
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Active Learning for NLP

Anton Kretov

Supervisor: Ing. Jan Drchal, Ph.D.
Field of study: Open Informatics
January 2023

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474672 Osobní číslo:Anton Jméno:Kretov Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:

Datové vědy Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Aktivní učení pro metody zpracování přirozeného jazyka

Název diplomové práce anglicky:

Active Learning for NLP

Pokyny pro vypracování:
The aim of this project is to assess various methods of active learning in the NLP domain. Give an overview of state-of-the-art
methods and evaluate them on various available NLP datasets. Focus on applicability to Transformer neural models.
1) Explore the state-of-the-art methods of active learning applicable to NLP tasks.
2) Select appropriate public datasets. Focus on Natural Language Inference including the public Czech CTKFactsNLI
dataset.
3) Design a methodology to compare selected active learning methods.
4) Implement (if needed) the selected methods, perform experiments and evaluate.
5) Publish the code as an open-source package.

Seznam doporučené literatury:
[1] Dor, Liat Ein, et al. "Active learning for BERT: An empirical study." Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 2020.
[2] Schröder, Christopher, and Andreas Niekler. "A survey of active learning for text classification using deep neural
networks." arXiv preprint arXiv:2008.07267 (2020).
[3] Wang, Zijie J., et al. "Putting humans in the natural language processing loop: A survey." arXiv preprint arXiv:2103.04044
(2021).
[4] Ren, Pengzhen, et al. "A survey of deep active learning." arXiv preprint arXiv:2009.00236 (2020)

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Jan Drchal, Ph.D. centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 10.01.2023 Datum zadání diplomové práce: 29.08.2022

Platnost zadání diplomové práce: 19.02.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jan Drchal, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank CTU and my su-
pervisor Ing. Jan Drchal, Ph. D. for
giving me an opportunity to work on this
project and to contribute to the whole
Natural Language Processing (NLP) com-
munity with my work. I would also like to
thank my colleagues who listened to my
stories about this project and who gave
me valuable consultations and provided
lots of advice. I would also like to ex-
press my gratitude to my parents and to
my friends who supported me during my
studies and during this research project.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 10 January 2023

iv

Abstract

Natural language processing (NLP) is
a field that attracts lots of artificial intel-
ligence researches who attempt to solve
various tasks of processing text and ex-
tracting knowledge from it. NLP research
is centered around several renowned tech-
nologies and methodologies which have
proven to be promising and that are al-
ready helping in various aspects of life.
However, the problem of data collection
and data labelling is currently playing
one of the most important roles in many
machine learning problems, especially in
natural language processing, where it is
even more pronounced. In this thesis I
examine active learning - a methodology
for smarter training of machine learning
models with less data by favoring those
data entries that presumably contribute
more to model’s convergence. I also in-
troduce an implementation of an open-
source library for further experiments in
this field. I conduct many experiments
showing the impact of active learning com-
pared to conventional models training and
revealing the best performing active learn-
ing strategies. Finally, a state-of-the-art
result on Czech NLI dataset CTKFact-
sNLI was achieved during experiments.

Keywords: NLP, machine learning,
active learning, BADGE, uncertainty
sampling, BERT, RobeCzech, NLI,
CTKFactsNLI, RCI cluster, Weights &
Biases, state-of-the-art

Supervisor: Ing. Jan Drchal, Ph.D.

Abstrakt

Zpracování přirozeného jazyka (ang-
licky Natural Language Processing) je ob-
lastí výzkumu umělé inteligence, která si
klade za cíl zpracování textu a extrakci
znalostí z něj. Výzkum NLP se v současné
době soustřeďuje kolem standardních pří-
stupů, které jsou v praxi dobře osvědčeny.
Nicméně problém sběru a anotace dat je
stále velmi palčivý a hraje velmi důležitou
roli ve mnoha úlohách strojového učení,
obzvlášť ve zpracování přirozeného jazyka.
V této práci studuji metody aktivního
učení (anglicky Active Learning) - meto-
diku chytřejšího trénování modelů strojo-
vého učení, která si klade za cíl použítí
menšího množství kvalitních dat, potřeb-
ných k natrénování modelů na požadova-
nou úroveň přesnosti. V této práci záro-
veň představuji svoji implementaci open-
source knihovny pro další experimenty v
této oblasti. Pomocí této knihovny jsem
provedl několik experimentů, jež proka-
zují efektivitu metod aktivního učení a
ukazují, které metody jsou nejslibnější.
Nakonec se mi povedlo dosáhnout tzv.
state-of-the-art výsledků v úloze ověření
faktů (anglicky fact checking) na českém
datasetu ČTKFactsNLI za pomocí jedné
z metod aktivního učení.

Klíčová slova: NLP, machine learning,
active learning, BADGE, uncertainty
sampling, BERT, RobeCzech, NLI,
CTKFactsNLI, RCI cluster, Weights &
Biases, state-of-the-art

v

Contents

1 Introduction 1

1.1 Preface . 1

1.2 NLP - brief outline 2

2 Active Learning 5

2.1 Related Work 9

2.2 Active Learning - scenarios 9

2.2.1 Batch Mode active learning . 11

2.3 State-of-the-art strategies 12

2.3.1 One-by-one strategies 12

2.3.2 Batch methods 15

2.4 Aim of the project 19

3 Proposed solution 20

3.1 Used libraries 21

3.2 Architecture 23

3.3 Process description 24

3.4 MLOps integration 31

3.5 RCI cluster integration 37

3.6 Google Colab integration 39

4 Experimental part 41

4.1 Active learning experiments 41

4.1.1 Tasks . 42

4.1.2 Datasets 42

4.1.3 Models 43

4.1.4 Implemented strategies 44

4.1.5 Evaluation method 44

4.1.6 Experimental details 46

4.1.7 Experiments parameters 48

4.2 Part 1 - small models 50

4.2.1 Analysis 53

4.3 Part 2 - Active learning and large
models (classification and tagging) 55

4.3.1 Text classification 55

4.3.2 Tagging 64

4.4 Part 3 - Czech NLI 68

vi

5 Future considerations 79

5.1 Tasks complexity 79

5.2 Starting and stopping AL 79

5.3 Real-life application 80

6 Conclusion 82

A Bibliography 84

B Technical description of active
learning labelling procedure 93

C Weights & Biases - illustrations 94

D Other figures 96

vii

Chapter 1

Introduction

1.1 Preface

The project I have been working on is my contribution to the Natural Language
Processing (NLP) field of artificial intelligence (AI) research conducted by
many data scientists across the world. NLP is a vast field with different tasks,
approaches, and methodologies that are being explored for many decades.
Most of major breakthroughs in Deep Learning beyond NLP, including the
most recent State-of-the-Art (SOTA) methods and architectures, were possible
thanks to the last several years of major improvement and standardization
in NLP sphere, where Transformer [VSP+17] architecture with Attention
Mechanism inside [BCB14] which I was studying deeply in my Bachelor’s
thesis [Kre20], played an essential role in making NLP more widespread,
more democratized, less sophisticated from one point of view. Nevertheless,
the invention of Transformer and the first foundational model [BHA+21]
called BERT [DCLT18a] made it possible to solve various types of tasks,
starting from the well-known and well-established tasks of text classification
and words tagging, to more the complex ones requiring deeper language
understanding, such as fact checking [GSV22], machine translation [YWC20]
and text summarization [BR20].

This project is also a contribution to the vast NLP research conducted by
NLP research group lead by Ing. Jan Drchal Ph.D., who is also my supervisor,
which is a part of Artificial Intelligence Center (AIC) at CTU.

1

https://aic.fel.cvut.cz/

...................................... 1.2. NLP - brief outline

Active Learning (AL) is a framework which originally comes from generic
machine learning. However, it is currently undergoing its own renaissance
and hence has been receiving considerably more attention as of late. In order
to formulate my motivation in this field, I first provide a short outline of
NLP as a research sphere and describe the way it works these days. By doing
this, I will formulate the problem which is hypothesised to be solved by AL
framework.

Active learning is a branch of artificial intelligence research, which aims for
the optimalisation and reduction of the volume of data needed for training
machine learning models to reach required accuracy. Since many machine
learning models belong to the so-called statistical machine learning sphere,
data form a vital part of a successful model. Data collection, versioning, an-
notation, validation are tedious and time-consuming processes. It is therefore
extremely expensive and makes up a considerable part of a project bud-
get. Some machine learning tasks allow for the so-called data augmentation
[FGW+21], when the new synthesized data entry is generated given a genuine
data entry, e.g. a rotated or distorted photo given an original picture. Data
augmentation is a well-established method of improving data magnitude and
model robustness [RGC+21], however in NLP it is rarely the method that
we can safely use - often the result of augmentation applied to text is a
new piece of text which does not make any sense. Hence, data has to be
collected and treated with caution. Generally, the majority of data found
in the world is represented in a textual form [HPZC07], however in order
to train an efficient model, this data has to be of good quality and high
variability. Active learning has emerged to address this issue and to provide
a methodology and instruments for training models with less effort put into
data collection and labelling. Active learning tries to find only those data
entries which can provide more information and thus give more benefit to
the model, by inherently bypassing duplicate entries and promoting those
that are distinct from the ones already seen. The idea of active learning is to
collect as little data as possible for reaching required performance. In other
words, AL states the hypothesis that only a fraction of data of high quality is
enough to train the model for the same accuracy as with the whole dataset.

1.2 NLP - brief outline

Natural Language Processing (NLP) is a field of artificial intelligence (AI)
study aiming to solve tasks which deal with text. Textual information is
considered as unstructured data. Often the task is formulated in a way that
we need to extract some information from the text: either to classify it (is
e-mail spam or not?), or to find names of people there (so-called Named

2

...................................... 1.2. NLP - brief outline

Entity Recognition task). Overall, there were different approaches to NLP
throughout its history:

.At the very beginning, there were basic rule-based algorithms for basic
language modelling and simple morphological and semantic NLP tasks.
In this era, the first chatbot model ELIZA [Wei66] was built, which was
based on pattern matching and substitution methodology - a simple
algorithm found precise string entries in the text and matched them
against a predefined list of known words and phrases.. In the early 2000s, a boom of using statistical methods with n-grams (a
sequence of n tokens: characters or words) for language models emerged.
Several different neural approaches were also developed for language mod-
elling [BBEZ00, MSC+13] and downstream tasks. Statistical approaches
required more data to be collected, which is in principle a complete
change in paradigm compared to the earlier ways of solving NLP tasks,
where the emphasis was put on rules and common knowledge converted
into code. Statistical methods provided a toolset for generalization and
patterns learning: more frequent n-grams received higher probability of
occurrence in a random text..The focus has then changed to language models. Language models are
literally models possessing Markov property - memory-less property of a
stochastic process of language generation. The task of a language model
is to assign a probability of the next token given the current one (there
are also models which pay attention to more than one token). This
task is accomplished mostly by training of a neural network (black-box
model). Language models started to become larger and larger with
far more parameters to learn, thus putting more strain on data needed
to train better models. People transitioned from feature engineering
to an automated feature extraction with the help of neural networks
[HS97], mainly with the help of recurrent neural networks [MKB+11]
or convolutional neural networks [KJSR15], thus treating text with less
granularity and working with data as time-series rather than independent
tokens. Since language is a complex mechanism, the models started to
be more complex and therefore required more data to be trained on..The era of large language models like ELMo [PNI+18], ULMFiT [HR18]
came with BERT [DCLT18b] finally conquering the whole NLP com-
munity and becoming the SOTA solution. These language models have
huge number of parameters, need a lot of computational power and are
trained for many days with the help of extremely expensive hardware
[RNKC22]..These language models have spurred the rise of Transfer Learning. The
idea behind Transfer Learning is simple yet very powerful: a general and

3

...................................... 1.2. NLP - brief outline

large model presumably captures the high-level understanding of how
language works during the so-called pre-training. Then, this model is used
for solving some particular task (e.g. Named Entity Recognition,Part
of Speech tagging Summarisation). Hence, the model is trained on a
specific dataset for the particular task. This dataset is considerably
smaller than the amount of data required for training a language model.
This step is called fine-tuning.

Nowadays, fine-tuning is considered the standard to solve NLP tasks. Fine-
tuned models usually outperform those models trained from scratch. Moreover,
training from scratch means that a network has to firstly understand the
language structure before solving a language task. Thanks to this approach,
the amount of data required to train a domain-specific end-to-end model is
significantly reduced. Furthermore, Active learning (AL) may become the
next logical step aiming for choosing only those data helping model to learn
underlying problem structure, thus reducing the amount of required training
data even more. It introduces the mechanism of assessing the quality of data
used to train the model and favors data quality instead of quantity. There
are also several more benefits which might be introduced by AL framework:

.The amount of work performed by people is reduced, thus saving time
and money..The data selected by AL framework might result in a dataset of higher
quality. AL can presumably be applied to an already existing dataset in
order to investigate it and to find inconsistencies.

I give a detailed introduction to active learning methodology in the following
section.

4

Chapter 2

Active Learning

Active learning (AL) is an approach to train machine learning models in
iterations by gradually obtaining training data by utilising model’s current
knowledge, unlike passive learning, where all labelled data is provided before-
hand. It introduces the mechanism of assessing the quality of data used to
train the model and favors data quality instead of quantity. The main goal
of this framework is to reduce the amount of data and effort needed by the
model to reach required performance.

Currently, the models are trained in the following way:

.The dataset is prepared. It can be for example a database dump of
incoming e-mails, or a collection of news articles..The dataset is annotated by a domain expert. For example, a news
article is given a label whether it is a fake-news article or not; or an
e-mail is given a classification whether it is spam or not.
The annotation is usually conducted by several annotators by following
a concrete methodology..An annotated dataset is divided into training, validation and testing
sets. The training set is used for adjusting neural network’s weights,
the validation set is used together with training set to assure that the
model is not overfitting or underfitting. The test set is used to predict
the model’s performance on previously unseen data.

5

...2. Active Learning

Traditionally, a vast collection of unlabelled text is collected and then an-
notated. As a result, a huge dataset of labelled data is produced. Annotator’s
job is mostly monotonous and tedious, which is prone to errors, e.g. the same
text can be mistakenly put into different categories. Then, annotation of a
large dataset is an extremely lengthy process, which is consequently expensive.
Another pitfall of such approach is abundance of similar data. For instance,
when sentiment analysis dataset consisting of movie reviews is collected and
annotated, these sentences express the same idea:..1. This film is good...2. This film is very good...3. The film I have recently seen is good...4. This is a very good film.

From the perspective of a contextual language model [BGD+21], these
texts have very similar representation, i.e. their vectors are very close to
each other. Hence, labelling of all these sentences will not give adequate
amount of diverse information to the model. In case when texts are completely
different and describe the same category from different language perspective
(by different expressions and collocations, lengths, etc.), the model is able to
learn much broader space of phrases that cover the topic better. In real-life
scenarios though the amount of literally duplicate texts in training datasets
is enormous and thus more courteous annotation is needed.

Active learning is a framework which changes the methodology of collecting
data for neural models. It favors data quality over quantity: a dataset is
collected from the very beginning and the framework determines examples for
annotation. The decision is made by a so-called strategy. An active learning
strategy is responsible for gradual collection of future inputs to the model
from an unlabelled set of data. These texts are then sent to an annotator
who gives them the correct labels. After the labels are received, the texts are
put into training set, which then becomes larger. By this approach we let the
model decide itself, what data needs to be collected and labelled.

Active learning works in the following way. We assume that we have a large
set of unlabelled data to choose from. The initial chunk of data is chosen
and labelled by an expert, so as to give some basic understanding of the
problem in question. For example, it might consist of several instances of
different categories. Then, the model is trained on this chunk and evaluated
on validation and test sets, which are already prepared and are fixed for the

6

...2. Active Learning

whole process. These datasets are necessary for training efficiency control.
Then, the next chunk of unlabelled data is chosen, which is then passed to
the annotator. After the chunk is annotated, it is appended to the training
dataset, and the process starts once again from the beginning.

A simple AL framework consists of the following four main steps, which
are also depicted in Figure 2.1. This sequence is repeated until the desired
accuracy evaluated on the test set is reached...1. Creation of a training dataset based on labelled data...2. Training of a classifier or other model based on this data...3. Selection of the new batch of unlabelled data (based on an AL strategy)...4. Labelling of the new data batch before adding it to the training set.

Figure 2.1: AL pipeline [Set09]

Seed data creation

Initial dataset is created by a traditional approach to label some amount of
collected data. It is needed for the initialisation of the model. The dataset has
to be small enough for new batches to influence model’s behaviour. Correct
sizes of the training dataset and the additional batch of newly annotated data
is currently a research question. During AL experiments, when a suitable
strategy is unknown, an initial dataset might be a random sample of a
small size from the original training dataset. This sample is then considered

7

...2. Active Learning

"labelled" part, whereas the rest of the dataset is for experimental phase
considered "unlabelled" - so that the active learning scenario is simulated.

Model training

The model is trained in the same way as if it is trained with a full training
dataset.

New batch selection

This is the novel part in the whole training process and is the key part of
active learning. The whole idea of active learning lies in a way (or a strategy)
the new batch of previously unseen data is selected. It can be done in many
different ways. Data can be selected from the vast collection of unlabelled
data or it can be synthesised. More on that in 2.3.1.

New batch labelling

This phase is a logical continuation of the selection phase. Data chosen for
labelling is passed to domain experts for annotation. This batch can also
be supported by the model’s guess - candidate categories, however during
the first several iterations the model cannot guarantee stable behaviour. The
selected batch is labelled and then the decision maker has to assess this
batch from the domain perspective - is the batch well-balanced, is the batch
descriptive enough or whether it has some dominant topic with minor ones
not present (data imbalance)? These are the questions to be answered before
adding the batch to the training set, since the model’s performance is highly
influenced by each added batch, especially during the first several iterations
when there are not much data present.

8

...2.1. Related Work

2.1 Related Work

Active learning holds a long and successful history in the field of machine
learning [FSST97], and many different AL strategies have already been pro-
posed over the years (e.g., [AZK+19], [CDG+21a]). Very recently, [HGD19]
argued that AL strategies choose similar examples, which do not significantly
contribute to the learning process. They propose an approach that actively
adapts to the deep learning model being trained to eliminate these redundant
examples. With this method, they are able to reduce data requirements of
AL strategies by around 2 - 16 % on multiple NLP tasks while achieving the
same performance.

Moreover, [SYL+17] claim that while being sample-efficient, AL tends to be
computationally expensive since it requires iterative retraining. They propose
a more lightweight architecture that requires less computational power for a
Named Entity Recognition (NER) task and achieve nearly state-of-the-art
performance on standard datasets. During AL, they were able to match that
performance with only 25% of the original full training data.

Furthermore, [SPK+21] decided to investigate the combination of transfer
and active learning for a sequence tagging task. For the CoNLL-2003 corpus,
the combination of their best performing pre-trained model and AL strategy
achieved 99% of the score that can be obtained with training on the full corpus,
while using only 20% of the full dataset. Besides, they also demonstrate that
acquiring instances during AL, a full-size Transformer can be substituted with
a distilled version to achieve better computational performance. Therefore, in
my project I have also focused on working with smaller Transformer models
to save computational power while still achieving good performance. Then, I
have received access to higher computation power and thus conducted more
experiments that are also documented in this report. I believe that research
in the field of AL should be further accelerated and I we want to contribute
to it by proposing a generic framework and therefore facilitating access to
AL.

2.2 Active Learning - scenarios

Before we study state-of-the-art active learning strategies, we have to classify
the ways where the data for labelling might come from. There are generally
several sources for unannotated data:

9

................................... 2.2. Active Learning - scenarios..1. Membership query synthesis - data generation from the range of
all possible values. An algorithm generates data which are seemingly
correct and which can pass through the model. For instance, for large
NLP language models it can be any combination of token indices from
vocabulary up to the maximum length of the sequence. If the maximum
sequence length is 256 tokens and there are 30000 tokens (including
PAD token for padding sequences to the maximum length), then the
range of possible values is 25630000. It is obvious that although there are
roughly speaking infinite combinations of tokens, only a small fraction is
semantically correct, i.e. represent a real text, not a collection of letters.
That’s why a simple data generation process is not applicable for NLP.
However, when dealing with other tasks, for example, robot orientation
where data represent its location, this approach might give more sense...2. Stream-based selective sampling - this method works in the way
that the new data entry is selected randomly from a sampled distribution
of the input space and then the decision whether it is worth labelling is
made by an annotator. This approach is also not well suited for NLP
tasks, since we do not know the distribution the data comes from...3. Pool-based sampling - this is the most widespread way of choosing
data for labeling. Its principal difference from the former two methods
is that the new examples are not generated, but drawn from a pool of
unlabelled data. The assumption is then that such collection exists. For
example, it might be a news agency with numerous articles that have to
be annotated, or a repository of source codes for analysis. The method
works with the whole unlabelled set of data that are at researcher’s
disposal. A strategy selects examples that are worth labelling basing on
some informativeness criteria and returns data back to the annotator.
The annotator knows that the data are not generated, but drawn from
the dataset. The informativeness criteria is mostly a heuristic function
that guesses how useful a data entry for the model training is. The
annotator either agrees with the selection or finds better-suited examples
ordered by informativeness metric function.

The methods described above traditionally work in the following way: a
new data entry is either generated or drawn from an unlabelled set. An
annotator decides whether to add this entry to the training dataset and then
the model is retrained with the new data entry. This routine is valid mostly
for models with low number of trainable parameters, where a single additional
example is capable of causing change in model’s parameters. However, in
tasks involving large language models like BERT [DCLT18a], it is inadequate
to increase training set by only one data entry, which won’t affect it much.
These models are trained with larger data batches, therefore it gives more
sense to draw a batch of new unlabelled data and update training set with
more data at once. One exception from this idea might be a large foundation

10

................................... 2.2. Active Learning - scenarios

model with fixed weights, where the only trainable part is a classification head,
which does not have so much parameters as the whole model [TMC+21].

However, batch selection instead of mere one data entry poses a significant
challenge on AL strategy design.

2.2.1 Batch Mode active learning

Many AL strategies that are not designed specifically for NLP tasks deal with
single data entry, not a batch. The first obvious solution might be to use
these strategies (known as one-by-one strategy) more than once and collect
a batch of a specified size by repeating strategy on more data entries. As
a result, a batch of data is returned, however this approach does not take
into consideration a possibility of collecting a batch with elements which are
highly correlated. An algorithm might select individual instances which might
be useful for the model, however they might be all the same or close to each
other. By collecting a batch of data to put into the model we rather want
this batch to consist of a representative sample of the target distribution and
be as diverse as possible. An example of two possible outcomes of collecting
batches for further training is depicted in figure 2.2.

Figure 2.2: Batch AL vs naive approach, source: [RXC+21]

It can be clearly seen from the left part of the picture that a naive approach
selects a batch with elements of highest individual informativeness. These
data points are located in the same place of the concept space and the studied
space is not covered well. That’s why the compound effect of such batch on
the model performance might be suboptimal. Hence, it is crucial to study
not only AL strategies for single element selection, but also so-called batched
active learning strategies which attempt to find better coverage of the studied
concept space and thus stabilise and improve training.

11

................................... 2.3. State-of-the-art strategies

2.3 State-of-the-art strategies

In this section I present several state-of-the-art active learning strategies that
are actively used in related literature and that show promising results in
empirical studies. The list is not exhaustive, however these strategies many
times are found superior to others.

2.3.1 One-by-one strategies

This is the first class of active learning strategies. One-by-one strategies were
originally developed to serve the purpose of selection of only one unlabelled
example with further annotation and addition to the training dataset. These
methods are usually based on the principle of assigning each unlabelled
example some qualitative score, which determines, to what extent this example
is valuable for the model. The example with the best score is selected.

Random sampling

Random sampling is a trivial method. It is easy to implement by taking
a random sample of indices uniformly from the list of indices from 1 to N ,
where N is length of a list of items to choose from. Each element is sampled
with the same probability from the uniform distribution. Hence, each element
from the unlabelled set has the same chance of being added to the next
training batch. This method does not use any information about the dataset,
about the model, thus it can act as a baseline for comparison with other
more sophisticated methods. Moreover, it is the fastest method due to its
simplicity. Random sampling has nice characteristics for large NLP models
and active learning: it mostly chooses diverse set of data and its sample can
be proven to be similarly distributed as the target population, i.e. elements
from distribution of classes in the target population is more or less kept the
same in the sample as well - thus less worries about "forgetting" less frequent
categories.

12

................................... 2.3. State-of-the-art strategies

Uncertainty Sampling

Uncertainty sampling is a class of methods based on the principle of finding
elements from unlabelled set for which the model provides the lowest certainty
score. The assumption is that the model generates scores that define preference
scores for each output category. The higher the score, the more certain the
model about this category is. This assumption is also supported by the way
how most neural classification and tagging models work - for the decision
making they choose a category with the highest softmax score. That’s why
the category with the lowest softmax score is the least likely.

The strategy works in a way that it finds those entries of the unlabelled
dataset, for which the probability distribution among possible classes is the
closest to the uniform. For instance, in binary classification (where there
is usually only one number denoting the likelihood of element being from
class 0) this would be the probability close to 0.5. It means that the model
is uncertain where this element belongs to. Hence, this element is worth
labelling, since knowing the true category for this entry would help the model
to discriminate better along the classes borderline.

For more categories this method works in the following way: a dataset entry
is considered the least certain if the maximum value among all probability
scores (or other kinds of scores not necessarily summing up to 1) is the lowest
among all other dataset entries. Then, such entry is said to be the least
certain and is sent for labelling. Generally, for N categories (N ≥ 2) the
formula for finding the least certain element is"

x∗
LC = arg max

x
1 − Pθ(ŷ|x)

where ŷ = arg maxy Pθ(y|x), or the label of the category with the highest
posterior probability under the model θ.

The most widespread metric function for most uncertain element finding
though is entropy score, which expresses the amount of information needed
for description of data distribution. Thus, the scoring function for this AL
strategy is:

x∗
H = arg max

x
−

∑
i

Pθ(yi|x) log Pθ(yi|x)

13

................................... 2.3. State-of-the-art strategies

,

where yi ranges over all possible labellings. Overall, both methods are
equivalent to querying the instance with a class posterior probability closest
to 0.5.

Overall, in my project I have implemented two strategies from this class of
methods - least confidence and entropy sampling.

Monte Carlo Dropout Sampling

This method is an improvement of the previous strategy. The difference is in
the way how the uncertainty is calculated - here it is implemented with the
help of Monte Carlo Dropout with n inference cycles [GG16]. Sources like
[GG16] reference number 10 as a good start for experimentation with this
parameter. Authors [EDHG+20] claim that this method shows better results
and consistently generates better batches of unlabelled examples in terms
of representativeness and diversity, see figure 2.3. However, this method is
considerably more complex and lasts much longer than uncertainty sampling
discussed above, see figure 2.4.

Figure 2.3: The difference of active learning strategies from the perspective of
diversity (left) and representativeness (right) of sampled unlabelled examples,
selected by different AL strategies. In this figure uncertainty sample is shown as
LC, Monte Carlo Dropout Sampling is shown as Dropout. Source: [EDHG+20]

There also other smart strategies which are based on different calculations
of expected contribution of an unlabelled example to model’s weights, for
example Expected Gradient Length [HCR+16]. This method calculates an
expected change of a loss function with the help of the norm of its gradient
for each example and chooses the one with the largest expected change.
The idea behind this method lies in the assumption that inputs that cause
larger changes in network’s parameters (and thus loss function gradients are
used as the first input to the back-propagation algorithm) will make the
model converge faster. Such approach according by newer studies ([SN20],

14

................................... 2.3. State-of-the-art strategies

[RXC+21]) are not significantly better than uncertainty sampling. Moreover,
they are extremely time-consuming compared to easier methods, see again
2.4.

Figure 2.4: Illustration on difference of time needed for a single iteration of
different AL strategies. Uncertainty sampling is labelled as LC, Monte Carlo
Dropout Sampling as Dropout, Expected gradient Length is shown as EGL.
Source: [EDHG+20]

2.3.2 Batch methods

Batch methods are built on the idea of finding a collection of unlabelled
examples instead of a single example. The focus is then switched towards
the aim of finding as diverse batch of data as possible. In the light of large
language models this concept is more attractive and gives more sense when
dealing with small datasets in the beginning of labelling training datasets.
Newest sources [ZWH+22] state that these methods are currently achieving
state-of-the-art results.

CoreSet

CoreSet [SS18] is one of the earliest studied methods of batch strategies class.
It is based on analysis of vector representation of unlabelled examples and
choice of n elements (where n is the size of unlabelled batch to draw from
existing pool) which forms a solid representation of the whole unlabelled
collection. The selection is done by application of core-set method [Wik22a].
The whole problem of active learning is redefined by this method to the
core-set selection problem. Authors of [AZK+20] state based on their own
empirical studies that this method is much more accurate than strategies
that attempt to assess individual characteristics of unlabelled examples.

15

................................... 2.3. State-of-the-art strategies

BADGE

BADGE [AZK+20] is an acronym for Batch Active learning by Diverse Gra-
dient Embeddings. This method is different from others in a way of how it
attempts to find the most diverse batch of unlabelled data. It does not use
model output like it is usually done in K-means 2.3.2 or CoreSet method
2.3.2, but it computes gradient of the predicted category, with respect to the
parameters of the last layer. As a result, a vector of gradients is returned.
The method is then inspired by expected gradient length strategy and the
assumption here is pretty similar - when the norm of the gradient vector is
large, the parameters of the network are needed to change more drastically
in order to be "more sure" about the true category.

As soon as so-called gradient embeddings are collected, they are clustered.
However, they are not clustered by K-means or any other algorithm. They
are approximately "clustered" by an easy method of smart K-means algorithm
centroids initialisation - K-means++ [AV07a], [AV07b], which attempts to
overcome known issues with K-means centroids initialisation instability.

Authors of BADGE claim that the strategy does not have weaknesses of
those methods that served as inspiration to this one - uncertainty sampling,
expected gradient length, K-means. These methods, judged by empirical
studies, work consistently throughout different neural architectures and are
therefore reliable. It is empirically known that least confidence method
sometimes gives the most accurate results and sometimes might perform
worse than random strategy - BADGE is however designed in a way that
eliminates this weakness, which is shown in figure 2.6. The pseudo code of
the algorithm is depicted in figure 2.5.

Figure 2.5: BADGE strategy pseudo code, source: [AZK+20]

16

................................... 2.3. State-of-the-art strategies

Figure 2.6: BADGE algorithm comparison with simpler methods. Uncertainty
sampling is labelled here as Entropy. Source: [AZK+20]

K-means

One of the most straightforward methods which shows great performance
[Zhd19] is a K-means approach of finding K clusters of data close to each other
[JH10] in terms of Euclidean distance, but applied for finding K clusters in an
unlabelled dataset. Since this dataset is often enormous, setting parameter k
to higher values (10-100) is justified. The method firstly finds centroids for
each cluster, then for each centroid the closest input unlabelled example is
found and selected for the next batch. Hence, the method makes sure the
sampled texts are diverse.

K-means is a great method, which combines well with one-by-one strate-
gies. For example, [Zhd19] incorporates uncertainty sampling and introduces
weighted K-means method, where each input image is assigned a weight
from an uncertainty calculation function. Weighted K-means can be further
improved in terms of runtime when pre-filtered to leave only the most compli-
cated (uncertain) examples. Basing on the empirical results from [Zhd19] I
have decided not to implement both weighted and classical K-means approach
and decided for the latter for the experimental part.

Cluster Margin

Cluster Margin [CDG+21b] is one of the newest methods, which compared to
BADGE method is not that computationally expensive. Its implementation is
based on leveraging Hierarchical Agglomerative Clustering (HAC) [Wik22b]
to diversify batches of examples that the model is least confident on. This
algorithm is executed only once as a preprocessing step before running AL
experiment. While sampling, the algorithm utilises computed HAC clusters

17

................................... 2.3. State-of-the-art strategies

and with the help of round robin scheme [Wik22d] chooses the best candidates.
This algorithm is more appropriate for problems of large unlabelled batch
selection. Empirical results from [CDG+21b] show that this method has
almost identical performance compared to BADGE and benefits just from
the runtime perspective. Its pseudo code is however much more complicated,
see 2.7.

Figure 2.7: Cluster Margin algorithm pseudo code. Source: [CDG+21b]

Query-by-Committee approach

The approach worth mentioning in this chapter is a so-called Query-by-
Committee (QBC) algorithm [MM04], which is merely an ensemble method
for new unlabelled example sampling. This method works as a classical
ensemble of learners: there is a set of independent machine learning models
(with several differently formulated hypotheses) which are trained on the same
dataset. An ensemble chooses unlabelled example for adding to the training
dataset basing on some criteria of maximum disagreement. A disagreement
metric can be calculated in many ways, for example vote entropy method is
formulated as:

x∗
V E = arg max

x
−

∑
i

V (yi)
C

log V (yi)
C

,

18

.......................................2.4. Aim of the project

where yi all possible labels of the input, V (yi) is a number of "votes" for
this label among all estimators, C is a number of estimators in the ensemble.

Unfortunately, sources like [ZWH+22] claim that this method is infeasible
for deep learning models, as these models are themselves too complex and
require lots of computation to train, thus creating a committee of such models
is an ultimate strain for the hardware this strategy will be tested. Authors
suggest using this method with simpler models rather than deep learning
models, which in case of language models act like an ensemble themselves
thanks to the architecture of attention heads.

2.4 Aim of the project

The reason why I chose this project was my motivation to explore the
framework of active learning and make it possible to be re-used in other
projects and further research. I have built a prototype for an active learning
framework in the form of a Python package, which will complement existing
libraries for NLP model training. My ambitions were the following:..1. Implement an active learning pipeline depicted in the figure 2.1. More

on that in section 3...2. Create a framework which deals mainly with transformers models imple-
mented in PyTorch 1...3. Implement and compare five different active learning strategies. Is there
a difference on final performance between repetitive uncertainty sampling
methods and advanced batch sampling methods?..4. Compare the active learning strategies for a common classification NLP
task. Then, repeat the experiment on a tagging task. Finally, implement
a pipeline for training NLI tasks and test them on a Czech NLI dataset...5. Implement reporting and visualizations for better understanding of active
learning impact on model performance...6. My wish was to implement the whole framework in a modular way, so
that it consists of logical parts put together in a pipeline. Each active
learning strategy has its own implementation, so that it can be easily
plugged into the pipeline to enhance user-friendliness.

1For more information please visit https://huggingface.co/docs/transformers/index.

19

https://huggingface.co/docs/transformers/index

Chapter 3

Proposed solution

The aim of this project was to study the active learning framework and design
a system of running active learning experiments.

I decided to implement a library for seamless active learning experiments
management with comparison and tracking capabilities. The aim of this
library is to streamline the experimental process by abstracting all necessary
AL steps and giving the user only those parts of the implementation which
are important not only for experiments and comparisons, but also for further
development of the system. This package has to be a baseline solution with
further possible improvements which can make active learning methodol-
ogy more accessible to research community. It is flexible, configurable and
extendable.

This project consists of three logical parts: research, system design and
implementation, and experimentation. The system which is then used for
experimentation and which is actually available as an open-source package 1,
is the main output of this thesis. To the best of my knowledge, there are a
few solutions available in the internet nowadays which somehow deal with
active learning methodology ([EDHG+20], [DH]), but none of them are ready
to be used in real world scenarios and are not easily extendable. That’s why
I find my package utterly essential.

The proposed solution is a Python open-source library, which can be used
for experimenting with different AL strategies and neural models found in

1The package can be found at https://github.com/DevKretov/ntu_nlp_al.

20

https://github.com/DevKretov/ntu_nlp_al

... 3.1. Used libraries

transformers ecosystem. It can be seen as a platform to build new models,
new architectures, new strategies and experiment on. The package allows for
running complete active learning pipeline for experimental purposes or for
real-life training with the help of active learning. It implements the following
things:..1. Data load and data preparation. The datasets in tabular format are

imported into the system and textual information is preprocessed and
prepared for training models...2. Model administration. A pre-trained model is imported, a classification
(or any other) head is added upon the model graph. These models can
be downloaded from hosted environments or loaded from local storage...3. Strategies addition. Active learning strategies can be easily added and
included into training...4. Logging. All the essential information for a data scientist is saved for
further investigation and decision making...5. Training pipeline. A pipeline which combines everything above and
orchestrates the whole idea of active learning. It prepares data, a
model, selects a strategy and runs training routine with further logging
and testing and new batch selection basing on AL strategy. Then, it
also checkpoints all models trained during the experiment and tracks
the best one. A training pipeline can be run either on CPU or GPU
interchangeably...6. Configuration. The whole library is highly configurable and has a large
choice of variables to tweak in the configuration file...7. User-friendliness. The package can be used out of the box and is accessible
to a wide range of researchers who work with NLP models and want to
improve their performance. The library is modular and thus it is highly
extendable, so that others can improve it in the future.

3.1 Used libraries

The platform is built upon these renowned libraries:..1. transformers 1 - an open-source library and an ecosystem which im-
plements various Transformer-based models primarily in NLP sphere.

1For more information please visit https://huggingface.co/docs/transformers/index.

21

https://huggingface.co/docs/transformers/index

... 3.1. Used libraries

Nowadays it is one of the most popular and widespread frameworks for
NLP research. It has a deep integration with two most favorable deep
learning engines - PyTorch and TensorFlow, thus the models built in
Transformers are easily trainable on GPUs, TPUs, they can be easily
deployed almost everywhere. Implementation of all necessary steps for
neural models training and testing is straightforward thanks to the deep
level of abstraction given by its API. Additionally, thanks to the growing
community, it is now the standard place to publish new models and
architectures so that others can replicate the results found in various
research papers. That’s why my solution is also deeply based on this
library and implements all active learning steps in transformers ecosys-
tem. This decision enables user to configure the whole framework as he
wishes without the need for extensive code rewriting. It is almost trivial
to change the pre-trained model architecture, configure hyperparameters,
track the model’s performance and deploy the best one to HuggingFace
Hub of models 1.
Moreover, since this library is now actively enhanced by models from
Computer Vision, audio processing, multi-modal architectures, my solu-
tion is easily transferable to other fields of AI research and in perspective
is simply applicable across AI domains...2. Datasets 2 - a library made by creators of transformers which is fully
integrated with transformers. It simplifies the way the data are obtained,
preprocessed, utilised and published. It is in a way a Git for datasets,
not only for usage in transformers library. The framework has numerous
features that help manipulate large datasets which cannot fit into memory
at once by batching them, thus enabling off-the-shelf usage of data with
large models like ROBERTA [LOG+19]. I use this library to implement
all steps needed for data to be prepared for training and evaluation
and since AL is a framework which works primarily with data sources,
the choice of this library helped me a lot to implement a robust data
processing pipeline throughout AL iterations...3. Google Colab 3 - a cloud-based solution from Google for running
experiments in notebooks hosted on Google’s virtual machines...4. Weights and Biases 4 - a MLOps library for tracking and comparing
experiments, a so-called Git for machine learning runs. It is a game-
changer for those who experiment a lot. It provides a rich API with
vast capabilities of saving essential information about training models,
including hyperparameters tracking, logging, evaluation and metrics,
models artifacts and so on.

1Models hub can be found on https://huggingface.co/models.
2For more information please visit https://huggingface.co/docs/datasets/index.
3For more information please visit https://colab.research.google.com/.
4For more information please visit https://wandb.ai/.

22

https://huggingface.co/models
https://huggingface.co/docs/datasets/index
https://colab.research.google.com/
https://wandb.ai/

... 3.2. Architecture

I have integrated all the necessary steps of active learning with this library,
so that experimentation with different strategies and their comparison is
drastically simplified.

3.2 Architecture

It consists of four main components:..1. Model class: an abstraction of the neural model I use to train. Currently
it supports all types of classification models (namely all models with a
suffix "ForSequenceClassification") implemented in transformers library.
Additionally, I have also implemented models for tagging (namely all
models with a suffix "ForTokenClassification"). This class implements
model initialisation, reinitialisation and storing...2. Dataset class: an abstraction of the dataset and all data-related
operations: reading dataset from local storage or from the cloud (cur-
rently from Huggingface datasets Hub), preprocessing text and getting it
ready for training with the help of tokenizers library, preparing different
dataset slices and postprocessing. Technically, there is an abstract class
Dataset which contains generic methods shared among all its implemen-
tations (like downloading dataset, truncating or shuffling datasets, etc).
Then, there are two classes ClassificationDataset and TokenClassifica-
tionDataset, which implement all task-specific functions (labels encoding,
updates, dataloaders preparation)...3. Strategy class: an abstraction of an AL strategy. The particular
implementation of a strategy is written as a separate inherited class. I
provide several strategies for classification and two strategies for tagging
tasks. Each strategy has to implement query method, which accepts a
dataloader with unlabelled texts and returns indices of selected texts.
All data shuffling is performed outside of a strategy instance. Several
strategies also store reference to the currently trained model, so that
they can access model’s weights for best candidates selection...4. Trainer class: an orchestrator of the whole AL pipeline. It is responsi-
ble for everything in the platform and is used for communication and
coordination of three other main classes in the framework. The detailed
logic of a trainer is described in the section below. In a nutshell, the
whole experiment takes place and is logged in this class.

23

https://huggingface.co/tasks/text-classification
https://huggingface.co/docs/transformers/index
https://huggingface.co/tasks/token-classification
https://huggingface.co/datasets
https://github.com/huggingface/tokenizers

...................................... 3.3. Process description

3.3 Process description

The proposed solution is created to serve two main purposes: to evaluate
feasibility of applying active learning framework on a particular task and
to run active learning pipeline in a real-life scenario. Here is the possible
process:

Feasibility evaluation

My library is designed to abide by following process:..1. Tokenizer. The first thing that has to be initialised is a tokenizer. It
is loaded with the help of transformers API and is downloaded either
from HuggingFace (HF) models hub or from a locally stored model. My
solution utilises loading HF API, hence it is capable of loading tokenizer
from extremely large possible storages and databases, including cloud
storages.
The tokenizer is initialised with the help of a dictionary file, where all
trained tokens are stored. For more detailed implementation of tokenizers
please read in detail about WordPiece [WSC+16] or SentencePiece [KR18]
algorithms.
The tokenizer has to be carefully loaded in case when Czech data is
going to be processed: many tokenizers do not have their corresponding
configuration files (stored in the same folder as a tokenizer). Most Czech
models (like RobeCzech [SNSS21] or Czert [SPP+21]) have carefully
designed tokenizers’ configs, however it must be taken into account while
loading own tokenizers. For Czech language it is crucial to load tokenizers
without stripping accents (shown in figure 3.1), otherwise the results
might be suboptimal.
The tokenizer is loaded first, since it is then used to preprocess input
data and convert string tokens to integer indices of the words in its
dictionary...2. Data load. Firstly, the dataset in the CSV format is downloaded. It
can be a dataset stored locally in a file system or a dataset stored at
HuggingFace Datasets hub. Each dataset must have its own configuration
file in which the system will read out all necessary information: the names
of columns for both input and target, a flag whether the dataset can be
found on the HF Hub, paths to train-validation-test splits in case of a

24

https://huggingface.co/datasets

...................................... 3.3. Process description

Figure 3.1: Correct way of loading HuggingFace tokenizer for correct Czech
language handling.

locally stored dataset, and names of the splits. Only datasets for these
tasks can be processed at the moment:..a. Classification - a dataset is typically a two-column CSV file with

the first column intended for the input text and the second column
intended for the category of the text...b. Tokens tagging - a dataset is typically a two-column CSV file with
the first column with a serialized Python-like list of string tokens
(words) and the second column with a serialized Python-like list of
integer tags labels.
A tagging dataset example is depicted in figure 3.2.

Figure 3.2: An example of a tagging dataset. There are two important columns
that must be present in the table - one with tokenized text ("tokens" in the
picture) and one with target labels for each token ("pos_tags" in the picture).
For each row the lengths of these two lists have to be the same...c. Fact checking - a dataset is typically a three-column CSV file with

the first column being a claim in string format, the second column
- evidence in string format and the third column - a target label
stating if the evidence supports the claim fully or partially, or neither.
In fact, this type of data is inherently converted into a classification
dataset by appending claim string to the evidence string. These
two strings are additionally separated by a technical token [SEP],

25

...................................... 3.3. Process description

which tells the neural model that there are two sequences in the
input. The visualisation of this approach is given in figure 3.3.

Figure 3.3: Illustration on Fine-tuning BERT-like models on NLI task. Source:
[DCLT18a].

This is however just one possible way of dealing with NLI datasets.
Another possibility is to use cross-encoders [RG19] and then com-
pute cosine similarity between two inputs. However, I decided to
stick to the implementation supported by original paper [DCLT18a]
and many others [WFK+21], [RG19] and is one of possible ways of
treating this task. For example, figure 3.4 shows how T5 developers
from Google preprocess NLI inputs for the classification model.

Figure 3.4: Illustration on NLI inputs preprocessing. Highlighted texts act as
separator for the model, so that attention mechanism knows that there are two
logical parts in the input. Source: [WFK+21].

Overall, we have two different ways of treating input data, that’s why

26

...................................... 3.3. Process description

Dataset class, which acts here rather as an interface, has two imple-
mentations - ClassificationDataset, TokenClassificationDataset. Both
these datasets implement all data-related tasks of reading, preprocessing,
dataloaders preparation and datasets actualization in each AL iteration.
A Dataset class instance is initialized with fully functional tokenizer.
After the data are loaded either from a local CSV file or from a remotely
hosted environment, the textual data is converted into lists of token
IDs, target categories are converted into their corresponding numerical
representations. Conversion of text into lists of integers is conducted
by the tokenizer with the same set of parameters: maximum sequence
length, truncation flag, padding parameter. After the preparation there
will be a standardized list of lists of equal length representing each input
text. This format is already prepared to be used in training routine.
In order to conduct active learning experiments, the original training
dataset, which is fully labelled, has to be divided into two parts - into a
labelled and presumably unlabelled parts. The one that is considered
labelled is always used in training, while the rest of the data is used
for querying and obtaining new data for adding to the training dataset.
Examples drawn from presumably unseen dataset are enhanced with their
labels and then passed to the training dataset. By gradually repeating
this process we simulate the real process of active learning when there is
no labelled data available beforehand...3. Model initialisation. The model is initialised with the help of its
identifier in case when the model has to be downloaded from HF Models
hub or with the model folder path found on either local or cloud storage.
The model is loaded with the help of AutoModel subclass, which resolves
the particular architecture basing on configuration content - model
initialisation process is therefore fully dependable on its configuration
file...4. Trainer initialisation. A trainer is an orchestrator and the central
part of the whole process. It has the complete training and testing logic
implemented inside.
A trainer instance is equipped with initialised model instance and a
dataset instance. Then, data loaders for training loop are prepared:..a. In case when active learning scenario is enabled, the training dataset

is created from the "labelled" part of the original training dataset.
Additionally, a dataloader for the "unlabelled" part of the training
dataset is created for active learning selection procedure. Otherwise
the dataloader for training is initialised with the full training dataset...b. In case when the user knows that the dataset is imbalanced (there
are strong groups of labels that form a dominant part of the dataset,
whereas other labels are represented by a small - considerably
smaller - number of examples), the dataloader can be configured in

27

...................................... 3.3. Process description

a way that enables data resampling basing on labels’ probability
distribution. Resampling can sometimes stabilise training process
and make model more attentive to less frequent classes [HBFF22].
Resampler is a natively implemented mechanism in PyTorch, it is a
part of data package and is called WeightedRandomSampler.
Resampling is enabled by default...c. Training dataloader is initialised with shuffling set to True [NTD+22]...d. Dataloaders for validation and test splits of the dataset are also
prepared.

After the dataloaders for the training loop are prepared, the rest necessary
parts of training routine are configured. In my solution I use AdamW
[LH17] optimizer with learning rate set from configuration file. I also
implemented learning rate scheduler, but since fine-tuning of BERT-like
models is conducted on just several epochs (up to 5 mostly), there is no
much need for its introduction.
After that, the target training device is selected. Currently the solution
is capable of running on GPUs and CPUs. GPU support is inherenty
implemented in PyTorch, there is no need for additional tweaking. In
case when no GPU is available, training and inference are run on a CPU.
Then, evaluation metrics are added to the list of all metrics that are
needed to be tracked during training and testing. These metrics have
to be compatible with HF Datasets library, where there have to be
several functional methods for each metrics instance. Traditionally, these
metrics are added: accuracy, precision, recall, F1 score. All metrics must
be initialisable with the help of load_metric function. In case of such
metrics as F1 one needs to bear in mind that they are more flexible than
standard accuracy metric, thus it is needed to be configured thereafter.
Nevertheless, as for the beginning of 2023 metrics are deprecated in
datasets library and now it is a separate library called Evaluate 1.
In case when local visualisation of AL strategies performance is required,
visualisation module is initialised.
It is possible to run a so-called "full training", where the complete training
dataset is used to train the model. Full training mode is important for
the initial comparison of the effectiveness of AL pipeline. It gives metric
scores which we then try to reproduce or even beat during active learning
phase. Full training serves as a baseline for an AL experiment.
Finally, the orchestrator starts AL experiment with selected AL strategy.
An AL experiment is configured with the following parameters:..a. Number of AL iterations...b. Initial training dataset size...c. Number of training entries to add after AL strategy application.

1The library can be found at https://huggingface.co/docs/evaluate/index.

28

https://huggingface.co/docs/evaluate/index
https://huggingface.co/docs/evaluate/index

...................................... 3.3. Process description..d. Number of training epochs in each AL step...e. Selected AL strategy...f. Training batch size, validation batch size and test batch size...g. Debug mode - whether to run the whole AL experiment in debugging
mode - only 5 batches for training, validation and testing and then
AL strategy application. Overall, there will be 5 AL iterations. I
use this mode while testing the integrity of the whole process...h. Path to save the best performing model.

The lines below describe the mechanism of initialisation of AL Trainer.
As soon as all preparatory steps are finished, an experiment can start.
An experiment consists of N AL iterations defined by the user. In each
iteration we execute the same routine: model training and evaluation,
AL strategies querying and new "unlabelled" batch of data selection,
datasets actualisation, snapshots creation:..a. Model training is implemented by following the best practices for

PyTorch models training and specifically transformers models fine-
tuning [PB18], [SQXH19]. In each training method call the model
is reinitialised and learned weights during previous AL iterations
are reset. The optimizer is reinitialised. Then, a standard PyTorch
training routine is run: forward pass with the next batch, loss
calculation, back-propagation, optimizer step, loss function value
logging. After the whole training dataset is passed, average loss is
printed. Then, a new epoch is started. Currently calculated average
loss is printed together with a progress bar with the help of TQDM
library [dCLLA+22].
After training, the model is evaluated on a validation set, then on a
test set. The decision of running evaluation on a validation set only
after all training epochs is made due to high computational cost of
running validation after each training epoch in each AL iteration.
It is however required for best model selection before its evaluation
on previously unseen data. Hence, the results that are reported
in this work could be possibly lower than if the evaluation on a
validation set with further best model selection was run after each
training epoch. Evaluation on the test set is done in the end of AL
iteration, so that it is possible to compare the results of a model
trained on a part of the dataset during each active learning step
and the model trained on the full dataset.
Evaluation is implemented in a similar way as training, however the
difference is in the way the metrics are collected and reported. Dur-
ing evaluation, AL trainer calculates all user-specified metric scores
depending on the type of a training task: in case of classification, a
flat list of predicted texts labels is collected for the whole dataset
and then the metrics are calculated, whereas for a tagging task
the list of masked labels is collected both for predictions and for

29

...................................... 3.3. Process description

true values, then they are transformed into labels in string format
due to BIO tagging scheme [Wik22c] requirements and sequential
evaluation specifics. After the list of tags is collected for each input
text, specific tagging task metrics are calculated with the help of
seqeval package [Nak18]. Then, these metrics scores are printed out,
so that the user sees how the model is performing.
A model with the best F1 score for validation set is saved on disk as
an artifact. F1 score metric could be changed in the configuration
file if necessary...b. After the model is trained, an AL strategy instance is given actual
dataloader with "unlabelled" data to query from. This is done by
an implementation of query method of a base AL strategy interface,
which gives the whole solution great flexibility. Basing on a selected
AL strategy, the list of indices of rows found in the "unlabelled"
dataset is returned...c. Both "labelled" and "unlabelled" datasets are updated: rows selected
by an AL strategy move from the "unlabelled" set to the current
"labelled" dataset and enlarge it. Then, integrity validations are run
so that we are sure that no data are lost during this change. After all,
the part of the "unlabelled" dataset which was moved to the "labelled"
dataset is saved as a separate CSV file for AL strategy selections
tracking and reverse-engineering. Current "labelled" dataset is also
saved for further reproduction of the results reported by the solution.
A reproduction might be done by simply fine-tuning a language
model with the help of this dataset, given that other parameters of
training are left unchanged.

After all the steps above, a new AL iteration starts. The whole process
lasts until the last AL iteration is finished. After that, all metrics scores
collected during AL experiment are returned and stored for further
visualisation and monitoring. However, in a real-life scenario a stopping
criteria might also be some evaluation metric threshold that has to be
surpassed, not the number of AL iterations, which guarantee that the
algorithm will terminate.

Real-life AL training

The real life part of the solution lies in correct configuration of all parameters
present in a configuration file. As soon as the target AL strategy is known
and the training scenario is determined, the real-life AL scenario can start.
It consists of the very same steps as during experimentation part, but after
the new chunk of unlabelled data is chosen, it has to be manually labelled.

30

...................................... 3.4. MLOps integration

The chunk is saved as a CSV file, which has to be then opened either in an
annotation tool like Prodigy [MH] or in Excel for tagging.

The process diagram of the library can be found in appendix: D.2.

3.4 MLOps integration

There are lots of experiments involved into active learning research. In order
to be able to tell which AL strategy suits best for the particular task, a
thorough process of experimentation, parameters search and comparison has
to be conducted. One of the main topic in massive models training is how
to track all the experiments and how to be able to systematically trace and
compare particular runs. Thankfully, there are several possibilities how to
keep experimental data in a clean and sustainable way. The solution that I
found promising is the library called Weights & Biases (W&B) [Bie20].

Weights & Biases is a machine learning platform acting like Git for soft-
ware development. It has broad functionality supporting machine learning
engineers and researchers by automation of experiment tracking, model’s
weights management, datasets versioning and reports preparation. Its aim is
to operationalise the lifecycle of ML models, input parameters and weights,
trained models, datasets and metrics. It’s an API with a web-based UI
prepared for tracking experiments and it’s free even for small research groups.
It enables collaborative work and experiments recreation with the help of
artifacts.

Weights & Biases are easily integrated into existing project. I made the
following steps in order to fully integrate my project with Weights & Biases
ecosystem:..1. I have registered on wandb.ai and received a personal access token (PAT),

which is currently considered a standard in cloud-based SaaS solutions...2. I used this PAT as a value of an environment variable for the conda
environment I used for this project. By only setting up this environment
variable the project is capable of communicating with Weights & Biases
servers and can already log data...3. For each AL experiment I create a separate "run" in W&B ecosystem
and pass the following information:

31

https://wandb.ai/home

...................................... 3.4. MLOps integration..a. The name of the run - a string with a timestamp of the moment
when the experiment is run with base information: device name,
task, model name...b. The whole content of a configuration file converted to JSON format,
so that it is accessible from W&B run UI...c. The whole content of a dataset configuration file...d. A model instance for tracking gradients and model’s topology...e. Datasets’ content grouped by splits as run’s artifacts. This is done
for ease of control from the UI what kind of data the solution works
with. The artifact is saved as a CSV file.

For each experiment I also create a table for tracking the model’s perfor-
mance on a test set with the following columns:..a. Index - the unique identifier of the input text..b. Text - unprocessed raw text which is put into the model...c. True label - a correct label for the respective text given by an

annotator. In case of tagging task there will be a serialised list of
tags...d. Prediction - a predicted label by the model. In case of tagging task
there will be a serialised list of predicted tags.

The table is then enlarged by additional columns representing each
category from the training dataset. The content of these columns will
be a probability distribution (softmax scores), denoting the likelihood
of the corresponding category. The model’s decision is by default set to
the category with maximum value of softmax score. An example of such
table in Weights & Biases environment is present in figure 3.5.
During AL experiments, in each iteration the current training dataset is
saved. After the selection of the new batch of data move from unlabelled
collection to the training set, this batch is also saved, so that it is
possible for a researcher to track increments in each step. For each of
these datasets - a current one and an increment - there is a separate
artifact in Weights & Biases for easier navigation in the UI. An example
of different artifacts collected during one AL experiment is shown in
figure 3.6.
During training I store all training-related data in logging dictionary
that is passed to Weights & Biases logging API. For the full training (if
enabled) the value of the mean training loss is stored in AL run config-
uration file (since it is done only once, there is no need for continuous
logging of this value). After all training epochs are finished, the mean
loss for each AL iteration is stored in a logging dictionary. The same
rule is applied for validation and testing phase. Firstly, a table with
both predictions (and their respective softmax scores) and true labels
for test dataset is created. This table is then sent to Weights & Biases

32

...................................... 3.4. MLOps integration

Figure 3.5: Illustration of a prediction table for a test set calculated after each
active learning iteration. The table contains columns with the same names as
categories’ names, then the index of the example (seq_i column)), then input
text, correct category and predicted category (in my experiments - a name of
the label column with maximum likelihood score).

Figure 3.6: Illustration of artifacts page with all versioned datasets that are
collected during one AL experiment.

so that user can either study the results for each test dataset row in
a web-based UI or download this table as a CSV table and study it
locally. Additionally, a confusion matrix is calculated and sent to W&B,
which natively supports confusion matrices and visualise several different
experiments with their statistics and confusion matrices very clearly, see
figure 3.7. I use this visualisation very often for deciding which model
is superior. All evaluation metrics defined by a user are also saved and
sent to the UI for comparison with other experiments.

33

...................................... 3.4. MLOps integration

Figure 3.7: Illustration of a confusion matrix representing classification statistics
for four different experiments (purple, yellow, violet, red bars). Weights & Biases
have nicely implemented visualisation for comparison of different runs. It can be
seen from this figure that purple experiment had more mistakes predicting label
0 and 1, while a yellow experiment shows superiority in correctly predicting label
2.

Weights & Biases is a user-friendly web-based interface for machine learning
experiments tracking. It is divided into several parts, see figure 3.8. The first
part is a list of all experiments (or runs) conducted by a user. A user can
click on each run and see all the information that is tracked about particular
experiment. Tracking is done either by manually adding some variables to
logging dictionary as I stated above, or natively by the library which internally
monitors the state of the hardware the experiment is run at, the state of
GPUs if present, the whole Python environment and the way the experiment
was triggered (all command line arguments).

The second part of the interface is a grid with charts. Each chart is drawn
basing on variables logged during each experiment step. These variables can
be technically everything: time taken for execution of one step, validation
metric value, loss value, etc. Traditionally, training a neural network is done
in so-called epochs. One epoch consists of several steps, which many times
cover the whole training dataset. In my solution, an epoch is defined in the
same way: the number of steps per epochs is calculated basing on the training
batch size with the last batch being a residual batch (can be of a smaller
size than others). Weights & Biases track variables in so-called steps. The
responsibility for the definition of a step lies on the designer of the experiment:
a step can be an epoch, a real step in training - one batch of data, or even the

34

...................................... 3.4. MLOps integration

Figure 3.8: Illustration of Weights & Biases experiment UI. There is a list
of experiments on the side bar and charts with tracked variables in the main
window.

whole experiment. Thanks to such flexibility I was able to integrate Weights
& Biases charts into my AL library in the following way:..1. One tracked step is one iteration of AL strategy. The monitored variable

is a metric score or loss value for training/testing part of an AL iteration.
At the moment the library tracks mean training loss, test loss, test
accuracy, test precision, test recall, test F1 score...2. Tracking of the value technically means to create a Python dictionary,
where keys resemble the name of the variable we track and its value is
the value we want to send in this step to the cloud. The dictionary is
gradually filled with values and then is submitted to the server once all
values are present...3. In charts drawn in the UI a horizontal axis denotes each AL iteration
of the corresponding experiment. Hence, it is possible to observe how
the metrics values are evolving throughout dataset filling. Losses are
traditionally expected to decrease and F1, precision, recall, accuracy are
supposed to increase. However, since we are dealing with small datasets
in the beginning, oscillations might be present due to highly unstable
training, which has to be studied separately.
Weights & Biases cope with oscillation in charts by smoothing them (see
C.1). It is a useful feature for comparing different AL strategies - by
smoothing we observe trend line, which is more significant than single
values in each step.

35

...................................... 3.4. MLOps integration

One more feature worth mentioning is out-of-the-box plotting of confu-
sion matrix not only for one experiment, but also for multiple experiments.
Confusion matrix is calculated natively by this library, a researcher only has
to provide predicted and true labels for it. All is done by the library. One
pitfall is that the confusion matrix in my case is plotted for the last step of
AL strategy, since originally Weights & Biases dashboard is designed to track
one full neural network training, where confusion matrix is mostly calculated
only once on a test set after the training is finished. However, I calculate it
after each AL step and store them as artifacts in cloud.

Weights & Biases enable to store tables and show them in a readable format.
A table is technically a CSV file with header, which is then parsed in the UI.
I use this feature for the following purposes:..1. For storing the source table of confusion matrix calculation - for each

pair of true and predicted labels I see the frequency of such situation. It
helps me to find the problematic pairs of possibly overlapping categories
in input data...2. For storing softmax scores distribution among possible categories for the
whole test dataset together with true and predicted label. This table
helps me to see how the model behaves on the test set specifically for
particular inputs, not in a summarised way as with test metrics, and
to study the scores which show uncertainties about each category: if a
falsely predicted category has softmax score close to 1, it might signalize
some systematic error in labelling or training. Thus, the data entry
might be needed to study deeper.

There are many other features that I did not use in my project, although
they are highly valuable: Weights & Biases are capable of creating automated
reports for each training and even for a set of experiments, so that a researcher
can automate comparison runs and AL strategies selection.

36

..................................... 3.5. RCI cluster integration

3.5 RCI cluster integration

A part of my thesis was the integration with Research Center for Informatics
(RCI) cluster, which is the centre of computer science and artificial intelligence
research at Czech Technical University. This integration was necessary
for getting access to HPC (High Performance Computing) infrastructure,
consisting on CPU, GPU amd SMP nodes - for my active learning experiments.
RCI cluster is equipped with nodes with NVIDIA Tesla V100 graphic cards
with 32GB graphing memory, which is enough for fine-tuning of large NLP
language models (around 100-400M parameters) without freezing layers.

In order to run experiments at RCI cluster, one needs to request for the
access to RCI servers. An access is granted for RCI or AIC researchers and for
those using GPUs for their individual projects at CTU. I have been granted
access and was able to use the whole infrastructure for the project.

A cluster is a remote server which I connected via UNIX ssh CLI program.
Each user has its own private folder where he can run his code. First of all, I
had to set up Python environment with all modules required by the solution
- transformers, wandb, seaborn, etc. I managed to do it with the help of RCI
cluster tutorial for running jobs with sbatch utility.

Then, I used a popular Python environments manager - virtualenv, which
helped me to create an isolated environment (just like conda) for this project.
I created the modules list with their corresponding versions (which is vital in
Python world) in a requirements.txt file which I put to the project directory.
The whole source code is hosted on my GitHub repository, and the process of
integration and experimentation later was implemented via a dedicated Git
branch where I developed all necessary steps for correct RCI cluster usage.

Finally, I stuck to the following workflow:..1. I develop locally on my laptop in PyCharm IDE...2. I commit and push all changes to RCI branch on my remote repository
on GitHub...3. I log in my RCI account via ssh...4. I pull changes from this branch to the local file storage on the cluster.
This approach frees me from mapping cluster’s storage on my own laptop,
which I found more elegant.

37

https://login.rci.cvut.cz/wiki/how_to_start
https://login.rci.cvut.cz/wiki/how_to_start

..................................... 3.5. RCI cluster integration..5. I run a prepared bash script which specifies everything needed for the
run, see 3.9...6. The whole experiment is logged to Weights & Biases web UI, so that I
do not need to do anything else on a cluster...7. I monitor workload, elapsed time of my jobs and availability of nodes
via commands:..a. squeue | grep <username> - to monitor all jobs triggered by me...b. scancel <job id> - to cancel a mistakenly run job...c. showpartitions - to check if some GPUs are available.

Figure 3.9: RCI cluster run script. Lines 2-7 define variables used by job
executor. Lines 9-22 parse input command line arguments. Lines 26-30 initialise
active learning environment. Lines 32-41 trigger run on a GPU node with all
parameters.

38

.................................... 3.6. Google Colab integration

3.6 Google Colab integration

The first part of my experiments with small models was executed before
I was given access to RCI cluster, so I wrote several Jupyter Notebooks
that I ran in Google Colab environment. It is an online version of Jupyter
Notebooks, which are widely used for experimenting in data science field.
Google Colab is more advantageous than Jupyter notebooks as it is run
on Google’s virtual machines dedicated for Python experimenting and the
notebooks are accessible via Google Drive. It means that a developer is freed
from a painful process of packages installation and incompatibility issues.
Almost everything is preinstalled and since it is a product from Google, there
is no need to additionally install any other Google’s frameworks. Nevertheless,
the most important feature Google Colab comes with is GPUs and TPUs
availability free of charge. Everyone can simply connect to a cloud accelerator
and run experiments on them. This is the main reason why I chose Google
Colab as my primal training and analysis environment. TPUs and GPUs are
however preemptive, meaning that they are reserved for a short period of
time (12 hours) and are primarily assigned to those who utilize them less.
The reason for such a policy is to make accelerators available to everybody
so that nobody can monopolise them.

The main notebooks, which is literally a .ipynb version of the main.py script,
is AL_Experiment.ipynb. This notebook is also integrated with Weights &
Biases platform. Although the integration process was not seamless and by
the time of development this framework had several synchronisation issues,
I managed to find solutions to them, so that no experiment is missing. In
the end of the notebook there is also a local visualisation example, which is
a lightweight version of charts powered by Weights & Biases and which are
designed for a fast comparison of several AL strategies. An example of such
visualisation is shown in figure 3.10. The visualisation routine (which is a
separate class which collects all data and then produces the grid with curves) is
implemented in a native matplotlib environment from scratch - to demonstrate
how such chart can be implemented. As a result, this visualisation was never
used due to lack of flexibility and the need for programming each change
in plots compared to straightforward toolset of Weights & Biases. Such
visualisation may be useful when there is no possibility to connect to the
W&B cloud and to synchronise metrics with it.

39

https://colab.research.google.com/

.................................... 3.6. Google Colab integration

Figure 3.10: A chart used for comparing active learning strategies with the full
training result (a horizontal red line labelled "full" in the legend) and the results
of several AL strategies. The library is capable of running as many experiments
with different strategies as needed, hence two "baseline" curves in plots. Each
visualisation is divided into four independent plots: for accuracy score, precision,
recall and F1 (weighted) score.

40

Chapter 4

Experimental part

4.1 Active learning experiments

In this chapter I present the results of the experimental part of my thesis,
which I completed with the help of the library described thoroughly in chapter
3. The aim of these experiments was:..1. To evaluate feasibility of active learning approach on NLP tasks which

are now solved with the help of fine-tuning of large language models.
The evaluation had to answer the question whether it is worth plugging
in active learning in such scenario...2. To compare state-of-the-art active learning strategies discussed in 2.3.1,
to observe their behaviour, explore their capabilities and limitations,
their peculiarities while using them with NLP models...3. To experiment with different configurations: different models, different
strategies, hyperparameters setups, etc...4. To debug the library and make its functionality worth publishing, so
that other researchers of NLP community would be able to work with
this library on their own in their own experiments.

The topic of active learning in NLP is extremely broad and thus there
are lots of experimental setups that are possible to design. Here I present

41

...................................4.1. Active learning experiments

a possible classification of the most important parts in each AL experiment
and then cover the experiments I conducted.

4.1.1 Tasks

Overall, there are two main tasks that are implemented in my project -
classification and tagging.

Classification task is the most studied task in active learning literature.
It is generally the most widespread objective of neural networks and is a
generalisation of many other tasks. State-of-the-art active learning strategies
are mostly implemented and studied in the context of classification, thus the
solution would be incomplete in case it lacked this task.

However, I have also integrated Natural language inference (NLI) task like
fact checking via translation of two textual inputs and their corresponding
label into a classical classification task. Fact checking task is then implemented
as a classification task on a textual input consisting of two concatenated
strings divided by a technical [SEP] separator, which is known by a tokenizer.

The second task - tagging - is implemented in order to demonstrate the
capability of the library to be simply extended by the next application.
Tagging task is not extensively covered by active learning NLP literature and
thus I hope that this implementation may spur interest in this topic as well.

4.1.2 Datasets

I have taken four datasets for my experiments, two for classification tasks,
one for tagging, and one for fact checking:..1. Newsgroup dataset - a collection of approximately 20000 documents

(13104 in a train set) divided into 7 different categories. Authors claim
that the dataset is nearly uniformly divided. It is a popular dataset for
text classification tasks, where there are considerably more categories
than in most datasets. This is exactly the reason why I chose this dataset
for my experiments. The dataset has a hierarchical division firstly into so-
called newsgroups (which are 7), then into different corresponding topics.

42

...................................4.1. Active learning experiments

For example, a newsgroup comp contains topics "graphics", "os", "sys",
"windows", etc. For the purposes of testing AL approach I have chosen
to use newsgroups as target categories for the model. I downloaded
this dataset from Kaggle competition page and read it locally from the
corresponding configuration file, where I provide paths to all three splits
and target columns to process...2. Twitter US Airline Sentiment dataset - a domain-specific dataset
of US airlines data with reactions towards major American airlines.
This dataset is designed for sentiment analysis. The input for our deep
learning model would thus be a tweet about an airline and the output is
the predicted sentiment (positive, neutral, or negative). There are 14640
tweets mentioning airline companies. It is a highly imbalanced dataset
(63% of commentaries are obviously negative, 21% are neural and only
16% of commentaries are positive). The reason why I chose this dataset
is to look at how AL strategies feel themselves with imbalanced data
and also to equip my solution with a handler of class imbalance...3. CoNLL2003 dataset, [TKSDM03] - a dataset with shared natural
language tagging tasks: Part-Of-Speech (POS) tagging, chunking and
Named Entity Recognition (NER) task. Among these three tasks the
most complicated one is the latter, that’s why I chose it. The dataset
consists of 20744 entries and is the most popular benchmark of measuring
quality of neural models solving NER task. This dataset is used in my
experiments for demonstrational purposes, so that it can be seen that
AL is also applicable to tagging. This dataset is hosted on HF Datasets
hub...4. CTKFactsNLI dataset, [UDR+22] - a dataset with data in Czech
language with claims and evidence. The dataset is acquired by AIC
researchers in cooperation with other faculties and to the best of my
knowledge is the largest and the most carefully collected dataset for fact
checking task. The choice of this dataset is to run experiments with
solely Czech language models and to reassure that the library is capable
of handling Czech language as well as English. This dataset is hosted on
HF Datasets hub.

4.1.3 Models

The selection of language models is given by historical development of this
project: originally I did not have access to RCI cluster and thus I had to
train smaller models. Lately I was granted access to more powerful GPUs
and had opportunity to run experiments on larger architectures. By taking
this into consideration, I was experimenting with the following models:

43

https://www.kaggle.com/datasets/crawford/20-newsgroups
https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment
https://huggingface.co/datasets/conll2003#citation-information
https://huggingface.co/datasets/conll2003#citation-information
https://huggingface.co/datasets/ctu-aic/ctkfacts_nli

...................................4.1. Active learning experiments..1. For English tasks - the choice was made in favor of well-documented
and widely used large language models from BERT family: BERT-tiny
[TCLT19], BERT-small [TCLT19], BERT-base [DCLT18a], BERT-large
[DCLT18a]. All these models were taken in an uncased version. Then, I
also experimented with ROBERTA model [LOG+19], which is the largest
model among BERT-like models. All these models are stored at..2. For Czech tasks - I chose the only models publicly available at Hugging-
Face transformers models hub - RobeCzech [SNSS21], Czert [SPP+21],
Small-e-Czech [SPP+21]. These models have comparable performance
and create a small ecosystem of purely Czech-data trained models. For
comparison, I also include DistilBERT-base-multilingual uncased model
[SDCW19], so that the effect of pretraining on isolated Czech data via
correctly instantiated dataset (without stripping accents) is clearer.

All the models are initialised with the help of AutoModel interface, thus
the solution relies heavily on a configuration file of a corresponding model.
Fine-tuning conditions and parameters are then equal. More on model
initialisation can be found in on the official guide by HuggingFace.

4.1.4 Implemented strategies

I have implemented several strategies that I then used for my experiments
with different datasets. From one-by-one strategies presented in 2.3.1
I have chosen least confidence strategy (finding an unlabelled example
whose maximum probability score among possible labels is the lowest)
and entropy strategy (choosing an unlabelled examples whose classes
probability distribution has the highest entropy, i.e. the distribution
is the closest to uniform). From batch methods I have selected two
strategies: K-means strategy from 2.3.2 and BADGE strategy from 2.3.2
as two representatives of logically different approaches to candidates
selection.
I have also included random strategy in the list of implemented strategies
as a good baseline method to compare with.

4.1.5 Evaluation method

First of all, I analysed the performance of the trained model with the help
of standard ML metrics: loss on the test set, accuracy, recall, precision
and F1 score. Since I do specific research, I compared the performance
based on two different schemes...a. The first one compares the classical performance of the model trained

on the fully labelled dataset with the performance of the models
trained with the help of an AL strategy. The goal is to determine

44

https://huggingface.co/docs/transformers/model_doc/auto

...................................4.1. Active learning experiments

how much data is needed for an AL scenario for reaching the same
performance as of the model trained on the full dataset...b. The second scheme is targeted towards AL strategies comparison.
For that we introduce a random strategy, which simply chooses the
prescribed number of unseen data points without replacement and
adds them to the training set. A random strategy emulates the
stochastic process of data collection. It approximates the perfor-
mance of the model trained on the partly full dataset in each step,
while approaching the full dataset during the steps when the size of
the AL dataset becomes equal to the full dataset.
Then, each AL strategy is compared with the random strategy. I
define a good strategy as one which surpasses the random strategy
and achieves better results in the long run. A bad strategy is the
one that performs worse in the long run. By saying "in the long
run", I mean the trend line of the monitored metric score, which is
achievable by smart smoothing of oscillating metric scores after each
AL iteration. In terms of strategies comparison a better strategy
will have its trend line higher than a strategy that performs worse.
Hence, if a strategy achieves F1 metric score at test set faster and
converges to some high F1 score, it is better than a strategy with
lower F1 score in the result (in the end of the experiment) or with
the same F1 score, but with slower rise of this metric score during
the experiment.

AL steps can disrupt model performance - there is no guarantee that
the model’s performance reported at step i + 1 will be better or at least
the same as at step i. There is a couple of reasons why it might happen.
First, it could be a simple perturbation of the distribution of classes
in the train dataset, when a class with larger number of examples will
make model be biased towards this class. Then, there can be influence of
stochastic nature of neural networks training, which could also disrupt
model’s behaviour. Since we cannot rely on precise numbers achieved
during AL steps, a better evaluation method should be introduced. One
possible way is to use smoothing techniques and to look at active learning
experiments as a whole. The one that I found promising is exponential
moving average (EMA) 1 technique which is actively used in trading
and estimation of assets long-term price [GS13]. This technique favors
those values closer to the actual point in time and discounts those far in
the past, that’s why it is a possible candidate for logging a test set metric.
The values that are produced by EMA method are often characterised
as smoothed.
Overall, a good strategy is either the one which achieves a better
smoothed value in the end of the experiment or the one which is capable

1Explanation of trend line estimation using exponential moving average (EMA) could
be found in https://www.investopedia.com/terms/e/ema.asp.

45

https://www.investopedia.com/terms/e/ema.asp

...................................4.1. Active learning experiments

of achieving better score faster (if the speed at which the monitored
metric gets to better values). Graphically it means that if there are two
curves of smoothed values for two different active learning strategies,
the one which is "higher" (when higher metric score is better, lower
otherwise) is better. Graphic method is also important for assessment of
strategy’s behaviour - there are strategies that show faster development
of monitored metric, while others grow slower but at some point they
surpass the other. In this case, the decision of which one is better de-
pends on the aim of the experiment - whether to achieve overall better
performance or find a feasible (and possibly suboptimal) solution, but at
a lower price. In case of the former, a strategy which achieves a better
smoothed score in the end of the experiment is better, whereas in case
of the latter it is the one with a faster growth.

4.1.6 Experimental details

The experimental part consists of three logical parts. The first one deals
with smaller language models (BERT-tiny, BERT-small) in order to
promptly see the impact of different strategies and to experiment more.
The second one contains experiments with larger models (BERT-base,
BERT-large). The third part is a part dedicated to Czech NLI task tested
on CTKFactsNLI dataset, where the choice of the models is completely
different. Here is the list of all experiments that I conducted in my
project:

Part 1. Small language models..a. First of all, I compared all five AL strategies on the newsgroup
dataset. The goal was to find out which strategy performs best on
this particular classification task. To ensure that the result was not
dataset-driven, this experiment was again performed on the Tweet
US Airline dataset...b. Secondly, I picked the best strategy from the first experiment for
each task and ran it with even more steps to investigate how much
data is actually needed to achieve the same F-Measure as the one
achieved with training on the full dataset...c. Then, I compared the performance of the two models, namely BERT-
tiny and BERT-small, to understand the impact of the difference
in model size. I studied effect of larger models in more detail in a
separate section, where I trained larger models on RCI cluster. All
experiments in this part were run on Google Colab with a randomly
assigned GPU accelerator.

Furthermore, the same wass done for the tagging task on the CoNLL-
2003 dataset, with the difference that until now only two strategies for

46

...................................4.1. Active learning experiments

tagging are implemented and compared: least confidence and random.
Least confidence strategy is inspired by [CLM+15], with the only dif-
ference that I did not include a CRF layer [HXY15] and I computed
confidence in a Naive Bayes style simply by taking the sum of poste-
rior log-probabilities of each token in the sequence, then I reweighted
the score by the length of the sequence so that the strategy did not
favor longer sequences. The final score was used to approximate the
probability of such tags sequence. However, I have to admit that it is
only an approximation of real probabilities, since tokens in sequences
are not independent. For better calculation, Markov Chain Models have
to be used). Additionally, I compared the influence of resampling on
the tagging task. Resampling is done in order to facilitate training with
imbalanced data. PyTorch implements RandomWeightSampler for doing
oversampling and undersampling [MRA20].

Part 2. Large language models

Here I experimented with both classification and tagging tasks. For
classification, four selected strategies (least confidence, random, K-means,
BADGE) were selected for this part as a result of the previous part with
smaller models. For tagging, only two strategies were compared.
Here is the plan for classification task I stuck to:..a. Firstly, I trained BERT-base model with all four strategies on News-

group dataset to assess active learning scenario on larger models...b. Secondly, a similar experiment was conducted with BERT-large
model...c. Then, due to the instability of BERT-large models with a standard
hyperparameters setup, a better set of parameters was found and
was tested and compared...d. Finally, all four models: BERT-tiny, BERT-small, BERT-base,
BERT-large were compared on a selected AL strategy...e. BERT-base and BERT-large models were trained on a complete
training dataset and all four models were compared. Here I also
compared AL scenario with full training - the impact of active
learning on dataset size, metric scores...f. In order to reassure myself that the results were not dataset-driven,
I trained BERT-base model on Twitter dataset and compared all
four AL strategies...g. For completeness, I conducted a full training with BERT-base and
BERT-large models on tweets dataset. Here I also compared impact
of active learning in contrast to full training.

47

https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://www.maskaravivek.com/post/pytorch-weighted-random-sampler/

...................................4.1. Active learning experiments

For the tagging part, the list of experiments was considerably smaller:..a. I trained BERT-base and BERT-large models for both random and
least confidence strategies. For each model size I compared the
impact of least confidence strategy in contrast to random strategy...b. All model sizes were compared so that the best performing model
was found and the F1 score development across models was analysed.
Full training was conducted - again, the impact of active learning
scenario was assessed compared to full training.

Part 3. Czech NLI

This task was translated to classification task, so I compared the same
set of strategies for classification used in the previous part...a. RobeCzech model with all four strategies was trained and compared...b. Czert model with all four strategies was trained and compared...c. DistillBERT model with all four strategies was trained and com-

pared...d. Small-e-Czech model with all four strategies was trained and com-
pared...e. RobeCzech model with better hyperparameters was again trained
and analysed, comparison with the first experiment with RobeCzech
was done, the impact of better hyperparameters set was assessed.
Analysis of the results of this model and the new state-of-the-art
result report...f. More experiments with hyperparameters for RobeCzech...g. All trained models in this part were compared with all four active
learning strategies...h. RobeCzech model, trained on a complete dataset, was compared to
the best performing RobeCzech model, trained in AL setup.

4.1.7 Experiments parameters

As for fixed parameter settings, I set the number of fine-tuning epochs
on 5 [DCLT18a], learning rate was 5e-5 [DCLT18a] and I used AdamW
optimizer [LH17]. The train batch size was 32 while the validation and
test batch size was 64. I set the seed AL dataset size to 32 and also added
32 entries in each AL iteration. In total I performed 100 AL iterations
per run.

48

...................................4.1. Active learning experiments

All the experiments were run with all parameters fixed and only experiments-
specific parameters were modified:..a. AL strategy - see the main impact on model performance...b. Class weight resampling - see the impact of better batching scheme

for imbalanced datasets...c. Model size - see the impact of different models capacities...d. Datasets - reassure that the results we get are not data-driven.

The experiments from the first part were run in Google Colab with
GPU acceleration. Several BERT-tiny models were trained locally on a
Macbook Air 2020 M1. Training on GPU took around 60-90 minutes,
whereas training on M1 processor took around 250-300 minutes. The
experiments from the second and the third part were run on RCI cluster
and varied in time needed for execution of experiments: for smaller
models an experiment lasted for 30 to 60 minutes, while for larger models
there were runs that utilised GPUs for more than 24 hours. The average
time needed for one experiment ranges from 2 to 4 hours.

49

..................................... 4.2. Part 1 - small models

4.2 Part 1 - small models

I have run 18 experiments which tested different aspects of AL model
training. Here I provide the results of my experiments.

Comparison of AL strategies

First of all, I compare all four strategies I implemented on a classification
task (newsgroup dataset) to investigate which one performs better. I
provide the maximum performance score for every AL strategy through-
out all AL iterations in Table 4.1. It can be seen that K-means strategy
mostly performs best. I also pick two winning strategies (K-means for
batched sampling and least confidence for uncertainty sampling) and
compare them on another dataset (Twitter) to reassure that my results
are consistent across different data sources. The results are shown in
Table 4.2 and once again prove that K-means strategy performs better.

Metric name full random least confid. K-means BADGE
Test Loss 0.423 0.808 0.933 0.801 0.817
F1 0.836 0.797 0.796 0.802 0.798
Recall 0.85 0.799 0.793 0.8 0.795
Precision 0.845 0.806 0.807 0.811 0.811

Table 4.1: Results on the classification task (newsgroup dataset) with class
weight resampling, achieved by experimenting with BERT-tiny model. Maximum
performance metric score throughout all AL iterations is reported with the
minimum loss function score.

metrics least confidence K-means
Test Loss 0.837 0.71
F1 0.812 0.827
Recall 0.815 0.868
Precision 0.819 0.799

Table 4.2: Results on the classification task (Twitter dataset) with no resampling,
achieved by experimenting with BERT-tiny model. Maximum performance at
any given AL step is reported with the minimum loss function score.

I have then also conducted experiments to compare AL strategies for
tagging. As can be seen in figure 4.1, changing the resampling parameter
did not have a great effect on the performance. However, what can be
observed is that least confidence strategy performs much better than
random strategy for tagging.

50

..................................... 4.2. Part 1 - small models

Figure 4.1: F1 of least confidence with (beige) and without resampling (orange)
and random strategy with (purple) and without resampling (blue) of the tagging
task (CoNLL-2003 dataset). Smoothed (dark brown) and non-smoothed (light
brown). BERT-tiny model.

Best AL strategy vs. full training

The best performing strategy K-means from the first classification exper-
iment (on newsgroup dataset) has been run again with more AL steps
to explore when the F1 metric score of the fully trained model can be
achieved (see Figure 4.2). The F1 of the fully trained model is 0.8362.
At step 167 the non-smoothed F1 score of the model trained with active
learning strategy is 0.839 and therefore even higher than the F1 score
of the model trained on the full dataset. As in each step, 32 data points
were added, only 4384 training instances were needed to achieve the
same performance when training with 13104 data entries. 33.4% of the
training data can thus be reduced while still achieving good performance.

Figure 4.2: F1 of the best strategy K-means of the classification task (news-
groups) with more AL steps reported for BERT-tiny model. Smoothed (dark
brown) and non-smoothed (light brown). Full training F1 score for this dataset
is 0.836. At step 167 the exact value of F1 test set score is 0.839. One step of
the AL experiment adds 32 more labelled examples from the unlabelled set to
the training dataset.

51

..................................... 4.2. Part 1 - small models

I have also compared the best performing active learning strategy score
on Twitter dataset with full training on the same dataset. The results
are depicted in table 4.3 and show that K-means strategy was successful
in choosing more informative examples that led to higher overall per-
formance compared to full training dataset, which could have incorrect
labels or class imbalance.

metrics Full K-means
Test Loss 0.516 0.71
F1 0.788 0.827
Recall 0.797 0.868
Precision 0.79 0.799

Table 4.3: Results on the classification task (Twitter dataset) with no resampling.
Evaluation result shown for test set for both full training and K-means strategy
for comparison.

Impact of model size

Besides, I have also trained a larger model (BERT-small instead of
BERT-tiny) and compared its performance with its smaller counterpart.
Both experiments consist of 100 AL iterations, the selected strategy
for classification on newsgroup dataset was K-means sampling. The
progression of F1 test set metric of both models can be seen in figure 4.3.
The results for both classification (with K-means strategy) and tagging
task (with least confidence strategy) are shown in Table 4.4. It can be
seen that BERT-small outperforms BERT-tiny, especially for the tagging
task, which is by default considered a harder task.

classification tagging
metric BERT-tiny BERT-small BERT-tiny BERT-small

Test loss 0.71 0.511 0.357 0.124
F1 0.816 0.855 0.558 0.878
Recall 0.858 0.856 0.566 0.886
Precision 0.792 0.858 0.566 0.875

Table 4.4: Results of models BERT-tiny and BERT-small on the classification
task (newsgroup dataset) on the left side with K-means scoring strategy with
no resampling. On the right side tagging task (CoNLL-2003 dataset) with least
confidence strategy and no resampling are depicted. Maximum performance at
any given AL step is reported.

52

..................................... 4.2. Part 1 - small models

Figure 4.3: F1 of the best strategy K-means of the classification task (news-
groups), two models comparison: BERT-small and BERT-tiny. Smoothed (dark
blue, dark violet) and non-smoothed (light blue, light violet) for both models
(BERT-tiny, BERT-small respectively).

4.2.1 Analysis

I have compared several AL strategies in order to determine which one
performs better. I had two classes of AL strategies: simple uncertainty
strategies which were designed to pick only one data point, but are here
implemented in a way that chooses a batch of the least uncertain data
points; and batch sampling strategies designed for acquiring the most
diverse batch of unlabelled data in each AL iteration. I also provide
random strategy as a baseline. I have observed that uncertainty strategies
perform worse on both classification tasks than random sampling, whereas
batch sampling strategies surpass random sampling. This is evident
from the smoothed metrics curves I observed in the Weights & Biases
dashboard. My findings support the idea that the most important part
of active learning is to provide as diverse data batch as possible. That
might be why batch sampling methods behaved better, as expected.
Next, to recall, my initial hypothesis was the following: AL is capable
of reaching the same performance as with the full training, but only by
using a fraction of all training data. I have conducted several experiments
and I have managed to achieve this goal by using only 54% of all training
data on news classification dataset: my F1 metric even surpassed the
fully trained model.
Moreover, I expected that AL works better with larger models, since they
have more capacity. As deep learning tends to utilise more parameters
and computational power, I argue that applying AL on larger models has
more distinct impact. Hence, I found the justification for my claims in
the experiment where I have compared different BERT sizes on K-means
strategy where I saw that the larger model is capable of training faster.
In the end, using AL with larger models makes more sense and brings

53

..................................... 4.2. Part 1 - small models

more savings in terms of data needed to train the model.
Finally, I have also observed that larger models perform significantly
better on more sophisticated tasks. We see that BERT-small was able to
learn significantly faster than BERT-tiny and thus was able to achieve
much better overall F1 score.

54

.................4.3. Part 2 - Active learning and large models (classification and tagging)

4.3 Part 2 - Active learning and large models
(classification and tagging)

Following the results reported above, it is clear that active learning helps
reduce dataset size and achieves comparable performance as models
trained on the whole dataset. In this section I discuss the compound
effect of active learning strategies and larger models.
Models studied before were of a small size in terms of number of trainable
parameters. Here I study these models:..a. BERT-base uncased - a 12-layer model, embedding size 768, 12

heads, 110M parameters. This model was trained on lower-cased
English text...b. BERT-large uncased - a 24-layer, embedding size 1024, 12 heads,
340M parameters. This model was trained on lower-cased English
text.

The objective of this study is to see the effect of active learning strate-
gies when applied on larger models. We have already seen how active
learning behaves with smaller models, here I compare this behaviour
with models of larger magnitude. The experiments were conducted on
both classification and tagging tasks for complete comparison.

4.3.1 Text classification

BERT-base

Text classification is again divided into two parts: newsgroup dataset
and Twitter sentiment dataset. The results here present a comparative
behaviour of all strategies. For the sake of completeness the result for
random strategy is presented as well. In figure 4.4 there is the result of the
experiment. It can be seen that the random strategy is again between
batch-based strategies (K-means and BADGE) and least confidence
strategy. This behaviour is similar to the one reported above. We also
see that random, K-means and BADGE strategies give better results at
earlier steps of AL experiments, whereas least confidence strategy rises
more slowly, but at some point (precisely at 34th step) surpasses both
random and K-means strategies and holds almost always above by a
margin of 3% on average. BADGE strategy however is almost always
above others.

55

.................4.3. Part 2 - Active learning and large models (classification and tagging)

Figure 4.4: F1 development on a test set for newsgroup classification task for
all four AL strategies, BERT-base model. Smoothed (dark-colored lines) and
non-smoothed (light-colored lines). Smoothed line denotes a trend line, whereas
non-smoothed line shows the exact values for each AL step.

Figure 4.5: F1 development on a test set for newsgroup classification task for
four strategies: random, least confidence, K-means, and BADGE, BERT-base
model. Only non-smoothed curves are illustrated for better visualisation of
the first part of training (first 20 steps) and how least confidence strategy acts
similarly to BADGE strategy in the end.

Detailed statistics with best scores are given in table 4.5. BADGE
method showed the best performance among all other strategies. The
best score (0.915) was attained at 98th step - thus requiring 3136 training
examples. It is however important to state that comparable F1 metric
score (0.894) was registered by the least confidence strategy at step 73
(2336 examples).
Due to the fact that in each AL step the training dataset is enlarged by
32 labelled examples, it can be seen that we needed just a fraction (for
the winning strategy - 24%, since the full dataset has 13104 examples)
of data for reaching such F1 metric score. It is also important to tell
that least confidence strategy behaves unstably during first 20 steps,
whereas random, K-means, and BADGE strategies have more consistent
development. This is one more sign of poor design of this strategy at
first steps of AL training. However, when the dataset is already large
enough (around 50th step or 1632 examples), this strategy acts almost
equally like BADGE. These observations are clear from non-smoothed

56

.................4.3. Part 2 - Active learning and large models (classification and tagging)

metrics Random Least confidence K-means BADGE
Test Loss 0.503 0.349 0.459 0.353
F1 0.872 0.903 0.869 0.915
Recall 0.873 0.903 0.868 0.914
Precision 0.876 0.907 0.874 0.918

Table 4.5: Results on the newsgroup classification task for BERT-base-uncased
model. Maximum performance among all AL steps is reported.

graph - see figure 4.5.
From the smoothed graph 4.4 it is also evident that least confidence
strategy has the worst trend line than other strategies. It is however
given by the first steps of active learning experiment, where the strategy
underperformed heavily and was not stable. Nevertheless, non-smoothed
graph shows the real situation, which is completely different. This is also
the reason why I decided to put both charts and why it is important to
assess both ways of interpretation of AL experiments. The fastest gain is
provided by BADGE strategy, while least confidence strategy successes
at finding unlabelled examples of higher quality in later steps.

BERT-large

Spectacular behaviour can be seen when BERT-large model is plugged
instead of its base counterpart. Smoothed trend lines as in the case
above are depicted in figure 4.6, however they do not show the reality
that we face - the behaviour of all three experiments is not stable, it
is chaotic and unexpected. Non-smoothed variant of the same graph is
shown in figure 4.7. The experiments were not finished as usual (till step
100) due to lack of justification - such behaviour implies that something
is malfunctioning - either strategies, hyperparameters or the dataset.
I have analysed this behaviour in deeper detail on many other experiments
left out of scope of this written report (but left in Weights & Biases
environment with all artifacts) and have drawn several conclusions:..a. There is no flaw in AL strategies implementation or their logic: ran-

dom strategy shows similar behaviour as others. Hence, oscillations
are not caused by active learning approach...b. The dataset used for training cannot be blamed as well, since it is
consistent and can be trained on by other models...c. The last piece of the puzzle is the model - BERT-large is three times
larger than BERT-base and thus needs to be trained with another
set of hyperparameters. In this experiment (shown in figure 4.7)

57

.................4.3. Part 2 - Active learning and large models (classification and tagging)

Figure 4.6: F1 development on a test set for newsgroup classification task for
three strategies: random, least confidence, and K-means; BERT-large model.
Smoothed (dark-colored) trend line and non-smoothed (light-colored) exact values
line. In this figure, lines were smoothed by EMA technique with a coefficient
of 0.5. Several experiments were not finished due to massive GPU overload by
BERT-large model and unsatisfactory behaviour of metric scores.

Figure 4.7: A F1 score development graph for the same experiment as in figure
4.6, but in only non-smoothed variant for depiction of oscillations of F1 metric
scores.

the set of hyperparameters is the same as for BERT-base model.
However, multiple sources ([DCLT18a], [SQXH19], [JHC+20]) claim
that larger models have to be trained with lower learning rate and
thus larger batch size.

The result of the analysis is a change in implementation compared to the
one used for earlier experiments. The library was then enlarged by more
flexible input arguments handling and override parameters given in the
configuration file by those provided through command line arguments.
The result of the changed implementation are present in the next section.

BERT-large - improved hyperparameters

There are two most important hyperparameters that affect training of
models of different parameters number in my case - learning rate and

58

.................4.3. Part 2 - Active learning and large models (classification and tagging)

number of training epochs. Table 4.6 summarizes the final setup that I
have tested in this project. We see that for a larger model the learning
rate is lower and thus the number of training epochs is higher, so that
the model receives more discounted response.

hyperparameter BERT-base BERT-large
Learning rate 5e-5 2e-5
Training epochs 5 10

Table 4.6: Key hyperparameters setups for stable fine-tuning of BERT-base and
BERT-large models

The effect on training stability is shown in figure 4.8. Although there
were still situations during training with better hyperparameters where
we see a clear spike in both loss and metric score, we see significant
improvement in experiment development.

Figure 4.8: The effect of better hyperparameters choice for BERT-large model,
Newsgroup dataset. Training loss and test F1 score reported. A green line
denotes an experiment with hyperparameters equal to those used for BERT-base
model. A red line shows an effect of the fixed setup of hyperparameters. The
experiment with new hyperparameters was not finished due to high overload of
GPU resource.

The results of the experiments with better hyperparameters setup are
depicted in figure 4.9. We observe several spikes for random strategy
and least confidence strategy, whereas K-means strategy behaves better.
It is not clear which strategy performs better though: both K-means and
least confidence strategies show steeper improvement of F1 score, but
then K-means is almost always below random strategy by a margin on
3-4%, while least confidence shows almost the same behaviour as random
one. My assumption is that there has to be another parameter better
tuned, e.g. initial dataset size or number of elements to add after each
AL step. Obviously, stability issue has to be resolved as well with more

59

.................4.3. Part 2 - Active learning and large models (classification and tagging)

experimental setups.

Figure 4.9: News classification. BERT-large - the effect of better hyperparame-
ters choice. Test F1 score is reported.

All models comparison: tiny, small, base, large

Here I present the comparative analysis of all four BERT models in terms
of models’ sizes. I have chosen to visualise BADGE strategy for all four
models. Figure 4.10 depicts smoothed trend lines of four models that
show that the model’s capacity plays an important role both in model’s
final performance and the speed of training. Surprisingly, BERT-base
outperformed BERT-large model and converged faster, even though the
final F1 score is almost the same. The result is even not given by a
smoothing factor and a little instability of BERT-large model - a non-
smoothed version of this graph (shown in figure 4.11) draws BERT-large
result that oscillates around BERT-base curve, otherwise the models
perform almost identically.

Figure 4.10: F1 development on a test set for newsgroup classification task for
four models and BADGE strategy. Smoothed (dark-colored) trend lines and
non-smoothed (light-colored) exact values lines. The experiment on BERT-large
was not completed (stopped at step 97) due to massive GPU overload by BERT-
large model and long running time for the very last steps.

60

.................4.3. Part 2 - Active learning and large models (classification and tagging)

Figure 4.11: A F1 score development graph for the same experiment as in figure
4.10, but in only non-smoothed variant for depiction of oscillations of F1 metric
scores.

Newsgroup classification - full training

I have also executed full training for all BERT models so that I see
the difference between active learning best score and the traditional
approach score. All results are shown in table 4.7. We see that BERT-
base model showed the best performance, while BERT-large 2 (with
optimized hyperparameters setup) has slightly better test set loss function
value. Overall, BERT-base model is the best performing model, which
is also true for active learning experiments, where BERT-base model
showed superiority over other models. The active learning version of
BERT-base model with the best F1 performance is reported for BADGE
strategy is 0.915 and shows that this strategy was able to surpass full
model, but at a small margin (0.005), which is insignificant. Another
fact is significant - the number of examples needed by BADGE strategy
to achieve this score - 3136 examples, which is just around 24% of full
training dataset. It proves that it is enough to have only a quarter of
the whole newsgroup dataset in order to achieve the same score that can
be achieved by training on full dataset with higher hardware strain.

Model F1 test score Precision Recall Test loss

BERT-large 2 0.891 0.893 0.89 0.312
BERT-large 1 0.101 0.064 0.252 1.734
BERT-base 0.91 0.915 0.91 0.352
BERT-small 0.901 0.903 0.9 0.373
BERT-tiny 0.856 0.859 0.857 0.479

Table 4.7: Statistics for the full training dataset experiment for all BERT models
studied in this section for newsgroup dataset. BERT-large 2 model denotes the
version which has optimized hyperparameters setup, whereas BERT-large 1 is
the model that has the same hyperparameters as others.

61

.................4.3. Part 2 - Active learning and large models (classification and tagging)

Tweets classification - BERT-base

In order to reassure myself that AL strategies’ performance is not dataset-
driven for larger models (for BERT-tiny and BERT-small this evaluation
has already been done above), I have also experimented on BERT-base
models and compared all strategies with each other and then the winning
strategy with full training setup. F1 metric score chart for all strategies is
depicted in figure 4.12. It can be clearly seen from the trend lines that K-
means and BADGE strategies show superior behaviour and overperform
both random and least confidence strategies. If we study exact values for
this experiment (shown in figure 4.13), we see that all strategies showed
similar performance and in the end all were close to each other in terms
of F1 metric score. However, BADGE strategy kept staying consistently
higher than others with top F1 score 0.840 attained at step 81 (2592
examples - around 25% of complete training dataset).

Figure 4.12: A F1 score metric chart for AL experiments on BERT-base model on
tweets classification dataset. Dark lines show trend lines after EMA smoothing,
light lines show exact values.

Figure 4.13: A F1 score metric chart for AL experiments on BERT-base model
on tweets classification dataset. Exact values are reported.

62

.................4.3. Part 2 - Active learning and large models (classification and tagging)

Tweets classification - full training

Full training on tweets dataset was conducted for the sake of completeness
of classification experimental part. The results which are depicted in
table 4.8 show that the best performing model is BERT-large 2, which is
the model with adjusted hyperparameters set. However, if we compare
BERT-base model’s result (F1 score 0.839) with the result from 4.3.1, it
is almost the same (difference is less than 0.001 of F1 metric score). The
result supports the idea of application of active learning for reaching the
same result with only a fraction of data.

Model F1 test score Precision Recall Test loss
BERT-large 2 0.891 0.893 0.89 0.312
BERT-large 1 0.101 0.064 0.252 1.734
BERT-base 0.839 0.837 0.841 0.65
BERT-small 0.837 0.838 0.838 0.519
BERT-tiny 0.788 0.79 0.797 0.516

Table 4.8: Tweets classification task. Statistics for the full training dataset
experiment for all BERT models studied in this section. BERT-large 2 model
denotes the version which has optimized hyperparameters setup, whereas BERT-
large 1 is the model that has the same hyperparameters as others.

63

.................4.3. Part 2 - Active learning and large models (classification and tagging)

4.3.2 Tagging

Tagging task is the easiest from the number of strategies perspective.
Here I compare a random strategy against adjusted least confidence
strategy. First of all, I present the comparative results of both strategies
for BERT-base model. In figure 4.14 it can be seen that least confidence
strategy is superior to random sampling in a trend line, while the exact
values sometimes are equal.

Figure 4.14: Seqeval F1 development on a test set for tagging task for two
strategies: random and least confidence, BERT-base model. Dark lines show
trend lines after EMA smoothing, light lines show exact values.

More scores reported in table 4.9. It is worth mentioning that the best
F1 score result for least confidence strategy was reached at 81st step,
thus with a training set consisting of 2592 samples. Random strategy
reached peak F1 performance one step later - at 82nd step.

metrics Least confidence Random
Test Loss 0.128 0.126
F1 0.893 0.884
Recall 0.905 0.900
Precision 0.885 0.874

Table 4.9: Results on the tagging task (CoNLL2003) for BERT-base-uncased
model. Maximum performance among all AL steps is reported.

Next, I present the results for BERT-large-uncased model, which is
roughly three times larger than BERT-base model. In figure 4.15 we
see a different picture than for BERT-base model: a random strategy
performs better than a least confidence strategy, when speaking about
trend lines. Figure 4.16 shows the exact development of a F1 score
for the test set. It can be seen that random strategy behaves more
stably compared to the least confidence strategy. It is also obvious
that the trend line is highly affected by steps where F1 score falls to
0, otherwise least confidence strategy is still superior to random one

64

.................4.3. Part 2 - Active learning and large models (classification and tagging)

by a margin of 2-3%. We also see that at the beginning the random
strategy shows better behaviour with steeper F1 curve, however in the
end least confidence surpasses it and almost always stays above the
random strategy. The reason why it happened possibly lies in the design
of the least confidence strategy - it is poorly adapted for diverse batches
selection, hence longer time needed for F1 score to reach higher values. It
works however extremely accurately on later steps, since when the dataset
is considerably large, it picks those entries that are more uncertain for
the model, and thus increases its performance, while preserving dataset
variability.
Instability introduced by BERT-large compared to BERT-base may be
caused by a hyperparameters setup: both models were trained with the
same hyperparameters. However, larger models usually require smaller
learning rate and thus more epochs for more stable training, which is
also subject to further research.

Figure 4.15: Seqeval F1 development on a test set for tagging task for two
strategies: random and least confidence. Both experiments were conducted on
BERT-large model. Dark lines show trend lines after EMA smoothing, light lines
show exact values.

Figure 4.16: Seqeval F1 development on a test set for tagging task for two
strategies: random and least confidence. Both experiments were conducted on
BERT-large model. Non-smoothed variant. Numbers in legend show F1 score
for the last AL step.

65

.................4.3. Part 2 - Active learning and large models (classification and tagging)

For completeness, in table 4.10 I present more precise results for BERT-
large. We see that the model is slightly more accurate than BERT-base,
however it has three times more parameters and the performance gain
compared to the amount of computational power needed is negligible.

metrics Least confidence Random
Test Loss 0.117 0.136
F1 0.896 0.867
Recall 0.910 0.877
Precision 0.888 0.873

Table 4.10: Results on the tagging task (CoNLL2003) for BERT-large-uncased
model. Maximum performance among all AL steps is reported.

All models comparison: tiny, small, base, large

I have also compared the behaviour of least confidence strategy for all
models’ sizes: tiny, small, base, and large. Smoothed and non-smoothed
F1 scores can be seen in figure 4.17. Surprisingly, BERT-base model is
showing better performance than BERT-large. Moreover, BERT-large
model shows slightly better performance than BERT-small, while having
29.1M parameters compared to 340M (almost 12 times smaller model).
However, it is clear from the plot that larger models learn faster and
achieve higher F1 scores earlier than smaller models. BERT-tiny model
underperforms all larger models, thus it is not suited well for this kind
of task.

Figure 4.17: Seqeval F1 development on a test set for tagging task for all
four BERT models. Each model except for the large one shows F1 score trend
development, whereas the large one shows random strategy trend development
due to inconsistency issue in least confidence strategy. Numbers in the legend
show F1 score for the last AL step.

66

.................4.3. Part 2 - Active learning and large models (classification and tagging)

Full training - comparison

Full training results are presented in table 4.11. We see that BERT-large
2 model showed the best performance. BERT-tiny model is obviously
the weakest among all and it is apparent that it does not have much
capacity for such a hard task. It is also notable that BERT-small is
just 2% worse than BERT-base model and then BERT-base model is
2% worse than BERT-large-2 model. It is clear that larger models are
more capable and have larger capacity for memorization, that’s why
they have gained additional points. However, the best performing model
is negligibly better than the model trained with least confidence active
learning strategy, which achieved score of 0.896 at 100th step (thus
requiring 3200 examples). As a result, only 23% of full training dataset
was necessary to reach almost the same result as in the case of full
training.

Model F1 test score Precision Recall Test loss
BERT-large 2 0.90 0.895 0.90 0.133
BERT-large 1 0.898 0.894 0.901 0.117
BERT-base 0.872 0.862 0.882 0.153
BERT-small 0.84 0.835 0.845 0.17
BERT-tiny 0.657 0.656 0.658 0.24

Table 4.11: CoNLL2003 tagging task. Statistics for the full training dataset
experiment for all BERT models studied in this section. BERT-large 2 model
denotes the version which has optimized hyperparameters setup, whereas BERT-
large 1 is the model that has the same hyperparameters as others. All metric
scores are depicted for corresponding seqeval overall metric.

67

...................................... 4.4. Part 3 - Czech NLI

4.4 Part 3 - Czech NLI

NLI task is a new one in this research. It poses higher challenge on
neural models, since the task of language inference requires deeper
understanding of the language. Presumably, larger models will yield
better results. Here application of active learning might be advantageous
due to complexity of the problem and higher costs of data annotation
and preparation.
In this section I deal with CTKFactsNLI dataset, which consists of an
evidence sentence, a claim sentence and a label denoting whether the
claim is supported by the evidence, refuted or it is impossible to tell due
to lack of information. A task of NLI consists of two textual inputs, which
are usually concatenated into one string separated by a token known
to the system as a separator: in our case it is a "[SEP]" token. Hence,
any dataset for NLI can be transformed into a classification dataset with
only one textual input consisting of two original strings. CTKFactsNLI
dataset is thus transposed into a classification task with three categories.
Then, active learning strategies used for classification task can be used
here as well.
The task of Natural Language Inference presented by CTK fact checking
dataset was then processed with these models:..a. RobeCzech [SNSS21] - a model from UFAL UK, a Czech version of

RoBERTa model trained on a large collection of Czech textual data.
It has 125M parameters in total...b. DistillBERT Multilingual cased [SDCW19] - a distilled version of
Multilingual BERT model. It has 6 layers, embedding size of 768,
12 heads, 66M parameters in total...c. Small-e-Czech [KN21] - an Electra-based language model (small
version) from Seznam.cz. This model has 13M parameters and is
trained only on Czech textual data. It is the smallest model which I
trained for fact checking task and which is partly capable of Czech
language processing...d. Czert [SPP+21] - an ALBERT-based [LCG+19] language model from
ZCU university in Pilsen, Czech Republic. It has 110M parameters
- the same as ALBERT base model.

A brief comparison table is presented in 4.12.
Firstly, I tested all active learning strategies that showed decent perfor-
mance previously for each model from table 4.12.

68

...................................... 4.4. Part 3 - Czech NLI

Model Parameters number Original model
RobeCzech 125M RoBERTa
Czert 110M ALBERT
DistillBERT 66M BERT
Small-e-Czech 13M Electra

Table 4.12: Brief description of models used for Czech NLI task.

RobeCzech

The results of RobeCzech model on all AL strategies are shown in figure
4.18. The trend line of BADGE strategy seems to be the most superior
among others, while least confidence strategy is inferior. There is also a
K-means strategy which finally gets above the random one and the whole
picture is similar to the one presented in classification task with smaller
models. However, if we look at non-smoothed lines, which are presented
more clearly in figure D.1, it is obvious that all models were improperly
trained and experience from BERT-large model from classification step
shows that hyperparameters have to be tuned better. It is done in
subsection 4.4. Hence, I do not provide comparative analysis of all
strategies for this experiment. However, it is also important to remember
that the problem of unstable training can be caused by an inconsistent
dataset, which has to be reviewed after sudden plunges of metric scores.

Figure 4.18: Czech NLI task on CTKFactsNLI dataset. RobeCzech-based
model. F1 test set score development of four strategies: random, least confidence,
K-means, BADGE. Dark lines show trend lines after EMA smoothing, light lines
show exact values.

69

...................................... 4.4. Part 3 - Czech NLI

Czert

The performance of all active learning strategies on a Czert-based model
is reported in figure 4.19. We see that during the first part of active
learning steps, all models show poor stability. Random strategy is
performing a little bit better than others. However, the maximum result
is for all four strategies is 0.626 for a random strategy at step 40.

Figure 4.19: Czech NLI task on CTKFactsNLI dataset. Czert-based model. F1
test set score development of four strategies: random, least confidence, K-means,
BADGE. Non-smoothed version with real F1 scores reported.

DistillBERT

DistillBERT model behaves similarly to Czert model (see fig. 4.20).
Even though the number of parameters of the former is lower than of
the latter, it is still unstable and this instability is possibly caused by
the dataset itself.

Figure 4.20: Czech NLI task on CTKFactsNLI dataset. DistillBERT-based
model. F1 test set score development of four strategies: random, least confidence,
K-means, BADGE. Non-smoothed version with real F1 scores reported.

70

...................................... 4.4. Part 3 - Czech NLI

Small-e-Czech

Small-e-Czech is the smallest model among all used for NLI experiments.
Figure 4.21 shows smoothed trend lines and exact values. Again, we see
that random strategy performs better than others, it’s a clear signal that
something is malfunctioning. Again, it is clear from non-smoothed graph
depicted in figure 4.22 that F1 metric score is moving between 0.17 to
0.5, which is unreliable. All strategies were however capable of scoring
relatively high F1 metric:..a. Random sampling - 0.5 at step 87...b. Least confidence - 0.48 at step 68...c. BADGE - 0.493 at step 62...d. K-means - 0.478 at step 90.

Figure 4.21: Czech NLI task on CTKFactsNLI dataset. Small-e-Czech-based
model. F1 test set score development of four strategies: random, least confidence,
K-means, BADGE. Dark lines show trend lines after EMA smoothing, light lines
show exact values.

Nevertheless, BADGE strategy was capable of finding better training
dataset, using only 1984 examples instead of 2784 as in case of random
strategy. To recall, at each step I add 32 new examples and step 1 is
initialised with only 32 examples. However, I still suspect that either
all models had incorrect hyperparameters setups or the dataset itself
has inconsistencies or is hard to process with small training set, given
that NLI tasks are generally harder than classical classification. It is
also possible that since I translated this task to a classification task
via concatenation of two strings, the resulting string was too long for
the model to process, since Small-e-Czech has embedding size of only
128 tokens, all sequences longer than 128 tokens get truncated. After
a quick analysis of encoded sequences lengths I have discovered that
out of 3626 train texts there are 933 (or 25.7%) that have an encoded

71

...................................... 4.4. Part 3 - Czech NLI

Figure 4.22: Czech NLI task on CTKFactsNLI dataset. Small-e-Czech-based
model. F1 test set score development of four strategies: random, least confidence,
K-means, BADGE. Non-smoothed version with real F1 scores reported.

representation longer than 128 tokens, thus a quarter of all training data
gets truncated and thus the information about the claim is partly or
fully missing, which means that Small-e-Czech is not the best model for
CTKFactsNLI dataset. As for validation set, there are 54 entries out of
482 (or 11.2%) of texts with a representation longer than 128 tokens and
for the test set it is 98 out of 558 (or 17.5%) texts.

72

...................................... 4.4. Part 3 - Czech NLI

RobeCzech - better hyperparameters

From previous sections it is evident that the behaviour of all four models
is not stable and possibly there is a data consistency issue in the dataset.
However, I have also attempted to apply the same hyperparameters
trick on the best performing model - RobeCzech - and to look at the
result. The only difference is that here the learning rate was set to 1e-5,
not 2e-5. Figure 4.23 shows smoothed trend line of four strategies with
new hyperparameters, while figure 4.24 shows exact values during AL
experiments for the sake of completeness.

Figure 4.23: RobeCzech with new hyperparameters. F1 test set score develop-
ment of four strategies: random, least confidence, K-means, BADGE. Dark lines
show trend lines after EMA smoothing, light lines show exact values.

Figure 4.24: RobeCzech with new hyperparameters. F1 test set score devel-
opment of four strategies: random, least confidence, K-means, BADGE. Non-
smoothed version with real F1 scores reported.

First of all, the effect of new hyperparameters can be clearly seen: exact
values of F1 metric have stabilised after approximately 40th step. Before

73

...................................... 4.4. Part 3 - Czech NLI

we see large oscillations of a random strategy, while other strategies
are more stable after first 15-20 steps. Batch strategies - K-means and
BADGE are almost stable after 15th step and are consistently higher
than a random strategy, which is clear from smoothed trend lines. Here
K-means showed much higher capacity from the beginning and achieved
high F1 scores earlier than others (0.8 at step 35). However, at later
steps all four strategies show the same values and there is no dominant
one. The best attained F1 score together with corresponding step are:..a. Random sampling - 0.835 at step 96...b. Least confidence - 0.827 at step 56...c. BADGE - 0.824 at step 65...d. K-means - 0.825 at step 97.

metrics Random Least confidence K-means BADGE
Test Loss 0.5625 0.542 0.566 0.579
F1 0.835 0.827 0.825 0.824
Recall 0.835 0.83 0.826 0.828
Precision 0.849 0.84 0.831 0.849

Table 4.13: Results on CTKFactsNLI NLI task for RobeCzech model for all
four AL strategies. Maximum performance among all AL steps is reported.

More precise values for these experiments are presented in table 4.13.
Formally, random sampling was capable of scoring the highest value
among all strategies, though with an extremely low margin (only 0.011
compared to BADGE). However, it is noteworthy that BADGE strategy
reached its top value at 65th step, thus requiring only 2080 examples
(compared to 3072 examples needed by random strategy), which is 68%
of random strategy’s dataset size or 32% reduction of required samples.
K-means strategy reached F1 score of 0.8 at step 35, thus requiring only
1120 examples. Although it is almost 4% less than the result of random
sampling, it needed 36.5% of data compared to random strategy. From
the perspective of costs of annotation by a domain expert, both BADGE
and K-means strategies offer great saving of funds, which is an incredible
result.
It is also important to say that the best F1 score is always computed
with parameter average set to "weighted". For comparison I have taken
the evaluation table (with predictions on test dataset) for the best
performing step (65) of BADGE strategy and then also recalculated this
value to "macro" score so that I stick to the same evaluation scheme as in

74

...................................... 4.4. Part 3 - Czech NLI

[UDR+22], and I have received 0.807 or 80.7%, which is a new state-
of-the-art result for RobeCzech model on this dataset (RobeCzech
model in [UDR+22] achieved 67.7%). I also provide classification report
with detailed statistics for each category in figure 4.14 and corresponding
confusion matrix for this active learning step, shown in figure 4.25.

precision recall f1-score support
0 0.806 0.652 0.721 115
1 0.874 0.831 0.852 183
2 0.804 0.900 0.849 260

accuracy 0.826 558
macro avg 0.828 0.794 0.807 558
weighted avg 0.827 0.826 0.824 558

Table 4.14: RobeCzech with new hyperparameters. Czech NLI task on CTK-
FactsNLI dataset. Classification report for the active learning experiment with
BADGE strategy (step 65 - 2080 examples - 58.4% of full dataset) achieving the
best F1 metric score on test dataset. F1 score is shown with average parameter
set to "macro".

Figure 4.25: RobeCzech with new hyperparameters. Czech NLI task on CTK-
FactsNLI dataset. Confusion matrix for the active learning experiment with
BADGE strategy (step 65 - 2080 examples - 58.4% of full dataset) achieving the
best F1 metric score on test dataset.

It is also noteworthy that the minimum values of test loss score (shown
in figure 4.26) is achieved around 50th-60th steps, after which the score
started to grow. Hence, the idea that the best performance is achieved
around these steps is again supported.

75

...................................... 4.4. Part 3 - Czech NLI

Figure 4.26: RobeCzech with new hyperparameters. Czech NLI task on CTK-
FactsNLI dataset. Test set loss function exact values for all strategies reported.

All models comparison

In the light of the aforementioned it is clear that RobeCzech model
performed the best even without hyperparameters adjustment. Thanks
to the deeper analysis of the hyperparameters I am sure that there is no
big issue in the dataset itself, however its inconsistencies can be studied
by the spikes in F1 score or by spikes in test loss values. Overall, table
4.15 summarizes all NLI experiments and shows performance of each
model. It puts together all four models and all four active learning
strategies.

Model random least confid. K-means BADGE
RobeCzech 0.835 0.827 0.825 0.824
Czert 0.626 0.601 0.619 0.610
DistillBERT 0.507 0.498 0.485 0.518
Small-e-Czech 0.500 0.48 0.478 0.493

Table 4.15: Results on the NLI task (CTKFactsNLI dataset) with class weight
resampling. Maximum test set F1 score is reported for each model and each AL
strategy.

Surprisingly, a random strategy achieved the best F1 metric score for
all four models, even though with a small margin from any other active
learning strategy. It does not necessarily mean that AL strategies are
useless. Recall that in case of RobeCzech with better hyperparameters
setup K-means and BADGE strategies showed a trend line which were
higher by a margin of 2-3% than random strategy - and in my opinion
it is the most valuable information. Even the table 4.16 with the cor-
responding AL step with the number of examples needed for achieving
the best strategy score is not informative enough. It is clear that AL
strategies are capable of reaching maximum metric score earlier than
a random one, but these values are many times unreliable due to a

76

...................................... 4.4. Part 3 - Czech NLI

stochastic nature of this experiment. Hence, the only trustworthy way
of assessing active learning strategies is to look at the trend line which
averages oscillations that happen during AL steps and visualises the
margin of target metric score, not the particular value. By seeing which
active learning strategy is behaving better, a researcher can make an
informed decision of choosing the best performing strategy and use it
in real life scenario, thus achieving faster results with the help of less
data. Trend lines often converge to the same value, thus they do not
necessarily introduce better overall performance (even though we have
observed it in a classification and tagging tasks), but help accelerate the
whole training process.

Model random least confid. K-means BADGE
RobeCzech 96 (3072) 56 (1792) 96 (3072) 65 (2080)
Czert 40 (1280) 53 (1696) 90 (2880) 38 (1216)
DistillBERT 91 (2912) 97 (3104) 38 (1216) 74 (2368)
Small-e-Czech 87 (2784) 68 (2176) 90 (2880) 62 (1984)

Table 4.16: Results on the Czech NLI task (CTKFactsNLI dataset) with class
weight resampling. A step number with number of examples in parentheses for
the best score are reported for each model and each AL strategy. RobeCzech
model shown here is the one with better hyperparameters set (often labelled as
RobeCzech 2).

77

...................................... 4.4. Part 3 - Czech NLI

Czech NLI - full training

The last thing to assess - active learning effect compared to full dataset
training. I have trained all four models (plus an optimized RobeCzech) on
CTKFactsNLI dataset with the very same parameters as in corresponding
AL experiments - the only change was in the dataset size. The results are
reported in table 4.17. It is evident that RobeCzech 2 model performed
the best. However, F1 score on test set (0.811) was surpassed by the
same model trained with BADGE strategy at step 65 (with the help of
2080 examples) with value of 0.824. The result shows that it was enough
for the model to train on 57.4% of the full dataset to reach the same
result. Overall, the active learning experiment showed that the model is
capable of reaching almost 1.5% rise in F1 score, which is a success.

Model F1 test score Precision Recall Test loss

RobeCzech 2 0.811 0.818 0.812 0.632
RobeCzech 1 0.747 0.755 0.744 0.933
Czert 0.56 0.594 0.579 1.51
DistillBERT 0.42 0.407 0.507 1.131
Small-e-Czech 0.463 0.464 0.468 1.6

Table 4.17: Results on the NLI task (CTKFactsNLI dataset) on full dataset for
each assessed model. F1 test set score reported. RobeCzech 1 denotes the initial
setup of RobeCzech model. RobeCzech 2 denotes the adjusted setup with more
stable performance.

Among the models presented in figure table 4.17 it can be seen that
the order of models in terms of test set F1 score is almost the same
as the number of parameters in the corresponding models - Small-e-
Czech has the least number of parameters, but it performed better than
DistillBERT, which is not a pure Czech model. Otherwise the results once
again prove that for such a complex task like natural language inference
the model size plays the most important role. However, together with
active learning this mix is capable of achieving decent performance with
a fraction of original dataset, bringing annotation cost reduction and as
a result a dataset of higher quality.

78

Chapter 5
Future considerations

Active learning is one of the so-called Human-in-the-loop computer
interaction techniques which is capable of reducing annotation costs
for labelled dataset collection and model training, but it poses several
limitations that have to be discussed. Most of this chapter comes from
[ZSH22] as a relatively new study which I found while finishing my work.

5.1 Tasks complexity

Active learning is mostly studied with simpler tasks, e.g. for text classifi-
cation in NLP. However, the advantage of such approach lies in shrinking
annotation costs by better utilisation of an abundance of unannotated
data. In my project I have studied active learning framework on the
Czech NLI task, which is a task of natural language inference, which
requires deeper language understanding. Datasets used for NLI are
harder to collect and annotate consistently, it is therefore logical that
active learning might come into play for harder tasks accomplished by
larger language models. I am pleased to make a contribution to the
active learning study with this work and I hope that there will be more
experiments with harder tasks in the future with more clever strategies
leveraging large language models’ inner knowledge for cost-efficient and
swift unlabelled examples retrieval. Preliminary work has shown that
AL can be helpful for data collection for such tasks like NLI [MJL20].

5.2 Starting and stopping AL

It is an open question when to start active learning - either completely
from scratch or after collection of reasonably large seed data. What
is meant by "reasonably large" is also unknown. It can be seen from
my work that I speak about instability of target metric score during
first steps of AL experiments when I started with 32 labelled examples
and added 32 examples after each AL step. Some might consider this

79

...................................... 5.3. Real-life application

approach inappropriate and argue that a larger seed sample had to be
collected. Active learning might be started for the improvement of an
already achieved good score, however it is still unclear and presumably
task-specific when the dataset is already large enough for active learning
to start (so that there is no further improvement provided by a small
batch of data to a large initial dataset) [TLHS09].
One more question to consider is when to stop active learning. A
simple solution might be when the target metric score is reached on a
development set, however there are many other aspects to take care of. A
general stopping criterion consists of three main aspects: metric, dataset
and condition:..a. Metric - a development set metric performance might be a good

choice, but this set has to be large enough and also has to be labelled.
Sometimes it is simply impractical to assume a large development
set...b. Dataset - a dataset requires careful choosing so that it is not biased
and represents the problem which is solved by the model. A large
dataset is also time-consuming to evaluate during active learning
experiments...c. Condition - the first idea that comes into consideration is when
a model surpasses a predefined threshold during evaluation. A
threshold for a metric score has to be specified. This threshold
could be a business requirement. However, a single metric score
could be not enough for an optimal stopping criterion. There can
be found an inspiration from early stopping [Pre00]: when a model
shows consistent better scores than the predefined threshold for some
period of time (or steps), then the whole process can be stopped.
There are several works that study this question: [Vla08], [LS08],
[AP11].

5.3 Real-life application

There are several considerations for the application of active learning in
real life. A decision to utilise active learning framework has to be done
based on several aspects: annotation cost, efficiency and wait time, data
reuse, and starting and stopping criteria. These questions are not present
while in simulation, however they play an important role in real life
scenarios. The selection of a query strategy and other hyperparameters
remains a great challenge as well. We have seen in this work that there
is no one superior strategy and each of them has their strengths and
weaknesses, however in real life one has to choose a specific strategy for
the given application. There can be a hybrid approach of utilising a

80

...................................... 5.3. Real-life application

best performing strategy in the beginning of AL and then an uncertainty
sampling method in the end, when the diversity of new examples plays
minor role. Another possible consideration is to evaluate several setups
on a related task (for instance, for Twitter sentiment analysis there could
be a parallel research conducted), which could reveal the best performing
model and strategy which could be then used for the target task.

81

Chapter 6
Conclusion

In this work I have studied the problem of active learning and designed
not only the library for experiments and new strategies development,
but also an experimental setup for strategies assessment and introduced
different kinds of ways how to evaluate active learning strategies. I have
shown on two datasets the capability of active learning framework of
reaching comparable or even better performance on selected tasks and
compared performance of different strategies and different models. I have
deeply integrated my library with Weights & Biases MLOps platform
and demonstrated the way how I utilised it for my experiments and for
finding the best setup for all tasks.
For the task of Czech NLI represented by CTKFactsNLI dataset I was
able to reach a state-of-the-art result with F1 metric score on a test
set equal to 0.807, which was achieved by a combination of RobeCzech
model and BADGE active learning strategy.
Finally, I have provided a thorough analysis of the results I had during
my experiments with several suggestions for performance assessment. I
have run 161 experiments in total with just a fraction of them described
in this work, compared four common and often claimed as state-of-the-art
active learning strategies and experimented with popular English models
represented by well-studied BERT models and also with many popular
Czech models and compared them on a harder task of natural language
inference - fact checking.
To conclude, I hope this work will inspire other researchers to continue
studying various active learning scenarios addressing open questions from
chapter 5 and finding better ways of unlabelled data selection. I am also
happy to contribute to this research with the library that I developed and
used for this thesis and which is hosted on my public GitHub repository
1 together with Weights & Biases integration and RCI integration. Feel
free to carry on working on it and expanding for further tasks and for

1The source code for this project could be found at
https://github.com/DevKretov/ntu_nlp_al.

82

https://github.com/DevKretov/ntu_nlp_al

... 6. Conclusion

further strategies, I am looking forward to seeing the new breakthroughs
in this topic.

83

Appendix A
Bibliography

[AP11] Josh Attenberg and Foster Provost, Inactive learning?
difficulties employing active learning in practice, SIGKDD
Explor. Newsl. 12 (2011), no. 2, 36–41.

[AV07a] David Arthur and Sergei Vassilvitskii, K-means++: The
advantages of careful seeding, Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms
(USA), SODA ’07, Society for Industrial and Applied Math-
ematics, 2007, p. 1027–1035.

[AV07b] David Arthur and Sergei Vassilvitskii, k-means++: the
advantages of careful seeding, SODA ’07, 2007.

[AZK+19] Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy,
John Langford, and Alekh Agarwal, Deep batch active
learning by diverse, uncertain gradient lower bounds, CoRR
abs/1906.03671 (2019).

[AZK+20] , Deep batch active learning by diverse, uncertain
gradient lower bounds, 2020.

[BBEZ00] Y. Bengio, Joachim Buhmann, M. Embrechts, and Jacek
Zurada, Introduction to the special issue on neural networks
for data mining and knowledge discovery, IEEE Transac-
tions on Neural Networks 11 (2000), 545–549.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio,
Neural machine translation by jointly learning to align and
translate, 2014.

[BGD+21] Shaily Bhatt, Poonam Goyal, Sandipan Dandapat, Monojit
Choudhury, and Sunayana Sitaram, On the universality of
deep contextual language models, 2021.

[BHA+21] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S. Bern-

84

.. A. Bibliography

stein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Ro-
drigo Castellon, Niladri Chatterji, Annie Chen, Kathleen
Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue,
Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn,
Trevor Gale, Lauren Gillespie, Karan Goel, Noah Good-
man, Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong,
Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan
Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff
Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh,
Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec,
Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali
Malik, Christopher D. Manning, Suvir Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan,
Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos
Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris
Piech, Eva Portelance, Christopher Potts, Aditi Raghu-
nathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf
Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih,
Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W.
Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie,
Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia
Zheng, Kaitlyn Zhou, and Percy Liang, On the opportuni-
ties and risks of foundation models, 2021.

[Bie20] Lukas Biewald, Experiment tracking with weights and bi-
ases, 2020, Software available from wandb.com.

[BR20] Ravali Boorugu and G. Ramesh, A survey on nlp based
text summarization for summarizing product reviews, 2020
Second International Conference on Inventive Research in
Computing Applications (ICIRCA), 2020, pp. 352–356.

[CDG+21a] Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros
Karydas, Anand Rajagopalan, Afshin Rostamizadeh, and
Sanjiv Kumar, Batch active learning at scale, CoRR
abs/2107.14263 (2021).

[CDG+21b] Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros
Karydas, Anand Rajagopalan, Afshin Rostamizadeh, and
Sanjiv Kumar, Batch active learning at scale, 2021.

85

.. A. Bibliography

[CLM+15] Yukun Chen, Thomas A. Lasko, Qiaozhu Mei, Joshua C.
Denny, and Hua Xu, A study of active learning methods
for named entity recognition in clinical text, Journal of
Biomedical Informatics 58 (2015), 11–18.

[dCLLA+22] Casper da Costa-Luis, Stephen Karl Larroque, Kyle Al-
tendorf, Hadrien Mary, richardsheridan, Mikhail Korobov,
Noam Raphael, Ivan Ivanov, Marcel Bargull, Nishant Ro-
drigues, Guangshuo Chen, Antony Lee, Charles Newey,
CrazyPython, JC, Martin Zugnoni, Matthew D. Pagel,
mjstevens777, Mikhail Dektyarev, Alex Rothberg, Alexan-
der Plavin, Daniel Panteleit, Fabian Dill, FichteFoll, Gregor
Sturm, HeoHeo, Hugo van Kemenade, Jack McCracken,
MapleCCC, and Max Nordlund, tqdm: A fast, Extensible
Progress Bar for Python and CLI, September 2022.

[DCLT18a] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, Bert: Pre-training of deep bidirectional trans-
formers for language understanding, 2018.

[DCLT18b] , Bert: Pre-training of deep bidirectional trans-
formers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[DH] Tivadar Danka and Peter Horvath, modAL: A modular
active learning framework for Python, available on arXiv
at https://arxiv.org/abs/1805.00979.

[EDHG+20] Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,
Lena Dankin, Leshem Choshen, Marina Danilevsky, Ranit
Aharonov, Yoav Katz, and Noam Slonim, Active Learning
for BERT: An Empirical Study, Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP) (Online), Association for Computa-
tional Linguistics, November 2020, pp. 7949–7962.

[FGW+21] Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar,
Soroush Vosoughi, Teruko Mitamura, and Eduard Hovy, A
survey of data augmentation approaches for nlp, 2021.

[FSST97] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali
Tishby, Selective sampling using the query by committee
algorithm, Mach. Learn. 28 (1997), no. 2–3, 133–168.

[GG16] Yarin Gal and Zoubin Ghahramani, Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning, 2016.

[GS13] Denis Grebenkov and Jeremy Serror, Following a trend
with an exponential moving average: Analytical results for

86

https://arxiv.org/abs/1805.00979

.. A. Bibliography

a gaussian model, Physica A: Statistical Mechanics and its
Applications 394 (2013).

[GSV22] Zhijiang Guo, Michael Schlichtkrull, and Andreas Vlachos,
A survey on automated fact-checking, Transactions of the
Association for Computational Linguistics 10 (2022), 178–
206.

[HBFF22] Sophie Henning, William H. Beluch, Alexander Fraser, and
Annemarie Friedrich, A survey of methods for addressing
class imbalance in deep-learning based natural language
processing, 2022.

[HCR+16] Jiaji Huang, Rewon Child, Vinay Rao, Hairong Liu, San-
jeev Satheesh, and Adam Coates, Active learning for speech
recognition: the power of gradients, 2016.

[HGD19] Rishi Hazra, Shubham Gupta, and Ambedkar Dukkipati,
Active learning with siamese twins for sequence tagging,
CoRR abs/1911.00234 (2019).

[HPZC07] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chang,
Accessing the deep web: A survey, Commun. ACM 50
(2007), 94–101.

[HR18] Jeremy Howard and Sebastian Ruder, Universal language
model fine-tuning for text classification, Proceedings of the
56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (Melbourne, Aus-
tralia), Association for Computational Linguistics, July
2018, pp. 328–339.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber, Long Short-
Term Memory, November 1997.

[HXY15] Zhiheng Huang, Wei Xu, and Kai Yu, Bidirectional lstm-crf
models for sequence tagging, 2015.

[JH10] Xin Jin and Jiawei Han, K-means clustering, pp. 563–564,
Springer US, Boston, MA, 2010.

[JHC+20] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong
Liu, Jianfeng Gao, and Tuo Zhao, SMART: Robust and
efficient fine-tuning for pre-trained natural language mod-
els through principled regularized optimization, Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, Association for Computational
Linguistics, 2020.

[KJSR15] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M.
Rush, Character-aware neural language models, 2015.

87

.. A. Bibliography

[KN21] Matěj Kocián, Jakub Náplava, Daniel Štancl, and Vladimír
Kadlec, Siamese bert-based model for web search relevance
ranking evaluated on a new czech dataset, 2021.

[KR18] Taku Kudo and John Richardson, Sentencepiece: A simple
and language independent subword tokenizer and detok-
enizer for neural text processing, 2018.

[Kre20] Anton Kretov, Attention mechanism in natural language
processing, 2020.

[LCG+19] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut, Albert: A lite
bert for self-supervised learning of language representations,
2019.

[LH17] Ilya Loshchilov and Frank Hutter, Decoupled weight decay
regularization, 2017.

[LOG+19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov, Roberta: A robustly
optimized bert pretraining approach, 2019.

[LS08] Florian Laws and Hinrich Schütze, Stopping criteria for
active learning of named entity recognition, Proceedings
of the 22nd International Conference on Computational
Linguistics (Coling 2008) (Manchester, UK), Coling 2008
Organizing Committee, August 2008, pp. 465–472.

[MH] Ines Montani and Matthew Honnibal, Prodigy: A modern
and scriptable annotation tool for creating training data
for machine learning models.

[MJL20] Stephen Mussmann, Robin Jia, and Percy Liang, On the
Importance of Adaptive Data Collection for Extremely Im-
balanced Pairwise Tasks, Findings of the Association for
Computational Linguistics: EMNLP 2020 (Online), As-
sociation for Computational Linguistics, November 2020,
pp. 3400–3413.

[MKB+11] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Čer-
nocký, and Sanjeev Khudanpur, Extensions of recurrent
neural network language model, 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011, pp. 5528–5531.

[MM04] Prem Melville and Raymond J. Mooney, Diverse ensembles
for active learning, Proceedings of 21st International Con-
ference on Machine Learning (ICML-2004) (Banff, Canada),
July 2004, pp. 584–591.

88

.. A. Bibliography

[MRA20] Roweida Mohammed, Jumanah Rawashdeh, and Malak
Abdullah, Machine learning with oversampling and un-
dersampling techniques: Overview study and experimental
results, 2020 11th International Conference on Information
and Communication Systems (ICICS), 2020, pp. 243–248.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean, Distributed Representations of Words
and Phrases and their Compositionality, arXiv:1310.4546
[cs, stat] (2013), arXiv: 1310.4546.

[Nak18] Hiroki Nakayama, seqeval: A python framework for se-
quence labeling evaluation, 2018, Software available from
https://github.com/chakki-works/seqeval.

[NTD+22] Truong Thao Nguyen, François Trahay, Jens Domke, Alek-
sandr Drozd, Emil Vatai, Jianwei Liao, Mohamed Wahib,
and Balazs Gerofi, Why globally re-shuffle? revisiting data
shuffling in large scale deep learning, 2022 IEEE Inter-
national Parallel and Distributed Processing Symposium
(IPDPS), 2022, pp. 1085–1096.

[PB18] Martin Popel and Ondř ej Bojar, Training tips for the
transformer model, The Prague Bulletin of Mathematical
Linguistics 110 (2018), no. 1, 43–70.

[PNI+18] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer, Deep contextualized word representations, 2018.

[Pre00] Lutz Prechelt, Early stopping - but when?

[RG19] Nils Reimers and Iryna Gurevych, Sentence-bert: Sen-
tence embeddings using siamese bert-networks, Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing, Association for Computational
Linguistics, 11 2019.

[RGC+21] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A. Calian, Flo-
rian Stimberg, Olivia Wiles, and Timothy Mann, Data
augmentation can improve robustness, 2021.

[RNKC22] Omid Rohanian, Mohammadmahdi Nouriborji, Samaneh
Kouchaki, and David A. Clifton, On the effectiveness of
compact biomedical transformers, 2022.

[RXC+21] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,
Zhihui Li, Brij B. Gupta, Xiaojiang Chen, and Xin Wang,
A survey of deep active learning, 2021.

89

.. A. Bibliography

[SDCW19] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf, Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter, 2019.

[Set09] Burr Settles, Active learning literature survey.

[SN20] Christopher Schröder and Andreas Niekler, A survey of
active learning for text classification using deep neural
networks, 2020.

[SNSS21] Milan Straka, Jakub Ná plava, Jana Straková, and David
Samuel, RobeCzech: Czech RoBERTa, a monolingual con-
textualized language representation model, Text, Speech,
and Dialogue, Springer International Publishing, 2021,
pp. 197–209.

[SPK+21] Artem Shelmanov, Dmitry Puzyrev, Lyubov Kupriyanova,
Denis Belyakov, Daniil Larionov, Nikita Khromov, Olga
Kozlova, Ekaterina Artemova, Dmitry V. Dylov, and
Alexander Panchenko, Active learning for sequence tag-
ging with deep pre-trained models and bayesian uncertainty
estimates, CoRR abs/2101.08133 (2021).

[SPP+21] Jakub Sido, Ondřej Pražák, Pavel Přibáň, Jan Pašek,
Michal Seják, and Miloslav Konopík, Czert – czech bert-like
model for language representation, 2021.

[SQXH19] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang, How
to fine-tune bert for text classification?, 2019.

[SS18] Ozan Sener and Silvio Savarese, Active learning for convo-
lutional neural networks: A core-set approach, 2018.

[SYL+17] Yanyao Shen, Hyokun Yun, Zachary C. Lipton, Yakov
Kronrod, and Animashree Anandkumar, Deep active learn-
ing for named entity recognition, CoRR abs/1707.05928
(2017).

[TCLT19] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, Well-read students learn better: On the impor-
tance of pre-training compact models, 2019.

[TKSDM03] Erik F. Tjong Kim Sang and Fien De Meulder, Introduc-
tion to the CoNLL-2003 shared task: Language-independent
named entity recognition, Proceedings of the Seventh Con-
ference on Natural Language Learning at HLT-NAACL
2003, 2003, pp. 142–147.

[TLHS09] Katrin Tomanek, Florian Laws, Udo Hahn, and Hinrich
Schütze, On proper unit selection in active learning: Co-
selection effects for named entity recognition, Proceedings

90

.. A. Bibliography

of the NAACL HLT 2009 Workshop on Active Learning for
Natural Language Processing (Boulder, Colorado), Associ-
ation for Computational Linguistics, June 2009, pp. 9–17.

[TMC+21] Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali
Eslami, Oriol Vinyals, and Felix Hill, Multimodal few-shot
learning with frozen language models, 2021.

[UDR+22] Herbert Ullrich, Jan Drchal, Martin Rýpar, Hana Vin-
courová, and Václav Moravec, Csfever and ctkfacts: Ac-
quiring czech data for fact verification, 2022.

[Vla08] Andreas Vlachos, A stopping criterion for active learning,
Computer Speech Language 22 (2008), no. 3, 295–312.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin, Attention is all you need, 2017.

[Wei66] Joseph Weizenbaum, Eliza—a computer program for the
study of natural language communication between man and
machine, Commun. ACM 9 (1966), no. 1, 36–45.

[WFK+21] Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao, and
Hao Ma, Entailment as few-shot learner, 2021.

[Wik22a] Wikipedia contributors, Coreset — Wikipedia, the free
encyclopedia, 2022, [Online; accessed 12-January-2022].

[Wik22b] , Hierarchical clustering — Wikipedia, the free en-
cyclopedia, 2022, [Online; accessed 5-January-2023].

[Wik22c] , Inside–outside–beginning (tagging) — Wikipedia,
the free encyclopedia, 2022, [Online; accessed 2-January-
2023].

[Wik22d] , Round-robin scheduling — Wikipedia, the free
encyclopedia, 2022, [Online; accessed 5-January-2023].

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei
Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and
Jeffrey Dean, Google’s neural machine translation system:
Bridging the gap between human and machine translation,
2016.

91

.. A. Bibliography

[YWC20] Shuoheng Yang, Yuxin Wang, and Xiaowen Chu, A survey
of deep learning techniques for neural machine translation,
2020.

[Zhd19] Fedor Zhdanov, Diverse mini-batch active learning, 2019.

[ZSH22] Zhisong Zhang, Emma Strubell, and Eduard Hovy, A sur-
vey of active learning for natural language processing, 2022.

[ZWH+22] Xueying Zhan, Qingzhong Wang, Kuan-hao Huang, Haoyi
Xiong, Dejing Dou, and Antoni B. Chan, A comparative
survey of deep active learning, 2022.

92

Appendix B
Technical description of active learning
labelling procedure

During active learning experiments the process of manual labelling is
simulated by this algorithm:..a. The new index column with values from 0 to the length of the

training dataset is added to the train split. Hence, whole train split
is indexed...b. An empty list is created, which will store indices of those rows that
are treated as "labelled"...c. The train split is divided into two splits: labelled - for rows from
the list defined above, and unlabelled - for the remaining rows.
Unlabelled split will be used as source for the selection of the the
next batch of data "to label"...d. The split created for training is considered as training dataset and
will be updated in the next AL iteration.

93

Appendix C
Weights & Biases - illustrations

Figure C.1: Illustration of Weights & Biases metrics charts smoothing. Smooth-
ing helps to see the trend and eliminate oscillations between steps - in active
learning experiments this feature plays ultimate role. The picture also shows
several metric score for several experiments, which are distinguished by differently
coloured lines.

Charts plotted for one experiment in Weights & Biases are comparable
with other experiments that share the same tracked variables, shown in
C.1. The library draws lines of different colors and highlights particular
experiments on the same grid so that a researcher can simply compare
several lines, i.e. several experiments, at the same time, see C.2. This
feature gave me much room for experimentation and comparison.
The last feature of high importance is system monitoring: CPU/GPU
temperature, power usage, GPU utilisation or ratio of time spent ac-

94

..................................C. Weights & Biases - illustrations

Figure C.2: A close-up of interactive part of the experiments charts - the library
gives an opportunity to see the exact variable value at every step and to compare
it with other experiments.

cessing memory instead of computing. All these metrics help leverage
GPU under the hood and see how large language models fit into GPU
memory, how GPU is utilised and whether it is possible to use it better -
increase a batch size, run experiments in parallel, etc. An example of
such monitoring for two experiments which utilise GPU differently is
shown in figure C.3.

Figure C.3: Illustration of several system parameters (GPU state) that are
natively supported by Weights & Biases and that are automatically monitored
during each experiment. GPU utilisation charts help to figure out how the
hardware is capable of processing large batches and store large models in GPU
RAM.

95

Appendix D
Other figures

Figure D.1: F1 test set score development of four strategies: random, least
confidence, K-means, BADGE. Non-smoothed version with real F1 scores reported.
Czech NLI on CTKFactsNLI with RobeCzech model (in initial hyperparameters
setup) results are reported.

96

..D. Other figures

Figure D.2: BPMN process diagram of the implemented library.

97

	Introduction
	Preface
	NLP - brief outline

	Active Learning
	Related Work
	Active Learning - scenarios
	Batch Mode active learning

	State-of-the-art strategies
	One-by-one strategies
	Batch methods

	Aim of the project

	Proposed solution
	Used libraries
	Architecture
	Process description
	MLOps integration
	RCI cluster integration
	Google Colab integration

	Experimental part
	Active learning experiments
	Tasks
	Datasets
	Models
	Implemented strategies
	Evaluation method
	Experimental details
	Experiments parameters

	Part 1 - small models
	Analysis

	Part 2 - Active learning and large models (classification and tagging)
	Text classification
	Tagging

	Part 3 - Czech NLI

	Future considerations
	Tasks complexity
	Starting and stopping AL
	Real-life application

	Conclusion
	Bibliography
	Technical description of active learning labelling procedure
	Weights & Biases - illustrations
	Other figures

