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Abstract

As is well-known, state-space models are widely used to model different observable processes
in various fields, from finance to biology. Based on the observed sequence, the main interest
is to deduce the sequence of hidden states that gave rise to them. The primary goal of this
thesis is to study the performance and robustness of various Bayesian algorithms used for online
state filtering under both well-specified and misspecified state-space models. This is due to
the fact that in practice, for various reasons, there is often a lack of knowledge of process
noise or measurements. This thesis, in particular, touches on the rather popular case where
the measurement model is misspecified. As part of this work, the emphasis is placed on an
introduction to the filters from the most popular family, the Kalman family, and consider them
from a Bayesian perspective, also not without the particle filter, which is regarded as more stable
in the context of application to misspecified models. Attention will also be paid, and experiments
will be conducted with so-called approximate Bayesian filters, which allow complete ignorance
of the noise distribution of measurements. The result of the thesis should be the coverage of the
theory of all of the above and the results of experiments, not excluding the definition of plans
for the future development of this topic.

Keywords State-space model, Kalman filtering, particle filter, Approximate Bayesian Com-
putation

Abstrakt

Jak je známo, stavové modely se široce použ́ıvaj́ı k modelováńı r̊uzných pozorovatelných proces̊u
v r̊uzných oblastech, od finanćı až po biologii. Na základě pozorované posloupnosti je hlavńım
zájmem odvodit posloupnost skrytých stav̊u, které je vyvolaly. Hlavńım ćılem této práce je
studovat výkonnost a robustnost r̊uzných Bayesovských algoritmů použ́ıvaných pro online fil-
traci stav̊u při dobře specifikovaných i chybně specifikovaných stavových modelech. Důvodem je
skutečnost, že v praxi z r̊uzných d̊uvod̊u často chyb́ı znalost šumu procesu nebo měřeńı. Tato
práce se dotýká zejména poměrně populárńıho př́ıpadu, kdy je model měřeńı chybně specifikován.
V rámci této práce je kladen d̊uraz na seznámeńı s filtry z nejpopulárněǰśı rodiny, Kalmanovy
rodiny, a uvažuje se o nich z Bayesovského hlediska, přičemž nechyb́ı ani částicový filtr, který je
v souvislosti s aplikaćı na chybně specifikované modely považován za stabilněǰśı. Pozornost bude
věnována také a budou provedeny experimenty s tzv. přibližnými Bayesovskými filtry, které
umožňuj́ı úplnou neznalost šumového rozděleńı měřeńı. Výsledkem práce by mělo být pokryt́ı
teorie všeho výše uvedeného a výsledky experiment̊u, nevyj́ımaje stanoveńı plán̊u pro daľśı rozvoj
tématu.
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Introduction

It is hard to deny that the world is, in one way or another, entirely made up of dynamic systems.
A dynamic system is always characterized by a state that changes or evolves over time. This
thesis examines the state-space modeling approach of such dynamic systems, or more precisely,
of time series. State space representation is quite popular and widely used in various fields, such
as economics, ecological modeling, engineering, etc.

This thesis considers the sequential inference of state-space models using the universal Bayesian
framework, which consists of finding the posterior distribution of the states based on the initial
belief, or more correctly put, the prior density and observed sequence, which acts as a correcting
factor. Of course, this includes a detailed review of the theoretical basis on which Bayesian
methods are built, and not without filters from the most popular family of filters, Kalman fil-
ters, which are direct analytical implementations of Bayesian principles. On the one hand, for
more convenience and simplicity within the limits of linear systems, the standard Kalman filter,
which is an efficient linear estimator, and under some conditions, even the best linear filter, will
be analyzed in detail. On the other hand, taking into account that in the real world, linear
systems almost do not exist because real systems always have some non-linearities, to overcome
the accompanying non-linear problems also on the agenda will be its extended version.

Unfortunately, the above methodology and filters are based on the fact that both models,
the process model and the model generating the measurements, are always well known, that is,
represented in the form of well-defined probability density functions. In practice, however, it can
often be found a situation where the model is poorly specified, or in general, the correct model
is not available. This can be caused by various reasons, both trivial lack of knowledge of the
domain and difficulties associated with numerical calculations. This thesis deals with the rather
common situation when the measurement model is misspecified, which may be the case if the
likelihood function of the state-space model is analytically intractable, for example.

At this point, attention will be redirected to a class of sequential Monte Carlo filters called
particle filters, which also, like Kalman filters, require full model specification, but, unlike them,
based on numerous studies in particle filtering associated with misspecification issues, they are
known to be quite robust even in such cases. Also, attention will not be ignored to the question of
the price they pay for this notorious stability, which will be directly related to the analysis of the
principle of their work. Under special consideration will also be their approximate extensions, the
so-called approximate Bayesian filters, which allow one to completely ignore the noise distribution
of measurements.

Among the main objectives of the work are the following points:

An in-depth study of the theory of all the above filters and methodologies.

Conduct experiments on both well-specified models and misspecified models to compare per-
formance and robustness of different filters.

1



2 Introduction

As for the organization of the thesis, it is as follows. The Chapter 1 will be an introduction
to the world of state-space modeling, which will begin with a historical introduction about the
reasons and motivations for its use. In addition, the assumed form of a state-space model will be
properly defined, followed by a transition to Bayesian filtering background and a discussion of the
methodology itself, followed by an explanation of how these can be applied to state-space models.
All this will be followed by a presentation of the concept of the Kalman filter from a Bayesian
perspective, as well as its extended version for non-linear cases, with a gradual transition to the
class of filters from the family of sequential Monte Carlo methods. Toward the end, the topic of
the particle filter and its approximate extensions are touched upon, which directly includes the
analysis of the ABC methodology.

After that, the practical part follows, namely that all the filters described above will take
part in the experiments. In Chapter 2, this goal will be directed to the study of the efficiency
of filters under the conditions of well-specified models. This chapter deals with several models,
there are both linear and non-linear models. The Chapter 3 will also focus on numerical studies,
but this time the experiments will be carried out on misspecified models.

And finally, Chapter 4 concludes the whole thesis and also sets possible directions for future
work.

Personal motivation
It would also be nice to add a few words about personal motivation. One of the main reasons was
that the author of this work had a fairly general idea, or rather a lot of gaps in knowledge about
the Kalman filter, etc. So it was quite an exciting challenge and an opportunity to go deeper,
to get acquainted with the concept of Bayesianism, and maybe even in the future, to somehow
connect work plans with it. At a minimum, the author does not regret the chosen topic and is
very pleased with the knowledge gained in this thesis.



Chapter 1

State-space models and their
estimation

”We may regard the present state of the universe as the effect of its past and the cause of its
future” – Marquis de Laplace

This chapter begins with a historical summary and basic understanding of key terms, both new
and simply expanding on those already mentioned in the introduction section. They must cover
all aspects of the work that follows, in particular, to facilitate the further construction of theory
in the following sections. In addition, the reader should become familiar with them for a better
understanding, and unproblematic tracing of the logical chains encountered in some parts of the
work. Later, the chapter expands and deepens into technical details that structurally complement
the overall work.

1.1 Historical development

We are surrounded by physical dynamic systems all around us. The main difference from static
systems is that the relationship between the inputs and outputs changes with time and depends
on past inputs and initial conditions. Also, the relationship is represented by a differential
equation, not an algebraic equation. The range of dynamic systems problems is extensive. We
meet with them in statistics, engineering, economics, ecology, and many others. It should be
said that the basic concept in a dynamical system is state x, which holds core information about
the system and, in most cases, changes over time. The state x(t1) at any future time, may
be determined exactly given knowledge of the initial state, x(t0) and the time history of the
inputs,u(t) between t0, and t1. In general, the state information is not available directly. Such
a state, we name hidden. Instead, we have some observable measurements y, taken at specific
times, that directly relate to the state. Various statistical methods and approaches can be
used to analyze such systems. The purpose is to obtain specific characteristics and descriptions
through data interpretation. Subsequently, a suitable model characterizing system state and
time evolution can be built based on received data. Such a model can be used both to simulate
data and to predict future states of the system.

The state space approach was firstly introduced by Kalman (1960) and Zadeh et al. (1963)
in the control engineering area. That was the beginning of the modern control theory, which is
based on the state representation of systems in the time domain. Such representation is what
makes it different from the classical control theory. It is worth noting that classical control

3



4 State-space models and their estimation

mainly applies to LTI1 SISO2 CT3 systems using the Laplace transform to model such systems
as transfer functions. In contrast, the modern one extends SISO to MIMO4, both CT and DT5.

The state space modeling approach is a matrix method that rearranges large-order differ-
ential equations as a series of first-order differential equations. The state-space methodology is
capable of modeling systems with a large number of degrees of freedom, as well as systems with
nonlinearities. Moreover, it is worth saying that the state space model can cover a widespread
class of dynamic models.

In essence, the first SSMs, often called NDLMs6, were a case where the state and the observa-
tion time series were modeled with linear equations and normal distributions. Two fundamental
papers on NDLMs, the previously mentioned Kalman (1960) and Zadeh et al. (1963), provided
an algorithmic method, well-known to us Kalman filter, which makes for inferencing the hidden
states gave imperfect observations and known parameters. These works played a crucial role
in aerospace technology in the 1960s. Related developments helped to adjust the trajectory of
the Apollo mission to the Moon to account for inaccurate observations of the spacecraft’s po-
sition over time (Grewal et al. (2010)). It can be said, that corresponding model arose in the
space tracking conditions, where the state equation defines the motion equations for the state
of a spacecraft with location xt and the data yt carry in them such information as velocity and
azimuth that can be observed from a tracking device.

It should be clear that NDLMs are a limited class of SSMs and their applicability to physical
dynamic systems, which have nonlinear and non-Gaussian structures, is limited. In addition,
unlike the planned mission to the Moon, we rarely have a priori knowledge of the required
parameters of physical systems. Incidentally, developments in the time series literature used the
Kalman filter to estimate a likelihood function for unknown parameters, which in turn allowed
maximum likelihood parameter estimates to be computed in addition to state estimates (Harvey
(1990)).

The situation changed in 1990s, with the popularization of Markov chain Monte Carlo
(MCMC) methods (Gilks et al. (1995)), also including the freely available BUGS7 software(Lunn
et al. (2009)) and the advent of high-speed desktops. The variety of possible SSMs expanded
considerably, including non-Gaussian and nonlinear formulations.

Summarizing what has been written above, it can be said that state-space models, or as they
are often called hidden Markov models (HMM), are characterized by two primary conditions.
The first one is that there is a hidden or latent process xt called the state process. The state
process is assumed to be a Markov process. This simply means that the future {xs; s > t}, and
past {xs; s < t}, are independent conditional on the present, xt . The second prerequisite is that
the observations yt are independent given the states xt. It means that states generate dependence
on the observations. The process can be specified by one or more latent variables, called state
variables, that contain all knowledge to obtain information about the current state. So, in other
words, a need to control or predict the future of a system should be sufficient knowledge of the
current system state, which can, for example, be obtained with a Kalman filter and its future
input. If the state does not contain enough information, the latent number of state variables
must be expanded until it does. In the sense indicated above, the state of the state space model
provides a complete latent description of the system at any point in time (Willems et al. (1997)).
This could explain the considerable popularity of the state-space model and its usefulness in
forecasting and control problems.

1Linear time-invariant
2Single Input Single Output
3Continuous-time
4Multi Input Mult Output
5Discrete-time
6Normal dynamic linear model
7Bayesian inference Using Gibbs Sampling



State-space models 5

1.2 State-space models
As mentioned earlier, we have a Markov process at the core of the state-space model. Generally,
the model is described by two parallel linked processes that evolve over time and are repre-
sented as conditional distributions. It assumes latent states {xt}∞

t=0 ⊆ Rnx following a Markov
chain, where t = 0, ..., T is the index most commonly representing time in time-series data, but
other interpretations are also allowed. The state xt represents the physical state of an object
under study. It can be expressed as the position or coordinates of the flying airplane, direction
and acceleration of the vehicle, animal movement trajectories, and others. Also, it is worth
understanding that the state may be an abstract representation without any apparent physical
interpretation.

It is worth emphasizing that in this context the Markov property is fulfilled, that is: current
state of the process xt is fully enough to predict the future state of the process xt+1 and the
prediction should be as good as making prediction by knowing their history ..., xt−1, i.e.,

p(xt | ..., xt−2, xt−1) = p(xt | xt−1) (1.1)

Such a condition, when each state is conditionally independent of its non-descendants, given
its parents, is called Markov assumption and that is the key for efficiency when learning state-
space models.

Also, the state-space model assumes a sequence of observed variables {yt}∞
t=1 ⊆ Rny . Through

out this thesis, for a fixed time T ≥ 1, we are going to use the following short-hands: x0:T =
{xt}T

t=0 and y1:T = {yt}T
t=1.

Now, having the right connotation, we can define the SSM in three probability distributions
as follow:

xt | xt−1 ∼ f(xt | xt−1) (1.2a)
yt | xt ∼ g(yt | xt) (1.2b)

x0 ∼ p(x0) (1.2c)

where f(· | ·) and g(· | ·) are scalar or multivariate (stochastic) state(alternatively system, eval-
uation, transition) and observation (alternatively measurement, output) functions, respectively.
The state function describes an evolution in the states between time t and previous time t − 1
and the observation function describes the a relation between the state xt and the related obser-
vation yt. These functions may be linear or nonlinear. To put it in a Bayesian context, they are
conditional probability densities, expressing the stochastic nature of the considered processes. It
is important to note, that the Markov property does not necessarily satisfied for the observations.
For completeness, the model definition should also include a prior distribution of the initial state
x0, which is given by p(x0). Furthermore, to describe both: the evolution of the states and the
available, a probabilistic approach is used.

An alternative name for the model described by the distributions above (1.2) is hidden Markov
model, where the word hidden refers to the unobserved states xt that, as already mentioned
earlier, obey the Markov assumption (1.1). Also, in some literature, this term is used concerning
models where xt exists in discrete space instead of in Rnx . Figure 1.2 shows the dependence
relationship between the hidden unobserved state and observed data.

Another variation of (1.2) is the time-varying state-space model, where f(· | ·) and g(· | ·)
and possibly also nx depend explicitly on t. Also, in the automatic control literature, state-space
models are often used with the addition of an exogenous and known input signal ut ∈ Rv.

When asking why to use state-space modeling and why the representation of systems in
state-space is helpful, there are a couple of main points to be made:
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Figure 1.1 Graphical representation of the state-space model

Putting the systems into state space, essentially matrix forms, is a big advantage because
computers were good with numbers but bad with symbolic computation

The states have a physical meaning, that is speed or coordinates of airplane, that is of interest

In terms of constructing predictions. The states xt represent a compact summary of the
whole relevant history. Provided that the Markov assumption is satisfied for states xt, it is
enough to consider xt for predicting the future observations yt+1 than to store and process
all the historical data y1, ..., yt

Rather popular subclass of model (1.2) is the following:

xt = G(xt−1) + ωt (1.3a)
yt = F (xt) + νt (1.3b)

where F (·) and G(·) are the state and the observations functions respectively. Each equation
contain noise component, ωt is defined as the state noise process and νt as the observation noise
process.

1.2.1 Linear state-space models
We will examine the linear models on the probably most famous and well-studied Gaussian SSM
with additive noise, also called the dynamic linear model (DLM).

xt = Atxt−1 + Btut + ωt ωt ∼ N (0, Qt), (1.4a)
yt = Ctxt + Dtut + νt νt ∼ N (0, Rt) (1.4b)

The main primitives of the model are:

xt is a n× 1 vector consisting of unobserved variables (states) at time t,

yt is a scalar univariate sequence of observed variables at time t,

At is a n× n transition or update matrix which describes the evolution in the states at
time t,

Ct is a n× 1 output or extraction matrix at time t,
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ωt is the term of evolution error. It is noise describing stochastic changes in the unobserved
state, i.i.d with respect to time, with uncertainty covariance variance matrix Qt,

νt is a term of observational noise. It represents a measurement error and is also i.i.d with
respect to time, with uncertainty covariance variance matrix Rt.

Typically the Dt matrix is equal to zeros because the input signal do not typically affect the
output directly. The Ct matrix is often one of the states, or sometimes it is just the identity
matrix. To fit the standard notation in the systems identification literature, we shifted from the
probabilistic notation and included an exogenous input signal ut with related matrices Bt and
Dt of appropriate sizes.

The main conditions that must be met to obtain a Gaussian SSM from a general SMM are
that linearity is preserved for f(· | ·) and g(· | ·) functions, and both noise processes ωt and νt

are Gaussian. Simply put, the relationship between states, and between observation and states,
are linear.

1.2.1.1 Examples
In this subsection we give several examples of state-space model development for linear physical
systems and break them down.

1.2.1.1.1 Example 1 - Angular acceleration of a motor ”As an example of a linear
system, suppose that we are controlling the angular acceleration of a motor (for example, with
some applied voltage across the motor windings). The derivative of the position is the velocity.
A simplified motor model can then be written as:

θ = ω

ω = u + ω1

The scalar w1 is the acceleration noise and could consist of such factors as uncertainty in the
applied acceleration, motor shaft eccentricity, and load disturbances. If our measurement consists
of the angular position of the motor then a state space description of this system can be written
as:

x =
[

θ
ω

]
=
[
0 1
0 0

] [
θ
ω

]
+
[
0
1

]
u +

[
0

ω1

]
y =

[
θ
]

=
[
1 0

]
x + v

The scalar v consists of measurement noise. The state vector x is a 2 vector containing the
scalars θ and ω.” Simon, 2006, page 20

1.2.1.1.2 Example 2 - Mass-spring damper ”Consider for example the second-order dif-
ferential equation:

my′′
t + cy′

t + kyt = ut

which describes the evolution of a damped mass-spring system, with u the external force acting
on the mass, and y the vertical position. (Here y′ and y′′ are the first and second derivatives of
y, respectively.)

The above involves second-order derivatives of a scalar function y(·). We can express it in an
equivalent form involving only first-order derivatives, by defining the state vector to be

xt =
[
yt

y′
t

]
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Figure 1.2 Evolution of a damped mass-spring system

The price we pay is that now we deal with a vector equation instead of a scalar equation:

xt =
[

0 1
− c

m − k
m

]
xt +

[
0
1

]
ut

The position yt is a linear function of the state:

yt =
[
1 0

]
xt

” State-space models of linear dynamical systems, [n.d.]

1.2.2 Nonlinear state-space models
The point to note is that in real world there is almost doesn’t exist totally linear systems. Or
even more simply, that real systems always have some non-linearities. We will not change our
principles and one more time will examine time-varying model with additive noise, but now
non-linear.

xt = ft(xt−1, ut) + ωt, (1.7a)
yt = ht(xt) + νt, (1.7b)

where at least one of ft(·) or ht(·) is non-linear function and the other variables have the
same properties as in the linear state model. We also use ωt to indicate process noise, and νt to
indicate measurement noise.

Comparing with the equation (1.4), if ft(xt−1, ut) = Atxt−1+Btut, and ht(xt) = Ctxt+Dtut,
then the system is linear.

From the above, we can understand that non-linearity can appear either in the state equation
or in the observation equation or at the same time in both.

1.3 Estimation
To begin with, the model (1.2) described by distributions can contain some unknown numerical
quantities that remains to be determined using observed data {y1:T } and {u1:T } if the they are
presented. The unknown parameter can refer to the states xt are not observed and might be of
interest to learn, but there might also be unknown quantities in the model itself. From a learning
perspective, there is no inherent difference between described two cases.

There are two different kinds of statistical estimation techniques, namely, a frequentist and
a Bayesian approach. Perhaps the most famous and classical frequentist estimation technique



Estimation 9

is the maximum likelihood estimation (MLE), which assume that unknown parameter x should
be a constant. The basic concept of the MLE method approach of unknown constant parameter
x estimation lies on the principle of maximizing the joint probability density function of the
observations concerning x. The following equation describes this in detail:

x̂ = argmax(
T∏

t=1
p(yt|x))) (1.8)

However, the Bayesian method has a different approach to estimation. The main principle
is that an unknown parameter is assumed to be a random variable with a specific probability
distribution. Also, in the Bayesian approach, we want to maximize the posterior. We will discuss
what this is and how it is done in detail below. For now, it can be described in simple words as
what value of x will maximize the probability of x given yt:

x̂MAP = argmax(
T∏

t=1
p(x|yt))), (1.9)

which is called maximum a posteriori (MAP) estimation.

1.3.1 Preliminaries on Bayesian estimation
Before disassembling the Bayesian method, we must deal with the basic rule on which everything
stands - the Bayes’ rule (alternatively Bayes’ law or Bayes’ theorem). It is the essential rule in
data science. In simple terms, the mathematical rule explains how to update a belief, given some
evidence. It is defined as follows:

P (Hypothesis|Evidence)︸ ︷︷ ︸
posterior

= P (Hypothesis)︸ ︷︷ ︸
prior

·

likelihood︷ ︸︸ ︷
P (Evidence|Hypothesis)

P (Evidence)︸ ︷︷ ︸
marginal

(1.10)

This rule allows us to calculate the posterior or ”updated” probability. This is a conditional
probability of the hypothesis being true if the evidence is present.

Consider the prior or ”previous” probability as our belief in the hypothesis before accepting
the new evidence. If we already strongly believe in the hypothesis, the prior probability will be
enormous.

The prior probability is multiplied by a fraction. Consider this as the ”power” of the evidence.
The result value of the posterior probability is greater when the numerator’s value is relatively
big, and the denominator’s value is correspondingly small.

The numerator in the fraction is likelihood, which is essentially another conditional prob-
ability. It is the probability of the evidence being present, given the hypothesis is true. It is
important to understand that it is not the same as the posterior.

As for the denominator, it is the marginal probability of the evidence, that is, it is the
probability that the evidence being present, regardless of whether the hypothesis is true or false.
The smaller the value of the denominator, the more ”convincing” the evidence can be said to
be. The marginal probability in the denominator is also called a normalising term. As already
mentioned earlier, it does not depend on the hypothesis, therefore, it is often neglected in the
calculation of the posterior of interest. In other words, the posterior probability is only known
up to a normalising term. Thus, in the Bayesian approach, the posterior distribution can be
formulated as follows:

P (Hypothesis|Evidence) ∝ P (Hypothesis) · P (Evidence|Hypothesis) (1.11)
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Bayesian inference (Gelman et al., 2003, Bernardo et al., 2009) aims to provide a mathemat-
ical mechanism that can be used to model systems, and decisions are made based on rational
principles while considering system uncertainties. The probability distributions and probabilistic
calculus rules serve as tools for this mechanism.

The main thing to understand is that Bayesian inference is all about computing the posterior.
Essentially, there is nothing conceptually different between the prior and the posterior. Both
of them reflect a degree of belief about the hypothesis before and after observing the evidence,
respectively. Bayes’ rule may be applied repeatedly to incorporate the new evidence into the
belief in case more data is subsequently observed.

Nonetheless, Bayes’ rule only provides a mechanism for updating beliefs, not creating beliefs
from nothing. Therefore, the prior has to be chosen. To obtain a proper result, the prior choice
should preferably reflect present ignorance and knowledge.

Recursive Bayesian inference The recursive Bayesian method can be involved in the method-
ology of the SSM in terms of the state estimation problem. A Bayesian SSM is fully defined
by three distributions (1.2). A prior distribution of the initial first hidden state x0 (1.2c). A
dynamic model f(xt | xt−1) which represents the system evolution and its uncertainties in terms
of the transition probability distribution (1.2a). And also a measurement model g(yt | xt) which
describes how the measurements depend on the current state (1.2b). Furthermore, in some cases,
when the model contains unknown quantities, we also need prior distribution for them.

”The underlying idea is simply that at each observation we treat the posterior distribution of
the previous time step as the prior for the current time step. This way we can compute the same
solution in a recursive manner that we would obtain by direct application of Bayes’ rule to the
whole (batch) data set.” (Särkkä, 2013, page 31)

The objective of the Bayesian method within the SSM is to construct recursively in time the
conditional posterior distribution p(x0:t | y1:t) of the states given the observations up to time t.
Overall, the states full posterior distribution is given by:

p(x0:t | y1:t) = p(y1:t | x0:t)p(x0:t)
p(y1:t)

. (1.12)

Within this thesis, our main point of interest is the estimation of the conditional marginal
posterior distribution p(xt | y1:t) of the state xt at time t in the recursive technique. This
estimation method is called Bayesian filtering and consists of two main steps - prediction and
update.

Prediction step To begin, assume that the posterior distribution of the state p(xt−1|y1:t−1)
is represented at time t − 1. For this step, it is important that the state knowledge at time
t − 1 is used to predict the state for the next time t. For obtaining the prior (alternatively
predictive) probability density of the state xt is also used the state equation (1.2a). This is
done as follows:

p(xt | y1:t−1)︸ ︷︷ ︸
prior at time t

=
∫

p(xt | xt−1)︸ ︷︷ ︸
state function

posterior at time t-1︷ ︸︸ ︷
p(xt−1 | y1:t−1) dxt−1. (1.13)

Update step After obtaining a priori knowledge of the state xt by the prediction step, we
obtain new observations yt for time t. This step uses the Bayes’ rule disambiguated above
(1.10) to obtain the posterior probability density of the state xt:

p(xt | y1:t)︸ ︷︷ ︸
posterior at time t

=

prior at time t︷ ︸︸ ︷
p(xt | y1:t−1)

likelihood︷ ︸︸ ︷
p(y1:t | xt)

p(yt | y1:t−1)︸ ︷︷ ︸
marginal

, (1.14)
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where, as previously stated, the denominator acts as the normalising term and is calculated
using the integral as follows:

p(yt | y1:t−1) =
∫

p(yt | xt)p(xt | y1:t−1)dxt. (1.15)

As previously articulated, the posterior distribution of the state can be estimated only up to
the normalising term, therefore, the calculation can be formulated as follows:

p(xt | y1:t) ∝ p(xt | y1:t−1)p(y1:t | xt). (1.16)

These two steps are the basis of the Bayesian filtering principle. For every point in time, we
take these two steps. The only unspoken question that remains is how to calculate the optimal
estimation of the state by its posterior knowledge. And its calculation can be formulated as
follows:

x̂t = E(xt | y1:t) =
∫

xtp(xt | y1:t)dxt (1.17a)

x̂t = argmax
xt

p(xt | y1:t), (1.17b)

where in (1.17a) the optimal state estimate is computed by its conditional posterior mean. And
accordingly, in (1.17b), it is calculated by maximization of the posterior density.

It is also worth noting that prediction, filtering, and smoothing are variations of state estima-
tion. The term filtering refers to the following distributions p(xt | y1), p(x2 | y1:2),.., p(xT | y1:T ).
Accordingly, the term smoothing refers to the distributions p(x1 | y1:T ), p(x2 | y1:T ),.., p(xT |
y1:T ), i.e. smoothing marginal distributions distributions of each state given all measurements.

The essential challenge when working with SSMs is an inference problem relating to the hyper-
parameters and state. The goal always comes down to the same thing, which is to apply the
Bayes’ rule to obtain a posterior probability density of the state given the available observations.
In practice, the following regularity works, the sequence of states x1:t and the hyperparameters
are unknown, but the sequence of observations y1:t is available.

There are various implementations of recursive Bayesian filtering algorithms used to compute
the posterior mean and variance of the state. The linear Gaussian state-space model is filtered
with a Kalman filter (KF). KF, unfortunately, is not applicable to nonlinear and non-Gaussian
models. For them, there are such alternatives as extended Kalman filter (EKF) and unscented
Kalman filter (UKF) as well as sequential Monte Carlo or particle filters. Our next important
step is to pay attention to one of the most popular and, in principle, the best linear estimator -
the Kalman filter. But before we do that, we are going to have to break down a little introductory
information.

1.3.2 Propagation of covariances in linear state-space mod-
els

Before starting to disassemble various filtering methods, it is necessary to disassemble the es-
sential information to the state estimation algorithm. We should begin with the mathematical
description of a dynamic system, then derive the equations that govern the propagation of co-
variance and the state mean.

”Suppose we have the following linear discrete-time system:

xt = At−1xt−1 + Bt−1ut−1 + ωt−1 (1.18)
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where ut is a known input and ωt is Gaussian zero-mean white noise with covariance Qt. How
does the mean of the state xt change with time? If we take the expected value of both sides of
equation (1.18) we obtain

x̂t = E(xt)
= At−1x̂t−1 + Bt−1ut−1

(1.19)

How does the covariance of xt change with time? We can use Equations (1.18) and (1.19) to
obtain

(xt − x̂t) (· · · )T = (At−1xt−1 + Bt−1ut−1 + ωt−1 − x̂t) (· · · )T

= [Ft−1 (xt−1 − x̂t−1) + ωt−1] [· · · ]T

= At−1 (xt−1 − x̂t−1) (xt−1 − x̄t−1)T
AT

t−1 + ωt−1ωT
t−1+

At−1 (xt−1 − x̂t−1) ωT
t−1 + ωt−1 (xt−1 − x̂t−1)T

AT
t−1

(1.20)

We therefore obtain the covariance of xt as the expected value of the above expression. Since
(xt−1 − x̂t−1) is uncorrelated with ωt−1, we obtain

Pt = E[(xt − x̂t)(· · · )T ]
= At−1Pt−1AT

t−1 + Qt−1
(1.21)

This is called a discrete-time Lyapunov equation, or a Stein equation.
Now let us look at the solution of the linear system of equation (1.20)

xt = At,0x0 +
t−1∑
i=0

(Ak,ı+1i + Ak,ı+1Biuı) (1.22)

The matrix Ak,ı+1, is the state transition matrix of the system and is defined as

At,ı =


At−1At−2 · · ·Aı t > i

I t = i

0 t < i

(1.23)

Notice from equation (1.22) that xt is a linear combination of x0, ωi, and ui. If the input
sequence ui is known, then it is a constant and can be considered to be a sequence of Gaussian
random variables with zero covariance. If xo and ωi are unknown but are Gaussian random
variables, then xt in equation (1.22) is a linear combination of Gaussian random variables.
Therefore, xt is itself a Gaussian random variable. But we computed the mean and covariance
of xt in equations (1.19) and (1.21). Therefore

xt ∼ N(x̂t, Pt) (1.24)

This completely characterizes xt in a statistical sense since a Gaussian random variable is
completely characterized by its mean and covariance.” (Simon, 2006, page 107-108)

We can summarize that for discrete-time systems, difference equations describe the state’s
mean and covariance. The principle of deriving equations for the propagation of the mean and the
state covariance for systems with continuous time is essentially the same, taking into account the
nuances of the type of system itself. Differential equations describe the first two moments (mean
and covariance). The detailed principles of deriving equations for continuous-time systems, as
well as sampled-data systems, can be found in (Simon, 2006, Chapter 4).
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1.3.3 Linearization of nonlinear state-space models
In the context of talking about linear systems, we should not forget that in reality linear systems
do not exist. In truth, real dynamic systems always have some nonlinearities. But even if we can
say that linear systems do not exist in the real world, linear systems theory is still a valuable
tool for dealing with nonlinear systems. And to be able to apply the tools from this theory to
nonlinear systems, we need to linearize the nonlinear system or, more specifically, the problem
usually comes down to finding an appropriate linear system that approximates the nonlinear
system well.

Now assume a state model with additive noise of the form:

xt = ft(xt−1, ut) + ωt,

yt = ht(xt) + εt,

where ft and ht are nonlinear functions. ωt and εt represent process noise and measurement
noise, respectively. If the relevant functions have derivatives of at least first order, it is possible
to try to use local linearization by derivative, that is, using Taylor series expansion. To do this,
let first familiarize with the content of Taylor’s theorem.

▶ Theorem 1.1 (Taylor’s theorem). Let the function f : R → R have finite derivatives at the
point a ∈ R up to order n + 1. Then there exists a Taylor polynomial of order n and a residue
R

(f,a)
n+1 (x) of the form

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + . . . + f (n)(a)

n! (x− a)n + R
(f,a)
n+1 (x).

The Taylor polynomial converges in x to f(x) just when limn→∞ R
(f,a)
n+1 (x) = 0.

Now, having remembered everything necessary, we can try to expand f(·) in state equation
in a Taylor series around some nominal linearization point xt−1 = x̄t−1:

xt = ft (x̄t−1, ut) + f ′
t(x̄t−1) (xt−1 − x̄t−1) + wt

= ft (x̄t−1, ut) + Ft (xt−1 − x̄t−1) + wt

= Ftxt−1 + [ft (x̄t−1, ut)− Ftx̄t−1] + wt

= Ftxt−1 + ũt + wt,

(1.26)

where

Ft = f ′
t(x̄t−1)

ũt = ft (x̄t, ut)− Ftx̄t−1.

Similarly, we can extend the second nonlinear measurement equation around the nominal
operating point xt = x̄t:

yt = ht (x̄t) + h′
t(x̄t) (xt − x̄t) + εt

= ht (x̄t) + Ht (xt − x̄t) + εt

= Htxt + [ht (x̄t)−Htx̄t] + εt

= Htxt + zt + εt,

(1.28)

where

Ht = h′
t(x̄t),

zt = ht (x̄t)−Htx̄t.
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So we have a linearized state model of the form:

xt = Ftxt−1 + ũt + wt,

yt = Htxt + zt + εt,

on which we can safely apply all tools from linear systems theory. General cases with linearization
of models with non-additive noise are well laid out in the (Simon, 2006, section 1.3).

1.3.4 Recursive least squares estimation

We come smoothly to the dissembling of the Kalman filter. One of the most important steps
is to become familiar with the the Recursive least squares (RLS) estimation that underlies the
Kalman filter.

Consider that x is a constant unknown potentially multidimensional parameter that does not
change over time. If x begins to change over time, we will call it a state, in which case a Kalman
filter will be needed.

We obtain measurements sequentially and want to update the estimate of x with each new
measurement. The measurements and the parameter are related through equation:

yt = Htxt + εt, εt ∼ (0, Rt).

Consider that the value of the estimate x̂t can be based on the previous value x̂t−1, the
essence is as follows:

x̂t = x̂t−1 + Kt(yt −Htx̂t−1), (1.31)

where x̂t is the estimate of the unknown state x made at time t and Kt is the gain that works
with the correction term yt −Htx̂t−1.

Before we dissemble how to compute the gain matrix Kt, let us look at estimation properties
by calculating the mean of the estimation error.

E[x− x̂t] = E[x− x̂t−1 −Kt(yt −Htx̂t−1)]
= E[x− x̂t−1 −Kt(Htx + εt −Htx̂t−1)]
= E [x− x̂t−1 −Kt[Ht(x− x̂t−1) + εt]]
= E [x− x̂t−1 −KtHt(x− x̂t−1) + Ktεt]
= E [(I −KtHt)(x− x̂t−1) + Ktεt] .

It is clear that if E[εt] = 0 and at the same time E[x− x̂t−1] = 0, then E[x− x̂t] = 0. Thus,
if we run an estimator from x̂0 = E[x], then every estimator x̂t = x for all t. This means that
the estimator is unbiased. Moreover, this property holds for every gain Kt.

Next, we proceed to determine the optimal value of Kt. Let the optimal gain minimize the
sum of squares (x1 − x̂1)2, . . . , (xn − x̂n)2, where n is the dimension of x. We work in mean
values:
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Jt = E[E[(x1 − x̂1)2] + . . . + E[(xn − x̂n)2]

= E[(x1 − x̂1)2 + . . . + (xn − x̂n)2]

= E

Tr


(x1 − x̂1)2 0 . . . 0

0 (x2 − x̂2)2 . . . 0
...

. . .
...

0 . . . . . . (xn − x̂n)2




= Tr Pt.

(1.32)

The matrix Pt is the covariance matrix of the estimate of x̂t. It is diagonal and positive
semi-definite.

Pt = E [(x− x̂t)(x− x̂t)⊺]

= E [{(I −KtHt)(x− x̂t−1) + Ktεt}{◦}⊺]

= (I −KtHt)Pt−1(I −KtHt)⊺ + KtRtKt.

It is evident, if the covariance of the noise increases, the covariance of the estimates also
increases. If the measurement uncertainty increases, the uncertainty of the estimates also in-
creases. Next step is to minimise Jt with respect to Kt. From the analysis we could know that
∂ Tr(ABAT )

∂A = 2AB if B is symmetric. With the knowledge of this, we can go back to (1.32) and
apply the chain rule to obtain

∂Jt

∂Kt
= 2(I −KtHt)Pt−1(−H⊺

t ) + 2KtRt = 0

which gives the relation for Kt:

Kt = Pt−1H⊺
t (HtPt−1H⊺

t + Rt)−1. (1.33)

Algorithm 1 RLS
Input: {y1, ..., yn}
Output: Estimation x̂ of the parameter x after n iteration, Covariance matrix of the estimate

P .
1: Initialization x̂0 = E[x], P0 = E[(x− x̂0)(x− x̂0)⊺]
2: for t = 1,2,...,n do
3: Get observation yt

4: Update estimates

Kt = Pt−1H⊺
t (HtPt−1H⊺

t + Rt)−1,

x̂t = x̂t−1 + Kt(yt −Htx̂t−1),
Pt = (I −KtHt)Pt−1(I −KtHt)⊺ + KtRtKt.

5: end for

(Simon, 2006, Chapter 3).
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1.3.5 Kalman filtering
Without any doubts, the most popular and widespread implementation of the Bayesian filtering
recursion is the Kalman Filter, which is used in tracking the latent state’s problem of linear
dynamic models. As was described above, this is accomplished by computing the posterior
distribution of the state. As was already mentioned, the Kalman filter is regarded as an optimal
filter when both equations in the SSM are linear and Gaussian. KF is parameterised by the
mean and the covariance of state, i.e.:

the KF estimate of the state is the mean of the state,

the covariance of the KF state estimate is the state’s covariance.

The mean and state covariance are updated each time a new measurement is received. To
provide an optimal estimate of the state, KF minimises the estimate’s mean square error (MSE).

It should be noted that the Kalman filter is still widely used in various fields, such as en-
vironmental time series analysis, different areas of statistics, economic modeling, engineering,
etc. Moreover, the primary reason for this is the simplicity of application, good stability, and
optimality of the estimation. Before presenting the filtering algorithm itself, first, we will try to
derive a mathematical basis for it based on the knowledge we have gained about the propagation
of mean and covariance of the state.

We will use the following notation:

x̂−
t = E [xt | y1:t−1] (1.34a)

x̂+
t = E [xt | y1:t] , (1.34b)

where equation (1.34b) represents a posteriori estimate of the state xt by computing the expected
value of xt given all measurements up to and including time t. And correspondingly, in the case
where all measurements up to but not including time t are available, we can in the same form
compute an a priori estimate of the state xt, that is represented by equation (1.34a).

However, it is important to understand that x̂−
t and x̂+

t are estimates of the same quantity, the
only difference being that x̂−

t is the estimate of xt before taking into account the yt measurement,
and x̂+

t the estimate, after taking yt into account, respectively. It follows that an estimate of x̂+
t

will be better than x̂−
t , only because we used more information to calculate it.

We can also make predictions ahead of time, even in the absence of observations for future
times. It looks as follows:

x̂t|t−N = E [xt | y1:t−N ] , (1.35)
where N is positive integer.

Also, in the case of the initial state x0 for which there are also no measurements (the first
measurement is taken at time t = 1), the following notation is used to denote its estimation:

x̂+
0 = E (x0) . (1.36)

A similar formulation is also used to denote the covariance of the estimation error for x̂−
t and

x̂+
t :

P −
t = E

[(
xt − x̂−

t

) (
xt − x̂−

k

)T
]

(1.37a)

P +
t = E

[(
xt − x̂+

t

) (
xt − x̂+

t

)T
]

. (1.37b)

We can now move on to the filtering process itself. At each point in time, the Kalman filtering
algorithm consists of two steps: prediction and update.
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We can now move on to the filtering process itself. At each point in time, the Kalman
filtering algorithm consists of two steps: prediction and update. Suppose we have the following
state space model:

xt = At−1xt−1 + Bt−1ut−1 + wt−1, wt ∼ (0, Qt), (1.38a)
yt = Htxt + εt, εt ∼ (0, Rt), (1.38b)

where the noise components are independent of each other.
In the prediction step, the mean x̂−

t and the covariance P −
t of the prior state distribution

p(xt|y1:t−1) are calculated:

x̂−
t = E [xt] = At−1x̂+

t−1 + Bt−1ut−1, (1.39a)
P −

t = At−1P +
t−1A⊺

t−1 + Qt−1, (1.39b)

where (1.39a) is time update equation from time (t − 1)+ to time t− for x̂. In essence, it is an
update of the state estimate based on knowledge of the system dynamics without any additional
measurements since the state estimate propagates just as the state’s mean propagates. In turn,
(1.39b) is time update equation covariance of the state estimation error P . We have already
dissembled how to derive this equation using the example (1.21) of how covariance of the state
propagates with time.

Incidentally, regarding the initial state, its estimate’s covariance is P +
0 , and generally, it

represents the uncertainty in the initial estimate. Its covariance can be zero if we are entirely
sure that the initial state is correctly selected. In other words, we have perfect knowledge about
the initial state. Alternatively, on the contrary, in case we are absolutely uncertain about his
choice, then P +

0 =∞I.
Now we move on to the update step. Where the prior mean given in the prediction step is

corrected by measurement yt, this is followed by estimating the mean x̂+ and covariance P +
t of

the posterior distribution of the current state p(xt|y1:t). The update step principle is directly
borrowed from the development of recursive least squares (RLS) and is based on the correction
approach. That is, the update step is as follows:

Kt = P −
t H⊺

t (HtP
−
t H⊺

t + Rt)−1,

x̂+
t = x̂−

t + Kt(yt −Htx̂
−
t ),

P +
t = (I −KtHt)P −

t (I −KtHt)⊺ + KtRtK
⊺
t .

(1.40)

The only radical difference compared to (1.33) in finding gain is that in RLS method we used
Pt−1 , the covariance of estimate before the measurement yt is processed. As for the Kalman
filter, the same role is played by P −

t . Also, the matrix Kt in this case is called the Kalman filter
gain.

Now we have everything we need to present the algorithm itself:
(Simon, 2006, Chapter 5).
” The theory presented also assumes that the system model is precisely known. It is assumed

that the A, Q matrices for state equation (1.38a) and H, R matrices for measurement equation
(1.38b) are exactly known, and it is assumed that the noise sequences {ωt} and {εt} are pure
white, zero-mean, and completely uncorrelated. If any of these assumptions are violated, as they
always are in real implementations, then the Kalman filter assumptions are violated and the
theory may not work. ” (Simon, 2006, page 140)

Let finalize the analysis of the Kalman filter by listing its main properties:

if both noise components are Gaussian, centered at zero, uncorrelated and white, then the
Kalman filter is the optimal linear filter,
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Algorithm 2 Kalman filter
Require: Decomposition of signal x
Input: {y1, ..., yT }
Output: Estimates {x̂0:T } and the corresponding covariance matrices {P0:T }

1: Initialization Set x0 (the initial state estimate) and P +
0 (the initial covariance of the esti-

mates).
2: for t = 1,2,...T do
3: State prediction (time update)

x̂−
t = At−1x̂+

t−1 + Bt−1ut−1

P −
t = At−1P +

t−1A⊺
t−1 + Qt−1

4: Correction (data update) of states by observing yt

Kt = P −
t H⊺

t (HtP
−
t H⊺

t + Rt)−1,

x̂+
t = x̂−

t + Kt(yt −Htx̂
−
t ),

P +
t = (I −KtHt)P −

t (I −KtHt)⊺ + KtRtK
⊺
t .

5: end for

if normality is not ensured, the Kalman filter is still the best linear filter. There may be a
better, for example, nonlinear filter, but KF is still the best linear filter

if the noises are correlated or colored, there are various modifications exist

If the process is nonlinear i.e., one or both equations (1.38a or 1.38b) is nonlinear then the
Kalman filter may fail to estimate the proper posterior distribution to the states. For this reason,
it is necessary to use another filter to overcome this problem. The extended Kalman filter (EKF)
and the particle filter (PF) have been adopted to achieve this aim.

1.3.5.1 Bayesian approach to Kalman filtering
As we already learned earlier, both state (1.38a) and measurement (1.38b) equations are proba-
bility density functions and as well xt and yt are random variables that thoroughly characterized
by its means and covariances. We also said earlier that the Kalman Filter is a direct analytical
implementation of the Bayesian filtering recursion for linear Gaussian state space models. It’s
time to make sure of that and conceptualize the KF using a Bayesian approach. We will use the
previously derived notation to make the connection as visible as possible. Assume that we are
working with the same model described by equations (1.38).

It is assumed that at time t−1 the posterior distribution of the state xt−1 based on proceeded
measurements y1:t−1 follows a Gaussian distribution with some mean x̂+

t−1 and P +
t−1 as the

covariance matrix.
xt−1 | y1:t−1 ∼ N(x̂+

t−1, P +
t−1) (1.41)

The prior distribution (alternatively predictive distribution) at time t for the state xt follows
a Gaussian distribution with the mean x̂−

t and the covariance matrix P −
t ,

xt | y1:t−1 ∼ N(x̂−
t , P −

t ), (1.42)

where

x̂−
t = At−1x̂+

t−1 + Bt−1ut−1

P −
t = At−1P +

t−1A⊺
t−1 + Qt−1.
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The distribution of the one-step prediction is also Gaussian, considering the measurement set
y1:t-1:

yt | y1:t−1 ∼ N(ht, Ct), (1.43)

where

ht = Htx̂
−
t

Ct = HtP
−
t H⊺

t + Rt.

The posterior distribution of the state xt at time t, given the set of measurements y1:t, is
obtained directly by Bayes’ theorem, namely by combining the state’s prior and measurements
likelihood.

xt | y1:t ∼ N(x̂+
t , P +

t ), (1.44)

with

x̂+
t = x̂−

t + Kt(yt − ht)
P +

t = P −
t −KtCtK

⊺
t

As previously mentioned, the mean of the posterior distribution is calculated from the prior
distribution and corrected by the prediction error. We can boldly declare that the state’s poste-
rior distribution is exactly Gaussian without any need to use numerical approximations because
of the assumptions of the linear Gaussian model. Thus the KF is assumed to be the natural
option to provide the optimal estimation solution via online inference in a Bayesian framework.
In addition, working directly with Gaussian distributions, and not only with expectation vec-
tors and covariance matrices, emphasizes the connection between the KF and the Bayes filter
(Brekke, 2020). And on that note ends an intuitive explanation concerning the KF, which was
conceptualized using a Bayesian approach.

1.3.6 Nonlinear Kalman filtering
As previously described, the primary Kalman filter with assured linearity of the evolution and
observation equations, and importantly under the assumption of the Gaussian model, can be ap-
plied to the dynamic linear model to acquire the optimal state estimate. However, unfortunately,
linear systems do not exist not really exist: in most applications of interest, either the state or
observation equation is nonlinear.

In this regard, it is the turn of the study of nonlinear estimation methods. In truth, nonlinear
filtering can sometimes be a relatively tricky, complex subject. One reason is that it is not as well
developed and understood as linear filtering. Nevertheless, some nonlinear estimation methods
are widely used. We will consider some of them in this section, in particular, nonlinear extensions
of the KF.

One approach to nonlinear filtering is to use the linearization technique, which was described
in Subsection 1.3.3. As explained earlier, the basic KF applies directly to linear systems. The
first way that we will disassemble will be in fact the use of basic KF after the linearization of
the system, which is called linearized Kalman filter.

1.3.6.1 The linearized Kalman filter
The principle of the linearized Kalman Filter (LKF) is quite simple, consisting of linearizing a
nonlinear system and then using the basic Kalman filter to estimate the deviations of the state
from a nominal state value. This calculation indirectly provides an estimate of the states of the
nonlinear system. The linearized KF is relatively good, but it has a problem. The problem is
that we need to know the nominal trajectory in advance. However, let us start at the beginning.
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This time we will look at the algorithm using the general nonlinear continues-time system
model. This is also an excellent opportunity to see how linearization is carried out using partial
derivations and, in addition, how the equations of the first two moments are defined.

Assume the following system model:

x = f(x, u, w, t)
y = h(x, ε, t)
w ∼ (0, Q)
v ∼ (0, R)

where f(·) and h(·) are nonlinear functions. The Taylor series will be used to extend the equations
above around the corresponding nominal linearization points: a nominal control u0, nominal state
x0, nominal output y0, and nominal noise values w0 and ε0. All of them are functions of time
and based on a priori assumptions about what the trajectory of the system might look like.

”For example, if the system equations represent the dynamics of an airplane, then the nominal
control, state, and output might be the planned flight trajectory. The actual flight trajectory will
differ from this nominal trajectory due to mismodeling, disturbances, and other unforeseen effects.
But the actual trajectory should be close to the nominal trajectory, in which case the Taylor series
linearization should be approximately correct. ”(Simon, 2006, page 397)

The linearization of the above equations is as follows:

x ≈f (x0, u0, w0, t) + ∂f

∂x

∣∣∣∣
0

(x− x0) + ∂f

∂u

∣∣∣∣
0

(u− u0) +

∂f

∂w

∣∣∣∣
0

(w − w0)

=f (x0, u0, w0, t) + A∆x + B∆u + L∆w

y ≈h (x0, ε0, t) + ∂h

∂x

∣∣∣∣
0

(x− x0) + ∂h

∂ε

∣∣∣∣
0

(ε− ε0)

=h (x0, ε0, t) + H∆x + M∆ε.

(1.45)

There is an extremely important point to be made that subscript 0 on the partial derivatives
means that they are evaluated at the nominal control, state, output, and noise values. The
definitions of the deviations ∆ and appropriate matrices are apparent from above equations.
Suppose that the nominal noise values w0(t) and ε0(t) are 0 for all time. From this it logically
follows that ∆w(t) = w(t) and ∆ε(t) = ε(t). Next, assume that the control u(t) is totally known,
i.e., u0(t) = u(t) and ∆u(t) = 0. We can now determine the nominal trajectory of the system as
follows:

ẋ0 = f (x0, u0, w0, t)
y0 = h (x0, ε0, t) .

(1.46)

The definitions of deviations of true state and true measurement from their nominal values
should also be introduced:

∆x = ẋ− ẋ0

∆y = y − y0,
(1.47)

where ∆x is the difference between the actual state x and the nominal state x0, and ∆y is the
difference between the actual and nominal measurements. Now let us to apply these definitions
to equations (1.45):
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∆x = A∆x + Lw

= A∆x + w̃

w̃ ∼ (0, Q̃), Q̃ = LQLT

∆y = H∆x + Mε

= H∆x + ε̃

ε̃ ∼ (0, R̃), R̃ = MRMT

(1.48)

The bottom line is that we get the linear system with the state ∆x and the measurement
∆y. And already at this stage, the basic KF can be used to estimate ∆x. All that remains is to
write the KF equations for the linearized KF:

∆x̂(0) = 0
P (0) = E

[
(∆x(0)−∆x̂(0))(∆x(0)−∆x̂(0))T

]
∆x̂ = A∆x̂ + K(∆y − C∆x̂)
K = PCT R̃−1

P = AP + PAT + Q̃− PCT R̃−1CP

x̂ = x0 + ∆x̂

(1.49)

As we already remember that P is used to denote the covariance of the estimation error in
the basic KF, however, in the LKF it works differently. Namely, because of errors that sneak into
the linearization process in (1.45). Over time, the error caused by linearization will grow in the
LKF. Nevertheless, if the linearization errors are relatively small, then P should be approximately
comparable to the covariance of the estimation error.

(Simon, 2006, Section 13.1).

1.3.6.2 The Extended Kalman filter
In essence, both linearized and extended KFs are used to overcome nonlinear function problems
using numerical approximation techniques. The idea of the extended Kalman filter (EKF) is to
use the estimate as the nominal trajectory in a linearized KF, i.e, corrected state estimate is used
in each step for linearization, that leads to more accurate results. This approach is a variation
of the bootstrap method. That is simply put, the nonlinear system is linearized around the KF
estimate, and the KF estimate itself is based on the linearized system. This is essentially the
core idea of the EKF.

We will analyze the EKF algorithm on the same model as for the basic KF:

xt = ft(xt−1, ut) + wt wt ∼ (0, Qt),
yt = ht(xt) + εt εt ∼ (0, Rt)

where both functions are nonlinear and both error terms have zero mean white noise. In order
to implement EKF, the measurement and state equations must be differentiable, i.e., the first
and second derivatives of both equations should exist. As in the case with LKF, the first-order
Taylor approximation around the mean of the current state is employed to linearize the nonlinear
model for the EKF. This approximation is implemented by forming the Jacobian matrix8 of the
nonlinear equations. Thus, the basic KF equations can be adopted for sequential updating.
Regarding the linearization of nonlinear functions f(·), h(·), the first-order Taylor expansion can
be described as follows:

8A Jacobian Matrix. is a special kind of matrix that consists of first order partial derivatives for some vector
function.
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ft (xt−1) ≃ ft

(
x̂+

t−1, ut

)
+ Ft

(
xt−1 − x̂+

t−1
)

(1.50a)
ht (xt) ≃ ht

(
x̂−

t

)
+ Ht

(
xt − x̂−

t

)
, (1.50b)

where

Ft = ∂ft(xt−1)
∂xt−1

∣∣∣∣
xt−1=x̂+

t−1

, Ht = ∂ht(xt)
∂xt

∣∣∣∣
xt=x̂−

t

(1.51a)

x̂+
t−1 = E (xt−1 | y1:t−1) , and x̂−

t = E (xt | y1:t−1) . (1.51b)

It is visible to the unaided eye, that linearization is equivalent to the LKF, except that
different nominal points have been chosen to evaluate the partial derivatives: the a posterior
state estimate at time t − 1 for the linearization f(·) and the prior state estimate at time t for
h(·), respectively.

It is certainly worth noting that point estimates of the state variable and predictions of
measurements are obtained directly from the state model functions f(·) and h(·) instead of from
linearized expressions. The linearization will be particularly helpful for developing covariance
estimates of the states. As for the Kalman gain K, there is no change compared to the LKF. As
opposed to finding a state estimate, where the y measurement goes in directly y the estimate
also outputs directly.

Now we can pile up all the earlier steps and present a general view of the extended Kalman
algorithm:

Algorithm 3 The extended Kalman filter
Require: Decomposition of signal x
Input: {y1, ..., yT }
Output: Estimates {x̂0:T } and the corresponding covariance matrices {P0:T }

1: Initialization Set x0 (the initial state estimate) and P +
0 (the initial covariance of the esti-

mates).
2: for t = 1,2,...,T do
3: Linearization for prediction

Ft = f ′
t(x̂+

t−1)

4: State prediction (time update)

x̂−
t = ft(x̂+

t−1, ut)
P −

t = FtP
+
t−1F ⊺

t + Qt

5: Linearization for correction
Ht = h′

t(x̂−
t )

6: Correction (data update) of states by observing yt

Kt = P −
t H⊺

t (HtP
−
t H⊺

t + Rt)−1,

x̂+
t = x̂−

t + Kt

[
yt − ht

(
x̂−

t

)]
,

P +
t = (I −KtHt)P −

t (I −KtHt)⊺ + KtRtK
⊺
t

7: end for

If all requirements are met, EKF ensures that the state’s posterior distribution is approx-
imated by a Gaussian, xt | y1:t ≈ (x̂+

t , P̂ +
t ). It is important to emphasize that the EKF is
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known as a sub-optimal filter because it does not give closed-form solutions for the posterior
distribution of states because of this approximation.

Suppose that the equations in the model are highly nonlinear, and as a result, the assumption
of linearity is violated. In this case, the approximation made to the Gaussian will lead to
significant errors in the posterior mean and state covariance. This can lead to slow convergence
or even divergence of the EKF.

All of the above can be logically summarized by giving a list of the main properties of the
EKF:

The EKF estimate is generally not optimal. Optimality is only ensured if the model functions
are linear - but then everything reduces to a linear state model and a basic linear KF.

EKF can diverge, especially if the initial states are set very wrong

The covariance matrix of the estimates is usually underestimated, which can make the filter
inconsistent

In general, however, the EKF has such good properties that it is the standard for a num-
ber of problems (GPS and navigation as an example). If needed, there are also improved
versions, e.g., with a second-order Taylor polynomial (needs Hessians for approximation).
Unfortunately, this increases the complexity.

Also, in the case when the model is not well known, inaccurate, or misspecified, it is better
to use the Monte Carlo methods, which will be discussed a little further.

1.3.7 Particle filters
”Each particle of the computer, each speck of dust held within itself, faintly and weakly,
the pattern of the whole.” – Douglas Adams

As we have clarified earlier, the KF approach provides a framework for estimation, the essence
of which is to determine the posterior distribution of the state and as well as its characteristics
in a recursive way, assuming that all equations in SSM are linear. The basic KF is no longer
applicable if the assumptions are not met, i.e., it may be impossible to calculate a closed-form of
the distribution of interest. The EKF, in its turn, handles nonlinear and non-Gaussian models,
allowing an approximate inference of the first two moments. Thus, if the models are far from
linear and Gaussian assumptions, it cannot give reasonable estimates.

In this case, the sequential Monte Carlo (SMC) method, also known as the particle filter,
comes to the rescue. It is essentially an alternative to the recursive Bayesian filter approach for
inferring states as well as unknown parameters in SSM, precisely for such purposes when the KF
assumptions are not satisfied. The first use of Monte Carlo methods in nonlinear filtering in SSMs
can be found in Handschin; Mayne, 1969 and Handschin, 1970, in which described the estimation
of the posterior mean and covariance of the state by Monte Carlo methods. Its essence is that it
consists of simulation-based methods that are used to approximate the posterior state distribution
based on measurements in nonlinear and non-Gaussian SSMs. This approximation is retrieved
by constructing a set of random samples, called particles, and associated with them appropriate
weights from the target distribution p(xt|y1:t). And without giving too much away, it can be
said that the SMC method uses Monte Carlo simulation in order to approximate the posterior
filtering distribution through the generation of weighted samples set. Thus, the estimation
results obtained with the particle filter could be said to be more precise compared to what can
be obtained from other approximate filters. The accuracy is directly proportional to the number
of samples generated, i.e., the SMC method will provide a closer to the truth representation of
the posterior distribution as the number of samples increases, but the computational effort will
also increase.
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The Monte Carlo idea As mentioned earlier, the particle filter is based on the principle of a
recursive Bayesian filter approach, i.e., using a Bayes rule to recursively infer the joint posterior
states distribution as p(x0:t|y1:t) or the marginal state distribution at a particular time with
measurements as p(xt|y1:t), depending on the goal. This is done by generating a weighted set
of random samples, from which the expectation is then calculated (Arnaud Doucet et al., 2001,
page 197–208).

Let us repeat, Bayes’ theorem, which is used to find the posterior distribution of the state
xt, looks as follows:

p (xt | y1:t−1) =
∫

p (xt | xt−1) p (xt−1 | y1:t−1) dxt−1 (1.52)

p (xt | y1:t) = p (yt | xt) p (xt | y1:t−1)∫
p (yt | xt) p (xt | y1:t−1) dxt

∝ p (yt | xt)
∫

p (xt | xt−1) p (xt−1 | y1:t−1) dxt−1,

(1.53)

As we can see, integrals appear in both equations, in the prediction (1.52) and in the update
(1.53). The most interesting thing is precisely that the particle filter can be used to avoid the
difficulties associated with calculating integrals by solving them numerically. To achieve this
goal, the importance sampling technique is sequentially employed to approximate integrals that
are difficult to compute.

” The Monte Carlo idea is to approximately represent required distribution by random samples
(an empirical measure). Those random samples should be generated such that their properties
resemble the properties of the required distribution. The samples are nothing but numerical
values stored in a computer, and it is (hopefully) easier to analyze those samples than analyzing
distribution directly. ”(Svensson, 2016, page 39)

Using this idea, the approximation of state posterior distribution in (1.53) can be formulated
as:

p (xt | y1:t) ≈
N∑

i=1
w

(i)
t δ

(
xt − x

(i)
t

)
. (1.54)

” Formally, we can introduce the following notation of N weighted samples {x(i), w(i)}N
i=1.

This collection of weighted samples is a Monte Carlo (or particle) approximation of the density
p (xt | y1:t) if it holds that the empirical measure is ‘close’ to p (xt | y1:t). ”(Svensson, 2016,
page 40) It follows from the above formulation that w

(i)
t represents the weight of the i-th particle

at time t, δ(·) is Dirac delta function9 and x
(i)
t is the i-th particle, also at time t. If it is possible

to take samples directly from the desired posterior probability density function, one may draw
N such samples and set all weights equal to 1. In case samples cannot be taken from p(xt|y1:t)
directly, there are alternatives. This problem is solved by using another convenient probability
distribution q(·), which may serve as a source for taking samples. Accordingly, when using the
alternative convenient distribution, its sampled are used to estimate the true posterior probability
distribution. In sampling methods, the importance sampling(IS) refers to the sample, and the
importance function(IF) refers to the proposed convenient function.

Importance sampling (IS) The IS process involves estimating the main distribution of in-
terest using measurements derived from a different distribution. By denoting f(x) as the target
(complex) density and q(x) as the proposal density, the following pattern will be visible:

9The Dirac delta function is a function that is zero everywhere except for one point, and at that point it can
be considered either indeterminate or having an ”infinite” value.
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∫
f(x)dx =

∫
q(x) f(x)

q(x)︸ ︷︷ ︸
=w(x)

dx =
∫

q(x)w(x)dx. (1.55)

Choosing this proposal density assumes that it has the same support as the target density,
i.e. q(x) > 0 whenever f(x) > 0. As for calculating weights, it is a relatively trivial matter of
substituting the value of x into the familiar functions f(·) and q(·). Moreover, it can be nicely
generalized using the example of the mean value of E[x] at f(x) as following:

Ef [x] =
∫

x · f(x)dx =
∫

x · f(x)
q(x) q(x)dx =

∫
x · w(x)q(x)dx = Eq[x · w(x)], (1.56)

with the condition that q(x) > 0 wherever xf(x) ̸= 0. Also, with respect to equation (1.56),
the first part is the expectation of x from the target density, f(x), and the second part is the
expectation with respect to IF, q(x). It logically follows that it is possible to use the IF to generate
independently and equally distributed samples on a regular basis. Using the Monte Carlo method
and the particles, the integral in the equation can be approximated in the following way:

1
N

N∑
i=1

xi · w(xi)→ Eq[x · w(x)]

→ Ef [x],

(1.57)

where w(xi) = f(xi)
q(xi) are importance weights, which represent the ratio between densities. In other

words, the estimate of the mean is obtained as a weighted average of the samples. A re-adjustment
of the error produced by sampling from the IF is carried out by using importance weights. IF-
based expectations converge to the expectation of actual target density when increasing the
number of particles, according to the central limit theorem (CLT)10. From the last equation
above (1.57), we see that the weights are not normalized and do not add up to one. The
normalization here is represented by the factor 1/N and we could therefore consider:

w′(xi) = w(xi)
N

where
N∑

i=1
w′(xi) ̸= 1. (1.58)

The expectation in equation (1.57) can be rewritten as:

N∑
i=1

xi ·W (xi) where W (xi) = w(xi)∑N
i=1 w(xi)

. (1.59)

W (xi) are called the normalised importance weights. This estimate is biased but may have a
lower variance, and this is the advantage of IS. From the point of view of Bayesianism has another
advantage - it does not depend on the normalization constant. It is also another privilege that
the pairs {xi, Wi}N

i=1 can be thought of as an approximation of the target density f(x).

Sequential importance sampling (SIS) Sequential importance sampling (SIS) algorithm
involves repeating IS applications for estimation purposes (typically of state models) based on
the following ideas:

the estimation is performed using samples x
(i)
t from the state space xt with weights wi,

10The CLT states that sample means approximate a normal distribution with increasing sample size, regardless
of the distribution of the population.
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the weights are updated so that more probable values of the state variable are increased and
less probable values are decreased,

{x(i), w(i)}N
i=1 are used to represent the filtering distribution p(xt | y1:t).

The empirical11 approximation of p(xt | y1:t) can be represented as follows:

p (xt | y1:t) ≈

∑N
i=1 w

(i)
t δ

x
(i)
t

(xt)∑N
i=1 w

(i)
t

. (1.60)

Returning to the problem of state models of the form (1.2), where xt is the unobservable state
of the system, f(xt | xt−1) is the state model in the form of some suitable probability density,
yt is the measurements (also observations) and g(yt | xt) is the observation model, also in the
form of some suitable density. Suppose both models are linear, and the corresponding functions
are densities of the normal distribution. In that case, we can already conclude, based on the
previously obtained information, the sequential estimate for t = 1, 2, . . . is given by, e.g., the KF.
When linearity is not satisfied, it makes sense to try the EKF. Furthermore, if the nonlinearity
is strong, it is very convenient to use just SIS.

The SIS filter algorithm can be derived by the joint states posterior distribution, p(x0:t|y1:t).
Applying Bayes’ theorem, we obtain the following recursive formula for the calculation of the
desired posterior distribution of states:

p (x0:t | y1:t) ∝ p (yt | x0:t, y1:t−1) p (x0:t | y1:t−1)
= p (yt | x0:t, y1:t−1) {p (xt | x0:t−1, y1:t−1) p (x0:t−1 | y1:t−1)} ,

(1.61)

and after using the Markovian assumption:

p (x0:t | y1:t) = g (yt | xt) f (xt | xt−1) p (x0:t−1 | y1:t−1) . (1.62)

An importance sampling density q(x0:t | y1:t) is introduced for the target true target distri-
bution p(x0:t | y1:t). Samples will be drawn directly from it.

q (x0:t | y1:t) = q (xt | x0:t−1, y1:t) q (x0:t−1 | y1:t−1) (1.63)

In order to update the unnormalized importance weights of the particles recursively, the
following expression can be used:

w
(i)
t =

p
(

x
(i)
0:t | y1:t

)
q
(

x
(i)
0:t | y1:t

)
=

g
(

yt | x(i)
t

)
f
(

x
(i)
t | x

(i)
t−1

)
p
(

x
(i)
0:t−1 | y1:t−1

)
q
(

x
(i)
t | x

(i)
0:t−1, y1:t

)
q
(

x
(i)
0:t−1 | y1:t−1

)
=

g
(

yt | x(i)
t

)
f
(

x
(i)
t | x

(i)
t−1

)
q
(

x
(i)
t | x

(i)
0:t−1, y1:t

) W
(i)
t−1,

(1.64)

where W
(i)
t−1, as was discussed earlier in equation (1.59), is called the normalized importance

weights at previous moments of time. Obviously, updating the i − th weight in the transition
from time t−1 to time t is a relatively simple matter of multiplying by the first fraction in (1.64).
The importance function should be chosen in such a way that it fulfills the Markov assumption:

11The empirical distribution allows you to approximate the true distribution using weighted or unweighted
samples
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q
(

x
(i)
t | x

(i)
0:t−1, y1:t

)
= q

(
xt | x(i)

t−1, y1:t

)
and w

(i)
t =

g
(

yt | x(i)
t

)
f
(

x
(i)
t | x

(i)
t−1

)
q
(

x
(i)
t | x

(i)
t−1, y1:t

) W
(i)
t−1.

(1.65)
Hence, the filter algorithm requires storing only the current state instead of all previous

states. All of the above can be summarized by the following description of the whole algorithm.

Algorithm 4 Sequential Importance Sampling
Input: {y1, ..., yT }, number of particles N
Output: Estimates {x̂0:T }

1: Initialization Sample x
(i)
0 from a suitable a priori distribution p(x0) and assign them the

initial uniform weights w
(i)
0 = 1/N .

2: for t = 1,2,...,T do
3: Prediction: Sample N particles from the importance density x

(i)
t ∼ q

(
xt | x(i)

t−1, yt

)
4: Update: Recalculate weights according to

w
(i)
t =

g
(

yt | x(i)
t

)
f
(

x
(i)
t | x

(i)
t−1

)
q
(

x
(i)
t | x

(i)
t−1, y1:t

) W
(i)
t−1,

and normalize them W
(i)
t ← w

(i)
t /

∑N
j=1 w

(j)
t .

5: Estimation Estimate of the mean of E[xt|·] =
∑N

i=1 W
(i)
t x

(i)
t .

6: end for

However, it is time to discuss also the disadvantages of the filter. Perhaps the main problem
encountered with SIS is particle degeneracy, i.e., the variance of the importance weights, which
increases with time. This will result in a large variance in the weight importance distribution,
which will manifest in the fact that most particles will have low weight, tending to zero after a few
iterations, whereas few will have high weight. Now, please pay attention to how the expectation
of the posterior distribution of interest is calculated (1.60), it is clear that it will be an inefficient
estimate because it will be based only on particles with large weights, and small ones will be
ignored. In order to overcome this problem, resampling can be added to the filter algorithm.
In order to overcome this problem, the resampling step can be added to the filtering algorithm,
which is an indispensable part of the following algorithm.

Sequential importance resampling (SIR) One of the most popular solutions to the de-
generation problem is resampling. It involves focusing on large particles with large weights
and excluding particles with small ones. Simply put, it selects the more successful samples
(with higher weights) and replicates them. Conversely, samples with lower weights are highly
likely to be discarded. This implies that the new particle weights become uniform after time of
resampling.

Particle degeneracy can be solved in a number of ways - such as through multinomial sam-
pling, systematic sampling, stratified sampling, or residual sampling. In general, there is no
significant difference in the effect on the performance of the filtering algorithm between the dif-
ferent resampling methods (Li et al., 2015). The only difference between the listed approaches
is their computational complexity. Therefore, in the framework of this thesis will be used the
most basic and straightforward resampling algorithm - the multinomial resampling. In addition,
in terms of complexity, the chosen approach is not one of the cheapest from a computational
point of view. Its complexity is O(n log n) (where n denotes the number of particles), which is
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not so critical. The essence of multinomial sampling is to generate N independent random vari-
ables with sample replacement using a discrete approximating distribution of p(xi = j) = W

(i)
t ,

i, j = 1, .., N . Weights are also equated, that is, reseted as follows w
(xi)
t ← 1

N .
It is also worth saying a few words about the choice of importance function. In order to

obtain a reliable estimate of the state posterior distribution, it is crucial to choose the IF carefully.
Without going into too much detail, choosing the IF has two options: a suboptimal or an optimal
choice. The suboptimal choice is the following q (xt | x0:t−1, y1:t) = f (xt | xt−1), i.e., the prior
state distribution is used as the importance function. With this choice, the update of the weights
will look like this:

w
(i)
t = g

(
yt | x(i)

t

)
W

(i)
t−1. (1.66)

Even though suboptimal importance density is the easiest to calculate, such a choice also
has disadvantages. One of the main things is probably that the algorithm will not give the
best estimate of the parameters of interest for obvious reasons: the knowledge of the current
measurement is not taken into account. Also, as one consequence, the variance of importance
weights will increase over time. Such undesirable effects can be said to be minimized by the
optimal choice, which is as follows q (xt | x0:t−1, y1:t) = p (xt | xt−1, yt),i.e., the conditional state
distribution taking into account the state at t − 1 time and the current measurement. And
accordingly the equation of the weights update will be:

w
(i)
t =

g
(

yt | x(i)
t

)
f
(

x
(i)
t | x

(i)
t−1

)
q
(

x
(i)
t | x

(i)
t−1, y1:t

) W
(i)
t−1 = p

(
yt | x(i)

t−1

)
W

(i)
t−1. (1.67)

The main advantage of this choice of IF is quite obvious, namely that the update of the
weights strictly depends on the previous state, instead of the current state.

After taking apart all the necessary prerequisites, it is time to move on to dissembling the
SIR algorithm, also referred to as the Bootstrap filter. It was first presented by Gordon et al.,
1993. In general, it can be considered one of the simplest SMC methods, the essence of which
is to obtain the posterior distribution by propagating and updating particles. The suboptimal
choice is used for IF, i.e, the prior density of the state. Weights are updated according to the
equation (1.66). The update is based on only the previous weight and the likelihood of the
current measurement. In addition, another critical change compared to the SIS algorithm is
that one significant step has been added, namely the previously mentioned resampling. There
are several ways to approach resampling, for example resampling every t, or only when it is
”somehow” more convenient. As the part of this thesis, resampling will be performed at each
time instant. As for the implementation of other aspects, it remains the same as for the SIS
algorithm. We can summarize all of the above by presenting the algorithm itself (5)

1.3.8 Approximate Bayesian Computation
”Far better an approximate answer to the right question, which is often vague, than an
exact answer to the wrong question, which can always be made precise” – John Tukey

In the previous subsections, it was explained what the state-space models are and the appli-
cable estimation techniques. Finally, everything was summed up by the theme of SMC meth-
ods, which are widely considered state-of-the-art for filtering. The SMC has undergone many
computational improvements over the past decade (A. Doucet et al., 2008), but there are still
two well-known shortcomings in high dimensions. In particular, quite often, the SMC can be
expected to be computationally intensive and not approximate the target probability density
function precisely enough. As for the first problem, it is directly related to the complexity of cal-
culating importance weights and the computational cost of simulation, while the second problem
is mainly related to the complexity of the target densities.
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Algorithm 5 Sequential importance resampling (SIR) - bootstrap particle filter
Input: {y1, ..., yT }, number of particles N
Output: Estimates {x̂0:T }

1: Initialization Sample x
(i)
0 from a suitable a priori distribution p(x0) and assign them the

initial uniform weights w
(i)
0 = 1/N .

2: for t = 1,2,...,T do
3: Resampling: Select x̃

(i)
t−1 ∼

∑N
i=1 W

(i)
t−1x

(i)
t−1 proportional to their weights W

(i)
t−1 and reset

related all weights 1/N .
4: Prediction: Sample N particles from the importance density x

(i)
t ∼ f

(
xt | x̃(i)

t−1

)
5: Update: Recalculate weights according to

w
(i)
t = g

(
yt | x(i)

t

)
W

(i)
t−1,

and normalize them W
(i)
t ← w

(i)
t /

∑N
j=1 w

(j)
t .

6: Estimation Estimate of the mean of E[xt|·] =
∑N

i=1 W
(i)
t x

(i)
t .

7: end for

In addition, SMC often requires that the measurement model g (yt|xt) be a well-defined
probability density, which may not be possible in all applications. A more flexible approach
called approximate Bayesian computation (ABC) can be used to get around this requirement.

This subsection starts with a brief examination of the foundation of ABC, which is, in essence,
an Bayesian inference approach that does not require the specification of a likelihood function
and, therefore, can be used to estimate posterior distributions for simulation-based models. The
strengths and positives will also be taken apart as well, as possible limitations related to the
selected kernel function will be dissembled. The ABC approximation is then developed in detail
with the following sampling from it using an SMC algorithm. Near the end of the section,
will be discussed an alternative version of the particle filter with the integration of the ABC
approximation and how exactly ABC methods are used for state-space model interference. It is
assumed that the f (·) state and g (·) measurement models are known, so at least it can sample
from them.

1.3.8.1 ABC idea
According to Bayes’ theorem (1.10), two primary components are needed to compute the poste-
rior distribution: the prior distribution and the likelihood, which is essentially a measurement
model. For specific problems, however, a situation may arise where it is impossible to express
the likelihood in closed form, or its computation is prohibitively expensive. On the example
of the particle filter dissembled at the end of the previous section, the algorithm uses a set of
weights calculation as follows w

(i)
t ∝ g

(
yt | x(i)

t

)
to find the corresponding posterior distribution,

where g (·) is the measurement model. Moreover, this particular example clearly demonstrates
the requirement of a well-specified measurement model for such calculations.

In reality, often only the process model that generates the observation yt from the latent
state xt will be available, not the actual proper measurement model in the form of a required
probability density function g (yt | xt). In such a case, there is a means to generate a measurement
but not to estimate its probability since the model is misspecified. It logically follows that an error
will inevitably occur when trying to fit an arbitrary probability distribution to this generative
model, i.e., for example, weights assigned to individual particles most likely may not reflect
reality and correspondingly lead to incorrect results, which reduces the efficiency of the same
particle filter.
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One way to solve such a problem is to use existing knowledge of the generative process xt → yt

to model a series of pseudo-measurements ut in order to approximate the likelihood p (y1:t|xt).
This is exactly the basis on which the ABC methodology is built. ”A defining feature of this class
of algorithms is the existence and reliance on a known data generating mechanism so that for
any value of x, we can obtain pseudo-measurements using the same mechanism that generated
the measurement data; we call this simulator-based models, i.e. models which are specified
only through the generative mechanism.

More formally, a set of n measurement data points y0 =
(

y
(1)
0 , ..., y

(n)
0

)
is assumed. The

data-generating process is known, but the likelihood function is unavailable, due to the fact that
either it is too costly to evaluate or simply cannot be analytically computed. Then, given a
particular state value (which may be simulated from its prior distribution), we simulate a new
set of pseudo-measurements ut of the same dimension

ysim = u ∼ p (y | x) (1.68)
where is used the same notation to denote the true but unknown model. Here the analytical
form of the probability density function is no longer available, and instead, it can obtain pseudo-
measurements u. The likelihood function is approximated via simulations of the state and data
pair (x, u), instead of being analytically evaluated at y0. ” (Grazian et al., 2019, page 2)

It logically follows from all of the above that by estimating how closely generated pseudo-
measurements match the true measurement yt, a surrogate for measurement density g (yt | xt)
is calculated, i.e., it is reasonable to expect the true probability density to be high in the region,
where the vast majority of simulated pseudo-measurements are close to yt. So, putting it simply,
in the circumstances of the measurement model being misspecified due to various limitations,
by omitting the estimate of g (yt | xt), one can continue the inference even without knowing
the density of the observation model. It is the basic idea that underlies the methodology of
Approximate Bayesian Computation.

1.3.8.2 ABC methodology
As we discovered earlier, ABC methods are commonly helpful when there is no explicit expression
for likelihood, but a parameterized ”simulator” capable of generating pseudo-data is presented.
The goal is to determine which parameters produce pseudo-data close enough to the actual
measurement data. To achieve this, the posterior distribution of these parameters is calculated.
Before describing how ABC is applied to state-space models, it is first necessary to break down
in detail, but briefly, the basic fundamentals on which its idea rests.

The first ABC methodology-related ideas date back to Rubin, 1984, where was first described
a concept of the posterior distribution approximation based on simulated pseudo-measurements.
A paper by Tavaré et al., 1997 first proposed an ABC algorithm for a posterior inference for
analytically intractable demographic models. This work was followed by Pritchard et al., 1999
an applied study in biology to model human Y-chromosome variation. Recent studies include
Marin et al., 2012, which deepens and extends the knowledge of the various improvements and
extensions made to the original ABC algorithm.

Perhaps it should be started with the classical formulation of ABC, as far as possible, ac-
cording to Jasra et al., 2012, which is as follows:

p (x | y) ≈ pϵ (x | y) ∝
∫
Rdy

IAϵ,y
(u) p (u | x) p (x) du, x ∈ Rdx (1.69)

which represents the approximation of a posterior density p (x | y) ∝ p (y | x) p (x) by introducing
an auxiliary variable u, i.e., by integrating over this variable, the posterior approximation is
constructed based on values that are close enough to the true measurement.

Also, as for the rest of the unknown variables: Aϵ,y =
{

u ∈ Rdy : ρ (u, y) ≤ ϵ
}

, IA is the
indicator of a set A and ρ : Rdy × Rdy → R is a distance metric, generally the Euclidean
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distance. Also, it can be noticed that formula includes hyper-parameter ϵ ⩾ 0, which specifies
the boundary of how far can be variable u from the actual true measurement y to be considered
similar.

Basically, the following regularity works, as ϵ gets closer to zero, a better approximation is
obtained, and the marginal pϵ (x | y) density converges to the desired posterior p (x | y), but it
should be understood that the computational complexity also increases in this case.

A key feature of the above equation is that such an integral can be approximated by sampling
from the likelihood p (· | x) for any x, even if p (u | x) cannot be estimated numerically, i.e., it
is possible to simulate samples u from the model without regard to the underlying probability
density function.

Often also in order to avoid complications related to dimensionality, a variable s is introduced,
denoting the summary statistic s : Rdy → Rp, 1 ⩽ p < dy, that is, when it is used in the above
formula the comparison condition for variable A changes to ρ(s(u), s(y)) ≤ ϵ.

Relying on Jasra et al., 2012, it can be argued that s is a sufficient statistic for x (carries
the same info about x as the whole y) under the condition ϵ → 0, then the probability density
pϵ (x | y) converges to p (x | y), but it should be remembered that such a statistic in most cases
belongs to the family of exponential distributions. That is, when the insufficient statistic is used,
an additional approximation error arises. Regarding the question of how to choose the well s,
the related information is available in research Fearnhead et al., 2012 and review by Blum et al.,
2012. However, one should keep in mind that this adds additional levels of approximation and
tuning.

It is time to move on to the more practical things and start with the most basic and straight-
forward ABC-based algorithms - The ABC Rejection Algorithm.

The ABC Rejection Algorithm As previously stated, the ABC rejection algorithm repre-
sents the most basic form of ABC. Its working principle is as follows: it iteratively first samples
a set of parameters x∗ from the prior distribution p(x), then simulates pseudo-measurements u
by plugging them into the likelihood p (y | x∗) and, finally, using the metric ρ, resolves whether
a sampled u is in Aϵ,y or not by comparing with the true measurement y. If the simulated
pseudo-measurement is too different from the true measurement data, the sampled parameter
value x∗ is discarded, otherwise it is accepted, and it is assumed that the true data will most
likely lie below x∗. All of the above is presented compactly and step by step in the schema below,
describing the algorithm itself (6):

Algorithm 6 ABC rejection sampling (Tavaré et al., 1997)
Input: measurement y, number of samples N, metric ρ and hyper-parameter ϵ
Output: Each accepted x∗ is such that x∗ ∼ pϵ (x | y)

1: Initialization Sample x
(i)
0 from a suitable a priori distribution p(x0) and assign them the

initial uniform weights w
(i)
0 = 1/N .

2: for t = 1,2,...,N do
3: Sampling: Sample from the prior x∗ ∼ p (x)
4: Simulation: Simulate a pseudo-measurement u ∼ p (y | x∗)
5: If ρ(u, y) ≤ ϵ then
6: store xi ← x∗

7: end if
8: end for

Based on these accepted samples {x(1), .., x(N)} from algorithm 6, then an ABC approxima-
tion of p (x | y) is constructed as an empirical distribution as following:
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p (x | y) ≈ 1
M

N∑
i=1

δx(i)(x). (1.70)

As previously mentioned, reducing the value of the parameter ϵ leads to a more accurate
approximation, but may require unbearable computation time to obtain at least a single accep-
tance due to an increased rejection rate. In practice, it has to set ϵ > 0, so that draws are made
from the approximate posterior density pϵ (x | y).

To summarize the above, it is needed to draw the following conclusions about ABC results
in the context of convergence ”in distribution”:

when ϵ→ 0 then pϵ (x | y)→ p (x | y)

when ϵ→∞ then pϵ (x | y)→ p (x)

Essentially, nothing new is learned for too large ϵ, since it forces the algorithm to take
wrong xi more often by simulating different, compared to the true value, pseudo-measurements.
Approximation quality improves ϵ→ 0, but sample size decreases. That is, it can be understood
that the choice of ϵ is a trade-off.

As has already become clear from all that has been passed, the last missing information for
the direct implementation of the algorithm is how the value of the parameter ϵ to choose. This
is the main difficulty to which many works are devoted. Different approaches and methods are
described in such works as Jasra et al., 2012, Kamil Dedecius, 2017, and many others. The main
point that should be realized from all the above is that the ABC puts a likelihood-free idea into
a roughly Bayesian framework.

1.3.8.3 ABC filtering in the context of SSMs
At this point, a general understanding of the ABC methods principle has already been obtained,
and it is time to see how they are applied specifically in the context of the SSMs. And in their
context this means that there is a form of measurement model (1.2b) that allows simulating
pseudo-measurements u

(i)
t by plugging the state particles x

(i)
t into it, i.e., the measurement-

generating process xt → yt itself is available, but it is impossible to evaluate the measurement
model’s probability density function in form g (yt | xt).

The measurement model itself can be a very complex probability density function, a differ-
ential equation or a stochastic process, or even an equation without noise terms. However, given
the impossibility of evaluating the probability density, this is a significant limitation, for example,
when using the same particle filter, which directly relies on its presence to calculate the weights.

Jasra et al., 2012, already mentioned earlier, considered a modification of the particle filter
with ABC integration, the essence of which differed only in a couple of details in comparison with
the original particle filter algorithm (5). These changes are that modification uses a measurement
model to generate pseudo-measurements u

(i)
t and then calculates importance weights based on

how close they are to true measurements.
That is, in essence, the only difference is only in the way important weights are calculated, i.e.,

instead of evaluating the unavailable density g (yt | xt) at the true measurement yt , simulation
of pseudo-measurements u

(i)
t is used. As for the possible value of weights, it can either be zero

in the case ut /∈ Aϵ,y (that is ρ (u, y) ≰ ϵ), or otherwise non-zero.
The modified PF algorithm itself looks as follows (7). As previously mentioned, a plus one

step is added called ”simulation” and subsequently the probability density function g (yt | xt)
approximation is used when updating the weights.

At first glance, one may get the impression that the weights for the same particle x
(i)
t may

appear to drop to zero after a number of time steps due to recursive multiplication in the update
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Algorithm 7 ABC particle filter
Input: {y1, ..., yT }, number of particles N, hyper-parameter(/scale/radius) ϵ
Output: Estimates {x̂0:T }

1: Initialization Sample x
(i)
0 from a suitable a priori distribution p(x0) and assign them the

initial uniform weights w
(i)
0 = 1/N .

2: for t = 1,2,...,T do
3: Resampling: Select x̃

(i)
t−1 ∼

∑N
i=1 W

(i)
t−1x

(i)
t−1 proportional to their weights W

(i)
t−1 and reset

related all weights 1/N .
4: Prediction: Sample N particles from the importance density x

(i)
t ∼ f

(
xt | x̃(i)

t−1

)
5: Simulation Simulate a pseudo-measurements u

(i)
t ∼ g

(
yt | x(i)

t

)
6: Update: Recalculate weights according to w

(i)
t ∝ IAϵ,yt

(
u

(i)
t

)
W

(i)
t−1 and normalize them

W
(i)
t ← w

(i)
t /

∑N
j=1 w

(j)
t .

7: Estimation Estimate of the mean of E[xt|·] =
∑N

i=1 W
(i)
t x

(i)
t .

8: end for

step, but at the beginning of each iteration, resampling is done, so weights are reset uniformly,
and as a result, such collapse cannot occur.

All of the above can be summarized as follows:

The inference using ABC methods is based only on model simulations.

The results of such an inference, respectively, are approximate.

Likelihoods are replaced by a sampling of artificial measurements from the model generating
the data.

In the case of high-dimensional data, the use of summary statistics is essential, but it adds
an extra approximation.

In the case of simple state-space models, the ABC particle filter avoids the use of summary
statistics.

The ABC approach is a natural one within an MCMC algorithm.

Biased filtering The ABC approximation is designed to perform biased filtering for a HMM
if the likelihood function is difficult or even impossible to evaluate. It needs to be understood
accurately that under fixed ϵ, the filter converges to a biased estimator, namely, as the number
of particles tends to infinity, according to the Jasra et al., 2012. It is also clear that the bias itself
tends to zero as ϵ goes to zero, and it goes to zero at the expense of increased computational
effort. Generally, this bias is unavoidable when the measurement model is incorrect, or in other
words, this is the price to pay. In addition, in some scenarios, it is possible that the set Aϵ,yt

may become empty if the realization of the noise exceeds the radius set by ϵ. In order to resolve
this issue, kernel-based density estimation comes to the rescue, which will be explained a little
bit further.

1.3.8.4 Kernel-based approximation
As mentioned earlier, many of the inconveniences and limitations associated with the use of ABC
approximation have the root of the problem in the use of the indicator IAϵ,y

. For example, with
regard to the algorithm (6), the scenario cannot be ruled out where due to an incorrectly set
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value ϵ, no sample will be accepted, and the output will be empty as a result, or in case of the
algorithm (7) the dominant number of weights becomes zero, and the filter is collapsed.

Or the more fundamental problem is that equal weights are assigned to all simulated pseudo-
measurements ut, no matter how far they lie from the true measurement yt. However, it makes
sense to assign a higher weight to a pseudo-measurement closer to the true yt than one farther
away.

In order to try to avoid the above-described issues, one could consider a general kernel function
instead of the indicator IAϵ,y

which would look like g̃yt,εt
(ut). It should be understood as a

kernel function with radius εt that is centered at yt and evaluated at ut. Machine Learning
(ML) commonly uses kernel functions that are proportional to symmetric probability density
functions.

Then, after the introduction of the kernel function, the posterior density p (x0:t | y1:t) can be
approximated by a density p̃ (x0:t | y1:t) which is represented by samples x

(i)
t ∼ f (xt | xt−1) that

in turn simulate pseudo-measurements u
(i)
t ∼ g

(
yt | x(i)

t

)
lying in a predetermined neighborhood

of the true yt.

p̃ (x0:t | y1:t) = p (x0)
∫

p̃ (x1:t, u1:t | y1:t) du1:t

∝ p (x0)
t∏

τ=1

[∫
g̃yτ ,ετ

(uτ ) g (uτ | xτ ) duτ

]
f (xτ | xτ−1) ,

(1.71)

where g̃yτ ,ετ
is the kernel function defining the neighborhood. Using the kernel function, it can

rewrite the update step, or more precisely, the recalculation step of the importance weights wi
t

as:

w
(i)
t ∝ g̃yt,εt

(
u

(i)
t

)
W

(i)
t−1. (1.72)

The kernel function acts as a weight function, assigning less weight to pseudo-measurements
further away from yt, as it is more like using importance sampling than simple rejection sampling,
i.e., all generated samples are accepted, but the corresponding weights are determined according
to how well they match the true measurement.

The choice of g̃yt,εt

(
u

(i)
t

)
is a critical part of the filter design, and a particular part of the

thesis will also be devoted to the analysis of this issue. Also, it is worth realizing that the kernel
function allows automation of the procedure for tuning the kernel radius, which has been ignored
until now. This is what will be discussed next.

”Finally, it should be remarked, that the kernel idea coincides with a noisy extension of the
underlying hidden Markov process with a new sequence of observations {Yt + Vt}, where Vt is a
random noise distributed according to the kernel g̃yt,εt

(
u

(i)
t

)
” (Kamil Dedecius, 2017)

Kernel tuning procedure Examples of various kernel functions will be discussed later, but
for now the topic of tuning the kernel radius is on the agenda. In addition, the method that will
be described is also applicable to the standard ABC formulation, as will be shown a little later.

For example, if one sets a significant enough value for the kernel radius ε, one would expect
that even pseudo-measurements lying too far from the true measurement would be assigned
non-trivial probabilities, which in turn will lead to shifting the filter to incorrect values. In
the opposite case, with a very insignificant value of the kernel radius, the simulated pseudo-
measurements are assigned with low probabilities, and thus the importance weights will be close
to zero. It can be understood that manual tuning is practically impossible under such conditions.
Also, it should not be forgotten that in such a case, one would have to set a different value of the
radius for each point in time, since the radius must also reflect the evolution of the filter over
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time. i.e., considering that all observations of yt are different and may require a different kernel
radius to be set.

The methodology described below is largely inspired by and based on the procedure described
by Kamil Dedecius, 2017 and K. Dedecius, 2018, i.e., if a more detailed description is needed, one
should go directly to the source. According to this theory, the basic idea is that the 100p% Highest
Probability Region (HPR) of the model that generates true measurements and is represented as
intractable or even unknown conditional probability density g (yt | xt), covers the related region
of all possible measurements, including pseudo-measurements simulated by admissible particles
x

(i)
t .

Due to the unknowledge of the true measurement model g (yt | xt), it is approximated by
the convenient symmetric kernel g̃yt,εt

, which is evaluated at each pseudo-measurement {u(1:N)
t }

centered at yt. All that is required is to tune the radius ε at time t, which assures the coverage
of pseudo-measurements by the p-HPR of the kernel in a proportion given by fraction a

N , where
p ∈ (0, 1). However, it is essential to understand that the kernel is not identical to the true
measurement model, but by preserving a high proportion of admissible particles, it achieves
asymptotic convergence of the filter, giving preference to more probable particles. An important
prerequisite for making all of the above work is the condition that the considered kernel function
must be invariant under scale and location transformations, i.e., be from the location-scale family
of symmetric distributions. Many popular kernels are from this family, such as the normal,
Cauchy, Student’s t, Laplace, and many others. Some of them and others will be discussed a
little later, and now it is time to disassemble the kernel adaptation principle, which involves two
steps:

1. Determine the α-th closest pseudo-measurement to the true measurement yt, denoted as u
[α]
t .

As can be expected, an inseparable part of this step is to compute the distance
∥∥∥ yt − u

(i)
t

∥∥∥ for
each pseudo-measurement, based on which the required pseudo-measurement will be found.

2. Center the kernel at yt and then set the corresponding radius εt so that∣∣∣∣∣
∫ u

[α]
t

yt

g̃yt,εt
(ut) dut

∣∣∣∣∣ = p

2 , (1.73)

which means that u
[α]
t lies on the boundary of the p-HPR of g̃yt,εt

.

It is worth noting that in the case of multidimensional yt and ut, the procedure is performed
in a coordinate-wise. For ease of reference, the above kernel adaptation steps can be visualized
as showed in 1.3.

This approach has many positive points, some of which are worth mentioning:

In terms of importance weights, the posterior particle weights are non-uniform and propor-
tional to the distance between the simulated pseudo-measurements u

(i)
t and the true mea-

surement yt. The usefulness of this can be seen directly in a resampling step that involves the
replication of the particles with a higher probability and removing the ones with negligible
weight.

It is also worth highlighting the moment of building a kernel around the true measurement
yt. The benefit of this is that regardless of the initial dispersion of the particles, too high or
the opposite too low, eventually, they gradually concentrate around the true value of x

(i)
t .

Compared with the same particle filter, it can be said that the process of posterior weights
computation differs only in the fact that instead of a true measurement model, the kernel
is used, sacrificing performance, but getting more robustness. As it was already possible to
understand, the computational complexity of the filter will directly depend on the selected
kernel.
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Figure 1.3 Visualization of kernel adaptation steps using the Gaussian kernel, the HPR value p = 0.95
and u

[α]
t is a 1+p

2 -quantile of the adopted kernel. According to the equation (1.73), the painted area has
a volume equal to p

2 = 0.475

As one may have understood earlier, the first step of the described steps is nothing other
than the standard sorting algorithm. As for the second step, it is not so trivial and involves
finding the corresponding value of εt, which is a more complex task that will be considered in
detail further.

Computation of εt Returning to the equation 1.73, it is clear that u
[α]
t is either the 1−p

2 -
quantile or the 1+p

2 -quantile of g̃yt,εt
(ut) depending on the condition being met: u

[α]
t ≤ yt or

u
[α]
t ≥ yt. By definition, the quantile function gives the ρ-quantile. One can easily get around

the point of determining if the value of u
[α]
t is greater or less than the true value of yt by using

a symmetric kernel. In that case, it will be sufficient to consider only the non-negative distance,
i.e., the 1+p

2 -quantile.
Before disassembling the quantile function, it is necessary to refer to the cumulative distri-

bution function (CDF), the inversion of which is a quantile function. Suppose the F denotes the
CDF of the kernel g̃0,1 (·), which, as could be understood, is centered at 0 and with radius 1,
then provided the kernel is from the location-scale family, it is possible to obtain a formulation
of the quantile function for the kernel in general form g̃yt,εt (·), which looks as follows:

Q(ρ) = yt + εtF
−1(ρ), ρ ∈ [0, 1]. (1.74)

Returning to the assumption that the kernel used is symmetric, we can find the desired εt

by substituting u
[α]
t into the previously derived formulation of the quantile function, thereby

obtaining the following:

εt =
∣∣Q ( 1+p

2
)
− yt

∣∣
F −1

( 1+p
2
) =

∣∣∣u[α]
t − yt

∣∣∣
F −1

( 1+p
2
) . (1.75)

As can be seen, the numerator of the division is taken as an absolute value, which directly
reflects the symmetry property of the kernel. That is why it makes no difference if α-th closest
pseudo-measurement is greater or less than the true value of yt. So the only parameterized
parameters are p and α.

Now it is time to take a look at some examples of commonly used kernel functions.

Examples of commonly used kernels This chapter contains a brief examination of the
several kernels that are often used in practice, demonstrating the differences between them,
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as well as deriving rules for using them in the above formula (1.77). For more information
concerning the information described below, please refer to the works Kamil Dedecius, 2017 and
Kamil Dedecius; Djuric, 2015.

The Gaussian kernel (alternatively the normal kernel) Assume the standard deviation
represented as a positive scale parameterεt as well as the translation into yt, then the kernel
is given by

g̃yt,εt

(
u

(i)
t

)
= 1√

2πε2
t

exp
{
− (u(i)

t − yt)2

2ε2
t

}
∝ exp


∣∣∣u(i)

t − yt

∣∣∣2
ε2

t

 . (1.76)

It is worth admitting that this is one of the most frequently used kernel functions. A Gaussian
kernel is shaped like a Gaussian (normal distribution) curve. One of the advantages of using
the Gaussian kernel can be seen in the example of outliers. When yt is an outlier, to prevent
the filter from collapsing, the nearly uniform weights are assigned to particles, considering
the flat of the kernel. The quantile function of N

(
yt, ε2

t

)
has the following form:

Q(ρ) = yt + εtΦ−1(ρ), ρ ∈ [0, 1],

where, as already be known, Φ−1 denotes the quantile of the standard normal distribution,
that is, centered at 0 and with a scale equal to 1. That is, the derivation rule εt for the kernel
in general form g̃yt,εt

(
u

(i)
t

)
will look as follows:

εt =

∣∣∣u[α]
t − yt

∣∣∣
Φ−1

( 1+p
2
) . (1.77)

The Cauchy kernel The same as for the previous one, assume a positive scale parameter
as well as the translation into yt, then the kernel is given by

g̃yt,εt

(
u

(i)
t

)
= 1

πεt

[
1 +

(
u

(i)
t −yt

εt

)2
] ∝

1 +

∣∣∣u(i)
t − yt

∣∣∣2
ε2

t


−1

(1.78)

In contrast to the previous Gaussian, the Cauchy kernel has more pronounced heavy tails.
”The Cauchy kernel is always centered where relevant peaks of the data are, while the Gaussian
kernel tries to accommodate the outliers through an extremely flat component. The Cauchy
kernel does not need such a flat component since its heavy tails can deal with the extreme
values already.” (Kalantan et al., 2019) In the case of using the Cauchy kernel, it can be said
that the values of weights will much better reflect the closeness of u

(i)
t to the true yt. And

the corresponding quantile function of the Cauchy (yt, εt) distribution has the following form:

Q(ρ) = yt + εt tan
[
π

(
ρ− 1

2

)]
︸ ︷︷ ︸

F −1(ρ)

, ρ ∈ [0, 1],

where F −1 represents the quantile function of the standard Cauchy distribution. And, ac-
cordingly, the required εt is computed as follows:

εt =

∣∣∣u([α])
t − yt

∣∣∣
tan

(
πp
2
) (1.79)
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The Uniform kernel Under all the same conditions as in the previous cases, the kernel has
the following form

g̃yt,εt

(
u

(i)
t

)
=
{

1
2εt

for − εt ≤ u
(i)
t − yt ≤ εt

0 otherwise
. (1.80)

It is worth noting that such a kernel essentially adheres to the ABC formulation, i.e., only
those u

(i)
t that ut /∈ Aϵ,y (that is

∣∣∣u(i)
t − yt

∣∣∣ ≰ ϵ) are discarded.

” Most of the ABC methods, ie, both static and sequential, adopt a uniform kernel assigning
equal weights to particles yielding pseudo-observations within a predefined radius around the
true observation and discarding the rest.” (K. Dedecius, 2018) As it can be already concluded,
with this approach it is not necessary to compute the εt, the predefined radius is sufficient.

All of the above regarding kernels can be summarized by the following visualization (1.4):

Figure 1.4 Visualization of commonly used kernel functions such as Gaussian, Cauchy, and Uniform.
The graph shows absolutely all kernels under the same conditions, that is, centered at 0 with a scale
equal to 1.3

As for increasing the computational complexity, when integrating the technique described
above into the algorithm of the usual particle filter, the search step of the α-th closest pseudo-
measurement to true yt is added, as well as the subsequent computation of εt. Both described
operations are pretty cheap. As stated earlier, the computational complexity depends directly
on the chosen kernel function. For example, the calculation of posterior weights can be a cheaper
operation when using the Cauchy kernel compared to the particle filter under the condition of
the normal measurement model.

Adaptive kernels in ABC particle filter At this point, all the necessary components have
been obtained to approach the problem, which is the key objective of this work, namely, making
the inference in the SSMs models with a misspecified or even unknown measurement model. It
only remains to bring all of the above theory into a general form and summarize everything with
the formulation of the desired algorithm.

The algorithm is based on the already well-known particle filter algorithm, given that the
measurement model is not specified as a probability density function g

(
yt | x(i)

t

)
. The ABC

approximation will be used instead of the measurement model. Also, unlike the algorithm (7),
which used the indicator IAεt,yt

, a more elegant approach through a kernel function will be
used. The use of the kernel function will be useful to better reflect the proximity of pseudo-
measurements to the true yt value by assigning the corresponding weights: the larger weights for
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pseudo-measurements lying closer to the true yt and the smaller ones for those farther away. In
addition, automatic kernel scaling at each point in time will be used so that the kernel function is
able to cover a sufficient number of pseudo-measurements. The algorithm itself looks as follows
(8):

Algorithm 8 ABC particle filter with automatic kernel tuning
Input: {y1, ..., yT }, number of particles N, the HPR value p, the number of covered pseudo-

measurements α
Output: Estimates {x̂0:T }

1: Initialization Sample x
(i)
0 from a suitable a priori distribution p(x0) and assign them the

initial uniform weights w
(i)
0 = 1/N .

2: for t = 1,2,...,T do
3: Resampling: Select x̃

(i)
t−1 ∼

∑N
i=1 W

(i)
t−1x

(i)
t−1 proportional to their weights W

(i)
t−1 and reset

related all weights 1/N .
4: Prediction: Sample N particles from the importance density x

(i)
t ∼ f

(
xt | x̃(i)

t−1

)
5: Simulation Simulate a pseudo-measurements u

(i)
t ∼ g

(
yt | x(i)

t

)
6: Identifying u

[α]
t Find the α-th closest pseudo-measurement to yt

7: Computation of εt Calculate kernel scale according to εt =
∣∣u[α]

t −yt

∣∣
F −1( 1+p

2 )
8: Update: Recalculate weights according to w

(i)
t ∝ g̃yt,εt

(
u

(i)
t

)
W

(i)
t−1 and normalize them

W
(i)
t ← w

(i)
t /

∑N
j=1 w

(j)
t .

9: Estimation Estimate of the mean of E[xt|·] =
∑N

i=1 W
(i)
t x

(i)
t .

10: end for
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Chapter 2

Well-specified models
experiments

Having already had all the necessary theoretical basis passed, it is time to go directly to the
practical part. The experiments will be conducted directly on the three different SSMs described
in detail below. Among the models will be both linear and non-linear. Such indicators as
efficiency, performance, and robustness of the following algorithms will be compared: KF, EKF,
particle filter, and the modification of particle filter with ABC approximation and automatic
kernel tuning.

Within the framework of this chapter the experiments will be conducted on well-specified
correct models. Also, importantly, one of the main tasks in this chapter is to consider the
tracking performance of the approximate filtration with adaptive kernels and how close it is to
the performance of a regular particle filter using the correct model.

The mean square error (MSE) will be used as a performance indicator, which is calculated
as follows:

MSE = 1
t

t∑
τ=1

(x̂τ − xτ )2

= 1
t

t∑
τ=1

(
N∑

i=1
W (i)

τ x(i)
τ − xτ

)2

,

(2.1)

which is residual sum of squares resulting from comparing the predictions x̂t with the ground
truth xt. This is one of the most popular metrics for scoring how close the model’s outputs are
to ground truth desired values. It is worth recalling that in the case of the ideal model, the MSE
value will be zero.

2.1 Technical prerequisites
All of the following experiments were performed on the following laptop computer MacBook Pro
(Retina, 15-inch, Mid 2014). All experiments were performed repeatedly to obtain sufficiently
representative results, as well as to smooth out, if possible, the technical limitations associated
with the computing power and technical limitations of the available device.

As for the experiments themselves and the required dependencies, the programming language
Python3.9 and the following dependencies were used:

NumPy v.1.21.3 - primarily for mathematical operations

41
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SciPy v.1.7.1 - in most cases only the stats module containing a huge number of statistical
functions

Matplotlib v.3.4.3 - responsible for everything related to visualization

2.2 Example 1: Power growth model
The first example should, in fact, prove that the performance of the proposed approximate filter
with adaptive kernel should be quite close to the performance of the standard bootstrap particle
filter or, on the contrary, disprove this statement. It is worth recalling that unlike particle filters,
approximate filters do not require full knowledge of the measurement model, i.e. it is sufficient
for them to work with equations without noise terms.

On the agenda is a popular problem rooted in such fields as ecology and epidemiology, referred
to as the exponential growth model. But let’s consider a slightly modified version of the problem,
replacing the exponential function with a exponentiation (power) and call it the power growth
model (PGM). The PGM has the following form:

yt = k + µt + εt,

µt = µ
1+νt−1
t−1 + ξt,

νt = ρνt−1 + ζt,

(2.2)

where ρ ∈ [0, 1] is the ”discounting” factor and k is the drift. We either know both of these
variables or we have to estimate them appropriately. As can be seen, the process is nonlinear
and very sensitive to combinations of νt and µt values. It is enough to keep the inappropriate
combination for a while and the process will explode.

The next step is to make an appropriate state-space model from the above equations:

State evolution model:

xt =
[
µt

νt

]
=
[
µ

1+νt−1
t−1
ρνt−1

]
+ wt, (2.3)

where
wt ∼ (0, Q) with Q =

[
ξ2

t 0
0 ζ2

t

]
, (2.4)

that is nonlinear, will require linearization if the EKF is used.

Measurement model:
yt = Htxt + Btut + εt

= [1, 0]xt + k + εt.
(2.5)

which does not require linearization, because it is already linear.

Since the EKF is one of the filters used in the experiment, it is necessary to linearize the
equation of state, i.e., to determine the derivative of the two-dimensional function f (·) - the first
vector on the right-hand side:

Ft =
[
(νt−1 + 1)µνt−1

t−1 µ
1+νt−1
t−1 ln µt−1

0 ρ

]
, (2.6)

that is in the state prediction the nonlinear equation will be used to predict x̂−
t and the time-

varying matrix Ft to predict P −
t . As for the update step, no linearization is required and the

linear measurement equation will be used.
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Since this chapter assumes that the model is correct specified, the noise terms belong to the
following distributions:

εt ∼ N (0, 102),
ξt ∼ N (0, 0.12),
ζt ∼ N (0, 0.012),

(2.7)

the noise variables εt, ξt and ζt are independent and identically distributed. It is clear that under
the following conditions, there is the Gaussian measurement model gt, and also, the measurements
yt are corrupted by Gaussian noise. It can reasonably be expected that both EKF and PF will
perform exceptionally well since all necessary assumptions are met.

It is also important to add that since the second equation (2.2) has a mathematical operation
with raising a number to a degree, in order to avoid numerical errors during filtering, a couple
of mathematical tricks have been added to the function that deals with particle evolution, such
as discarding particles that lead to invalid values, etc., thus ensuring that SMC filters work
normally. Unfortunately, given the architecture of the EKF filter, which cannot select from
many particles, no modifications have been added to it. Thus, one should consider that the EKF
filter may generate invalid values on one of the iterations.

Initialization The initial parameters are x0 = [100, 0], k = 2, ρ = 0.9, the length of the series
is 500 samples. The EKF filter and three variants of SMC filters were compared. Among the
SMC filters are the bootstrap PF, the ABC filter with Gaussian kernel, and the ABC filter with
Cauchy kernel. The inference started at the following parameters: the prior state values for
EKF are x0 = [0, 100] and P − = 10I2×2, where I2×2 denotes the identity matrix of rank 2.
For SMC filters, an initial set of 1000 particles for nonlinear states is randomly sampled from

N ([100, 0],
[
0.12 0

0 0.012

]
) and used in all SMC filters. Unlike the PF filter, the ABC filters

lack the full knowledge of the measurement model. The ABC filters setting are the HPR value
p = 0.95 and covers 90% of pseudo-measurements. Each SMC filter performs a multinomial
resampling at the beginning of each time step. An experiment with 100 independent repetitions
was conducted to obtain representative results.

Charts and analysis Accordingly, after 100 experiment runs of all filters, each time on newly
generated data, the following results were obtained, presented in the graphs below. Figure 2.1
shows the statistics of the final MSE values in the form of box plots. As one would expect, with
full knowledge of the measurement model, the EKF and PF filters showed quite acceptable and
unambiguously best results among the other filters. It was quite expected that PF would prove
to be a fairly stable filter, even it can be seen that its results are slightly, but still better than
those of EKF. Just the same, it can be observed that with a sufficient number of particles, the PF
is more accurate than the EKF, although computationally more expensive. The stability of the
filter can also be proved by the fact that the value from the Table 2.1, which shows the average
of final MSE values after 100 experiment runs, is not very different from the median value shown
on the box plot. Also, compared to standard approximation methods such as EKF, the PF’s
main advantage is that it does not rely on any local linearization technique. As for ABC filters,
it can be stated that their results against the background of EKF and PF look worse, but not
much, especially given the lack of accurate knowledge of the measurement model. It can be seen
that the ABC filter operation in the context of this model is not quite sensitive to the choice of
kernel. So, for example, from Figure 2.1, one can see that the ABC filter with the normal kernel
performed slightly better for tracking both state variables µ and ν. Also, if one looks at the
table 2.1 with the averaged values after all 100 experiment runs, one can observe the same, that
the results are almost identical for both ABC filters, but still, the filter with the normal kernel
shows a slightly better performance.
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Figure 2.1 (PGM, Normal noise) Box plots showing final MSE values for both state variables µ and
ν of 100 repeated experiments. The boxes show medians, upper and lower quartiles. The length of the
whiskers is defined as 1.5 times the interquartile range. The outliers are not displayed.

µ ν

EKF 17.029 7.435e-04
PF 13.840 7.319e-04
ABC Normal 29.347 7.646e-04
ABC Cauchy 30.963 8.274e-04

Table 2.1 (PGM, Normal noise) The final MSE values for both state variables µ and ν averaged over
100 runs

Another indicator worth paying attention to is shown in Figures 2.2 and 2.3. The first Figure
shows the implementation of the measurement noise εt in the final experiment run, and the second
shows the scale settings of the ABC filter kernels in the final experiment run. Basically, both
cases show the same εt evolution characteristics. Clearly, there are some minimal differences,
but this is a property of the kernels themselves.

In general, based on the example of this experiment, one can say that all the filters showed
pretty good results with the obvious favorites. Considering that ABC filters do not require the
measurement generating model to be probabilistic, also showed good results. In this example,
the ABC filter with the normal kernel stands out slightly better, but overall, both ABC filters
showed almost identical good results.

2.3 Example 2: Constant velocity model

Next in line is a fairly popular and well known constant velicty model (CVM). The model is
absolutely linear and its purpose is to filter the position of an object moving on the surface, i.e.
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Figure 2.2 (PGM, Normal noise) One particular normal noise realization εt. Relative frequency
histogram and box plot. The box shows the median, upper and lower quartiles. The length of the
whiskers is defined as 1.5 times the interquartile range. Dots closer to the edges of the box represent
outliers.

Figure 2.3 (PGM, Normal noise) The top two graphs show the one particular evolution of the normal
and Cauchy scales εt, respectively. The bottom one represents the normal noise realizations.

in 2D. The CVM has the following form:

x1,t = x1,t−1 + vx1,tdt + wx1,t,

vx1,t = vx1,t−1 + wvx1,t,
(2.8)

where the first equation characterizes the current position of the object in both axes, and the
second equation characterizes the velocity of the object at a given time. Consider that the
velocity is the same and its changes are caused only by noise. Only position measurements in
both axes are available in 1 second time steps. An example for one axis looks like this:
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y1,t = x1,t + εy1,t. (2.9)

All the same filters will be used for this model as for the previous one, except that this model
is absolutely linear, so KF will be used instead of EKF. It is time to make the appropriate SSM
from the above equations:

State evolution model:

xt =


x1,t

x2,t

vx1,t

vx2,t

 =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

xt−1 + wt, (2.10)

where

wt ∼ (0, Qt) with Q = q2 ·


dt3

3 0 dt2

2 0
0 dt3

3 0 dt2

2
dt2

2 0 dt 0
0 dt2

2 0 dt

 . (2.11)

Measurement model:

yt =
[
1 0 0 0
0 1 0 0

]
xt + εt, (2.12)

where
εt ∼ (0, Rt) with R = r2 ·

[
1 0
0 1

]
. (2.13)

Just like last time, based on the assumption that the model is correctly specified, the noise
terms belong to following normal distributions:

wt ∼ N (0, Qt),
εt ∼ N (0, Rt).

(2.14)

Initialization The initial parameters are x0 = [0, 0, 1,−1], dt = 1, r = 3, q =
√

5, the length
of the series is 300 samples. Accordingly, the KF filter and three other variations of SMC filters
will be compared. Just like in the previous example, the SMC filters include bootstrap PF and
two ABC filters with normal and Cauchy kernels. The initial parameters for the KF filter are
x0 = [1, 1, 1, 1] and P − = 10000I4×4. As for the SMC filters, the following setup is provided: an
initial set of 1000 particles is randomly sampled from N ([1, 1, 1, 1] , 10I4×4) and used in all SMC
filters. For the ABC filters, the same settings are left as in the previous example: the HPR value
p = 0.95 in order to cover 90% of pseudo-measurements. An experiment with 100 repetitions
was conducted to obtain representative results.

Charts and analysis To begin with, it is worth taking a look at the statistics of the final MSE
values. Figure 2.4 presents the statistics of the final MSE values of 100 repeated experiment runs
in form of box plots. The table 2.2 shows the averaged MSE values after 100 experiment runs
for all filters used.

According to the results in Figure 2.4, it can again state that globally the KF and PF filters
succeeded best in tracking all 4 state variables. As it is already known from theoretical part
that KF is the best possible linear estimator, and this is confirmed in this example, because it
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showed excellent results. Almost identical, but a little worse results were shown by PF, although
it succeeded a little better with tracking v2. The ABC filters also showed good results in tracking
state variables. According to box plots, it may seem that ABC filter with normal kernel performs
better than similar filter with Cauchy kernel. Given that the ABC filter with Cauchy kernel has
the most distant right whisker, i.e., the maximum error value, it can be concluded that, despite
the good performance, it still sometimes made quite strong errors compared to the others. But
if we look at the average of the final values for all experiment runs in the Table 2.2, one can see
that the final averaged MSE values of both ABC filters are quite close. But it should admitted
that the results of the filter with the normal kernel are slightly, but still better.

Figure 2.4 (CVM, Normal noise) Box plots showing final MSE values for all state variables x1, x2,
v1 and v2 of 100 repeated experiments. The boxes show medians, upper and lower quartiles. The length
of the whiskers is defined as 1.5 times the interquartile range. The outliers are not displayed.

x1 x2 v1 v2

KF 4.405 4.364 1.253 1.202
PF 4.531 4.450 1.235 1.176
ABC Normal 9.256 6.783 1.534 1.263
ABC Cauchy 11.363 9.013 1.869 1.717

Table 2.2 (CVM, Normal noise) The final MSE values for all state variables x1, x2, v1 and v2 averaged
over 100 runs

In general, however, it can be noted that both ABC filters were quite close to reality in
their predictions. Proof of this can be found in Figures 2.5 and 2.6, which show one particular
realization of measurement noises εy1,t and εy2,t, and also the resulting settings of kernels. Once
again, as in the previous example, the ABC filter in this model is not overly sensitive to kernel
choice. As for kernel tuning, one can see that the character of the evolution of both εy1,t and
εy2,t is similar for both kernels. It is impossible to find any significant differences.

Again, as in the case of the PGM model, it can be argued that ABC filters can compete with
filters requiring full knowledge of the measurement model, provided that these filters possess such
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Figure 2.5 (CVM, Normal noise) One particular normal noise realizations εy1,t and εy2,t. Relative
frequency histograms and box plots. Each box shows the median, upper and lower quartiles. The length
of the whiskers is defined as 1.5 times the interquartile range. Dots closer to the edges of the box
represent outliers.

Figure 2.6 (CVM, Normal noise) The top four graphs show the one particular evolution of the normal
and Cauchy scales εy1,t, εy2,t, respectively. The bottom two represent the normal noise realizations.

knowledge. Given the context of full knowledge of the measurement model, it is still better to use
KF, since of all the filters used in the experiment, it is the cheapest in terms of computational
cost and the most accurate in terms of tracking.

2.4 Example 3: Polar radar model

The model that will be presented in this section is a modification of the CVM model, adding
nonlinearity to it. Again, there is an object moving in 2D space, accurately described by equations
(2.8). But here it is assumed that the measurements of the object’s motion will come directly
from the radar. That is, in the context of this model, the measurements will be represented in
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a Polar coordinate system.
The state evolution model, its noise term, and the corresponding covariance matrix remain

identical to the CVM. As for the measurement model, it will look like this:

yt =

ρt

ϕt

ρ̇t

 = h(xt) + εt, (2.15)

where

εt ∼ (0, Rt) with R = r2 ·

0.01 0.0 0.0
0.0 0.0001 0.0
0.0 0.0 0.01

 . (2.16)

Where respectively the measurement yt is a polar coordinate, which consists of the following
elements: ρ, ρ̇ are radius and velocity magnitude respectively and ϕ is the angle in radians. Also,
it was already clear that the function h(·) is the function that converts 2D Cartesian position
and velocity coordinates to Polar coordinates. This function is necessary because the prediction
will be in Cartesian coordinates, but the measurement that comes from the radar is in Polar
coordinates. The function itself looks as follows:

h (x) =

 ρ
ϕ
ρ̇

 =


√

x2
1 + x2

2
arctan (x2/x1)

x1v1+x2v2√
x2

1+x2
2

 . (2.17)

The set of filters that will take part in the experiment is already standard. Because of the
use of the conversion function in the measurement equation, which is clearly non-linear, instead
of the usual KF filter will be used its extended version. To use EKF in the measurement update
cycle, one must linearize the function h(·), that is, use a Taylor series expansion and take its
first derivative. Since the work in the equation is done with a matrix, one can easily calculate
its first-order derivative using the Jacobian matrix. That is, the linearization for the correction
will look as follows:

H = h′(x) =


x1√

x2
1+x2

2

x2√
x2

1+x2
2

0 0
− x2

x2
1+x2

2

x1
x2

1+x2
2

0 0
x2(v1x2−v2x1)

(x2
1+x2

2)3/2
x1(v2x1−v1x2)

(x2
1+x2

2)3/2
x1√

x2
1+x2

2

x2√
x2

1+x2
2

 (2.18)

And as in the previous examples in this chapter, based on the assumption that the model is
correctly specified, the noise terms belong to following normal distributions:

wt ∼ N (0, Qt),
εt ∼ N (0, Rt).

(2.19)

Initialization The model initialization parameters will not differ from what was set in the
CVM. The initial parameters are x0 = [0, 0, 1,−1], dt = 1, r = 3, q =

√
5, the length of the series

is 300 samples. As for the EKF filter: x0 = [1, 1, 1, 1] and P − = 10000I4×4. An initial set of
1000 particles is randomly sampled from N ([1, 1, 1, 1] , 10I4×4) and used in all SMC filters. The
setting of the ABC filters also remain unchanged from previous experiments: the HPR value
p = 0.95 in order to cover 90% of pseudo-measurements. An experiment with 100 repetitions
was conducted to obtain representative results.
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Charts and analysis The analysis will begin again with a consideration of MSE values, which
are represented by Figure 2.1 and Table 2.3, where the first figure shows the final results after
100 experiment runs and the second figure shows the averaged values. Also with regard to box
plots, for better readability and because of the longest whiskers, the results for the ABC filter
with Cauchy kernel for the state variables x1 and x2 are put on a separate graph (in the middle).

Given the rather high non-linearity of the measurement model, almost all filters showed far
from outstanding results, especially when it comes to tracking x1 and x2. The best of all were,
as throughout this chapter, the EKF and PF filters. This time the PF filter performed worse
than the EKF. From the Figure 2.1 with box plots, one can see that PF was sometimes very
inaccurate when tracking x1 and x2. This is also confirmed by the Table 2.3 with averaged
values. As for the ABC filters, they in particular experienced great difficulty in keeping track
of the state variables x1 and x2. The final MSE values of some experiment runs were so high
that they also affected the averaged values in the Table 2.3. If ABC with a normal kernel has
a critical averaged MSE value only when tracking the variable x1, then a filter with a Cauchy
kernel has a huge averaged MSE for both x1 and x2. As for tracking v1 and v2, all filters showed
generally acceptable results. Returning to the ABC filters, it can be said that this time they
did not prove to be competitive, especially the filter with the Cauchy kernel showed the worst
results.

Figure 2.7 (PRM, Normal noise) Box plots showing final MSE values for all state variables x1, x2,
v1 and v2 of 100 repeated experiments. The boxes show medians, upper and lower quartiles. The length
of the whiskers is defined as 1.5 times the interquartile range. The outliers are not displayed.

Also on the Figures 2.8 and 2.9, one can take a closer look at one particular realization of
measurement noises εy1,t, εy2,t, εy3,t, and also the resulting settings of kernels. In terms of kernel
tuning, on the example of these data it can be stated that the ABC filters reflects well the noise
evolution. It is worth expecting that the responses to significant values of the noise terms will
be more evident in the next chapter.
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x1 x2 v1 v2

EKF 66.235 21.636 2.161 1.122
PF 81.980 26.763 2.433 1.333
ABC Normal 140.496 44.511 2.846 1.474
ABC Cauchy 957.038 261.612 5.908 2.703

Table 2.3 (PRM, Normal noise) The final MSE values for all state variables x1, x2, v1 and v2 averaged
over 100 runs

Figure 2.8 (PRM, Normal noise) One particular normal noise realizations εy1,t, εy2,t and εy3,t.
Relative frequency histograms and box plots. Each box shows the median, upper and lower quartiles.
The length of the whiskers is defined as 1.5 times the interquartile range. Dots closer to the edges of the
box represent outliers.

Figure 2.9 (PRM, Normal noise) The top four graphs show the one particular evolution of the
normal and Cauchy scales εy1,t, εy2,t, and εy3,t, respectively. The bottom three represent the normal
noise realizations.
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2.5 Experiments conclusion
In general, it can be summarized that with full knowledge of the measurement model, it does
not make much sense to use ABC filters, which, in most cases, show pretty good results but are
still inferior to PF and KF filters. It is also worth considering that in terms of computational
cost, they are insignificantly but still more expensive.

As for the KF filter, having a well-specified model and guaranteed linearity, it can be safely
declared that it is the best linear estimator, which is confirmed by the results of the experiments.
Its extended version also showed itself from the best side. The PF filter showed itself almost
on par with KF and EKF, and sometimes EKF was even inferior to it. However, it should be
kept in mind that to use PF, which performs on par or even better than KF or EKF, one will
have to sacrifice the use of a large number of particles, which directly affects the computational
complexity. It is also worth noting that in the case of EKF, when one of the steps, either predic-
tion or update, is highly nonlinear, EKF will have relatively not the best efficiency. In addition,
the quite high computational cost of computing the Jacobian matrix is worth considering when
using EKF.

To summarize, once again, it can be said that, if the condition that the measurement model is
completely known and both state and measurement equations are linear with zero mean Gaussian
noise is satisfied, then it is best to use the standard KF filter. In the case of nonlinearity, it would
be better to use the PF filter.



Chapter 3

Misspecified models experiments

The purpose of this chapter is to illustrate how the tracking performance of the filters will change
if the noise of the measurement model is misspecified or even unknown. The main question
and interest is how much better the ABC filters will show themselves under these conditions
compared to the others. It is important to remember that the ABC filters ignore the properties
of measurement noise, which make them suitable for use directly in such situations, as opposed
to the standard PF or KF (or its extended version), where modifications are usually required
without much guarantee of success unless laborious tuning is done.

To keep the experiments honest, the same models as in the previous chapter will be used,
with the same structure, except that the measurement noise will be Cauchy distributed. At
the same time, it will be interesting to see the results of tracking KF and its extended version
since they require both state and measurement noises te be Gaussian for optimality. If the first
condition remains, the measurement noise in this chapter will use Cauchy distributed, which
should already complicate the tracking performance of KFs. KF is expected to work normally
for most noise distributions as long as the errors have a zero mean and the distributions are
symmetric around the mean. But it will no longer be optimal under Cauchy noise conditions.

The metric for measuring performance in this chapter will remain the same, that is, MSE
will be used. The same filters as in the previous chapter will take part in the experiments: the
PF, ABC filters with normal and Cauchy kernels, as well as the Kalman filter for linear models
and its extended version for nonlinear models.

3.1 Example 1: Power growth model
It is the turn to return to the model described in detail in the last chapter, namely, the PGM,
which is characterized by the equations (2.2). As previously stated, the constructed SSM remains
the same as the initialization parameters of the filters. Since dealing with the misspecified model
in this chapter, the same measurement model (2.5) is used, but this time all measurements are
corrupted by Cauchy noise instead of Gaussian, keeping the scaling parameter equal to 10:

εt ∼ Cauchy
(
0, 102) (3.1)

As before, an experiment with 100 repetitions was conducted to obtain representative results.
At this point it can be moved directly to the analysis of the results of the experiment itself.

Charts and analysis The analysis will begin again with the MSE values, shown in Figure
3.1 and Table 3.1, where the Figure shows the statistics of the final MSE values of 100 repeated
experiment runs and the Table accordingly shows their averaged values. As one can immediately

53
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notice, there are no MSE values for the EKF filter because it failed to cope with tracking in any
of the experiment runs. Already in the initial stages of filtering, the EKF led to invalid values.
The filters of the SMC family avoided this by modifying the particle evolution function discussed
in the previous chapter. As already mentioned in the previous chapter, in the context of this
model, it can be noted that the choice of the kernel has no noticeable effect on the tracking
performance of the ABC filters.

As for the MSE values, when one looks at the box plots and the Table with averaged values,
the superiority of ABC filters over the PF filter becomes immediately apparent, especially with
respect to tracking the variable x1. It is noticeable that in some experiment runs, the final MSE
values of both ABC filters were critically high, but according to the averaged values, which are
relatively low, one can conclude that, in general, both filters were quite stable under heavy-tailed
noise. That can not be said about the PF filter, which failed to track the variable x1.

Figure 3.1 (PGM, Cauchy noise) Box plots showing final MSE values for both state variables µ and
ν of 100 repeated experiments. The boxes show medians, upper and lower quartiles. The length of the
whiskers is defined as 1.5 times the interquartile range. The outliers are not displayed.

µ ν

EKF - -
PF 271.668 9.830e-04
ABC Normal 56.660 7.899e-04
ABC Cauchy 64.265 8.366e-04

Table 3.1 (PGM, Cauchy noise) The final MSE values for both state variables µ and ν averaged over
100 runs

Figure 3.2 shows a noise realization from one of the 100 experiments. A noise time series for
a single experiment run is shown in Figure 3.3, along with evolutions of the normal and Cauchy
kernel scales. From the example of this data, it is well seen that both ABC filters reflect well the
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noise evolution, regardless of the choice of kernel.

Figure 3.2 (PGM, Cauchy noise) One particular Cauchy noise realization εt. Relative frequency
histogram limited to [-120; 120] and scale-broken box plot. The box plot consists of three parts. The
central part is a box that includes the median, upper and lower quartiles. The length of the whiskers is
defined as 1.5 times the interquartile range. Outliers and extreme values are displayed on the left and
right, respectively.

Figure 3.3 (PGM, Cauchy noise) The top two graphs show the one particular evolution of the normal
and Cauchy scales εt, respectively. The lower one represents the Cauchy noise realizations.

3.2 Example 2: Constant velocity model

In this section, the discussion will focus on the model already described earlier, namely the CVM.
The model itself is characterized by the following equations (2.8) and (2.9). As mentioned earlier,
the initialization parameters of the filters are not changed the same way as the constructed SSM.
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Also, the same measurement model is used (2.12), but all measurements in this example are
corrupted by Cauchy distributed noise instead of Gaussian, keeping the same scaling parameter:

εt ∼ Cauchy (0, Rt) with R = 32 ·
[
1 0
0 1

]
(3.2)

In order to obtain representative results, an experiment with 100 repetitions was conducted.

Charts and analysis Following the already usual approach, the analysis will focus on the
MSE values, which can be found in Figure 3.4 representing the statistic of the final MSE values
of 100 repeated experiment runs, and in Table 3.2, which shows their averaged values.

Again it can be noted that, in general, the ABC filters showed the best results among the
other filters, in the predominant number of repetitions of the experiment had the minimum final
MSE, which is also well reflected in the Table of averaged values. The ABC filter in the normal
kernel was closer to the true values when tracing, which can be seen in all box plots, and as
a consequence, it has lower values of the averaged MSE for all state variables compared to the
ABC filter with the Cauchy kernel. But on the whole, the ABC filter with the Cauchy kernel
also showed decent results in the prevailing number of runs of the experiment.

As for the PF filter, it can be safely said that it had enough trouble tracking all state variables,
which is reflected in its MSE values. If in the context of this experiment, ABC filters with both
kernels showed themselves as relatively stable under heavy-tailed noise, the same cannot be said
about the PF filter.

Regarding the KF filter and box plots of its final MSE values, it can be stated that in the
majority of cases, the filter was quite accurate in tracking, but judging by the maximum final
MSE values, which are very far from the medians on all box plots, one can judge that in some
rare runs the filter absolutely failed. That also confirms the statement about its non-optimality
under the given conditions. The consequence of the maximum MSE values is also displayed on
the averaged MSE values in the Table 3.2.

x1 x2 v1 v2

KF 303.669e+03 268.659e+07 294.374e+02 259.620e+06
PF 162.614 129.882 8.701 7.302
ABC Normal 29.952 19.894 2.244 1.781
ABC Cauchy 38.065 29.674 2.721 2.390

Table 3.2 (CVM, Cauchy noise) The final MSE values for all state variables x1, x2, v1 and v2 averaged
over 100 runs

Again, to evaluate the effectiveness of ABC filters, it is worth looking at Figure 3.5, which
shows a noise realization from one of the 100 experiments, and also, at Figure 3.6 which shows
a noise time series for a single experiment run, along with evolutions of the normal and Cauchy
kernel scales. It is clear that both ABC filters reflect well the noise evolution, even the significant
values.

3.3 Example 3: Polar radar model

Returning to the PRM, which is described by the following equations (2.8) and (2.15), leaving
everything unchanged for the honesty of the experiment, except that all measurements will be
corrupted by Cauchy distributed noise. In addition, the initialization parameters of the filters
are not changed. The same noise scale parameter remains. The measurement noise is as follows:
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Figure 3.4 (CVM, Cauchy noise) Box plots showing final MSE values for all state variables x1, x2,
v1 and v2 of 100 repeated experiments. The boxes show medians, upper and lower quartiles. The length
of the whiskers is defined as 1.5 times the interquartile range. The outliers are not displayed.

Figure 3.5 (CVM, Cauchy noise) One particular Cauchy noise realizations εy1,t and εy2,t. Relative
frequency histograms limited to [-60; 60] and scale-broken box plots. Each box plot consists of three
parts. The central part is a box that includes the median, upper and lower quartiles. The length of the
whiskers is defined as 1.5 times the interquartile range. Outliers and extreme values are displayed on
the left and right, respectively.

εt ∼ Cauchy (0, Rt) with R = 32 ·

0.01 0.0 0.0
0.0 0.0001 0.0
0.0 0.0 0.01

 . (3.3)
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Figure 3.6 (CVM, Cauchy noise) The top four graphs show the one particular evolution of the normal
and Cauchy scales εy1,t, εy2,t, respectively. The bottom two represent the Cauchy noise realizations.

In order to obtain representative results, an experiment with 100 repetitions was conducted.

Charts and analysis As can be expected that the analysis will focus on the MSE values,
which can be found in Figure 3.7, which shows the statistics of the final MSE values of 100
repeated experiment runs, and in Table 3.3, which contains their averaged values.

One can observe approximately the same situation as in the previous expert. But this time,
both ABC filters really showed outstanding results. Minimal averaged MSE values in Table 3.3
show high robustness to different heavy noise realizations. It is worth noting that in the context
of this experiment, the ABC filter with the Cauchy kernel performed slightly but better than the
same filter with the normal kernel and generally has lower MSE values. It is also worth noting
that the choice of the kernel has no significant impact on the effectiveness of the ABC filter.

As for the PF filter, the tendency for it to be inferior to ABC filters in this chapter continues,
which is logical since it assumes a misspecified measurement model with normal noise. In general,
it always has a much larger final MSE value, and at times, judging by the maximum values from
the box plots, they are even critically significant. This is also reflected in the averaged values in
the table 3.3, especially for the state variables x1 and x2.

The last thing that has not been analyzed is the tracking efficiency of the EKF filter. It can be
definitely said that the EKF filter suffered the same fate as the KF filter in the previous section
within the CVM experiments. That is, the prevailing number of runs EKF was quite close to the
true values in its estimation process, but judging by the maximum values from the box plots,
in rare cases, the final MSE values were critically high, which also affected the averaged MSE
values in the Table 3.3. That also confirms and indicates that the EKF filter is quite unstable
under some heavy-tailed noise realizations.

x1 x2 v1 v2

EKF 620.381 466.478 15.570 10.575
PF 184.171 48.923 3.017 1.484
ABC Normal 1.450 1.182 0.664 0.562
ABC Cauchy 0.401 0.222 0.316 0.227

Table 3.3 (PRM, Cauchy noise) The final MSE values for all state variables x1, x2, v1 and v2 averaged
over 100 runs
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Figure 3.7 (PRM, Cauchy noise) Box plots showing final MSE values for all state variables x1, x2,
v1 and v2 of 100 repeated experiments. The boxes show medians, upper and lower quartiles. The length
of the whiskers is defined as 1.5 times the interquartile range. The outliers are not displayed.

The Figure 3.8 shows a noise realization from one of the 100 experiments. To evaluate how
well the ABC filter with different kernels reflects the noise evolution is enough to look at Figure
3.6, which shows a noise time series for a single experiment run, along with evolutions of the
normal and Cauchy kernel scales. It is absolutely clear that the ABC filter with both kernels
captures noise evolution well.

3.4 Experiments conclusion
It can be summarized that, within the framework of this chapter, the results of experiments
showed the absolute superiority of ABC filters over the others in the conditions that the mea-
surement model is misspecified, namely in conditions of ignorance of the noise of measurement
distribution. It would be relevant to emphasize the stability of ABC filters again under different
realizations of heavy-tailed noise, regardless of the choice of kernel.
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Figure 3.8 (PRM, Cauchy noise) One particular normal noise realizations εy1,t, εy2,t and εy3,t.
Relative frequency histograms and scale-broken box plots. The histograms on the sides are limited to
[-0.4,0.4], and the middle one is limited to [-0.004,0.004]. Each box plot consists of three parts. The
central part is a box that includes the median, upper and lower quartiles. The length of the whiskers is
defined as 1.5 times the interquartile range. Outliers and extreme values are displayed on the left and
right, respectively.

Figure 3.9 (PRM, Cauchy noise) The top four graphs show the one particular evolution of the
normal and Cauchy scales εy1,t, εy2,t, and εy3,t, respectively. The bottom three represent the Cauchy
noise realizations.



Chapter 4

Conclusion

This thesis considers the sequential inference of state-space models using the Bayesian framework.
The principle of the state-space representation itself approaches to modeling, and examples of use
were examined in detail. Also considered was the very concept of Bayesian statistical inference,
as finding the posterior distribution of states based on a sequence of observations as well as initial
knowledge of the states called prior density. This included consideration of the most popular
and widespread implementation of Bayesian filtering, filters from the Kalman family. Starting
with the theory of linear systems, possible nonlinearities in systems were also touched upon,
including completely nonlinear systems, including the possibility of applying the Kalman filter
in the context of nonlinearity, or rather its extended version, and the principle of this application
itself. It also questioned the possible difficulties with the inference process associated with an
under-specified model and, accordingly, how this might affect the efficiency of the KFs.

Further, separate attention was paid to an alternative, but no less popular technique of state
filtering, the class of SMC filters, namely the PF, which, due to the very idea of approximately
representing required distribution by random samples, was supposed to show itself more stable
in the context of misspecified models. But still, it also requires the measurement model to be a
well-defined probability density, which is not possible in all applications. Given the dependence
of the PF filter on knowledge of the measurement model, a more flexible approach, called ABC,
which just might be used to bypass this requirement, was also studied and discussed.

Thus was derived an ABC filter with an adaptive kernel, which stands on the rails of the SMC
filter, but uses an already approximated likelihood function in the update step. The concept of
kernel usage and several possible types of commonly used kernels were also discussed.

All of the above was a good theoretical basis before proceeding directly to the experimental
part. The experiments were performed with multiple repetitions to obtain representative results,
and three different models and all of the filters and their variations listed above were used in
the experiment. As for the comparison of the filters themselves, comparing the PF filter and the
standard filters from the Kalman family, it can be safely said that as the number of particles used
increases, so does the computational complexity, but thus the final results are more accurate. As
for the obtained ABC filter with the adaptive kernel, we can conclude that it does not introduce
any additional computational complexity compared to the PF. It is also important to note the
fact that, while the model is highly nonlinear, the extended version of KF has a rather high
computational cost for calculating the Jacobian matrix.

As for the performance and robustness of the filters themselves after the experiments, it
can be safely stated the following theses. As for experiments on well-specified models, provided
guaranteed linearity, and when both state and measurement models are linear with zero mean
Gaussian noise, in this case, KF is still the best linear estimator, which showed the best results
and, unlike other filters, is the cheapest in use. In the case of a nonlinear but well-defined model,
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it is better to use PF, as opposed to EKF, which, when one of the steps, either prediction or
update, is highly nonlinear, will have relatively poor performance. It is also worth noting that
the ABC filter with different kernels showed itself very competitively, but all were noticeably
inferior to both the KF filter and the PF. In general, it can be argued that the results of the
experiments revealed that the ABC filter is not overly sensitive to kernel choice, regardless of
model specification.

Regarding experiments with misspecified models, and more specifically, in the context of
the misspecified measurement model, the ABC filter, regardless of the kernel choice, proved
unsurpassed. It is also pertinent to emphasize the particular robustness of ABC filters in different
realizations of heavy-tailed noise.

As for possible ideas and extensions for future works, one of the main directions will be
formulating the adaptive kernel tuning to multiple dimensions. For as already noted, within
this thesis, most of the models had multidimensional measurement values, but the procedure of
tuning itself was done in the context of one-dimensional kernels, handling multidimensional data
in a coordinate-wise manner. The consequence of this is that the individual measurement vector
elements are assumed to be independent. Also, a good solution for future work would be to take
both more complex and as simple models as possible to make a comparison still in this context.
And, of course, expanding the list of filters used in the experiments would be nice.



Appendix A

Acronyms

SSM State-space model

HMM Hidden Markov model

LTI Linear time-invarian

SISO Single Input Single Output

CT Continuous-time

MIMO Multi Input Mult Output

DT Discrete-time

DLM Dynamic linear model

MLE Maximum likelihood estimation

RLS Recursive least squares

MSE Mean square error

SMC Sequential Monte Carlo

CLT Central limit theorem

IF Importance function

ABC Approximate Bayesian computation

HPR Highest Probability Region

CDF Cumulative distribution function

KF Kalman filter

PF Particle filter
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