
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Electromagnetic Field

Infrastructure of Indoor VLP System

Bc. Martin Suda

Supervisors: Ing. Stanislav Vítek, Ph.D., Jenq-Shiou Leu, Ph.D.
November 2022

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474251Personal ID number:Suda MartinStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Electromagnetic Field

Electronics and CommunicationsStudy program:

Radio Communications and SystemsSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Infrastructure of Indoor VLP System

Master’s thesis title in Czech:

Infrastruktura indoor VLP systému

Guidelines:

Design and implement the infrastructure for indoor localization using a VLP system. Follow these guidelines:
1. Design and implement an application to configure a network of VLP transmitters over LPWAN.
2. Study the fingerprinting methods used in VLP systems.
3. Design and implement driving firmware for VLP transmitters.
4. Design and implement an algorithm to identify VLP transmitters.

Bibliography / sources:

[1] GUAN, Weipeng, et al. High-accuracy robot indoor localization scheme based on robot operating system using visible
light positioning. IEEE Photonics Journal, 2020, 12.2: 1-16.
[2] HUANG, Nuo, et al. Design and demonstration of robust visible light positioning based on received signal strength.
Journal of Lightwave Technology, 2020, 38.20: 5695-5707.
[3] RÁTOSI, Márk; SIMON, Gyula. Robust VLC beacon identification for indoor camera-based localization systems.
Sensors, 2020, 20.9: 2522.

Name and workplace of master’s thesis supervisor:

doc. Ing. Stanislav Vítek, Ph.D. Department of Radioelectronics FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 07.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signaturedoc. Ing. Stanislav Vítek, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements
First and foremost, I would like to ex-
press my sincere gratitude to my supervi-
sors, professor Jenq-Shiou Leu, Ph.D and
doc. Ing. Stanislav Vítek, Ph.D. for their
continuous support during the prepara-
tion of my Master thesis, for their enthu-
siasm, motivation, immense knowledge,
and their time they have devoted to me.

Further, I would like to thank my fam-
ily for their patient support throughout
my study.

Finally, I would like to thank my col-
league Štěpán Bosák for an outstanding
team collaboration on this project.

Declaration
I declare that I have written this thesis by
myself and that I have listed all informa-
tion sources in accordance with Method-
ological Guidelines on Compliance with
Ethical Principles.

In Prague, 20.11.2022

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 20.11.2022

v

Abstract
The increasing demand for indoor po-

sitioning systems and the poor accuracy
of Global Positioning System (GPS) in
enclosed premises has necessitated other
viable solutions. A vastly exploited tech-
nique in this field is Visible Light Posi-
tioning (VLP), due to its promising prop-
erties that allow high accuracy and cost-
effective solution compared to other tech-
niques.

The academic research proposes vari-
ous VLP-based indoor navigation algo-
rithms that tackle issues coming with Vis-
ible Light Positioning. Unfortunately,
no algorithm has solved the issues well
enough to be massively adopted on the
market yet.

Recent studies propose unique localiza-
tion algorithms utilizing different meth-
ods. Despite their differences, we no-
ticed one common characteristic shared
by all. The papers always assemble an
infrastructure prototype to test their ap-
proach. This procedure seems rather un-
necessary since the core infrastructure is
the same and could be shared. We be-
lieve a shared assembly would enable the
algorithm’s rapid prototyping and even-
tually intensify the team’s focus on the
main goal, the localization itself.

Therefore, the thesis proposes a VLP
system that solves this issue. The system
allows the development of localization al-
gorithms with different system settings,
thus serving the developer’s needs.

Firstly, the thesis presents the system
infrastructure and discusses its elements.
Secondly, it reviews standard fingerprint-
ing techniques and selects Pulse Width
Modulation (PWM) and sinusoidal mod-
ulation to demonstrate the functionality.
Custom firmware is proposed to drive
VLP transmitters with a fingerprinting
method. Thirdly, the thesis proposes an
application that configures the whole in-
frastructure and delivers a user-friendly

environment. Lastly, it proposes a detec-
tion algorithm to localize VLP transmit-
ters within a single-frame image utilizing
a mobile robot with a CMOS camera.

Keywords: Visible Light Positioning
(VLP), VLC fingerprinting, LoRaWAN®,
MQTT, Circle Hough Transfrom, edge
detection, web applications

Supervisors: Ing. Stanislav Vítek,
Ph.D., Jenq-Shiou Leu, Ph.D.

vi

Abstrakt
Zvyšující se poptávka po polohova-

cích systémech v uzavřených prostorech a
nízká přesnost tradičně využívaného Glo-
bal Positioning Systemu (GPS) vyžaduje
nová, lepší řešení. Díky slibným vlastnos-
tem se nabízí široce zkoumaná metoda Vi-
sible Light Positioning (VLP). Její výho-
dou, ve srovnání s ostatními metodami,
je velká přesnost a nižší cena instalace.

Akademický výzkum představil mnoho
různých VLP algoritmů ve snaze řešit pro-
blémy spojené s Visible Light Positioning.
Zatím však žádný z nich nenabízí natolik
kvalitní řešení, aby se dal systém masivně
využít na trhu.

Publikované práce představují algo-
ritmy založené na velmi rozdílných přístu-
pech. Všimli jsme si, že navzdory jejich
značným rozdílům obsahuje vědecká lite-
ratura jednu společnou vlastnost. Práce
vždy sestavují svůj prototyp infrastruk-
tury, aby mohly otestovat vlastní ná-
vrh. Tento postup se zdá poněkud nad-
bytečný, jelikož hlavní část infrastruk-
tury je vždy stejná a mohla by být sdí-
lena. Věříme, že sdílená infrastruktura
by umožnila rychlé prototypování algo-
ritmů, a tak vedla k intenzivnějšímu za-
měření týmu na hlavní cíl, kterým je sa-
motná lokalizace.

Tato práce proto implementuje VLP
systém, který problematiku jednoho spo-
lečného rozhraní řeší. Navržený systém
umožňuje vývoj lokalizačních algoritmů s
různým nastavením systému a slouží tak
potřebám vývojáře.

První část diplomové práce předsta-
vuje infrastrukturu systému a rozebírá
její jednotlivé prvky. Druhá část práce
představuje rešerši běžných technik fin-
gerprintingu, kdy vybraná PWM a sinu-
sová modulace demonstruje funkčnost na-
vrženého systému. Dále je také navržen
firmware pro ovládání VLP vysílačů vyu-
žívající fingerprinting. V třetí části práce
je představena webová aplikace, která sys-

tém konfiguruje a přináší uživatelsky pří-
větivé prostředí. Nakonec práce imple-
mentuje detekční algoritmus, který loka-
lizuje VLP vysílače na snímku z CMOS
kamery.

Klíčová slova: Visible Light
Positioning (VLP), VLC fingerprinting,
LoRaWAN®, MQTT, Circle Hough
Transfrom, edge detection, webové
aplikace

Překlad názvu: Infrastruktura indoor
VLP systému

vii

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Contribution 1
1.3 Organization 2
2 System Infrastructure 3
2.1 Nodes . 3
2.2 Gateway . 4
2.3 System Application 5
2.4 Robot . 6
3 VLP Fingerprinting Techniques 7
3.1 Related work 7

3.1.1 On-Off Keying Modulation . . . 8
3.1.2 Pulse-Width Modulation 9
3.1.3 Sinusoidal Modulation 10

3.2 Discussion 11
3.3 Conclusion 11
4 Node Firmware 13
4.1 Functional requirements 13
4.2 Architecture 13

4.2.1 I-CUBE-LRWAN package . . . 13
4.2.2 Custom Firmware 16

4.3 Implementation. 17
4.3.1 Main program 18
4.3.2 Configuration files 18
4.3.3 Indoor Navigation library . . . 19

4.4 Functional testing 22
5 System Application 25
5.1 Current state & revision 25
5.2 Functional requirements 25
5.3 Non-functional requirements . . . 26
5.4 Architecture types 26

5.4.1 Static Web Application 26
5.4.2 Dynamic Web Application . . 27
5.4.3 Single-Page Application 27
5.4.4 Multiple-Page Application . . 27
5.4.5 Progressive Web Application 27

5.5 Architecture 28
5.6 Implementation. 28

5.6.1 Back End 28
5.6.2 Front End. 30
5.6.3 Functionality overview 31

6 Node Detection 35
6.1 Circle Object Detection 35

6.1.1 Circle Hough Transform 35
6.2 Edge Detection 37

6.2.1 Gradient-Based detection . . . 38
6.2.2 Laplacian-Based detection . . . 44
6.2.3 Canny detector 49

6.3 Implementation. 49
6.3.1 Detection module 49
6.3.2 Detection algorithm 50
6.3.3 Test environment 51
6.3.4 Algorithm evaluation 52

7 Conclusions 55
7.1 Future work 56
A List of Abbreviations 57
B B-L072Z-LRWAN1 Extension
connectors 59
C Bibliography 61

viii

Figures
2.1 The new enhanced system

infrastructure. 3
2.2 Node prototypes and the

B-L072Z-LRWAN1 board. 4
2.3 The gateway prototype. 5
2.4 The system application. 5

3.1 Constant brightness techniques
presented in [1], 4PPM illustrated on
the top and VPPM on the bottom. . 8

3.2 The bar-code encoding of 5746
proposed in [2]. 9

3.3 A PWM modulated transmitter
with various frequencies and duty
cycles.[3] . 10

4.1 The I-CUBE-LRWAN
architecture.[4] 14

4.2 The firmware architecture. 17
4.3 The Signal_generator file

structure. 20
4.4 An example of serial line

communication under the test
execution; a) Sinusoidal modulation,
and b) PWM modulation. 22

4.5 Sinusoidal signals generated by
the firmware; a) 100 Hz with 50%
amplitude, and b) 1 kHz with 100%
amplitude. 23

4.6 PWM signals generated by the
firmware; a) 500 Hz with 50% duty
cycle, and b) 1 kHz with 70% duty
cycle. 24

5.1 The back-end architecture. 29
5.2 The desktop implementation of

our application. 31
5.3 The popup windows; a) Create/

Add node, and b) Node detection. 32
5.4 The node detection window with

detected nodes. 33

6.1 Transformation between the image
space and parameter space. 36

6.2 Structure of gradient-based edge
detection techniques. 39

6.3 Concept of finding local maxima
over 1D neighborhood; a) original
image, b) pixel gradient magnitude,
c) gradient magnitude (depicted as
contours) and gradient direction
with 1D line regions located in the
ping segment of Figure 6.3a, and d)
fully constructed boundaries utilizing
gradient based edge detection with
Sobel convolution mask. 40

6.4 Local maxima found over 5 × 5
pixel 2D neighborhood in the blue
segment of Figure 6.3a; a) gradient
magnitude, and b) edge detection
result. 41

6.5 Problem of zero-crossing in first
derivative kernel. 43

6.6 Arbitrary one dimensional
function and its derivatives.[5] 45

6.7 Sampled Gaussian function with
σ = 3 and n = 19; a) 3D
representation, b) 2D representation,
and c) heat-map. 47

6.8 Sampled LoG operator with σ = 3
and n = 25; a)
−LoG(x, y) = −∇2g(x, y), and b)
−LoG(x, y) heat-map. 48

6.9 Algorithm steps illustration; a)
original image in grayscale, b)
blurred image with box filter, c)
binarized image, and d) processed
image with bounding boxes. 51

6.10 The grid layout in the testbed
area; red dots in the bottom-left
corner depict an example of capture
positions if the Grid Shift is (0,0)
and blue dots for Grid Shift
(0.5,0.5); the red arrow denotes the
travel direction if ”aligned” Phase
and blue arrow if ”perp.” Phase. . . 52

6.11 Examples of detection strengths
and weaknesses. 54

ix

Tables
4.1 Signal Generator hardware

configuration summary. 21

6.1 Environment settings where Phase
is relative to the nodes orientation
and Grid Shift is relative to the
main grid. 51

6.2 Algorithm evaluation results. . . . 53

List of Listings
4.1 An example of the Sequencer

application. 15
4.2 An example of Timer Server

API. 15
4.3 An example of tracing. . . 16
4.4 A simplified example of

main.c file. 18
4.5 A simplified example of

OnRxData() callback. . . 18
4.6 A simplified example of

parse_rxData() 19
4.7 A simplified example of

set_sin_modulation() . 21

List of Algorithms
1 Pseudo-code of the node detec-

tion algorithm. 50

x

Chapter 1
Introduction

Indoor navigation is an emerging field with many possible applications. Despite the thor-
ough research conducted in the past two decades, no system has been widely adopted
yet.

The first notable technology is Global Positioning System (GPS). GPS has been well
established for outdoor navigation. Unfortunately, its performance indoors is very lim-
ited due to the significant power attenuation caused by passing through the walls in the
buildings. Therefore researchers developed solutions based on other technologies. Visible
Light Positioning (VLP) is one of the possible solutions. As the name implies, VLP sys-
tems localize objects based on transmitted visible light signals. This approach has several
advantages compared to RF-based (RF-) positioning. Firstly, it can employ the existing
infrastructure of LED luminaries in the buildings, which can considerably lower the cost of
the system deployment. Secondly, VLC is immune to Electromagnetic Interference (EMI),
and itself does not produce any electromagnetic pollution. Therefore, VLC can be used
in environments prone to EMI, such as hospitals. Thirdly, VLP systems can gain a high
localization accuracy because they are less sensitive to the multipath effect, and their prop-
agation is more predictable in contrast to RF. Lastly, a VLP system can simultaneously
employ positioning and still retain conventional lighting.[6]

In the past few years, researchers proposed numerous VLP systems [2][7][8][9][10] intro-
ducing unique solutions to the positioning problem. They utilize different fingerprinting
and modulation techniques and develop various architectures and detection algorithms.
Despite many differences, we noticed a common characteristic among them. Each solu-
tion builds its infrastructure from scratch, even though the core is the same and could be
shared.

Therefore, we present a core VLP infrastructure to enhance and simplify development.

1.1 Motivation

Our motivation is to develop a robust and user-friendly VLP infrastructure that would
allow testing of various VLC-based indoor navigation algorithms or techniques. Our archi-
tecture enables a simple system configuration and operation. Furthermore, it can simplify
and speed up development process as the team could entirely focus on positioning tech-
niques and proper VLC instead of lengthy environment designing.

1.2 Contribution

In this thesis, we enhance our previous work [11][12] and propose a VLP infrastructure
utilizing modern communication protocols to tackle the problem outlined above. Our

1

1. Introduction ..
infrastructure comprises four main elements; Nodes, Gateway, System Application, and
Robot. These elements are also the main contribution of the project.

This thesis proposes the node firmware that operates the Nucleo B-L072Z-LRWAN1
board equipped with a custom light driver designed by my colleague [13]. Furthermore,
the work proposes a system application powered by a Flask back end written in Python,
and the front end is designed as a single page application. Finally, we developed a node
detection algorithm that localizes nodes within an image captured by the robot [13].

1.3 Organization

Chapter 2 introduces the system infrastructure and presents individual system elements.
Furthermore, it connects our previous work [11][12] to this thesis. Chapter 3 conducts a
review of VLP fingerprinting techniques. Section 3.3 presents the conclusion of the review,
and proposes our aim regarding modulation techniques. Chapter 4 proposes the custom
node firmware that employs the fingerprinting techniques and drives the VLC transmitter
based on the system configuration received through LoRaWAN®.

Chapter 5 presents the entire system application development. It discusses the architec-
tural types and concludes our choice. Furthermore, it presents our implementation and
summarizes the application’s functionality. Chapter 6 proposes a node detection algorithm
evaluated in Section 6.3.4. The chapter introduces circle object detection techniques, es-
pecially Circle Hough Transform. Moreover, it includes a thorough theory introduction to
edge detection since it is a crucial requirement for sufficient Circle Hough Transform-based
detection employed in our detection algorithm. Finally, Chapter 7 presents the thesis
conclusion.

2

Chapter 2
System Infrastructure

This chapter presents a high-level overview of the project’s infrastructure. It introduces the
system and functionality of each component. The proposed infrastructure builds on our
previous work [11][12], which carries out a node prototype, a LoRaWAN® gateway, and a
system application. In [11], we presented a node firmware, the gateway architecture, and a
simple system application. The above architecture allows only a single-device configuration
and does not support light control. In [12], we introduced a light driver shield that controls
the light source. The driver was redesigned and significantly improved to the current status
in [13].

This thesis proposes a new enhanced infrastructure supporting multi-node configuration
and node detection. Furthermore, it presents its new software implementation. The system
comprises four elements: Nodes, Gateway, System Application, and Robot. The thesis
introduces and designs the first three elements. This chapter briefly discusses the objective
of the last element, but the robot’s design is presented in [13]. Figure 2.1 illustrates the
new infrastructure, and each element is discussed separately below.

GATEWAY

NODES

CAMERA
ROBOT

APP

LoRaWAN

MQTT
HTTP

HTTP

VLC

Wi-Fi

Figure 2.1 The new enhanced system infrastructure.

2.1 Nodes

This element contains three identical VLC transmitters (nodes). Each node comprises a
microcontroller (MCU) equipped with a custom light driver shield [13] and a light source.
The node’s objective is to receive configuration messages from the user and reconfigure
itself based on the message content. The configuration messages consist of a modulation
type and unique parameters for each node. Thus, nodes are distinguishable and could be
considered a VLP source.

3

2. System Infrastructure ..
The new node supports multiple-node structures and implements LoRaWAN® class C

mode operation. The class C operation carries out significantly lower latency of system
configuration, which is a beneficial property for the system efficiency and operation work-
flow — more details about LoRa®/LoRaWAN® protocol in [11].

In order to achieve the above, we had to upgrade the NUCLEO-F446RE board equipped
with the I-NUCLEO-LRWAN1 shield to Nucleo B-L072Z-LRWAN1. The new board nat-
urally supports LoRa® communication and delivers higher performance and memory. On
the contrary, we had to redesign the entire firmware to accomplish our goals. Chapter
4 presents the new firmware. Finally, the Nucleo B-L072Z-LRWAN1 main board was
equipped with the custom light driver shield [13] and placed into a 3D-printed cover to
store the node hardware safely. Figure 2.2 shows the prototype.

Figure 2.2 Node prototypes and the B-L072Z-LRWAN1 board.

2.2 Gateway

The Gateway element creates a communication bridge between System Application and
Nodes. It receives system configuration from the application via MQTT protocol and
generates LoRaWAN® messages to distribute the configuration to individual nodes. Fur-
thermore, it processes the LoRaWAN® uplink messages from nodes and delegates them
through the MQTT broker. In [11], we present the gateway’s architecture.

4

... 2.3. System Application

Figure 2.3 The gateway prototype.

2.3 System Application

System Application is a fundamental structure element. It allows configuring each node
separately with a unique configuration or the entire system at once. The application creates
a user-friendly interface where the user can easily configure the entire system while primar-
ily focusing on positioning algorithms. Furthermore, the user can manage the existence of
nodes in the system.

Finally, the application presents an object detection algorithm localizing the nodes in an
image captured by the robot. Moreover, it allows controlling the robot and CMOS camera.
Chapter 5 introduces the implementation.

Figure 2.4 The system application.

5

2. System Infrastructure ..
2.4 Robot

The last system element consists of a customized robot equipped with a CMOS camera.
The robot’s objective is to travel underneath the nodes and capture images of the environ-
ment. The images are sent to the application back end upon a request, where an object
detection algorithm is utilized. The detection algorithm determines the node’s position in
the image and delivers the processed image, including regions of interest delimited by a
bounding box. Chapter 6 proposes the algorithm and theory.

6

Chapter 3
VLP Fingerprinting Techniques

There is a vast number of modulation techniques available. However, only a few are ap-
propriate for VLP systems since they must abide by the VLC requirements to be correctly
decoded. These requirements will be further discussed below.

Modulation schemes utilized in VLP are commonly referred to as fingerprinting methods.
Their goal is to differentiate system transmitters (nodes) from each other. In other words,
the system assigns a unique fingerprint to individual transmitters upon which they are
later recognized.

This chapter conducts a review to acquire a broader understanding of the topic. More-
over, it summarizes gathered knowledge and concludes the implementation goals for the
Node firmware (Chapter 4).

Our VLP system focuses on a CMOS rolling shutter mechanism at the moment, and
thus techniques in the chapter will mainly discuss this approach. Rolling Shutter Effect
(RSE) is caused by row-by-row exposure and reading. This effect considerably improves the
communication data rate and allows reducing or completely suppressing the LED flickering
visible to the naked eye (approximately 100 Hz).[1] A detailed RSE introduction is available
in [14][15].

Nowadays, high-resolution CMOS sensors are commonly deployed in ordinary mobile
phones. Hence, it makes CMOS-based VLP a promising candidate for massive market
adoption.[14] Unfortunately, there are still several challenges to be solved. Firstly, the
CMOS sensor is sensitive to pixel saturation (”blooming” effect) which can cause a high
error rate. The study [14] shows that the ”blooming” effect can be mitigated by a proper
luminaire that uniformly distributes the light intensity. Secondly, the CMOS sensor suf-
fers a read-out time gab during which the sensor is blind and does not receive signals.
Therefore, the transmission length must be taken into account and should not surpass the
frame length. Lastly, the CMOS sensor suffers from a low extinction ratio limiting the
transmission distance. The low extinction ratio increases the interference of background
noise.[14] Nevertheless, the advantages still prevail, and the approach deserves attention.

3.1 Related work

Before moving on to the review, the VLC techniques have the following requirements.
Firstly, the average light brightness must remain constant regardless of the data content.
Otherwise, flickering will be introduced. Secondly, CMOS-based methods cannot continu-
ously receive data due to the time gap between the bottom and top line exposure. Hence,
the modulation scheme needs to account for the length of the transmitted signal to be
shorter than the frame length.[1] Lastly, the fingerprinting scheme should employ a mul-
tiplexing method that guarantees robust distinction between transmitters. The following
sections introduce fingerprinting schemes commonly used in VLP.

7

3. VLP Fingerprinting Techniques
3.1.1 On-Off Keying Modulation

On-Off Keying (OOK) is a widely adopted modulation technique utilized in many CMOS-
based VLP systems. OOK is a simple modulation that encodes binary data by switching
the light source (1 → ON, 0 → OFF). When OOK modulation illuminates the CMOS
sensor, the data creates bright and dark stripes proportional to its data rate.

Unfortunately, long series of the same binary value break the constant brightness require-
ment and cause flickering. Therefore, the OOK modulation is commonly enhanced with
an additional encoding scheme to prevent this behavior. The authors in [1] present several
encoding solutions; They propose Four-Pulse Position Modulation (4PPM) to safely en-
code 2-bit code words and Variable-Pulse Position Modulation (VPPM) to encode a 1-bit
words. The 4PPM modulation encodes each word in four time slots by shifting binary ”0”
across the slots. For instance, the code word ”00” and ”01” would be encoded as ”0111”
and ”1011”, respectively. Similarly, VPPM encodes 1-bit by shifting an off-state between
first to last position (0 → 0111, 1 → 1110). Figure 3.1 illustrates both encoding. The cost
paid for maintaining constant brightness this way is that the 4PPM’s data rate decreases
by 1/2 and VPPM’s by 1/4. Besides above mentioned, studies often employ Manchester
code or bar-coding to acquire required behavior.

00 01 10 11

0 1

Figure 3.1 Constant brightness techniques presented in [1], 4PPM illustrated on the top and
VPPM on the bottom.

References [8][16] utilize the Manchester encoded identifiers. The authors in [8], in-
troduce Manchester code to increase the channel capacity and allow constant brightness.
Moreover, they combine pure tone (PWM), and Manchester encoded data in a hybrid de-
sign which mitigates the distance dependence. It takes advantage of data transmission for
transmitters close to the receiver and retain PWM frequency decoding of transmitters far
away and thus decreasing the system’s distance dependence.

Reference [16] presents an another Manchester code approach utilizing frequency multi-
plexing. The proposed simulation avoids harmonic spectral overlaps by using odd frequency
carriers (47 kHz, 59 kHz, 83 kHz, and 101 kHz).

On the other hand, the authors in [2] exploit OOK with bar-code encoding. Similar to
those above, the method assigns a unique identifier to each transmitter. Identifiers are
modulated by the OOK and then further encoded by ITF bar-code mechanism to obtain
constant brightness and dimming functionality. The ITF bar-coding was implemented as
follows. Firstly, the four-digit identifier was encoded with OOK, where 5-bits represented
each digit. Secondly, binary one/zero was assigned to a specific fringe width to represent
the value. Lastly, the first/third (resp. second/fourth) digit of the identifier was encoded
by five dark (resp. bright) fringes. This approach overpowers Manchester code in the

8

... 3.1. Related work

efficiency (bit per symbol). It carries out an efficiency of 0.66439 compared with 0.5
presented by the Manchester code. Figure 3.2 illustrates the encoding mechanism.

1

0

0 1 0 0

0 0 1 1

0 0 1 0 1

0 1 1 0 0

5 4

7 6

Figure 3.2 The bar-code encoding of 5746 proposed in [2].

The system presented in [7] proposes a different multiplexing approach. It employs the
OOK modulation with Time Division Multiplex (TDM). The VLP sources transmit data
periodically in non-overlapping times slots. Therefore, the transmitters need synchroniza-
tion, unlike the previous techniques. Lastly, the code words are encoded with a constant
average probability to obtain constant brightness.

Finally, Jianli Jin et al. in [17] emphasize the importance of the multiplexing techniques
when they propose two methods based on Code Division Multiplexing (CDM). They state
that CDM is preferable in VLP systems to FDM or TDM because of its superiority in
resistance to asynchronous interference and low complexity. They employ the Walsh code
and propose a Novel Signature code to demonstrate their thesis.

3.1.2 Pulse-Width Modulation

PWM is another binary pulse modulation that is commonly used in CMOS-based VLP. As
the OOK, PWM leaves bright/dark stripes on a CMOS sensor. The frequency affects the
number of stripes, and the duty cycle controls the stripe width. A significant advantage
of PWM is that it naturally satisfies the brightness condition if the duty cycle remains
constant. Moreover, the duty cycle allows dimming functionality, commonly used lighting
property. On the other hand, PWM’s data transmission is less efficient than OOK’s, and
thus the channel capacity is narrower.

In [8], [15], and [3], they introduce a PWM approach with frequency multiplexing. Each
transmitter acquires a unique frequency/duty cycle identifier upon which it is identified.
Authors in [15] and [3] utilize an additional feature when they measure the area of the
LED projection on the CMOS sensor. This feature is used to estimate the distance of the
transmitter. Figure 3.3 illustrates PWM modulated transmitters captured by a CMOS
camera.

9

3. VLP Fingerprinting Techniques

Figure 3.3 A PWM modulated transmitter with various frequencies and duty cycles.[3]

3.1.3 Sinusoidal Modulation

Recent studies show an alternative approach to pulse modulation by exploiting sinusoidal
signals and photodiode receivers.[18]

References [10] and [19] present a method utilizing sinusoidal frequency multiplexing
and Received Signal Strength (RSS). The frequency works as a unique identifier, and
RSS determines the distance between the receiver and transmitter. A similar but reversed
approach is introduced in [9]. They placed receivers, constructed by photodetectors, on the
ceiling and VLC transmitters were mobile on the floor. This work focuses on multi-target
localization, and thus the system contains multiple receivers, unlike ours. The detection
is similar to the previous studies. They utilize band-pass filters that separate individual
sinusoidal fundamentals, and RSS estimates the distance.

Authors in [20] propose a Time Difference of Arrival (TDOA) based method. The
method assigns one transmitter as a reference node, and the node obtains a unique fre-
quency. The TDOA of the remaining nodes is calculated concerning the reference node. To
avoid interference, they modulated the remaining nodes with odd multiples of the reference
frequency. A similar approach is presented in [21].

Lastly, studies [22] and [23] propose an interesting approach utilizing Ambient Light
Sensor (ALS) embedded in a mobile phone. The studies propose a sinusoidal frequency
multiplexing where each transmitter obtains a unique sinusoidal signal as in previous cases.
The signals are then received and evaluated in the ALS instead of the external photodiode.
Since the ALS behaves as a frequency filter and performs analog to digital conversion, the
studies can acquire the fundamental transmitter frequency by applying Discrete Fourier
Transform. With the fundamental frequencies, they can easily distinguish individual trans-
mitters.

10

...3.2. Discussion

3.2 Discussion

This discussion summarizes the above review and draws conclusions about individual tech-
niques which will determine the aims of our implementation in the next section. In the
discussion, we primarily focus on VLC compliance, sufficient channel capacity regarding
the number of nodes, and implementation costs. We have concluded the following.

The OOK modulation is the most common CMOS-based modulation scheme. However,
On-Off Keying tends to suffer from flickering due to payload transmission (inconsistent
switching). This issue is commonly solved by combining OOK with an additional encoding
method that delivers constant brightness. Following methods were introduced: Manchester
code, 4PPM, VPPM, and bar-coding. These additional encoding methods add implemen-
tation and processing costs. On the other hand, OOK allows the transmission of unique
identifiers containing node location. However, the reference [8] states that the data are
hard to decode farther away from the transmitter.

The second pulse modulation, PWM, holds great VLC properties. It naturally delivers a
constant brightness for any duty cycle. Hence, it does not need an additional encoding like
OOK. Furthermore, PWM supports dimming functionality, a widely used feature in con-
ventional lighting. On the other hand, PWM delivers worse data transmission properties
than OOK and generally suffers lower channel capacity. We can conclude from the above
properties that PWM is a sufficient OOK substitution for a small number of transmitters
whose architecture does not necessitate data transmission.

Lastly, the sinusoidal modulation recently has drawn a great deal of attention and de-
livers a promising alternative by utilizing an embedded ALS in mobile phones.

3.3 Conclusion

In conclusion, we decided that our system will implement one of the above pulse modu-
lations to prove the project’s concept. The decision has been made upon the previously
mentioned requirements.

Firstly, let us assume the channel capacity. Since our test environment consists of only
three transmitters, we do not require any data transmission at the moment. Secondly,
we should consider VLC compliance and implementation costs. PWM with a constant
duty cycle is naturally VLC compliant. On the other hand, OOK requires some additional
encoding, which adds extra implementation costs. Furthermore, the study [8] shows con-
siderable distance dependence of OOK’s payload decoding. To robustly identify nodes
farther away from the receiver and nearby nodes requires a hybrid modulation alternating
between OOK and PWM. They show that the nodes in close proximity can take advantage
of data transmission, but nodes farther away need a pure signal of PWM to be correctly
identified. Therefore, we believe the OOK modulation would eventually have to be com-
bined with PWM eventually. Our clear choice is to implement the PWM modulation
before continuing to the more complex schemes such as OOK.

In addition, we decided to implement sinusoidal modulation. Even though the system
focuses on CMOS-based techniques, our vision is to create an environment to test various
indoor-navigation algorithms regardless of the receiver type. Furthermore, we aim to utilize
sensor technologies currently available in mobile phones. The studies [22], and [23] show

11

3. VLP Fingerprinting Techniques
sinusoidal modulation meets these requirements.

12

Chapter 4
Node Firmware

This chapter proposes a custom firmware developed for the system’s node. It introduces
firmware requirements, its architecture, and implementation. Furthermore, it presents
end-to-end test results to confirm the correct functionality.

4.1 Functional requirements

The proposed implementation should fully support the LoRaWAN® communication proto-
col and satisfy the following;

The node should be able to establish a connection with the gateway through a secure
link utilizing the OTAA authentication. After the authentication, the node should switch
to the class C operation to obtain the maximum downlink flexibility. Furthermore, the
firmware should implement the system configuration functionality as follows;

Firstly, the node must be able to parse the configuration message sent from the applica-
tion and deliver the configuration data in a structured format. Secondly, it must be able
to generate VLP signals. As we concluded in the review above, PWM and sinusoidal sig-
nals will be the modulation prototypes. Finally, the implementation should automatically
configure the node based on the received configuration message and send the generated
signal to the appropriate GPIO pin of the light driver shield.

4.2 Architecture

Our architecture combines the robust implementation of the I-CUBE-LRWAN Expansion
Package with the custom functionality needed for the project.

This section introduces the architecture of the I-CUBE-LRWAN Expansion Package and
the custom architecture developed for driving individual system nodes. The upcoming part
introduces the vital architectonic principles important to our integration. The complete
package documentation is available in [4].

4.2.1 I-CUBE-LRWAN package

The I-CUBE-LRWAN package provides a robust LoRaWAN® stack implementation, com-
pliant with the LoRaWAN® specification issued by LoRa Alliance®. Furthermore, it pro-
vides APIs to drive the necessary MCU hardware.

The package composes of three logical layers. Figure 4.1 illustrates the architecture.
The structure’s lowest layer is the HAL library. It brings the hardware APIs and ini-
tialization. The second layer comprises two parts. Firstly, it introduces a Sensor driver,
which enables the communication between sensors and the Application layer. The driver

13

4. Node Firmware...
approaches sensors through the I2C bus utilizing the HAL API. Secondly, it presents a
part called Middleware, responsible for the LoRa® communication and utilities. Finally,
the Application layer carries out the high-level logic and initializes the necessary hardware
(ADC, UART).

Sensor driver

HAL

Utilities

M
iddlew

are

Application

Provided by ST and SemtechProvided by Semtech

LmHandler

MAC layer

Crypto Radio driver
(SX12xx driver)

LoR
a

M
iddlew

are
Figure 4.1 The I-CUBE-LRWAN architecture.[4]

LoRa® Middleware

As Figure 4.1 shows, LoRa® Middleware consists of several sub-parts. Firstly, the radio
driver utilizes the GPIO and SPI HAL library to control the radio functionality. Moreover,
it implements an API for higher-level software.

Secondly, the MAC layer implements the LoRaWAN® functionality. It controls the
physical layer through an API, manages the timed tasks, and calculates the transmission
time-on-air. In addition, it monitors the transmission duty cycle to prevent exceeding
the limitations mandated by the LoRa® protocol. Finally, it ciphers the payload and
header utilizing the Crypto library. The Crypto library implements the AES encryption/
decryption algorithm.

Lastly, the architecture presents LmHandler on top of the MAC layer. LmHandler sets
an API to access the LoRaWAN® MAC services without worrying about the LoRaWAN®

state machine. LmHandler can be bypassed in more complex applications to access the
MAC layer directly. This way, the user can obtain the full extent of the MAC layer instead
of limited functionality delivered through the LmHandler API.

Utilities

Middleware’s Utilities provide necessary APIs; the primary role will play Sequencer, System
Time, Time Server, and Trace. Utilities also implement Low-Power management, but due
to space limitations, this text will not further discuss its API.

Sequencer provides a robust task manager that prevents the race condition. In other
words, it protects shared data from being changed by multiple tasks at once, which would
bring undesirable results. Moreover, it implements a task triggering functionality upon

14

.. 4.2. Architecture

an event occurrence represented by an interrupt. It is worth mentioning that Sequencer
is not an OS and uses only a single-memory stack. Unlike in RTOS, every Sequencer
task is run to completion and cannot switch to another task. The only way to simulate
the functionality above is to call UTIL_SEQ_WaitEvt() within the task being executed.
Finally, Sequencer could be interpreted as advanced while-loop centralizing tasks and event
bitmap identifiers.[4] Listing 4.1 introduces an example of the Sequencer application.

Listing 4.1 An example of the Sequencer application.
1 #include "stm32_seq.h"
2

3 #define flag 0 // default value for unused parameter
4 #define priority 0 // priority definition
5 #define SEQ_DEFAULT (~0U) // sequencer initial value
6

7 // Register Task
8 /* taskId_bm1 and taskId_bm2 are bitmasks => task identifiers*/
9 UTIL_SEQ_RegTask(taskId_bm1 , flag, func1);

10 UTIL_SEQ_RegTask(taskId_bm2 , flag, func2);
11

12 // Run Sequencer
13 While(1) {
14 UTIL_SEQ_Run(SEQ_DEFAULT);
15 }
16

17 // Define idle state
18 void UTIL_SEQ_Idle(void) {
19 /* Action while sequencer idle */
20 }
21

22 // Trigger function definition
23 void func1Callback(void) {
24 // set task to execute func1
25 UTIL_SEQ_SetTask(taskId_bm1 , priority);
26 }

Time Server delivers a reliable clock source for the application and the LoRaWAN® stack.
The timer object utilizes the RTC and enables timed-task execution. Furthermore, this
architecture allows a timer to count even when in low-power mode. Time Server can trigger
timed tasks and create timers necessary for the application. The number of requested
timers is not limited. The server has to be initialized by calling UTIL_TIMER_Init() .[4]
Listing 4.2 presents an example of a timer handling utilizing the Time Server.

Listing 4.2 An example of Timer Server API.
1 #include "stm32_timer.h"
2

3 // Define helper variables
4 unit32_t period = 0xFFFFFFFFU;
5 UTIL_TIMER_Mode_t mode = UTIL_TIMER_PERIODIC;
6

7 // Create a Timer object
8 static UTIL_TIMER_Object_t timer;
9

10 // Create a new timer instance in Time Server
11 /*
12 mode options: UTIL_TIMER_PERIODIC , UTIL_TIMER_ONESHOT ,

15

4. Node Firmware...
13 NULL => callback has no arguments
14 */
15 UTIL_TIMER_Create(&timer, period, mode, callbackFunc , NULL);
16

17 // Start timer
18 UTIL_TIMER_Start(&timer);
19 // Stop timer
20 UTIL_TIMER_Stop(&timer);

System Time delivers an API that allows recording MCU time based on UNIX epochs.
Our application references the time to the last MCU restart, and it uses the API to
retrieve the timestamp in the tracing messages. The API implements the following func-
tions; SysTimeSet , SysTimeGet , SysTimeMkTime , and SysTimeLocalTime . The first
function initializes the system time recording. The SysTimeGet function retrieves the
recorded time, and lastly, SysTimeMkTime (resp. SysTimeLocalTime) converts local
time into UNIX epoch (resp. UNIX epoch into local time).[4]

Finally, the Trace API provides functions to handle application messages and prints them
to the serial port interface. The implementation must call UTIL_ADV_TRACE_Init() to
initialize the hardware upon which a complete DMA transmission sets UART in DMA
mode with a registered callback.[4] Listing 4.3 provides an example of tracing.

Listing 4.3 An example of tracing.
1 #include "stm32_adv_trace.h"
2

3 #define TS 0 // timestamp omitted
4 #define VT 2 // verbosity level
5 #define REG 0 // region of the trace omitted
6

7 const char* s = "Message to be printed to the serial interface.";
8

9 // Send the message to the trace
10 UTIL_ADV_TRACE_COND_FSend(VT, REG, TS, s);

4.2.2 Custom Firmware

Figure 4.2 presents our architecture. The structure consists of two layers. The lower
layer comprises previously discussed I-CUBE-LRWAN extensions that provide a robust
hardware interface and LoRaWAN® stack. The higher layer, called Application, integrates
the project’s functionality. The Application layer consists of Core and App libraries.

The Core library handles hardware initialization and setup. It sets the UART in a DMA
mode interface for tracing, ADC interface for digitizing the sensor data, and RTC interface
to handle the timers. Moreover, it provides system initialization and the main program
loop. The App library includes configuration files that provide the system initialization and
callback functions. Furthermore, the library holds the Indoor_navigation directory that
handles the node configuration logic discussed thoroughly in Section 2.1. To clarify the
purpose of each segment in the architecture, let us assume the following scenario described
below.

The node initializes itself by running the main program. When initialized, the node
sends an OTAA JOIN request by utilizing the callback functions and LoRaWAN® stack. It
successfully joins the network. An App configuration file creates a timer within the system

16

.. 4.3. Implementation

APPLICATION

Core

I-CUBE-LRWAN
Middleware HALI-CUBE-LRWAN

Sensor driver

Indoor_navigation

Lora_message Signal_generator

App

App
config.

files

Figure 4.2 The firmware architecture.

initialization and triggers an uplink Alive message containing sensor data. A callback
function retrieves the sensor data by utilizing the Core library and sends the message.
After a few minutes, the node receives a downlink LoRa® message containing the system
configuration data in the payload. The LoRaWAN® stack retrieves the payload data from
the message and provides them to the Indoor_navigation library, which takes over the
data control. The Lora_message module in the Indoor_navigation library transforms the
payload data into a structure. The Signal_generator module takes the structured data
and carries out an automatic node re-configuration. In other words, the node changes the
modulation signal according to the configuration data processed by the Indoor_navigation
library. Besides the automatic configuration, the Signal_generator module provides the
hardware initialization and setup. The following section presents further implementation
details.

4.3 Implementation

This section introduces the implementation details of the fundamental firmware compo-
nents. The following components are discussed:.Main Program. Configuration files. Indoor Navigation library. Lora Message handler. Signal Generator

We implemented our firmware in language C utilizing the stm32CubeIDE environment.
stm32CubeIDE is an Integrated Development Environment (IDE) built on the Eclipse
framework and provides a user-friendly interface for stm32 development. The IDE manages
the source code as a stm32CubeIDE project. Thus, it contains XML configuration files
that keep track of source code paths. We maintained our implementation by exploiting the
git version control framework and the university GitLab cloud. Finally, the GCC compiler
handled the C-code compilation.

17

4. Node Firmware...
4.3.1 Main program

The main.c file is a crucial program that implements the main infinite while loop. It
initializes necessary components; the HAL library, the system clock, the LoRaWAN® stack,
and Signal Generator. Moreover, it provides the default light configuration and calls the
Sequencer process. A simplified example of the main.c is illustrated in Listing 4.4.

Listing 4.4 A simplified example of main.c file.
1 int main(void) {
2

3 // Init system
4 HAL_Init();
5 SystemClock_Config();
6 MX_LoRaWan_Init();
7 SignalGenerator_Init();
8

9 // Set default configuration to sinus with f=100Hz a=75%
10 sin_t config = {.frequency=100, .amplitude=75}
11 LghtConfigData_t data = {.modulation=2, .sinParams=config};
12 set_light_configuration(data);
13

14 // Register a Sequencer Task
15 UTIL_SEQ_SetTask((1 << defaultConfig_bitmask_id), priority_0);
16

17 // Run Sequencer
18 while(1) {
19 UTIL_SEQ_Run(UTIL_SEQ_DEFAULT);
20 }
21 }

4.3.2 Configuration files

Several configuration files are necessary to set the firmware environment. The lora_app.c
file defines the LoRaWAN® callbacks and connects the firmware’s Application layer with
LmHandler. Listing 4.5 presents an example of a callback definition handling the node
configuration after the received message. The second file worth noting is lora_info.c,
which provides a structure containing LoRaWAN® configuration. It holds the activation
mode, active region, and key-management type. Lastly, the app_lorawan.c file implements
helper functions that deliver initialization at the firmware start-up.

Listing 4.5 A simplified example of OnRxData() callback.
1 static void OnRxData(LmHandlerAppData_t *appData,
2 LmHandlerRxParams_t *params) {
3

4 if ((appData != NULL) && (params != NULL)) {
5 /* perform further data validation */
6 /* perform actions on special messages received
7 (e.g., CLASS change, LED effects) */
8

9 // Configure the node
10 /* reset configuration data structure */
11 pwm_t pwmConfing = {0,0};
12 sin_t sinConfing = {0,0};

18

.. 4.3. Implementation

13 LghtConfigData_t data = {0, pwmConfig , sinConfing};
14

15 // Parse received data
16 parse_rxData(appData->Buffer, appData->BufferSize , &data);
17

18 // Set the signal generator
19 set_light_configuration(data);
20

21 // Register task to Sequencer
22 switch (data.modulation) {
23 case 1:
24 UTIL_SEQ_SetTask(1 << pwm_bitmap_id), priority_0);
25 break;
26 case 2:
27 UTIL_SEQ_SetTask(1 << sin_bitmap_id), priority_0);
28 break;
29 default:
30 APP_LOG(TS, VL, "UNKNOWNMOD: Sig. generator idle");
31 }
32

33 // Reset appData buffer for next Rx
34 memset(appData->Buffer, 0, appData->BufferSize);
35 appData->BufferSize = 0;
36 appData->Port = 0;
37 }
38

39 }

4.3.3 Indoor Navigation library

The Indoor Navigation library is part of the App directory. The library implements
the Lora Message handler (Lora_message) and the Signal Generator component (Sig-
nal_generator). The library source code is provided in the Indoor_navigation directory.
This section introduces the main design features of the library.

Lora Message handler

The Lora Message handler contains parsing functions that handle the raw payload received
from the LoRaWAN® stack. Listing 4.6 shows a simplified example of the parse_rxData
function. The function takes three parameters; The first represents the pointer to the
received data. The second holds the data buffer size, and the last carries the pointer of
the node configuration structure used by the Signal Generator.

Listing 4.6 A simplified example of parse_rxData() .
1 void parse_rxData(uint8_t* rxData, uint8_t rxDataSize , LghtConfigData_t*

light_config_data) {
2

3 // Retreive modulation type
4 light_config_data ->modulation = rxData[0];
5

6 switch(light_config_data ->modulation) {
7 case 1: // pwm
8 light_config_data ->pwmParams.frequency=

19

4. Node Firmware...
9 ((rxData[1] << 24) | (rxData[2] << 16)|

10 (rxData[3] << 8) | rxData[4]);
11

12 light_config_data ->pwmParams.dutyCycle = rxData[5];
13 case 2: // sin
14 /* equivalent parsing logic as presented above */
15 default:
16 APP_LOG(TS,VL, "UNKNOWNMOD: Parser Failed!")
17 }
18 }

Signal Generator

The Signal Generator is essential for the node operation while it implements the automatic
node configuration and controls the necessary hardware. The Signal_generator directory
comprises hardware and generator handlers, as shown in Figure 4.3.

Hardware handlers

dac.c generator.cmux_switch.c hw_init.cpwm.c

Signal_generator

Figure 4.3 The Signal_generator file structure.

The dac.c file provides an initialization function that configures DAC. The DAC output
is mapped to PA4(A2)1 pin while using the DAC_OUT1 with DMA_CH2. The function utilizes
memory mapping provided by the HAL library. Besides the initialization, it configures
the GPIO to analog mode, sets TIM6 as the DAC trigger with the sampling frequency of
10 kHz, and maps the DMA memory to the address holding the sinusoidal lookup table.

The pwm.c file initializes the TIM21_CH2 timer in the PWM mode and maps the output
pin to PB14(D12). The PWM mode is configured with a UP-direction counter, edge-
aligned mode and enables the preloading. Finally, the file implements PB12(D9) bypass
to prevent pin damage caused by the incompatible pinout of the light driver shield with
the main B-L072Z-LRWAN1 board.

The mux_switch.c file implements multiplex logic. It switches between two outputs on
the light driver shield based on the current fingerprinting configuration. The switch is
placed on PA9(D8). The logical zero sets the light driver shield to the PWM signal mode,
and the logical one switches the mode to a DAC signal.

1Appendix B provides the Nucleo B-L072Z-LRWAN1 pinout

20

.. 4.3. Implementation

The hw_init.c file provides a helper function that enfolds the generator initialization.
The hw_init_light_generator function helps to maintain the clarity and readability of
the code. Table 4.1 summarizes the hardware configuration.

PIN ARDUINO PIN MODE TIMER DMA
PWM PB14 D12 PWM TIM21_CH2 NONE
DAC PA4 A2 ANALOG TIM6 YES
MUX PA9 D8 OUTPUT NONE NONE

Table 4.1 Signal Generator hardware configuration summary.

Finally, the generator.c file provides four crucial functions; The adjust_PSC_ARR func-
tion adjusts the PSC and ARR registry to prevent registry overflow. In other words, the
function finds proper PSC and ARR registry factorization values within its 16-bit (65535)
limit and simultaneously satisfies equation 4.1. The equation presents the dependence of
the signal frequency on the timer clock frequency, PSC registry, ARR registry, and the
number of sample points Ns. The adjustment algorithm loops over the possible PSC val-
ues and acquires ARR based on equation 4.2. The registries are set accordingly if both
acquired values fit within the 16-bit limit.

fsig = fclk

(PSC + 1)(ARR + 1)Ns
(4.1)

ARR = fsig

fclk(PSC + 1)Ns
− 1 (4.2)

The set_light_configuration function handles the modulation choice based on pro-
vided data and employs the switch() statement to conduct the decision.

The remaining functions set_sin_modulation / set_pwm_modulation set the required
modulation type and configure the hardware accordingly. These handlers are executed
based on the switch statement evaluation in the set_light_configuration function.
Listing 4.7 provides a simplified example of set_sin_modulation .

Listing 4.7 A simplified example of set_sin_modulation() .
1

2 void set_sin_modulation(sin_t sin_data) {
3 // Stop DAC using macro
4 DAC_STOP;
5

6 // Adjust the PSC and ARR registry
7 adjust_PSC_ARR(TIM_DAC_MOD , sin_data.freq, SIN_LOOKUP_SIZE);
8

9 // Fill the DMA with appropriately changed lookup table values
10 for(int i = 0; i < SIN_LOOKUP_SIZE; i++) {
11 sin_output[i] = (uint16_t)
12 ((float) sin_data.amp/100 * (float)sin_lookup[i]);
13 }
14 }

21

4. Node Firmware...
4.4 Functional testing

We designed multiple tests to verify the firmware’s functionality. The testing process had
two stages.

The first stage investigated the core signal generation functionality with the following
scenario: a dummy signal configuration was hard-coded into the firmware, and we mon-
itored the generated signal on an oscilloscope. The signal configurations were randomly
picked and manually added to the firmware to cover possible permutations.

The second stage designed an end-to-end test that confirms the correct node behavior
within the infrastructure. The tests had the following scenario: a user sends configuration
messages through the network to the tested node utilizing the system application (Chap-
ter 5). The node receives the message and configures itself accordingly. We observed the
node through the serial connection output and signal outputs on the oscilloscope during
the test execution. The output of these interfaces was analyzed, and we concluded test
results. Figures 4.5, 4.6, and 4.4 present an example of collected data. The firmware
implementation successfully passed all designed tests within both stages. Besides the core
functionality, the test verified a low frequency-offset error below 0.5 %.

(a) (b)

Figure 4.4 An example of serial line communication under the test execution; a) Sinusoidal
modulation, and b) PWM modulation.

22

... 4.4. Functional testing

(a)

(b)

Figure 4.5 Sinusoidal signals generated by the firmware; a) 100 Hz with 50% amplitude, and
b) 1 kHz with 100% amplitude.

23

4. Node Firmware...

(a)

(b)

Figure 4.6 PWM signals generated by the firmware; a) 500 Hz with 50% duty cycle, and b)
1 kHz with 70% duty cycle.

24

Chapter 5
System Application

This chapter revises the project’s current state and suggests necessary improvements that
we ought to implement before the development can continue further. Moreover, the chapter
presents the functional and non-functional requirements that the implementation needs to
fulfill. Secondly, the chapter conducts a review that considers several architecture strategies
and draws our conclusion. Lastly, the chapter proposes our architecture, implementation,
and functionality overview.

5.1 Current state & revision

The proposed implementation builds on our previous work [11]. We designed the applica-
tion [11] as a proof of concept (minimum viable product). Therefore, we had to review
the implementation before we continued our work on new features. The following crucial
changes were made upon the revision.

Firstly, we restructured the application to a dynamic back-end/front-end architecture,
unlike the previous static implementation. Section 5.5 discusses the details of the new
architecture. Secondly, we exploited the latest Vanilla JavaScript features. For instance,
we separated the code into modules to enhance the front-end readability and the code
organization. Moreover, we moved the application rendering to a new static class designed
to hold the crucial front-end logic. Lastly, we completely restructured and redesigned the
entire layout. Our new styling powered by the Vanilla CSS replaced the previous bootstrap.
This approach allowed us to have a complete control over its layout and styling.

5.2 Functional requirements

Firstly, the application must support the MQTT protocol for the system configuration
logic. The application needs to connect with the system gateway through the MQTT
WebSocket. Furthermore, it must process configuration messages and publish them to
the MQTT topic. The configuration message will contain modulation parameters for set-
ting the VLP nodes. It is worth mentioning that the application needs to handle various
environment settings. In other words, it must support an arbitrary number of nodes or
different parameter combinations. The implementation must support the selected modu-
lations (Section 3.3) and log the system behavior upon the user’s interactions.

Secondly, the application must support testing logic for the MQTT WebSocket. It should
allow the MQTT interaction, such as publishing and subscribing a message to an arbitrary
topic.

Thirdly, the application should implement a node management functionality. The fol-
lowing life cycles must be supported. The first assumes the new node has been created

25

5. System Application ...
in the gateway but not in the application’s database. The user should be able to add
the node to the application’s database using the node name and Device EUI. The second
scenario assumes the new node does not exist in the system. Then, the user should be able
to create a node object in the gateway and the application’s database within one request.
The delete procedure should request a Device EUI and remove the node from the entire
system.

Lastly, the application must implement a node detection window where the user can fetch
images from the robot. The window must support image rendering, robot controls, and
camera settings. Furthermore, our detection algorithm should process the image before
it is rendered. In other words, the window will present the image with detected nodes
delimited by bounding boxes.

5.3 Non-functional requirements

The application design must be responsive to acquire a positive user experience on any
device. Furthermore, the design should be easy to scale to satisfy the dynamic nature
of the project. That being said, the application architecture will play a crucial role in
determining the further adaptation of the system. Thus, the decision must be made wisely.
The architecture should possess modern properties and carry out a fast performance.

Lastly, the back-end API should be compatible with a future mobile version of the
application or allow transition with minimal changes required.

5.4 Architecture types

The architecture design is a crucial decision in application development. A well-thought-
out architecture can handle various loads or adapt to changing requirements during de-
velopment. Thus, it is easier to integrate new features. Moreover, good architecture can
significantly improve the application performance and enhance the user experience.[24][25]

Due to the importance of this topic, this section presents common architecture strategies
that we have considered. The following architectures are discussed:. Static Web Application. Dynamic Web Application. Single-Page Application (SPA).Multiple-Page Application. Progressive Web Application (PWA)

5.4.1 Static Web Application

Static Web Application delivers the content to the user’s browser without altering the
server-side code. While this site can be easy to develop, it could lead to unchanging and
flat applications. Nowadays, most Static Web Applications are accompanied by a rich
JavaScript code to deliver the missing responsive content.[26][27][25] Therefore, the page

26

... 5.4. Architecture types

may not seem static when dynamic content such as rollover images or Flash content is
on the page. However, the authors in [27] state the following: the page is static if the
browser receives the content without modification on the server-side. This implies that the
application remains static, even if the page seems to have dynamic content because the
application still does not support dynamic interaction with the user.[28]

5.4.2 Dynamic Web Application

On the other hand, Dynamic Web Applications modify the content of the page based on
the user’s request and thus enable interactions with a user.[25][27] The majority of today’s
web applications are dynamic. A dynamic application is any site that supports profile
creation, making reservations or posting. Unlike the static application, the dynamic appli-
cation utilizes server-side programming languages (PHP, Python, or Ruby) to change the
content based on the user interaction. The server-side, responsible for the modifications, is
generally called the application server. Dynamic applications are often associated with the
term CRUD, which stands for Create, Read, Update, and Delete, because of application
server database interactions.[28]

5.4.3 Single-Page Application

Another approach is a Single-Page Application. All necessary code for a SPA is retrieved
from the server at a single initial load, and data are then managed through JavaScript
APIs (XMLHttpRequest, Fetch, or AJAX).[29][25] The data are loaded in either a syn-
chronous/asynchronous manner, allowing users to appreciate a dynamic experience with
faster transitions, similar to a native application. Furthermore, since the architecture ex-
ploits APIs to communicate with the server, no additional work is required to use the
API with the mobile application. In other words, the same API can be used for both, the
mobile, and the web application. On the other hand, the implementation and the Search
Engine Optimization (SEO) are more challenging and require more effort.[29][30] SPA is a
modern architecture used by many well-known companies (Facebook, Google or GitHub).

5.4.4 Multiple-Page Application

Multiple-Page Application is a more traditional approach than SPA. Every page change
requires a reload of the entire page, which leads to limited performance and worse user
experience. Companies with extensive portfolios/features often prefer this architecture
since they cannot fit the content to the SPA.[31] The application structure is more com-
plex compared to SPA’s because it splits its functionality into multiple independent pages.
It brings more transparent navigation around the application, and SEO is easy to opti-
mize. However, the development is more demanding than SPA’s due to the structural
complexity.[25][31]

5.4.5 Progressive Web Application

The architecture uses a SPA logic running alongside a service within the browser. The
progressive approach allows supporting offline features, synchronization and can deliver
even more native experience than SPA.[30] PWA utilizes WebAssembly to support native

27

5. System Application ...
functionalities that have not been accessible before. WebAssembly is a new type of code
that runs in modern browsers. It is a compact binary format carrying a near-native perfor-
mance and provides low-level languages (C/C++, Rust) with a compilation target. Thus,
developers can use C/C++ alongside JavaScript and exchange the functionality.[32] It is
worth mentioning that PWA can deliver features even if the connection is weak or none.[33]

5.5 Architecture

This section discusses the architectonic designs mentioned above in contrast to our require-
ments and decides our architecture aim.

As we state in our requirements, a modern application should be fast and responsive.
Furthermore, our non-functional requirements demand easy scaling and adaptation of new
features. Also, our implementation should develop an API design that would accommodate
the future mobile application with minimal changes required. Lastly, the only architecture
that cannot fulfill our functional requirements is Static Web Application. Therefore, we
decided to rule this architecture out of consideration.

Our design estimation believes that we will most likely require only a small data volume
for application loading, and the application will not need an extensive number of features.
We believe the Multiple-Page architecture would be an unnecessary complex choice. Sim-
ilar reasons lead us to rule out the PWA architecture. We believe PWA development is
significantly more time-demanding compared with Dynamic Web Application or SPA and
does not make sense in the project’s prototyping stage. From the remaining architectures,
we decided to exploit SPA design. Considering the development time demands, the SPA
might be slightly more demanding than Dynamic Web Application. However, the func-
tional properties of SPA significantly surpass the Dynamic Web Application design, since
they deliver a much faster response and more native experience.

Lastly, the SPA’s native properties will bring us closer to our goal of developing a multi-
platform native application. In addition, PWA design employs SPA architecture which may
be a valuable asset in future and could create a possible alternative to a native application
development.

5.6 Implementation

This section introduces the system application implementation and discusses the back-
end and front-end architecture. It explains the function of each structural component.
Furthermore, it presents the functionality overview of application features.

5.6.1 Back End

We developed our back end in Python. The implementation exploits the Flask1 environ-
ment, a widely used framework in the Python community. Flask allows building a web
application back ends in a fast prototyping manner since it provides powerful APIs to
handle HTTP communication and page rendering. We separated the back-end structure
into logical parts. Figure 5.1 illustrates the back-end structure.

1https://flask.palletsprojects.com/en/2.0.x/

28

.. 5.6. Implementation

BACK END

MONGODB

GATEWAY API

NODE DETECTION

CORE API

FRONT END

GATEWAY

DATABASE API

Figure 5.1 The back-end architecture.

Core API

Core API is responsible for the front-end/back-end communication. It provides the core
functionality and data required by the user. It implements the initial rendering logic and
handles the data exchange based on the user’s interactions on the front end. The API
exploits the below-presented components to satisfy the user needs on the front-end side.

Database

The Database component utilizes the MongoDB server database structure. Data in Mon-
goDB are organized into collections. Each collection holds entities called documents in a
form of the JSON. This structure allows building databases much faster and still maintains
all necessary functionalities. Our database stores authentication and system data. The
structure is divided into multiple collections. The first collection maintains the authenti-
cation data, and the other collections are responsible for storing the system environment
data (nodes, last configuration, robot IP).

Database & Gateway API

Database API handles database authentication, requests, and responses. It is built on top
of the pymongo package offered by MongoDB® . The pymongo package allows accessing
the database content and handles the low-level communication. Database API implements
project data querying and handling on the back-end side.

Gateway API implements authentication between the application and the gateway back
end. It handles the HTTP communication and implements the node management func-
tionality. This API can be further enhanced to cover the entire gateway management
features.

Node Detection Module

The Node Detection module provides object detection algorithms and image processing
techniques. Its architecture allows an easy way to include new object detection techniques
in the future. Section 6.3.1 introduces the module architecture, and Section 6.3.2 discusses
the implemented detection algorithm.

29

5. System Application ...
5.6.2 Front End

The front-end architecture comprises several parts: Templates, Styles, and Scripts.
Templates provide HTML files that contain pieces of the application layout. The

index.html file presents the render hook for JavaScript and the Flask back end, which
provides a special syntax to combine multiple HTML files. Therefore, we assemble the
final layout by referencing the remaining templates to the index.html.

Styles comprise app.css and icons.css files. The app.css file styles the entire ap-
plication, and icons.css provides an offline Google Fonts repository exploited for the
application icons. The proposed styling employs the latest Vanilla CSS features, such as
transformations/transitions, to obtain responsive and dynamic design.

Scripts contain the SPA logic that powers the page rendering, front-end/back-end com-
munication, and MQTT communication. The scripts are discussed below.

app.js

The app.js script is the main JavaScript module that holds a static class called App. The
class consists of multiple variables maintained by the class during one session. The class
implements methods that deliver the SPA functionality. They handle the rendering logic,
MQTT interactions, and set event listeners. Lastly, the app.js module provides the app
initialization at the first load.

utils/

The utils directory holds helper functions that implement low-level application logic. The
following scripts are provided;

The utils.render.js script is responsible for the application’s rendering at an event
occurrence. The utils.effects.js script implements responsive features. It transforms
the sidebar menu to the ”burger” menu on specific screen sizes and handles connection light
bulb status. Finally, the utils.requests.js file provides the HTTP request functionality.
It implements a custom POST/GET request function.

mqtt/

The mqtt directory consists of scripts delivering MQTT functionality and functions con-
nected to the MQTT communication. The following scripts are implemented;

The mqtt.callbacks.js script implements MQTT callbacks. The callback functions
handle incoming/outgoing messages, failed connections, and lost connections. On the other
hand, the mqtt.utils.js file implements MQTT connection and data handling. Lastly,
the directory provides the Paho2 MQTT client developed by Eclipse Foundation. This
library provides a robust MQTT over WebSocket open-source implementation.

2https://www.eclipse.org/paho/index.php?page=clients/js/index.php

30

.. 5.6. Implementation

5.6.3 Functionality overview

This section introduces an overview of functionalities and their placement in the applica-
tion. Figure 5.2 presents the desktop layout, which shows all core elements, unlike the
mobile version. Since our application has an adaptive design that rearranges its layout
based on the window size, the mobile version hides the navigation sidebar to save space
for the core functionalities. Apart from the layout differences, the functionality of both
versions remains the same. This section discusses the layout from Figure 5.2.

Our implementation explores the dashboard layout, separating each core functionality
into a brick element. Moreover, the application exploits popup windows to embrace other
functionalities which do not fit the dashboard structure. Lastly, the application design
utilizes the Single-Page Application architecture, bringing fast rendering and a native-like
experience. Each application’s functionality is discussed below.

Figure 5.2 The desktop implementation of our application.

System Navigation & Tracing

The navigation sidebar lists all application views. It comprises infrastructure configuration
(Figure 5.2), node detection, node management, and MQTT testing. If an option is clicked,
the application renders a new view utilizing JavaScript, and required data are fetched from
the back end asynchronously. Lastly, it is worth mentioning that the mobile version hides
the sidebar layout and utilizes a ”burger” menu that rolls out from the left side upon the
user’s request.

The system tracing is placed in the top right corner under the header — the tracing
reports system changes performed by the user during one session. For instance, it tracks
the MQTT connection status, system configuration, node detection setup, and MQTT
communication.

31

5. System Application ...
Infrastructure configuration

The infrastructure configuration is the application’s core functionality allowing the system
adaptation to various fingerprinting setups. The configuration is placed at the bottom of
the application. It consists of two tabs that select between PWM and sinusoidal modula-
tion. Furthermore, each tab supports either a single node or multi-node configuration. If
the user chooses the multi-node configuration, one must select nodes to be configured. The
selection is performed by drag and drop, placed above the configuration element. More-
over, the user must specify at least one parameter with a variable step to acquire a unique
configuration for each node. If any false procedure occurs during the configuration, the
user is notified in the system trace.

Node Management

Node management is another core functionality that allows creating, adding, and deleting
nodes from the system. The creation procedure appends a new node to the gateway and
the application’s database. On the other hand, adding node procedure only inserts the
node’s information to the database. This option should be used if the node object is
already created through the gateway. Figure 5.3a shows the add-node popup window after
clicking the ADD NODE option in the navigation sidebar. Similarly, the DELETE NODE
option renders a popup-window form that submits a delete request to the gateway and
application’s database.

(a) (b)

Figure 5.3 The popup windows; a) Create/Add node, and b) Node detection.

Node Detection

Figure 5.3b and 5.4 introduce the node detection window. It consists of two control parts
and an image space. The image space is located above the controls. It provides room
for rendering an image with detected nodes (Figure 5.4). Below the image, we placed the
control elements. The first element presents camera settings, robot connection, and image
fetching techniques. The application supports fetching a single image or setting a fetching
period to receive images periodically. The second element implements the robot control,

32

.. 5.6. Implementation

which allows driving the robot in different directions and adjusts the speed of the motion.
My colleague in [13] provides a detailed discussion about the camera settings and robot
control.

Figure 5.4 The node detection window with detected nodes.

MQTT Broker connection & Basic communication

To the right of the navigation sidebar, we placed the MQTT Broker connection. This
core functionality allows inputting the Broker’s authentication details and performing the
connection. If the connection is established, the user is notified through the system tracing,
and the notification LED becomes green. A change of the connection status is always
reported in the system log upon an implemented callback.

Furthermore, the application supports MQTT communication under the MQTT TEST
option in the navigation bar. This functionality is mainly purposed for debugging. It
implements an arbitrary topic subscription that logs the topic’s incoming messages into
the tracing. Moreover, it allows publishing messages to a topic, including the QoS and
retain-message flag.

33

34

Chapter 6
Node Detection

This chapter introduces the circle detection and edge detection mechanisms. It focuses on
Circle Hough Transform and thoroughly introduces the edge detection theory. Further-
more, it proposes the node detection algorithm and our implementation.

The objective of our detection is to recognize VLP sources in an image. The algorithm
will propose regions of interest (ROI) that delimits the detected object (node) and carries
out its location in the image. The ROIs will be further processed to distinguish individual
nodes based on their fingerprint. However, fingerprint detection is beyond the scope of
this thesis and will not be discussed.

6.1 Circle Object Detection

Object detection is one of the most challenging problems in computer vision, recently
powered by deep learning. Unfortunately, deep learning methods require a significant
amount of data to train the prediction model. Since we do not have enough data to
perform proper model training, we decided to take a more algorithmic approach.

The objective of our detection has a simple circular shape. Therefore, we needed to de-
sign a detection technique that can localize circles. There are several techniques introduced
in the literature.

One utilizes geometric symmetry to detect the center candidates and separates the input
image into smaller pieces based on the candidates. Finally, the method uses geometric sym-
metry again to detect the circles.[34] A second technique exploits the least-square method
that minimizes a distance metric between image points and constraint equation.[35] Au-
thors in [36] propose a technique that detects a circle by minimizing the algebraic distance.
Similarly, a third method called Randomized Circle Detection (RCD) randomly selects four
edge points and, based on a defined distance criterion, determines the location of possible
circles.[37] Lastly, the most utilized circle detection technique is Circle Hough Transform
(CHT). Since this technique is well documented and commonly used, we decided to ex-
ploit Hough Transform in our algorithm. The following section discusses the mathematical
fundamentals and implementations in broader detail.

6.1.1 Circle Hough Transform

The general concept of Hough Transform (HT) is to convert the detection problem from
image space to a parameter space, where the problem is easier to solve. In the parameter
space, the detection is performed by acquiring local peaks in an accumulator array.[38]

Since the HT detects parametric curves, it needs a constraint equation to search for the
shape.[39][38] Our objective is to localize circular-shaped nodes. Thus, let us assume a
parametric interpretation of a circle, as in (6.1) or (6.2).

35

6. Node Detection...
(x − a)2 + (y − b)2 = r2 (6.1)

x = a + r cos θ

y = b + r sin θ
(6.2)

The parameters (a, b) denote the circle’s center with radius r, θ is an angle from 0◦ to 360◦,
and (x, y) represents an edge point in the image space. In the case of a circle constraint,
each point in the image space represents a circle of known radius in parameter space. If
the radius is unknown, the projection in parameter space constructs a cone shape as in
Figure 6.1. A simple proof of above mentioned can be obtained by reorganizing the (6.2)
as follows:

a = x − r cos θ,

b = y − r sin θ.
(6.3)

(x1, y1)

y

x

r

a

b

(x1, y1, r2)

(x1, y1, r1)
(x2, y2, r1)

(x2, y2)
(a, b)

r

(a, b, r)

Image Space Parameter Space

Figure 6.1 Transformation between the image space and parameter space.

Figure 6.1 demonstrates the HT algorithm. Firstly, the image is converted to an edge
representation. Secondly, each edge point is transformed into the parameter space and
votes coherently into the accumulator array. The accumulator array is a discrete repre-
sentation of the parameter space where each discrete point represents a counter. In other
words, the array contains zeros at initialization, and each edge point votes for the closest
parameters in the array of its shape.[38]

Let us assume the two edge points converted in Figure 6.1 as an example. The accu-
mulator array would be incremented at the cone’s surface. The only place that would be
incremented twice is the cross-section of both cones at the point (a, b, r). If the remaining
edge points are applied, the accumulator array would contain all the votes. The object
location is predicted based on the accumulator’s local maxima or threshold that carries
out the center and radius of the detected circle.

Unfortunately, the conventional HT presented above suffers from complex computations,
large memory requirements, and center localization inaccuracy in noisy images. Therefore,
many improved methods were introduced to tackle these limitations.[39]

H. K. Yuen et al., in [38] present a comparative study considering the Standard Hough
Transform for circles (SHT), Gerig Hough method (GHT), Fast Hough Transform (FHT),
and Two Stage Hough Transform (21HT).

36

.. 6.2. Edge Detection

The GHT presents a space-saving method that replaces the 3D accumulator of size
N3 with three 2D arrays of size N2. The method performs a series of HTs in which
each stage has a constant radius. The first array is used as a working space for transform
accumulation, and the remaining arrays store the position, size, and radius of the candidate
peaks.[38]

The 21HT separates the algorithm into two stages to reduce the computation complexity
and storage. The first stage integrates along the gradient direction and radius axis at a
single value of (a, b) of all edge points to find circle centers. In other words, centers are
searched along the gradient direction upon which they must lie. Moreover, the 2D accumu-
lator array stores the voting used to identify the center candidates by local peak detection.
In the second stage, the method determines the radius by constructing histograms from
the center parameters acquired in the first stage and the constraint equation (6.1). A
radius histogram is acquired for each center candidate, and the histogram peaks indicate
the circles.[38] The 21HT method is currently implemented in the OpenCV1 library and
will be utilized in our implementation.

The FHT presents a multidimensional quadtree structure that simultaneously accumu-
lates and detects peaks in the HT. This approach can be thought of as a hierarchical search
and reduces memory storage.[38]

Since edge detection plays a crucial role in HT-based algorithms, the following section
was dedicated to a detailed introduction to this topic.

6.2 Edge Detection

Edge detection is another fundamental problem in computer vision. It plays an important
role in object recognition, object proposal generation, and image segmentation. With the
computer vision growth, edge detection has been notably improved, and complex research
is still being conducted.[40][41] Before introducing the edge detection techniques, it is
important to define the term edge.

A physical edge is a set of points that delimits the boundary of two distinct physical
surfaces. Even though physical edges have many similarities with edges in an image, there
are still significant distinctions caused by the projection from 3D to 2D scene representa-
tion.[5] Consequently, edges in the image do not necessarily correspond to physical edges.
For instance, let us assume illumination at an arbitrary angle in respect to the object.
The shadow cast across the object or its surroundings creates a boundary on an otherwise
uniform surface. Conversely, some physical edges do not appear in the image as well.
The cause is often the object’s shape or lighting properties.[5] Hence, it is important to
distinguish between the two types. The section will discuss edges in the context of images
only.

An edge in an image is defined as an abrupt change in brightness intensity. It delimits an
object’s contours and delivers a unique feature set used for object detection. Edge features
are usually extracted from the gray level change, but color or texture can sometimes be
used as well. As previously discussed, illumination is an important issue regarding edge
detection. It adds unwanted noise that could lead to misclassified false edges. Thus, the
detection techniques propose different methods to suppress the noise and efficiently detect

1https://github.com/opencv/opencv-python

37

6. Node Detection...
edges.[5]

Edge detection techniques can be grouped into two major categories:. Traditional detection. First Derivative-Based (Gradient-Based). Second Derivative-Based (Laplacien-Based). Deep Learning-based detection

Traditional edge detection techniques exploit image gradients and derivatives. They are
further split into groups based on the order of the derivative used within the algorithm.
These techniques and detectors are discussed in the following sections 6.2.1 and 6.2.2.

The second detection group based on deep learning is not further discussed in the chapter
because it is not relevant to our development. A recent review presented by Rui Sun et
al. in [42] discusses deep learning-based edge detection in broad detail and classifies them
into logical groups.

6.2.1 Gradient-Based detection

The First Derivative algorithms exploit the gradient operator (∇) to acquire the abrupt
changes in the image. The gradient is a vector consisting of partial derivatives. In other
words, it is a vector that carries out a slope of change in a direction. Since the image space
has two dimensions and each dimension is considered as the direction of the derivative, the
2D gradient needs to be defined:

∇f(x, y) = ∂f

∂x
ix + ∂f

∂y
iy =

∂f
∂x

∂f
∂y

 =
[
fx

fy

]
, (6.4)

where ix and iy are unit vectors in the x and y direction.
The gradient has a magnitude and direction like every vector. The magnitude represents

the maximum intensity change, and the direction points to the greatest intensity increase
(points ”uphill”).[5][43] Eq. (6.5) defines the gradient magnitude |∇f(x, y)| in 2D space by
utilizing the Pythagorean theorem on the basis vector elements fx and fy. The gradient
direction θ is defined in (6.6).

|∇f(x, y)| =

√(
∂f(x, y)

∂x

)2
+
(

∂f(x, y)
∂y

)2
(6.5)

θ(x, y) = tan−1
(

fy

fx

)
(6.6)

Since the derivative operator behaves like a high-pass filter, edge detection based on
derivatives is sensitive to noise. Noise can corrupt the detection by overwhelming the
edges and make the detection insufficient or even useless. The gradient itself does not
deliver satisfactory edge detection unless we appropriately take care of the noise. Many
detection techniques solve noise, and other challenges edge detection holds. Before the
section introduces individual gradient-based detectors, it presents a typical structure that

38

.. 6.2. Edge Detection

Convolution filter
(first derivative approximation)

Gradient magnitude &
direction calculation

Thresholding &
Thinning

Partial derivative
approximantions

Gradient image

Grayscale
image

Binary image
(Edges)

Figure 6.2 Structure of gradient-based edge detection techniques.

these detectors share. The structure is shown in Figure 6.2. Let us walk through the
structure.

The structure’s input is a grayscale image. Firstly, the image needs to be converted to
grayscale. Then, the image is filtered through a convolution mask specific to the exploited
detector. The detectors are introduced later in the section. Since the convolution is
calculated in x and y direction, it approximates the first partial derivatives. Secondly,
we acquired the partial derivatives, and thus we can calculate the gradient magnitude and
direction by exploiting (6.5) and (6.6). The result is called a gradient image, which already
holds some edge features, as shown in Figure 6.3b.

However, edge detection aims further. It proposes techniques that fully construct con-
tours of individual objects with single-pixel thick boundaries — furthermore, the techniques
endeavor to suppress stochastic events. They employ the structure’s last step to achieve
these thin boundaries. The procedure comprises two stages: Thresholding and Thinning.[5]

The Thresholding stage compares the gradient magnitude of each pixel with a predefined
threshold T as defined in (6.7). If the pixel magnitude surpasses the threshold, it is
considered an edge pixel. Since Thresholding tends to create strips thicker than a single
pixel, the second stage, Thinning, is applied. The Thinning stage endeavors to create single-
pixel boundaries by searching over a neighborhood of the edge candidates and finding the
local maximum in the neighborhood. The pixels being the local maxima are then evaluated
as edge points, and they construct the wanted single-pixel contours.[5]

|∇f(x, y)| ≥ T (6.7)

The question is, how to find local maxima. As mentioned above, it requires a definition
of a neighborhood to search over. Let us discuss the neighborhood possibilities.

Firstly, let the neighborhood be a 2D region of any shape, for simplicity, a rectangle.
Local maxima found over 2D rectangle regions within the image deliver a set of isolated
points rather than fully constructed contours. Figure 6.4a) presents an example of this
unwanted behavior. The 2D regions seem to be a poor choice; an alternative approach
needs to be presented.

Now, let the neighborhood reduce its dimensionality over which maxima are searched.
This reduction allows searching local maxima over 1D neighborhoods instead, namely,
let us assume a finite line with a direction crossing the edge. This alternative approach
acquires fully constructed edges if the search direction is chosen correctly. This section will
present an example supporting this assumption after determining the correct direction to
search the maxima. Let us introduce a couple of options;

The first option classifies the edge pixel candidate as an edge point if the pixel’s gradient
magnitude is a local maximum at least in one of the possible directions. Unfortunately,
this approach is rather inefficient due to calculations in every direction. Moreover, it tends
to create false edges.

39

6. Node Detection...
The second option is significantly more efficient. It searches only a single direction, the

gradient direction. Looking in the gradient direction means searching the region perpen-
dicular to the edge. Thus, the approach delivers great edge localization accuracy.[5] Let
us assume the gradient direction is the correct choice.

(a) (b)

(c) (d)

Figure 6.3 Concept of finding local maxima over 1D neighborhood; a) original image, b) pixel
gradient magnitude, c) gradient magnitude (depicted as contours) and gradient direction with
1D line regions located in the ping segment of Figure 6.3a, and d) fully constructed boundaries
utilizing gradient based edge detection with Sobel convolution mask.

As the typical gradient-based structure was fully introduced, we can move to the above-
mentioned example2. Let us take an actual image (Figure 6.3a) that will introduce the
concepts again and prove the dimensionality reduction purpose. The image initially comes
from MATLAB documentation and it was downloaded from [44]. It is a gray-level image;
thus, no additional processing is needed before entering the structure.

The first step is to calculate the gradient in each pixel. The gradient must be approxi-
mated because the image space is discrete. To acquire the approximation, we need to apply
one of the detectors introduced later in the section. The example uses the Sobel detector
(Section 6.2.1). The second step uses equations (6.5) and (6.6) to obtain the gradient mag-
nitude and direction from the partial derivatives. Figure 6.3b depicts the resulted gradient
magnitude. The ping segment in Figure 6.3c illustrates gradient directions crossing the
gradient magnitude. It is worth mentioning that the gradient direction is perpendicular
to the magnitude contours. The last step to perform before obtaining edge representa-
tion is Thresholding and Thinning. Thresholding suppresses some of the unwanted noise

2The MATLAB script implementing the example’s processing is attached to the thesis.

40

.. 6.2. Edge Detection

and obtains edge pixel candidates. The example applied the thresholding according to
(6.7). Finally, the example achieved thin and accurate edges by performing Thinning. As
discussed earlier, the thinning needs direction to be performed. The example uses the
gradient direction to search for local maxima. Figure 6.3c illustrates the 1D line segments
that were searched. The resulting representation will form fully constructed contours if
each edge-candidate’s local maximum is found in its 1D gradient direction neighborhood.
Similar to the contours depicted in Figure 6.3d.

Conversely, if the example considered the 2D neighborhood, the representation would
be as in Figure 6.4a. The figure illustrates the gradient magnitudes after Thresholding
and Thinning over 2D 5 × 5 pixel regions. Figure 6.4b shows the edge detection utilizing
the Sobel detector. It demonstrates that local maxima represented by white pixels do
not construct continuous object boundaries like in the previous 1D region demonstration
(Figure 6.3d).

(a) (b)

Figure 6.4 Local maxima found over 5×5 pixel 2D neighborhood in the blue segment of Figure
6.3a; a) gradient magnitude, and b) edge detection result.

Discrete Gradient Operators

The gradient cannot be calculated analytically in this application and needs to be approx-
imated by convolution. Before introducing the edge detectors, we need to define discrete
gradient operators.

Let f(n1, n2) represent the discrete image space, where n1 describes the horizontal and n2
the vertical axis. The positive orientations of the n1 and n2 directions are right and upward,
respectively. Since the gradient is calculated from pair of orthogonal directional derivatives,
it is necessary to create a pair of orthogonal convolution kernels (filters) h1(n1, n2) and
h2(n1, n2). Based on (6.4), the gradient approximation is defined as:[5]

∇̂f(n1, n2) = f1(n1, n2)in1 + f2(n1, n2)in2 , (6.8)

where
f1(n1, n2) = f(n1, n2) ∗ h1(n1, n2),
f2(n1, n2) = f(n1, n2) ∗ h2(n1, n2).

(6.9)

41

6. Node Detection...
Similarly, the discrete gradient magnitude and direction can be derived from (6.5) and
(6.6), respectively, as follows:

|∇̂f(n1, n2)| =
√

f2
1 (n1, n2) + f2

2 (n1, n2),

θ̂(x, y) = tan−1
(

f2(n1, n2)
f1(n1, n2)

)
.

(6.10)

The filters above define a derivative, and thus they should respond to flat image parts
with zero gradients. Consequently, the filter’s coefficients must satisfy the zero mean re-
quirement. Otherwise, the previous is not fulfilled, and the derivative property is violated.
The violation can result in a biased edge detection in particular directions.[45] The simplest
derivative approximation schemes in 1D space are derived from the definition. Eq. (6.11)
presents the first derivative and central derivative, respectively.

f ′(x) = lim
h→0

f(x + h) − f(x)
h

,

f ′(x) = lim
h→0

f(x + h) − f(x − h)
2h

.

(6.11)

To derive the kernel, let us assume the space is discrete and the minimal step h is equal
to one. The first difference and central difference changes, respectively, as follows:[5]

f ′(n) = f(n + 1) − f(n),

f ′(n) = 1
2

(f(n + 1) − f(n − 1)).
(6.12)

Finally, the discrete form of the 1D convolution filter based on the system’s impulse re-
sponse would be the following (boldface denotes the origin position):[5]

h(n) = δ(x + 1) − δ(x) =
[
1 −1

]
,

h(n) = 1
2

(δ(x + 1) − δ(x − 1)) = 1
2

[
1 0 −1

]
.

(6.13)

Discrete operators commonly exploit the close relationship between discrete correlation
and convolution operators. Since the image space consists of real numbers, the complex
conjugation in the definition of correlation can be omitted and the only remaining differ-
ence is the dimensional reversal. Hence, the discrete correlation and convolution response
differ only in the sign of the gradient magnitude, not in its value. Since the magnitude
value is often the part that matters in edge detection practice, the dimensional reversal
is incorporated into the convolution kernel, and correlation is calculated instead to save
some computations. The previously provided 1D kernels would look as follows:[5]

h(−n) = δ(x + 1) − δ(x) =
[
−1 1

]
,

h(−n) = 1
2

(δ(x + 1) − δ(x − 1)) = 1
2

[
−1 0 1

]
.

(6.14)

Lastly, let us extend the kernels to the two dimensions. Firstly, we omit the scaling
factor in the central difference caused by the two-pixel distance between non-zero points.
This scaling factor is easily compensated by thresholding and thus insignificant in the

42

.. 6.2. Edge Detection

expression. Both pairs of the 2D first difference and central difference correlation kernels
are provided in (6.15), respectively. The h1 is mainly sensitive to vertical edges and h2
detects the horizontal ones. Henceforth, let the dimension reversal −nx be nx for x ∈ {1, 2}
to maintain the clarity of the mathematical interpretation. Further on, kernels will be
presented in this adjusted correlation interpretation.[5]

h1(n1, n2) =
[

0 0
−1 1

]
, h2(n1, n2) =

[
1 0

−1 0

]
,

h1(n1, n2) =

 0 0 0
−1 0 1
0 0 0

 , h1(n1, n2) =

0 1 0
0 0 0
0 −1 0

 .

(6.15)

Roberts detector

One of the first edge detectors was introduced in 1963 by L.G. Roberts.[43] The Roberts
detector enhances the first derivative kernel from (6.15). The derivative kernels present
zero-crossings at different positions, as shown in Figure 6.5. This mismatch causes an
error in the estimated gradient due to measuring horizontal and vertical characteristics at
different locations.[5]

The Roberts detector transforms the first derivative kernel to resolve the mismatch. It
rotates the first derivative kernel by π

4 . If origins are placed at boldface positions in (6.16),
the zero-crossing is shared at one location for both new masks, in the middle of Robert
detector. The detector detects sufficiently the diagonal edges. Unfortunately, the new
structure produces a different issue. The zero-crossing is located off-grid, yet the edge
location must be assigned to the origin pixel. It presents a location bias that can lead to
significant errors. We can solve this bias by using the central difference kernel instead. It
has an inherently positioned zero-crossing to an exact pixel location in the middle of the
kernel. The downside of the solution is that the kernel size must be increased.[5]

h1(n1, n2) =
[

0 1
−1 0

]
, h2(n1, n2) =

[
1 0
0 −1

]
(6.16)

1 0

-1 01

0

-1

0

X

X

Figure 6.5 Problem of zero-crossing in first derivative kernel.

43

6. Node Detection...
Prewitt detector

The kernels above have not yet handled the noise. As mentioned earlier, the derivative
operator is sensitive to noise since it behaves like a high-pass filter. The Prewitt detector
presents a smoothing mechanism that leads to noise suppression. It exploits the local
averaging as the smoothing technique. The detector simultaneously calculates derivatives
in one coordinate direction and suppresses noise in the orthogonal direction. We need
to perform several steps to acquire the Prewitt detector. First, let us assume two filters.
The first utilizes the central derivative kernel, and the second performs the three-sample
averaging smoothing in the orthogonal direction. The filters look as follows:[5]

hsmooth(n1) =
[
1 1 1

]
, hdiff (n2) =

−1
0
1

 (6.17)

Since both filters are independent of their orthogonal direction, one can exploit element-
wise product and form a derivative filter with an incorporated smoothing based on local
averaging. Eq. (6.18) illustrates the multiplication.[5]

h1(n1, n2) = hsmooth(n1) · hdiff (n2) =

1
1
1

 [−1 0 1
]

=

−1 0 1
−1 0 1
−1 0 1

 (6.18)

Finally, the same procedure must be repeated for the other coordinate permutation to
obtain the pair of Prewitt detectors with the following form:

h1(n1, n2) =

−1 0 1
−1 0 1
−1 0 1

 , h2(n1, n2) =

 1 1 1
0 0 0

−1 −1 −1

 . (6.19)

Sobel detector

The Sobel detector improves Prewitt’s fundamental smoothing technique based on local
three-sample averaging. It enhances the smoothing properties by designing a suitable low-
pass filter kernel. Eq. (6.20) defines the Sobel detector for vertical and horizontal edge
detection. The filtering produced by the low-pass filtering kernel

[
1 2 1

]
carries out

a smoother frequency response than three-sample averaging. Thus, the Sobel detector is
often selected at the expense of the Prewitt detector and enjoys wide popularity in gradient
edge detection.[5]

h1(n1, n2) =

−1 0 1
−2 0 2
−1 0 1

 , h2(n1, n2) =

 1 2 1
0 0 0

−1 −2 −1

 (6.20)

6.2.2 Laplacian-Based detection

Laplacian-Based methods search the second derivative for zero-crossings.[46] Since the zero-
crossing determines the precise edge location, the second derivative detection produces

44

.. 6.2. Edge Detection

single-pixel contours without Thinning. These methods represent the second derivative by
the 2D Laplacian operator defined as:[5]

∇2f(x, y) = ∇∇f(x, y) = ∂f(x, y)2

∂x
+ ∂f(x, y)2

∂y
. (6.21)

The Laplacian operator is isotropic and hence does not favor any edge direction. Unfor-
tunately, the two derivatives are more prone to be affected by noise than gradient-based
techniques. Moreover, the edge intensity is not considered, so even a slight intensity change
makes a zero-crossing in the second derivative.[47] This behavior leads to detecting phan-
tom edges. A phantom edge is a second derivative zero-crossing that does not create a
local maximum in the gradient magnitude. On the contrary, it produces a local minimum.
Figure 6.6 illustrates a phantom edge xp as the first derivative minimum. Thresholding
must be applied to suppress phantom edge detection. However, an incorrect threshold
disrupts the continuity of the edge contours.[5][47] A couple of thresholding techniques are
often used.

The first determines an edge point if it exceeds the gray-level variance threshold. Another
technique thresholds the gradient magnitude or the slope of the Laplacian output at the
zero-crossing. Both techniques reject some of the weak edges that are most likely caused
by the noise.[5]

Finally, the Laplacian filter must obey the zero mean requirement as any derivative filter.
If the zero mean requirement is broken, it creates a bias that violates zero response to a
constant intensity.[5][45]

Figure 6.6 Arbitrary one dimensional function and its derivatives.[5]

45

6. Node Detection...
Laplacian detector

Since the Laplacian is a scalar unlike gradient, we can sufficiently represent the Laplacian
detector with only a single filter h(n1, n2). To derive the filter representation, let us define
the Laplacian operator in discrete space as follows:

∇̂2f(n1, n2) = f(n1, n2) ∗ h(n1, n2), (6.22)

where f(n1, n2) denotes the image. Now, we need to express the first and second derivative
approximations. We can use the first difference (6.12) to obtain the following:

∂f(n1, n2)
∂x

≈ f̂x(n1, n2) = f(n1 + 1, n2) − f(n1, n2),

∂f(n1, n2)2

∂x2 ≈ f̂xx(n1, n2) = fx(n1, n2) − fx(n1 − 1, n2).
(6.23)

As discussed earlier, the first difference presents an edge location error caused by the
zero-crossing being placed off the grid. The second derivative solves the location error
issue since it counteracts the shift presented by the first derivative.[5] Combining the two
equations above, we obtain the horizontal partial derivative, and if the same is applied for
the vertical direction, we acquire both partial derivatives as follows:

f̂xx(n1, n2) = f(n1 + 1, n2) − 2f(n1, n2) + f(n1 − 1, n2) =
[
1 −2 1

]
,

f̂yy(n1, n2) = f(n1, n2 + 1) − 2f(n1, n2) + fx(n1, n2 − 1) =

 1
−2
1

 .
(6.24)

Lastly, the Laplacian detector is estimated by exploiting (6.21) as:

∇̂2f(n1, n2) =
[
1 −2 1

]
+

 1
−2
1

 =

0 1 0
1 −4 1
0 1 0

 (6.25)

Above Laplacian detector does not consider smoothing or diagonal information. The litera-
ture presents several Laplacian filters that enhance the conventional structure and consider
smoothing and diagonal information. Eq. (6.26) introduces an example. It is worth noting
that the new structure obeys the zero mean requirement as the previous — the bias would
violate the results otherwise. Lastly, since the Laplacian operator does not account for
the direction, the filters with inverted signs maintain valid results, and thus both filters in
(6.26) are equally valid. 1 1 1

1 −8 1
1 1 1

 ,

−1 −1 −1
−1 8 −1
−1 −1 −1

 (6.26)

Laplacian of Gaussian detector

Marr-Hildreth detector, called Laplacian of Gaussian (LoG), is based on the same principle
as the Laplacian detector. Moreover, it adds a Gaussian kernel filtering before finding the

46

.. 6.2. Edge Detection

zero-crossings. The Gaussian mask behaves as a narrow band-pass filter and improves the
noise sensitivity of the zero-crossing detection. Since the Gaussian function is smooth and
localized in both spatial and frequency domains, the detection introduces fewer false edges
for the same edge location accuracy than the Laplacian detector. Lastly, LoG allows effec-
tive calculations due to the separability of the Gaussian function. It enables to construct
appropriate pair of 1D filters that are applied to the horizontal and vertical dimensions.
The computational costs are significantly decreased because the 2D convolution becomes
unnecessary.[5]

The 2D Gaussian function with zero mean is analytically expressed as:

g(x, y) = 1
2πσ

exp
(

−x2 + y2

2σ2

)
, (6.27)

where σ represents the standard deviation.[5][43] The discrete form of the Gaussian kernel
is obtained by sampling the Gaussian function. According to [43], the sufficient number of
samples is determined as the first odd number greater than 6σ. They empirically showed
that a higher number of samples do not deliver significantly better precision of Gaussian
function concerning additional computations. Conversely, a smaller number of samples
would lead to omitting essential details.[43] Figure 6.7 shows a sampled Gaussian function
with σ = 3 and the number of samples n = 19.

(a)

(b) (c)

Figure 6.7 Sampled Gaussian function with σ = 3 and n = 19; a) 3D representation, b) 2D
representation, and c) heat-map.

47

6. Node Detection...
Since we defined the Gaussian kernel, let us derive the LoG operator. We will use the

convolution’s and Laplacian operator’s linearity to acquire the LoG. The linearity allows
changing computation order without any mathematical violation. Eq. (6.28) illustrates
linearity and defines the LoG operator.

∇2[g(x, y) ∗ f(x, y)] = [∇2[g(x, y)] ∗ f(x, y)] = LoG(x, y) ∗ f(x, y) (6.28)

The different computation order brings significant benefit. Since the LoG operator is
image independent, it can be prepared in advance and reduce the number of Laplacian
calculations. IIt could be calculated only once instead of determining the Laplacian for
every pixel.[5]

LoG(x, y) = ∇2g(x, y) = ∂2g(x, y)
∂x2 + ∂2g(x, y)

∂y2 =

= 1√
2πσ2

x2 + y2 − 2σ2

σ4 exp
(

−x2 + y2

2σ2

) (6.29)

Eq. (6.29) presents the LoG’s analytical solution acquired by substituting the Laplacian
with the LoG operator. Figure 6.8 illustrates the discrete LoG kernel sampled from ana-
lytical representation (6.29). The LoG operator has the shape of a sombrero which is a
similar profile found in the receptive field of biological vision.[5] Since the shape character
is wider, the filter size must be increased to prevent a bias from truncation.[5][45]

The LoG kernel size is commonly determined as three times the distance between the
zero-crossings in the spatial domain (≈ 8.5σ).[45] In other words, three times the width
of the central lobe. If the mask size increases substantially, it is more efficient to work in
the frequency domain and exclude the convolution in particular cases. It would transfer
the image and the mask to the frequency domain using discrete Fourier transform or Fast
Fourier transform. Then, the frequency domains would be multiplied together. Lastly, the
multiplication result would be transformed back to the spatial domain where edges would
be expressed.[5]

(a)
(b)

Figure 6.8 Sampled LoG operator with σ = 3 and n = 25; a) −LoG(x, y) = −∇2g(x, y), and
b) −LoG(x, y) heat-map.

48

.. 6.3. Implementation

6.2.3 Canny detector

The Canny detector considerably enhances the edge detection performance of previously
discussed methods.[48] It has three main goals; to optimize the detection errors, localize
edges precisely and obtain only a single response per edge. The algorithm is as follows;

Firstly, it smooths the image with a Gaussian filter, reducing the details and noise.
The Gaussian filter design was discussed in the previous section. Secondly, the gradient
magnitude and direction are determined in each pixel according to (6.5) and (6.6).[49]
The Sobel detector often approximates the partial derivatives (Section 6.2.1). Lastly, the
algorithm applies a unique thresholding technique based on hysteresis called non-maxima
suppression. The edge representation is defined by contours passed through the suppres-
sion. Since the non-maxima suppression uses two-level thresholding, it improves the edge
contour construction and decreases the sensitivity to the threshold value.[50] The thresh-
olding technique is crucial in the algorithm. Thus, let us focus on the suppression in
broader detail.

The hysteresis non-maxima suppression defines a high Th and low Tl threshold. Any
pixel surpassing Th is immediately accounted as an edge pixel. Pixels with gradient mag-
nitude below Tl are excluded and clustered to the background. However, the advantage
of the approach comes at magnitudes between the thresholds. The algorithm searches for
pixels with this gradient magnitude and tests them to be part of the strong edge contours
(magnitude above Th). Pixels that fulfill the requirement are added to the edge contour.
In other words, the algorithm finds pixels on the Th and searches for weaker edges that
would be linked to the contours below the high threshold. Weaker edges not connected to
the strong edges are discarded, and connected edges are appended. The search continues
until the Tl is reached and the algorithm carries out the edge representation.[50]

6.3 Implementation

The detection algorithm exploits the techniques mentioned above to fulfill its objective.
The algorithm’s objective is to detect nodes from an image which is captured by the mobile
robot [13]. This section introduces the node_detection module, detection algorithm and
results from the conducted testing.

6.3.1 Detection module

The Detection module provides image processing and detection functionality. We devel-
oped the module in Python environment utilizing the OpenCV3 and Numpy4 data struc-
tures.

The module comprises a static detection and processing class, an analysis script, and test
helper functions. Test helper functions implement data collection handling and provide
image and execution time-saving handlers. The analysis script allows tuning the detec-
tion parameters on collected images by employing the OpenCV and MatplotLib python
modules. The script plots the processing and detection results to visualize the algorithm
steps. Furthermore, it provides multi-image processing to accelerate the data analysis and

3https://pypi.org/project/opencv-python/4.5.5.64/
4https://pypi.org/project/numpy/1.22.3/

49

6. Node Detection...
a user-friendly tuning of the detection algorithm. The multi-image processing handles up
to nine images per run. Lastly, the node_detection module provides two fundamental
classes; processing and detection class.

The DetectionProcessing class implements image processing that is performed be-
fore applying the detection method. It provides image loading, blurring, binarization,
morphological techniques, and gradient and threshold calculation methods.

The DetectionAlgorithms class provides the detection method based on Circle Hough
Transform. The method returns detected objects and the image with bounding boxes. The
class is designed to be easily scaled with other detection algorithms by implementing a new
static method within the class.

The core implementation employs the static architecture for both classes to take advan-
tage of methods being rather bound to the class than to the class object. This approach
allows calling methods without object initialization.

6.3.2 Detection algorithm

The detection is performed in several steps, as illustrated in Algorithm 1. Firstly, the image
is converted into grayscale and blurred by a box filter of size (20px, 20px). The blurring
reduces the image details and suppresses the noise resulting in better edge detection.
Figure 6.9b illustrates the blurred image. Secondly, the blurred image is binarized to
emphasize the saturated regions that represent our system nodes (Figure 6.9c). Thirdly,
the image gradient is calculated to determine the thresholds dynamically. This procedure
adaptively reacts to different light environments to which the system is exposed. Fourthly,
the Canny edge detector determines the edge representation. The algorithm exploits the
Canny detector because it carries the best results from the detectors mentioned above.
Finally, the Circle Hough Transform function takes the edge representation and detects
the nodes. The function returns circle objects that hold the circle center positions and
their radius. Furthermore, it draws the bounding boxes to the original image, as shown in
Figure 6.9d.

Algorithm 1: Pseudo-code of the node detection algorithm.
Input : image
Output: (circles, image with bounding boxes)

1 Convert RGB → Grayscale image;
2 Blur the image by box filter (20px, 20px);
3 Binarize the image with threshold (245);
4 Calculate image gradient;
5 Adaptively determine thresholds based on the gradient;
6 Canny edge detection with hysteresis non-maxima suppression;
7 Run Circle Hough Transform-based detection on the processed image;

50

.. 6.3. Implementation

(a) (b)

(c) (d)

Figure 6.9 Algorithm steps illustration; a) original image in grayscale, b) blurred image with
box filter, c) binarized image, and d) processed image with bounding boxes.

6.3.3 Test environment

We designed a performance test to verify the algorithm’s functionality and weaknesses.
The test was performed on our testbed and had the following scenario.

Firstly, the testbed area was divided into a grid to cover the test space and prevent
the position bias. Grid points of the (75 cm × 75 cm) area were spaced 10 cm apart, as
shown by red lines in Figure 6.10. Secondly, we defined a series of system configurations
and robot positioning strategies to verify the algorithm’s sensitivity to data augmentation.
Furthermore, it allowed ruling out the model overfitting to certain environment setups.
Lastly, we analyzed the collected data and evaluated the algorithm performance with
appropriate metrics. The collected data comprise 351 images captured in various settings.
Section 6.3.4 presents the evaluation.

System Robot Position ImagesFreq. Range [Hz] Duty Cycle [%] Phase Grid Shift
100–300 20 aligned (0, 0) 49
100–300 50 aligned (0, 0) 49
100–300 80 aligned (0, 0) 49
100–300 20 perp. (0, 0.5) 49
100–300 50 perp. (0.5, 0.5) 49

1000–3000 80 perp. (0.5, 0) 49
1000–3000 80 random (0.5, 0) 57

Total number of images 351

Table 6.1 Environment settings where Phase is relative to the nodes orientation and Grid Shift
is relative to the main grid.

51

6. Node Detection...
Table 6.1 lists the environment settings. The first and second column of the table defines

the system configuration. The Phase column denotes the robot position with respect to the
node’s orientation. If the ”aligned” Phase, the robot travels in the direction of the longer
node side. On the other hand, ”perp.” Phase denotes traveling direction perpendicular to
”aligned” and ”random” Phase represents a random robot alignment. The fourth column
represents a shift of the coordinate system regarding the main grid. For instance, the Grid
Shift (0.5, 0.5) defines horizontal and vertical shift of the main grid by 0.5 step size (5cm).
Figure 6.10 illustrates this shifting scenario with a red and blue grid where red lines denote
the main grid and blue lines the shifted grid. The last column of the table presents the
number of captured images in the session.

Figure 6.10 The grid layout in the testbed area; red dots in the bottom-left corner depict an
example of capture positions if the Grid Shift is (0,0) and blue dots for Grid Shift (0.5,0.5); the
red arrow denotes the travel direction if ”aligned” Phase and blue arrow if ”perp.” Phase.

6.3.4 Algorithm evaluation

Our evaluation employs three commonly used object detection metrics: Precision, Recall,
and F1 score. Precision delivers the ability of the model to detect only relevant objects,
and is defined in Eq. (6.30). Recall denotes the ability to detect all ground truths, and is
defined in Eq. (6.31).[51]

P = TP

TP + FP
= TP

all detections (6.30)

R = TP

TP + FN
= TP

all ground truths (6.31)

Finally, F1 score measures the balance between the precision and recall. The closer
the F1 score to one, the more balanced the metrics are. Eq. (6.32) defines the F1 score
calculation, an average of the above metrics.

F1 = 2 P · R

P + R
(6.32)

52

.. 6.3. Implementation

It is important to note that recall plays a superior role in our project. Detecting a non-
existent object is unfortunate, but it can be discarded during fingerprint detection. On
the other hand, data of an undetected node is lost immediately, and the navigation can be
compromised due to a low number of detected nodes. Thus, our algorithm must detect all
nodes despite a slight precision decrease.

Variables that need to be defined and acquired to calculate the above metrics, are True
Positive (TP), False Positive (FP), and False Negative (FN). They have the following
meaning in our project:[51]. True Positive (TP) – a node was successfully detected in the image;. False Positive (FP) – an incorrect detection of non-existent node or misplaced detec-

tion of the object in the image;. False Negative (FN) – an undetected node in the image.

The test dataset comprises 351 images. The algorithm detected 868 nodes, missed 16,
26 were misplaced, and five were non-existent. Test results are listed in Table 6.2. The
algorithm precision is 96.6 %, the recall is 98.2 %, and the average execution time5 is
18.4 ms. As we claimed before, we aimed to acquire a high recall result. We believe 98.2 %
accomplishes our goal. Furthermore, a great precision×recall balance was obtained, as the
F1 score confirms. Thus, we assume that our algorithm is functional.

Recall [%] Precision [%] F1 score tavg [ms]
98.2 96.6 0.974 18.4

Table 6.2 Algorithm evaluation results.

Strengths & Weaknesses

We observed the algorithm behavior on different stimuli during the test execution. The
following was concluded. The algorithm performed very well in detecting partial circles
lying near the edges of the image. Figures 6.11a and 6.11c present two examples. A slight
move in direction revealing the node resolved the detection if the node missed near the
edge.

The rest of the missed nodes were caused by the overwhelming saturation of the CMOS
sensor around the node. Figure 6.11b shows the saturated region around the node bor-
ders, causing the classification error. Furthermore, the saturation caused a bounding box
misplacement in several cases, as shown in Figure 6.11c. We believe the saturation side
effect can be resolved by a proper configuration of the CMOS camera.

Lastly, the only false detected non-existent object was caused by a reflection. Figure
6.11d illustrates the reflection issue. We believe this effect can be suppressed again by
the camera configuration and remaining errors can be discarded during the fingerprint
detection.

5Performed on Macbook Pro Early 2015, 2.7 GHz Intel Core i5, 8 GB 1867 MHz DDR3.

53

6. Node Detection...

(a) (b)

(c) (d)

Figure 6.11 Examples of detection strengths and weaknesses.

54

Chapter 7
Conclusions

This thesis proposed a functional VLP infrastructure that allows a user-friendly develop-
ment of indoor navigation algorithms. Chapter 2 introduced our architecture exploiting
modern communication protocols to acquire different VLP environments and settings. In
addition, the thesis proposed a custom firmware that drives the VLP transmitters, a system
application, and a node detection algorithm.

The firmware employs the LoRaWAN® stack for acquiring the configuration messages
from the system gateway. Furthermore, it implements several fingerprinting techniques
that could be used for initial positioning development. The firmware was successfully
tested by multiple scenarios discussed in Section 4.4.

The system application’s design is proposed in Chapter 5. It exploits SPA architecture
allowing fast rendering and a native app experience. The application comprises a front
end implemented in conventional web languages and a back end powered by Python. It
supports the MQTT communication protocol that enables interaction with the system
gateway. Moreover, the application allows single and multi-node configurations that set
nodes with a unique fingerprint. This functionality was verified in the firmware testing
mentioned above. Lastly, the application implements a system node management that
allows creating, adding, and deleting nodes from the VLP environment.

Finally, the thesis proposed a node detection algorithm based on Circle Hough Trans-
form. The algorithm achieves a high recall and precision, which was demonstrated by a
relevant experiment presented in sections 6.3.3 and 6.3.4. The experiment considered 351
test images and carried out the following results. The algorithm’s recall was 98.2 %, we
achieved a precision of 96.6 %, and the precision×recall balance was verified by the F1
score of 0.974. Moreover, the algorithm achieved a sufficient real-time execution duration
of 18.4 ms. We conclude from the above results that our algorithm was effectively ver-
ified and functionally sufficient. Lastly, we noticed the following characteristics during
the evaluation. The algorithm performed well in detecting partial circles near the image
edges. On the other hand, it struggled with some saturated regions and reflections, which
caused several classification errors. However, we believe these errors can be corrected with
a proper CMOS camera configuration.

55

7. Conclusions ..
7.1 Future work

Our project’s vision comprises the following:.We want to expand the fingerprinting methods implemented in the system..We aim to analyze possible options for enhancing the workflow performance for indoor
navigation development and embrace the analysis results..We wish to implement more complex configuration methods allowing fingerprinting
combinations and embracing data transmission over VLC channel..We want to propose a fingerprint detection algorithm that would enable the testing
of object localization using the CMOS-based method..We want to present a photodiode receiver to enhance the number of testable position-
ing methods utilizing our system..We want to implement a native mobile application that would form an ideal combi-
nation with the developed application in this thesis.

56

Appendix A
List of Abbreviations

4PPM Four-Pulse Position Modulation.

ADC Analog-to-Digital Converter.
AES Advanced Encryption Standard.
ALS Ambient Light Sensor.
API Application Programming Interface.

CDM Code Division Multiplexing.
CMOS Complementary Metal-Oxide-Semiconductor.
CSS Cascading Style Sheets.

DAC Digital-to-Analog Converter.
DMA Direct Memory Access.

EMI Electromagnetic Interference.

FDM Frequency Division Multiplexing.

GCC GNU Compiler Collection.
GPIO General-Purpose Input/Output.
GPS Global Positioning System.

HAL Hardware abstraction layer.
HTML HyperText Markup Language.
HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.
ITF Interleaved Two of Five.

JSON JavaScript Object Notation.

LED Light Emitting Diode.
LoG Laplacian of Gaussian.
LoRa® Long Range.
LoRaWAN® Long Range Wide Area Network.

MAC Medium Access Control.

57

A. List of Abbreviations ..
MCU Microcontroller Unit.
MQTT Message Queuing Telemetry Transport.

OOK On-Off Keying.
OTAA Over-the-Air Activation.

PWA Progressive Web Application.
PWM Pulse Width Modulation.

RF Radio Frequency.
RSE Rolling Shutter Effect.
RTC Real-Time Clock.
RTOS Real-Time Operating System.

SEO Search Engine Optimization.
SPA Single-Page Application.
SPI Serial Peripheral Interface.

TDM Time Division Multiplex.

UART Universal Asynchronous Receiver-Transmitter.

VLC Visible Light Communication.
VLP Visible Light Positioning.
VPPM ariable-Pulse Position Modulation.

XML Extensible Markup Language.

58

6 6

Connectors

MB1296 C-01

25/11/2016

Title:

Size: Reference:

Date: Sheet: of

A4 Revision:

STM32 LoRa DiscoveryProject:

+3V3+5V

A0
A1
A2
A3
A4
A5 D0

D1
D2

D4
D3

D5
D6
D7

D8
D9

D10

D14
D15

PA0

PA2

PA4

PA5

PA10

PA3

PB8
PB9

PA9

PA8

PB5

PB6

1
2
3
4
5
6

CN6

Header 6X1_Female

1
2
3
4
5
6
7
8

CN4

Header 8X1_Female

1
2
3
4
5
6
7
8

CN5

Header 8X1_Female

1
2
3
4
5
6
7
8
9

10

CN1

Header 10X1_Female

MCU_nRST

VIN

PA[0..15]PA[0..15]

PB[0..15]PB[0..15]

PC[0..15]PC[0..15]

MCU_nRST MCU_nRST

AVDD

BOOT0 BOOT0

SB10 PH1
PH0

SB3

D13
D12
D11

Ar
du

in
o

C
on

ne
ct

or
Ar

du
in

o
C

on
ne

ct
or

Ar
du

in
o

C
on

ne
ct

or
A

rd
ui

no
C

on
ne

ct
or

GND
AVDD

SB9PB13

PB7
PB2

PB13/NC

PB12

PB15
PB14

SB2PB13 Not fitted

Fitted

Fitted

PA5/PB13

A4
A5

VDD_MCU_LRA

PA13
PA14
SX1276_DIO0
SX1276_DIO1
SX1276_DIO2
SX1276_DIO3
SX1276_DIO4
SX1276_DIO5

BOOT0

CRF1
CRF2
CRF3

PA12
PA11
PB12

PB15
PB14
PB13

TCXO_VCC

VDD_RF_LRA

VDD_USB_LRA

SB7
SB8

STSAFE_nRST

Not fitted
Not fitted

Not fitted

Fitted

PA0 Alias

PA4 Alias

Extension connectors

Arduino

SX1276_DIO[0..5] SX1276_DIO[0..5]

IOREF

+3V3
+5V
GND
GND
VIN

CRF[1..3] CRF[1..3]

TCXO_VCC TCXO_VCC

PH[0..1]PH[0..1]

STSAFE_nRST STSAFE_nRST

SB11
SB12

Not fitted
Not fitted PB8

PB9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

CN2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

CN3

MCU_nRST

+3V3
+5V
VIN

PA0
PA4
PH1
PH0

AVDD

PA5

PB6

PA9

PB2
PA8
PB7
PB5
PA10
PA2
PA3
PB9
PB8

SB1

R15
10K

Not fitted

+5V

VREF+ VREF+

VREF+

PICN101

PICN102

PICN103

PICN104

PICN105

PICN106

PICN107

PICN108

PICN109

PICN1010

COCN1

PICN201

PICN202

PICN203

PICN204

PICN205

PICN206

PICN207

PICN208

PICN209

PICN2010

PICN2011

PICN2012

PICN2013

PICN2014

PICN2015

PICN2016

PICN2017

PICN2018

PICN2019

PICN2020

PICN2021

PICN2022

PICN2023

PICN2024

PICN2025

PICN2026

COCN2

PICN301

PICN302

PICN303

PICN304

PICN305

PICN306

PICN307

PICN308

PICN309

PICN3010

PICN3011

PICN3012

PICN3013

PICN3014

PICN3015

PICN3016

PICN3017

PICN3018

PICN3019

PICN3020

PICN3021

PICN3022

PICN3023

PICN3024

PICN3025

PICN3026

COCN3

PICN401

PICN402

PICN403

PICN404

PICN405

PICN406

PICN407

PICN408

COCN4

PICN501

PICN502

PICN503

PICN504

PICN505

PICN506

PICN507

PICN508

COCN5

PICN601

PICN602

PICN603

PICN604

PICN605

PICN606

COCN6

PIR1501

PIR1502

COR15

PISB101 PISB102
COSB1

PISB201 PISB202
COSB2

PISB301 PISB302
COSB3

PISB701 PISB702
COSB7

PISB801 PISB802
COSB8

PISB901 PISB902
COSB9

PISB1001 PISB1002
COSB10

PISB1101 PISB1102
COSB11

PISB1201 PISB1202
COSB12

PICN2019

PICN402

PICN404

PICN2020

PICN405

PIR1501

PICN605

PISB101

PISB1101

NLA4
PICN606

PISB1001

PISB1201

NLA5

PICN208
NLBOOT0

POBOOT0

PICN107 PICN203

PICN205

PICN207

PICN2017

PICN2022

PICN306

PICN3012

PICN3026

PICN406

PICN407

PICN2018

PICN403

NLMCU0nRST

POMCU0nRST

PICN401

PIR1502

PICN602

PISB702

NLPA0 Alias

PICN604

PISB802

NLPA4 Alias

PICN106

PISB202

PISB302

NLPA50PB13

PICN504

PISB902

NLPB130NC

PICN304
NLSTSAFE0nRST

POSTSAFE0nRST

PICN201
NLTCXO0VCC

POTCXO0VCC

PICN202

PICN204

PICN206

PICN2021

PICN408

PICN108

PICN305

NLVREF0

POVREF0

PICN301
NLCRF1

NLCRF010030 POCRF010030

PICN302
NLCRF2

NLCRF010030 POCRF010030

PICN303
NLCRF3

NLCRF010030 POCRF010030

PICN2023

PICN601

PISB701

NLPA0

NLPA0000150 POPA0000150 NLPA0000150 POPA0000150

PICN3022

PICN502
NLPA2

NLPA0000150 POPA0000150

PICN3023

PICN501
NLPA3

NLPA0000150 POPA0000150

PICN2024

PICN603

PISB801

NLPA4

NLPA0000150 POPA0000150

PICN307

PISB301
NLPA5

NLPA0000150 POPA0000150 NLPA0000150 POPA0000150 NLPA0000150 POPA0000150

PICN3018

PICN508
NLPA8

NLPA0000150 POPA0000150

PICN101

PICN3013

NLPA9

NLPA0000150 POPA0000150

PICN3021

PICN503
NLPA10

NLPA0000150 POPA0000150

PICN3015
NLPA11

NLPA0000150 POPA0000150

PICN3014
NLPA12

NLPA0000150 POPA0000150

PICN209
NLPA13

NLPA0000150 POPA0000150

PICN2010
NLPA14

NLPA0000150 POPA0000150 NLPA0000150 POPA0000150

NLPB0000150 POPB0000150 NLPB0000150 POPB0000150

PICN3017

PICN507
NLPB2

NLPB0000150 POPB0000150 NLPB0000150 POPB0000150 NLPB0000150 POPB0000150

PICN3020

PICN505
NLPB5

NLPB0000150 POPB0000150

PICN103

PICN3011

NLPB6

NLPB0000150 POPB0000150

PICN3019

PICN506
NLPB7

NLPB0000150 POPB0000150

PICN1010

PICN3025

PISB1202
NLPB8

NLPB0000150 POPB0000150

PICN109

PICN3024

PISB1102
NLPB9

NLPB0000150 POPB0000150 NLPB0000150 POPB0000150 NLPB0000150 POPB0000150

PICN102

PICN3016

NLPB12

NLPB0000150 POPB0000150

PICN308

PISB201

PISB901

NLPB13

NLPB0000150 POPB0000150

PICN105

PICN309

NLPB14

NLPB0000150 POPB0000150

PICN104

PICN3010

NLPB15

NLPB0000150 POPB0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150
NLPC0000150

POPC0000150

PICN2026 PISB102
NLPH0

NLPH000010 POPH000010

PICN2025 PISB1002
NLPH1

NLPH000010 POPH000010

PICN2011
NLSX12760DIO0

NLSX12760DIO000050
POSX12760DIO000050

PICN2012
NLSX12760DIO1

NLSX12760DIO000050
POSX12760DIO000050

PICN2013
NLSX12760DIO2

NLSX12760DIO000050
POSX12760DIO000050

PICN2014
NLSX12760DIO3

NLSX12760DIO000050
POSX12760DIO000050

PICN2015
NLSX12760DIO4

NLSX12760DIO000050
POSX12760DIO000050

PICN2016
NLSX12760DIO5

NLSX12760DIO000050
POSX12760DIO000050

POBOOT0

POCRF1 POCRF2 POCRF3 POCRF010030

POMCU0nRST

POPA0 POPA1 POPA2 POPA3 POPA4 POPA5 POPA6 POPA7 POPA8 POPA9 POPA10 POPA11 POPA12 POPA13 POPA14 POPA15 POPA0000150

POPB0 POPB1 POPB2 POPB3 POPB4 POPB5 POPB6 POPB7 POPB8 POPB9 POPB10 POPB11 POPB12 POPB13 POPB14 POPB15 POPB0000150

POPC0 POPC1 POPC2 POPC3 POPC4 POPC5 POPC6 POPC7 POPC8 POPC9 POPC10 POPC11 POPC12 POPC13 POPC14 POPC15 POPC0000150

POPH0 POPH1 POPH000010

POSTSAFE0nRST

POSX12760DIO0 POSX12760DIO1 POSX12760DIO2 POSX12760DIO3 POSX12760DIO4 POSX12760DIO5 POSX12760DIO000050

POTCXO0VCC

POVREF0

A
ppendix

B
B

-L072Z-LRW
A

N
1

Extension
connectors

59

60

Appendix C
Bibliography

[1] H. Aoyama and M. Oshima, “Visible light communication using a conventional im-
age sensor,” in 2015 12th Annual IEEE Consumer Communications and Networking
Conference (CCNC), 2015, pp. 103–108.

[2] J. Fang, Z. Yang, S. Long, Z. Wu, X. Zhao, F. Liang, Z. L. Jiang, and Z. Chen,
“High-speed indoor navigation system based on visible light and mobile phone,” IEEE
Photonics Journal, vol. 9, no. 2, pp. 1–11, 2017.

[3] C. Xie, W. Guan, Y. Wu, L. Fang, and Y. Cai, “The led-id detection and recognition
method based on visible light positioning using proximity method,” IEEE Photonics
Journal, vol. 10, no. 2, pp. 1–16, 2018.

[4] STMicroelectronics, “Stm32 lorawan® expansion package for stm32cube,” USA,
2021. [Online]. Available: https://www.st.com/resource/en/user_manual/um2073-
stm32-lorawan-expansion-package-for-stm32cube-stmicroelectronics.pdf

[5] P. A. Mlsna and J. J. Rodríguez, “Chapter 19 - gradient and laplacian
edge detection,” in The Essential Guide to Image Processing, A. Bovik,
Ed. Boston: Academic Press, 2009, pp. 495–524. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780123744579000196

[6] P. Chen, M. Pang, D. Che, Y. Yin, D. Hu, and S. Gao, “A survey on visible light
positioning from software algorithms to hardware,” Wireless Communications and
Mobile Computing, vol. 2021, 2021.

[7] Z. Zhou, M. Kavehrad, and P. Deng, “Indoor positioning algorithm using
light-emitting diode visible light communications,” Optical Engineering, vol. 51,
no. 8, pp. 1 – 7, 2012. [Online]. Available: https://doi.org/10.1117/1.OE.51.8.085009

[8] Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta, “Luxapose: Indoor positioning
with mobile phones and visible light,” in Proceedings of the 20th annual international
conference on Mobile computing and networking, 2014, pp. 447–458.

[9] R. Zhang, W.-D. Zhong, K. Qian, S. Zhang, and P. Du, “A reversed visible light
multitarget localization system via sparse matrix reconstruction,” IEEE Internet of
Things Journal, vol. 5, no. 5, pp. 4223–4230, 2018.

[10] Z. Zhang, H. Chen, X. Hong, and J. Chen, “Accuracy enhancement of indoor
visible light positioning using point-wise reinforcement learning,” in Optical Fiber
Communication Conference (OFC) 2019. Optica Publishing Group, 2019, p. Th3I.3.
[Online]. Available: http://opg.optica.org/abstract.cfm?URI=OFC-2019-Th3I.3

61

https://www.st.com/resource/en/user_manual/um2073-stm32-lorawan-expansion-package-for-stm32cube-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2073-stm32-lorawan-expansion-package-for-stm32cube-stmicroelectronics.pdf
https://www.sciencedirect.com/science/article/pii/B9780123744579000196
https://www.sciencedirect.com/science/article/pii/B9780123744579000196
https://doi.org/10.1117/1.OE.51.8.085009
http://opg.optica.org/abstract.cfm?URI=OFC-2019-Th3I.3

C. Bibliography ..
[11] M. Suda, “Sw for indoor visible light positioning testbed,” Bachelor’s Thesis, CTU

FEE, Technická 2, 5 2020.

[12] S. Bosak, “Hw for indoor visible light positioning testbed,” Bachelor’s Thesis, CTU
FEE, Technická 2, 5 2020.

[13] ——, “Mobile-robot and platform for vlc indoor navigation,” Master’s Thesis, CTU
FEE, Technická 2, 5 2022.

[14] W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance
analysis and enhancement for visible light communication using cmos sensors,”
Optics Communications, vol. 410, pp. 531–551, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0030401817309458

[15] W. Guan, X. Zhang, Y. Wu, Z. Xie, J. Li, and J. Zheng, “High precision
indoor visible light positioning algorithm based on double leds using cmos
image sensor,” Applied Sciences, vol. 9, no. 6, 2019. [Online]. Available:
https://www.mdpi.com/2076-3417/9/6/1238

[16] S.-H. Song, D.-C. Lin, Y.-H. Chang, Y.-S. Lin, C.-W. Chow, Y. Liu, C.-H.
Yeh, K.-H. Lin, Y.-C. Wang, and Y.-Y. Chen, “Using dialux and regression-based
machine learning algorithm for designing indoor visible light positioning (vlp) and
reducing training data collection,” in Optical Fiber Communication Conference
(OFC) 2021. Optica Publishing Group, 2021, p. Tu5E.3. [Online]. Available:
http://opg.optica.org/abstract.cfm?URI=OFC-2021-Tu5E.3

[17] J. Jin, L. Feng, J. Wang, D. Chen, and H. Lu, “Signature codes in visible light
positioning,” IEEE Wireless Communications, vol. 28, no. 5, pp. 178–184, 2021.

[18] A. F. Hussein, H. Elgala, and T. D. C. Little, “Visible light communications: Toward
multi-service waveforms,” in 2018 15th IEEE Annual Consumer Communications
Networking Conference (CCNC), 2018, pp. 1–6.

[19] M. Saadi, T. Ahmad, Y. Zhao, and L. Wuttisttikulkij, “An led based indoor localiza-
tion system using k-means clustering,” in 2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA), 2016, pp. 246–252.

[20] U. Nadeem, N. Hassan, M. Pasha, and C. Yuen, “Highly accurate 3d wireless indoor
positioning system using white led lights,” Electronics Letters, vol. 50, no. 11, pp.
828–830, 2014.

[21] S.-Y. Jung, S. Hann, and C.-S. Park, “Tdoa-based optical wireless indoor localization
using led ceiling lamps,” IEEE Transactions on Consumer Electronics, vol. 57, no. 4,
pp. 1592–1597, 2011.

[22] T. Sato, S. Shimada, H. Murakami, H. Watanabe, H. Hashizume, and M. Sugimoto,
“Alisa: A visible-light positioning system using the ambient light sensor assembly in
a smartphone,” IEEE Sensors Journal, vol. 22, no. 6, pp. 4989–5000, 2022.

[23] K. Abe, T. Sato, H. Watanabe, H. Hashizume, and M. Sugimoto, “Smartphone posi-
tioning using an ambient light sensor and reflected visible light,” in 2021 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), 2021, pp. 1–8.

62

https://www.sciencedirect.com/science/article/pii/S0030401817309458
https://www.mdpi.com/2076-3417/9/6/1238
http://opg.optica.org/abstract.cfm?URI=OFC-2021-Tu5E.3

.. C. Bibliography

[24] H. Dhaduk, “An ultimate guide to web application architecture,” https://www.
simform.com/blog/web-application-architecture/, 2021, accessed: 2022-01-21.

[25] Spaceotechnologies, “9 different types of web applications (examples + use
cases),” https://www.spaceotechnologies.com/types-of-web-applications/, 2021, ac-
cessed: 2022-01-21.

[26] Staticapps, “Defining static web apps,” https://www.staticapps.org/articles/defining-
static-web-apps/, 2014, accessed: 2022-01-21.

[27] Adobe, “Understand web applications,” https://helpx.adobe.com/gr_en/
dreamweaver/using/web-applications.html#processing_static_web_pages, 2021,
accessed: 2022-01-21.

[28] Pluralsight, “The differences between static and dynamic websites,” https:
//www.pluralsight.com/blog/creative-professional/static-dynamic-websites-theres-
difference, 2020, accessed: 2022-01-21.

[29] Mozilla and individual contributors, “Spa (single-page application),” https://
developer.mozilla.org/en-US/docs/Glossary/SPA, 2021, accessed: 2022-01-21.

[30] Y. Luchaninov, “Web application architecture in 2021: Moving in the right direction,”
https://mobidev.biz/blog/web-application-architecture-types, 2021, accessed: 2022-
01-21.

[31] Asperbrothers, “Single page application (spa) vs multi page application (mpa) –
two development approaches,” https://asperbrothers.com/blog/spa-vs-mpa/, 2019,
accessed: 2022-01-21.

[32] Mozilla and individual contributors, “Webassembly,” https://developer.mozilla.org/
en-US/docs/WebAssembly, 2021, accessed: 2022-01-21.

[33] S. Richard and P. LePage, “What are progressive web apps?” https://web.dev/what-
are-pwas/, 2020, accessed: 2022-01-21.

[34] C.-T. Ho and L.-H. Chen, “A fast ellipse/circle detector using geometric symmetry,”
Pattern Recognition, vol. 28, no. 1, pp. 117–124, 1995. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/003132039400077Y

[35] Z. Yao and W. Yi, “Curvature aided hough transform for circle detection,”
Expert Systems with Applications, vol. 51, pp. 26–33, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417415008210

[36] W. Gander, G. H. Golub, and R. Strebel, “Least-squares fitting of circles and ellipses,”
BIT Numerical Mathematics, vol. 34, no. 4, pp. 558–578, 1994.

[37] T.-C. Chen and K.-L. Chung, “An efficient randomized algorithm for detecting
circles,” Computer Vision and Image Understanding, vol. 83, no. 2, pp. 172–
191, 2001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1077314201909233

63

https://www.simform.com/blog/web-application-architecture/
https://www.simform.com/blog/web-application-architecture/
https://www.spaceotechnologies.com/types-of-web-applications/
https://www.staticapps.org/articles/defining-static-web-apps/
https://www.staticapps.org/articles/defining-static-web-apps/
https://helpx.adobe.com/gr_en/dreamweaver/using/web-applications.html#processing_static_web_pages
https://helpx.adobe.com/gr_en/dreamweaver/using/web-applications.html#processing_static_web_pages
https://www.pluralsight.com/blog/creative-professional/static-dynamic-websites-theres-difference
https://www.pluralsight.com/blog/creative-professional/static-dynamic-websites-theres-difference
https://www.pluralsight.com/blog/creative-professional/static-dynamic-websites-theres-difference
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://mobidev.biz/blog/web-application-architecture-types
https://asperbrothers.com/blog/spa-vs-mpa/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://web.dev/what-are-pwas/
https://web.dev/what-are-pwas/
https://www.sciencedirect.com/science/article/pii/003132039400077Y
https://www.sciencedirect.com/science/article/pii/S0957417415008210
https://www.sciencedirect.com/science/article/pii/S1077314201909233
https://www.sciencedirect.com/science/article/pii/S1077314201909233

C. Bibliography ..
[38] J. Illingworth and J. Kittler, “A survey of the hough transform,” Computer Vision,

Graphics, and Image Processing, vol. 44, no. 1, pp. 87–116, 1988. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0734189X88800331

[39] T. D’Orazio, C. Guaragnella, M. Leo, and A. Distante, “A new algorithm
for ball recognition using circle hough transform and neural classifier,” Pattern
Recognition, vol. 37, no. 3, pp. 393–408, 2004. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0031320303002280

[40] S.-M. Hou, C.-L. Jia, Y.-B. Wanga, and M. Brown, “A review of the edge
detection technology,” Sparklinglight Transactions on Artificial Intelligence and
Quantum Computing, vol. 1, no. 2, p. 26–37, Oct. 2021. [Online]. Available:
http://www.sparklinglightpublisher.com/index.php/slp/article/view/16

[41] Z. Su, W. Liu, Z. Yu, D. Hu, Q. Liao, Q. Tian, M. Pietikäinen, and L. Liu, “Pixel
difference networks for efficient edge detection,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2021, pp. 5117–5127.

[42] R. Sun, T. Lei, Q. Chen, Z. Wang, X. Du, W. Zhao, and A. Nandi, “Survey of image
edge detection,” Frontiers in Signal Processing, vol. 2, p. 826967, 03 2022.

[43] H. Spontón and J. Cardelino, “A Review of Classic Edge Detectors,” Image Processing
On Line, vol. 5, pp. 90–123, 2015, https://doi.org/10.5201/ipol.2015.35.

[44] “Coins.png,” USA, 2014. [Online]. Available: https://www.bogotobogo.com/Matlab/
images/MATLAB_DEMO_IMAGES/coins.png

[45] S. R. Gunn, “On the discrete representation of the laplacian of gaussian,”
Pattern Recognition, vol. 32, no. 8, pp. 1463–1472, 1999. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320398001630

[46] G. Shrivakshan and C. Chandrasekar, “A comparison of various edge detection tech-
niques used in image processing,” International Journal of Computer Science Issues
(IJCSI), vol. 9, no. 5, p. 269, 2012.

[47] X. Wang, “Laplacian operator-based edge detectors,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, no. 5, pp. 886–890, 2007.

[48] J. Canny, “A computational approach to edge detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986.

[49] L. Ding and A. Goshtasby, “On the canny edge detector,” Pattern Recognition,
vol. 34, no. 3, pp. 721–725, 2001. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0031320300000236

[50] G. Shrivakshan and C. Chandrasekar, “A comparison of various edge detection tech-
niques used in image processing,” International Journal of Computer Science Issues
(IJCSI), vol. 9, no. 5, p. 269, 2012.

[51] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A survey on performance metrics for
object-detection algorithms,” in 2020 International Conference on Systems, Signals
and Image Processing (IWSSIP), 2020, pp. 237–242.

64

https://www.sciencedirect.com/science/article/pii/S0734189X88800331
https://www.sciencedirect.com/science/article/pii/S0031320303002280
https://www.sciencedirect.com/science/article/pii/S0031320303002280
http://www.sparklinglightpublisher.com/index.php/slp/article/view/16
https://doi.org/10.5201/ipol.2015.35
https://www.bogotobogo.com/Matlab/images/MATLAB_DEMO_IMAGES/coins.png
https://www.bogotobogo.com/Matlab/images/MATLAB_DEMO_IMAGES/coins.png
https://www.sciencedirect.com/science/article/pii/S0031320398001630
https://www.sciencedirect.com/science/article/pii/S0031320300000236
https://www.sciencedirect.com/science/article/pii/S0031320300000236

	Introduction
	Motivation
	Contribution
	Organization

	System Infrastructure
	Nodes
	Gateway
	System Application
	Robot

	VLP Fingerprinting Techniques
	Related work
	On-Off Keying Modulation
	Pulse-Width Modulation
	Sinusoidal Modulation

	Discussion
	Conclusion

	Node Firmware
	Functional requirements
	Architecture
	I-CUBE-LRWAN package
	Custom Firmware

	Implementation
	Main program
	Configuration files
	Indoor Navigation library

	Functional testing

	System Application
	Current state & revision
	Functional requirements
	Non-functional requirements
	Architecture types
	Static Web Application
	Dynamic Web Application
	Single-Page Application
	Multiple-Page Application
	Progressive Web Application

	Architecture
	Implementation
	Back End
	Front End
	Functionality overview

	Node Detection
	Circle Object Detection
	Circle Hough Transform

	Edge Detection
	Gradient-Based detection
	Laplacian-Based detection
	Canny detector

	Implementation
	Detection module
	Detection algorithm
	Test environment
	Algorithm evaluation

	Conclusions
	Future work

	List of Abbreviations
	B-L072Z-LRWAN1 Extension connectors
	Bibliography

