip | of bash and applied it by the git command

curl "$GET_COMMIT_URL/${commits[$counter]}.patch" \
curl "$GET_COMMIT_URL/${commits[$counter]}.patch" \
| git apply -R -v --index

Logically it doesn’t make sense to apply a patch and reproduce the error. But in this
way, we can test Differential ShellCheck on real examples and on actual code written
by ReaR developers.

The script may not work correctly if some interface of web part of GitHub changes.
But it was enough to test Differential ShellCheck with different severities, PRs, and
commits. It is not a part of the work to write good enough script which will be
supported for years.

The final version of the script is available by the link https://github.com/antonv
oznia/diff-shellcheck-test-script

49

https://github.com/antonvoznia/diff-shellcheck-test-script
https://github.com/antonvoznia/diff-shellcheck-test-script

Chapter 7
Conclusion

This project introduced and described several possible solutions for automatic testing
of the open-source program ReaR.

The ReaR project was described in chapter 2. There was demonstrated example of
how it is possible to use the program. And based on this, I wrote requirements for
automatic testing. The two main approaches were introduced in the thesis: testing of
the basic functionality of ReaR and static code analysis.

Chapter 3 describes different infrastructures that I considered. I explained there three
infrastructures I tested and wrote both advantages and disadvantages of each other.
Referring to requirements for automatic ReaR testing, I chose Packit as a building
platform in conjunction with Testing Farm infrastructure. These two infrastructures,
in conjunction, allow us to build a project with changes suggested in a PR on GitHub
and test on the built package. Such an approach makes it possible to find on-time
regressions. GitHub Actions were enough for static analysis because of the lack of
dependencies on specific architectures and environments (like OS, CPU architecture,
type of filesystem, possible reboot system, etc.).

I introduced TMT to drive the testing process. I showed how to configure TMT and
VMs for local testing, and then I demonstrated an example of test execution with the
chosen infrastructures (Packit and Testing Farm). Although it is not possible to use
a multi-host approach to make a backup over NFS, I showed a solution that may be
integrated in the near future. Then I extended the tests to make executing the chosen
infrastructures possible. I described the problems I encountered and how it is possible
to debug in cloud systems in case of solid access restrictions. But a very important part
was with backup in the ISO image because it introduces a non-trivial solution that may
already be used in this project.

Chapter 5 contains short descriptions of validating source and configuration files’
correctness. The file validating has already been integrated into the ReaR project.

In the last chapter of the practice part, I described existing solutions for static code
analysis. I showed their disadvantages, and I introduced solutions for some of the
issues. Because of the complexity of the static code analysis sphere and the subjective
understanding of the problem, there may not be a quickly found solution that will satisfy
all requirements and imagines of developers. I wrote a script that allows simplified
testing of the Differential ShellCheck on real examples that fixed some code problems.
The script is useful and may be used in further experiments with static code analysis.

50

References

[1] David Farley Jez Humble. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation (Addison-Wesley Signature
Series (Fowler)). 2010.

[2] System BIOS for IBM PC/XT/AT computers and compatibles: the complete guide
to ROM-based system software. Reading, Mass: Addison-Wesley Pub. Co, 1989.
ISBN 9780201518061.

[3] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.
Design and Implementation of the Sun Network Filesystem. 1985.

[4] Jim Mauro Richard McDougall. Solaris Internals. Solaris 10 and OpenSolaris
kernel architecture.. 2006.

[5] Hal Stern. Managing NFS and NIS (Nutshell Handbooks). 2001.
[6] Brendon Perry Dave Taylor. Wicked Cool Shell Scripts, 2nd Edition: 101 Scripts

for Linux, OS X, and UNIX Systems. 2016.
[7] William E. Shotts Jr. The Linux Command Line: A Complete Introduction . 2012.
[8] Prasad Mukhedkar Vedran Dakic, Humble Devassy Chirammal. Mastering KVM

Virtualization: Design expert data center virtualization solutions with the power
of Linux KVM, 2nd Edition. 2020.

[9] Curtis Gedak. Manage Partitions with GParted How-to. 2012.
[10] Pranoday Pramod Dingare. CI/CD Pipeline Using Jenkins Unleashed: Solutions

While Setting Up CI/CD Processes. 2022.

51

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Motivation
	ReaR
	Description
	Example with ReaR
	ReaR testing requirements

	Infrastructure for ReaR
	Continuous integration
	Building
	Infrastructure for backup and recovery testing

	ReaR testing in infrastructure
	Test Management Tool (TMT)
	ReaR, recovery tests
	Execute TMT test in an infrastructure
	Testing recovery over NFS
	Run test in infrastructure
	Type of backup
	ISO backup. Modification recovery test for infrastructure
	Debugging

	File name validation
	Static code analysis
	ShellCheck
	Criteria for static analyzer
	Differential ShellCheck
	Script for automatic PRs
	Script modification

	Conclusion
	References

