
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Monitoring of data-oriented applications in the hospital

environment

Bc. Vladimir Cherkezov

Ing. Tomáš Nováček

Informatics

Web Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 22 June 2022 in Prague.

8) Fix the identified deficiencies.

9) Evaluate the result of the work and discuss the possibilities for further development.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 22 June 2022 in Prague.

Instructions

The aim of this work is to design and implement a solution for monitoring data-oriented

applications in the hospital environment. In this environment, it is not possible to use

standard methods because the applications are available only in the internal hospital

network.

The new solution should include the following functions:

- monitoring of the data processing in the hospital environment,

- monitoring of server resources (memory, disk space, etc.),

- sending the collected data to a collection server that is outside the hospital

environment.

Follow these steps:

1) Analyze problems and constraints of the already implemented solution.

2) Analyze customer requirements for a new solution.

3) Analyze technologies, concepts, and components that will be used in a new solution.

4) Design architecture, data model, and API of services.

5) Implement a monitoring service that will run in a hospital environment.

6) Implement a collection service that will receive data from monitored environments.

7) Verify and test the correctness of design and implementation using appropriate

procedures.

Master’s thesis

MONITORING OF
DATA-ORIENTED
APPLICATIONS IN THE
HOSPITAL
ENVIRONMENT

Bc. Vladimir Cherkezov

Faculty of Information Technology
Software Engineering Department
Supervisor: Ing. Tomáš Nováček
January 2, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Bc. Vladimir Cherkezov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Cherkezov Vladimir. Monitoring of data-oriented applications in the hospital
environment. Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2022.

Contents

Acknowledgments viii

Declaration ix

Abstrakt x

Acronyms xii

Acknowledgments 1

1 Analysis 3
1.1 Analysis of existing system . 3

1.1.1 Basic terms . 3
1.1.2 Analysis of components . 3
1.1.3 Problems of existing solution . 5

1.2 Requirements analysis . 5
1.2.1 Actors . 5
1.2.2 Functional requirements . 6
1.2.3 Non-functional requirements . 7
1.2.4 Requirements analysis summary . 7

1.3 Docker monitoring . 8
1.3.1 Docker introdution . 8
1.3.2 Monitoring via stats command . 8
1.3.3 Monitoring via pseudo-files . 9
1.3.4 Monitoring via API . 10
1.3.5 Docker monitoring summary . 11

1.4 Bare metal monitoring . 11
1.4.1 Monitoring via commands . 11
1.4.2 Monitoring via pseudo-files . 11
1.4.3 Bare metal monitoring summary . 12

1.5 Monitoring systems . 12
1.5.1 cAdvisor . 13
1.5.2 Prometheus . 13
1.5.3 TICK stack . 16
1.5.4 Monitoring systems summary . 17

1.6 Communication security requirements . 18
1.6.1 Authentication . 18
1.6.2 Privacy and Integrity . 21
1.6.3 Security conclusion . 22

1.7 Data and Metrics visualization . 22
1.7.1 Grafana . 22
1.7.2 TICK stack components . 22
1.7.3 Prometheus . 23
1.7.4 Visualization summary . 23

iii

iv Contents

1.8 System failure prediction . 23
1.8.1 Thresholds method . 23
1.8.2 Forecasting methods . 24
1.8.3 System failure prediction summary . 24

1.9 Data consistency . 25
1.9.1 Insert synchronization . 25
1.9.2 Update synchronization . 26
1.9.3 Delete synchronization . 26
1.9.4 Data consistency summary . 27

1.10 Technology Analysis . 27
1.10.1 Java & Kotlin comparison . 27
1.10.2 Maven & Gradle comparison . 28

1.11 Analysis summary . 29

2 Design 31
2.1 Solution design . 31

2.1.1 Prometheus solution . 33
2.1.2 TICK stack solution . 34
2.1.3 Solutions comparation . 35
2.1.4 Solutions design summary . 37

2.2 Domain model . 37
2.3 Synchronization design . 38

2.3.1 Naive synchronization solution . 38
2.3.2 Remember state synchronization solution 39
2.3.3 Synchronization design summary . 40

2.4 Design summary . 40

3 Implementation 41
3.1 Monitoring solution infrastructure . 41

3.1.1 Introdution . 41
3.1.2 Monitoring server . 43
3.1.3 Telegraf instance . 44
3.1.4 Monitoring database . 46

3.2 Collection solution infrastructure . 46
3.2.1 Introdution . 46
3.2.2 Collection server . 48
3.2.3 Collection database . 48
3.2.4 InfluxDB instance . 48
3.2.5 Grafana instance . 49
3.2.6 Conclusion . 50

3.3 Synchronization . 51
3.3.1 Data synchronization . 51
3.3.2 Metrics synchronization . 53

3.4 Security . 53
3.4.1 Data security . 53
3.4.2 Metrics security . 55

3.5 Visualization . 56
3.5.1 Dashboards . 57
3.5.2 Panels . 57

3.6 Failure prediction . 59
3.6.1 Thresholds method . 59
3.6.2 Holt-Winters seasonal method . 60

Contents v

3.7 Implementation summary . 61

4 Testing 63
4.1 Integration tests . 63

4.1.1 Monitoring server integration tests . 63
4.1.2 Collection server integration tests . 66

4.2 Tests coverage . 67
4.3 Testing summary . 68

5 Conclusion 71

A Grafana dashboard examples 73

B Grafana panel examples 75

Contents of enclosed media 83

List of Figures

1.1 The existing solution . 4
1.2 Prometheus architecture [11] . 13
1.3 TICK stack architecture [17] . 16
1.4 OAuth protocol flow [28] . 20
1.5 Insert synchronization example . 25
1.6 Update synchronization example . 26
1.7 Delete synchronization example . 26

2.1 The common architectures part . 32
2.2 Prometheus solution architecture . 33
2.3 TICK stack solution architecture . 34
2.4 TICK stack solution modification . 36
2.5 Domain model . 37
2.6 Naive synchronization solution . 39
2.7 Remember state synchronization solution . 40

3.1 Thresholds method example . 59
3.2 Holt-Winters seasonal method example . 60

4.1 The collection server tests coverage . 67
4.2 The monitoring server tests coverage . 68

A.1 The hospital Docker monitoring dashboard . 74

B.1 CPU usage panel creation example . 76
B.2 ETL jobs received panel creation example . 77
B.3 Holt-Winters based panel creation example . 78

List of Tables

3.1 Visualization sumary table . 57

vi

List of code listings vii

List of code listings

1.1 docker stats command output example [1] . 8
1.2 memory.stat pseudo-file content example [2] . 9
1.3 Docker API request example [3] . 10
1.4 free command calling example . 11
1.5 Memory pseudo-file content example . 12
1.6 Instant vector selectors example [4] . 15
1.7 Range Vector Selectors example [4] . 15
1.8 Float literals example [4] . 15

3.1 Docker Compose file for monitoring solution . 42
3.2 jib plugin usage . 43
3.3 configuration.env for monitoring server . 43
3.4 application.properties file with environment variables 44
3.5 The general Telegraf settings . 44
3.6 The input plugins Telegraf settings . 45
3.7 The output plugins Telegraf settings . 46
3.8 Docker Compose file for collection solution . 47
3.9 The InfluxDB instance configuration . 49
3.10 The InfluxDB data source configuration for the Grafana 50
3.11 The synchronization state inpletentation . 51
3.12 The syncronization from monitoring server side 52
3.13 The syncronization from collection server side . 52
3.14 Collection and monitoring servers security configuration 54
3.15 Collection server authorization . 54
3.16 Collection server security configuration . 55
3.17 The Telegraf side security configuration . 56
3.18 The InfluxDB side security configuration . 56
3.19 Grafana’s panel creation InfluxQL example . 57
3.20 Grafana’s panel creation SQL example . 58
3.21 Grafana’s panel creation multiquery example . 59

4.1 The mock of collection server . 64
4.2 Basic integration test for synchronization process 64
4.3 The integration test for synchronization process failure 65
4.4 Basic integration test for batch creation process 66
4.5 The collection solution testing using the MockMvc 66

Acknowledgments

I want to thank all those who participated in the creation of this work. Without your help, this
work would not exist.

I express my sincere gratitude to the supervisor of my thesis work, Ing. Tomáš Nováček, for
valuable advice, suggestions, comments, and the time devoted to me while writing my thesis.

Next, I would like to express my deep gratitude to the Alpha company, in particular Ivana
Sixtová, for providing an excellent topic and for advice and support in implementing the practical
part of this work. Thank you for the opportunity to create something that makes sense.

I thank my parents, girlfriend, and friends for giving me help and support throughout the
path, being a source of motivation for me, and getting along with my sometimes complex nature.
Without you, this path would have been much more difficult.

I also thank Microsoft for creating the Microsoft Sculpt keyboard, thanks to which all my
upper limbs retained their working capacity and were able to complete this diploma. Thank you,
finally a product that doesn’t cause pain.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. I further declare that I have concluded
an agreement with the Czech Technical University in Prague, on the basis of which the Czech
Technical University in Prague has waived its right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60(1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll., the Higher
Education Act, as amended.

In Praze on January 2, 2023 .

ix

Abstrakt

Tato diplomová práce je dedikovaná návrhu, tvorbě a testováńı monitorovaćıho řešeńı. Účelem
této práce je vytvořit pro organizaci Alpha monitorovaćı řešeńı, které by umožnilo monitorovat
servery nemocnic z prostřed́ı nepřipojeného do jejich lokálńı śıtě.

V rámci teto práce my prostudujeme celý proces od vytěžováni dat až po zjǐstěńı správnosti
běhu serveru na jejich základě. To znamená, že budeme studovat oblasti jako synchronizace
dat, bezpečnost, predikce selháńı atd. Prozkoumáme také technologie, které nám tento pro-
ces zjednoduš́ı. Během analýzy technologíı pak vzniknou dvě nezávislé řešeńı: na základě
Prometheus a na základě TICK stacku.

Řešeńı, které je výsledným produktem práce, využ́ıvá TICK stack a skládá se ze dvou
oddělených komponent, které spolu komunikuj́ı. Jedná se o monitorovaćı část nemocničńıho
serveru, která źıskává data z nemocničńıho prostřed́ı, a o server na sběr dat, který sb́ırá data z
monitorovaćıch části a analyzuje je pro r̊uzné nemocnice. Budeme jej také nazývat monitoring
a collection řešeńı.

Pro úplněǰśı monitorováńı nemocničńıho prostřed́ı existuj́ı dva typy dat zaśılaných mezi
těmito komponentami: aplikačńı data a metriky. Odeśıláńı metrik je realizováno pomoćı TICK
stacku a odeśıláńı aplikačńıch dat je implementované jako dvě aplikace na každé straně komu-
nikace mezi monitoring a collection řešeńımi. Obě jsou napsané v Kotlinu s využit́ım frameworku
Spring. Tyto komponenty jsou také podrobně testovány v závěrečné části naš́ı práce.

Kĺıčová slova monitorováńı systemů, TICK stack, Spring framework, Kotlin, Prometheus,
synchronizace dat, zabezpečeńı aplikace, predikce selháńı

x

xi

Abstract

This master’s thesis is dedicated to monitoring solution design, creation, and testing. The
purpose of this work is to create for the Alpha organization a monitoring solution that would
allow observing the hospital servers from outside of their local network.

We will study the whole process, from extracting data to determining the correctness of the
server operation based on them. It means that we will study areas such as data synchronization,
security, failure prediction, etc. We will also explore technologies that simplify this process for
us. The technologies are separated into two independent solutions: using the Prometheus and
using the TICK stack.

The solution, which is the final product of the work, uses the TICK stack and consists of
two separate components that communicate with each other. These are the hospital server
monitoring part, which extracts data from the hospital environment, and the collection metrics
server part, which collects data from the monitoring part and analyzes them for the different
hospitals. We also will call them monitoring and collection solutions.

For more complete monitoring of the hospital environment, there are two types of data sent
between these components: application data and metrics. The metrics sending is implemented
using the TICK stack, and the application data sent is implemented as two applications on each
communication side. Both of them are written in Kotlin using the Spring framework. These
components are also tested in detail in the final part of our work.

Keywords system monitoring, TICK stack, Spring framework, Kotlin, Prometheus, data syn-
chronization, communication security, failure prediction

Acronyms

AMPQ Advanced Message Queuing Protocol
API Application Programming Interface

ARIMA Autoregressive Integrated Moving Average
AWS Amazon Web Services
CPU Central Processing Unit

DBMS Database Management System
ETL Extract, Transform, Load

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

I/O Input/Output
JAR Java ARchive

JSON JavaScript Object Notation
JVM Java Virtual Machine
OOP Object Oriented Programming

OS Operating System
PHP Hypertext Preprocessor
PKI Public Key Infrastructure

PYPL Popularity of Programming Language Index
RAM Random-Access Memory

REST Representational State Transfer
SAML Security Assertion Markup Language

SQL Structured Query Language
UI User Interface

URL Uniform Resource Locator

xii

Introduction

Monitoring is an important and required part of the application life. As the application grows,
its infrastructure becomes more complex. It becomes harder to search for the problems that
arise during the application running. Typically, the result of the problems’ appearance became
a slowdown in the application, partial or complete application failure.

Searching for the problem becomes a non-trivial task that takes much time when the infras-
tructure is complex. In this case, it is very important to have all the necessary information to
solve the problem quickly. However, to do this, it is necessary to implement fairly complete
monitoring of everything that happens, from monitoring the application itself to monitoring the
infrastructure and hardware on which the application is running.

Providing information about a problem is not the only benefit of monitoring. The very
important benefit is also anomaly and failure prediction based on the received data. It allows
you to solve your system problems before they occur.

Monitoring is an important topic for Alpha organization, which develops a system for hos-
pitals, that automatically collects and analyzes patients’ data. For this kind of application,
detecting problems quickly or predicting them is extremely critical. Because the work of the
application is directly related to the doctors’ work, it is very important to minimize the number
of application crashes.

The Alpha organization decided to create a solution for monitoring hospital environments.
This solution should have not only monitoring requirements but also some important limitations
associated with the domain itself. Among them, it is worth noting that the data should stay
on the hospital server, and only the hospital server can realize communication. In other words,
you cannot send requests to the hospital server. The reason is the typical infrastructure of a
hospital network, where the target hospital server is located in the intranet. The other important
restriction is that the solution involves monitoring several hospital servers. Together, these
restrictions make the final solution non-trivial.

Purpose of work

This work aims to design and implement a solution that allows observing hospital servers’ state
from the outside. This work is focused on creating a solution that would fulfill all the restrictions
associated with the domain’s specifics and fit into the already existing infrastructure.

Among the smaller goals, we should highlight the analysis of an existing solution, the study of
monitoring, and issues needed to meet the requirements for the future system. Next, we should
design, configure and implement the components of a new solution and then test it.

Ultimately, this work should result in a working solution that fulfills all requirements and can
be used to monitor hospitals’ environments for the Alpha organization.

1

2 Introduction

Structure of work
The work is structured into four logical parts: analysis, design, implementation, and testing.

The first part is focused on obtaining the information necessary to create a future solution.
At the beginning of this chapter, we get acquainted with the already existing system, identify
its problems and, based on this, analyze the requirements in relation to the future solution.

Next, we will study in detail the types of metrics that we need to track, figure out how to
get them and what components to use to make collecting metrics easier.

Then, in accordance with the requirements analysis, we analyze more general areas, such
as data synchronization, application security, failure prediction, and metrics visualization. A
technology analysis was also carried out, which was necessary to determine the technologies used
following the requirements analysis.

In the second part, we design future solutions and choose the most suitable version. We
also design more specific features of the future solution, such as synchronization and the domain
model.

The third part describes what has been implemented as part of our work. It includes configur-
ing the components used to collect, store, visualize metrics, and perform failure prediction based
on them. Further, the components involved in the collection and synchronization processes were
also implemented. In addition to synchronization, problems were solved, such as communication
security, authentication, authorization, data validation, and many others.

The fourth part is related to testing the components that were implemented. This section
describes integration tests and test coverage of them.

Finally, we summarize the results of this work and suggest possible improvements.

Chapter 1

Analysis

This chapter will explore the information needed to create a solution for monitoring hospitals’
servers. We will get acquainted with the existing solution and list requirements for a future
solution. After that, we will find all information needed to meet these requirements.

1.1 Analysis of existing system
In this section, we will analyze the system that Alfa company already has, describe its components
and denote some problems with this solution. The analysis of requirements will be created
according to this section.

1.1.1 Basic terms
So before we start the analysis, let us explain the meaning of some used terms. It will help the
reader avoid ambiguity when reading this work.

Collected data This term is related to the correct work of the system. In this case, we are
talking about metrics, errors, and warnings of the system and not about personal data or
data related to the outside world. The primary purpose for collecting this data is to monitor
the system itself. When we mention data as part of the description of the collection solution
or monitoring solution, it is also about collecting data.

Hospital environment By the concept of a hospital environment, we mean a host OS system
of a hospital server and the related infrastructure, for example, a Docker engine.

Environment metrics By environment metrics, we mean the metrics provided by the hospital
server and its infrastructure.

1.1.2 Analysis of components
First, we should familiarize the reader with the architecture of the existing solution. The existing
solution consists of two separate components, that communicate with each other. You can see
these components in the following figure:

3

4 Analysis

Figure 1.1 The existing solution

The first of them is within the hospital server and consists of several Docker containers.
Among other Docker containers, we will highlight the backend of the application, the frontend of
the application, the database, and the Pentaho Data Integrator instance, also known as Kettle.

The second component consists of three Docker containers: the Grafana instance, the database,
and the collection server, which receives the collected data from the first component.

The collected data, for now, is the Kettle logs and some basic metrics from the host system.
The Kettle logs are collected by the Kettle instance and sent by it to the collection server. There
is a simple shell script for metrics collection that collects metrics from the OS and sends them to
the collection service. These metrics are very basic and contain Disk, CPU, and memory metrics.

On the second component side, the collected data are stored in the database and, depending
on them, are created visualizations and alerts in the Grafana instance.

In this work, the most important for us will be the first component, and we will focus on
collecting information from its components. It is not important how these components run in
our work, and that’s why some operation details of these components can be omitted.

Requirements analysis 5

In the framework of this work, we will be interested in the following information about the
components:

What component data will be sent to the collection server

Details about how component runs: using containers, bare metal, and others

The components we want to describe are the following:

Kettle This component runs as a separate Docker container in the hospital environment. It
produces information about jobs, which it processes in several steps.

Application The Application consists of two parts: Application frontend and Application back-
end. These parts run separately in Docker containers. Our solution assumes that the Appli-
cation will only send exceptions from the backend.

Application Database The Application database also runs as a separate Docker container
and sends nothing. That means it is interesting for us only for hospital environment data
collection.

Monitoring script This component runs bare metal and collects basic metrics from the hospital
environment, this component. We will not work with the data of this component, and this
component will appear only in the analysis part.

1.1.3 Problems of existing solution
In this subsection, we will describe the problems of the existing solution. The existing solution
had several disadvantages:

The data are sent only once a day.

The application data are not sent.

The data are not processed and a large amount of unnecessary information is sent over the
network.

The solution contains the collection of only basic metrics about the hospital environment.

These problems prompted us to create a more thoughtful and complex solution that would
solve these problems. So it is the reason why was created the requirements analysis.

1.2 Requirements analysis
This section describes the processed functional and non-functional requirements of the Alfa
organization. Depending on functional requirements, we will determine how and what actions
the components of our solution should perform, while non-functional requirements will impose
restrictions on the implementation of the future solution.

Based on these requirements, an analysis will be carried out, and a future solution will be
proposed and implemented. The final solution will be based on these requirements.

1.2.1 Actors
For requirements analysis, we will define two types of actors. Actors are services, in our case,
not users. These actors will be named the monitoring solution and the collection solution. Next,
we will give them a detailed definition.

6 Analysis

Monitoring solution
As part of the analysis, we will use the term monitoring solution to denote a group of compo-
nents (or one component) whose main task will be to collect information within the hospital
environment. The monitoring solution will also send information collected inside the hospital
environment to the collection solution, which is outside of the hospital environment.

Collection solution
As part of the analysis, we will use the term collection solution to denote a group of components
(or one component) whose main task will be to collect information that it will receive from the
monitoring solutions. The collection solution can also process data, for example, visualize it,
analyze it, and more. It is also correct to specify that the collection solution should receive
information from several monitoring solutions from different hospital environments.

1.2.2 Functional requirements
In this subsection, we will describe functional requirements, which define individual actions and
activities that must be performed.

F1 Authentication

The monitoring solution will be able to connect to the collection solution using the re-
quested credentials.

F2 Data collection

The collection solution will be able to collect data, which the monitoring solution will send.
The monitoring solution will be able to send data to the collection server periodically in
batches.
The monitoring solution will be able to collect data from the hospital environment.
The monitoring solution will be able to collect hospital environment metrics that will be
used for fault prediction and troubleshooting.

F3 Data storage

The monitoring solution must store data that will be collected from the hospital environ-
ment.
The collection solution must store data collected from the monitoring solution.

F4 Visualization

The collection solution will be able to visualize data that will be collected from the moni-
toring solution.

F5 Failures prediction

The collection solution will be able to predict failures and critical errors in the hospital
environment.
The collection solution will be able to send notifications about failures and critical errors
in the hospital environment.

Requirements analysis 7

1.2.3 Non-functional requirements
This subsection will describe non-functional requirements. Here we will determine the constraints
and requirements for our solution.

N1 Data consistency

The collected data must be consistent between monitoring and collection solutions over
time, meaning that data should not be lost or duplicated.

N2 Failure requirement

After a failure of the monitoring solution or the collection solution, the data in databases
must be synchronized correctly.

N3 Communication

Communication must be secured.
Communication must be one-directional. It means that the monitoring solution can request
a collection solution but not vice versa.
Communication should work for several monitoring solutions. It means that the collection
solution should receive information from several monitoring solutions.

N4 Time zones requirement

The Domain model should be designed in such a way as to allow monitoring solutions to
be located in different time zones.

N5 Technologies

Grafana should be used for data visualization.
PostgreSQL should be used for storing the collected data.
JVM 11 or higher should be used for monitoring and collection server implementation.
Spring framework must be used for the monitoring and the collection servers implementa-
tion.

1.2.4 Requirements analysis summary
Depending on requirements analysis and analysis of the existing system, we need to define some
issues we need to solve.

First, we need to know what environment metrics we can collect from our environment. A
feature of the existing solution is Docker usage, and it will be important for us to find out what
metrics it can provide about containers running in it.

However, we assume that the load on the system may occur by processes not associated with
the Docker environment. So, for our solution, two issues deserve detailed analysis: Docker and
bare metal monitoring.

It is also necessary to find out if there are already solutions that can help us collect metrics
and consider integrating them before our solution.

Depending on requirements, we can identify other tasks that deserve research, such as commu-
nication security, data consistency between collection and monitoring solutions, and prediction
of failure on the monitoring solution side. Analyzing these problems should give us an exhaustive
amount of knowledge for successfully designing a new solution.

Finally, we should analyze the technologies we can choose for the monitoring and the collection
servers implementation.

8 Analysis

1.3 Docker monitoring
This chapter is dedicated to learning about metrics provided by Docker and ways how to get
these metrics.

This section assumes that you have a basic knowledge of how Docker works. Without this
knowledge, understanding the following material will be difficult. Let us provide a brief intro-
duction to Docker technology.

1.3.1 Docker introdution
Docker is an open platform for developing, shipping, and running applications. Docker allows
us to decouple our applications from our infrastructure through a loosely isolated environment
called a container. The container, in turn, contains everything we need to run our application.
Thus, Docker provides the ability to package and run an application regardless of our host
configuration.

Let us take a look at how a Docker container is created. The way how to create a container
is to use the image. An image is a read-only template with instructions for creating a Docker
container. The image is usually based on some Linux-based operating system.

Images, containers, and other Docker objects are managed by the Docker daemon, which is a
part of Docker architecture. Docker uses a client-server architecture, and the Docker daemon is
a server part of this architecture, and on the client side is the Docker client. They can be called
using the console as docker and dockerd.

Through the Docker API, the Docker client interacts with the Docker daemon. For example,
when we run the command docker run, the Docker client requests the Docker daemon to run
some image as a container.

It was a relatively brief introduction to Docker. For more details, please check out the official
documentation. [5]

Now, let us look at how to get data about the Docker containers. Docker provides three ways
to get metrics, and we propose to consider them in detail.

1.3.2 Monitoring via stats command
Docker provides a special command for monitoring resource usage statistics. This command calls
docker stats and returns a live data stream for running containers. [1]

In the output fragment, you can see an example of docker stats for several running con-
tainers.

$ docker stats

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % ...
28fa294fa8fe demo1 0.00% 4.523MiB / 1.939GiB 0.23% ...
b7cbbd9b0282 demo2 1.20% 92.71MiB / 1.939GiB 4.67% ...
04e48f046961 demo3 0.03% 13.14MiB / 1.939GiB 0.66% ...
1768815caff8 demo4 0.46% 376.8MiB / 1.939GiB 18.98% ...
3a6b3d036d3e demo5 0.03% 10.48MiB / 1.939GiB 0.53% ...

Listing 1.1 docker stats command output example [1]

Since not all statistics fit in the figure, let us list them. This command provides:

CPU % – host’s CPU percentage, used by a container.

Docker monitoring 9

MEM % – host’s memory percentage, used by a container.

MEM USAGE / LIMIT – total and allowed amounts of memory usage.

NET I/O – The data amount that the container has sent and received over its network
interface.

BLOCK I/O – The data amount that the container has read to and written from block devices
on the host.

PIDs – Processes or threads number that the container has created.

This method provides basic data and metrics, which may be sufficient. There are two re-
maining methods for more detailed statistics.

1.3.3 Monitoring via pseudo-files
This method is based on the control groups[6], which are used by Linux containers to track groups
of processes. They also provide information about CPU, memory, block I/O usage, and network
usage. The control groups are exposed through a pseudo-filesystem that you can find under
/sys/fs/cgroup. There are multiple sub-directories. Each of them corresponds to a different
group hierarchy.

Below you can see an example of the contents of the memory.stat pseudo-file provides infor-
mation about memory usage within a given operating system.

$ cat /sys/fs/cgroup/memory/docker/$CONTAINER_ID/memory.stat

cache 532480
rss 10649600
mapped_file 1576960
writeback 0
swap 0
pgpgin 302242
pgpgout 296556
pgfault 1142200
pgmajfault 125
inactive_anon 16384
active_anon 577536
inactive_file 11386880
active_file 11309056
unevictable 0
hierarchical_memory_limit 18446744073709551615
hierarchical_memsw_limit 18446744073709551615
total_cache 22798336
total_rss 491520
total_rss_huge 0
total_mapped_file 1576960
total_writeback 0
total_swap 0
...

Listing 1.2 memory.stat pseudo-file content example [2]

10 Analysis

It should be noted that one of the benefits of this method is speed. It is the fastest way to
get metrics. This method also provides sufficient information about CPU and memory metrics.
However, this method has some limitations on I/O and network metrics. [7]

1.3.4 Monitoring via API
This is another method of Docker monitoring. As the docker stats command method, it also
continuously reports a live stream of the metrics. The difference between API and stats command
methods is that the API provides more details about metrics. But basic metrics groups CPU,
memory, I/O, and network are still the same.

By default, the API can be accessed by the Unix domain socket. It listens on the follow-
ing socket:

unix :/// var/run/ docker .sock

Docker provides REST API for communication. This API can be used not only for con-
tainer monitoring but also for container management. It offers container creation, file system
management, launch, and others. A more detailed description of the API. [3]

To get the required metrics, docker provides the following endpoint:

GET / containers /(id or name)/ stats

It provides data in JSON format. Below is an example of a GET request sent to this endpoint.

{
"read" : "2015-01-08T22:57:31.547920715Z",
"networks": {

"eth0": {
"rx_bytes": 5338,
"rx_dropped": 0,
"rx_errors": 0,
"rx_packets": 36,
"tx_bytes": 648,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 8

},
"eth5": {

"rx_bytes": 4641,
"rx_dropped": 0,
"rx_errors": 0,
"rx_packets": 26,
"tx_bytes": 690,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 9

}
},
"memory_stats" : {

Listing 1.3 Docker API request example [3]

Bare metal monitoring 11

As we can see, this method is comparable in terms of the completeness of metrics with moni-
toring via pseudo-files. However, this method, like the pseudo-files method, has some limitations
on I/O metrics. [8]

1.3.5 Docker monitoring summary
So we have described three ways that Docker provides for collecting metrics. Of course, the
choice of method should be based on your needs. A large amount of system metrics is a merit,
but the difficulty of implementation can be another important aspect to consider.

1.4 Bare metal monitoring
This section will focus on what metrics the operating system provides and how we can get them.
For this section, we will limit ourselves to Linux-based operating systems, assuming that this
kind of system will be used in our solution.

The ways in which bare metal monitoring is realized are similar to the Docker ones. Linux
provides two ways to get metrics: via commands and pseudo-files.

1.4.1 Monitoring via commands
The easiest way to find out the metrics in Linux is to use the commands. Linux provides a wide
range of commands with which you can get metrics. For example, you can get memory usage
info via free command. Below you can see an example of calling this command.

$ free -h
total used free shared buffers cached

Mem: 1.9G 1.7G 293M 122M 41M 635M
-/+ buffers/cache: 1.0G 970M
Swap: 1.0G 290M 733M

Listing 1.4 free command calling example

As you can see, this is a very concise output. This method is human-acceptable and provides
basic information. For more details, let’s look at the following monitoring method.

1.4.2 Monitoring via pseudo-files
This method is based on the pseudo file system proc, located in the /proc path in the Linux
filesystem. This pseudo-file system provides information about running Linux systems.

There are specific entries in the /proc that provide kernel metrics. For example, /proc/meminfo
gives you information about the distribution and utilization of memory. Among other things,
you can find metrics such as the available, active, and total volume of RAM you can use. You
can see an example of memory pseudo-file content below:

12 Analysis

$ cat proc/meminfo

MemTotal: 2033396 kB
MemFree: 300980 kB
MemAvailable: 783048 kB
Buffers: 42776 kB
Cached: 650564 kB
SwapCached: 28716 kB
Active: 575916 kB
Inactive: 995556 kB
Active(anon): 226788 kB
Inactive(anon): 768532 kB
Active(file): 349128 kB
Inactive(file): 227024 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 1048572 kB
SwapFree: 750924 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 851552 kB
Mapped: 216500 kB
Shmem: 125092 kB
KReclaimable: 74412 kB
Slab: 112424 kB
SReclaimable: 74412 kB
SUnreclaim: 38012 kB
...

Listing 1.5 Memory pseudo-file content example

The pseudo file system proc provides a comprehensive set of metrics. Among other infor-
mation, you can find the amount of data transferred over the network, the use of the processor,
memory, and others. More information can be obtained from the following source: [9]

1.4.3 Bare metal monitoring summary
So we have described two ways that Linux provides metrics. Of course, the choice of method
should be based on your needs. A large amount of system metrics, of course, is a merit, but
sometimes a large amount of information can be related to complex implementation.

1.5 Monitoring systems

Using the knowledge gained in the previous chapters, we could design a solution that used one
of the described methods to obtain metrics. However, instead of implementing this solution on
our own, we should pay attention to existing services and components solving similar problems.
Integrating such a component could reduce the complexity of the whole monitoring solution and
make the solution more general.

Monitoring systems 13

1.5.1 cAdvisor
In this section, I will provide information about cAdvisor. I will describe the functionality that
cAdvisor offers as well as some of its disadvantages.

cAdvisor functionality
cAdvisor stands for container advisor. It is an open-source tool that allows you to monitor
running Docker containers. cAdvisor collects, aggregates, and processes information about each
resource’s usage and performance characteristics. [10]

It also provides a web UI to visualize collected metrics that use previous data. However, it is
worth noting that cAdvisor doesn’t have persistent storage, and these metrics are real-time only.

However, cAdvisor can also be combined with other solutions. Besides web UI, cAdvisor
also provides a REST API, which allows access to raw and aggregated metrics. Thanks to this,
cAdvisor is a rather interesting component of the future solution.

1.5.2 Prometheus
In this section, we will explore the capabilities of Prometheus in detail and gain an understanding
of its architecture. We will also look at the integration capabilities of the components that
Prometheus supports.

Prometheus is an open-source solution that provides systems monitoring and alerting. Instead
of cAdvisor, which provides metrics about running containers, Prometheus works with more
general metric representations. For Prometheus, metrics are time series data, which may differ
from application to application. [11]

Let us study the architecture of Prometheus and see its components. The following figure
shows the diagram that illustrates the Prometheus architecture and some related components:

Figure 1.2 Prometheus architecture [11]

14 Analysis

Let us highlight and describe the following parts of this ecosystem:

Exporters

Prometheus server

Data export

Exporters
Under the term exporter, we will imagine a library or service that helps export existing metrics
from third-party systems such as the Prometheus metrics. There are a lot of such exporters;
however, we will be interested in the Docker and bare metal metrics exporting. For a more
detailed study of exporters, please read the official documentation. [12]

Some systems provide the export of metrics in Prometheus format without the need for an
additional exporter. Luckily for us, Docker is one such system. Exporting data in Prometheus
format is an additional option for the Docker daemon command. If you start the command
dockerd with the additional option --metrics-addr and specify an address and port like this
--metrics-addr 127.0.0.1:9323, it allows you to get Docker metrics in Prometheus format at
127.0.0.1:9323/metrics.

This option for the dockerd command is experimental; therefore, the daemon must run in
experimental mode. It was marked as experimental because metrics and metric names could still
change. This particular point must be considered when a solution is designed. [13]

Prometheus server
The Prometheus server is the main component of Prometheus architecture and does the actual
monitoring work. The Prometheus server is divided into three components:

TSDB stands for Time Series Database. This component is responsible for metrics data storage.
It stores the data retrieved from Data Retrieval Worker. This component uses persistent
storage to store data. This storage does not have to be local, and it also supports remote
storage systems. It is also necessary to mention that these data are collected in a specific
format. This means that you cannot use a relational database to store them.[14]

Data Retrieval Worker is responsible for pulling metrics from target resources, which are
services, applications, etc, and then it pushes this data to the TSDB component. Metrics
pulling is realized using exporters or over endpoints. The last method you can see in the
Docker metrics exporting process is when the Docker daemon creates the /metrics endpoint.

HTTP Server is a web server component that is used for displaying data to Prometheus Web
UI or some other visualization tools, like Grafana. Communication with HTTP Server is real-
ized using PromQL. PromQL is a special functional query language provided by Prometheus.[15]

In this section, we have described the key points of the Prometheus server. However, it is worth
supplementing information about PromQL.

Data export
In the previous section, we noted that the data is exported from the HTTP Server using PromQL.
In this section, we will analyze the PromQL in more detail to understand how to process the
data. This intro is necessary to understand the structure of requests and the communication
process. Here we will describe the PromQL basics. For more information about PromQL, please
read the documentation. [4]

Monitoring systems 15

PromQL supports the evaluation of four types of expressions:

The Instant vector is an expression that returns, depending on the metric, a set of time series
containing a single sample for each time series.

The Range vector is an expression that returns, depending on the metric, a set of time series
containing a range of data points over time for each time series.

Scalar is a simple numeric floating point value.

String is a simple string value.

It is necessary to mention that the String type is currently unused so that we will focus on the
others. [4]

Instant vector selectors allow you to select a set of time series for a single sample value at a
given timestamp. In the simplest form, only a metric name is specified. It returns the vector
containing elements for all time series with the same metric name.

This example selects all-time series that have the http_requests_total metric name:

http_requests_total

Listing 1.6 Instant vector selectors example [4]

Range Vector Selectors work similarly to instant vector selectors. The difference is that they
select a range of samples back from the current instant. There is also specified a time duration
that is appended in square brackets ([]) at the end of a selector. It specifies how far from now
values should be fetched.
In the following example, we select all the values we have recorded within the last 5 minutes
for all time series that have the metric name http_requests_total and a job label set to
Prometheus:

http_requests_total{job="prometheus"}[5m]

Listing 1.7 Range Vector Selectors example [4]

Float literals This type describes a numeric value. It can be an integer or floating-point number
in the following format:

[-+]?(
[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?

| 0[xX][0-9a-fA-F]+
| [nN][aA][nN]
| [iI][nN][fF]

)

Listing 1.8 Float literals example [4]

16 Analysis

1.5.3 TICK stack
TICK stands for Telegraf, InfluxDB, Chronograf, and Kapacitor. TICK stack is an open-source
monitoring solution that combines components for collecting, storing, visualizing, and manipu-
lating any time series data.

Let us look closer at each of the components, describe the principle of their work, and discuss
the interaction of components with each other.[16]

In the following figure, you can see the diagram that illustrates the TICK stack architecture:

Figure 1.3 TICK stack architecture [17]

Telegraf
Telegraf is a component for collecting and reporting metrics. Its main task is collecting informa-
tion and providing it with some storage solution. Telegraf is a plugin-driven solution. It means
that the main component of Telegraf can be easily connected with many different plugins, which
are typically input and output plugins. [18]

Output plugins are focused on data storage. Supported output solution is not only InfluxDB
but many other solutions such as Prometheus, Graphite, Kafka, AMQP, and others. [19]

Input plugins are focused on collecting metrics. Supported inputs are Docker, Spark, AWS,
and others. There are also a lot of bare metal monitoring plugins, that we will use. Of course,
the most interesting plugin for us would be the Docker plugin. The principle of how this plugin
gets metrics from Docker was described earlier. It is the monitoring via the API principle [20].

Monitoring systems 17

InfluxDB
InfluxDB is a time series database. Together with Telegraf, they provide similar functionality
as the Prometheus server. For data interaction, InfluxDB offers its query language. Instead of
PromQL, It is a SQL-like language. It is called InfluxQL. [21]

Chronograf
This is another component of the TICK stack. It provides functionality to visualize data from
InfluxDB components and define rules for Kapacior to send alerts. Let us take a closer look at
the functionality that Chronograf provides.

Visualization Chronograf is a complete visualizing solution. It allows you to create dashboards
from scratch or customize templates. The Chronograf pre-created dashboards for over 20
apps, including docker, Kubernetes, Apache, and others.

Kapacitor’s API Chronograf provides an API for InfuxDB data processing by Kapacitor. It
allows Kapacitor to create alerts, detect anomalies in data using different approaches, and
run ETL jobs. Alerts creation is supported for Slack, Telegram, and other targets.

It also supports database management, providing some security options, and managing retention
policies. Thus, Chronograf is the user interface and administrative component of the InfluxDB
platform. [22]

Kapacitor
Kapacitor is a native data processing engine for InfluxDB. It also provides some other features[23]:

Alerting Kapacitor provides functionality for alerting using the data obtained from Chronograf.
Alerting is designed as the publish-subscribe pattern.

Data processing Kapacitor also provides functionality for processing streaming data. Kapac-
itor allows you to process data before and after saving it to InfluxDB. Thus, with the help
of Kapacitor, it is possible to carry out preprocessing and postprocessing of data, allowing
them to be used for analytics.

Anomaly detection Kapacitor has a control system that allows you to call custom functions
and also provides an interface that allows it to be integrated with anomaly detection mecha-
nisms, such as machine learning libraries. It helps to automate the entire system.

1.5.4 Monitoring systems summary
In this section, we considered several systems for monitoring. Let us summarize the analysis of
these systems.

Obviously, cAdvisor cannot become a standalone solution due to the lack of persistent storage.
However, it provides a convenient API that other components can use. Therefore, it can be useful
within any solution as a separate component.

Unlike cAdvisor, Prometheus is a more complex and general solution with many more use
cases. With persistent storage and the ability to work with more than just Docker metrics,
Prometheus can become a crucial component of the monitoring solution.

In the case of the TICK stack, it is a complex and general solution with many more use cases.
It also, as Prometheus, can be used as a key component of the future solution.

Thus, we find two suitable designs based on which a future solution can be developed.

18 Analysis

Next, we will analyze the solution requirements, such as communication security, data con-
sistency between the collection and monitoring solutions, prediction of failure on the monitoring
solution side, and others.

We will also find out if both systems meet our requirements and proceed to our solution’s
design.

1.6 Communication security requirements
In this chapter, we will look at ways to make communication between two applications secure.
The following requirements must be met to ensure secure communication between two applica-
tions[24]:

Authentication: The process of identification for both subjects of communication.

Privacy: Guarantee that no one except the recipient will read the data.

Integrity: Guarantee that the data will not be changed in transit.

Non-repudiation: Mechanism to prove the action of sending data by the sender.

In this diploma work, we will focus on the first three requirements. In the case of Non-
repudiation, this is due to specific communication. In our case, communication is made between
two internal systems. It means there is no need to prove it in case the receiver and the recipient
are identical.

1.6.1 Authentication
This subsection is devoted to authentication. It aims to describe the possible methods of au-
thentication and potential problems associated with it and to find a suitable solution to these
problems.

Authentication and Authorization
Authentication and authorization are common terms in the world of identity and access manage-
ment (IAM)1. While these terms may sound similar, they are both distinct security processes,
and understanding the difference between them is key to successfully implementing an IAM
solution.

Authentication is the act of confirming that users are whom they say they are. Passwords
are the most common authentication factor – if the user enters the correct password, the system
assumes the identity is valid and grants access.

Authorization in system security is the process of granting a user permission to access a
specific resource or function. This term is often used interchangeably with access control or
client rights. A good example is giving someone permission to download a certain file on a server
or giving individual users administrative access to an application. [25]

HTTP authentication
HTTP supports using several authentication mechanisms to control access to pages and other re-
sources. All of these mechanisms are based on using a 401 status code and the WWW-Authenticate
header in the response.

1Identity and Access Management – a set of approaches, procedures, technologies, and special software tools
for managing user credentials.

Communication security requirements 19

The most commonly used HTTP authentication mechanisms are[26]:

Basic authentication is the principle when the client sends the username and password as plain
base64 encoded text. It should only be used with HTTPS, as the password can be easily
captured and reused over HTTP.

Digest authentication is the principle when the client sends the hashed password to the server.
Although the password cannot be captured over HTTP, it is possible to replay requests using
a hash of that password.

NTLM is used as a secure request/response mechanism to prevent password capture or HTTP
replay attacks. However, authentication is connection-specific and will only work for persis-
tent HTTP/1.1 connections. Because of this, it may only work on some HTTP proxies and
may introduce a large amount of two-way delay if connections to the web server are regularly
closed.

Passwords are not secure and should not be used for authentication alone. They are hard to
remember, so users are tempted to use weak passwords and reuse them on multiple sites. Even
if a password is strong, it’s still just a short string that users know. We will try to find other
authentication mechanisms that are considered more secure. [27]

Token assisted authentication
This authentication method is most often used when creating distributed Single Sign-On (SSO)
systems, where one application (service provider) delegates the user authentication function to
another application (identity provider).

The implementation of this method is that the identity provider provides reliable information
about the user in the form of a token, and the service provider application uses this token to
identify, authenticate, and authorize the user.

Several standards precisely define the protocol of interaction between clients and identity
provider and service provider applications and the format of supported tokens. The most popular
standards include OAuth, OpenID Connect, SAML, and WS-Federation.

OAuth and OpenID Connect standards
OAuth is an authorization protocol that allows a third party to grant limited access to a user’s
secure resources without providing credentials: username and password. The current version of
the protocol is OAuth 2.0, which was published in 2012. [28]

Four roles are defined in the OAuth protocol documentation:

Resource Owner – an entity that can provide access to secured resources.

Resource Server – a server on which secure resources are deployed.

Client – an application that requests access to secure resources from the resource owner’s
credentials.

Authorization server – a server that issues access tokens to the client after successful authen-
tication of the resource owner and access permission.

20 Analysis

For a complete explanation, we describe the interaction between these roles. Interaction can be
easily divided into the following steps, which are shown in the following figure:

Figure 1.4 OAuth protocol flow [28]

(A) The client sends a request to authorize resource owners. The request can be sent directly
to the owner or through an authorization server, which in this case, will play the role of an
intermediary.

(B) The client receives an authorization token that represents the resource owner’s authoriza-
tion.

(C) The client requests the authorization server for an access token based on the obtained
authorization permission.

(D) The authorization server identifies the client and checks that it has valid authorization. If
so, it issues an access token to the client.

(E) The client requests the resource server for secure resources based on the access token.

(F) The resource server checks the validity of the token and processes the request.

Next, we will describe the OpenID protocol.

OpenID Connect (OIDC) is an authentication protocol based on the OAuth 2.0 family of
specifications. It uses a simple JSON Web Token (JWT) that you can get using OAuth 2.0
compliant flows.

While OAuth 2.0 is about resource access and sharing, OIDC is mainly about user authentication.
Its purpose is to provide you with a single login for multiple sites. Every time you need to sign
in to a website using the OIDC protocol, you will be redirected to the OpenID website you sign
in to and then back to the website.

Communication security requirements 21

Authentication using a certificate

Client certificate authentication is the process of how users securely access a server or remote
computer by exchanging a digital certificate. A digital certificate is considered a digital ID. It
is used to cryptographically bind the identity of a customer, employee, or partner to a unique
digital certificate (typically including the name, company name, and location of the owner of the
digital certificate). The digital certificate can then be mapped to a user account and used to
control access to network resources, web services, and websites. [29]

Certificate authentication offers a higher security standard than password authentication
can. Federal organizations often use it. Certificate authentication has been successfully used in
defense, healthcare, and banking areas. These organizations often consider the PKI infrastructure
to be strategically important to their security goals.[30]

Certificate authentication can be inappropriate for two reasons. Client authentication involves
a non-trivial registration process on the part of the client. The certificate is produced on one
device, so if the client wants to log in from another device, they will need to transfer it securely,
which is also hard to guarantee. [31]

The stated disadvantages are not particularly important for us since these processes are
simplified when communication occurs within the same system.

Authentication summary

In this chapter, we got acquainted with the main principles of authentication. In our case,
the advantages of authentication using certificates are obvious when it comes to an internal
application, while the disadvantages are not so significant. Undoubtedly the most suitable for
our case is authentication with a certificate.

1.6.2 Privacy and Integrity
This section will look at two important requirements for communication security between two
applications. We will also analyze the difference between these requirements and determine what
is needed to fulfill them.

Privacy

The main purpose of privacy in case of communication is to protect data against using it by third
parties. The most common way to protect data is encryption. Secure Sockets Layer (SSL) is the
de facto Internet standard for encrypting communication over the Internet. It is more recently
known as Transport Layer Security or TLS. [32]

In essence, it is a cryptographic protocol that provides end-to-end protection for data sent
between applications over the Internet. By encrypting data in transit, we will fulfill the Privacy
requirement in relation to communication between applications.

Integrity

The main purpose of integrity is to ensure that the data are not changed in transit. The trans-
mitter accompanies the data with code to solve this issue. This code is known as the Message
Integrity Code (MIC). The point is that MIC is generated by the way, which knows only the
transmitter and recipient, and only they can reproduce this code. Thus when the receiver matches
the MIC provided by the transmitter, the data will be considered authentic.

22 Analysis

Discussion

Data integrity is different from data privacy. However, both solve similar tasks – data protection.
In integrity data transmission, the data is encrypted before transmission so that only the intended
recipient will be able to recover the data. Thus private data can not be recovered by hackers, and
integrity is carried out in this case. However, the data may still have been changed in transit.
So it is recommended to accompany the private data with a MIC, but this is not required. On
the other hand, data can be transmitted unencrypted but accompanied by a MIC. In this case,
the data is not confidential, but its authenticity can be verified. [33]

1.6.3 Security conclusion
This chapter taught us the main principles of secure communication between applications. Cer-
tainly, security is a very important requirement for our solution. We will meet these requirements
as well as possible in design and project implementation.

1.7 Data and Metrics visualization

One of the requirements is to visualize data and metrics that will be sent from the monitoring
solution to collection one. Compared to others, this requirement is very concrete since the
technology chosen by the customer is Grafana. Let us get acquainted with this technology, find
out its capabilities, and identify the problems that we may encounter when integrating it into
our solution.

1.7.1 Grafana
Grafana is a database analysis and monitoring tool. It allows you to create dashboard visualiza-
tions of key metrics that are important to you.

Grafana supports a huge number of data sources, including Prometheus, InfluxDB, and many
others. [34] It also supports visualization for DBMS such as MySQL, PostgreSQL, and others.
So it can be perfectly integrated into our solution.

Grafana also provides alert-sending functionality. It can notify you about problems in your
system. Thus, Grafana is an important component of the system. It is not only an easily
integrated component that provides visualization but is also able to take part in the failure
prediction process.

Let us also describe alternative solutions that are parts of monitoring systems and describe
some of the features that they offer.

1.7.2 TICK stack components
It is worth paying attention to the fact that the Chronograf, paired with the Kapacitor, offers
similar functionality as the Grafana. Some important features of both solutions should be noted.

Chronograf and Kapacitor only work within the TICK stack and are, therefore, much easier
to use when using InfluxDB. At the same time, they offer more options than Grafana.

Quite important can be: connecting third-party solutions for failure prediction, preprocessing
and postprocessing of data, running ETL jobs, and others. It is undoubtedly a big benefit for
the future solution.

System failure prediction 23

1.7.3 Prometheus
In the case of Prometheus, it is proposed to use Grafana for visualization. [35] It simplifies the
choice of platform for visualization.

Prometheus also offers to use its system to send alerts. It is called Alertmanager. It pro-
vides functionality for grouping and routing. It also takes care of deduplication and recipient
integration.

Thus, Prometheus does not provide additional functionality but only improves alert manage-
ment.

1.7.4 Visualization summary
In this section, we got acquainted with the solutions offered by monitoring systems already
familiar to us. We also learned that the TICK stack offers much more functionality than Grafana.

However, it is also important for us that we work not only with metrics but also with data.
And Grafana’s support here for a large number of resources is a big plus. Since the use of Grafana
is one of the requirements, we will use it for our solution. However, with the increase in the scale
of the solution itself, it was appropriate to consider using CK components of the TICK stack.

1.8 System failure prediction
It should be noted that this topic is very broad. There are the following approaches for failure
prediction:

Thresholds method

Forecasting methods

Let us look at some of them.

1.8.1 Thresholds method
The method is based on setting thresholds for different metrics. Based on this threshold, we
identify and prevent the problem. To implement this method, you must take the following
steps[36]:

Select metrics Metrics are numerical data you can measure on the IT element directly. For
example, very informative capacity metrics. They indicate that your unit is running low on
the capacity for some resources, which can be disk, memory, CPU, transaction processing
capacity, and others.

Set thresholds Once you have defined the metrics, detection and prediction come down to
choosing the suitable thresholds for your metrics. The threshold value can indicate that a
failure is occurring or indicate a problem is occurring. In other words, it realizes the detection
and prediction of failures.
Thresholds for detection are usually easy to determine. The normal range of key metrics is
usually known, and key failure events are also known. For example, more than 95% CPU
usage indicates a server capacity issue.
Thresholds for prediction involve a trade-off. There is a trade-off between getting a false
prediction and not having enough early warning of a problem. You can set the free space
threshold for disk space from 70% to 90%.

24 Analysis

Fine-tune the thresholds based on historical data The essence of this point is to adjust
the threshold depending on the analysis of historical data and ensure the best work of thresh-
olds.

This simple method is very popular and often used in practice. The essence of the method,
however, for the most part, is not the prediction but the detection of failures. However, good
tuning can cope with both tasks to some extent.

1.8.2 Forecasting methods
There are a wide variety of forecasting methods. The most popular groups of them are exponen-
tial smoothing methods and ARIMA models. Let’s study the most prominent representatives of
these groups.

Holt-Winter’s seasonal method
Holt-Winters Exponential Smoothing is used for forecasting time series data. This method is
a member of the exponential smoothing methods group. It takes into account both the trend
and seasonal variations. This method is based on the Exponential Smoothing method, which is
a “technique forecasts the next value using a weighted average of all previous values where the
weights decay exponentially from the most recent to the oldest historical value.” [37]

Holt-Winters Exponential Smoothing corrects the shortcomings of the Exponential Smooth-
ing method by taking into account the trend and seasonality when working with data.

The importance of this method for us lies in the fact that it is nativly supported by InfluxDB
and can be easily used in our solution. [38]

Non-seasonal ARIMA models
ARIMA stands for AutoRegressive Integrated Moving Average. The non-seasonal ARIMA model
contains two other models.

For a more accurate understanding, it is necessary to explain these two models. The autore-
gression model predicts the value using the linear combination of the past, and it is the reason
why it is called autoregression. The moving average model predicts the value using past forecast
errors in a regression-like model.

The non-seasonal ARIMA model is a combination of differencing with autoregression and a
moving average model. [39]

Unfortunately, this algorithm is not natively supported by either Prometheus or TICK stack,
despite this, it is a very popular forecasting way, and there are undoubtedly ways to integrate it.

1.8.3 System failure prediction summary
In this section, we reviewed the most popular methods for System failure prediction. In order to
discuss how effective these methods will be for our solution, it is necessary to have some statistics
about how well these methods do in our case. In this work, we do not aim to create a model that
detects System failure on time. This is a complicated task that is rarely achieved in practice.

In this work, we will find a compromise between the complexity of implementing a solution
for System failure prediction and the timeliness of detection failures.

Data consistency 25

1.9 Data consistency
In our case, we are talking about consistency between more databases over time. It means for
us that data needs to be synchronized correctly over time. Let us introduce the reader to the
topic of data synchronization.

Database synchronization is the process of establishing data consistency across multiple
databases. Often this means automatically copying changes in both directions.

Data reconciliation over time should be continuous. The most trivial case of synchronization
is pulling data from the source database to the target. [40]

Based on the requirements analysis, we can communicate only in one direction. It means that
synchronization between databases can only be one-way. Given this requirement, let us focus on
the types of one-way synchronization. There are usually three types of synchronization that you
have to deal with:

Insert synchronization

Update synchronization

Delete synchronization

1.9.1 Insert synchronization
This process proceeds as follows, new records from the source table will be automatically trans-
ferred to the target table over time. If there are no matching records in the target table, the
synchronization process will insert the missing records into the target tables.

Figure 1.5 Insert synchronization example

26 Analysis

1.9.2 Update synchronization
This process proceeds as follows. When changes occur in the source database, the corresponding
changes must be made in the target database. The process takes place in two stages. First, the
values of the records in the target and source databases are compared. The target table is then
changed from the source table. As a result, your data is synced after the update.

Figure 1.6 Update synchronization example

1.9.3 Delete synchronization
The delete synchronization process is as trivial as the insertion synchronization process. If some
records have been deleted from the source database, the corresponding records must also be
deleted from the target database. This way, both databases will be synchronized after deletion.

Figure 1.7 Delete synchronization example

Technology Analysis 27

1.9.4 Data consistency summary
In this chapter, we have covered the necessary information regarding synchronization between
multiple databases. We also described the types of synchronization that can occur during one-
way communication. We will apply the knowledge gained in this chapter to design a future
solution.

1.10 Technology Analysis
We are limited in the choice of technologies and languages since we need to fulfill the requirement
associated with JVM 11. But still, several languages fall under this requirement: Scala, Kotlin,
Groovy, Clojure, and of course, Java.

We will not conduct a comparative analysis of all languages. Instead, we will limit ourselves
to the two most popular languages according to the PYPL version as of September 2022 [41].
Namely, we will compare the use of Java (#2) and Kotlin (#12).

In addition to choosing a language, we should decide on the framework and build an automa-
tion tool.

In the case of a framework, Spring is the most popular solution. Let us find out if it suits us
and analyze why we should use it.

As for the build automation tool, there are two most popular options: Apache Maven and
Gradle. Let us compare them and find the most suitable option for us.

1.10.1 Java & Kotlin comparison
In this section, we will discuss the similarities and differences between the two languages and
then decide which one is best for us.

Similarities
The two languages have some similarities. They are even interoperable. This means that Java
and Kotlin files can coexist in the same project or JAR package. Let us explore these similarities
in more detail.

Static typing Java and Kotlin have statically typed languages. It means that type checking is
going on in compile time. (There are also dynamically typed languages such as PHP, Python,
and JavaScript.)

Bytecode Both languages translate the code into bytecode that is executable by the JVM.

Kotlin usage advantages
It is important to note that Kotlin is a much younger programming language, so it solved several
problems in comparison with Java. [42]

Extension Functions One of the interesting solutions of Kotlin is the extension function. In
Java, extend methods require inheriting the class and overriding the method, but thanks to
the extension function. It is not necessary, and you can extend methods without inheriting
the class.

Conciseness Kotlin is a more concise language than Java. It greatly reduces boilerplate code
and results in fewer lines of code than Java, making the syntax more straightforward and
readable. This important quality makes the code easier to read and less prone to human
error.

28 Analysis

Null Safety Kotlin offers null safety, unlike Java. Java allows you to assign null values to
objects. Therefore, when accessing a member of an object with a null value, a NullPoint-
erException is thrown, which is fairly common in Java. Kotlin does not allow default values
to be null and therefore provides more of a stability code.

Smart Casting In Kotlin, thanks to the smart casting compiler automatically manage types.
In Kotlin programmer does not need to check the variable type accordingly per operation,
unlike in Java.

Functional Programming Kotlin offers to use not only OOPs behavior but the behavior of
Functional programming languages. Unlike Kotlin, Java is an Object-Oriented Programming
language only.

Well, let us move on to the advantages of Java.

Java usage advantages
The main advantages of Java stem from the fact that it is an extremely popular programming
language. From here, follow the next advantages: [43]

Detailed documentation Java is one of the most popular programming languages in the world.
Thus, its popularity has been maintained for a very long time. Also, Java is often used to
create enterprise projects for which good documentation is very important. As a result
of which, Java is a language with detailed documentation. At the same time, Kotlin is a
relatively young programming language that cannot yet boast of this.

Third party libraries This point is similar in its argumentation to the previous one. It is
also caused by the incredible popularity of Java and its use in the enterprise environment.
Because of this, Java has a massive array of third-party libraries compared to Kotlin. It is
not a big advantage since Kotlin is almost completely compatible with Java, and libraries for
Java can be used in projects written in Kotlin.

We have considered the pros of choosing both languages. Let us make a conclusion and choose
the most suitable one for us.

Summary
Each of these languages is popular and is used by a large number of developers around the world.
Using both Java and Kotlin certainly has its advantages. The advantages of Java are especially
relevant for large projects in which it is necessary to use a large number of third-party libraries
that would have good documentation.

The scale of our implementation is not so large, and the advantages of Java are not so
significant for us. On the contrary, Kotlin’s features can simplify development and reduce the
complexity and time of writing code, which is appropriate in our situation. Therefore, in this
case, we prefer Kotlin.

1.10.2 Maven & Gradle comparison
In this section, we will discuss the similarities and differences between the two tools and then
decide which one is best for us.

Analysis summary 29

Maven
Apache Maven is a powerful build automation tool to manage projects and maintain dependen-
cies. Maven uses pom.xml for project configuration.

Gradle
Gradle is a build automation tool used in software development to project build automatization
and dependencies management. Gradle has its DSL stands for domain-specific language based
on Groovy or Kotlin code.

Maven usage advantages
Let us provide information about what advantages Maven has over Gradle.

Plugins One of the main advantages of Maven is the management and creation of plugins.
Creating plugins in Maven is easy, and there are hundreds of plugins Maven offers.

Documentation Maven has a more extended history of use compared to Gradle. Thanks to
this, you are unlikely to find a project in the JVM world that would not have a way to add
Maven dependencies but would have it in Gradle, while the reverse situation can be. Also,
the experience of using Maven is greater, and the experience of current and past users can
be very valuable for solving complex problems.

Now that we have seen the advantages of using Maven, it is good to suggest taking a look at the
advantages of Gradle.

Gradle usage advantages
Let us provide information about what advantages Gradle has over Maven.

Performance Gradle introduced several performance optimizations missing from Maven to im-
prove build performance.

Conciseness Maven is much less concise because it uses XML for its configuration. Gradle, as
already mentioned, uses DSL and boasts conciseness.

User experience Gradle is more modern and more end user-oriented. Moreover, although
Gradle has a higher entry threshold than Maven, Gradle provides more convenience and
variability in use. Maven, as the number of dependencies, grows and the pom.xml grows,
becomes clumsy, and this harms the user experience.

Summary
In conclusion, I would like to note that both technologies are a good choice for your project.
Maven is a simpler technology with a low entry threshold, Gradle, in turn, is more complex,
but it also greatly simplifies working with the project in the future. For us, perhaps Gradle is
preferable based on the listed qualities. Therefore, we will use it in our solution.

1.11 Analysis summary
This chapter has taught us all the necessary material to create a future solution. In the future,
based on the knowledge gained, we will create the solution’s architecture and solve the aspects
of synchronization, security, and failure prediction. Also, the received material will allow us to
choose the suitable technology for monitoring the hospital environment, which is one of the key
issues of this work.

30 Analysis

Chapter 2

Design

In this chapter, we will focus on designing the final solution. Our attention will be given
to two solutions based on two technologies taken as the basis for collecting metrics. Next,
a discussion will be held, as a result of which we will choose the most suitable solution for
our system. We will also describe some important parts that will become part of the future
solution — for example, the data synchronization process.

2.1 Solution design
This chapter will analyze two architectures based on different systems for collecting metrics. We
are talking about solutions based on Prometheus and TICK stack. Let us first describe the
common part of both systems before focusing on their differences. You can see the common part
of the architecture in the following page.

As you can see, the solution consists of two independent components: monitoring and collec-
tion solutions. The monitoring solution resides in the hospital environment, while the collection
solution is a separately running server that resides outside the hospital environment.

The monitoring solution sends data to the collection solution, which receives them. Com-
munication, as we know from the requirements analysis, occurs only in one direction. In the
client-server architecture, the monitoring solution becomes a client, and the collection solution
becomes a server.

As you can see, most of the components are placed in containers. It means that the architec-
ture uses a container engine. In our particular case, this is the Docker engine.

31

32 Design

Figure 2.1 The common architectures part

Monitoring solution
A key part of the monitoring solution is the monitoring server. It is responsible for sending data
to the collection solution. In its turn, it receives data from two sources. These sources are the
hospital application’s backend and the Kettle, which sends information about job processing.

Information from these two sources is stored in a relational database before being sent to the
server. Thus, the monitoring server is essentially responsible for synchronizing this database and
the database that is part of the collection solution.

Collection solution
A key part of the collection solution is the collection server. It is responsible for data receiving
and storing in the database. It is also responsible for database synchronization.

Another key part of our solution is Grafana. It is responsible for data and metrics visualiza-
tion, which are stored in the database. It is also responsible for alerting. Thus Grafana solves
failure prediction and visualization requirements.

Solution design 33

2.1.1 Prometheus solution
Let us see what needs to be done to integrate Prometheus into our solution. First, let us illustrate
this solution. You can see it at the following figure:

Figure 2.2 Prometheus solution architecture

As you can see, the monitoring solution has three more components. The main component
responsible for collecting metrics is Prometheus. Also, two components are used to receive
metrics from the hospital server: Host exporter, which exports metrics directly from the Linux
server, and cAdvisor, which collects metrics about Docker containers.

In this solution, we use the cAdvisor, since Docker natively supports Prometheus only in an
experimental mode. It means that you need to run dockerd in experimental mode. [44]

We don’t want this in production, and cAdvisor is a popular solution for this problem.[45]
The collection of metrics works on the principle of scraping. The components provide APIs

for collecting metrics. The Prometheus server scrapes them at certain intervals and then saves
them to the time series database, which is part of the Prometheus server.

34 Design

The Prometheus server also has an API, which the monitoring server uses to scrape metrics
in certain intervals. Then the monitoring server sends it to the collection server, which stores it
in a relational DB. At the end of this flow, Grafana visualizes the metrics from relational DB.

2.1.2 TICK stack solution
Let’s see what needs to be done to integrate the TICK stack into our solution. First, let us
illustrate this solution. Pay attention to the following figure:

Figure 2.3 TICK stack solution architecture

This solution is pretty simple. There is one more component in the monitoring solution and
one more in the collection solution. On the monitoring solution side, it is the Telegraf. It is
responsible for collecting metrics, and then it sends these metrics to InfluxDB. InfluxDB stores
this data, and finally, Grafana uses InfluxDB as a data source.

Solution design 35

2.1.3 Solutions comparation
In this chapter, we will analyze the pros and cons of both solutions, and we will discuss their
features as well as prospects for use.

Prometheus solution
In the case of Prometheus, the solution has some complexities related to our solution’s require-
ments.

The first difficulty for us is one-way communication, and this requirement does not match
the way Prometheus works. It would be beneficial to place the Prometheus server within the
collection solution and send metrics by exporters to this server. However, Prometheus itself
actively collects metrics and can be placed only as part of a monitoring solution.

This fact means that it is also necessary to ensure the transfer of metrics from the Prometheus
server to the collection solution. This communication is built through a monitoring server and a
collection server. And also, the monitoring server, in its turn, must scrape the metrics from the
Prometheus server using PromQL.

Another difficulty is related to the Prometheus server database. This database is part of
the Prometheus server and stores data in a specific format. This database is time series, not
relational, and for metrics saving on the side of the collection server, it is necessary to transform
them. That also adds complexity to the solution.

These two difficulties can be solved by Grafana Mimir. The Grafana Mimir is an open-
source time series database, that supports metrics remote writes from Prometheus and metrics
visualization in Grafana. [46]

It should be noted that although this component solves some problems, it makes the solution
more resource-intensive and is a relatively new technology, the release of which was made a few
months ago. Therefore, we do not propose the use of this technology in our solution.

TICK stack solution
In the case of the TICK stack, the one-way communication requirement is not a problem, and it
is how it natively works. In the case of the TICK stack, storage is split with a part that scrapes
metrics, and the scrape metrics part sends metrics directly to storage. There are no problems
with integration.

Comparison
This section will discuss the pros and cons of using the two technologies, and we will also describe
possible scenarios in which each technology could be used.

So let’s see what aspects are better in case of the TICK stack usage:

Complex integration As mentioned earlier, Prometheus, in our particular case, has several
difficulties. Due to these complexities, integrating Prometheus into our solution is more
problematic than integrating a TICK stack.

Resource-intensive Prometheus is more expensive than the TICK stack in terms of CPU,
memory, and others. The TICK stack is a much more suitable solution if we do not have a
lot of resources on the monitoring solution side. Since we assume that there will be several
instances of monitoring solutions, the resource savings will increase with the increase in the
number of instances.

36 Design

Scalability With the increase in the number of monitoring solution instances, several collection
solutions will likely need to emerge. Also, a rather important issue, which has not yet been
resolved in this work, is data replication. All this leads to the emergence of a cluster from the
side of the collection solution. The TICK stack is designed in such a way that it allows using
the Chronograph to synchronize data from several InfluxDB instances and is well-suited for
creating a cluster. Prometheus, in its turn, does not offer such a use case.

Now let’s see what aspects are better in case of the Prometheus usage:

Metrics collection Prometheus should be used if we offer active growth on the side of the
monitoring solution and add many external solutions to our solution. In such a case, using
Prometheus is beneficial, as it offers a huge selection of exporters and client libraries. It
provides a simpler collection of metrics compared to Telegraf, which cannot boast of such a
large number of plug-ins for collecting metrics.

Saving data There is also another small advantage of the Prometheus solution. The metrics
in this solution fall into persistence storage on both the monitoring solution and collection
solution sides. While in the TICK stack solution, the metrics are saved only on the side of the
collection solution. Because of this, a small problem arises if, for some reason, the collection
server is not available for a long time.

Telegraf partially solves the problem and uses a buffer as temporary metrics storage. However,
this buffer is stored in RAM and can easily overflow. Also, if the monitoring solution fails,
the metrics collected when the collection server is unavailable will be lost.

Of course, this problem can be solved by adding a second instance of InflixDB to the side
of the monitoring solution and implementing synchronization between the two instances of
InflixDB through the monitoring server. This modification is shown in the following image:

Figure 2.4 TICK stack solution modification

With this modification, the solution is still not as complicated as the one based on Prometheus.
We currently assume that this solution may be useful in the future, but at the moment, it
will not bring obvious benefits compared to the complexity of implementation.

Domain model 37

2.1.4 Solutions design summary
Each solution undoubtedly has its benefits and deserves to be implemented. However, the most
likely scenario would be the need for clustering on the part of the collection solution.

We should also consider that the monitoring solution is currently a small set of components,
and the resource use of Prometheus is comparable with the resource usage of the components we
will monitor. In the case of the Telegraf, resource usage is much less, and the use of the Telegraf
looks more rational and reasonable.

Thus, the monitoring solution used in the TICK stack is currently the most fortunate. In
this regard, it will be implemented in the future.

2.2 Domain model
A rather important design chapter is creating a data model synchronizing the monitoring and
collection solutions. This model represents the data that will be involved in synchronization
between the collection and monitoring servers. Let us get acquainted with the domain model,
which is shown in the following figure:

Figure 2.5 Domain model

38 Design

As we can see, we are getting two independent collected data from two components: the Kettle
and the hospital application backend. It is important to note that since we are synchronizing
data between monitoring and collection solutions, the domain data model is identical. You can
also see that a hospital entity is added from the side of the collection solution, which will identify
the data for each hospital.

2.3 Synchronization design
This chapter will design synchronization between collection and monitoring servers as required.
Based on the requirements analysis, there are five main requirements, and they are as follows:

The monitoring service will be able to send data to the collection server periodically in
batches.

The monitoring service will be able to collect data from the hospital environment.

Data consistency. The data must be consistent between monitoring and collection services
over time, meaning that data should not be lost or duplicated.

Failure requirement. After the monitoring service or collection service fails, the data in
databases must be synchronized correctly.

Communication must be one-directional. It means that the monitoring solution can request
a collection solution but not vice versa.

It is important to say that we do not intend to delete or transform the data. This solution as-
sumes only the collection of statistics and its visualization on the side of the collection solution.
In other words, our task is about insert synchronization.

Let’s look at the problems that need to be solved for correct synchronization:

It is necessary to send in the new batch that has not yet been sent.

It is necessary to know if the state of the collection server’s database matches the state of
the monitoring server’s database at the moment before sending a new batch. In other words,
the party was saved successfully.

In case of an unsuccessful save, it is necessary to know the state of the collection server for
the new batch to be created correctly.

We will achieve successful insertion synchronization by solving these problems and keeping one-
way communication.

2.3.1 Naive synchronization solution
First, we will describe the naive solution, and then we will propose an improvement that will
reduce the number of requests.

Synchronization design 39

Let us define the characteristics of a naive solution:

In the naive solution, synchronization occurs as follows.

We never know the state of the database on the side of the collection server, and before
creating a batch, we ask the collection server for this state.

For us, the success of the write operation on the collection server is unimportant. Since we
always ask about its status before sending a new batch.

This process is shown in the sequence diagram:

Figure 2.6 Naive synchronization solution

As part of our solution, we propose generating a key on the monitoring server side for each
entity we want to send to the collection server. Then the state will be the key of the last record,
which is stored on the side of the collection server. Knowing this on the monitoring server side
will simplify batch creation. To take all the instances that are newer than the one whose key is
the state is enough to do this.

2.3.2 Remember state synchronization solution
The following solution involves keeping the state in RAM on the side of the monitoring server.
This solution is based on the fact that we can calculate the state we will get from the collection
server if the request succeeds. Therefore, we will update the status for each batch that we sent
successfully. If the batch was not sent successfully or there were other problematic situations,
the status information is deleted, and we have to update the status. In other words, ask in what
state the collection server is. This process is shown in the sequence diagram:

40 Design

Figure 2.7 Remember state synchronization solution

2.3.3 Synchronization design summary
We have designed how batches should be synchronized. We have proposed two solutions, each
of them meets the requirements and can be used for the solution. It is more reasonable to use
an improved communication version, which is the last one, so this version will be implemented.

2.4 Design summary
In this chapter, we have designed the architecture of several metrics collection solutions and
selected the one that suits us best. We also figured out what data we would have to synchronize
and designed synchronization that would allow us to transfer data correctly.

Thus, after analyzing the requirements for the system and designing its most difficult mo-
ments, we are ready to start implementation.

Chapter 3

Implementation

In this chapter, we will describe how the final solution was implemented. We will describe in
detail the work and interaction processes for the individual components of the two systems:
monitoring and collection solutions. We will also describe the process of communication
between these two solutions.
In addition, we will analyze in detail how we implemented such requirements as synchroniza-
tion, security, data visualization, and failure prediction.

3.1 Monitoring solution infrastructure
This section will describe how the monitoring solution infrastructure is implemented, what com-
ponents it consists of, and what processes take place within it.

3.1.1 Introdution
The monitoring solution consists of several components. These components are:

Monitoring server

Telegraf instance

Monitoring database

Application backend

Application frontend

Application database

Kettle instance

The last four components have already been implemented as part of the monitoring solution,
so we will not describe their work in detail. Instead, we will focus on describing the components
that we have implemented.

It is important to note that several techniques have been applied to simplify the work with
these components. First of all, containerization was carried out.

Containerization provides a component with operating system libraries and the necessary
dependencies to create a container – an executable file that works stable in any infrastructure.
Since Docker was chosen as the container engine, we can call the process dockerization.

41

42 Implementation

Secondly, since our solution contains many components, there is a solution to facilitate the
configuration, management, and running of many Docker containers – Docker Compose.

“Docker Compose is a tool that was developed to help define and share multi-container ap-
plications. With Compose, we can create a YAML file to define the services and with a single
command, can spin everything up or tear it all down.” [47]

Thanks to these technologies, creating an infrastructure consisting of several components is
quite simple. We bring to your attention the Docker Compose configuration file, which contains
the information necessary to create these components:

1 version: "3.6"
2 services:
3 telegraf:
4 container_name: monitoring-telegraf
5 image: telegraf:1.18-alpine
6 volumes:
7 - ./telegraf/telegraf.conf:/etc/telegraf/telegraf.conf:ro
8 - /var/run/docker.sock:/var/run/docker.sock
9 ports:

10 - ${TELEGRAF_PORTS}
11 user: root
12 entrypoint: "telegraf"
13 env_file: configuration.env
14

15 monitoring_server:
16 depends_on:
17 - monitoring_db
18 container_name: monitoring-server
19 image: ${MONITORING_IMAGE}
20 ports:
21 - ${MONITORING_PORTS}
22 env_file: configuration.env
23

24 monitoring_db:
25 image: postgres:13.1-alpine
26 container_name: monitoring-db
27 ports:
28 - ${DB_PORTS}
29 env_file: configuration.env
30 volumes:
31 - ./data/db:/var/lib/postgresql

Listing 3.1 Docker Compose file for monitoring solution

Let us take a closer look at the features described in this configuration file. As you can
see, there are three components implemented on the monitoring solution side, and each of them
corresponds to the container.

The first of them is the Telegraf instance. For this component, we used the existing image
telegraf:1.18-alpine and configured it using the configuration file telegraf.conf, which you
can see as one of the volumes. As another volume, you can see the docker.sock, which we are
using, as we knew from the analysis part, to access the docker metrics. Using the volumes, we
are specifying mount points that we share with the container. In other words, the container can
access these mount points.

Monitoring solution infrastructure 43

The second one is the monitoring server. It uses the image that we create using the jip plugin.
The name of the target image is defined in ${MONITORING_IMAGE} variable.

The last one is the monitoring database. Same as for the Telegraf, there is also used an
already existing image. Now, this is an image of the PostgreSQL database.

It needs to mention that all of these components have added an environment file that calls
configuration.env. It contains the variables used to configure each of the containers. We will
provide more information about it in the description of the components.

3.1.2 Monitoring server
This component implements the data synchronization process. The monitoring server provides
an API that is used to obtain this data by the Application backend and Kettle instance. Then,
the monitoring server sends this data at certain intervals in batches.

This component is an application implemented using Spring and Gradle and written in the
Kotlin language. Detailed information about implementation will be provided in the sections
below. This section will focus on how this component is integrated into the infrastructure.

To the infrastructure, it was integrated as a ready-made image. The image is assembled using
the jip plugin. This plugin is added to build.gradle.kts as a configuration.

1 jib {
2 to {
3 image = "monitoring-server"
4 tags = setOf("latest")
5 }
6 }

Listing 3.2 jib plugin usage

For now, it looks simple, but as a future improvement, it can be supplemented with versions
and settings for the Docker Hub.

The other interesting part of monitoring server infrastructure is configuration. A standard
Spring application configuration is solved as application.properties files. In our case, to
define variables on the container level, we need to add them as environment variables to the
Docker Compose configuration. Environment variables can be added to a separate file to make
your Docker Compose configuration more readable:

1 SERVER_PORT=8081
2 COLLECTION_API_URL=host.docker.internal:4003/api
3 HOSPITAL_NAME=bestHospitalEver
4 DB=root
5 DB_USERNAME=root
6 DB_PASSWORD=root
7 DB_CONTAINER_NAME=monitoring-db
8 DB_PORT=5432
9 # cron rates in ms, default (10s)

10 APP_EXCEPTION_CRON_RATE=10000
11 ETL_CRON_RATE=100000

Listing 3.3 configuration.env for monitoring server

44 Implementation

There are environment variables that are configured for monitoring the server. The same
variables are propagated to application.properties file:

1 server.port=${SERVER_PORT}
2 collection.api.uri=${COLLECTION_API_URL}
3 hospital.name=${HOSPITAL_NAME}
4 # Datasource
5 spring.datasource.url=jdbc:postgresql://${DB_CONTAINER_NAME}:${DB_PORT}/${DB}
6 spring.datasource.username=${DB_USERNAME}
7 spring.datasource.password=${DB_PASSWORD}
8 spring.datasource.driverClassName=org.postgresql.Driver
9

10 spring.jpa.hibernate.ddl-auto=update
11

12 cron.rate.app-exception=${APP_EXCEPTION_CRON_RATE}
13 cron.rate.etl=${ETL_CRON_RATE}

Listing 3.4 application.properties file with environment variables

In this way, environment variables set configuration variables. It allows you to configure
the container from the outside. It also allows you to define variables in one place and avoid
configuration mistakes.

In the following chapters, we will also get acquainted with the configuration related to specific
areas: security, synchronization, and others.

3.1.3 Telegraf instance
This component implements the collection of metrics and sends them to InflixDB, which is
located on the side of the collection server. In its turn, Telegraf also implements synchronization
of metrics, but we will analyze this in the Synchronization section.

Since the Telegraf is an external component, we can only configure it. The main configuration
file is telegraf.conf. It contains Telegraf’s general settings and also input and output plugins. In
the next figure, you can see the Telegraf general settings:

1 # Global tags can be specified here in key="value" format.
2 [global_tags]
3 hospital = "$HOSPITAL_NAME"
4 # Configuration for telegraf agent
5 [agent]
6 # Default data collection interval for all inputs
7 interval = "$DEFAULT_DATA_COLLECTION_INTERVAL"
8 # flush this buffer on a successful write.
9 metric_buffer_limit = $BUFFER_SIZE

10 ...
11 collection_jitter = "0s"
12 flush_interval = "1s"
13 flush_jitter = "0s"

Listing 3.5 The general Telegraf settings

Monitoring solution infrastructure 45

In the general settings of the Telegraf instance, you can set up an interval in that data will
be extracted by input plugins and sent to output plugins. It also allows you to define the buffer
that will store the data on the monitoring solution side when the collection solution is disabled.

In the global configuration, we also define some global tags that will be added to each collected
measurement. For us, it is the unique hospital identifier, and for that, we will group data collected
from each hospital.

Next, an important part of setting up Telegraf is connecting plugins. Let us get acquainted
with input plugins used to receive the data from the host OS and the Docker infrastructure. In
the next listing, you can see the configuration of input plugins used in our solution:

1 # Read metrics about docker containers
2 [[inputs.docker]]
3 # Docker Endpoint
4 endpoint = "$DOCKER_MONITORING_ENDPOINT"
5 perdevice = true
6 total = false
7 docker_label_include = []
8 docker_label_exclude = []
9 # Which environment variables should we use as a tag

10 tag_env = ["JAVA_HOME", "HEAP_SIZE"]
11

12 # Input plugins for collecting metrics from system
13 [[inputs.cpu]]
14 percpu = true
15 totalcpu = true
16 fielddrop = ["time_*"]
17

18 [[inputs.disk]]
19 ignore_fs = ["tmpfs", "devtmpfs"]
20 [[inputs.diskio]]
21 [[inputs.kernel]]
22 [[inputs.mem]]
23 [[inputs.processes]]
24 [[inputs.swap]]
25 [[inputs.system]]
26 [[inputs.net]]
27 [[inputs.netstat]]
28 [[inputs.interrupts]]
29 [[inputs.linux_sysctl_fs]]

Listing 3.6 The input plugins Telegraf settings

In this configuration file, each instance of [[inputs.*]] represents the separate plugin for
metrics collection. You can see here the Docker input plugin has defined an endpoint setup,
depending on the OS. Also, you can see several host OS inputs plugins, that are different for
each metric group (disk, CPU, memory, and others).

There are also output plugins that we have in the Telegraf configuration file. In the next
listing, you can see the configuration of output plugins used in this solution:

46 Implementation

1 # Configuration for influxdb server to send metrics to
2 [[outputs.influxdb]]
3 urls = ["$INFLUX_URL"] # required
4

5 # Write timeout (for the InfluxDB client), formatted as a string.
6 timeout = "5s"
7

8 username = "test"
9 password = "test"

Listing 3.7 The output plugins Telegraf settings

There is only one plugin in the output configuration. It is a plugin for InfluxDB that setups
the communication with the InfluxDB instance on the collection solution side. It also has some
important settings as the URL of the InfluxDB instance and intervals, in which we will send the
data to the InfluxDB.

3.1.4 Monitoring database
This component saves the data received by the monitoring server. Thus, this component partic-
ipates in synchronization since synchronization is carried out between two databases — one on
the side of the collection solution and this one.

This component has no extra configuration file. All configuration was realized by environment
variables such as ports, user data, database, and others.

3.2 Collection solution infrastructure
This section will describe how the collection solution infrastructure is implemented, what com-
ponents it consists of, and what processes take place within it.

3.2.1 Introdution
The collection solution consists of several components. These components are:

Collection server

InfluxDB instance

Collection database

Grafana instance

As in the case of monitoring solutions, containerization was applied to simplify working with
these components, and Docker Compose was used.

Let us bring to your attention the Docker Compose configuration file, which contains the
information necessary to create these components:

Collection solution infrastructure 47

1 version: '3.6'
2 services:
3 influxdb:
4 image: influxdb:1.8-alpine
5 container_name: collection-influxdb
6 env_file: configuration.env
7 ports:
8 - ${INFLUX_PORTS}
9 volumes:

10 - ./influxdb/imports:/imports
11 - ./influxdb/conf/influxdb.conf:/etc/influxdb/influxdb.conf
12 - influxdb_data:/var/lib/influxdb
13

14 grafana:
15 image: grafana/grafana:9.0.0
16 container_name: collection-grafana
17 restart: always
18 depends_on:
19 - influxdb
20 env_file: configuration.env
21 links:
22 - influxdb
23 ports:
24 - ${GRAFANA_PORTS}
25 volumes:
26 - grafana_data:/var/lib/grafana
27 - ./grafana/provisioning/:/etc/grafana/provisioning/
28 - ./grafana/dashboards/:/var/lib/grafana/dashboards/
29 - ./grafana/conf/grafana.ini:/etc/grafana/grafana.ini
30

31 # simmular as monitoring_server
32 collection_server:
33 # simmular as monitoring_db
34 collection_db:
35

36 volumes:
37 grafana_data: {}
38 influxdb_data: {}

Listing 3.8 Docker Compose file for collection solution

Let us take a closer look at the features described in this configuration file. As you can see,
there are three components realized on the collection solution side, and each of them corresponds
to the container.

The first of them is the InfluxDB instance. For this component, we used an already existing
image influxdb:1.18-alpine and configured it using the configuration file influxdb.conf,
which you can see as one of the volumes. As another important volume, you can see the
influxdb_data, which is added as the volume at the bottom of the configuration file. It creates
the volume and saves the InfluxDB data, settings, and other information to this volume.

The second one is the Grafana instance. As with the InfluxDB, we use the existing image
grafana:9.0.0. It uses its own internal database to store the data. We create an grafana_data

48 Implementation

volume, the same as for the InfluxDB. Then, we also create volumes for configurations that we
need to share. It includes dashboards and data source configurations that we use for visualization.

There are also two services whose configurations are similar to the configuration of related
services at the monitoring solution part. These services are the collection server, which is con-
figured similarly to the monitoring server, and the collection database, that configured the same
as the monitoring one.

3.2.2 Collection server
This component participates in the data synchronization process. In order to get this data, the
server collection provides an API that several monitoring solutions use server monitoring to pass
data from monitoring databases. The collection server stores this data in the collection database,
thus completing the synchronization.

Like the monitoring server, this component is an application implemented using Spring and
Gradle and written in the Kotlin language.

The collection server is configured similarly to the monitoring server. It also uses jip plugin
to create an image and configure it the same way how monitoring server did.

3.2.3 Collection database
This component saves the data received by the collection server. Thus, it participates in syn-
chronization. The synchronization is carried out between two databases — one on the side of the
monitoring solution and this one. In the future, these data will be used by Grafana to visualize
and predict failures in the monitoring solutions.

The collection database has an identical configuration as the monitoring one. It also uses the
PostgreSQL image with the same environment variables.

3.2.4 InfluxDB instance
This component saves the metrics received from the Telegraf instances and keeps them on the
side of the collection solution. These metrics are used by Grafana to visualize and predict failures
of monitoring solutions.

The configuration of the InfluxDB instance is placed at the influxdb.conf file, that, as
you can see in the Docker Compose configuration, is added as a volume. Let us bring to your
attention the configuration file, which contains the information necessary to set up the InfluxDB
instance:

Collection solution infrastructure 49

1 [meta]
2 dir = "/var/lib/influxdb/meta"
3

4 [data]
5 dir = "/var/lib/influxdb/data"
6 engine = "tsm1"
7 wal-dir = "/var/lib/influxdb/wal"
8

9 [http]
10 enabled = true
11 bind-address = ":8086"
12 auth-enabled = true
13 log-enabled = true
14 write-tracing = false
15 pprof-enabled = true
16 pprof-auth-enabled = true
17 debug-pprof-enabled = false
18 ping-auth-enabled = true
19 https-enabled = true
20 https-certificate = "./influxdb.pem"
21 shared-secret = "my super secret pass phrase"

Listing 3.9 The InfluxDB instance configuration

There are three parts to the InfluxDB configuration. The first two parts configure data and
metadata storage. The last configures the HTTP communication details, such as authentication,
HTTPS parameters, and others. The other part of the configuration, such as user credentials, is
defined as environment variables.

3.2.5 Grafana instance
Grafana performs data visualization, and failure prediction, and sends alerts in our solution.

It has a very extensive configuration. Grafana is able to configure the dashboards for your
metrics visualization, create alert rules depending on these metrics, and configure data sources
from which it will get the metrics. There are some related things that also can be configured,
such as folders, permissions, contact points, notification policies, and many others.

In our Grafana configuration, we will focus on the configuration of dashboards, data sources,
alert rules, and related folders. However, it can be extended in the future for more complicated
configuration.

All these things you can easily configure using the Grafana UI. But the main problem with
the configuration is that you will have to export this configuration, or you need to reconfigure it
each time when you need to launch the new Grafana instance.

Grafana supports dashboard exporting, and you can export them as JSON files. The export
or configuration of other things is not yet well thought out by Grafana and has become a deep
pain of our solution.

Fortunately, Grafana offers not only configuration using UI. You can configure it manually
using the YAML format or configure needed entities via Grafana API [48].

First of all, we tried to configure data sources and alerts using the YAML configuration. It
didn’t take long to create the data sources configuration. This configuration is too long to add
to this work. Instead of it, we will describe the one data source configuration. In the next figure,
you can see the InfluxDB data source configuration:

50 Implementation

1 datasources:
2 - name: InfluxDB
3 type: influxdb
4 access: proxy
5 orgId: 1
6 uid: influxdb_uid
7 url: http://collection-influxdb:8086
8 user: "test"
9 database: "influx"

10 withCredentials:
11 isDefault: true
12 jsonData:
13 timeInterval: "5s"
14 graphiteVersion: '1.1'
15 tlsAuth: true
16 tlsAuthWithCACert: true
17 secureJsonData:
18 password: "test"
19 version: 1
20 editable: true

Listing 3.10 The InfluxDB data source configuration for the Grafana

The configuration contains the necessary settings for the data source, such as URL, the time
interval for data receiving, security settings, and other information about the data source.

The data source configuration takes up no more than a hundred lines and looks quite compact.
Despite this, the configuration took a relatively long time. It is worth noting that the alert rules
configuration would take up several thousand lines. Of course, this is a very bad option to
configure alerting manually.

A good solution was to combine the Grafana UI and the Grafana API ways. It is a relatively
simple task to define an alert rule using Grafana UI and get it using Grafana API GET method
for /API/v1/provisioning/alert-rules/{UID} endpoint. The received in JSON format alert
rule configuration can be used with a little modification to create this rule another time via the
Grafana API. It can be simply realized by sending this configuration as POST request to the same
endpoint.

This export was realized as the Postman collection and can be easily modified and reused.
This configuration also takes up several thousand lines, but now they are generated by the
Grafana UI.

In the following sections, we will take a closer look at the functionality that Grafana offers.

3.2.6 Conclusion
This section described the implementation of the collection solution infrastructure in detail. We
also examined the technologies used both for the whole solution and for individual components
implementation.

Next, we will study how the individual requirements for the complete solution were met and
also describe in more detail the individual parts of the components described earlier.

Synchronization 51

3.3 Synchronization
In this section, we will focus on how synchronization was implemented. In our solution, both
metrics and data are transferred. Both are synchronized. Let us provide the information about
each of these cases separately.

3.3.1 Data synchronization
Data synchronization in our solution occurs between monitoring and collection databases. Syn-
chronization, as such, is realized by monitoring and collection servers.

In the design chapter, we chose stateful synchronization, so we suggest you familiarize yourself
with how it was implemented. The state is pictured in the following listing:

1 data class State (
2 val lastSendMonitoringId: String = "",
3 val stateName : StateName = StateName.IN_PROCESS
4){}

Listing 3.11 The synchronization state inpletentation

As you can see, it is represented by two values: the state and the lastSendMonitoringId
(LSMI) value, which identifies the last synchronized record. In other words, LSMI is the last
instance of data, that was successfully transferred to the monitoring server and stored in the
collection database. The value of LSMI is non-zero only for the IN_PROCESS state. The other
two states have this value equal to null.
The synchronization process goes through some states, and there are only three of them:

NOT_INIT – the state corresponding to the absence of communication between the monitoring
server and the collection server.

START – the state in which the synchronization process starts.

IN_PROCESS – the state in which synchronization occurs or resumes after the communication
is interrupted.

For now, let us focus your attention on the synchronization process. The process starts in the
NOT_INIT state. At the moment, it is unknown what state the collection server is in. To do this,
we send a request to set the state of the collection server. Then, depending on whether there are
saved data records on the side of the collection server or not, the monitoring server goes either
to the IN_PROCESS state or to the START state.

If we are in the START state, we send the first sync request, and then, upon receiving a
successful response, we move to the IN_PROCESS state and remember the LSMI value for the last
record, that we received.

The synchronization request is then repeated after a certain amount of time, and we remain
in the IN_PROCESS state and update the LSMI if the request is successful. Otherwise, we enter
the NOT_INIT state.

From the NOT_INIT state, we send a request to receive LSMI, and if the request is successful
and LSMI is, it switches to the IN_PROCESS state. Otherwise, we remain in the NOT_INIT state.

The following code demonstrates the implementation of this process from the monitoring
server side:

52 Implementation

1 fun syncTask() {
2 try {
3 if (syncBusiness.isStateNotInit()){
4 syncBusiness.updateState(
5 communicationBusiness.pullState()
6)
7 }
8 val batch = syncBusiness.createBatch()
9 val state = communicationBusiness.pushBatch(batch)

10 syncBusiness.updateState(state)
11 } catch (e: Exception){
12 // state is back to NOT_INIT
13 }
14 }
15 ...
16 // createBatch in syncBusiness
17 fun createBatch(): List<Synchronizable> {
18 if (isStateStart()){
19 val batch = getBatchAtStart()
20 if (batch.isNotEmpty()){
21 updateState(State(batch.last().monitoringId))
22 return batch
23 }
24 }
25 if (isStateInProcess()){
26 val batch = getBatchInProcess()
27 if (batch.isNotEmpty()){
28 updateState(State(batch.last().monitoringId))
29 return batch
30 }
31 }
32 }

Listing 3.12 The syncronization from monitoring server side

The syncTask() runs by the Cron for each synchronized data (ETL jobs and Application
exceptions). At the beginning of the communication, it asks the collection server for a state that
is the collection database. The implemented logic on the collection server side is next:

1 @PostMapping("/exception/state")
2 fun getAppExceptionState(@RequestBody req: StateRequest): State {
3 return try {
4 val monitoringId = syncRepository.getLastMonitoringId(req.hospitalName)
5 State(monitoringId, StateName.IN_PROCESS)
6 }catch (e:Exception){
7 State(stateName = StateName.START)
8 }
9 }

Listing 3.13 The syncronization from collection server side

Security 53

On the collection server side, it has a simple realization. In case synchronization is interrupted,
we find the last monitoring id and send it to the monitoring server with IN_PROCESS state. In
case of synchronization starts, we send only a START state.

Next, let us bring to your attention the synchronization of metrics.

3.3.2 Metrics synchronization
The synchronization of metrics occurs between the Telegraf, on the side of the monitoring solu-
tion, and the InfluxDB, on the collection solution side.

However, this synchronization, unlike data synchronization, does not always occur. Data
from Telegraf to InfluxDB are sent in intervals configured in telegraf.conf.

Synchronization becomes after the collection solution failure. If the collection solution, for
some reason, does not process incoming requests, Telegraf caches the metrics into a special buffer,
the size of which is configured in the Telegraf configuration.

As soon as the collection solution becomes available, Telegraf performs the data synchroniza-
tion process. In this case, synchronization occurs between the Telegraf buffer and the InfluxDB
instance. Thus, data are not lost if the collection solution fails, provided that a sufficient buffer
value is configured.

3.4 Security
This section will focus on how security has been implemented within our solution. In our solution,
both metrics and data are transferred. Let us mention that, the metrics transfer is realized
between the Telegraf and the InfluxDB, and the data transfer is realized between the monitoring
and the collection solutions. Security has been implemented for both options. Let’s look at each
case separately.

3.4.1 Data security
This section will look at how secure communication between collection and monitoring servers
has been implemented.

Since our solution assumes certificate-based authentication, let us provide the information
about what we need to implement this authentication method.

We use certificate authentication on both the server side and the client side. It allows the
client and server to identify each other and create a secure connection uniquely. To implement
this authentication, you need to have three pairs of certificates:

root certificates – They are required for signing in our server-side and client-side certificates.

server-side certificates – They are needed for authentication server by a client.

client-side certificates – They are needed for authentication client by a server.

The creation of server-side certificates and client-side certificates proceeds similarly. In the
beginning, a pair of keys is generated: public some.key and private some.csr. The same pair of
root certificates then sign each pair of certificates. After that, the certificates are ready for use.

Also, since we are using Spring, it is good practice to store keys with the KeyStore. So we
add client-side certificates to the KeyStore repository on the client side. Moreover, do the same
thing with server-side certificates on the server side. Next, we also need to add root certificates
to the server-side storage so the server can trust certificates signed with root certificates.

For both the client and the server certificates in the KeyStore, we store certificates in pairs,
so as a result of transformations, we get the file some.jks. The last necessary step is to add the
certificates to the configuration files.

54 Implementation

Next, let us explore configuration examples for collection and monitoring servers:

1 ### collection server security configuration ###
2 # server CA
3 server.ssl.trust-store=classpath:ssl/truststore.jks
4 server.ssl.trust-store-password=testOnly
5 server.ssl.client-auth=need
6 # keystore need to be explicitly declared for Tomcat
7 server.ssl.key-store=classpath:ssl/keystore.jks
8 server.ssl.key-store-password=testOnly
9 ...

10 ### monitoring server security configuration ###
11 server-store=classpath:ssl/clientCA/keystore.jks
12 server-store-password=testOnly

Listing 3.14 Collection and monitoring servers security configuration

As you can see, on the monitoring server side, there is only a client certificate configuration
that is used for authentication of the monitoring server as a client. At the collection server, there
is a corresponding part of configuration client-side authentification via a certificate. There is also
a server certificate authentification configuration that is also used for HTTPS communication.

Moreover, it is necessary to implement authorization and authentification to the security on
the side of the collection server.

To do it, you need to solve authorization and authentication for the collection server.
The authorization is pretty simple to implement. You just need to add PreAuthorize anno-

tation before each endpoint that needs to be authorized.

1 @RestController
2 @RequestMapping("/api/app")
3 @PreAuthorize("hasAuthority('ROLE_USER')")
4 class AppController(@Autowired val appService: AppService){
5 ...
6 }

Listing 3.15 Collection server authorization

For now, there is only the user with role ROLE_USER can access the /api/app endpoint. Next,
we will focus on the authentication of this user.

To implement the authentification via client certificates in Spring Security, we must override
the SecurityFilterChain bean. Below you can see an example of implementing authentication
using a client certificate:

Security 55

1 @Configuration
2 @Profile("security")
3 @EnableGlobalMethodSecurity(
4 prePostEnabled = true, securedEnabled = true, jsr250Enabled = true
5)
6 class SecurityConfiguration() {
7

8 @Bean
9 @Throws(java.lang.Exception::class)

10 fun filterChain(http: HttpSecurity): SecurityFilterChain? {
11 http.authorizeRequests().anyRequest().authenticated()
12 .and().x509().subjectPrincipalRegex("CN=(.*?)(?:,|$)")
13 .userDetailsService(userDetailsService())
14 http.cors().and().csrf().disable();
15 return http.build()
16 }
17

18 @Bean
19 fun userDetailsService(): UserDetailsService? {
20 return UserDetailsService { username ->
21 if (username == "Alfa") {
22 return@UserDetailsService User(
23 username, "",
24 AuthorityUtils
25 .commaSeparatedStringToAuthorityList("ROLE_USER")
26)
27 }
28 throw UsernameNotFoundException("User not found!")
29 }
30 }
31 }

Listing 3.16 Collection server security configuration

This certificate authentication example is for demonstration purposes only. For actual pro-
duction use, the UserDetailsService should look slightly different and be based on the actual
certificate settings.

However, it is also a correct authentication certificate, signed by the root certificate, but some
certificate details are missing. For this authentification example, the valid certificate should have
a username equal to Alfa.

In other words, the client authenticated by the client certificate, signed by the root certificate,
and that will have username equals Alfa will be authorized as ROLE_USER.

In this section, we got acquainted with how collected data are protected. Next, we will focus
on the metrics security.

3.4.2 Metrics security
This section will examine how secure communication between the Telegraf and InfluxDB servers
has been implemented.

Unfortunately for us, InfluxDB did not support authentification using client certificates, and
the highest security option that InfluxDB can offer is JSON Web Token usage. For the certificate

56 Implementation

on the server side, this option is, of course, supportable, which allows us to create a secure HTTPS
connection.

A secure communication setting requires configuration on both sides of the communication.
On the Telegraf side, the configuration is simple. You must add the correct credentials, such

as database, username, and password. It should correspond with the InfluxDB environment
variables. You should not also forget to switch the http:// to https:// in the URL’s definition.
You can see the required parameters in the figure below:

1 urls = ["$INFLUX_URL"]
2 database = "influx"
3 ...
4 username = "test"
5 password = "test"

Listing 3.17 The Telegraf side security configuration

On the InfluxDB side, you must set up many parameters to make security work.
For the authentication, you need to enable it and configure some related details, such as the

ping-auth-enabled. Then, if you need to use JWT tokens for your authentication, you must
add the shared-secret.

You must enable and add the server certificate path to configure communication via HTTPS.
You can see the required parameters in the figure below:

1 [http]
2 ...
3 auth-enabled = true # enable auth
4 log-enabled = true
5 write-tracing = false
6 pprof-enabled = true
7 pprof-auth-enabled = true
8 debug-pprof-enabled = false
9 ping-auth-enabled = true

10 https-enabled = true # HTTPS enable
11 https-certificate = "./influxdb.pem" # server-side certificate
12 shared-secret = "my super secret pass phrase" # JWT option

Listing 3.18 The InfluxDB side security configuration

Now that our data is collected on monitoring servers and securely transferred to the collection
server let us talk about the use of this data.

3.5 Visualization

In this chapter, we will get acquainted with the visualization of metrics and data that we have
created using Grafana. We will talk about the structure of visualizations in Grafana, how panels
are created, and also summarize what was visualized in this work.

Visualization 57

3.5.1 Dashboards
The largest visualization unit in Grafana is the dashboard. The dashboard consists of panels,
which can be charts, bar charts, indicators, and others. As an example, we provide the dashboard,
which was designed to monitor the Docker containers for each specific hospital, so it contains
metrics such as the number of running containers, container usage of CPU, memory, and many
others. You can get acquainted with this dashboard in Appendix A.

Also, for the dashboard, variables can be defined. Those variables become global for the
panels created in the dashboard. In our particular case, this is a hospital variable that filters
information for each hospital.

We will not describe all dashboards in this way. Instead, we will provide a summary table to
have an idea of the number of metrics that we are monitoring. The summary table is below:

Dashboard title Panel title

Collection server monitoring Etl jobs recieved number
Application exceptions recieved number

Holt-Winters monitoring Holt winters for cpu usage
Holt winters for memory availible

Hospital docker monitoring

Conteiners statuses
Containers Block I/O
Memory usage
Container network tx
CPU Usage

Host metrics monitoring

Disk usage in %
Disk I/O read
Disk I/O write
CPU Usage
Network bytes sents
Network bytes recieved
Memory avalible

Table 3.1 Visualization sumary table

Thanks to this table, you can see that, for the most part, the visualization covers all the basic
metrics. Let us take a look at how the panels are created. To reduce the size of this chapter,
we will only provide queries as examples. The full UI version of these queries will be added as
Appendix B.

3.5.2 Panels
In this section, we will take a look at how panels are created. The most typical example, in this
case, is the visualization of a specific metric that is stored in InfluxDB. Let’s break down the
visualization of CPU usage for each docker container:

1 SELECT mean("usage_percent")
2 FROM "docker_container_cpu"
3 WHERE ("hospital" =˜ /ˆ$hospital$/) AND $timeFilter
4 GROUP BY time($__interval), "container_name" fill(null)

Listing 3.19 Grafana’s panel creation InfluxQL example

58 Implementation

InfluxQL is SQL-like. Its syntax is not so difficult to understand due to the similarity of
constructions. Also, some constructions arise thanks to the Grafana, so that we will see them in
classical SQL queries.

Typical for Grafana is the use of variables. Anything that starts with a $ sign is a variable.
For example, $timeFilter is the variable that is replaced with the currently selected panel time
range. A rather complicated construction is used for global variables. For example, using the
hospital variable shown earlier in the expression looks like this: /ˆ$hospital$/.

This query returns for docker_container_cpu metric the percent CPU usage. It is filtred
by the hospital and visualized for each Docker container.

The InfluxQL query looks very succinctly, since we are talking about the measurement. The
peculiarity of the measurement is that all the necessary measurement data is already tied to the
measurement time. For example, for each measurement, the hospital tag by which we filter is
repeated. It does not save much memory, but the search for the information necessary for the
question does not occur.

Now, let us look at an example of visualizing data received from a relational database. In
this example, we will analyze the visualization of data about the ETL jobs that we receive from
the monitoring server. To realize it, we create the query that looks next:

1 SELECT
2 $__timeGroupAlias(created_at,5m),
3 count(etl_job.id) AS "Etl jobs recieved for ${hospital}"
4 FROM etl_job
5 LEFT JOIN hospital ON etl_job.hospital_id = hospital.id
6 WHERE hospital.name = '${hospital}' AND $__timeFilter(created_at)
7 GROUP BY 1
8 ORDER BY 1

Listing 3.20 Grafana’s panel creation SQL example

An important clarification is that for data visualization, an important condition is the binding
of records to time. In the case of a time series database, each measurement is always tied to a
time. However, in the case of a relational database, we need to understand what time attribute
to use for visualization. In our case, the time of record creation is used.

This query returns the number of received job records for a particular hospital. Then this
result is divided using a $__timeGroupAlias into intervals of 5 minutes and lined up in a his-
togram. Thus, the number is calculated for each of the histogram intervals.

In order not to confuse the reader, it should be noted that Grafana’s syntax varies depending
on the query language. For example, the global variable in the case of SQL has the following
syntax '${hospital}'. However, the context in which we use this variable does not change, so
we hope that this fact will not cause difficulties.

For one panel, you can also create several questions. Let’s look at them in the example of
predicting values using the Holt-Winters method. In this case, two charts are placed on one
visualization panel, a metric chart, and a value prediction chart. I bring to your attention a
chart of RAM prediction based on the Holt-Winters method:

Failure prediction 59

1 # Holt-Winters prediction
2 SELECT holt_winters_with_fit(mean("available"),10,4)
3 FROM "mem"
4 WHERE $timeFilter AND "hospital" =˜ /ˆ$hospital$/
5 GROUP BY time($__interval), "hospital" fill(null)
6

7 # Memory available metric
8 SELECT mean("available")
9 FROM "mem"

10 WHERE $timeFilter AND "hospital" =˜ /ˆ$hospital$/
11 GROUP BY time($__interval), "hospital" fill(null)

Listing 3.21 Grafana’s panel creation multiquery example

This example is similar to the one we saw at the beginning of the section, but here, in addition
to the metric itself, for its prediction Holt-Winters method is used. We also want to focus your
attention to the fact that InfluxDB natively supports prediction using the Holt-Winters method
that we will be used to create thresholds in the next section.

3.6 Failure prediction
In this chapter, we will get acquainted with the failure prediction of metrics and data that we
have realized using Grafana. In this section, we will analyze the failure prediction we have
implemented and consider the prediction methods, that we used in this work. We used the static
thresholds method and the Holt-Winters method for failure prediction.

Failure prediction in the Grafana is based on alerts firing. One of the important settings for
the alert is when it will fire. The firing depends on the condition. If the condition is true, then
Grafana will notify the user.

3.6.1 Thresholds method
In this section, we will talk about the implementation of the threshold method for Grafana. We
will also look at an example of how the threshold is configured for Grafana’s alerts.

Let us provide an example of alert settings based on disk space data. Below you can see two
expressions, depending on which alert is firing:

Figure 3.1 Thresholds method example

60 Implementation

As you can see, the first expression is the InfluxDB query, similar to what we saw in the
section before. This query gets the last disk space value. In our case, the query returns a single
value, and we can use it in simple conditions. That is the reason why the second expression is
the classic math condition. In this expression, we just get the result of query A and compare it
with the constant. For now, if disk space is used more than 80% we will get the notification.

3.6.2 Holt-Winters seasonal method
So there are some cases where you can not compare your metric with the constant. For example,
to detect some anomaly, you need to compare the measurement with some other value. That
is the reason why we will use the Holt-Winters seasonal method. Let us provide an example of
alert settings that detects network anomaly. Below you can see two expressions, depending on
which alert is firing:

Figure 3.2 Holt-Winters seasonal method example

Let us explain how these expressions work together. First of all, the monitored metric is the
number of received bytes. This metric is cumulative. To work with the single value, we will take
the measurement cumulation. That is the reason why we call the difference() function. Also,
we create a similar expression for Holt-Winters prediction.

For now, A and B expressions get sets of measurements. To get the single value, we need
to reduce both sets and apply the reduce function. As you can see, C and D expressions return
only the last values of sets that we have before.

Finally, we can create a simple condition that returns true or false. In our case, the condition
compares the real value with the expected value. And if this value is very different from the
expected one, we will receive a notification that the anomaly has been detected.

Of course, more complex methods, such as Holt-Winters, need to be tested on real data. The
constants need to be obtained after some experiments.

Implementation summary 61

We have no access to the real data in this work, and the main goal of this method is to
demonstrate how it should work for real cases, with little modification of constants.

3.7 Implementation summary
In this section, the implementation will be summarized. First of all, we create the work solution
that can be used in production after some administration details. For example, generate real
production certificates.

This solution realizes all requirements that we define in the requirements analysis. In the
future, some sections, such as visualization and error prediction, may be added as needed. The
work has been implemented in the volume required by the Alpha organization. In the next
chapter, we provide information about testing the logic we have implemented.

62 Implementation

Chapter 4

Testing

In this chapter, we will describe how the final solution was tested. We will describe in detail what
kind of test we have done and what components were tested. Also, we will provide information
about the test coverage.

4.1 Integration tests
In this section, we will focus on integration tests. Let us describe in detail what components we
tested and what techniques we used when writing integration tests.

As you know, integration tests are defined as testing in which program modules are logically
integrated and tested as a group. This testing level aims to identify defects in the interaction
between software modules.

In our case, integration tests were created for two components that we implemented of our
solution: collection and monitoring servers. Let us look at the features of their testing.

4.1.1 Monitoring server integration tests
This section will examine the integration tests used to test the monitoring server. On the
monitoring server side, much essential logic deserves detailed testing. For this, integration tests
of two types were carried out:

Synchronization tests

Batch tests

Let us look at the characteristics of each type.

Syncronization tests
The synchronization tests’ purpose was to determine if the collection server’s sync process was
working correctly. For this, the Mocking technique was applied, and a mock object was created
that simulate the behavior of the collection server, saving data and behavior in various modes of
operation: normal, turned off, and returning errors only. You can see the code example of the
collection server mock below:

63

64 Testing

1 class DummyCommunicationBusiness : ICommunicationBusiness {
2

3 var db = mutableListOf<Synchronizable>()
4 var mode = DummyCommunicationBusinessMode.NORMAL
5

6 override fun pushBatch(batch: List<Synchronizable>): State {
7 applyMods()
8 db.addAll(batch)
9 if(db.isEmpty()){

10 return State(stateName = StateName.NOT_INIT)
11 }
12 return State(db.sortedWith(compareBy{it.createdAt}).last().monitoringId)
13 }
14 override fun pullState(): State {
15 applyMods()
16 if (db.isEmpty()){
17 return State(stateName = StateName.START)
18 }
19 return State(db.sortedWith(compareBy{it.createdAt}).last().monitoringId)
20 }
21 fun applyMods(){
22 if (mode == DummyCommunicationBusinessMode.BAD){
23 throw SessionInterruptedException()
24 }
25 if (mode == DummyCommunicationBusinessMode.TURNED_OFF){
26 throw SessionInterruptedException()
27 }
28 }
29 }

Listing 4.1 The mock of collection server

As you can see from the example code, the mock object provides the most similar behavior
compared to the real collection server. This mock object allows us to test quite complex cases
in the synchronization process between monitoring and collection services.

Let us provide an example of synchronization testing using this mock service in the follow-
ing figure:

1 @Test
2 @DirtiesContext(classMode = DirtiesContext.ClassMode.BEFORE_EACH_TEST_METHOD)
3 fun syncOneTest() {
4 assert(dummyCommunicationBusiness.db.isEmpty())
5 assert(appSyncBusiness.isStateNotInit())
6 appExceptionRepository.save(AppException())
7 syncTasks.syncTask()
8 assert(!appSyncBusiness.isStateNotInit())
9 assert(dummyCommunicationBusiness.db.count() == 1)

10 }

Listing 4.2 Basic integration test for synchronization process

Integration tests 65

Let us describe the code example. At the beginning of this test, the database of
dummyCommunicationBusiness, which simulates the collection server, is empty. Then, we save
the AppException instance in the monitoring database and execute the synchronization task.
As you can see, the AppException record was added to the collection database.

The dummyCommunicationBusiness also has mods that allow us to simulate the collection
server problems. Such as failures and communication errors. In the following code example, you
can see the synchronization testing with modes applying:

1 ...
2 assert(!appSyncBusiness.isStateNotInit())
3 assert(dummyCommunicationBusiness.db.count() == 1)
4

5 // now bad response only
6 dummyCommunicationBusiness.mode = DummyCommunicationBusinessMode.BAD
7 appExceptionRepository.save(AppException())
8 syncTasks.syncTask()
9 // communication refresh

10 assert(appSyncBusiness.isStateNotInit())
11 // no sync happened
12 assert(dummyCommunicationBusiness.db.count() == 1)
13 syncTasks.syncTask()
14 // communication refresh again
15 assert(appSyncBusiness.isStateNotInit())
16 assert(dummyCommunicationBusiness.db.count() == 1)
17

18 // normal communication again
19 dummyCommunicationBusiness.mode = DummyCommunicationBusinessMode.NORMAL
20 // it works again
21 syncTasks.syncTask()
22 assert(!appSyncBusiness.isStateNotInit())
23 assert(dummyCommunicationBusiness.db.count() == 2)
24 ...

Listing 4.3 The integration test for synchronization process failure

At the beginning of this test fragment, the synchronization worked normally. Then, after
mode switching, synchronization was unsuccessful, and the synchronization refresh happened,
and the synchronization state became NOT_INIT. After that, we switched the mode back, and
the record was synchronized correctly.

We have achieved sufficiently detailed testing of the synchronization-related logic and can
guarantee that the synchronization occurs as we expected.

Batch tests
The purpose of the batch tests was to determine if the batches were generated correctly for each
kind of data. These tests are not particularly complex but also essential and required.

For example, it tests the batch items order, which you can see in the next code example:

66 Testing

1 @Test
2 @DirtiesContext(classMode = DirtiesContext.ClassMode.BEFORE_EACH_TEST_METHOD)
3 fun orderInBatchStartTest() {
4 appSyncBusiness.updateState(State(stateName = StateName.START))
5 val a1 = AppException(createdAt = Instant.now())
6 val a2 = AppException(createdAt = Instant.now().plusSeconds(10))
7 // save in inverse order
8 appExceptionRepository.save(a2)
9 appExceptionRepository.save(a1)

10 // is last element correct
11 assert(appSyncBusiness.createBatch().last().monitoringId == a2.monitoringId)
12 }

Listing 4.4 Basic integration test for batch creation process

As you can see, this test example creates items with different creation date and save them in
inverse order, but in batch, the last one is the record with the newest creation date.

For now, let us provide information about the tests carried out on the side of the collection
server.

4.1.2 Collection server integration tests
This section will look at the integration tests used to test the collection server.

It is important to note that the collection server does not contain complex logic that deserves
testing. However, it is necessary for us to test the interaction of all application modules.

Therefore, to test the collection server, we use MockMvc — a special Spring class that allows
you to simulate the receiving of a specific request by the controller. It gives us the ability to test
individual application endpoints.

In the following code example, you can see the collection server testing with MockMvc applying:

1 fun pushBatch(){
2 hospitalRepository.save(Hospital(name = hospitalName))
3 val batchFirst = AppException()
4 val batchLast = AppException()
5 val batch = listOf(batchFirst,batchLast)
6 val result = mockMvc.perform(post("$url/batch")
7 .accept(MediaType.APPLICATION_JSON)
8 .contentType(MediaType.APPLICATION_JSON)
9 .content(mapper.writeValueAsString(SyncRequest(batch, hospitalName))))

10 .andExpect(status().isOk)
11 .andExpect(content().contentType(MediaType.APPLICATION_JSON))
12 .andReturn()
13 assert(result.response.contentAsString == mapper.writeValueAsString(
14 State(batchLast.monitoringId, StateName.IN_PROCESS)))
15 assert(batchLast.monitoringId ==
16 appRepository.getLastMonitoringId(hospitalName))
17 assert(appRepository.findAll().count() == batch.count())
18 }

Listing 4.5 The collection solution testing using the MockMvc

Tests coverage 67

In this code example, the mockMvc simulates the batch receiving from the monitoring server.
Then, we compare the batch we created at the test and sent to the collection server endpoint,
using mockMvc with the batch we stored.

As you can see, this kind of test covers all major parts of the application architecture, such as
persistence, domain logic, and the presentation layer. Thus, the integration tests with mockMvc
tests the interaction of all components in the application with a relatively small number of tests.

4.2 Tests coverage
One of the important indicators of testing is test coverage. It allows us to identify the code that
did not cover by tests yet. In this section, we will turn your attention to the test coverage of two
applications that we have implemented in this work, namely the collection and the monitoring
servers.

There is the collection server test coverage in the figure below:

Figure 4.1 The collection server tests coverage

As you can see, most of the code is covered by tests. The only exception is the configuration,
which has some uncovered cases in which it is unnecessary to test. Thus, we can confidently say
that we have tested the collection server code in detail.

Let us also pay attention to the monitoring server test coverage. In the following picture, you
can see the monitoring server:

68 Testing

Figure 4.2 The monitoring server tests coverage

In the case of the monitoring server, test coverage is somewhat less. It is because the moni-
toring server at the time of this writing has not yet been integrated with the hospital application.

Because of this, the controller and services have been tested somewhat less than the rest of
the application. While we currently cannot complete the integration, we expect tests will be
written when the integration is complete.

Just like in the case of the collection server, some configuration that did not require testing
was not covered by the tests.

Otherwise, we can confidently say that all the logic used in our solution has been thoroughly
tested and works as expected.

4.3 Testing summary
In this section, we got acquainted with the use of integration tests in practice. We also got
acquainted with some auxiliary techniques used in testing, such as mock creating.

Integration tests are very important for testing an application, and thanks to them, you can
test the application logic to the fullest.

We could also measure, using test coverage, how detailed our code was tested. Although
test coverage is a very important indicator, it does not mean that the application has been fully
tested so that these tests may be expanded in the future.

Testing summary 69

We can declare that the main logic of the application has been tested in detail, and all tested
processes work as intended. Now that our work is ready let’s summarize it and suggest possible
future improvements.

70 Testing

Chapter 5

Conclusion

The aim was to design and implement a solution that allows observing hospital servers’ work from
the outside. To do this, we studied an existing solution and got acquainted with the requirements
for a future solution. We also explore the environment in which the future solution was supposed
to work.

Having received an idea about what the future solution must be, we studied the information
necessary to create it. We learned domains related to metrics collection, security, error prediction,
and others to design a solution. In the end, we designed and implemented the final solution and
then carried out the necessary testing.

We can claim that we have achieved the originally intended goal based on the work carried
out. We created a solution that meets all the requirements and can be used for its intended
purposes.

We can confidently say that the work is finished. Now, we will state some improvements that
should be added in the future, if the Alpha company considers it necessary for their product.

The first possible improvement that will bring a lot to this solution is the replication of the
collection solution. In our version, the collection solution can become a bottleneck, and if it falls,
monitoring becomes impossible.

The next improvement is the monitoring metrics on the side of the collection solution. It
would also be a very important addition to the infrastructure. Thanks to this, we will also be
able to predict failures on the side of the collection solution and reduce the amount of time in
which the collection solution will be unavailable.

It should also be mentioned that it is worth adjusting the alert rules over time. At this stage,
we still need long-term statistics in order to decide how effective the rules we have created are.
However, over time it will become clear what adjustments should be realized to make these rules
more relevant.

We want to note that we do not use all the collected metrics. Therefore, in the future, it is
worth considering supplementing alert rules and dashboards with metrics that have not yet been
used.

It is not a whole list of improvements that can be implemented in this work. I hope, that
some of them, I will be able to implement after my master’s study ends.

71

72 Conclusion

Appendix A

Grafana dashboard examples

73

74 Grafana dashboard examples

Figure A.1 The hospital Docker monitoring dashboard

Appendix B

Grafana panel examples

75

76 Grafana panel examples

Figure B.1 CPU usage panel creation example

77

Figure B.2 ETL jobs received panel creation example

78 Grafana panel examples

Figure B.3 Holt-Winters based panel creation example

Bibliography

1. INC., Docker. docker stats — Docker Documentation [online]. Available also from: https:
//docs.docker.com/engine/reference/commandline/stats/.

2. INC., Docker. Runtime metrics — Docker Documentation [online]. Available also from:
https://docs.docker.com/config/containers/runmetrics/.

3. INC., Docker. Engine API v1.21 — Docker Documentation [online]. Available also from:
https://docs.docker.com/engine/api/v1.21/.

4. PROMETHEUS AUTHORS. Querying basics — Prometheus [online]. Available also from:
https://prometheus.io/docs/prometheus/latest/querying/basics/.

5. INC., Docker. Docker overview — Docker Documentation [online]. Available also from:
https://docs.docker.com/get-started/overview/.

6. MENAGE, Paul. CGROUPS [online]. Available also from: https://www.kernel.org/
doc/Documentation/cgroup-v1/cgroups.txt.

7. YOUNG, K. How to Collect Docker Metrics — Datadog [online]. Available also from: https:
//www.datadoghq.com/blog/how-to-collect-docker-metrics/.

8. YOUNG, K. How to Collect Docker Metrics — Datadog [online]. Available also from: https:
//www.datadoghq.com/blog/how-to-collect-docker-metrics/.

9. DEVELOPMENT COMMUNITY, The kernel. The /proc Filesystem — The Linux Kernel
documentation [online]. Available also from: https://www.kernel.org/doc/html/latest/
filesystems/proc.html.

10. LLC, Google. google/cadvisor: Analyzes resource usage and performance characteristics of
running containers [online]. Available also from: https://github.com/google/cadvisor.

11. AUTHORS, Prometheus. Overview — Prometheus[online]. Available also from: https :
//prometheus.io/docs/introduction/overview/.

12. PROMETHEUS AUTHORS. Exporters and integrations — Prometheus[online]. Available
also from: https://prometheus.io/docs/instrumenting/exporters/.

13. INC., Docker. dockerd — Docker Documentation [online]. Available also from: https://
docs.docker.com/engine/reference/commandline/dockerd/#daemon-metrics.

14. PROMETHEUS AUTHORS. Storage — Prometheus [online]. Available also from: https:
//prometheus.io/docs/prometheus/latest/storage/.

15. PROMETHEUS AUTHORS. Querying basics — Prometheus [online]. Available also from:
https://prometheus.io/docs/prometheus/latest/querying/basics/.

16. INC., InfluxData. InfluxDB 1.X: Open Source Time Series Platform — InfluxData [online].
Available also from: https://www.influxdata.com/time-series-platform/.

79

https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/engine/api/v1.21/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://docs.docker.com/get-started/overview/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.datadoghq.com/blog/how-to-collect-docker-metrics/
https://www.datadoghq.com/blog/how-to-collect-docker-metrics/
https://www.datadoghq.com/blog/how-to-collect-docker-metrics/
https://www.datadoghq.com/blog/how-to-collect-docker-metrics/
https://www.kernel.org/doc/html/latest/filesystems/proc.html
https://www.kernel.org/doc/html/latest/filesystems/proc.html
https://github.com/google/cadvisor
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/instrumenting/exporters/
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-metrics
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-metrics
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://www.influxdata.com/time-series-platform/

80 Bibliography

17. CLOUDBEES, Inc. Infrastructure Monitoring with TICK Stack — Cloudbees Blog [online].
Available also from: https://www.cloudbees.com/blog/infrastructure-monitoring-
with-tick-stack.

18. INC., InfluxData. InfluxDB 1.X: Open Source Time Series Platform — InfluxData [online].
Available also from: https://www.influxdata.com/time-series-platform/.

19. INC., InfluxData. The plugin-driven server agent for collecting and reporting metrics[online].
Available also from: https://github.com/influxdata/telegraf/tree/master/plugins/
outputs.

20. INC., InfluxData. Docker Input Plugin [online]. Available also from: https://github.com/
influxdata/telegraf/blob/master/plugins/inputs/docker/README.md.

21. INC., InfluxData. InfluxDB 1.X: Open Source Time Series Platform — InfluxData [online].
Available also from: https://www.influxdata.com/time-series-platform/.

22. INC., InfluxData. Chronograf: Complete Dashboard Solution for InfluxDB[online]. Available
also from: https://www.influxdata.com/time-series-platform/chronograf/.

23. INC., InfluxData. Kapacitor and Real-Time Stream Processing — InfluxDat [online]. Avail-
able also from: https://www.influxdata.com/time-series-platform/kapacitor/.

24. BORKO FURHT Edin Muharemagic, Daniel Socek. Multimedia Encryption and Water-
marking [online]. Available also from: https://link.springer.com/chapter/10.1007/0-
387-26090-0_3.

25. OKTA. Authentication vs. Authorization — Okta [online]. Available also from: https :
//www.okta.com/identity-101/authentication-vs-authorization/.

26. LIMITED, Neumetrix. HTTP Authentication — HttpWatch [online]. Available also from:
https://www.httpwatch.com/httpgallery/authentication/.

27. SEVCSIK-ZAJÁCZ, Andras. Authentication using HTTPS client certificates [online]. Avail-
able also from: https://medium.com/@sevcsik/authentication-using-https-client-
certificates-3c9d270e8326.

28. D. HARDT, Ed. RFC 6749: The OAuth 2.0 Authorization Framework [online]. Available
also from: https://www.rfc-editor.org/rfc/rfc6749.

29. SEVCSIK-ZAJÁCZ, Andras. Authentication using HTTPS client certificates [online]. Avail-
able also from: https://medium.com/@sevcsik/authentication-using-https-client-
certificates-3c9d270e8326.

30. SEVCSIK-ZAJÁCZ, Andras. Authentication using HTTPS client certificates [online]. Avail-
able also from: https://cogitogroup.net/blog/2019/11/29/pki-the-pros-and-cons/.

31. INC, Stack Exchange. Information Security[online]. Available also from: https://security.
stackexchange.com/questions/198837/why-is-client-certificate-authentication-
not-more-common?rq=1.

32. GRANT KELLY, Bruce McKenzie. Security, privacy, and confidentiality issues on the In-
ternet [online]. Available also from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC1761937/.

33. FARAHANI, Shahin. Message Integrity Code [online]. Available also from: https://www.
sciencedirect.com/topics/computer-science/message-integrity-code.

34. LABS, Grafana. Message Integrity Code - an overview [online]. Available also from: https:
//grafana.com/docs/grafana/latest/datasources/.

35. PROMETHEUS AUTHORS. Grafana — Prometheus[online]. Available also from: https:
//prometheus.io/docs/visualization/grafana/.

https://www.cloudbees.com/blog/infrastructure-monitoring-with-tick-stack
https://www.cloudbees.com/blog/infrastructure-monitoring-with-tick-stack
https://www.influxdata.com/time-series-platform/
https://github.com/influxdata/telegraf/tree/master/plugins/outputs
https://github.com/influxdata/telegraf/tree/master/plugins/outputs
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/docker/README.md
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/docker/README.md
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/chronograf/
https://www.influxdata.com/time-series-platform/kapacitor/
https://link.springer.com/chapter/10.1007/0-387-26090-0_3
https://link.springer.com/chapter/10.1007/0-387-26090-0_3
https://www.okta.com/identity-101/authentication-vs-authorization/
https://www.okta.com/identity-101/authentication-vs-authorization/
https://www.httpwatch.com/httpgallery/authentication/
https://medium.com/@sevcsik/authentication-using-https-client-certificates-3c9d270e8326
https://medium.com/@sevcsik/authentication-using-https-client-certificates-3c9d270e8326
https://www.rfc-editor.org/rfc/rfc6749
https://medium.com/@sevcsik/authentication-using-https-client-certificates-3c9d270e8326
https://medium.com/@sevcsik/authentication-using-https-client-certificates-3c9d270e8326
https://cogitogroup.net/blog/2019/11/29/pki-the-pros-and-cons/
https://security.stackexchange.com/questions/198837/why-is-client-certificate-authentication-not-more-common?rq=1
https://security.stackexchange.com/questions/198837/why-is-client-certificate-authentication-not-more-common?rq=1
https://security.stackexchange.com/questions/198837/why-is-client-certificate-authentication-not-more-common?rq=1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1761937/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1761937/
https://www.sciencedirect.com/topics/computer-science/message-integrity-code
https://www.sciencedirect.com/topics/computer-science/message-integrity-code
https://grafana.com/docs/grafana/latest/datasources/
https://grafana.com/docs/grafana/latest/datasources/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/grafana/

Bibliography 81

36. RAMACHANDRAN, Mahesh. Anatomy Of An IT Outage: Prediction and Detection [on-
line]. Available also from: https://blog.opsramp.com/it-outage-prediction-and-
detection.

37. DATE, Sachin. Time Series Analysis, Regression and Forecasting[online]. Available also
from: https://timeseriesreasoning.com/contents/holt- winters- exponential-
smoothing/.

38. INC., InfluxData. Functions — InfluxData Documentation Archive [online]. Available also
from: https://archive.docs.influxdata.com/influxdb/v1.0/query_language/
functions/#holt-winters.

39. HYNDMAN, Rob J; ATHANASOPOULOS, George. Non-seasonal ARIMA models — Fore-
casting: Principles and Practice (2nd ed)[online]. Available also from: https://otexts.
com/fpp2/non-seasonal-arima.html.

40. NARIZHNYKH, Dmitry. What is Database Synchronization?[online]. Available also from:
https://dbconvert.com/blog/what-is-database-synchronization/.

41. PYPL PopularitY of Programming Language [online]. Available also from: https://pypl.
github.io/PYPL.html.

42. BANSAL, Anshul. Java vs. Kotlin — Baeldung on Kotlin [online]. Available also from:
https://www.baeldung.com/kotlin/java- vs- kotlin#:˜:text=Java%20is%20a%
20strictly%20typed,type%20of%20the%20assignment%20value.

43. HARTMAN, James. Kotlin vs Java – Difference Between Them [online]. Available also
from: https://www.guru99.com/kotlin-vs-java-difference.html#9.

44. INC., Docker. Collect Docker metrics with Prometheus [online]. Available also from: https:
//docs.docker.com/config/daemon/prometheus/.

45. PROMETHEUS AUTHORS. Monitoring Docker container metrics using cAdvisor — Prometheus
[online]. Available also from: https://prometheus.io/docs/guides/cadvisor/.

46. LABS, Grafana. Play with Grafana Mimir [online]. Available also from: https://grafana.
com/tutorials/play-with-grafana-mimir/?pg=oss-mimir&plcmt=hero-btn-1.

47. INC., Docker. Use Docker Compose — Docker Documentation [online]. Available also from:
https://docs.docker.com/get- started/08_using_compose/#:˜:text=Docker%
20Compose%20is%20a%20tool,or%20tear%20it%20all%20down..

48. LABS, Grafana. Alerting provisioning API [online]. Available also from: https://grafana.
com/docs/grafana/v9.0/developers/http_api/alerting_provisioning/.

https://blog.opsramp.com/it-outage-prediction-and-detection
https://blog.opsramp.com/it-outage-prediction-and-detection
https://timeseriesreasoning.com/contents/holt-winters-exponential-smoothing/
https://timeseriesreasoning.com/contents/holt-winters-exponential-smoothing/
https://archive.docs.influxdata.com/influxdb/v1.0/query_language/functions/#holt-winters
https://archive.docs.influxdata.com/influxdb/v1.0/query_language/functions/#holt-winters
https://otexts.com/fpp2/non-seasonal-arima.html
https://otexts.com/fpp2/non-seasonal-arima.html
https://dbconvert.com/blog/what-is-database-synchronization/
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://www.baeldung.com/kotlin/java-vs-kotlin#:~:text=Java%20is%20a%20strictly%20typed,type%20of%20the%20assignment%20value
https://www.baeldung.com/kotlin/java-vs-kotlin#:~:text=Java%20is%20a%20strictly%20typed,type%20of%20the%20assignment%20value
https://www.guru99.com/kotlin-vs-java-difference.html#9
https://docs.docker.com/config/daemon/prometheus/
https://docs.docker.com/config/daemon/prometheus/
https://prometheus.io/docs/guides/cadvisor/
https://grafana.com/tutorials/play-with-grafana-mimir/?pg=oss-mimir&plcmt=hero-btn-1
https://grafana.com/tutorials/play-with-grafana-mimir/?pg=oss-mimir&plcmt=hero-btn-1
https://docs.docker.com/get-started/08_using_compose/#:~:text=Docker%20Compose%20is%20a%20tool,or%20tear%20it%20all%20down.
https://docs.docker.com/get-started/08_using_compose/#:~:text=Docker%20Compose%20is%20a%20tool,or%20tear%20it%20all%20down.
https://grafana.com/docs/grafana/v9.0/developers/http_api/alerting_provisioning/
https://grafana.com/docs/grafana/v9.0/developers/http_api/alerting_provisioning/

82 Bibliography

Contents of enclosed media

readme.txt...the file with CD contents description
src .. the directory of source codes

impl.. implementation source codes
thesis...............................the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf.. the thesis text in PDF format

83

	Acknowledgments
	Declaration
	Abstrakt
	Acronyms
	Acknowledgments
	Analysis
	Analysis of existing system
	Basic terms
	Analysis of components
	Problems of existing solution

	Requirements analysis
	Actors
	Functional requirements
	Non-functional requirements
	Requirements analysis summary

	Docker monitoring
	Docker introdution
	Monitoring via stats command
	Monitoring via pseudo-files
	Monitoring via API
	Docker monitoring summary

	Bare metal monitoring
	Monitoring via commands
	Monitoring via pseudo-files
	Bare metal monitoring summary

	Monitoring systems
	cAdvisor
	Prometheus
	TICK stack
	Monitoring systems summary

	Communication security requirements
	Authentication
	Privacy and Integrity
	Security conclusion

	Data and Metrics visualization
	Grafana
	TICK stack components
	Prometheus
	Visualization summary

	System failure prediction
	Thresholds method
	Forecasting methods
	System failure prediction summary

	Data consistency
	Insert synchronization
	Update synchronization
	Delete synchronization
	Data consistency summary

	Technology Analysis
	Java & Kotlin comparison
	Maven & Gradle comparison

	Analysis summary

	Design
	Solution design
	Prometheus solution
	TICK stack solution
	Solutions comparation
	Solutions design summary

	Domain model
	Synchronization design
	Naive synchronization solution
	Remember state synchronization solution
	Synchronization design summary

	Design summary

	Implementation
	Monitoring solution infrastructure
	Introdution
	Monitoring server
	Telegraf instance
	Monitoring database

	Collection solution infrastructure
	Introdution
	Collection server
	Collection database
	InfluxDB instance
	Grafana instance
	Conclusion

	Synchronization
	Data synchronization
	Metrics synchronization

	Security
	Data security
	Metrics security

	Visualization
	Dashboards
	Panels

	Failure prediction
	Thresholds method
	Holt-Winters seasonal method

	Implementation summary

	Testing
	Integration tests
	Monitoring server integration tests
	Collection server integration tests

	Tests coverage
	Testing summary

	Conclusion
	Grafana dashboard examples
	Grafana panel examples
	Contents of enclosed media

