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Abstract
Accurate and robust localization is cru-
cial in various fields such as augmented
reality or robot navigation. State-of-the-
art methods based on image localization
give pose estimation which are rather ac-
curate. However accurate pose estimation
might be challenging in plain (texture-
less) or visually repeating environments.
This thesis proposes an approach to com-
bine state-of-the-art localization method
with dense point cloud alignment to ob-
tain robust and accurate camera poses.
It also presents a process of obtaining a
ground truth dataset for RGB-D localiza-
tion using Microsoft HoloLens, Matter-
port Pro2 and Vicon. The proposed point
cloud alignment methods are then evalu-
ated on the created ground truth data.

Keywords: Microsoft HoloLens, point
cloud alignment, AR, augmented reality,
localization, indoor localization

Supervisor: Ing. Michal Polic
Český institut informatiky, robotiky a
kybernetiky, ČVUT v Praze,
Jugoslávských partyzánů 1580/3,
160 00 Dejvice

Abstrakt
Přesná a robustní lokalizace je důležitá
v mnoha aplikacích jako například rozší-
řena realita nebo navigace robotů. Nejmo-
dernější přístupy založené na lokalizaci
pomocí fotografií poskytují odhad pozice,
který je přesný. Avšak najít přesný odhad
pozice je náročné v prostředích bez tex-
tur či v prostředích, kde se vizuální prvky
opakují. Tato práce navrhuje postup vyu-
žití metody lokalizace z fotek společně se
zarovnáváním hustých mračen bodů k zro-
bustnění a zpřesnění pozice kamery. Také
je představen postup pro získání přesné
validační sady dat pro lokalizaci RGB-D
snímků za pomoci technologií Microsoft
HoloLens, Matterport Pro2 a Vicon. Na
těchto datech jsou porovnány čtyři me-
tody pro zarovnávání mračen bodů.

Klíčová slova: Microsoft HoloLens,
zarovnání mračna bodů, AR, rozšířená
realita, lokalizace, lokalizace vnitřních
prostor

Překlad názvu: Využití hustého mračna
bodů pro lokalizaci ve vnitřních
prostorách
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Chapter 1
Introduction

The problem of precise localization is becoming increasingly important as more
and more applications rely on accurate pose estimation (e.g., augmented reality
(AR) or navigation). Most smartphones prefer fast signal-based localization
(global navigation satellite system, GNSS). It is real-time, however, the
precision of the calculated pose is unstable [1, 2, 3, 4]. Other AR-focused
devices, like Microsoft HoloLens, localize based on information from the
environment (images, 3D points, etc.). This might be challenging when users
are using two or more different devices for the localization and map update,
while these devices’ localization approaches and accuracy differ.

Image based localization can estimate a position from which the image
was taken based on a previously built image database with known camera
poses. In this work, we want to evaluate the HLoc method [5]. However,
localizing from images alone can be challenging when there is only a wall
or other texture poor object. This is where point cloud alignment methods
can be used to improve the localization. When the image is featureless, the
depthmap of the same view can be much more relevant to establish the
location. Point cloud alignment methods that are explored in this work are:
R-ICP [6], FCGF [7] + RANSAC [8], FCGF + TEASER++ [9], and Overlap
PREDATOR [10].

We focus on indoor localization of Microsoft HoloLens. However, all
proposed methods can be applied to any device that can capture RGB-D
frames. First, a pose estimate is obtained by HLoc [5], and then it is refined
by using a depthmap to environment map alignment. We compare four
methods for point cloud alignment and show whether and when they improve
the localization accuracy.

The structure of this thesis is as follows. The first section focuses on the
analysis of current localization solutions and state-of-the-art methods. Next,
we discuss the approach to obtain datasets that are later used for evaluating
several alignment methods. This dataset is composed of aligned recordings
obtained by Matterport Pro2 scanner [11], Motion Capture system Vicon
[12] and Microsoft HoloLens. Then, the process of creating ground truth
data from individual recordings is explained. The following chapter describes
the implementation of the graphical user interface for the utilized methods
and build evaluation pipelines. Lastly, the evaluation of several point cloud

1



1. Introduction .....................................
alignment methods is presented.

2



Chapter 2
Goal

This thesis investigates if and how estimated poses from images can be im-
proved by dense point cloud alignment. It evaluates state-of-the-art methods
and explores several of their attributes. We summarize the goal of this work
as follows.
At first, review the literature about localization from RGB-D images.
Get familiar with localization from images only and recent dense point cloud
alignment methods.

To evaluate the accuracy of the localization and proposed fine-tuning, we
require an RGB-D indoor dataset with known camera poses captured by
Microsoft HoloLens. This is motivated by the EU H2020 grant ARTwin and
desired localization of AR devices (HoloLens, iPad, etc.) at the construction
site and factory environment. There exists a number of high quality public
datasets for pose estimation from images, such as KITTI [13] or Aachen Day-
Night [14]. However, these datasets consist of RGB-D data and camera poses
but focus mostly on outdoor environments. As far as we know, there is little
public RGB-D indoor datasets that could be used to evaluate the accuracy of
localization. For example, the datasets First-Person Hand Action dataset [15],
EgoDexter [16], or HandNet [17] are used for hand and gesture recognition.
InLoc [18] dataset is indoor, provides dense point cloud as an environment
map, but the localization queries consist of RGB images only, missing the
depthmap. SUN3D [19] dataset fits the criteria, but the environment maps
are created using SfM leading to holes in inaccessible areas. In this work,
we create the dataset consisting of RGB-D images, ground truth
camera poses, and a dense point cloud map of the environment. This
dataset can be used for other projects, experiments, or localization methods,
and it is publicly available at https://bit.ly/3ID9puj.

The technology used in this thesis to obtain the ground truth camera poses
is Microsoft HoloLens and Motion Capture system Vicon [12]. The 3D map
is built by the Matterport Pro2 scanner [11].

Our next goal is to run the localization pipeline HLoc [5] on the created
ground truth dataset. The HLoc method is selected because it is robust
and performs well even on challenging benchmarks [20]. The localization

3



2. Goal ........................................
runs in tens of milliseconds and thus can be used for real-time localiza-
tion. We want to verify if the estimated poses by HLoc can be improved by
the utilization of additional depth sensor available on many recent AR devices.

We want to check if fine-tuning of camera poses by depthmap align-
ment to a 3D map of the environment helps to improve the pose estimation
accuracy if RGB images are poor on textures and distinct points. Chal-
lenging are also environments with repeated 3D structures (for example,
hallways or labs). In general, all the environments where it is difficult to lo-
calize just based on an RGB image alone, e.g., construction side, corridors, etc.

Localization algorithms have different parameters, and the accuracy of the
localization highly depends on their setup. Running these methods manually
would mean setting these parameters over and over again for each experiment
which is both time consuming and prone to human mistakes. Therefore
we want to simplify the evaluation of methods by running the pipeline
using a graphical user interface (GUI), where all parameters are clearly
arranged and easy to set. We were looking for an open-source solution that
allows the quick, easy, and well-manageable realization of pipelines. We chose
Meshroom because it is an open-source 3D reconstruction pipeline. This
software represents an easy and comfortable way to create and run pipelines
where methods are implemented in the form of nodes connected together
by edges if data is transferred between them. This means that all nodes
implemented in this work can be used in any other pipeline and in any future
project. The codes are publicly available at https://bit.ly/3ID9puj.

4



Chapter 3
Related work

This chapter summarizes state-of-the-art methods for localization, point cloud
alignment, and localization properties of the Microsoft HoloLens. The first
section discusses several widely used methods for the localization of devices.
Then the description of HoloLens follows. The last section focuses on several
well known and recently published point cloud alignment methods.

3.1 Localization

The thesis mainly focuses on the localization of AR devices. Most of the
modern are equipped with sensors that allow them to be utilized as AR
devices as well. Therefore, we discuss all relevant ways of localization (GNSS,
IMU, markers, etc.).

The most common way of localization on mobile devices is based on global
navigation satellite systems (GNSS) like GPS [1] or Galileo [2]. These systems
have accuracy for smartphones in the order of meters (within 4.9 m for GPS
and within 4 m for Galileo [21, 22]). There is also a high-end, high-accuracy
solution for both of the mentioned systems, and their accuracy is in the order
of tens of centimeters (within 1.82 m for GPS and within 20 cm for Galileo
[21, 22]). The localization is fast, real-time, and it works well in open areas.
The GNSS rarely performs well in an indoor environment as it needs a signal
from satellites.

A similar method for the localization of mobile devices is the triangulation
based on the signal strength of wireless networks [23], Wi-Fi [4], Bluetooth
[3], etc. These methods require network coverage, and the device gets lost
when the user gets out of reach. These methods’ accuracy varies depending
on the distance from the source of the signal. Wi-Fi based indoor localization
can be precise up to 5 cm with the approach proposed by [24]. For Bluetooth,
the accuracy was observed to be 0.79-2.28 m [25].

Some mobile devices can track their pose using an inertial measurement
unit (IMU). IMUs tend to be sensitive to drifting errors and often need to be
corrected by some external approach [26]. Paper [27] explores tracking of a
human using 3 IMUs, the accumulated error over a 3.6 m trajectory is 7.6
cm.

The next approach is marker-based localization. There are two ways to
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3. Related work.....................................
use markers for localization. The markers (ArUco, for example) are either
placed in the environment, and the device equipped with a camera is localized
with respect to them, or the markers are attached to the device and then
observed by an external Motion Capture system. The first approach requires
the placement of markers, knowledge about their location, and access to the
device’s camera. On the other hand, in the second approach, the device must
be seen by the tracking system and can only move in a determined space.
Authors of [28] explored the accuracy of AprilTags markers for localization
and observed that the localization error is in the order of centimeters, mostly
varying from 5 cm up to 40 cm in translation and below 0.002 degrees in
rotation. The motion capture accuracy depends mainly on the hardware of
the system. For example accuracy of Vicon has been evaluated to be under 2
mm [29].

The last approach mentioned is based on visual feature detection. Its idea
is to localize the device from an image, i.e., its distinctive local points and
their correspondences in a 3D map or database of features. It can be used
as well for outdoor as for the indoor localization. The InLoc method [18]
shows that we can localize under 1 m and 10 degrees error in 69.9% of cases.
Another method (used in this work), the Hierarchical Localization (HLoc) [5],
focuses on large scale localization with significant changes in the environment.
It has been observed that this method localizes within 25 cm and 2 degrees in
around 70% of cases during the day and around 40% at night. This evaluation
was performed on Aachen Day-Night, RobotCar Seasons, and CMU Seasons
datasets, consisting of approximately 80,000 query images.

3.2 Microsoft HoloLens Localization

HoloLens is a mobile headset augmented reality (AR) device. This work
uses data obtained from the first generation HoloLens. In default mode, the
headset only provides access to the main RGB photo-video camera. Upon
activating the research mode, users gain access to sensor streams and sensor
poses [30]:. 4 visible light tracking cameras, gray-scale (used for localization and

building of the map of the environment). 2 depth streams - short-throw depth stream is used for tracking hands
and hand gestures (viewing distance is 0-0.8 m [31]), while the long-throw
depth stream is used for obtaining depth data from the environment
(0.8-3.5 m [31]) (utilized in spatial mapping). 2 infra-red-reflectivity streams - similar to depth sensors, two versions of
the sensor are: short-throw and long-throw

The overview of sensor field-of-view and their overlap is described in [31].
The visualization is in fig. 3.1.
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............................ 3.2. Microsoft HoloLens Localization

Figure 3.1: HoloLens sensors, their placing, and view described by [31].

However, this mode can be used for research purposes only, and applications
using it cannot be deployed into the Windows Store as it can be misused.

HoloLens tracking performs well in ideal conditions, however, some en-
vironmental conditions need to be taken into consideration [32]. Since the
device uses visible light cameras to track location, light plays an important
role. When it is too light or too dark, cameras cannot see anything, and the
device may get lost. A similar situation may occur when there is a change in
lighting (coming from bright light to dim light or going in the same location
during different seasons), it may confuse the device. HoloLens’ localization
performance is also influenced by the appearance of the environment. The
device uses features (unique landmarks) to locate, so when the user is in a
featureless environment or some same features are repeated (same images on
a wall in a hall or the same furniture in offices), the device tends to get lost
or thinks it is in a different location. Even when there are a lot of features
in the environment, HoloLens cannot localize if they constantly move or
change since there are no stable points to locate against. Objects that are
too close to the device (15 cm and less) or even blocking one or more of the
tracking cameras, as well as highly reflective surfaces, may lead to problems
in localization. Lastly, the device links the map data with a Wi-Fi fingerprint,
so without Wi-Fi, the headset may take longer to localize initially, or it may
not recognize the place if the fingerprint has changed.

In [31], the authors focused on evaluating HoloLens localization indoors
in several different aspects. First, they examined the noise and accuracy of
the depth data. During this experiment, the device was lying on a still stand
facing a white wall. Gradually, they tested whether the device’s temperature,
distance from the wall, and inclination impacted the depth data accuracy.
The first experiment showed that the depth value changed by 6 mm while
warming up when running. The next test revealed that for the distance
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Figure 3.2: Closed trajectory from [31] showing the error caused by accumulated
drift on HoloLens.

of the wall lower than 2.5 m, the sensor noise stays below 5 mm, from 2.5
m upwards, the noise increases up to 1 cm. The inclination changes cause
noise below 5 mm for angles below 20 degrees and up to 1 cm noise at 80
degrees. Next, the authors looked into HoloLens tracking ability. They used
a motion capture system (OptiTrack Prime 17W) to track the device and
get ground truth data. They evaluated the accuracy of the tracking on one
room scale and on a large (one floor) scale. HoloLens tracking can have up
to approximately 1.6 ± 0.02 cm and 2.2 ± 0.3 degrees drift per second. This
drift can lead to large errors, for example, during the evaluation of tracking
for a trajectory long 287 m, where the accumulated error caused by drifting
equals 2.39 m (fig. 3.2).

Paper [33] explores other ways of localization using HoloLens, ArUco marker
based localization. Their method is used to overlay the indoor environment
with a virtual room-scale model, thus augmenting the room. The accuracy is
then measured by placing other “control” markers in the room and adding
squares in the virtual environment where they should be located. During the
testing, they took 15 images from 7 points of view (105 images in total) in
a room of the dimensions of 8 m×5 m×3 m. The error is then defined as a
spatial deviation between the corners of the marker and the virtual square.
The mean error is 2.3 cm, while the distance values range from 2.0 cm to 2.5
cm. However, the poses of markers have to be known in order to localize, and
it is not suitable for a large-scale localization.

The last related work to be mentioned is [34]. This paper explores indoor
localization for AR devices, using point clouds and building information
modeling (BIM). BIM is a digital representation of a building (3D model
or a point cloud usually), and if it is accurate enough, it could be used for
localization. The authors reduce the point cloud data dimensionality to 2D
and use a floor-plan matching algorithm. The estimated error over point
clouds from this method is about 10-20 cm in the horizontal (xy) plane and
1-5 cm in the ground estimation for HoloLens. The overall localization error
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..............................3.3. Dense point cloud alignment

was observed to be smaller than 0.5 m and 5 degrees.

3.3 Dense point cloud alignment

There are many point cloud alignment methods available and explored. This
section will look at some of the widely used methods as well as recently
published methods used later in this work.
The first method to mention is Procrustes analysis [35]. Procrustes analysis
compares two sets of points and tries to align one to the other. The alignment
is done by calculating centroids, i.e., mean and variance of both point clouds
and align them using translation, rotation, and scale.

Another approach is a robust model estimator utilized for aligning point
clouds. It is called Random Sample Consensus (RANSAC) [8]. It
is based on uniformly and randomly subsampling point feature descriptor
correspondences. Then, for each sample, the transformation parameters are
computed. After that, resulting alignments are evaluated on full data for all
computed transformations. The transformation that fits the best results on
specified criteria (like inlier count) is chosen as the best estimate. RANSAC
is widely used, and new alignment methods based on it are often introduced.
Some recent methods to mention are MAGSAC [36] and NAPSAC [37] with
its recent modification - Progressive NAPSAC [38].

Iterative Closest Point (ICP) [39] is a method for fitting two point clouds
based on an iterative least-squares approach. For each point, the algorithm
finds its nearest neighbor from the second point cloud. For this set of pairs, it
then determines their transformation, transforms the point cloud, and repeats
this process until it converges to a desired result. This method converges to a
locally optimal alignment, which may not be ideal when considering possible
noise or low point cloud overlap. Robust ICP (R-ICP) [6] is an approach
focusing on this problem. It is a robust implementation of the Iterative Closest
Point algorithm. Authors propose a new robust error metric that makes ICP
perform well on challenging datasets which are noised or overlap only partially.

TEASER++ [9] stands for "truncated least squares estimation and semi
definite relaxation". TEASER++ is used to align point clouds. It requires
point correspondences on input. The method decouples scale, rotation, and
translation using invariant measurements and uses truncated least squares to
solve them. The scale is estimated using adaptive voting, rotation is estimated
by semi definite relaxation, and translation is again estimated by adaptive
voting. The authors report observed average error of 7 cm and 4 degrees on
pose estimation on the 3DMatch dataset.

Fully Convolutional Geometric Features (FCGF) [7] is a method used
to calculate point cloud features. FCGF uses a 3D fully-convolutional net-
work to estimate feature vectors describing the local neighborhood of each
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3. Related work.....................................
point. The network needs either an existing pre-trained model or training on
specific data. The features obtained by FCGF can be used to find similar
points, i.e. correspondences, in multiple point clouds. The RANSAC-based
model estimator can then estimate the Euclidean transformation from these
correspondences. Thus this method is later used in this work paired with two
other feature matching methods (RANSAC, as it has been used in the paper,
and TEASER++). It has been observed that approximately in 95% of cases,
point clouds align within 10 cm and 5 degrees error on the 3DMatch dataset.

Overlap PREDATOR [10] is a model for pairwise point cloud registration
specialized in point clouds with low overlap, i.e., ≤ 30% overlap. Interest
points of the point clouds are sampled, and their local neighborhood is de-
scribed by feature descriptors. PREDATOR utilizes FCGF descriptors that
are matched to establish correspondences. The rotation and translation are
then estimated by running RANSAC estimator. As PREDATOR focuses on
low overlap point clouds, it focuses on sampling interest points mostly in
overlapping areas. It has been shown that PREDATOR aligns point clouds
from the 3DMatch dataset with an average error of 8 cm in translation and 5
degrees in rotation.

Figure 3.3: Example of alignment of point clouds with low overlap by PREDA-
TOR shown in [10].
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Chapter 4
Dataset acquisition

As far as we know, there is no suitable dataset for localization of Microsoft
HoloLens. This chapter describes the software and interface for recording
RGB-D data. It summarizes and evaluates the format of a recording and
aligning of its camera poses to camera poses recorded by Vicon motion capture
system [12]. Since the Vicon marker poses are obtained for both, HoloLens
data and Matterport model, both coordinate systems are converted to Vicon
coordinate system. In the following section, we describe the coordinate
systems, used transformations and its accuracy.

4.1 Matterport map

The Matterport scan can be obtained by several devices. We employed the
Matterport Pro2 scanner [11]. The scan is represented as a colored point
cloud.

The scanned room (laboratory B-315) is equipped by ArUco markers
attached on the floor (see fig. 4.3). We aligned the Matterport coordinate
system by manually measuring 8 of these markers in both coordinate systems
(Vicon and Matterport) fig. 4.1. The corresponding measurements were
aligned by the procrustes method.

To validate its accuracy, we used the cross-validation gradually leaving out
1 to 4 points. The omitted points were used to measure the error (i.e. the
Euclidean distance to corresponding points) and the rest for the alignment
itself. Results of this experiment can be seen in fig. 4.2.

Note that we can observe in the histogram fig. 4.2 that there are two main
clusters of errors. To further inspect this observation, the errors for 4 points
alignment over all point combinations were plotted. The points used for
alignment are highlighted, see fig. 4.3. These results imply a large relational
error between 5th and 6th point.
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4. Dataset acquisition ..................................

Figure 4.1: Matterport markers and colored point cloud converted to Vicon
coordinate system.

Figure 4.2: Matterport to Vicon coordinate system alignment errors in mm
when gradually leaving out 1, 2, 3, 4 points out of 8 correspondences used for
the alignment.

(a) : Alignment errors using 4 points to align. (b) : Error of 5th and 6th points.

Figure 4.3: Observed errors of Matterport to Vicon coordinate system alignment.
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............................... 4.2. HoloLens data acquisition

In conclusion the Matterport scan is transformed to Vicon coordinate
system with the accuracy between approximately 5-35 mm.

4.2 HoloLens data acquisition

We employed the first generation of HoloLens in this work. This AR device
is equipped with four gray-scale “environment understanding” cameras (also
called “visible light” cameras), one time-of-flight camera (capturing short
throw and long throw depth and reflectivity frames) and a RGB camera called
the “photo-video” camera. Streams from these sensors can be obtained by the
HoloLensForCV example project [40]. We modified HoloLensForCV so that
the photo-video camera captures images in the 1344×756 resolution, 15 fps,
and 67 degrees field of view. The visible light cameras are synchronised with
the photo-video camera. The resolution of visible light cameras is 448×450.
The depth sensor uses the same resolution as visible light cameras and its
frequency is 1-3 fps.

Each recorded stream of data includes a file (.csv file) containing camera
poses, timestamps, frame names and matrices for conversion from camera
coordinate system to world coordinate system.

The photo-video camera frames are obtained in a .ppm file format, i.e. as
a software bitmap in raw BGRX pixel mode. We evaluated the conversion of
them to PGM pixel format on the HoloLens device. However, it caused a sig-
nificant bottleneck and thus the conversion was left to the post-recording step.
This is resolved offline using python Pillow library for image manipulation.
The images are converted to .jpg files.

The visible light camera frame is saved as a .pgm file. It has one gray-scale
channel of data, so the saved raw data is displayed correctly so the image
does not required any conversion. However the frames acquired are rotated
by 90 degrees. The rotation is fixed again by using Pillow python library.

The depthmap is obtained in .pgm format with values g(u, v) ∈ R in range
from 0 to 65535, where each pixel is realized by a tuple (u, v). The Microsoft
API provides an undistortion hashing table h(u, v) ∈ R3 that realizes the
transformation from distorted pixels to undistorted ones [u′, v′, 1]⊤. Values
from a depthmap can be then transformed to points in camera coordinate
system by:

X(u, v) = h(u, v)g(u, v)
||h(u, v)||2

(4.1)

To transform HoloLens coordinate system to Vicon coordinate system,
Vicon markers were attached to HoloLens headset (fig. 4.4). The recording
session was started on HoloLens and Vicon at approximately the same time.
Using this approach we acquire HoloLens camera poses with timestamps at
frequency 15 fps and Vicon poses with timestamps at 100 fps. Vicon poses are
then considered ground truth which is used later to obtain HoloLens ground
truth poses. To obtain these poses, we discuss the time synchronization,
Vicon to HoloLens translation and drift optimization in the next sections.
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Figure 4.4: Vicon markers attached to HoloLens.

To use HoloLens camera poses for building a database for HLoc. The
database is build upon an SfM 3D reconstruction, so HoloLens poses are
converted to COLMAP camera model definition. Rotation Qk,i of i-th camera
is transformed as follows. Where i realizes the id of the camera and k
represents the k-th image taken.
The photo-video camera rotation equals:

Qk,1 =

1 0 0
0 −1 0
0 0 −1

 Q′
k,1 (4.2)

where i = 1 stands for the photo-video camera. All the other j-th camera
rotation matrices are:

Qk,j =

0 1 0
1 0 0
0 0 −1

 Q′
k,j where j = {2, 3, 4, 5, 6} (4.3)

and j stands of visible light and depth cameras. The matrix Q′
k,i is calculated

as:
Q′

k,i = A(k,i)
D2OA(k,i)

C2D (4.4)

Both matrices, A(k,i)
D2O and A(k,i)

C2D, are further notated without the (k, i) index
if clear from context. They are stored in the .csv recording file provided by
the HoloLens API.

4.3 HoloLens data alignment to Vicon

This section describes the transformation from HoloLens coordinate system
to Vicon coordinate system. HoloLens cameras and Vicon tracking are
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not synchronized in time which leads to a requirement of a post-processing
synchronization task. It is also known, that HoloLens is prone to localization
drifts (2.39 m per 287 m trajectory). Moreover, Vicon tracking system
sometimes confuses the marker ids and switch them, causing a tracking
error. The following text describes several methods, that solve individual
challenges and we use them for HoloLens alignment to Vicon coordinate
system. The whole process is visualized in fig. 4.5. Robust ICP [6] (later
called R-ICP) is used to roughly align HoloLens camera poses with Vicon
poses. Then the outliers in Vicon tracks are filtered out. Finally, an objective
function is optimized in order to find accurately transformation parameters
aligning HoloLens to Vicon coordinate system. Three objective functions of
the optimization are explored. We also evaluated fine-tuning of camera poses
by using R-ICP [6] on depthmaps to Matterport point cloud alignment.

Figure 4.5: Scheme of the alignment pipeline. First, we get a roughly aligned
HoloLens poses to Vicon coordinate system by R-ICP, then we filter out outliers.
Then we minimize the objective function for fine alignment. Lastly, final fine-
tuning options are explored (mean error correction and R-ICP alignment on
point clouds). The color frames are representing the color of the residuals in
following figures 4.10, 4.11.

4.3.1 Approximate R-ICP alignment

The HoloLens camera poses and Vicon marker poses are temporally and
spatially unaligned “at the beggining”. We want to roughly align HoloLens
and Vicon trajectory both, temporally and spatially (step 1) in fig. 4.5).
Camera poses from HoloLens photo-video camera, visible-light cameras and
the depth camera are taken into consideration. We are looking for a global
optimum of the alignment and R-ICP does not guarantee to converge to it,
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Figure 4.6: Timestamps of the depth camera and the PV camera.

as it may converge to a local optimum. For this reason, all camera poses are
randomly rotated 100 times before running R-ICP to robustify the alignment
estimate. The Euclidean transform with the lowest nearest neighbour distance
between transformed camera centers and Vicon markers is chosen. This is the
approximate alignment, because the Vicon outliers and translation between
centers of Vicon markers and HoloLens cameras are not considered here.

4.3.2 Outlier filtering

As it has been mentioned before, Vicon is prone to switching markers, when
they get too close together. To consider this possibility happening in our
tracks, we are filtering out possible errors before fine-tuned alignment (step
2) in fig. 4.5). We have found the outliers by using k-means on distances
between Vicon markers and HoloLens camera centers. We select the cluster
with smaller Euclidean distance. The distance threshold was found and used
to filter out the presumed outliers. Then we ran the approximate R-ICP
alignment again on poses without outliers.

4.3.3 Objective function

We want to achieve even more accurate camera poses by aligning HoloLens
depthmaps to Matterport map in Vicon coordinate system. Since the camera
poses and Vicon trajectory are roughly aligned, we can focus on local sur-
rounding of depthmaps in Vicon coordinate system and optimize the distance
between point cloud from Matterport and from HoloLens (step 3) in fig.
4.5). This can be achieved by R-ICP. However applying this approach to
photo-video camera poses may impose further pose deviations because the
depth sensor is not synchronized with other cameras, see fig. 4.6.

The framerate of HoloLens sensors is irregular. The most significant
variance of the framerate has the depth sensor. This leads to the challenge
that constant framerate cannot be assumed in any alignment calculations.
Instead we use time steps obtained from subtracting first timestamp of
HoloLens photo-video camera from all HoloLens timestamps. The objective
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function transforming HoloLens poses to Vicon coordinate system can be
described as follows.
We assume:. τ ∈ R - is the difference between the current frame and the first frame

timestamp. We use directly the relative time of HoloLens capture w.r.t.
the first timestamp instead of the multiple of 1/framerate.. β ∈ R - time shift that realizes the synchronization offset of timestamps
w.r.t. of Vicon to HoloLens timestamps. γ ∈ R - we denote γ = τ + β for brevity. vγ,i ∈ R3 - realizes Vicon markers shifted into HoloLens camera positions
in Vicon coordinate system. hk,i ∈ R3 - stands for HoloLens camera positions transformed to Vicon
coordinate system. cγ ∈ R3 - origin of Vicon marker in Vicon coordinate system. Rγ ∈ R3×3 - the rotation of Vicon marker in Vicon coordinate system
captured in time γ. ti ∈ R3 - translation between Vicon marker and position of i-th HoloLens
camera in Vicon coordinate system. ρ ∈ R - is a scalar that realizes the scale w.r.t. the Vicon coordinate
system to HoloLens coordinate system. S ∈ R3×3 - stands for the rotation of the HoloLens coordinate system to
the Vicon coordinate system. ek,i ∈ R3 - realize the k-th center of i-th camera in HoloLens coordinate
system. d ∈ R3 - is the origin of HoloLens coordinate system in Vicon coordinate
system.

Known variables are: cγ , Rγ , ek,i and these parameters are unknown and to
be optimized: ti, ρ, S, d.
Vicon to ground truth camera pose transformation is:

vγ,i = cγ + R⊤
γ ti (4.5)

HoloLens to Vicon camera position transformation equals:

hk,i = 1
ρ

S⊤
k,iek,i − d, ∀k = 1, .., K (4.6)

where K is the number of HoloLens camera positions. In ideal conditions,
the difference between these position equals zero. Thus, we are optimizing
the function:

fγ,i = vγ,i − hk,i. (4.7)
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Figure 4.7: Graphical interpretation of eqn. (4.5), (4.6), i.e. the description
of the transformation from HoloLens coordinate system to Vicon coordinate
system. In practise, because of a irregular HoloLens framerate, the timestamp is
substituted by τ . Which means that we use time steps obtained from subtracting
first timestamp of HoloLens photo-video camera from all HoloLens timestamps.

In the fig. 4.8 both function responses, i.e. the initial and optimized are
shown. We are minimizing the following function:

argminti,ρ,S,d,β(
∑

(∥fγ,i∥2) + 10(∥ti∥ + ∥d∥)) (4.8)

We expect that the values of t and d are small, because they represent a
translation in the order of centimeters (from Vicon marker origin to HoloLens
camera center).

The function value is optimized over β from 0 to 100 to determine the best
time shift. The best β is determined to be 57. In Figure 4.9 are presented
examples of aligned cameras with HoloLens after tuning, using the best β and
the parameters optimized for this β. To determine wherever it is beneficial to
use d in the objective function, the optimization is evaluated for the objective
function with and without d (steps 3.1) and 3.2) in fig. 4.5). Thus the
redefined objective function:∑

(∥f ′
γ,i∥2) + 10∥ti∥. (4.9)

where
f ′

γ,i = cγ + R⊤
γ ti − 1

ρ
S⊤

k,iek,i (4.10)

4.3.4 Three-step optimization

We know that HoloLens have a drift error. To remove HoloLens shift and
rotation drift a “three-step” optimization is examined (step 3.3) in fig. 4.5).
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In first step, the following parameters are optimized: ti, ρ, S. Then we fix
these parameters and optimize the objective function fγ,i′ (in eqn. 4.10) with
HoloLens camera poses ek,i as parameters. Lastly, the same parameters as
in the first step are optimized. We assume the values of optimized ti are
approximately equal to those in first pass if the right β was found. Moreover
the drift of HoloLens cameras should follow Gaussian distribution. The three-
step optimization is implemented in MATLAB. However, we found out that
the calculations are running slowly (approximately a day long calculation for
one β), so a full evaluation was not performed.
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Figure 4.8: Graph of the objective function values dependent on β.

4.3.5 Mean error correction

Taking into consideration that HoloLens have a tracking error, we tested
improvement of our results by using a mean error correction ϵ (steps 3.1.2),
3.2.2) and 3.3.2 in fig. 4.5). Distances between aligned HoloLens camera
poses from Vicon poses were calculated and then used the mean of these
distances in the calculations (by transforming HoloLens poses by this mean
distance, eqn. 4.11).
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Figure 4.9: Example of HoloLens PV camera and depth (long throw depth)
sensor aligned with Vicon. Aligned HoloLens cameras are purple, unaligned
HoloLens are yellow, Vicon is green, and blue are the Vicon markers shifted by
ti to HoloLens. Red lines represents the errors between aligned HoloLens and
Vicon.

4.3.6 Point cloud alignment

Finally, the HoloLens point clouds from depthmaps are transformed by the
same transformation as HoloLens camera poses to Vicon markers origin.
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For each point cloud obtained from k-th depthmap Xk the recording, i.e.
file, contains two matrices, i.e. AD2O and AC2D, describing the recorded
transformation to the world coordinate system. The point cloud transformed
to Vicon is:

XVk
= 1

ρ
PS⊤R⊤

iiAD2O AC2D Xk − d′ + RV t + ϵ (4.11)

Where ρ is a factor of the Vicon vectors to be mapped onto HoloLens
vectors, P is transformation matrix obtained from Robust ICP [6], i.e. rough
transformation of HoloLens to Vicon coordinate system, S is rotation from
Vicon to HoloLens coordinate system, Rii is the random rotation used for
better convergence of R-ICP, d′ is d when considering dV for optimization
or a zero vector otherwise (d is the origin of HoloLens coordinate system in
Vicon coordinate system), RV is rotation from Vicon coordinate system to
Vicon markers coordinate system, ti represents the translation between Vicon
marker and i-th camera centers of HoloLens expressed in Vicon coordinate
system. It differs depending on each camera (as they have a different position
on the headset). If we would consider a rig of cameras, there would be
the same ti for all sensor streams. However since the streams are not all
synchronized and differ in framerate (namely the depth sensor), we do not
consider it as a rig of cameras. The correction ϵ represents the shift between
HoloLens camera centers and the Vicon markers (the errors in figure 4.10 ).
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Figure 4.10: Distances between all aligned HoloLens camera centres and Vicon
marker origins. The histogram can be seen in appendix B, stair graph was
synoptical.

Each resulting point cloud XVk
is then aligned to Matterport scan by R-

ICP (steps 3.1.3), 3.2.3), 3.3.1) and 3.3.3) in fig. 4.5). To measure distances
between both point clouds the mean of nearest neighbors is used, all distances
can be seen in fig. 4.11. The best result seems to be the best result of the
tuning process (tuning without d + mean error correction + R-ICP), where
each point cloud was aligned by R-ICP individually.

For point cloud alignment all transformed depthmaps from HoloLens are
merged into one and then hashed (we multiply all points by 100, round them,
take only the unique ones and divide them by 100). We can not align the
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4. Dataset acquisition ..................................
HoloLens depthmap to the whole Matterport model. We make a rough cutout
of the Matterport model around the roughly aligned HoloLens depthmap.
The Matterport point cloud is subsampled as well. This leads to different
number of points in point clouds for each of previously mentioned optimization
methods. To give the most objective results, all resulting nearest neighbour
distance graphs (fig. 4.11) are normalized by using the value of the bin equals
to occurrence/sum(occurrences).

Figure 4.11: Distances between aligned HoloLens point clouds and Matterport
point cloud. (Note that the number of points in point clouds differ as point
clouds are being cut accordingly to the rough alignment. Thus the histograms are
normalized by the number of points aligned. Histogram can be seen in appendix
A.

However, after detailed inspection some point clouds converged to a local
minimum that is not ideal, see fig. 4.12. This state occurred most likely
because there are dynamic objects in the environment that changed between
Matterport map and HoloLens depth data acquisition. The next best result
in fig. 4.11 amongst all presented distances is when using tuning without d
with mean error correction and R-ICP on the whole sequence. Thus, several
approaches lead to similar accuracy (expressed as a distance between nearest
neighbours of the reconstructed point clouds). Therefore, we assume found
camera poses by fine-tuning without d and with mean error correction and
R-ICP (the path ending in step 3.2.3) in fig. 4.5) as the ground truth.
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........................... 4.3. HoloLens data alignment to Vicon

Figure 4.12: Examples of point clouds incorrectly aligned by R-ICP.
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Chapter 5
GUI

This chapter focuses on the implementation of graphical user interface
(GUI). The localization (HLoc) and alignment methods (R-ICP, FCGF +
TEASER++, PREDATOR, FCGF + RANSAC) mentioned in this thesis are
implemented as a node in Meshroom [41]. All the codes are available in the
scope of the GIT repository https://bit.ly/3ID9puj.

5.1 Meshroom

Meshroom is an open-source software focused on photogrammetry and 3D
reconstructions. Meshroom is published under the MPL2 license, i.e., the
codes are fully available and free to extend. Moreover, it allows checking of the
results and mid-results, building clear “graph-based” pipelines of connected
nodes (individual methods), storing the pipelines, setting the parameters
of individual methods and visualization of the pipeline in GUI. Meshroom
has been selected as a “primary” library for implementation of GUI of all
pipelines mentioned in this thesis.

Meshroom pipeline is represented as a directed oriented graph where nodes
represent methods. Inputs are arguments (or outputs from previous nodes),
see fig. 5.1. When running the pipeline, nodes are processed in sequential
order according to their connections. Nodes that are independent on each
other get processed in parallel. Pipeline is described by a JSON file containing
all nodes, parameters and connections.

Figure 5.1: Example of a Meshroom pipeline

Each node is implemented in Python as a class inheriting from the Mesh-
room Node class. For full documentation and list of all possible parameters
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5. GUI.........................................
see [42]. An example, the fig. 5.2 shows an ExampleNode implementation.
The category item describes under which list of nodes ExampleNode can
be found. The list of nodes is available when adding a new one in the GUI
pipeline. Our example node has two input parameters: one is a path to
file and the second is a choice parameter from 4 possible choices. The uid
variable for each parameter (output parameters included) describes whether
the value of this parameter plays a role while generating the hash name for
cache folder. The output file parameter can be defined by the user or as
the cache folder. The processChunk method contains code that is running
during the processing of the node.

In the scope of this thesis, we created these nodes:. HlocQueryComposer - to compose an HLoc localization query. HlocLocalizer- to run HLoc localization. DensePointCloudAligner - to align point clouds

5.2 HLoc localization pipeline

To ensure that all required dependencies for each localization and alignment
method are installed, every method is wrapped in a virtual container (Singu-
larity on Linux, Docker on Windows). All these containers are build by an
initialization script init.sh.

There are two nodes focusing on HLoc localization: HlocQueryComposer
and HlocLocalizer. The HlocQueryComposer node prepares a query file
required for HLoc localization. It’s input is a checkbox whether to use all
images in a directory. If so, the path to the directory is required as the
input. In the second case there is an array parameter for image paths. The
next parameter is a checker box to indicate whether all images are taken
by the same camera. This is used to either say that all images are from a
camera with the same intrinsic parameters or that each image was captured
by a different camera device. The camera intrinsics are in the form of an
array of parameters structure. For each intrinsics entry there are four fields:
camera model, width, height and parameters. The camera models are
defined as COLMAP format [43]. Last parameter is the path to the HLoc
map. The HlocQueryComposer node then composes the query file consisting
of image paths, and camera intrinsics. This file is stored in the cache folder.
The cache folder is then sent as a parameter to HlocLocalizer together
with a path to HLoc map. The HlocLocalizer node runs a localization
script in the container. The results are again stored in the cache folder of
HlocLocalizer in a text file (containing image names and camera poses).

5.3 Point cloud alignment pipeline

The node for aligning point clouds is called: DensePointCloudAligner. The
first parameter is an array of point clouds to be aligned. Next, we can
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............................. 5.3. Point cloud alignment pipeline

class ExampleNode(desc.Node):

category = "NodeCategory"
documentation = "Node documentation"

# Input parameters
inputs = [

desc.File(
name="fileInput",
label="File input",
description="Path to file input",
value="./file.txt",
uid=[0], # is used to generate cache folder path

),
desc.ChoiceParam(

name="choiceParameter",
label="Choice parameter",
description="Multiple choice parameter",
value="A",
values=["A", "B", "C", "D"],
exclusive=True,
uid=[],# not used to generate cache folder path
),

]

# Output parameters
outputs = [

desc.File(
name="output",
label="Output folder",
description="",
value=desc.Node.internalFolder,
uid=[],
),

]

# Code that gets executed while running the node
def processChunk(self, chunk):

pass

Figure 5.2: Example of a Meshroom node definition.

choose the method used to align point clouds (Concatenation, R-ICP, Overlap
PREDATOR, FCGF + RANSAC, and FCGF + TEASER++). Then follows
the alignment strategy, i.e. the order of point clouds alignments when
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Figure 5.3: HLoc localization pipeline.

there is more than two point clouds. The only implemented strategy so
far is the sequential one, where point clouds are sequentially aligned in
their input order, i.e., the current point cloud is aligned to the result of the
previous alignments. Another considered strategy would be a hierarchical
approach. However, it is not implemented in the scope of this work. Parameter
verbose level describes the amount of informational output in the terminal.
Lastly, sampling determines if and how point clouds should be sub-sampled.

Figure 5.4: Dense point cloud aligner node.

The implementation has been uploaded to a publicly available Git repository.
Nodes and pipelines were developed on Ubuntu 18.04.5 LTS, using Python
3.7.12.
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Chapter 6
Localization improvement

This chapter evaluates the state of the localization from images. The results
are further used as an initialization to methods improving the localization and
the approaches for the pose refinement using dense point cloud alignment.

6.1 The Hierarchical Localization method

For the evaluation of localization from images provided by Hierarchical
localization (HLoc) [5] the Matterport scan of a B-315 laboratory is used.
Note that this scan was performed earlier than the acquisition of the HoloLens
depth data. The scanner was not available later on again. This leads to a
possible source of errors in the localization as there is a number of dynamic
objects (boxes, chairs, robots, etc.) that changed its pose. The HoloLens
depth data is therefore not fully consistent with the Matterport scan.

The first map for localization is composed of dense point cloud from
Matterport scan and 800 images from each image sensor (i.e., photo-video
camera, and visible light cameras). Then 200 images for each sensor were
used to localize. As can be seen in fig. 6.1, more than 90% of images localized
with an error under 20 cm in translation and 5 degrees in rotation. Based on
these results the point cloud alignment methods will be evaluated on synthetic
data with errors from 0 to 20 centimeters in translation and 0 to 5 degrees in
rotation at first. The translation error is calculated as a distance between
ground truth camera pose and the aligned “approximate” camera pose. By
approximate camera pose, we assume the shifted and rotated ground truth
camera pose. The rotation error is calculated:

e = arccos(0.5(∆R − 1)) (6.1)

where
∆R = R⊤

GT Ra (6.2)

The RGT is the rotation matrix of ground truth camera pose and Ra is the
rotation matrix of the approximately camera pose.

The second map used for evaluation is realized by merging depthmaps of
HoloLens leading to a map of the laboratory without any dynamic objects.
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6. Localization improvement ...............................
This map is used to test the dense point cloud alignment methods on the
map composed from the same source of data, to see how much the source of
data influences the alignment. The HLoc map was calculated again using 800
images for each camera. The 200 images were employed for the localization.
Results (fig. 6.1) are close to the HLoc localization on Matterport map, which
leads to the same approach when evaluating point cloud alignment, i.e., the
testing shift of ground truth camera position is between 0-20 cm and 0-5
degrees.
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Figure 6.1: The Hloc localization accuracy. More than 95% of the camera poses
were localized within 20 cm and 5 degree distance threshold.

6.2 Point cloud alignment methods

This part is focused on evaluating the localization accuracy improvement
obtained by several methods. First, all alignment methods will be compared
on simulated data (distorted ground truth) according to the accuracy of HLoc
observed in fig. 6.1. The best performing method is further evaluated on real
data.
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.............................6.2. Point cloud alignment methods

Figure 6.2: Overview of the Hloc localization for each camera.

6.2.1 Testing alignment methods

To ensure that all alignment methods are suited for the goal of this work and
that they are working well on our acquired data, we run an alignment test on
several sequential depthmaps from HoloLens.

All methods were running on the same sequence, where the point clouds
are overlapping and no dynamic objects are present. The alignment was
performed on the first point cloud of the sequence, i.e., we align the (i + 1)-th
depthmap to the i-th depthmap. The results can be seen in table 6.1.

In our example, R-ICP can align the sequence up to the fifth point
cloud, FCGF + RANSAC method fails on the fifth one as well as FCGF
+ TEASER++. However, this may be caused by subsampling point clouds
due to memory consumption of the TEASER++ method. The last method
(Overlap PREDATOR) aligned the depthmaps up to the seventh one, failing
on the eighth one. This evaluation is only a check that all methods are
working well and that they are integrated into Meshroom correctly.

6.2.2 Simulated data

The simulated experiment uses the ground truth depthmaps from HoloLens.
The dataset consists of 193 point clouds of the B-315 laboratory. These point
clouds are moved with translation (from 0 up to 20 cm using 4 cm step) and
the rotation around random axis (from 0 up to 5 degrees with 1 degree step).
These approximate camera poses are aligned to the cutout of the Matterport
map and a map consisting of HoloLens depthmaps transformed into the point
cloud. Cutouts are cropped from the map by projecting the camera view
with increased field of view (by 5 degrees in all direction) to consider the
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Method Point clouds 0 and 4 Point clouds 0 and 6
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Table 6.1: Alignment results on a depthmap sequence out of the HoloLens
recording. We have shown that all the alignment methods work well if the source
of data is the same and they have a significant overlap.

possible error in rotation and with 1m longer viewing depth to consider the
translation error, see fig. 6.3.

The depth camera pose is calculated as mentioned before except the camera
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.............................6.2. Point cloud alignment methods

rotations are rotated around the X axis by 180 degrees since the HoloLens
cameras look in the negative Z axis direction. The depth frame field-of-view
is 60 x 54 degrees, for the alignment, we assume the field-of-view about 5
degrees larger in all directions. The desired field-of-view for point cloud
cutouts from Matterport map is 70 x 64 degrees, which is approximately 1.18
times larger. This coefficient (called k) is then used to calculate the desired
focal length and principal point for camera calibration matrix. The focal
length is then calculated depending on the horizontal and vertical field of
view (HF OV , WF OV ) and frame resolution (W x H):

fx = W

2 ∗ tg−1(HF OV

2 ) (6.3)

fy = H

2 ∗ tg−1(WF OV

2 ) (6.4)

The calibration matrix in then construed:

K =


fx

k 0 W
2 ∗ k

0 fy

k
H
2 ∗ k

0 0 1

 (6.5)

The camera defining pyramid, i.e, the corner points of the camera frame
projected into the world coordinate system that represent the plains of the
view frustum, is then transformed to world coordinate system. For all planes
of the view frustum (consisting of camera centre c, and two neighboring end
points of the frustum a, b). For all points (x) from a point cloud we check
that the determinant (|...| notes determinant) of the following 3x3 matrix is
positive (i.e, if points lie in the camera view frustum):∣∣∣∣∣∣∣

a1 − c1 b1 − c1 x1 − c1
a2 − c2 b2 − c2 x2 − c2
a3 − c3 b3 − c3 x3 − c3


∣∣∣∣∣∣∣ > 0 (6.6)

The depth sensor viewing distance is about 3.5 m [31]. To include the possible
error in localization the cut’s viewing distance is set to 4.5 m and all points
above this distance from the camera are ignored.
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5

0

-5
-4

Figure 6.3: Matterport (upper) and depthmap (lower) maps cutout example.
Purple point cloud is the map, green is the cutout of the map and blue is ground
truth depthmap from HoloLens assuming the camera pose.
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.............................6.2. Point cloud alignment methods

6.2.3 Alignment methods evaluation

In this section we evaluate the accuracy of alignment of 4 methods: R-ICP,
FCGF + TEASER++, FCGF + RANSAC and Overlap PREDATOR.

6.2.4 R-ICP

The first tested method is R-ICP [6]. It is publicly available under the MIT
license as a C++ library. Output of the R-ICP is a transformed point cloud
and a 4x4 transformation matrix. First, the accuracy of R-ICP alignment
was evaluated on HoloLens depthmaps and cutouts of Matterport scan. The
HoloLens depthmaps are shifted randomly in translation and rotation (as
has been described in section 6.2.2). As can be seen in figures 6.4 and 6.5,
shown errors follow closely similar (almost identical) pattern. As other values
of noise produce same results, only two examples have been included. Full
results can be seen in the appendix B.
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Figure 6.4: The alignment errors for R-ICP over all HoloLens point clouds
constructed with approximate camera poses on the Matterport map.

The same evaluation was also performed on cutouts of a map composed of
HoloLens depthmaps. This leads to alignment of two point clouds with no
changes in the environment and from the same source. It can be observed in
results 6.6, 6.7, that measured errors again follow very similar trends (full
evaluation in appendix B).
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Figure 6.5: Alignment recall for R-ICP over all HoloLens point clouds constructed
with approximate camera poses on the Matterport map.

Note that in previous evaluations R-ICP fails to align point clouds even with
no translation and rotation noise. As can be noticed in 6.8, The first case,
when R-ICP does not converge to the correct result is when there is not
enough distinctive features (floors, for example). The second case is when the
aligned point cloud misses some distinctive parts of the map. The alignment
is also influenced by the fact, that a larger field-of-view is considered for the
map cutout to include the same points that can be seen with any approximate
camera position.

In conclusion, we can see, that R-ICP performs better on a map composed
from HoloLens depthmaps.
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Figure 6.6: Alignment errors for R-ICP alignment over all translation noised
point clouds on a map composed from HoloLens depthmaps.
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Figure 6.7: Alignment recall for R-ICP alignment over all translation noised
point clouds on a map composed from HoloLens depthmaps.
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Figure 6.8: Examples of high error alignment by R-ICP, the initial state of point
clouds is on the left and on the right is the resulting alignment. In the first row,
the alignment fails because there are some objects on the map cutout that are
missing in the depthmap. The second and third row shows, that point cloud
with little to no objects in it is very likely to be aligned incorrectly.
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6.2.5 FCGF + TEASER++

The second tested method is FCGF [7] + TEASER++ [9]. The code of
TEASER++ is publicly available as C++ and Python libraries under the
MIT license. The Python library was used for this evaluation. The FCGF
+ TEASER++ method first runs FCGF to obtain feature descriptors for
both point clouds. We use a pre-trained model (ResUNetBN2C) provided
by the authors (that was trained on indoor datasets). FCGF output are
the feature descriptors for voxels of the point cloud so it requires a fixed
voxel size. In this experiment, the voxel size is set to 2.5 centimeters. These
descriptors are further compared to find tentative matches between a pair
of point clouds. Only the closest 100 tentative matches were considered
as input for TEASER++ alignment method. We selected the points with
closest descriptors as tentative matches. When TEASER++ got point clouds
created from all tentative matches, it would run out of memory and get killed
by the operating system. According to the authors, the problem is "due
to the algorithm of generating the compatibility graph, with the memory
consumption of O(N2)." [44]. Since there are approximately between 20 to
30 thousand correspondences the computer runs out of memory. We faced
this challenge by chosing only mutually closest descriptors from tentative
matches as the input of TEASER++. Further, we formated the point
cloud correspondences into the required format, i.e., TEASER++ assumes
correspondences between two point clouds to be at the same row in the
aligned .ply files.

We can see in the alignment results (fig. 6.10, 6.11, 6.12, 6.13) errors are
high and only a small fraction of point clouds get aligned correctly. This is
caused by using only mutually nearest features. For both point clouds there
are approximately only 100 mutually nearest features (see fig. 6.9). If the
detected features are incorrectly paired, TEASER++ will not align the point
clouds correctly.

Figure 6.9: Examples of only mutually nearest feature descriptors from FCGF,
features considered for alignment are red and green.
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Figure 6.10: Alignment errors for FCGF + Teaser++ over all translation noised
point clouds on the Matterport map.
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Figure 6.11: Alignment recall for FCGF + Teaser++ over all translation noised
point clouds on the Matterport map.
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Figure 6.12: Alignment errors for FCGF + Teaser++ over all translation noised
point clouds on the depthmap map.
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Figure 6.13: Alignment recall for FCGF + Teaser++ over all translation noised
point clouds on the depthmap map.

6.2.6 FCGF + RANSAC

The third tested method is FCGF[7] + RANSAC. The FCGF describe the
point cloud as in the previous section. RANSAC is performed on obtained
tentative matches and estimate the similarity transformation from minimal
sample of correspondences. Unlike Teaser++ we can consider all candidate
features, not only mutually nearest ones. RANSAC implementation used in
this thesis is the MATLAB implementation of MLESAC [45] which chooses a
solution based on the likelihood rather than the number of inliers. Results of
this alignment method can be seen in fig. 6.14, 6.15, 6.16, 6.17.
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Figure 6.14: Alignment errors for FCGF + RANSAC over all translation noised
point clouds on the Matterport map.

6.2.7 Overlap PREDATOR

The last tested method is Overlap PREDATOR. Overlap PREDATOR is a
model for pairwise point cloud registration specialized in point clouds with
low overlap (≤ 30% overlap). PREDATOR focuses the sampling of tentative
matches to overlapping areas. The code is publicly available under the MIT
license [46]. The library is written in Python using Pytorch and CUDA. The
pre-trained model for indoor scenes is being used in our evaluation. The
output from the PREDATOR alignment is a 4x4 transformation matrix. It
has been observed that this method does not behave consistently and for the
same input we get varying results (fig. 6.18). We found out that it is caused
by PREDATOR running RANSAC as the last step to estimate similarity
transformation from selected tentative matches from overlapping areas. The
version of RANSAC used is the open3d version [47].

We tested the alignment by PREDATOR on all noised data and both maps,
i.e., Matterport and HoloLens. We can see (in fig. 6.19, 6.20, 6.21, 6.22 ),
that PREDATOR does not produce reliable results.
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Figure 6.15: Alignment recall for FCGF + RANSAC over all translation noised
point clouds on the Matterport map.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Translation error [cm]

0

1

2

3

4

5

6

7

8

9

10

O
cc

ur
en

cy

Translation error for rotation: 0 degrees, FCGF + RANSAC, Depthmap map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Translation error [cm]

0

1

2

3

4

5

6

O
cc

ur
en

cy

Translation error for rotation: 5 degrees, FCGF + RANSAC, Depthmap map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Rotation error [degrees]

0

2

4

6

8

10

12

14

16

18

20

O
cc

ur
en

cy

Rotation error for rotation: 0 degrees, FCGF + RANSAC, Depthmap map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Rotation error [degrees]

0

2

4

6

8

10

12

O
cc

ur
en

cy

Rotation error for rotation: 5 degrees, FCGF + RANSAC, Depthmap map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

Figure 6.16: Alignment errors for FCGF + RANSAC over all translation noised
point clouds on the depthmap map.

44



.............................6.2. Point cloud alignment methods

0 10 20 30 40 50 60 70 80 90 100

Error [cm]

0

5

10

15

20

25

30

35
O

cc
ur

en
cy

 [%
]

Translation recall for rotation noise 0 degrees, FCGF + Ransac, Depthmap map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 10 20 30 40 50 60 70 80 90 100

Error [cm]

0

5

10

15

20

25

30

O
cc

ur
en

cy
 [%

]

Translation recall for rotation noise 5 degrees, FCGF + Ransac, Depthmap map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 5 10 15 20 25 30 35 40 45 50

Error [degrees]

0

5

10

15

20

25

30

35

O
cc

ur
en

cy
 [%

]

Rotation recall for rotation noise 0 degrees, FCGF + Ransac, Depthmap map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 5 10 15 20 25 30 35 40 45 50

Error [degrees]

0

5

10

15

20

25

30

O
cc

ur
en

cy
 [%

]

Rotation recall for rotation noise 5 degrees, FCGF + Ransac, Depthmap map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

Figure 6.17: Alignment recall for FCGF + RANSAC over all translation noised
point clouds on the depthmap map.

6.2.8 Localization fine-tuning

As the last step, we choose the best performing method and run it on the
real camera poses obtained by HLoc on our validation dataset. Based on
the previous evaluation, the R-ICP method is chosen as the best fine-tuning
method. Its runtime is the fastest, and outputs are the most reliable out of
all evaluated methods.

At first, HLoc localization runs on 200 images from the photo-video cam-
era. Then, for each of the image camera poses, we consider the depthmap
temporally closest, i.e., the depthmap with the closest timestamp to the
query image timestamp. The depthmap is then transformed by found camera
extrinsics by HLoc to the Vicon coordinate system. The approximate camera
pose is further fine-tuned by R-ICP (both Matterport map and depthmap
map are tested as the map of the environment). The transformation from the
alignment is then applied to obtained poses. It can be see (fig. 6.23), that
on our dataset the fine-tuning does not improve the localization accuracy.
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This may be due to two things. First, the photo-video camera and the depth
sensor are not synchronized. This leads to additional errors. Second, R-ICP
aligns approximately 60% point clouds within 5 cm and 5 degrees. This may
be caused by depth data from HoloLens not being accurate enough. We can
also see the influence of using the map composed from different sources, i.e.,
the Matterport instead of HoloLens depthmaps. Aligning of the depthmaps
to Matterport scan works much worse than aligning to the map realized by
depthmaps.
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Figure 6.18: Results of HoloLens and Matterport point clouds alignment by
PREDATOR several times with same pair of point clouds and same parameters,
each time the alignment gave a different result.
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Figure 6.19: Alignment errors for PREDATOR over all translation noised point
clouds on the Matterport map.
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Figure 6.20: Alignment recall for PREDATOR over all translation noised point
clouds on the Matterport map.
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Figure 6.21: Alignment errors for PREDATOR alignment over all translation
noised point clouds on a map composed from HoloLens depthmaps.
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Figure 6.22: Alignment recall for PREDATOR alignment over all translation
noised point clouds on a map composed from HoloLens depthmaps.
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Figure 6.23: Localization recall before (left) and after (right) fine-tuning by
point cloud alignment.
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Chapter 7
Conclusion

Most modern smartphones can be treated as AR devices if an accurate
localization is available. Current techniques of the localization from images
perform well in an environment rich in textures and distinctive image features.
However, texture-less areas with repetitive structures are still challenging,
which was observed in the scope of the related EU H2020 grant ARTwin. The
localization of images from the construction site or a factory setting is tricky.

The purpose of this thesis was to investigate if the data from the depth
camera improves the accuracy of found camera poses from RGB images. All
the relevant literature is summarized for this task, and related datasets are
reviewed. Because of the lack of a ground truth dataset consisting of RGB-D
images with known camera poses and accurate dense point cloud realizing
the map, we collected, described, and published one. Based on this dataset,
several recent methods for dense point cloud alignment (i.e., the alignment of
the AR device depthmaps with the environment map) using the rough pose
estimate from image-based localization were tested. In detail, we tested the
HLoc localization together with the dense point cloud alignment methods
R-ICP, FCGF + TEASER++, FCGF + RANSAC, PREDATOR. Moreover,
we wrapped all the tested methods into containers and implemented the
graphical user interface to simplify the repeated use and parameter tuning of
all the proposed techniques and experiments.

The conclusion is that we were not able to improve the localization accu-
racy for several reasons. The first one is related to the ground truth data
composition. There are several challenges we faced, i.e., the camera images
captured by the HoloLens device are not temporally synchronized, Vicon
tracking system gets lost if multiple markers are tracked at the same time, and
Matterport map was recorded at different time, which incorporated dynamic
objects in the map. We evaluated a list of algorithms, robust estimators,
and optimizations of different objective functions to recover the ground truth
HoloLens camera poses. However, there is still space for improvement. Be-
cause of the non-trivial challenges and limited accuracy of the Matterport
map, the ground truth camera poses are loaded with an error in small units
of centimeters. The second reason is that we did not have a technology for
accurate localization (i.e., the composition of the ground truth camera poses
and related RGB-D images) in the places of interest, e.g., the corridors of a
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7. Conclusion......................................
factory or the construction site. We captured the HoloLens recordings of these
environments, but any accurate tracking service (like Vicon) is unavailable
there. Thus, the problem of collecting ground truth data becomes even more
challenging. On the opposite side, evaluating our methods allows understand
this yet not investigated task even more deeply. For example, the experiments
show that FCGF point cloud descriptor is highly sensitive to the source of
data, e.g., the point cloud from a depthmap has different descriptors than the
point cloud of the same area from the Matterport scanner. The same holds
(not as strictly as in the previous example) even if we assume the alignment
of the depthmap to the map composed of depthmaps, i.e. when the map is
composed of multiple depthmaps while localization assumes only one and the
point density differs.

The interesting output of this thesis is also a list of research ideas that
appeared during the evaluation. For example, the camera pose fine-tuning
should be improved if the FCGF descriptor is retrained to our use-case
depthmaps and point clouds. The recent method PREDATOR finds overlap-
ping regions by GNN (if the FCGF descriptors are consistent). However, an
old implementation of RANSAC for robust Similarity transformation estima-
tion on top of these correspondences is employed. Moreover, we observed that
the performance of TEASER++ would be improved if the point cloud size,
i.e., the number of correspondences between two point clouds, is small. This
may be achieved by initialization of the TEASER++ by correspondences
provided by PREDATOR. The same question remains open for the R-ICP,
where better initialization, i.e., the selection of overlapping points, plays a
crucial role.

To summarize, we investigated the topic of camera pose fine-tuning by
captured depthmaps. Composed a new challenging dataset and evaluated a
list of recent dense point cloud alignment methods on it. The GUI for easy
follow-up of the development was published. The interesting observations are
described and highlighted. In the end, we proposed several ideas for future
research and improvement.
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Appendix A
Dataset acquisition additional materials
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Figure A.1: Distances between all aligned HoloLens camera centres and Vicon
marker centres.
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Figure A.2: Distances between aligned HoloLens point clouds and Matterport
point cloud. (Note that the number of points in point clouds differ as point
clouds are being cut accordingly to alignment, thus leading to normalizing the
histograms (the value of the bin equals to occurrence/sum(occurrences)))
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Appendix B
Full evaluation results

This section contains full evaluation graphs for all methods evaluated in this
thesis.

B.1 R-ICP

This section focuses on full evaluation of RICP alignment.
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Figure B.1: Translation error for R-ICP alignment over all translation and
rotation noised point clouds on the Matterport map.
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Figure B.2: Rotation error for R-ICP alignment over all translation and rotation
noised point clouds on the Matterport map.
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Figure B.3: Translation recall for R-ICP alignment over all translation and
rotation noised point clouds on the Matterport map.
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Figure B.4: Rotation recall for R-ICP alignment over all translation and rotation
noised point clouds on the Matterport map.
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Figure B.5: Translation error for R-ICP alignment over all translation and
rotation noised point clouds on a map composed from HoloLens depthmaps.
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Figure B.6: Rotation error for R-ICP alignment over all translation and rotation
noised point clouds on a map composed from HoloLens depthmaps.
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Figure B.7: Translation recall for R-ICP alignment over all translation and
rotation noised point clouds on a map composed from HoloLens depthmaps.
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Figure B.8: Rotation recall for R-ICP alignment over all translation and rotation
noised point clouds on a map composed from HoloLens depthmaps.
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B.2 FCGF + RANSAC

This section contains full evaluation of FCGF + RANSAC alignment.
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Figure B.9: Translation error for FCGF + RANSAC alignment over all transla-
tion and rotation noised point clouds on the Matterport map.
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Figure B.10: Rotation error for FCGF + RANSAC alignment over all translation
and rotation noised point clouds on the Matterport map.
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Figure B.11: Translation recall for FCGF + RANSAC alignment over all
translation and rotation noised point clouds on the Matterport map.
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Figure B.12: Rotation recall for FCGF + RANSAC alignment over all translation
and rotation noised point clouds on the Matterport map.
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Figure B.13: Translation error for FCGF + RANSAC alignment over all
translation and rotation noised point clouds on a map composed from HoloLens
depthmaps.
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Figure B.14: Rotation error for FCGF + RANSAC alignment over all translation
and rotation noised point clouds on a map composed from HoloLens depthmaps.
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Figure B.15: Translation recall for FCGF + RANSAC alignment over all
translation and rotation noised point clouds on a map composed from HoloLens
depthmaps.
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Figure B.16: Rotation recall for FCGF + RANSAC alignment over all translation
and rotation noised point clouds on a map composed from HoloLens depthmaps.
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B.3 FCGF + TEASER++

This section contains full evaluation of FCGF + TEASER++ alignment using
the mutually nearest feature descriptors only.

79



B. Full evaluation results.................................

0 20 40 60 80 100 120 140 160 180 200

Translation error [cm]

0

2

4

6

8

10

12

14

16

O
cc

ur
en

cy

Translation error for rotation noise: 0 degrees,  FCGF + Teaser, Matterport map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 20 40 60 80 100 120 140 160 180 200

Translation error [cm]

0

2

4

6

8

10

12

14

16

O
cc

ur
en

cy

Translation error for rotation noise: 1 degrees,  FCGF + Teaser, Matterport map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 20 40 60 80 100 120 140 160 180 200

Translation error [cm]

0

2

4

6

8

10

12

14

16

O
cc

ur
en

cy

Translation error for rotation noise: 2 degrees,  FCGF + Teaser, Matterport map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 20 40 60 80 100 120 140 160 180 200

Translation error [cm]

0

2

4

6

8

10

12

14

16

O
cc

ur
en

cy

Translation error for rotation noise: 3 degrees,  FCGF + Teaser, Matterport map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 20 40 60 80 100 120 140 160 180 200

Translation error [cm]

0

2

4

6

8

10

12

14

16

O
cc

ur
en

cy

Translation error for rotation noise: 4 degrees,  FCGF + Teaser, Matterport map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

0 20 40 60 80 100 120 140 160 180 200

Translation error [cm]

0

2

4

6

8

10

12

14

16

O
cc

ur
en

cy

Translation error for rotation noise: 5 degrees,  FCGF + Teaser, Matterport map

0 cm noise
4 cm noise
8 cm noise
12 cm noise
16 cm noise
20 cm noise

Figure B.17: Translation error for FCGF + TEASER++ alignment over all
translation and rotation noised point clouds on the Matterport map.
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Figure B.18: Rotation error for FCGF + TEASER++ alignment over all
translation and rotation noised point clouds on the Matterport map.
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Figure B.19: Translation recall for FCGF + TEASER++ alignment over all
translation and rotation noised point clouds on the Matterport map.
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Figure B.20: Rotation recall for FCGF + TEASER++ alignment over all
translation and rotation noised point clouds on the Matterport map.
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Figure B.21: Translation error for FCGF + TEASER++ alignment over all
translation and rotation noised point clouds on a map composed from HoloLens
depthmaps.
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Figure B.22: Rotation error for FCGF + TEASER++ alignment over all
translation and rotation noised point clouds on a map composed from HoloLens
depthmaps.
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Figure B.23: Translation recall for FCGF + TEASER++ alignment over all
translation and rotation noised point clouds on a map composed from HoloLens
depthmaps.
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Figure B.24: Rotation recall for FCGF + TEASER++ alignment over all
translation and rotation noised point clouds on a map composed from HoloLens
depthmaps.
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B.4 Overlap PREDATOR

This section focuses on full evaluation of Overlap PREDATOR alignment.
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Figure B.25: Translation error for PREDATOR alignment over all translation
and rotation noised point clouds on the Matterport map.
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Figure B.26: Rotation error for PREDATOR alignment over all translation and
rotation noised point clouds on the Matterport map.
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Figure B.27: Translation recall for PREDATOR alignment over all translation
and rotation noised point clouds on the Matterport map.
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Figure B.28: Rotation recall for PREDATOR alignment over all translation and
rotation noised point clouds on the Matterport map.
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Figure B.29: Translation error for PREDATOR alignment over all translation
and rotation noised point clouds on a map composed from HoloLens depthmaps.
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Figure B.30: Rotation error for PREDATOR alignment over all translation and
rotation noised point clouds on a map composed from HoloLens depthmaps.
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Figure B.31: Translation recall for PREDATOR alignment over all translation
and rotation noised point clouds on a map composed from HoloLens depthmaps.
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Figure B.32: Rotation recall for PREDATOR alignment over all translation and
rotation noised point clouds on a map composed from HoloLens depthmaps.
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