
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Domain Generalization in Image Retrieval
through Training Data Synthesis

Albert Möhwald

Supervisor: Ing. Tomáš Jeníček
Field of study: Open Informatics
Subfield: Cybersecurity
January 2023

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474592Osobní číslo:AlbertJméno:MöhwaldPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Kybernetická bezpečnostSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Překonání problému různých vizuálních domén ve vizuálnímvyhledávání pomocí generování trénovacích
dat

Název diplomové práce anglicky:

Domain generalization in image retrieval through training data synthesis

Pokyny pro vypracování:
1. Familiarize yourself with conditional Generative Adversial Networks (GAN) for the purpose of training data synthesis.
2. Consider the downstream task of image retrieval across visual domains, such as day and night. Employ two different
visual domain pairs in evaluation, such as day with night or natural images with sketches.
3. Train GAN to synthesize training data for a deep embedding model in order to aid the downstream task of image retrieval
across visual domains.
4. Examine different GAN architectures, comparing more traditional models with the contemporary ones.
5. Evaluate different visual domains of synthesized training data, quantifying their usefulness during training for the
downstream task.
6. Provide code that follows best practices and its documentation.

Seznam doporučené literatury:
[1] Tomas Jenicek and Ondrej Chum. No fear of the dark: Image retrieval under varying illumination conditions. In ICCV,
2019.
[2] Che-Tsung Lin, Sheng-Wei Huang, Yen-Yi Wu, and Shang-Hong Lai. Gan-based day-to-night image style transfer for
nighttime vehicle detection. IEEE T-ITS, 2020.
[3] Filip Radenovic, Giorgos Tolias, and Ondˇrej Chum. Deep shape matching. In ECCV, 2018.
[4] Hsin-Ying Lee, Hung-Yu Tseng, Qi Mao, Jia-Bin Huang, Yu-Ding Lu, Maneesh Singh, and Ming-Hsuan Yang. Drit++:
Diverse image-to-image translation via disentangled representations. IJCV, 2020.
[5] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired image-to-image
translation. In ECCV, pages 319–345. Springer, 2020. 2, 3, 5, 8

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Tomáš Jeníček skupina vizuálního rozpoznávání FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 15.09.2022

Platnost zadání diplomové práce: 19.02.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Tomáš Jeníček

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Acknowledgements
First of all, I would like to express my sin-
cere thanks to my supervisor Ing. Tomáš
Jeníček for his patience, high amount
of time, numerous constructive consulta-
tions, and guidance he provided me with
this thesis.

I would also like to give my thanks to
prof. Mgr. Ondřej Chum, Ph.D., MSc.
Nikos Efthymiadis, and Ing. Nikolaos–
Antonios Ypsilantis for being helpful in
the problem discussion and explaining
their prior work. Without their help, this
work would not get this far.

Declaration
Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 10. února 2023

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 10. January 2023

v

Abstract
Image retrieval based on deep neural

networks relies on a large number of di-
verse training images. The challenge of
severe visual appearance changes, specifi-
cally day–night and photo–sketch, is ad-
dressed using synthesized training images
as a form of data augmentation. GANs
are studied to learn image–to–image trans-
lation allowing to generate more training
data of the scarce domain. For the day–
night task, image representation is cast
as metric learning and the GAN genera-
tor is used to generate diverse day–night
pairs for the training. Various generator
architectures are evaluated, including a
novel lightweight GAN architecture that
preserves the content between the orig-
inal and synthesized images with edge
consistency and simultaneously trains an
edge detector to operate on both day
and night images. For the photo–sketch
task, no training sketches are available,
which is tackled with an edge detector,
that transforms photos into edge images,
and then, the GAN generator is used to
thin the edges that approximate sketch
images. The proposed data augmenta-
tion approach outperforms prior work
and improves over the current state–of–
the–art Tokyo 24/7 day-night image re-
trieval benchmark while maintaining per-
formance on the Oxford and Paris bench-
marks. However, similar GAN–based aug-
mentation does not surpass handcrafted
augmentation used for sketch recognition.

Keywords: Image Retrieval, Data
Augmentation, Generative Adversarial
Network, Image-to-image Translation

Supervisor: Ing. Tomáš Jeníček

Abstrakt
Vizuální vyhledávání obrázků založené

na hlubokých neuronových sítích se opírá
o velké množství různorodých trénova-
cích obrázků. Problém značných vizuál-
ních změn, konkrétně den–noc a fotografie–
skica, je řešen pomocí syntetizovaných tré-
novacích obrázků formou rozšíření datové
sady. GANy jsou studovány za účelem na-
učení překladu obrazů, aby bylo možné
generovat více trénovacích dat z nedostat-
kové domény. Pro úlohu den–noc je re-
prezentace obrazu naučena přes učení me-
triky, kde je GAN generátor použit pro
generování různorodých denních–nočních
párů. Vyhodnoceny jsou různé architek-
tury generátorů, včetně nové GAN archi-
tektury, jež zachovává obsah mezi vzoro-
vým a syntetizovaným obrázkem pomocí
konzistence hran a současně trénuje detek-
tor hran pro operování na denních i noč-
ních obrázcích. V úloze fotografie–skica
nejsou k dispozici žádné trénovací skicy,
což je řešeno pomocí detektoru hran, který
transformuje fotografii do hranového ob-
rázku a následně je použit GAN generá-
tor k ztenčení hran, čímž přiblíží takto
vzniklý obrázek skicám. Navržený přístup
rozšiřování datové sady překonává před-
chozí práce a současný state–of–the–art
na benchmarku Tokio 24/7 pro vizuální
vyhledávání ve dne i v noci, přičemž za-
chovává výkonnost benchmarků Oxford
a Paris. Rozšíření datové sady založené
na GAN však nepřekonává ruční rozšíření
používané pro rozpoznávání skic.

Klíčová slova: Vizuální vyhledávání,
Rozšíření datové sady, Generující
adversariální sítě, Překlad obrazu

Překlad názvu: Překonání problému
různých vizuálních domén ve vizuálním
vyhledávání pomocí generování
trénovacích dat

vi

Contents
1 Introduction 1
2 Background 5
2.1 Neural Networks 5

2.1.1 CNN . 5
2.1.2 GAN . 6
2.1.3 Initialization 8

2.2 Transfer Learning 9
2.2.1 Transfer Learning Notation . . 10
2.2.2 Domain Adaptation 10
2.2.3 Domain Generalization 10

2.3 Image Retrieval 11
2.3.1 Retrieval with Local Features 11
2.3.2 Retrieval with CNNs 11
2.3.3 Retrieval Evaluation 14
2.3.4 Image Retrieval Challenges . . 15

2.4 Image–to–Image Translation . . . 16
2.4.1 Image Translation Notation . 16
2.4.2 pix2pix 17
2.4.3 CycleGAN 18
2.4.4 DRIT . 19
2.4.5 CUT . 23

2.5 Edge Detection 25
2.5.1 Sobel Operator 25
2.5.2 HED . 26

2.6 Related Work 27
2.6.1 Day–Night Image Retrieval . . 27
2.6.2 Sketch Recognition 28
2.6.3 Image–to–image Translation . 28

3 Method 31
3.1 Day–Night Image Retrieval 31

3.1.1 Day–Night Translation
Notation . 31

3.1.2 Edge Consistency Generators 31
3.1.3 Metric Learning 35

3.2 Sketch Recognition 36
3.2.1 Thin-pix2pix 36
3.2.2 Sketch Classification 38

4 Implementation 39
4.1 Datasets . 39

4.1.1 Training Datasets 39
4.1.2 Evaluation Datasets 40

4.2 Day–Night Image Retrieval 41
4.2.1 Generator Training 42
4.2.2 Metric Learning 43

4.3 Sketch Recognition 44

4.3.1 Thin-pix2pix Generator 44
4.3.2 Sketch Classification 45

5 Results 47
5.1 Generator Training 47

5.1.1 Architecture Comparison . . . 47
5.1.2 Optimization Towards Retrieval

Performance 48
5.1.3 Inference Comparison 51
5.1.4 Edge Detection Comparison . 53

5.2 Day–Night Image Retrieval 54
5.2.1 Concluding Results 54
5.2.2 Impact of Data Augmentation 57

5.3 Sketch Recognition 59
5.3.1 Sketch Classification without

Sketches . 59
6 Conclusions 61
Bibliography 63
A Generative Model Outputs 73
B Image Retrieval Ablations 79
B.1 Divere Anchors and CLAHE . . . 79
B.2 Edge–based Image Retrieval . . . 79

vii

Figures
1.1 Examples of instance–level

large–scale image retrieval. 1
1.2 An application of instance–level

image retrieval in augmented reality. 2
1.3 Day and night photos of a single

famous landmark 3

2.1 Optimization step of GAN training 7
2.2 The task of image retrieval 12
2.3 Optimization step of the pix2pix

training . 17
2.4 Optimization step of the

CycleGAN training 19
2.5 Patchwise contrastive loss for

one–sided image translation with
CUT. 24

2.6 Overview of the training pipeline
with rBTE. 28

3.1 Optimization step of the HEDGAN
training . 32

3.2 Optimization step of the
HEDNGAN training 34

3.3 Data augmentation and
photometric normalization in metric
learning . 35

3.4 Examples of photo transformations
towards sketches. 36

3.5 Optimization step of the
Thin-pix2pix training for the
thinning task. 37

3.6 Overview of the training pipeline
with Thin-pix2pix. 38

4.1 Training data image samples for
the image–to–image translation and
image retrieval 40

4.2 Evaluation data image samples for
the image retrieval 41

4.3 Training and evaluation data
image samples for the sketch
classification task 42

5.1 The generator and embedding
network evaluation during generator
training . 48

5.2 Heatmap of the correlation matrix
of generator and embedding
evaluation measures obtained during
generator training 49

5.3 Examples of day→night translation
on SfM dataset with different
generators . 51

5.4 Examples of learned thinning
among different datasets. 52

5.5 Examples of extracted edges from
HED, and HEDN edge detectors . . 53

5.6 Examples of descriptor distances of
positives and negatives during metric
learning . 56

A.1 Examples of day→night
translation on SfM dataset with
similar generators 74

A.2 Examples of day→night
translation on SfM dataset with
generators based on
edge–consistency 75

A.3 Examples of day→night
translation on different datasets with
different generators 76

A.4 Examples of night→day
translation on different datasets with
different generators 77

viii

Tables
5.1 Generators training time and

parameters comparison 48
5.2 Day–night image retrieval

performance comparison. 55
5.3 The impact of retrieval training

data comparison 58
5.4 Sketch classification performance

comparison. 60

B.1 The effect diverse anchors mining
and CLAHE 80

B.2 The effect of trained
HEDN detector (from HEDNGAN)
on the EdgeMAC descriptor. 80

ix

Chapter 1
Introduction

Given an image query depicting an object, the task of instance–level image
retrieval is to find other images depicting the same object instance in a
collection of images. In a globalized world, image collection can contain all
images across the Earth which extends the task to large–scale instance–level
image retrieval. For example, when a picture of a famous landmark such
as the Orloj Astronomical tower is taken, one can upload this picture to an
image retrieval system that finds other images of the uploaded landmark,
see Figure 1.1. This is useful in real–world applications such as autonomous
robots, autonomous cars, augmented reality (see Figure 1.2), etc. because
these applications often need to perform localization in the real–world, where
GPS and compass sensors are slow or imprecise, and high–tech sensors, such
as Lidars, are too expensive to produce. Retrieved images can contain exact
coordinates and other metadata, from which the system can calculate the
precise position and orientation of the sender, and then, navigate the sender
toward its target destination.

Query Retrieved Query Retrieved Query Retrieved

Figure 1.1: Examples of instance–level large–scale image retrieval. The input
image (Query) is sent to an image retrieval system, which retrieves the image
(Retrieved) containing the famous landmark instance from a large image database.
Retrieval with night image or edge image queries is challenging for the image
retrieval system.

When these applications rely mostly on camera sensors, the camera also
captures changes in the outside environment. That means, input query images
can be obtained under different illumination conditions such as day/night,
at different year seasons such as summer/winter, or under different weather
conditions such as sunny/rain. When considering these image pairs, the colors
can be significantly shifted and textures can be weakened. In more difficult

1

1. Introduction

Figure 1.2: An application of instance–level image retrieval in augmented reality.
The first image (left) illustrates the task of navigation using augmented real-
ity.1 The last two images (middle, right) are screenshots of Live View navigation
from Google Maps used by myself in the same place but at different times.
At night–time, placing the arrow in the correct spot is sometimes imprecise,
suggesting that the dark image was not correctly synchronized with the map.

problems, such as with sketches or image outlines, the color and texture
information may not be available at all. These conditions can significantly
decrease the accuracy of the image retrieval system. This thesis only focuses
on the two significant shifts – day/night and photo/sketch.

The reason why the image retrieval system can perform poorly on night im-
ages and sketches lies in its data–driven design. Image retrieval uses machine
learning for image processing. Machine learning algorithms outperform other
handcrafted algorithms and surpass humans in many tasks. The downside of
machine learning is that training data must be leveraged to achieve higher
performance. Specifically for image retrieval, training pairs of images that
depict the same object are needed, which makes it even harder to obtain
corresponding pairs of images taken during day and night or to obtain the
corresponding photo and sketch. When those pairs are provided, the machine
learning algorithm creates its internal representation structure from training
examples, so that when the algorithm sees a new image, it has the ability
to detect common patterns with the training images and generalize in the
retrieval with image queries unseen to the algorithm during the training.
To find patterns reliably, the algorithm needs a lot of training examples.
The reason why the image retrieval system would generalize poorly on night
images or sketches is that a significant amount of those images are missing in
the training dataset. This is because people tend not to take many images
during the night, see Figure 1.3, and it is difficult or almost impossible to
gather a sketch of each object in the real–world. To learn the retrieval system

1Image taken from https://arvr.google.com

2

https://arvr.google.com

......................................1. Introduction

Day

Night

Figure 1.3: Day and night photos of a single famous landmark. Photos of St.
Peter’s Basilica in Rome were gathered online and split into day and night images.
The day images are enough to cover the whole church, but night images are not
enough. This is caused by (i) the day image count being 1980, while there are
only 495 night images, and (ii) night images containing less information than day
images, making the whole church reconstruction in the dark more challenging.
All images in this figure are taken from [1].

to search accurately among the significant image shifts, the best training
examples are pairs day–night or photo–sketch images, which are expensive
and very time intensive to acquire.

To overcome this challenge, this thesis studies night image and sketch
synthesis. For this purpose, a generative adversarial network (GAN) is
employed, which is a machine learning algorithm that is learned to transform
a day image into a night image or a photo into a sketch. By using GAN for
image retrieval training, pairs of day–night and photo–sketch can be crafted
from any other day or photo image in the training dataset, so that the image
retrieval system becomes robust against these changes.

The rest of this thesis is structured as follows. In Chapter 2, basic termi-
nology, definitions, and related work review are provided to help the reader
understand the problem and possible solution concepts. In Chapter 3, a new
lightweight GAN is introduced as well as the process of data augmentation in
image retrieval. In Chapter 4, used datasets and technical details are covered.
In Chapter 5, experiments are described and evaluated. In Chapter 6, the
thesis is concluded.

3

4

Chapter 2
Background

2.1 Neural Networks

The goal of a neural network f is to approximate a function f∗, which
maps an input x to an output y, so that y = f∗(x), where the neural network
f learns values of parameters θ optimizing f for the best approximation of
f∗ for every training x and y [2]. In other words, the goal of neural network
training is to adjust θ, so that y = f(x; θ). For clarity, network parameters
θ are omitted in the rest of this thesis.

Neural networks are often deep networks because they are composed
of multiple functions to allow approximation of more complex functions, for
example, four functions f (1), f (2), f (3), and f (4) are connected into a chain
forming f(x) = (f (1) ◦f (2) ◦f (3) ◦f (4))(x) = f (4)(f (3)(f (2)(f (1)(x)))) meaning,
f (1) is the first layer, f (2) is the second layer, and so on, where specifically
the last layer is called output layer and the intermediate layers f (2), and
f (3) are called hidden layers because training data does not provide desired
output to any of these layers [2]. A deep network is feedforward when
no recursion is present in the network function composition, when the deep
network uses any recursion, it is called recurrent neural network. In this
thesis, only feedforward neural networks are used.

2.1.1 CNN

Building a deep network as a multilayer perceptron (composed of fully–
connected layers each followed by nonlinearities) has two flaws: the spatial
information is ignored, and the network has a lot of trainable parameters [3].
Convolutional networks exploit the adjacency in the images with each output
activation being dependent only on a small local region in the input, which
makes the convolutional layer much more parameter–efficient [2].

The goal is to learn a kernel, which contains much smaller amounts of
parameters (e.g. 3 × 3 for images) than the linear layer. In a convolutional
layer, the outputs are obtained from a sliding window over the inputs, in which
only elementwise multiplication with the kernel is performed, followed by the
sum of the product. Formally, for an input x ∈ RC(in)×H(in)×W (in) , output
y ∈ RC(out)×H(out)×W (out) , bias b ∈ RC(out)×H(out)×W (out) , and kernel w ∈

5

2. Background
RC(out)×H(out)×W (out) , the 2D convolution for position i can be implemented
[4] as:1

y
C

(out)
i

= b
C

(out)
i

+
C(in)−1∑

k=0
w

C
(out)
i ,k

⋆ xk, (2.1)

where the convolution operation at measurement t is defined as (w ⋆ x)t =∑∞
τ=−∞ wt−τ xτ [2]. The output y is often referred to as a feature map.
Examples of popular CNNs for the classification task are AlexNet [5],

VGG [6], ResNet [7], Inception [8].

2.1.2 GAN

After the success of AlexNet [5], CNNs still struggled with approximating
complex data distributions e.g. dog image distribution, because the goal of
CNN training is to produce a discriminative model able only to recognize
between training classes. The goal of GAN training is to produce a generative
model able to estimate a probabilistic model. In 2014, Goodfellow et al. [9]
introduced GAN training, which bridges this gap with discrimination between
fake generated data and real data. The GAN training is composed of two
networks: the generator G, and the discriminator D, which are trained jointly.
The goal of the generator is to generate fake data G(z) indistinguishable
from x from random noise z, while the goal of the discriminator is to
classify, whether those data are real or fake, see Figure 2.1 [9]. G and D play
the following zero–sum game:

min
G

max
D

Ex∼PX
logD(x) + Ez∼PZ

log(1 − D(G(z))), (2.2)

where PX is training data distribution, PZ is random noise distribution,
and Ex∼PX

is the expectation of a function with respect to distribution PX ,
which is the mean value the function takes on when x follows PX [9]. The
equilibrium of this game is when the generator produces data distribution
indistinguishable from real data p(x) and the discriminator always guesses at
0.5 confidence that the classified data are real or fake [9].

In practice, the optimization with gradient descent backpropagation is
unstable and does not always reach the equilibria [10], because the objectives
of the generator and discriminator are conflicting each other. The current main
good practices are to use CNN–based discriminator and generator [11] and to
modify the training algorithm of Goodfellow et al. [9] into this optimization:

max
D

Ex∼PX
logD(x) + Ez∼PZ

log(1 − D(G(z)))

max
G

Ez∼PZ
logD(G(z)).

(2.3)

During one optimization step, there are two consecutive steps: one for the
discriminator and then second for the generator [9]. In the discriminator step,

1Formulated in accordance to the PyTorch implementation documentation in https:
//pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

6

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

................................... 2.1. Neural Networks

z fake

real

Generator

Discriminator

[0,1]

Figure 2.1: Optimization step of GAN training [9]. The Generator takes random
noise z and produces fake data. The Discriminator predicts whether the fake
data and input real data are real or fake.

the gradients for the discriminator are calculated with the fixed generator [9]
and then the discriminator weights are updated by a small amount scaled
down by a small learning rate. In the generator step, the same principle
is used, and additionally, the generator loss function is modified from the
theoretical log(1 − D(G(z))) minimization to the practical log(D(G(z)))
maximization for a heuristic reasons [12].

LSGAN

In the generator optimization step, when the fake data are generated far away
from the true data distribution, but on the correct side of the discriminator
decision boundary, the generator weights do not update, because the loss
function for the discriminator is binary cross–entropy, which leads to the
vanishing gradients [13]. To deal with this issue, Mao et al. [13] proposed to
remove the sigmoids from the architecture of the discriminator and to replace
binary cross entropy loss with mean square error loss:

min
D

1
2Ex∼PX

(D(x) − b)2 + 1
2Ez∼PZ

(D(G(z) − a))2

min
G

1
2Ez∼PZ

(D(G(z) − c))2,
(2.4)

where a is the label for the fake data, b is the label for the real data, and c is
the label that the generator wants the discriminator to believe for the fake
data [13]. One possible choice of labels can be a = 1, b = 0, c = 1, which are
the labels used in this work in the adversarial loss.

From my experiments, using LSGAN adversarial loss as in Equation 2.4
converges much faster than the original GAN loss as in Equation 2.2 for
most of the models. Unfortunately, in the literature, the adversarial loss is
dominantly expressed with Equation 2.2, although it is usually implemented
as in Equation 2.3 or Equation 2.4. In this thesis, I decided that formalization
should correspond to the implementation and express adversarial loss always
as it is implemented in experiments.

7

2. Background
cGAN

Sometimes, it would be desirable to synthesize a more specific output, condi-
tioned on the specific input. This can be achieved when the generator and
optionally the discriminator receive additional information c, which can be
e.g. label, vector, image, etc., resulting in the extension of Equation 2.2:

max
D

Ex∼PX
logD(x, c) + Ez∼PZ

log(1 − D(G(z, c), c))

max
G

Ez∼PZ
logD(G(z, c), c).

(2.5)

which is known as conditional GAN (cGAN) training [14].
In the following Sections, all GAN–based models are designed from the

conditional GAN basis. Therefore, for brevity, the word conditional is omitted
in the term conditional GAN in the rest of this thesis.

GAN Evaluation

Evaluation of GAN is difficult. Yet, no qualitative metric was defined because
the generated image quality is subjective to define, and it can be specific
per visual domain [15]. Moreover, each generator has its own discriminator
which makes each generator optimize different criterion making quantitative
evaluation also hard [16].

The first and widely popular metric for GAN quantitative evaluation which
correlates well with human perception is Fréchet inception distance (FID) [17].
FID is designed to measure image quality, and diversity, and to detect mode
collapse [17]. Briefly, FID of a generator is calculated with these steps:..1. feature maps of the real image and fake image distributions are ex-

tracted with Inception-V3 model [8] from the last pooling layer with
2048 activations,..2. assuming feature maps follow normal distribution, then feature mean
µ ∈ R2048 and covariance Σ ∈ R2048×2048 are calculated,..3. the final FID is calculated as Fréchet distance [18]:

FID(x, y) = ||µx − µy||22 + tr(Σx + Σy − 2(ΣxΣy)
1
2), (2.6)

where µx and µy are the means of real image feature maps and fake image
feature maps, respectively, Σx and Σy are covariance matrixes of real image
feature maps and fake image feature maps, respectivelly, tr is the matrix
trace [17]. FID is more generarly known as 2-Wasserstein distance [19].

Other popular quantitative GAN metrics are KID [20] (Kernel inception
distance), or IS [16] (Inception score). Nevertheless, only FID [17] is used
in this thesis for GAN evaluation because specifically IS is less precise than
FID [17] and KID became popular more recently.

2.1.3 Initialization

When a deep network is trained from scratch, proper network weights initial-
ization is one of the key elements in the learning with backpropagation. In

8

...................................2.2. Transfer Learning

the early times, VGG [6] started the training with a moderate depth network
and then more layers were progressively added. A similar procedure was
adopted by [21, 22] for GAN training. However, such a process is not general
for different architectures and requires a lot of manual tuning.

The problem with good initialization lies deeper in individual layer ac-
tivation statistics. One of the simple weight initializations is initialization
from a normal distribution N(0, 1). Suppose a single linear layer network
y = f(x) = W ⊤x with input x, weights W , and activations y. Although
when the standard deviation of x is 1, the standard deviation of the activa-
tions y may not be necessarily 1, and activations in a deeper network would
probably have a larger standard deviation if they would be initialized the
same with N(0, 1), causing large covariance shifts [23], which results with
gradient explosions or vanishing gradients [24, 2]. This issue can be simply
solved by adjusting the initial standard deviation to a value, after which the
covariances of deeper activations do not shift and the optimized loss function
does not have extreme values and does not oscillate.

The most popular weight initialization nowadays is Kaiming initializa-
tion [25] (also known as He initialization), which is a simpler version of Xavier
initialization [26]. The procedure of He [25] initializes each layer with a spe-
cific non–linearity–aware initialization and also scales covariances of each layer
weights by the input size from the previous layer. With this initialization, the
covariance shift is compensated with the non–linearity–specific gain. Another
popular method for covariance shift prevention is batch normalization [27],
which inserts normalization layers that transform the batch mean to zero and
variance to one. For the GAN generator, instance normalization [28] further
simplifies the image synthesis by preventing instance–specific covariance shifts.
In contrast to batch normalization, instance normalization allows to remove
contrast–specific information from the input image [28].

In the architectures introduced in this thesis, both normal and Kaiming [25]
initializations as well as batch [27] and instance [28] normalizations are
employed.

2.2 Transfer Learning

In terms of deep networks, finetunning (or transfer learning) of a network
is network weights initialization with weights of a pretrained network for one
task and training the finetuned network for another task [29]. With network
finetunning, training the final model takes much less time, than when it would
be trained from scratch, and also requires a lower amount of training data
for the new task [29].

In this thesis, a CNN pretrained for the image classification task is finetuned
to represent images in a metric space for the image retrieval task (described
in the following Section 2.3.2).

9

2. Background
2.2.1 Transfer Learning Notation

Besides learning for the new task, the task can remain the same and can be
adapted to different attributes of data, such as day–night images or photo–
sketch. More formally in accordance with [30, 31], let X and Y be the space of
input, output examples, respectively, and let x and y be the random variables
valued in X and Y, respectively. A domain D is defined as a ordered pair
D = (X, p(x)), and the task is to approximate the conditional probability
distribution p(y|x) [30, 31].

In this thesis, two domains are considered, where the source domain is
Ds = (X, p(xs)), the target domain is Dt = (X, p(xt)). For day–night image
retrieval, the task is to learn an embedding fD/N : X → Y that represents the
set of images X as the set of descriptors Y, preceded by a generator G : X → X
synthesizing from the day image distribution p(xs) to fake night image
distribution p(G(xs)) indistinguishable from true night image distribution
p(xt) helping the embedding to output the same descriptors for both input
day images from the domain Ds and input night images from the domain
Dt. For sketch recognition, the task is to learn a classifier fSketch : X → Y
that classifies a sketch xt with a label y with the help of a transformation
T : X → X that approximates p(xt) with p(T (xs)), so that p(y|xt) can be
approximated with p(y|T (xs)) [32].

2.2.2 Domain Adaptation

Domain adaptation is a process that aims to train a network learned on
the visual domain Ds to have the same performance on a new visual domain
Dt with access to some examples in Dt [33].

The task of day–night image retrieval is enhanced with domain adaptation
through image–to–image translation from the common day domain to the
scarce night domain (described in the following Section 2.4). This is not the
case for sketch recognition because no true sketch images are available during
the classifier training [32].

2.2.3 Domain Generalization

Domain generalization is the process of training the model to perform
well on a wider variety of visual domains without the need to finetune the
model on each individual domain, so that the trained model can generalize
well to new unseen visual domains during the inference time [34].

In this thesis, the task of sketch recognition is close to domain generalization
with the common constraint that no sketches are available during the training
and the difference that prior information about sketches to be classified is
exploited [32].

10

................................... 2.3. Image Retrieval

2.3 Image Retrieval

Given a query and a collection (database) of images, image retrieval is the
task of searching images relevant to the query. Depending on the type of
image retrieval, we talk about context–based image retrieval, if the query
is given as text, or the dataset is analyzed with text metadata. On contrary,
we talk about content–based image retrieval, if only the content of the
input query and database are analyzed, e.g. pixels, shapes, colors, etc. This
thesis focuses only on content–based image retrieval.

According to the retrieval task, the relevance of retrieved results can be
defined in different ways. Relevance examples are as follows:. Identical photo – searching for images having identical parts with query

image,. Instance–level – searching for images depicting the specific object as
the query image,. Identical class – searching for images sharing the class (e.g. truck, dog,
car, etc.) with query image,. Scenery – retrieved images have the same structure as the input query
but can depict different objects or places.

In this thesis, a retrieved image is relevant to the query, if that image depicts
an identical object.

2.3.1 Retrieval with Local Features

In 2004, two breakthroughs allowed to perform content–based image retrieval
on a larger scale [35]: the first is SIFT descriptor [36], which is a very popular
compact vector representation of local image features e.g. corners, edges,
etc. capturing image content invariant to scale changes and rotations; the
second is Bag–of–Visual–Words (BoW) [37], where each image is represented
as quantities of quantized SIFT descriptors.

Nowadays, the instance–level retrieval with BoW can be less precise because
there exist more efficient learned local descriptors, such as HardNet [38],
SOSNet [39], etc., but their information would be lost in the descriptor
quantization. VLAD [40] and ASMK [41] solves this by representing an image
as an aggregation of descriptor embeddings, which can be used with shorter
descriptors due to the additional dimension.

Image retrieval with local descriptors is not the topic of this thesis, but a
brief overview has been provided to provide a clearer context.

2.3.2 Retrieval with CNNs

The first method that outperformed handcrafted image representation in
instance image retrieval is NetVLAD [42], which mimics the local descrip-
tor aggregation with the end–to–end learnable CNN. Later, NetVLAD was
outperformed with a simpler representation by Radenovic et al. [43], which

11

2. Background

Input query

Large collection of images

Image Retrieval
System

Output images

Figure 2.2: The task of image retrieval. Given an image query (orange), the
goal of the image retrieval system is to find images relevant to the query image
in a large collection of images. Relevant images (green) form positive pairs with
the query image, while non–relevant images (red) form negative pairs with the
query image.

uses CNN to learn a single global descriptor per image. The method of [43]
is described in the rest of this Section.

CNN Architecture Modifications

To train the network to recognize object instances, a pretrained CNN (e.g.
VGG [6], ResNet [7], etc.) on the simpler classification task is taken and
finetuned for a metric learning task [43]. Architecture modifications occur
at the very last layers of the CNN, where fully connected (linear) layers are
replaced with a pooling layer and L2 normalization layer. In computer vision
terminology, backbone is the neural network without the last discarded
layers.

Defined in accordance with [43], the task of the pooling layer is to
summarize and downsample feature map z ∈ RH×W ×D obtained from the
previous convolutional layer into a global descriptor y ∈ RD, where D is
the number of feature maps in the last convolutional layer, H and W is
height and width of the feature map, respectively, and zk denotes the set of
H × W features for feature map z at position k ∈ {1, . . . , D}. Assuming the
nonlinearity after the last convolutional layer is ReLU, then each feature in z is
non–negative. Simple examples of pooling layers are SPoC [44] (Equation 2.7)
and MAC [45] (Equation 2.8):

y = [y1 . . . yk . . . yD]⊤, where yk =
∑

z∈zk

z, (2.7)

y = [y1 . . . yk . . . yD]⊤, where yk = max
z∈zk

z. (2.8)

For SPoC and MAC, more generalized pooling was later proposed with

12

................................... 2.3. Image Retrieval

GeM [43] (Equation 2.9):

y = [y1 . . . yk . . . yD]⊤, where yk =
(

1
|zk|

∑
z∈zk

zpk

) 1
pk

, (2.9)

where p = [p1 . . . pk . . . pD]⊤ is the pooling parameter, learned with back-
propagation. The pooling layer is followed by L2 normalization layer, which
outputs descriptors L2–normalized allowing to compare image global descrip-
tors simply with the inner product.

Siamese Learning and Loss Functions

After the network architecture is constructed for image embedding, the CNN
backbone pretrained for the classification task together with an additional
pooling layer is finetuned for the ranking problem (in the case of the image
retrieval task, ranking list of images by the relevance to the query image
input). By being able to rank images, retrieved images of the same object
instance can be further ranked by their similarity to the query.

To incorporate the ranking into the training, the loss function needs to
compare images with other images, rather than only the correctness of each
single image label, value, or set of values. The straightforward way to achieve
this is to rank similar images by their embedding distance to the query.
This desired task is for the embedding training called metric learning, i.e.
learning the relative distance between inputs. When the metric is learned,
three types of images can be selected:. anchor – the reference image, which is the query,. positive – the image which should have a short distance to the anchor,. negative – the image which should have a long distance to the anchor.
In the case of the image retrieval task, positives are images relevant to the
anchor, while negatives are images not relevant to the anchor. There are two
main loss functions for the metric learning task: contrastive loss [46] (Equa-
tion 2.12) and triplet loss [47] (Equation 2.11). Let y, y+, y− be the descriptor
for anchor, positive, negative, respectively. Let d : RD ×RD → R be a distance
function, e.g. euclidian distance: d(u, v) = ||u − v||22 for u ∈ RD, v ∈ RD.
Then, the loss functions are defined as follows:

l(y, y+, y−) = d(y, y+) + max(0, m − d(y, y−)) (2.10)

l(y, y+, y−) = max(0, m + d(y, y+) − d(y, y−)), (2.11)

where m > 0 is margin hyperparameter. Sometimes, the contrastive loss
obtains N negatives y− ∈ RN×D, which modifies the Equation 2.12 to:

l(y, y+, y−) = d(y, y+) +
N∑

n=1
max(0, m − d(y, y−

n)). (2.12)

Neural network, which learns any of these losses is called siamese network,
since it processes different input images (anchor, positive and negative), while

13

2. Background
the forward pass shares weights for each input. As a result, y, y+, y− are
obtained from the same network. In this thesis, only contrastive loss is utilized
in metric learning.

Training Data Mining

Usually, there are no ground–truth pair annotations within the training
dataset that would directly describe which image is positive or negative to
each anchor. Moreover, for n training images, there are

(n
2
)

pairs making it
difficult to include them all in the siamese training. On top of that, most of
these pairs are negative, and therefore random pair sampling is very likely to
pick negative pair having its descriptors already far enough resulting in zero
gradient of the loss function [48].

When there are class labels per image (e.g. landmark, building, etc.), it is
not much useful since matching class labels do not necessarily match with
the identical object because different instances of objects can exist within the
same class (e.g. Orloj Astronomical Tower and Eifell Tower share the same
landmark class, but they are different instances).

With GPS information, it is possible to find enough negatives and utilize the
information as weak labeling for images [42]. However, images geographically
close together are not necessarily positives, since their camera orientation is
unknown.

In this thesis, the image retrieval baseline of Radenovic et al. [43] overcomes
these issues with automatic label mining from SfM 3D reconstruction, which
offers camera position and orientation per image, as well as image clusters of
landmarks [1]. In the baseline [43], positives are selected at random from a
set of images that shares enough points with the query but do not display too
extreme scale change, while negatives are selected as hard negatives [48],
i.e. negative pair from different clusters with the most similar descriptor.

2.3.3 Retrieval Evaluation

Starting with a simple case, consider only one query q. Then, for q, there are
samples selected by the search engine, where some of them can be relevant
and others non–relevant. There are four possible cases for each classified
retrieved sample. Let. tp(q) be the number of selected samples, which are relevant,. fp(q) be the number of selected samples, which are not relevant,. tn(q) be the number of not–selected samples, which are not relevant,. fn(q) be the number of not–selected samples, which are relevant.
Two common measures – precision p ∈ [0, 1] and recall r ∈ [0, 1] – are defined:

p(q) = tp(q)
tp(q) + fp(q) ,

r(q) = tp(q)
tp(q) + fn(q) .

(2.13)

14

................................... 2.3. Image Retrieval

Unpacking these scores a bit further, precision indicates how many relevant
samples were selected from all selected samples, whereas recall indicates how
many relevant samples were selected from all relevant samples.

The order of the selected samples is also relevant. Precision and recall do
not measure the rank of selected samples. However, they can be utilized to
calculate a single measure capturing ranks of retrieved samples. Consider
p(r(q)) as precision function of recall. Computing the precision of recall at
each rank of retrieved samples results in a precision–recall curve. Average
precision AP is the area under the precision–recall curve:

AP (q) =
∫ 1

0
p(r(q))dr. (2.14)

To reach the best average precision, all selected samples must be relevant,
and therefore image retrieval model obtains the precision of 1 per each recall
level [49].

In practice, the search is relevant only up to the top k retrieved samples.
Then, average precision at k can be defined as:

AP@k(q) = 1
min(k, tp(q))

k∑
i=1

1
i
rel(q, i)

i∑
j=1

rel(q, j)

 , (2.15)

where rel(q, i) = 1 iff i–th retrieved sample with the query q is relevant,
otherwise rel(q, i) = 0 [50].

To evaluate a retrieval model more precisely, it is desirable to measure
AP@k with more than one query. Then, the most straightforward way of
computing more average precision with multiple queries is to calculate the
mean average precision mAP across the set of all evaluation queries Q:

mAP@k(Q) = 1
|Q|

∑
q∈Q

AP@k(q). (2.16)

In this thesis, only mAP is utilized as the benchmark for image retrieval
performance.

2.3.4 Image Retrieval Challenges

Unexpected conditions can occur during image retrieval training or during
inference causing a significant retrieval performance drop. Specifically, re-
trieved images can be very different from the input query, but they can be
relevant, and vice–versa. The list of possible image retrieval challenges, where
differences tacked in this thesis are bold, is as follows:. Scale and/or viewpoint change. The input image can be captured zoomed-

in or zoomed-out to most of the images in the image database.. Occlusion. An object in the input image blocks the view of the retrieved
object.. Different visually similar objects. Images with very similar structures,
but depicting different objects, e.g. Arch of Titus in Rome/Arc de
Triomphe in Paris.

15

2. Background
. Illumination change. Image has different illumination conditions, e.g.

sunny, lighting, etc., and/or time conditions, for example, day/night, etc.
[51].Different visual domain. More generally to illumination changes,
images can have different textures and/or colors, e.g. sketches, art
paintings, etc. [52]. Image Retrieval with Big Data. Image database contains large volumes
and varieties of data, that are required to be retrieved at high–velocity,
which active area of research especially in remote sensing [53].. Adversarial examples. Model integrity can be violated with a carefully
crafted adversarial noise invisible to the human added to the image can
cause the network to misclassify the input [54]. In image retrieval, [55]
performed model evasion using a concealed query that obtained targeted
retrieval results without disclosing any information about the target
query image.

2.4 Image–to–Image Translation

When the image input visual domain significantly differs from training images,
the image retrieval system generalizes poorly. The straightforward solution
to this problem is to add these adversarial inputs to the retrieval training
dataset to increase training data diversity and image retrieval robustness.
However, adding this kind of data is not enough, because these adversarial
inputs may not be relevant to most images in the database. This can be
tackled with cGAN [14] (covered in the previous Section 2.1.2), which can
synthesize images based on the input image that could be positive.

Image–to–image translation (image translation) is the task of transforming
an image in one visual domain into an image in the target visual domain.
The output image can have different textures, colors, and/or styles, but the
image content structure is preserved from the input image.

In terms of machine learning, unsupervised image–to–image trans-
lation (also known as unpaired image–to–image translation) is the task of
image translation without ground–truth image pairs, while in supervised
image–to–image translation (also known as paired image–to–image trans-
lation) each training image has its corresponding image in the target domain.
In practice, however, high–quality image pairs are difficult to obtain.

2.4.1 Image Translation Notation

Let X be the set of source domain images in RGB colorspace, where image x
is from the source domain if x ∈ X. Let PX denote the data distribution of
the source domain images. Image x follows distribution PX , when x ∼ PX .
Target domain Y , target image y, and target domain data distribution PY

are defined similarly.
The goal of GAN training is to train a generator network G : X → Y ,

which translates image x in the source visual domain into corresponding y in

16

.............................. 2.4. Image–to–Image Translation

Night
Discriminator

[0,1]

Input

Input

Day Night
Generator

Day

Night

Night

L1

Figure 2.3: Optimization step of the pix2pix training [56]. The Day→Night
Generator takes an input day image and translates it into a fake night image.
After this forward pass, structure consistency is ensured with L1 loss minimal-
ization. The Night Discriminator then determines whether the translated image
and the input night image are real or fake with the input day image condition.

the target visual domain preserving the image content. The discriminator
D : Y → [0, 1] is trained jointly with the generator and tries to classify,
whether the target domain image y is real or fake. In paired image translation,
the discriminator can also receive the image from the source domain and
D : Y × X → [0, 1].

2.4.2 pix2pix

In pix2pix training, the generator translates the input image into the output
fake image in the target domain, while the discriminator tries to distinguish
if the ground–truth image and generated image are fake in the target domain
[56]. In addition, in order GAN training does not fall into mode collapse, L1
loss regularization between generated image and the ground–truth image is
applied in pixel space, forcing the content of the fake image to be identical
with the ground–truth image [56].

The pix2pix optimization is similar to the cGAN [14] formulation (covered
in the Section 2.1.2) with two differences:. no noise for the generator input is no more needed because the generator

would learn to ignore it and uses only the information provided from the
image condition,. regularization is employed with L1 loss between real and fake images in
the target domain [56].

These modifications can be formulated as a pix2pix optimization of a genera-
tor G, and discriminator D following the Park et al. [56] formulation altered

17

2. Background
with LSGAN [13] adversarial loss (covered in the previous Section 2.1.2):

min
D

L(D)
adv (D, G, X, Y)

min
G

L(G)
adv(D, G, X) + λLreg(G, X, Y),

(2.17)

where the adversial loss for discriminator L(D)
adv , and the adversial loss genera-

tor L(G)
adv are:

L(D)
adv (D, G, X, Y) = 1

2Ex∼PX
[(D(G(x), x))2] + 1

2Ey∼PY
[(D(y, x) − 1)2]

L(G)
adv(D, G, X) = Ex∼PX

[(D(G(x), x) − 1)2].
(2.18)

The regularization Lreg for the generator is defined as:

Lreg(G, X, Y) = Ex∼PX ,y∼PY
[||y − G(x)||1] (2.19)

The relative importance of regularization can be controlled with λ in Equation
2.17, which is a new hyperparameter needed to be tuned. The default setting
of this weight for the vanilla pix2pix is λ = 100 [56]. This optimization is
displayed in Figure 2.3.

2.4.3 CycleGAN

CycleGAN is the first popular model able to perform unpaired image trans-
lation, which is based on pix2pix [56]. However, in contrast with pix2pix
training, no ground–truth image nor image structure binding is available, and
no conditional information is provided, hence the generator is likely to output
any image in the target domain or to fall into mode collapse [57]. CycleGAN
tackles this issue with cycle consistency, where the fake image in the target
domain is translated back into the fake image in the source domain with a
second generator, and finally, the reconstructed image is forced to be identical
to the input image with L1 loss regularization.

The CycleGAN optimization is similar to the pix2pix optimization with
three main differences:. regularization is employed with cycle consistency [57],. a second generator is learned the same way as the first to allow the cycle

consistency to be used,. the discriminator is no longer conditioned to the input because structures
of the real and fake images do not correspond.

This results in an optimization for generators GX , GY and discriminators
DX , DY formulated similarly to Zhu et al. [57] as follows:

min
DX ,DY

L(D)
adv (DY , GX , X, Y) + L(D)

adv (DX , GY , Y, X)

min
GX ,GY

L(G)
adv(DY , GX , Y) + L(G)

adv(DX , GY , X) + λLcyc(GX , GY , X, Y),
(2.20)

18

.............................. 2.4. Image–to–Image Translation

fake

Day

Night

Night Day

L1

real

Input

Day Night
Generator

Day Night
Generator

Discriminator
Night

Figure 2.4: Optimization step of the CycleGAN training [57]. The Day→Night
Generator takes an input day image and translates it into a fake night image, and
then, Night→Day Generator takes the fake night image and translates it back
into a reconstructed fake day image. After these two passes, cycle consistency is
ensured with L1 loss minimalization. The Night Discriminator then determines
whether the intermediate translated image and the input night image are real or
fake. Only one direction of the CycleGAN training is displayed.

where the adversial loss for discriminator L(D)
adv , and the adversial loss genera-

tor L(G)
adv in X → Y translation are:

L(D)
adv (DY , GX , X, Y) = 1

2Ex∼PX
[(DY (GX(x)))2] + 1

2Ey∼PY
[(DY (y) − 1)2]

L(G)
adv(DY , GX , X) = Ex∼PX

[(DY (GX(x)) − 1)2].
(2.21)

For the discriminator DX , and the generator GY in Y → X translation
the adversarial loss is defined similarly. The cycle consistency loss for both
generators is:

Lcyc(GX , GY , X, Y) = Ex∼PX
[||x − GY (GX(x))||1]

+ Ey∼PY
[||y − GX(GY (y))||1].

(2.22)

The relative importance of cycle consistency can be controlled with λ in
Equation 2.20, similarly to pix2pix. In [57] and for all experiments conducted
in this thesis, λ = 10. This optimization is displayed in Figure 2.4.

2.4.4 DRIT

While CycleGAN [57] is optimized for unpaired image translation, where
no corresponding training image pairs are not available, DRIT [58, 59] is
additionally optimized for multimodal unpaired image translation, which
is the task of translating an image from the input domain into a distribution
of potential images in the target domain (while in unimodal image translation,
the translation happens into a single target image).

19

2. Background
The straightforward solution to synthesize multimodal outputs is to inject

a noise vector next to the generator input and prevent the subsequent mode
collapse [9, 60]. The first model that achieved this is BicycleGAN [61], which
adds an encoder optimized to output the latent code to be invertible. However,
BicycleGAN only performs multimodal paired image translation (it needs
pixel–aligned pairs of images in the source and target visual domain).

Another solution for multimodal image translation can be achieved with
disentangled representation, where the image features are broken down into
two parts: a content shared between the source and target images, and a
style which is different for the source and target images. This is the main
principle of how the DRIT [58, 59] architecture is designed. Similarly to the
BicycleGAN [61], more additional encoders are trained, where the content
encoder Ec is optimized to extract the latent code that is forced to be
preserved in the X → Y translation, and the style encoder Es is optimized
to extract the latent code that is forced to be preserved among the real and
fake images in their corresponding domain. For the translation between two
domains, let SX , SY , and C be the latent domain of X, the latent domain
of Y , and content–specific latent domain, respectively. Then, the following
networks are trained:

. content encoders Ec
X : X → C, and Ec

Y : X → C to map images into
shared content space,. style encoders Es

X : X → SX , and Es
Y : Y → SY to map images into

style–specific space,. generators GX : C × SX → X, and GY : C × SY → Y to synthesize fake
images conditioned on both content and style vectors,. discriminators DX : X → [0, 1], and DY : Y → [0, 1] to classify whether
images in their corresponding domain are real or fake,. content discriminator Dc : C → [0, 1] to distinguish the extracted content
between domains X and Y ,

resulting in 9 networks being optimized in total [58, 59].

Whenever an image x ∈ X is being translated into ŷ, Ec
X extracts its

content latent code zc
x and then the image ŷ is synthesized with GY as

ŷ = GY (zc
x, zs

y), where zs
y can be sampled from normal distribution N(0, 1),

or extracted from image y ∈ Y with EY . To achieve this, the following 7
losses are used in the final optimization:

Content Adversarial Loss. Assuming domains X, and Y share common
latent space [62], in the DRIT architecture [58] content encoders Ec

X and Ec
Y

also share the last layer and the generators GX and GY share the first layer.
By sharing these weights, it is enforced that the image content is mapped
into the same content space [58]. To assure the same content information is
encoded with both content encoders Ec

X and Ec
Y , the content discriminator

20

.............................. 2.4. Image–to–Image Translation

Dc tries to distinguish from which domain were zc
x and zc

y encoded:

L(D)
c−adv(Dc, Ec

X , Ec
Y , X, Y) = − Ex∼PX

[logDc(Ec
X(x))]

− Ey∼PY
[log(1 − Dc(Ec

Y (y)))]

L(G)
c−adv(Dc, Ec

X , X) = − Ex∼PX

[1
2 logDc(Ec

X(x)) + 1
2 log(1 − Dc(Ec

X(x)))
]

,

(2.23)
The loss L(G)

c−adv(Dc, Ec
Y , Y) is defined similarly.

Cross–Cycle Consistency Loss. Similarly to unimodal image translation,
to preserve the content of the source and target image, content consistency
is preserved by reconstructing the synthesized images back to their original
domain as in CycleGAN [57], but DRIT extends the cycle consistency with
disentangled content and swapping the domain–specific style latent codes [58]:

Lccc(Ec
X , Ec

Y , Es
X , Es

Y , GX , GY , X, Y) = Ex∼PX ,y∼PY
[||x − ˆ̂x||1

+||y − ˆ̂y||1],
(2.24)

where the reconstructed images are obtained as:

ˆ̂x = GX(Ec
Y (ŷ), Es

X(x̂)),
ˆ̂y = GY (Ec

X(x̂), Es
Y (ŷ)),

(2.25)

and the fake images are obtained in the same way as:

x̂ = GX(Ec
Y (y), Es

X(x)),
ŷ = GY (Ec

X(x), Es
Y (y)).

(2.26)

Domain Adversarial Loss. To make synthesized images indistinguishable
from the real images, DX and DY attempt to classify, whether an image is
real or fake [58]. In the same way, as in CycleGAN [57], the encoders and
generators are optimized to synthesize fake images indistinguishable from the
real images:

L(D)
d−adv(DY , Ec

X , Es
Y , GY , X, Y) = −Ey∼PY

log(DY (y)) − Ex∼PX
log(1 − DY (ŷ))

L(G)
d−adv(DY , Ec

X , Es
Y , GY , X) = −Ex∼PX

log(DY (ŷ)),
(2.27)

where ŷ is fake image of domain Y , obtained as in Equation 2.26 [58]. The
losses L(D)

d−adv(DX , Ec
Y , Es

X , GX , Y, X) and L(G)
d−adv(DX , Ec

Y , Es
X , GX , Y) are

defined similarly.
Self–reconstruction Loss. Similarly to the cross–cycle consistency loss,

latent features encoded with style and content encoders should be able to be
decoded back with their corresponding generator in self–reconstruction loss
as [58]:

Lrec(Ec
X , Es

X , GX , X) = Ex∼PX
[||x − GX(Ec

X(x), Es
X(x))||1]. (2.28)

The loss Lrec(Ec
Y , Es

Y , GY , Y) is defined similarly.

21

2. Background
KL Loss. To perform stochastic sampling at inference time, DRIT [58]

used KL loss to style latent code and normal distribution N(0, 1). This has
been later replaced with latent vector L2 regularization in DRIT++ [59]2:

LKL(Ec
X , Es

X , X) = Ex∼PX
[||Ec

X(x)||22 + ||Es
X(x)||22]. (2.29)

The loss LKL(Ec
Y , Es

Y , Y) is defined similarly.
Latent Regression Loss. Similarly to BicycleGAN [61], [58] encourages

the latent code to be invertible with the image. A random vector z for style
is drawn from the normal distribution N(0, 1) and reconstructed with the
style encoder in latent regression loss as [58]:

Llat(Ec
X , Es

X , GX , X) = Ex∼PX ,z∼N(0,1)[||z − Es
X(GX(Ec

X(x), z))||1]. (2.30)

The loss Llat(Ec
Y , Es

Y , GY , Y) is defined similarly.
Mode–seeking Loss. The first DRIT [58] suffers from mode collapse [59]

meaning, the style diversity of synthesized images diversity was low. The
architecture of DRIT++ [59] mitigates the mode collapse with mode–seeking
regularization that was first employed in MSGAN [63]. Given two latent
vectors z1 ∈ SY and z2 ∈ SY , the regularization is achieved by maximizing
the ratio of the distance between synthesized images ŷ1 and ŷ2 and with
respect to the distance between z1 and z2:

max
Ec

X ,GY

dI(ŷ1, ŷ2)
dz(z1, z2) = max

Ec
X ,GY

dI(GY (Ec
X(x), z1), GY (Ec

X(x), z2))
dz(z1, z2) , (2.31)

where dI(·, ·), and dz(·, ·) are the distance metrics for image, and latent vector
space, respectively [63, 59]. In practice, the mode seeking loss is implemented
as an inverse ratio between L1 distances to correspond with the total loss
minimization [63]:

Lms(Ec
X , GY , X) = Ex∼PX ,(z1,z2)∼N(0,1)

||z1 − z2||1
||GY (Ec

X(x), z1) − GY (Ec
X(x), z2)||1

.

(2.32)
The loss Lms(Ec

Y , GX , Y) is defined similarly.
Finally, the DRIT++[59] optimization can be expressed as:

min
DX ,DY ,Dc

L(D)(DX , DY , Dc, GX , GY , X, Y)

min
Ec

X ,Ec
Y ,Es

X ,Es
Y ,GX ,GY

L(G)(Ec
X , Es

Y , Es
X , Es

Y , GX , GY , X, Y),
(2.33)

where the discriminators minimize:

L(D)(DX , DY , Dc, GX , GY , X, Y) =λc−advL(D)
c−adv(Dc, Ec

X , Ec
Y , X, Y)

+λd−advL(D)
adv (DY , Ec

X , Es
Y , GY , X, Y)

+λd−advL(D)
adv (DX , Ec

Y , Es
X , GX , Y, X),

(2.34)
2Authors confirmed, that removing KL loss does not degrade the final performance at

https://github.com/HsinYingLee/DRIT/issues/37.

22

https://github.com/HsinYingLee/DRIT/issues/37

.............................. 2.4. Image–to–Image Translation

and the encoders and generators minimize:

L(G)(DX , DY , Dc, Ec
X , Ec

Y , Es
X , Es

Y , GX , GY , X, Y) =

λc−advL(G)
c−adv(Dc, Ec

X , X) + λc−advL(G)
c−adv(Dc, Ec

Y , Y)
+λcccLccc(Ec

X , Ec
Y , Es

X , Es
Y , GX , GY , X, Y)

+λd−advL(G)
d−adv(DY , Ec

X , Es
Y , GY , X) + λd−advL(G)

d−adv(DX , Ec
Y , Es

X , GX , Y)
+λrecLrec(Ec

X , Es
X , GX , X) + λrecLrec(Ec

Y , Es
Y , GY , Y)

+λKLLKL(Ec
X , Es

X , X) + λKLLKL(Ec
Y , Es

Y , Y)
+λlatLlat(Ec

X , Es
X , GX , X) + λlatLlat(Ec

Y , Es
Y , GY , Y)

+λmsLms(Ec
X , GY , X) + λmsLms(Ec

Y , GX , Y),
(2.35)

where in [59] the default weights controlling the relative importance of each
loss are λc−adv = 1, λccc = 10 λd−adv = 1, λrec = 10, λKL = 0.01, λlat = 10,
and λms = 1.

2.4.5 CUT

In the task of unpaired image translation, the content of the input image and
the translated images is typically ensured with cycle–consistency used by for
example CycleGAN (Section 2.4.3), and other architectures [64, 65]. Cycle–
consistency assumes there is a bijection between the source and the target
domain, which may be too restrictive [66]. For example, a sunny day image
can be translated into a night image, but the reconstructed day image from
the night image could not be necessarily sunny. In CUT, cycle–consistency is
replaced with the mutual information maximization between corresponding
source and target image patches [66]. This simplifies the training of the
unpaired image translation to the training with a single generator (and its
discriminator).

The information maximization between the input and output is done
as in contrastive predictive coding [67] to associate output patch (query)
with the corresponding input patch (positive) more than other input image
patches (negatives) [66]. The query v, positive v+ and N negatives v− are
mapped to a K–dimensional vector space, so that v ∈ RK , v+ ∈ RK , and
v− ∈ RN×K [66]. The constrastive loss is cast as a (N + 1)–way classification
problem, where the probability of the positive patch being selected over the
negative patches is represented with cross–entropy:

l(v, v+, v−) = −log
[

exp(v⊤v+/τ)
exp(v⊤v+/τ) +

∑N
n=1 exp(v⊤v−

n /τ)

]
, (2.36)

where τ = 0.07 is a temperature scaling the distance between the query and
other examples [66].

The same way as it is used in SimCLR [68], the projection head H is a two–
layer perceptron that maps feature maps to the space, where the contrastive
loss is applied. H is used to produce a stack of features {zl}L = {Hl(Gl(x))}L

23

2. Background
Horse Zebra

Generator

z- z+ z

Softmax
cross-entropy

Feature
extraction

Sample positive
+ N negatives

Compute
similarities to query

(N+1)-way
classification

GG

HG

HG

Patchwise Contrastive Loss

Figure 2.5: Patchwise contrastive loss for one–sided image translation with
CUT [66]. The Horse→Zebra Generator (G) takes an input horse image and
translates it into a fake zebra image. After this pass, the content in both images
is ensured with patchwise contrastive loss minimalization, where feature maps
of input and output images are extracted with selected generator layers and
mapped with the projection head (H), then a query patch (z) is sampled and
compared with the positive patch z+ and negative patches (z−). G and H are
optimized in a way that positive pair (z, z+) is more similar than negative pairs
(z, z−

n)n=1,...,N . Images were obtained and modified from [66].

for the input image features, and {ẑl}L = {Hl(Gl(G(x)))}L for the output
image features, where l ∈ {1, 2, . . . , L} is the index of the layer chosen for the
consistency, L is the number of chosen layers, and Gl, Hl is the output of l–th
chosen layer for the generator, projection layer, respectively, and additionally,
s ∈ {1, . . . , Sl} is the index of a spatial location at layer l, Sl is the number of
spatial locations at layer l, and Cl is the number of channels at the specified
layer [66]. The layers chosen for the contrastive loss are in the encoder part
of the generator. The corresponding feature is referred as zs

l ∈ RCl , other
features as z

S\s
l ∈ R(Sl−1)×Cl [66]. Finally, the patchwise contrastive loss

24

................................... 2.5. Edge Detection

LP atchNCE can be defined as:

LP atchNCE(G, H, X) = Ex∼PX

L∑
l=1

Sl∑
s=1

l(ẑs
l , zs

l , z
S\s
l), (2.37)

see Figure 2.5. The relative importance of individual regularizations can be
controlled with λX and λY in Equation 2.38. The default setting of these
weights for the CUT is λX = 1, λY = 1 [66]. Selected layers for LP atchNCE

are each convolutional layer in the encoder part of the generator, and it
was shown by [66] when only the last layer is selected, GAN training often
collapses.

The CUT optimization is similar to the pix2pix [56] formulation (covered
in the Section 2.4.2) with two main differences:. since CUT solves the unsupervised image translation task, the discrimi-

nator does not obtain the source domain image,. image content is preserved with multilayer patchwise contrastive loss
instead of L1 loss.

This results in an optimization for generator G, discriminator D, and projec-
tion head H formulated similarly to Park et al. [66] as follows:

min
D

L(D)
adv (D, G, X, Y)

min
G

L(G)
adv(D, G, X) + λXLP atchNCE(G, H, X) + λY LP atchNCE(G, H, Y),

(2.38)
where the adversial loss for discriminator L(D)

adv , and the adversial loss genera-
tor L(G)

adv are:

L(D)
adv (D, G, X, Y) = 1

2Ex∼PX
[(D(G(x)))2] + 1

2Ey∼PY
[(D(y) − 1)2]

L(G)
adv(D, G, X) = Ex∼PX

[(D(G(x)) − 1)2].
(2.39)

2.5 Edge Detection

The task of edge detection is qualitatively close to the task of searching
all pixel regions with sharp changes of intensity, color, or texture in the
image [69]. Finding edges in the image lowers image data complexity and
simplifies the subsequent tasks, such as image segmentation, or computing
image descriptors, etc. [70, 52]. Edges are fairly invariant to illumination
changes [52], which is exploited in this thesis in the novel GAN architecture.
To extract edge maps from an image, the common approach is to use an
edge detector. Two edge detectors are introduced: the first is a simple
and effective Sobel operator, and the second one is a CNN–based HED edge
detector.

2.5.1 Sobel Operator

Assuming, the edge point and its neighborhood have the highest difference in
pixel intensities, one way how to detect edges is with maxima of gradients

25

2. Background
(first derivatives) approximation. Gradients can be approximated using a
small convolutional kernel. One of the popular convolution–based techniques
is Sobel operator [71], which extracts image edge features y by convolving
the input image x in the horizontal and vertical directions as:

Gx =

1 0 −1
2 0 −2
1 0 −1

 ⋆ x, Gy =

 1 2 1
0 0 0

−1 −2 −1

 ⋆ x, y =
√

G2
x + G2

y, (2.40)

where Gx and Gy are image responses in the right and down direction,
respectively. To ensure the dimensions of Gx and Gy are the same as the
input, the image x is padded with one pixel replicated at each side before
convolving. Also, if the input image is a color, it is first transformed into a
grayscale image. The result of the Sobel operator is y, which expresses the
magnitudes of edges at each pixel of the input image.

2.5.2 HED

Detecting image edges as taking image derivatives highlights high frequencies,
which then produces noisy edge points that would not be considered as edges
by humans [72]. Hollistically–nested edge detector (HED) [73] is CNN–based
edge detector that addresses the edge ambiguity with learning on Berkeley
Segmentation Dataset and Benchmark (BSDS 500) [74, 70] to match the side
output of each convolutional layer with the ground–truth image through side
outputs weighted fusion [73]. In other words, each side output is passed to
the next layer as in CNN, and additionally, all side outputs are used to fuse
the output edge map.

Let X be the image domain, and let Y be the edge map domain. At
inference time, given an input image x ∈ X, an edge map ŷ ∈ Y is extracted
with HED detector E as:

ŷ = average(ŷfuse, ŷ
(1)
side, . . . , ŷ

(M)
side) = E(x), (2.41)

where ŷfuse is the edge responses obtained after the ŷ
(1)
side, . . . , ŷ

(M)
side side

outputs fusion, and M is the number of side outputs. To achieve this, E is
optimized as in supervised learning task using training pairs (x, y) of input
image x and ground–truth image edge maps y ∈ Y, y ∈ {0, 1}H×W with the
following two losses:

Side Outputs Loss. The goal of the side outputs is to produce an
intermediate edge map approaching the ground–truth edge map since the first
layers of the detector [73]. Let E(m) denote the m–th side output layer of
the detector. Each of the side output layer is optimized with class–balanced
binary cross–entropy loss, which is chosen by [73] to balance the bias between
the rare edge pixels and large amounts of non–edge pixels. Let Y +

train and
Y −

train be the sets of all training ground–truth non–edge and edge labels,
respectively. The class–balancing weights are defined as β = |Y −

train|/|Ytrain|
and (1 − β) = |Y +

train|/|Ytrain|, where Ytrain = Y −
train ∪ Y +

train [73]. Using these

26

.................................... 2.6. Related Work

weights, each side output layer is optimized with an image–level loss function
for side outputs as:

ℓside(m, E, X, Y) = −Ex∼PX ,y∼PY
[β y log(ŷ(m)

side)+(1−β)(1−y)log(1−ŷ
(m)
side)],
(2.42)

where ŷ
(m)
side = (E(1) ◦ E(2) ◦ · · · ◦ E(m))(x) is the m–th side output [73]. Using

ℓside(m, E, X, Y), the side outputs loss is:

Lside(E, X, Y) =
M∑

m=1
ℓside(m, E, X, Y). (2.43)

Fusion Loss. To directly use all side outputs, [73] add a (last) fusion
layer Efuse that attempts to learn weights per each side output 1, . . . , M ;
specifically ŷfuse = Efuse(ŷfuse) = Efuse(ŷ(1)

side, . . . , ŷ
(M)
side) is trained via

binary cross–entropy loss:

Lfuse(E, X, Y) = −Ex∼PX ,y∼PY
[y log(ŷfuse) + (1 − y)log(1 − ŷfuse)]. (2.44)

Overall, HED optimization of the detector E is optimized by [73] as:

min
E

Lside(E, X, Y) + Lfuse(E, X, Y). (2.45)

2.6 Related Work

First, in Section 2.6.1 and Section 2.6.2, prior work relevant to this thesis
is briefly covered. In the last Section 2.6.3, image translation methods and
their use–cases related to this thesis are briefly described.

2.6.1 Day–Night Image Retrieval

The prior work of Jenicek and Chum [51] is the closest to this thesis. They
tackle the image illumination changes by aligning the day and night visual
domains in two steps:..1. a photometric normalization is proposed to bring the appearance of day

and night images more together through handcrafted CLAHE [72], or
learned U-Net network,..2. embedding network is trained on matching day and night pairs collected
from 3D reconstructions from [75], which was introduced as SfM N/D
dataset [51].

In this thesis, day–night image retrieval is also evaluated with CLAHE because
it helps the retrieval performance. On the other hand, data augmentation
with day→night image translation in this thesis removes the requirement to
obtain matching day–night image pairs, and also increases the diversity of
night image data.

27

2. Background

Figure 2.6: Overview of the training pipeline with rBTE. A photo is transformed
into rBTE using multiple edge detectors (green) followed by geometric augmenta-
tions (yellow), and then, edge maps are thinned using non–maxima–suppression
(purple), hysteresis with a random threshold method (green and blue) ended with
large connected–components preservation (red). The transformed image together
with the annotation of the former photo is then used to train a network classifier
(net) with the cross–entropy loss. The whole Figure is taken from [32].

2.6.2 Sketch Recognition

Sketch Classification

The prior work of Efthymiadis et al. [32] aims to classify sketches at the
inference time without access to sketches at the training time. To bridge
the domain gap, they proposed to transform natural images into a pseudo
domain called randomized Binary Thin Edges (rBTEs) [32] that visually
approximates the sketch images, see Figure 2.6.

Edge–based Retrieval

The method of Radenovic et al. [52] experimented with metric learning only
on edge maps using EdgeMAC descriptor. They observed that edges well
survive the day–night transition, which results in no need to obtain more
expensive night images, but [52, 51] observed that EdgeMAC performs poorly
on standard image retrieval datasets due to the information loss during the
transformation of image into the edge map.

Lengyel et al. [76] proposed CIConv, which is a method for zero–shot domain
adaptation. Based on the observation that there are large distribution shifts
in CNN feature maps between day and night image inputs, [76] proposed
an edge detector implemented as a color invariant convolution layer that is
added before the backbone network. CIConv has very promising results in
night retrieval without providing any night training images, but the retrieval
performance is worse on standard retrieval benchmarks.

2.6.3 Image–to–image Translation

GAN

In this thesis, pix2pix [56] (Section 2.4.2), CycleGAN [57] (Section 2.4.3),
DRIT++ [58, 59], and CUT [66] (Section 2.4.5) were covered; yet there are

28

.................................... 2.6. Related Work

many more GAN–based networks for image translation [77].
StarGANv2 [78] might be considered as the state–of–the–art by many

because it outperforms MUNIT [79], DRIT [58], and MSGAN [63]; however the
quantitative comparisons were done only on CelebA-HQ [21] and AFHQ [78],
which are datasets containing only human or animal faces making the use–case
less related to image retrieval or visual localization.

With the knowledge that synthesized images are used in tasks, such as
landmark retrieval or visual localization, one could use more advanced object–
aware image translation to better enhance the objects of interest for the down-
stream task. For instance, INIT [80], DUNIT [81], and DE-CycleGAN [82] are
instance–aware GAN architectures leveraging object detection models, and
Multimodal AugGAN [83] integrates semantic segmentation models of both
domains with a multimodal generator network. From my personal experience,
manual deployment of these kinds of networks is too complex, and it takes a
long time to train them from scratch. Instead, a novel lightweight HEDNGAN
is introduced in this thesis, which takes orders of magnitude less time to train
it and it is as good as CycleGAN [57] in day→night image translation for
image retrieval.

VAE

Variational autoencoders (VAEs) [84] are similar to the GANs, as they both are
tasked to generate a distribution p(x), but VAEs do not have a discriminator
that is trying to be tricked with a generator. The architecture of VAE is
composed of an encoder that maps data x into a latent vector z approximating
q(z|x) and a decoder that maps the latent z back to the data x̂ approximating
p(x|z). VAEs are more stable to train than GANs [85], but image quality
synthesized with VAE is worse compared to GAN–based reconstruction [77].
Nonetheless, UNIT [62], BicycleGAN [61], DRIT [58, 59] are examples of
both GAN and VAE–based models because they both use a latent space for
the image translation and also tries to generate image indistinguishable from
real images by the discriminator. Also, by using VAE, GAN architecture can
be adapted for multimodal image translation [61, 58, 59].

Translation for Domain Adaptation

Image translation was used in many computer vision tasks, which is similar to
this thesis. The most similar to the day–night image retrieval are mentioned
as follows:

Arruda et al. [86] use CycleGAN to translate day images into night images
in car detection, while having image annotations only for day images.

Annosleh et al. [87] proposed ToDayGAN for visual localization to translate
night image into a day image at inference time using the same generator as in
CycleGAN [57], but trained with three discriminators based on different real
and fake image features: the first discriminator for images in grayscale, the
second discriminator for RGB blurred images, and the third discriminator
for image gradients.

29

2. Background
Mueller et al. [88] performed image translation from a rendered domain

obtained from 3D recostructions into photo–realistic image domain showing
that feature matching, image retrieval, and visual localization benefits from
synthetic data, and additionally, training on merely synthetic images in
the visual localization achieved similar results as training only on manually
captured images.

Lou et al. [89] designed a Feature Distance Adversarial Network (FDA-
Net) that is similar to GAN to online generate hard negatives for a car
reidentification task.

30

Chapter 3
Method

3.1 Day–Night Image Retrieval

In this Section, two new GAN generators for unpaired image translation are
introduced. Those generators are more lightweight than the vanilla generators
covered in the previous background Chapter 2. Finally, a resolution of how
a trained generator aids the day–night image retrieval in metric learning is
described.

3.1.1 Day–Night Translation Notation

The goal of day–night image translation is to transform day images into night
images. Let X be the set of day domain images, where the day image x is
from the day visual domain if x ∈ X. Let PX denote the data distribution of
day images. Image x follows distribution PX , when x ∼ PX . Night domain
Y , night image y, and night domain data distribution PY are defined similarly.
A day→night generator G : X → Y is trained to translate day image x into
synthetic night image G(x).

3.1.2 Edge Consistency Generators

The task is unpaired day→night image translation performed with a GAN–
based generator. The approach to the novel generators is based on the
observation that edges tend to remain preserved when illumination conditions
change [51, 75]. Therefore, edge consistency is used as a regularization
in the generator, which forces the generator to generate images that have
edge maps similar to the edge maps of the input image while still allowing
the translation to produce a visually different image. Other GAN models
for unpaired image translation, such as DRIT [58, 59] and CycleGAN [57],
require a large amount of time to train from scratch. In particular, DRIT
architecture shares latent vectors among decoders and discriminators forcing
them to retain the computational graph during the training, which slows
down the backpropagation, and in CycleGAN, the first generator relies on
a second generator that is learned from scratch and presumably provides
imprecise feedback to the first generator at the beginning of the training.

31

3. Method

fake

Day

Night

Night Edgemap

real

Input

Day Night
Generator

Discriminator
Night

Edge
Detector

HED (frozen)

L1

Figure 3.1: Optimization step of the HEDGAN training. The Day→Night
Generator takes an input day image and translates it into a fake night image
while maintaining consistency in the edge map using an L1 loss between the
outputs of the HED detector. The Night Discriminator then determines whether
the generated night image and the input night image are real or fake.

CUT [66] replaces the cycle consistency with feature map patches contrastive
loss, which makes it more lightweight but still requires passing the image
through the generator four times. In edge consistency–based generators, an
input image passes through the generator only once, and then, the real and
fake images pass through the edge detector also once.

HEDGAN

The architecture of HEDGAN consists of three models: a generator G,
a discriminator D, and an edge detector E. The goal of generator and
discriminator is the same as in other GAN–based training, while the goal
of the edge detector is to provide edge maps of real and fake images. To
obtain first order gradients in the backpropagation, the edge detector must be
differentiable. For this purpose, HED [73] is employed as the edge detector.
The full network training is displayed in Figure 3.1.

The generator and the discriminator weights are initialized at random,
while HED weights are initialized with pretrained HED [90] and remain
unchanged during the training. Each iteration, input image x from day visual
domain is translated with the generator into a fake image G(x) in the night
target domain. Then, edge maps of input image E(x) and output image
E(G(x)) are extracted and compared pixel–wise with L1 distance with the
edge consistency loss Ledge forcing the edges between the input and fake
image to be consistent:

Ledge(G, E, X) = Ex∼PX
[||E(x) − E(G(x))||1]. (3.1)

32

.............................. 3.1. Day–Night Image Retrieval

The discriminator is deployed in a standard unpaired image–to–image trans-
lation fashion and applied to the fake image G(x) ensuring the fake night
image is indistinguishable from real night image distribution by predicting
D(G(x)) is fake and D(y) is real, training the generator to synthesize night
images by tricking the discriminator to predict D(G(x)) as real an image.1

The adversial loss for the discriminator L(D)
adv , and the generator L(G)

adv can be
formulated as:

L(D)
adv (D, G, X, Y) = 1

2Ex∼PX
[(D(G(x)))2] + 1

2Ey∼PY
[(D(y) − 1)2]

L(G)
adv(D, G, X) = Ex∼PX

[(D(G(x)) − 1)2].
(3.2)

Putting this together, this results in optimization of the unpaired image–to–
image translation with LSGAN [13] (covered in Section 2.1.2) adversarial
training, and with new edge consistency regularization, formulated as follows:

min
D

L(D)
adv (D, G, X, Y)

min
G

L(G)
adv(D, G, X) + λLedge(G, E, X),

(3.3)

The strength of the edge consistency is controlled with λ, an additional
hyperparameter, which is λ = 5 in all experiments.

HEDNGAN

HED detector [73] can sometimes miss edges in the night images, which
can result in imprecise feedback to the generator. This is because the HED
detector is primarily trained on images taken during the day. To improve
the edge detection in night images, a new edge detector called HEDN is
added and trained jointly with the generator and the discriminator so that
HEDN has similar responses on both real day and fake night images with
the help of HED. This allows the edge consistency to be measured more
accurately during the generator training.

The architecture of HEDNGAN consists of four models: a generator G, a
discriminator D, a student edge detector EN (HEDN), and a teacher edge
detector E (HED). The generator and discriminator are trained similarly to
HEDGAN training. The student is taught by the teacher to preserve edge
maps between day–night and day–day image pairs. The role of the teacher is
only to provide day image edge maps that are considered ground–truth in
the training. The full network training is displayed in Figure 3.2.

More specifically, students’ weights are initialized the same as the teacher’s [90],
and then, only students’ weights are updated during the training. The ad-
versarial loss of the discriminator and generator is the same, but in the edge
consistency loss of the generator, HEDN edge maps EN (G(x)) instead of
HED edge maps E(G(x)) of the fake image are compared with HED edge

1The discriminator output is not interval [0, 1], but it is unbounded. This is because
the sigmoid is removed from the discriminator architecture and it is trained as in LS-
GAN [13] (covered in Section 2.1.2).

33

3. Method

fake

Day

Night

Night

Trained Student

Frozen Teacher

Edgemap

real

Input

Day Night
Generator

Discriminator
Night

Edge
Detector

L1

L1

Figure 3.2: Optimization step of the HEDNGAN training. The Day→Night
Generator takes an input day image and translates it into a fake night image while
maintaining consistency in the edge map using an L1 loss between the outputs
of the HED and HEDN detectors. The Night Discriminator then determines
whether the generated night image and the input night image are real or fake.
The HEDN edge detector is trained by the HED edge detector to produce night
image edge maps while still preserving the day image edge maps.

maps E(x) of the input day image, which is reflected in the edge consistency
loss for the generator:

L(G)
edge(G, EN , E, X) = Ex∼PX

[||E(x) − EN (G(x))||1]. (3.4)

The student EN is taught by the teacher E to detect more edges in the
synthesized night images by being forced to output edge maps EN (G(x))
of the fake night image G(x) that are the same as the ground–truth edge
maps E(x) of the input day image x. To ensure that the student does not
forget how to detect edges in day images, it is also trained to preserve the
day image edge maps EN (x) with the edge maps E(x) of the teacher. This
is captured by the edge consistency loss for the student:

L(E)
edge(G, EN , E, X) = Ex∼PX

[||E(x) − EN (G(x))||1]

+ Ex∼PX
[||E(x) − EN (x)||1].

(3.5)

Then, the whole HEDNGAN training can be formulated as follows:

min
D

L(D)
adv (D, G, X, Y)

min
G

L(G)
adv(D, G, X) + λL(G)

edge(G, EN , E, X)

min
EN

L(E)
edge(G, EN , E, X).

(3.6)

34

.............................. 3.1. Day–Night Image Retrieval

Anchor

Embedding

p

1 - p

CLAHE

Positive

L2

Day Night

normalization

Figure 3.3: Data augmentation and photometric normalization in metric learning.
An anchor is translated from day into night visual domain with probability p
(Day→Night block). The resulting image together with a positive and negative
(not illustrated) is photometrically normalized (CLAHE normalization block).
Then, positive pair and negative pairs (not illustrated) forward through the
embedding network. Finally, the L2 distance between positive pair global
descriptors is minimized, while for negative pair global descriptors it is maximized
up to a margin.

Adversarial losses L(D)
adv and L(G)

adv are same as in HEDGAN training (Equa-
tion 3.2). The strength of the edge consistency is controlled with λ, an
additional hyperparameter, which is λ = 5 in all experiments.

3.1.3 Metric Learning

The learning of image global descriptor is approached with metric learning
using a siamese network. The task is to make the embedding fD/N : X → Y
that represents an image x as a global descriptor y that is invariant to image
visual appearance changes as much as possible. Unfortunately, not enough
training data are available to provide full information to the embedding
network about image retrieval under varying appearance conditions. One
technique, how to make the embedding model generalize better is to train it
on more data, including creating synthetic examples and adding them to the
training dataset, which is called data augmentation in deep learning termi-
nology [2]. Prior work of [15, 51] is followed, where the data augmentation in
the embedding training is achieved with a trained generator, that synthesizes
night training images from day training images. This process is displayed in
Figure 3.3.

Training the embedding network is approached with metric learning, where
the contribution of this work is only day→night image translation performed
for the anchor at random. Before the training data mining and subsequent
metric learning, first, each anchor is translated from day into night visual
domain with a trained day→night generator, and second, CLAHE photometric

35

3. Method
Photo Edges Outlines Sketch

Figure 3.4: Examples of photo transformations towards sketches. From the
natural image (first column) edges are extracted (second column). To bring the
visual appearance closer to the true sketches (fourth column), the edges can be
further thinned into outlines (third column). Outline images can be used as
training data for sketch recognition. In this Figure, edges were obtained with
HED [73] and outlines were obtained from [32].

normalization [72] is applied on each image. The same way as in [15, 51, 43]
embedding network architecture is constructed from a model for classification,
such as VGG-16 [6], ResNet-101 [7], etc. where the last linear layers are
replaced with GeM layer [43] followed by L2 normalization layer; this is
described in greater detail in the background of retrieval with CNNs in
Section 2.3.2. At the start of the training, the embedding network is initialized
with weights of ImageNet pretrained network [25]. Then, the embedding is
finetuned for the metric learning task with the contrastive loss.

3.2 Sketch Recognition

This section focuses on the photo–sketch visual domain shift in image recog-
nition. First, a generator is trained using a modified paired image translation.
Second, the generator trained in the previous step is used together with an
edge detector to produce approximate sketch images for the downstream task.
Although image classification and image retrieval have dissimilar formulations,
it was observed by [91] that those two tasks can be solved using the same
algorithm. Therefore, to evaluate the effectiveness of the image translation in
the downstream task, the task can be image classification instead of image
retrieval. In addition, no available training sketches are considered, and there-
fore, natural photos are used to approximate sketch images. The intuition
behind the approximation is displayed in Figure 3.4.

3.2.1 Thin-pix2pix

The goal is to construct the transformation that transforms photos to approx-
imate sketch images. This is achieved using two models: an edge detector,
followed by a generator that transforms edges into outlines. Thin edge out-
lines serve as the approximation of sketch images. The prior work of [32]

36

.................................. 3.2. Sketch Recognition

Outline
Discriminator

fake

real

Edge Outline
Generator

L1

Polygons

Outline

Edge Outline
Edge

Detector

HED (frozen)
Input

Figure 3.5: Optimization step of the Thin-pix2pix training for the thinning task.
First, edges are extracted with HED [73] from input image polygons. Then, the
Edge→Outline Generator translates these edges into a fake outlines image. After
this forward pass, structure consistency is ensured with L1 loss minimalization.
The Outline Discriminator then determines whether the translated image and the
input outline image are real or fake with the input polygons image condition.

approximates sketches with handcrafted rBTE pseudo–domain. However,
this approach has a drawback with many function parameters needing to
be tuned. In this work, the transformation is composed of HED [73] edge
detector and a generator trained for paired image translation.

The purpose of the generator is to synthesize thin image outlines from an
input image. For this purpose, the generator is trained using self–supervised
learning inspired by pix2pix [56]. This model is therefore called Thin-pix2pix.
The training of the generator is displayed in Figure 3.5. The training of the
Thin-pix2pix uses almost the same as the pix2pix optimization with three
differences:. the Thin-pix2pix generator is composed of the pretrained HED [73] detec-

tor followed by ResNet generator [57]; HED weights remain unchanged
during the training,. the training data consists of training pairs of generated random polygons
and their one–pixel thin outlines,. the relative importance of the discriminator is stronger compared to
pix2pix (λ = 10 instead of former the 100 in Equation 2.17), which
significantly reduces the noise in the synthesized outline images produced
by the generator.

Each random polygon image consists of 20 randomly generated polygons of 14
different possible colors and each polygon is filled with a normally distributed
random noise.

37

3. Method

Edge Outline
Generator

Edge

Classifier
OutlinesPhoto

"elephant"

prediction

Detection
Thin-pix2pix

(frozen)

Cross-entropy
Loss

Geometric
Augmentations

Figure 3.6: Overview of the training pipeline with Thin-pix2pix. A photo
is transformed into outlines using multiple edge detectors (green) followed by
geometric augmentations (yellow). Edge maps are transformed with Thin-pix2pix
generator into outlines. The transformed image (outlines) together with the
annotation of the former photo is then used to train a network classifier with
the cross–entropy loss. This Figure is based on [32].

3.2.2 Sketch Classification

The downstream task is class–level sketch classification. Let X be the set
of images, let S be the set of sketches, and let Y be the set of labels. The
classification is performed with the classifier fSketch : S → Y that classifies
a sketch s with a class–level label y. Following the prior work of [32], the
classifier is obtained using supervised learning that trains fSketch with training
pairs (s, y). To obtain any of these pairs, a natural image x is transformed
into image outline T (x), where T : X → S. The classifier is trained using
the transformation T providing (T (x), y) training pairs. During the classifier
training iteration, T (x) passes through the classifier, and its prediction of the
class is compared with the true class y using cross–entropy loss.

The transformation T is a composition of multiple transformations. The
composition, together with the classifier training is displayed in Figure 3.6.
At the training time, given an input image, edge maps are extracted, then
random geometric augmentations are performed, and finally, edge maps are
thinned with the Thin-pix2pix generator. At the inference time, the input
sketch is only thinned with the generator.

38

Chapter 4
Implementation

4.1 Datasets

In this Section, all datasets needed to perform the experiments are described.
In day–night image retrieval experiments, two datasets are used for the
generator training, and two datasets are used for the image retrieval, while
for the evaluation, three different datasets are used. In sketch classification
experiments, two datasets are used and split for training and evaluation.
The evaluation protocol for the day–night image retrieval is mean average
precision (mAP), and the sketch classification is evaluated with classification
accuracy.

4.1.1 Training Datasets

Retrieval SfM Dataset (SfM) is based on the dataset of Schronberger et
al. [92] consisting of 7.4 million images of popular landmarks and cities across
the world downloaded from Flickr, from which were then reconstructed 3D
models with retrieval–SfM pipeline allowing fully automatic annotation of
positives and negatives without any human interaction [43]. This dataset is
used for the baseline retrieval evaluation as well as for the generator training
and data augmentation. For all image retrieval experiments, SfM contains
98045 images from 3D reconstructions. For the day→night generator training,
annotations of [1] were used for day and night images and images having any
resolution lower than 512 px were removed to allow further random scale–crop
augmentation, which results in 86385 day images and 10039 night images.

Retrieval SfM N/D Dataset (SfM N/D) was introduced by [51], who
constructed additional positive pair with different illumination conditions.
This dataset is an enrichment of SfM with the day–night positive pairs
gathered from 3D reconstructions. Notice that training the day→night
augmentation does not require the use of day–night pairs, since all evaluated
augmentations are unpaired image–to–image translations. Nonetheless, night
images 3D reconstructions of [1] hint, that night images have low diversity.

Aachen Day–Night Dataset (Aachen) contains images of the old inner
city of Aachen in Germany [93, 94]. The dataset consists of 5152 day images
and 191 night images, where night images are taken with mobile phones with

39

4. Implementation....................................

Retrieval SfM Dataset (SfM)

Retrieval SfM N/D Dataset (SfM N/D)

Aachen Day-Night Dataset (Aachen)

Figure 4.1: Training data image samples for the image-to-image translation and
image retrieval. Row order from top to bottom corresponds to SfM [92], SfM
N/D [51], and Aachen [93, 94] datasets. In each row, the first three left images
correspond to the day visual domain and the last three right images correspond
to the night visual domain. For the SfM N/D dataset, day and night images
form positive pairs (2nd row, 1st and 4th pair, 2nd and 5th pair, and 3rd and
6th pair). SfM and SfM N/D datasets were used in image retrieval training,
while SfM and Aachen datasets were used in the image–to–image translation
training.

HDR setting. From the dataset, only day-night annotations are used to train
the CycleGAN on day and night image sets.

4.1.2 Evaluation Datasets

Three datasets are used in the final image retrieval evaluation and two datasets
for the sketch classification evaluation.

Revisited Oxford and Paris Datasets (ROxf and RPar) are standard
image retrieval datasets revisited by [95] consisting of 4993 and 6322 day
images respectively, capturing buildings. All retrieval performance scores are
reported on medium difficulty evaluation. The purpose of these datasets is to
measure, whether the retrieval in regular conditions does not drop below the
baseline.

24/7 Tokyo Dataset (Tokyo 24/7) [96] is a collection of smartphone
pictures taken in different light conditions, such as day, night, and sunset
consisting of 1125 images capturing 375 scenes from 125 distinct locations.
The evaluation of day–night retrieval was proposed by [51], who uses each
image as a query, images from the same scene but different lighting conditions
as positives, and images from different locations as negative. In this thesis,
the day–night retrieval is evaluated with the same protocol as in [51].

PACS [34] is a dataset suitable for domain generalization tasks consisting
of four visual domains: photo (1670 images), art painting (2048 images),

40

.............................. 4.2. Day–Night Image Retrieval

Revisited Oxford Dataset (ROxf)

Revisisted Paris Dataset (RPar)

24/7 Tokyo Dataset (Tokyo)

Figure 4.2: Evaluation data image samples for the image retrieval. Row order
from top to bottom corresponds to ROxf [95], RPar [95], and Tokyo [96] datasets.
For the Tokyo dataset, the first three left images correspond to the day visual
domain and the last three right images correspond to the night visual domain.
All three datasets are used for image retrieval performance evaluation.

cartoon (2344 images), and sketch (3929 images), where each of these domains
contains 7 classes: dog, elephant, giraffe, guitar, house, horse, and person [34].
In all sketch classification experiments, the practice of [32] is followed, that
is, only images in photo class are used for training, where 1499 are used for
the training and 171 for the validation, and all 3929 sketches are used in the
testing part.

Sketchy [97] is a large–scale dataset obtained with crowd workers that
have been asked to sketch a specific object. The dataset counts a total of
75471 sketches of 12500 objects each belonging to one of 125 classes. Following
the practice of [32], sketch recognition training use 11500 images and the
corresponding 68418 sketches, where 80 % of those images are used for the
training and the remaining images for validation; the testing part uses 1250
images and the corresponding 7063 sketches as in [97].

4.2 Day–Night Image Retrieval

In the first step, a generator needed for data augmentation is trained. In
the second step, image retrieval is learned using metric learning, where the
generator from the previous step is used to translate day images into night
images producing positive night–day pairs.1

1Image retrieval codebase and implementation progress is available online at CTU Gitlab
at https://gitlab.fel.cvut.cz/jenicto2/mdir

41

https://gitlab.fel.cvut.cz/jenicto2/mdir

4. Implementation....................................

PACS Dataset

Sketchy Dataset

Figure 4.3: Training and evaluation data image samples for the sketch classi-
fication task. Row order from top to bottom corresponds to PACS [34], and
Sketchy [97] datasets. In each row, the first three left images correspond to
the natural photo visual domain and the last three right images correspond to
the sketch visual domain. Both these datasets are used for sketch classification
training and evaluation.

4.2.1 Generator Training

In all experiments, the training data for the GAN training are preprocessed
the same. Each input image is randomly downscaled by the factor from 0.8
up to 1 and then randomly cropped to the final size of 256×256 pixels. Each
training epoch has 10000 iterations, where in each iteration a pair of images
in source and target visual domains are used.

Vanilla Generators

For CycleGAN [57], CUT [66], and DRIT [59], their original settings are used.
For clarity, the number of training epochs for models fully converge is 100
epochs for CycleGAN, 50 epochs for DRIT, and 300 epochs for DRIT. During
the training of all three models, the learning rate linearly decays to zero over
the last half of the training epochs.

For CUT [66], changes from the original implementation are the following:. all weights are initialized with He initialization [25] instead of weight
initialization from N(0, 0.02),. downsampling and upsampling convolutional layers have trainable weights
(same as in CycleGAN) instead of fixed weights,. first layer output is omitted in the contrastive loss (applied on layers
4,7,10,14 instead of former 0,4,8,12,16).weight of identity loss λY is set to 10 instead of 1.

The first three modifications aid the retrieval performance. However, the
third modification with omitting the first layer might be questionable, since
experiments [66] show using only the output of the last layer in contrastive
loss destabilizes the training. I observed similar behavior and stabilized the
training with stronger identity loss as the fourth modification.

42

.............................. 4.2. Day–Night Image Retrieval

Edge Consistecy Generators

Describing only HEDNGAN is enough since HEDGAN is trained the same as
HEDNGAN (without finetuning HED).

HEDNGAN architecture is composed of ResNet generator [98, 57], Patch-
GAN discriminator [56], and two HED edge detectors [73], where one is frozen
and second is trained. HEDNGAN optimization step is the same as the Cy-
cleGAN [57] for one generator, with the differences of cycle consistency being
replaced by edge consistency for the generator, and additional edge detector
optimization step. In contrast with CycleGAN [57], the generator and the
discriminator use batch normalization instead of instance normalization. The
generator and the discriminator are initialized with He initialization [25],
while both HED detectors, student and teacher, are initialized with the same
pretrained weights obtained from the pretrained PyTorch reimplementation2

of [90]. The generator and the discriminator are trained from scratch similarly
to [57], whereas the teacher weights are not updated during the training, and
the student is finetuned with Adam optimizer [99] with learning rate 10−6,
β1 = 0.9, β2 = 0.999, and weight decay 0.0002. All three networks are trained
jointly with batch size 10. Concerning the L1 losses between edge maps, in
the detector optimization step, the L1 loss is applied between outputs before
the sigmoid function, while in the generator optimization step, the loss is
applied after the sigmoid function.

Also, the Sobel operator was evaluated as an edge detector in the edge
consistency–based GAN training. This method is called SobelGAN. In the
SobelGAN training, only the edge detector changed, all other hyperparameters
remain the same as in the HEDGAN training.

4.2.2 Metric Learning

Metric learning follows the practice of [51] with the differences of the same
training data obtaining annotations from 3D reconstructions are used as in
the baseline [43], diverse anchor images are mined, and data augmentation
with the generator is performed. For the CNN embedding backbones, VGG-16
[6], ResNet-18 [7], ResNet-50 [7], or ResNet-101 [7] are used. The backbone
is initialized with weights of ImageNet pretrained network [100], and then
the embedding network is finetuned on the SfM dataset [48, 51]. In the
preprocessing steps, each input image is downscaled to the size of 362 px per
dimension, then data augmentation takes place (described in Section 4.2.2),
and finally, CLAHE [72] is performed on a grid 8 × 8 with clip limit 1. The
embedding network is finetuned for 40 epochs, where each training epoch has
2000 iterations. In each iteration, 7 images are provided: anchor, positive, and
5 negatives, where for each anchor, negatives are mined from different clusters
(different 3D reconstructions) such that the distance of anchor descriptor
and positive descriptor is minimal. For clarity, anchor means anchor image,
terms anchor translation, and translation mean to perform image–to–image

2https://github.com/sniklaus/pytorch-hed

43

https://github.com/sniklaus/pytorch-hed

4. Implementation....................................
translation with the anchor during the finetuning.

Diverse Anchors Mining

In the prior work of [43, 51], positive pairs are selected at random from all
possible positive pairs. This could sometimes lead to a repeated selection
of anchors with the same or similar scene and viewpoint causing lower data
diversity within the epoch iterations. This issue is fixed with diverse anchors
selected from a random pool of anchors, specifically, 2000 anchors are selected
from the pool of size 10000. The selection process of the anchors from the
pool is the following: the first anchor is selected at random; then before the
next anchor is selected, the remainder of the pool is sorted by minimal L2
distance of descriptors extracted from the currently finetuned embedding
network; and then the next anchor is selected from the ordered pool between
20th and 80th percentile. The reasoning behind dropping the first 20% is to
increase the diversity of anchors and dropping the last 20% is to prevent the
selection of anchors with outlying descriptors.

Data Augmentation

During the CNN finetuning, the generator trained in the previous step is used
for the anchor translation from the source into the target domain (day→night,
or photo→edges) as a form of data augmentation. Whenever an anchor would
be inputted into the embedding network, it is translated with probability 0.25.
The generator is not finetuned nor updated during the training. In negatives
mining before each epoch, the anchor translation is performed before the
mining.

4.3 Sketch Recognition

In the first step, a generator needed for image outlines synthesis is trained.
In the second step, the downstream task of sketch classification is trained,
where the generator is used with an edge detector to provide the training
data to the classifier.3

4.3.1 Thin-pix2pix Generator

The architecture of Thin-pix2pix is composed of ResNet generator [98, 57],
PatchGAN discriminator [56], and HED edge detector [73]. The optimization
step is almost the same as in the pix2pix training [56]. The main difference is
that the input image comes through the HED detector and the extracted edge
maps are then put into the generator. In contrast with pix2pix training, the
ResNet generator [57] is used instead of the U-Net generator [101, 56], λ = 10
instead of 100, and the generator and the discriminator are initialized with

3Sketch recognition codebase and its implementation progress is available online at
Github at https://github.com/8ToThePowerOfMol/im2rbte

44

https://github.com/8ToThePowerOfMol/im2rbte

.................................. 4.3. Sketch Recognition

He initialization [25]. HED detector is initialized with pretrained weights the
same way as in HEDNGAN and weights of the detector remain unchanged
during the training. Thin-pix2pix is trained only for 20 epochs with a constant
learning rate of 0.0002.

4.3.2 Sketch Classification

The sketch classifier is trained similarly to the prior work of [32]. The
rBTE [32] domain is constructed from a natural image in 5 steps:..1. edge detection,..2. geometric augmentations,..3. non–maxima–suppression thinning,..4. hysteresis thresholding, and..5. large connected–components preservation.
In the Thin-pix2pix method, the first two steps remain because the generator
is learned to thin edge maps obtained from the HED detector [73], and
geometric augmentations are standard data augmentation techniques used in
many machine learning applications. After these two steps, outlines obtained
with the generator are used to train the classifier. To compare Thin-pix2pix
more precisely with the rBTE baseline, edge maps are provided in two
options: first is using HED detector alone and the second is using three edge
detectors together, specifically Structured Edges (SE) [102], HED [73], and
Bi–Directional Cascade Network (BDCN) [103]. Then, the sketch classifier is
trained for 30 training epochs, where one epoch has the number of iterations
equal to the size of the training dataset.

Thin-pix2pix generator is unimodal, but rBTE is multimodal in the image
translation sense because the thresholding approach is chosen randomly from
a candidate pool of 5 thresholding methods. To better compare the influence
of randomization in the thresholding, thresholding is only performed with
Otsu method [104]. In the experiments, this kind of domain construction is
denoted as BTE.

45

46

Chapter 5
Results

5.1 Generator Training

The first Section 5.1.1 shows a comparison of different generator model
training statistics, the second Section 5.1.2 aims to show the relation between
the generator training and image retrieval performance, Section 5.1.3 shows
quantitative results of trained generators, and the last Section 5.1.4 shows
comparison HED and new HEDN edge detectors.

5.1.1 Architecture Comparison

Vanilla generators, such as CycleGAN [57], CUT [66], and DRIT [59], together
with newly introduced HEDGAN and HEDNGAN are compared in terms of
training time, convergence, and the number of trainable parameters.

More technically, all models were trained with NVIDIA Tesla P100 16GB
GPU on the same machine. The experiments on the server were not strictly
isolated, which can affect epoch time measurement.

Results

Generator training comparison in Table 5.1 shows HEDGAN and HEDNGAN
require an order of magnitude less time to train compared to CycleGAN and
DRIT.

Looking closer to single epoch estimated time, DRIT requires less time in
contrast with CycleGAN, because in their original implementation1, genera-
tors and other discriminators are updated every third iteration, and therefore,
DRIT requires 300 training epochs instead of 100 epochs. CUT, HEDGAN,
HEDNGAN train only one generator resulting in lower epoch time.

Discussion

Concerning the total number of training epochs, while CycleGAN and DRIT
utilize cycle consistency, which is inaccurate at the start of the training,

1Line 47 in https://github.com/HsinYingLee/DRIT/blob/master/src/train.py

47

https://github.com/HsinYingLee/DRIT/blob/master/src/train.py

5. Results
Training Train (h) Epoch (h) Epochs Params (M)
DRIT 196 0:39 300 75.5
CycleGAN 102 1:01 100 51.0
CUT 35 0:42 50 26.0
HEDGAN 18 0:21 50 25.5
HEDNGAN 19 0:23 50 40.2

Table 5.1: Generators training time and parameters comparison. In the first
two columns, training times are reported in hours. In the third column, the total
number of training epochs necessary for the model to converge is reported. Each
epoch consists of 10000 optimization iterations. In the last column, the number
of trainable parameters in millions is reported.

0 20 40 60 80 100
epoch

sc
or

e
| l

os
s

CycleGAN

FID
FIDnd
avg
best

Figure 5.1: The generator and embedding network evaluation during generator
training. Mean average precision (mAP) of average of Tokyo 24/7, ROxf, and
RPar (red) are compared with FID [18, 17] (green) and FIDnd (described in
Section 5.1.2) (blue). An epoch, where the evaluation is the best is emphasized
with a red dot. All measures were linearly scaled for easier visual comparison.
No exponential moving average was used for smoothing.

HEDGAN and HEDNGAN preserve the structure of images with edge consis-
tency, which provides more feedback to the generator since the start of the
training. Therefore, HEDGAN and HEDNGAN need twice as many or fewer
epochs than CycleGAN and DRIT. CUT also needs less number of epochs,
which is studied in more detail by Park et al. [66].

5.1.2 Optimization Towards Retrieval Performance

It is well–known that GAN training is unstable and difficult process [16].
Therefore, it would be beneficial to be able to select the best model obtained
during the GAN training, because the last iteration not necessarily leaves the
best–performing model for the desired task of data augmentation in metric
learning. For simplicity, this Section focuses only on day→night.

48

.................................. 5.1. Generator Training

epoch FID FIDnd avg Tokyo ROxf RPar

ep
oc

h
FI

D
FI

Dn
d

av
g

To
ky

o
RO

xf
RP

ar
1 -0.8 -0.91 0.59 0.42 0.5 0.45

-0.8 1 0.86 -0.67 -0.54 -0.43 -0.56

-0.91 0.86 1 -0.63 -0.47 -0.49 -0.5

0.59 -0.67 -0.63 1 0.85 0.63 0.79

0.42 -0.54 -0.47 0.85 1 0.27 0.56

0.5 -0.43 -0.49 0.63 0.27 1 0.4

0.45 -0.56 -0.5 0.79 0.56 0.4 1 0.8

0.4

0.0

0.4

0.8

Figure 5.2: Heatmap of the correlation matrix of generator and embedding
evaluation measures obtained during generator training. The correlation between
each pair is measured with Spearman’s rank correlation coefficients [105]. FID
[18, 17] and FIDnd (described in Section 5.1.2) are evaluation measures of the
generator model, while Tokyo, ROxf, and RPar are evaluation measures of
the embedding model. Avg is the average of Tokyo, ROxf, and RPar. The
correlations were measured on the same training of CycleGAN as in 5.1.

An extensive evaluation of the best–performing model – CycleGAN trained
on SfM – learning process was conducted. After each epoch, average mAP
of Tokyo 24/7, ROxf, RPar, FID [18, 17], and FIDnd is measured between
positive pairs.

FID. The most standard way how to measure FID is between the input
data distribution and output data distribution generated directly from the
input. A set of real day images is translated into fake night images, and then
FID is measured between these two sets, using Inception-V3 [8] embedding
network.

FIDnd. The second option how to measure FID is between real night
and fake night image distributions. To measure FID between the night–night
pairs, pixel–aligned day–night pairs would be required. I have not found such
pairs in the landmark domain. Therefore, SfM N/D dataset is used for this
purpose, where from night–day positive pairs, the day image is translated

49

5. Results
from day to night and the distance is measured between real–night and
fake–night pairs. Image pairs do not have necessarily the same structure, but
depict the same object. Moreover, both image distributions are night, for
which the Inception-V3 embedding network [8] could be imprecise since it
was not trained with enough night images. Therefore, Inception-V3 network
is replaced with finetuned VGG16 on SfM N/D for metric learning from [51].
Also, another way how to measure the distance would be simply to take the
average L2 distance between all real–night and fake–night pairs. From my
experiments, this average L2 distance correlates with FIDnd.

After all the measures are obtained, a matrix of non–parametric Spearman’s
rank correlation coefficients [105] are calculated between all measured variables.
These calculations conclude, which of FID, FIDnd, or the last epoch should
be used to pick the best generator model.

Results

Figure 5.1 shows retrieval performance is very varying during the generator
training. After approximately 10 epochs, the generator is enough trained to
operate in day→night data augmentation, increasing retrieval performance.
Whenever FID and FIDnd increase, retrieval performance drops (see the
spikes in Figure 5.1), which may be beneficial in the situation, when the
generator in its last k epochs would be considered to be picked. However,
none of FID or FIDnd can indicate, which epoch is the best for the final
metric learning.

Figure 5.2 indicates, FID would be the best criterion to pick for the best
epoch selection. However, correlation ranks in their absolute values do not
differ much from the current epoch number correlation rank.

Discussion

The large deviations in retrieval performance per generator epoch can be
explained by the unstable nature of GAN training. The best way how to obtain
the best performance would be to perform metric learning per generator’s
current weights generator, which is costly, especially with higher prices of
electricity in late 2022. Different GAN architectures can cause different
deviations and their FID and FIDnd can have different correlations with
final retrieval performance during the generator training. To provide a more
general conclusion about whether FID, FIDnd, or the last epoch correlates
the best, these experiments would be better to conduct with other GAN
models than just CycleGAN. To remain consistent in other experiments, the
last epoch of the generator training is always used.

50

.................................. 5.1. Generator Training

Day original HEDNGAN CycleGAN DRIT CUT

Figure 5.3: Examples of day→night translation on SfM dataset [43] with different
generators. Source image (left column) is translated with (from left to right):
HEDNGAN, CycleGAN [57], DRIT [59], and CUT. All models are trained on
the SfM dataset.

5.1.3 Inference Comparison

Example outputs for all generative models are provided. Figure 5.3 shows
day→night image outputs on the SfM training dataset. Figure 5.4 shows
outputs obtained from the learned thinning on different kinds of input data.
Appendix A contains image outputs compared in more detail.

Results

Almost all outputted images can be distinguished from a real image by a
human observer. Nonetheless, this does not necessarily decrease the final
retrieval performance.

51

5. Results
Input HED Thin-pix2pix

Figure 5.4: Examples of learned thinning among different datasets. From
the input image (left column) edge maps (middle column) are obtained with
HED [73] edge detector followed by the proposed Thin-pix2pix, which is learned
to thin edge maps into outlines (last column). Rows consist of images of different
datasets: generated training polygons, Sketchy [97] with an image input, Sketchy
with a sketch input, PACS [34] with an image input, PACS with a sketch input,
and SfM [92] with a large image input. In the 3rd and 5th row, outlines were
obtained from the input sketch instead of the HED edge map. Edge maps and
outlines are inverted for better visibility on white paper.

52

.................................. 5.1. Generator Training

Input HED HEDN

Figure 5.5: Examples of extracted edges from HED [73], and HEDN edge
detectors. From the input image (left column), the edge maps were extracted
with HED (middle column), and with HEDN (right column), which was trained
jointly with the generator and the discriminator in HEDNGAN training. Input
images were selected from SfM dataset [43].

5.1.4 Edge Detection Comparison

In Figure 5.5, comparison between selected night images edge extraction
with HED [73] and HEDN, which is finetuned jointly with the generator in
HEDNGAN architecture.

53

5. Results
5.2 Day–Night Image Retrieval

In the first Section 5.2.1, overall retrieval results are summarized. The last Sec-
tion 5.2.2 contains a comparison of different night image data augmentations.
In Appendix B, an ablation that shows how diverse anchors and CLAHE
influence retrieval training can be found together with a second ablation that
compares the performance of the new HEDN detector on edge–based image
retrieval with HED detector [73].

5.2.1 Concluding Results

The effect of data augmentation is compared to baselines:. GeM [43], vanilla method with annotations obtained automatically from
3D reconstructions,. CLAHE [51] uses the same data as GeM and each image is photometrically
normalized,.GeM N/D [51] uses SfM N/D with day–night training positive pairs,. CLAHE N/D [51] uses SfM N/D with CLAHE normalization,. CIConv [76].

In the tables, whenever a method is reported with citation reference, its
performance values were obtained from the results the original authors report,
otherwise, baseline models were evaluated. For CIConv [76], their trained
model with ResNet-101 backbone was used to evaluate it on ROxf and RPar.
The SfM N/D dataset has a 0.25 ratio of night anchors in all experiments.
Details on the data augmentation are covered in Section 4.2.2. Methods
examined in this thesis are referred to the name of the generator used in the
night data synthesis (CycleGAN, HEDNGAN). When CLAHE photometric
normalization [72] is used, it is marked with C; when diverse anchors mining
(described in Section 4.2.2) is used, it is marked with D.

Results

In Table 5.2, results show data augmentation with image–to–image translation
clearly surpasses all baselines. Notice, metric learning using paired day–night
training pairs were outperformed by a method, which does not need day–night
pairs, it only needs two sets of day and night training images.

Discussion

The reason why the data augmentation with synthetic images beats the
method using true day–night pairs from SfM N/D can be explained by the
diversity of night training data: real day images of SfM dataset are diverse,
while real night images are not, and therefore, fake night images are diverse
since they are synthesized from diverse day images.

54

.............................. 5.2. Day–Night Image Retrieval

VGG-16 backbone
Method Avg Tokyo ROxf RPar
GeM [43] 69.9 79.4 60.9 69.3
GeM N/D [51] ! 71.1 83.5 60.0 69.8
CIConv [76] - 83.3 - -
CLAHE C [51] 71.6 84.1 60.8 69.8
CLAHE N/D C [51] ! 72.4 87.0 60.2 70.0
SobelGAN CD 73.5 89.3 60.9 70.5
HEDNGAN CD 73.4 88.9 61.1 70.3
CycleGAN CD 74.0 90.2 60.7 71.0

ResNet-18 backbone
Method Avg Tokyo ROxf RPar
GeM 65.4 76.1 50.5 69.5
GeM N/D ! 67.0 79.6 51.3 70.0
CLAHE C 67.3 80.6 52.6 68.6
CLAHE N/D C ! 68.0 82.5 52.5 69.0
HEDNGAN CD (ours) 69.6 85.1 53.6 70.0
CycleGAN CD (ours) 69.7 84.4 55.1 69.6

ResNet-50 backbone
Method Avg Tokyo ROxf RPar
GeM 74.6 85.4 63.4 75.1
GeM N/D ! 75.7 88.3 63.1 75.6
CLAHE C 74.7 87.4 62.5 74.2
CLAHE N/D C ! 75.3 89.0 62.3 74.5
HEDNGAN CD (ours) 77.0 91.7 64.4 74.9
CycleGAN CD (ours) 77.0 92.3 64.0 74.7

ResNet-101 backbone
Method Avg Tokyo ROxf RPar
GeM [43] 75.7 85.0 65.3 76.7
GeM N/D ! 77.0 88.6 65.7 76.8
CIConv [76] 75.0 88.3 62.0 74.7
CLAHE C 76.9 88.1 66.1 76.6
CLAHE N/D C ! 77.4 89.5 66.1 76.5
CUT CD 77.9 90.2 65.7 77.7
CUT (tuned) CD 78.0 90.9 65.7 77.3
SobelGAN CD (ours) 78.1 91.5 66.3 76.6
HEDNGAN CD (ours) 78.4 92.2 66.3 76.6
CycleGAN CD (ours) 78.4 92.0 66.8 76.4

Table 5.2: Day–night image retrieval performance comparison. All scores are
reported in mean average precision (mAP). In the second column, the average
of Tokyo 24/7, ROxf, and RPar is reported for easier comparison. Methods
marked by ! use day–night image pairs. Methods marked with a reference were
not trained, their results were obtained from their reference. The best score for
each backbone is in red bold, second best is in bold.

55

5. Results

0 5 10 15 20 25 30 35 40
epoch

0.65

0.70

0.75

0.80

L2
 d

ist
an

ce

pos
neg

0 5 10 15 20 25 30 35 40
epoch

0.70

0.75

0.80

0.85

L2
 d

ist
an

ce

pos
neg

0 5 10 15 20 25 30 35 40
epoch

0.74

0.76

0.78

0.80

0.82

0.84

L2
 d

ist
an

ce

pos
neg

Figure 5.6: Examples of descriptor distances of positives and negatives during
metric learning. Image triplets are (from left to right): night anchor, day positive,
and mined negative. Under each triplet, the L2 distance between anchor–positive
(green), and anchor–negative (red) is plotted against each training epoch. Epoch
0 corresponds to the embedding network initialization.

56

.............................. 5.2. Day–Night Image Retrieval

5.2.2 Impact of Data Augmentation

The ratio of synthesized training images and the choice of the generator
influence metric learning. Two ratios: 25% and 50% of night data are
evaluated. Five different day→night generators are compared:. CycleGAN [57], first popular and simple GAN for the task unpaired

image–to–image translation,. DRIT [59], generator trained for the task of multimodal unpaired image–
to–image translation,. CUT [66], lightweight version of CycleGAN, which replaced cycle consis-
tency with encoder feature map contrastive loss,. HEDGAN, generator trained similarly to CycleGAN, where cycle consis-
tency is replaced by edge consistency,. HEDNGAN, edge detector is trained jointly with generator and discrimi-
nator, so night edge detection is improved during the training.

Also, pairs of best–performing generators (CycleGAN and HEDNGAN) with
a ratio of 1:1 were evaluated. All experiments for the embedding network
training were conducted with VGG-16 backbone.

Results

For the amount of night data, Table 5.3 shows using 50% instead of 25% has
a minor performance increase in day–night retrieval (Tokyo 24/7), otherwise,
this does not make a significant difference. To stay comparable with [51],
25% of night data is still used in other experiments.

Concerning the choice of the generator, Table 5.3 shows CycleGAN is the
best choice of the generator. Surprisingly, the multimodal unpaired image
translation method (DRIT) did not end up in the first place. Nonetheless, all
generators are outperforming training with the real day–night image pairs,
while the differences among the generator choices are little.

Discussion

Better performance achieved with synthetic night–day pairs compared to real
night–day pairs can be explained from the observation that photo–realistic
appearance of fake night images is not crucial for retrieval performance, and
thus taking the most powerful generator nor adding additional true night
images is not necessarily the best option how to increase night retrieval
performance. Similar observation can be confirmed by [88], who managed to
learn a network for visual localization merely on synthesized images.

Lastly, despite similar scores achieved with GAN–based generators, their
training time differs greatly, which was shown in Section 5.1.1.

57

5. Results

Night Data Avg Tokyo ROxf RPar
DRIT CD 73.5 90.2 59.8 70.5
CUT CD 73.0 87.7 60.3 71.1
CUT (tuned) CD 73.4 88.6 60.8 70.8
SobelGAN CD 73.5 89.3 60.9 70.5
HEDGAN CD 73.2 88.1 61.0 70.5
HEDNGAN CD 73.4 88.9 61.1 70.3
HEDNGAN 50% CD 73.4 90.3 60.0 70.0
CycleGAN CD 74.0 90.2 60.7 71.0
CycleGAN 50% CD 73.9 91.4 60.0 70.4
CycleGAN Aachen CD 73.8 89.9 60.7 70.8
CycleGAN + N/D CD ! 73.5 88.6 60.8 71.1
CycleGAN + N/D 50% CD ! 73.9 90.1 61.1 70.6
HEDNGAN + N/D CD ! 73.3 87.9 61.1 70.8
HEDNGAN + N/D 50% CD ! 73.6 89.1 61.1 70.6
HEDNGAN + HEDGAN CD 73.4 88.0 60.7 70.6
HEDNGAN + HEDGAN 50% CD 73.4 90.0 60.5 69.8
CycleGAN + CycleGAN Aachen CD 74.0 90.4 60.5 71.1
CycleGAN + CycleGAN Aachen 50% CD 74.0 91.4 60.3 70.4
HEDNGAN + CycleGAN CD 74.0 90.0 61.0 70.9
HEDNGAN + CycleGAN 50% CD 74.1 91.4 60.5 70.5

Table 5.3: The impact of retrieval training data comparison. In the top block,
various generator architectures CycleGAN [57], CUT [66] (original and tuned
version), DRIT [59], HEDGAN, and HEDNGAN (trained HED) are compared.
CycleGAN was also trained on Aachen dataset (CycleGAN Aachen) instead of
SfM dataset. In the bottom block, CycleGAN, or HEDNGAN is combined with
the SfM N/D dataset or with a different generator with a ratio 1:1, and with
25% (default in experiments), or 50% of night images in the training data. In all
experiments, VGG-16 backbone is used. Methods marked by ! use day–night
image pairs. The best score for each block is in bold.

58

.................................. 5.3. Sketch Recognition

5.3 Sketch Recognition

In this Section, the effectiveness of natural image into outlines translation
used to provide training data for sketch recognition with no training sketches
is evaluated.

5.3.1 Sketch Classification without Sketches

The prior work [32] performed an ablation on Sketchy dataset [97] and
compared with different domain generalization methods on PACS dataset [34].
To provide as much information as possible for the comparison, methods on
both Sketchy and PACS datasets are evaluated. Evaluations are performed
the same way as in [32], specifically for PACS (Sketchy) dataset, ResNet-18
(ResNet-101) [7] backbone is used and the reported classification accuracy
is averaged over 20 (5) randomized runs. Since the relative sketch size can
vary with respect to the image, single–scale and multi–scale evaluations are
performed, where the sketch in its original size is taken in the single–scale
case, while in the multi–scale case, the sketch is cropped to its bounding box,
padded to 1:1 aspect ratio and downscaled to 90%, 65%, and 45% of the 224
input size [32].

Results

Table 5.4 shows, the rBTE [32] outperforms the proposed Thin-pix2pix by
a larger margin in both single–scale and multi–scale evaluations, and with
both datasets. BTE outperforms Thin-pix2pix by a smaller margin. The
same observation holds when both edge maps of 3 detectors are used together
as well as only with edge maps from HED [73] detector. Surprisingly, the
performance gap between Thin-pix2pix and BTE is smaller, when multiple
edge maps are used.

Discussion

There are three reasons why Thin-pix2pix performs worse than rBTE [32].
First, the performance gap between Thin-pix2pix and BTE using only
HED [73] edge maps indicates that the trained Thin-pix2pix generator has
shortcomings to approximate thin edges as accurately as a handcrafted
method. In Figure 5.4, it can be observed that Thin-pix2pix tries to fill
gaps between the edge maps because during the Thin-pix2pix training, HED
missed some edges between polygons with similar color, and therefore, the
generator tries to fill the outlines up to the ground–truth outlines (Figure 5.4,
first row). As a result, the generator can hallucinate edges or produce artifacts
(Figure 5.4, pre–last row). Second, during the training, rBTE can consist of
different thinned edges per a single input edge map, which is not the case of
Thin-pix2pix, which outputs the same unimodal outlines per input edge map.
Using architecture for multimodal image translation, such as BicycleGAN [61]

59

5. Results
Single–scale; SE, HED, and BDCN
Method PACS Sketchy
rBTE 70.7 ± 2.0 49.7 ± 0.5
BTE 66.3 ± 2.5 47.2 ± 0.5
Thin-pix2pix 62.8 ± 2.2 43.7 ± 0.4
Multi–scale; SE, HED, and BDCN
Method PACS Sketchy
rBTE 70.7 ± 2.0 52.3 ± 0.5
BTE 65.1 ± 2.9 50.5 ± 0.7
Thin-pix2pix 60.0 ± 3.3 45.5 ± 0.6
Single–scale; HED
Method PACS Sketchy
rBTE 66.8 ± 2.1 47.9 ± 0.6
BTE 65.2 ± 2.6 46.3 ± 0.6
Thin-pix2pix 57.2 ± 3.0 41.0 ± 0.4
Multi–scale; HED
Method PACS Sketchy
rBTE 66.7 ± 2.6 50.9 ± 0.4
BTE 64.2 ± 3.3 49.1 ± 0.5
Thin-pix2pix 52.7 ± 4.6 42.9 ± 7.6

Table 5.4: Sketch classification performance comparison. All scores are re-
ported in accuracy. In the first two blocks, Structured Edges (SE) [102],
Hollistically–Nested Edge Detection (HED) [73], and Bi–Directional Cascade
Network (BDCN) [103] all together provide edge maps, while in the last two
blocks, only HED provides edge maps. For rBTE, results for Sketchy dataset
were obtained from the ablations of [32].

together with the removal of small parts consistently in the input and outlines
during the generator training would help. Third, Thin-pix2pix was trained
only on HED [73] edge maps, but in the classification, different types of edge
maps that Thin-pix2pix never seen are provided.

60

Chapter 6
Conclusions

In this thesis, the challenges of the day–night, and photo–sketch appearance
changes were addressed with image synthesis to approximate these shifts. To
achieve this, GAN–based generators were studied and widely employed for
image synthesis of the scarce visual domain in two tasks. In day–night image
retrieval task, synthetically generated night images from day images were used
as a form of data augmentation in metric learning, which relaxes the necessity
to obtain training day–night positive image pairs. Also, an ablation with 4
different GAN architectures was conducted, including the new HEDNGAN
architecture, which uses edge consistency to preserve the image content. In
sketch recognition, the task considered that no training sketch images were
available at all, which is solved by natural image transformation into image
outlines using an edge detector together with a trained Thin-pix2pix generator.
This generator aids the downstream task by thinning edge maps into outlines.
Thin-pix2pix training does not require gathering any additional data.

In the two tasks, GAN–based image synthesis improved the performance of
day–night image retrieval, but in sketch recognition task, it performed worse
than the handcrafted baseline. In day–night image retrieval, experiment
results demonstrated the effectiveness of this approach with three main
conclusions:..1. A larger diversity of synthesized night images is more powerful than

smaller diversity of real night images...2. Day–night retrieval performance with synthesized night images does not
improve, when real night images are added...3. HEDN edge detector trained with HEDNGAN has superior performance
over the HED detector, which was shown quantitatively and qualitatively.

Experiment results also showed the choice of the GAN generator is negligible
for the final retrieval performance.

61

62

Bibliography

[1] Filip Radenovic, Johannes L Schonberger, Dinghuang Ji, Jan-Michael
Frahm, Ondrej Chum, and Jiri Matas. From dusk till dawn: Modeling
in the dark. In CVPR, 2016.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[3] Yann LeCun et al. Generalization and network design strategies. Con-
nectionism in perspective, 1989.

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In NeurIPS.
2019.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, NIPS. Curran
Associates, Inc., 2012.

[6] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[8] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In CVPR, 2016.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In NeurIPS. Curran Associates, Inc., 2014.

63

http://www.deeplearningbook.org

6. Conclusions
[10] Ian J Goodfellow. On distinguishability criteria for estimating generative

models. ICLR, 2015.

[11] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised rep-
resentation learning with deep convolutional generative adversarial
networks. ICLR, 2016.

[12] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks.
NeurIPS, 2016.

[13] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and
Stephen Paul Smolley. Least squares generative adversarial networks.
In ICCV, 2017.

[14] Mehdi Mirza and Simon Osindero. Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784, 2014.

[15] Albert Mohwald. Data augmentation by image-to-image translation
for image retrieval. Bachelor’s thesis, Czech Technical University in
Prague, Faculty of Electrical Engineering, 2020.

[16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training gans. In NIPS,
2016.

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In NeurIPS, 2017.

[18] Maurice Fréchet. Sur la distance de deux lois de probabilité. COMPTES
RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE
DES SCIENCES, 1957.

[19] Leonid Nisonovich Vaserstein. Markov processes over denumerable
products of spaces, describing large systems of automata. Problemy
Peredachi Informatsii, 1969.

[20] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur
Gretton. Demystifying mmd gans. ICLR, 2018.

[21] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation. ICLR,
2018.

[22] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. High-resolution image synthesis and semantic
manipulation with conditional gans. In CVPR, 2018.

[23] Hidetoshi Shimodaira. Improving predictive inference under covariate
shift by weighting the log-likelihood function. Journal of statistical
planning and inference, 2000.

64

...................................... 6. Conclusions

[24] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty
of training recurrent neural networks. In International conference on
machine learning (ICML). PMLR, 2013.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In ICCV, 2015.

[26] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010.

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift. In
International conference on machine learning. PMLR, 2015.

[28] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance
normalization: The missing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022, 2016.

[29] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
transferable are features in deep neural networks? NeurIPS, 2014.

[30] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of
transfer learning. Journal of Big data, 2016.

[31] Gabriela Csurka. Domain adaptation for visual applications: A com-
prehensive survey. arXiv preprint arXiv:1702.05374, 2017.

[32] Nikos Efthymiadis, Giorgos Tolias, and Ondřej Chum. Edge augmenta-
tion for large-scale sketch recognition without sketches. In 2022 26th
International Conference on Pattern Recognition (ICPR). IEEE, 2022.

[33] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira.
Analysis of representations for domain adaptation. NeurIPS, 2006.

[34] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper,
broader and artier domain generalization. In ICCV, 2017.

[35] Wengang Zhou, Houqiang Li, and Qi Tian. Recent advance in
content-based image retrieval: A literature survey. arXiv preprint
arXiv:1706.06064, 2017.

[36] David G Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 2004.

[37] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski,
and Cédric Bray. Visual categorization with bags of keypoints. In
ECCV. Prague, 2004.

65

6. Conclusions
[38] Anastasiia Mishchuk, Dmytro Mishkin, Filip Radenovic, and Jiri Matas.

Working hard to know your neighbor’s margins: Local descriptor learn-
ing loss. NeurIPS, 2017.

[39] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen, and Vas-
sileios Balntas. Sosnet: Second order similarity regularization for local
descriptor learning. In CVPR, 2019.

[40] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez.
Aggregating local descriptors into a compact image representation. In
IEEE, 2010.

[41] Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. To aggregate or not
to aggregate: Selective match kernels for image search. In ICCV, 2013.

[42] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and
Josef Sivic. Netvlad: Cnn architecture for weakly supervised place
recognition. In CVPR, 2016.

[43] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-tuning cnn
image retrieval with no human annotation. IEEE TPAMI, 2018.

[44] Artem Babenko and Victor Lempitsky. Aggregating local deep features
for image retrieval. In ICCV, 2015.

[45] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular object re-
trieval with integral max-pooling of cnn activations. In ICLR, 2015.

[46] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduc-
tion by learning an invariant mapping. In CVPR, 2006.

[47] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In CVPR, 2015.

[48] Filip Radenović, Giorgos Tolias, and Ondřej Chum. CNN image retrieval
learns from BoW: Unsupervised fine-tuning with hard examples. In
ECCV, 2016.

[49] Mu Zhu. Recall, precision and average precision. Department of
Statistics and Actuarial Science, University of Waterloo, Waterloo,
2004.

[50] Andrew Turpin and Falk Scholer. User performance versus precision
measures for simple search tasks. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in
information retrieval, 2006.

[51] Tomas Jenicek and Ondrej Chum. No fear of the dark: Image retrieval
under varying illumination conditions. In ICCV, 2019.

[52] Filip Radenovic, Giorgos Tolias, and Ondřej Chum. Deep shape match-
ing. In ECCV, 2018.

66

...................................... 6. Conclusions

[53] Yansheng Li, Jiayi Ma, and Yongjun Zhang. Image retrieval from
remote sensing big data: A survey. Information Fusion, 2021.

[54] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[55] Giorgos Tolias, Filip Radenovic, and Ondrej Chum. Targeted mismatch
adversarial attack: Query with a flower to retrieve the tower. In ICCV,
2019.

[56] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-
to-image translation with conditional adversarial networks. In CVPR,
2017.

[57] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks.
In ICCV, 2017.

[58] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Kumar Singh,
and Ming-Hsuan Yang. Diverse image-to-image translation via disen-
tangled representations. In ECCV, 2018.

[59] Hsin-Ying Lee, Hung-Yu Tseng, Qi Mao, Jia-Bin Huang, Yu-Ding Lu,
Maneesh Singh, and Ming-Hsuan Yang. Drit++: Diverse image-to-
image translation via disentangled representations. IJCV, 2020.

[60] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
generative adversarial networks. In International conference on machine
learning. PMLR, 2017.

[61] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A
Efros, Oliver Wang, and Eli Shechtman. Toward multimodal image-to-
image translation. In NeurIPS, 2017.

[62] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-
image translation networks. In NeurIPS, 2017.

[63] Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and Ming-Hsuan
Yang. Mode seeking generative adversarial networks for diverse image
synthesis. In CVPR, 2019.

[64] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan: Un-
supervised dual learning for image-to-image translation. In CVPR,
2017.

[65] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon
Kim. Learning to discover cross-domain relations with generative
adversarial networks. In International conference on machine learning
(ICML). PMLR, 2017.

67

6. Conclusions
[66] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu.

Contrastive learning for unpaired image-to-image translation. In ECCV.
Springer, 2020.

[67] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation
learning with contrastive predictive coding. NeurIPS, 2018.

[68] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A simple framework for contrastive learning of visual representations.
In International conference on machine learning (ICML). PMLR, 2020.

[69] David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning
to detect natural image boundaries using local brightness, color, and
texture cues. 2004.

[70] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik.
Contour detection and hierarchical image segmentation. In IEEE
TPAMI, 2010.

[71] William K Pratt. Digital image processing. Wiley, 1978.

[72] Richard Szeliski. Computer Vision: Algorithms and Applications. Texts
in Computer Science. Springer London, 2010.

[73] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In
ICCV, 2015.

[74] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A
database of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological statistics.
In ICCV. IEEE, 2001.

[75] Filip Radenović, Giorgos Tolias, and Ondřej Chum. CNN image retrieval
learns from BoW: Unsupervised fine-tuning with hard examples. In
ECCV, 2016.

[76] Attila Lengyel, Sourav Garg, Michael Milford, and Jan C. van Gemert.
Zero-shot day-night domain adaptation with a physics prior. In ICCV,
2021.

[77] Yingxue Pang, Jianxin Lin, Tao Qin, and Zhibo Chen. Image-to-
image translation: Methods and applications. IEEE Transactions on
Multimedia, 2021.

[78] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan
v2: Diverse image synthesis for multiple domains. In CVPR, 2020.

[79] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal
unsupervised image-to-image translation. In ECCV, 2018.

68

...................................... 6. Conclusions

[80] Zhiqiang Shen, Mingyang Huang, Jianping Shi, Xiangyang Xue, and
Thomas S. Huang. Towards instance-level image-to-image translation.
In CVPR, 2019.

[81] Deblina Bhattacharjee, Seungryong Kim, Guillaume Vizier, and Math-
ieu Salzmann. Dunit: Detection-based unsupervised image-to-image
translation. In CVPR, 2020.

[82] Peng Gao, Tian Tian, Linfeng Li, Jiayi Ma, and Jinwen Tian. De-
cyclegan: An object enhancement network for weak vehicle detection
in satellite images. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 2021.

[83] Che-Tsung Lin, Yen-Yi Wu, Po-Hao Hsu, and Shang-Hong Lai. Mul-
timodal structure-consistent image-to-image translation. In AAAI,
2020.

[84] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
ICLR, 2014.

[85] Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and
Bernhard Schölkopf. From variational to deterministic autoencoders.
arXiv preprint arXiv:1903.12436, 2019.

[86] Vinicius F Arruda, Thiago M Paixão, Rodrigo F Berriel, Alberto F
De Souza, Claudine Badue, Nicu Sebe, and Thiago Oliveira-Santos.
Cross-domain car detection using unsupervised image-to-image transla-
tion: From day to night. In IJCNN, 2019.

[87] Asha Anoosheh, Torsten Sattler, Radu Timofte, Marc Pollefeys, and
Luc Van Gool. Night-to-day image translation for retrieval-based
localization. In ICRA, 2019.

[88] Markus S Mueller, Torsten Sattler, Marc Pollefeys, and Boris Jutzi.
Image-to-image translation for enhanced feature matching, image re-
trieval and visual localization. ISPRS, 2019.

[89] Yihang Lou, Yan Bai, Jun Liu, Shiqi Wang, and Lingyu Duan. Veri-
wild: A large dataset and a new method for vehicle re-identification in
the wild. In CVPR, 2019.

[90] Simon Niklaus. A reimplementation of HED using PyTorch. https:
//github.com/sniklaus/pytorch-hed, 2018.

[91] Lingxi Xie, Richang Hong, Bo Zhang, and Qi Tian. Image classification
and retrieval are one. In Proceedings of the 5th ACM on International
Conference on Multimedia Retrieval, 2015.

[92] Johannes L Schonberger, Filip Radenovic, Ondrej Chum, and Jan-
Michael Frahm. From single image query to detailed 3d reconstruction.
In CVPR, 2015.

69

https://github.com/sniklaus/pytorch-hed
https://github.com/sniklaus/pytorch-hed

6. Conclusions
[93] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Ham-

marstrand, Erik Stenborg, Daniel Safari, Masatoshi Okutomi, Marc
Pollefeys, Josef Sivic, Fredrik Kahl, and Tomas Pajdla. Benchmarking
6DOF Outdoor Visual Localization in Changing Conditions. In CVPR,
2018.

[94] Torsten Sattler, Tobias Weyand, Bastian Leibe, and Leif Kobbelt. Image
Retrieval for Image-Based Localization Revisited. In BMVC, 2012.

[95] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and
Ondřej Chum. Revisiting Oxford and Paris: Large-scale image retrieval
benchmarking. In CVPR, 2018.

[96] Akihiko Torii, Relja Arandjelović, Josef Sivic, Masatoshi Okutomi, and
Tomas Pajdla. 24/7 place recognition by view synthesis. In CVPR,
2015.

[97] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. The
sketchy database: learning to retrieve badly drawn bunnies. ACM
Transactions on Graphics (TOG), 2016.

[98] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In ECCV. Springer, 2016.

[99] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. ICLR, 2015.

[100] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition chal-
lenge. IJCV, 2015.

[101] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015.

[102] Piotr Dollár and C Lawrence Zitnick. Structured forests for fast edge
detection. In ICCV, 2013.

[103] Jianzhong He, Shiliang Zhang, Ming Yang, Yanhu Shan, and Tiejun
Huang. Bi-directional cascade network for perceptual edge detection.
In CVPR, 2019.

[104] Nobuyuki Otsu. A threshold selection method from gray-level his-
tograms. IEEE transactions on systems, man, and cybernetics, 1979.

[105] Charles Spearman. The proof and measurement of association between
two things. 1961.

70

...................................... 6. Conclusions

[106] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1 Year,
1000km: The Oxford RobotCar Dataset. The International Journal of
Robotics Research (IJRR), 2017.

71

72

Appendix A
Generative Model Outputs

Figure A.1, and Figure A.2 show day→night image outputs on the SfM
training dataset compared among similar models in more detail. The effect
of day→night and night→day translation on retrieval training and evaluation
datasets is examined in Figure A.3, and Figure A.4.

In Figure A.4, since ToDayGAN [87] is trained only on RobotCar dataset
[106], it is difficult for ToDayGAN to synthesize visually appealing images on
different than only RobotCar dataset, although a hallucinated car appears in
the middle of the image.

73

A. Generative Model Outputs...............................

Day original CycleGAN SfM CycleGAN Aachen CUT tuned CUT original

Figure A.1: Examples of day→night translation on SfM dataset [43] with similar
generators. Source image (left column) is translated with (from left to right):
CycleGAN [57] trained on the SfM dataset, CycleGAN [57] trained on the Aachen
dataset, CUT with further hyperparameter tuning, and original CUT [66].

74

............................... A. Generative Model Outputs

Day original HEDNGAN HEDGAN SobelGAN

Figure A.2: Examples of day→night translation on SfM dataset [43] with
generators based on edge–consistency. Source image (left column) is translated
with (from left to right): HEDNGAN, HEDGAN, and SobelGAN. All models
are trained on the SfM dataset.

75

A. Generative Model Outputs...............................

Day original HEDNGAN CycleGAN CUT DRIT ToDayGAN

Figure A.3: Examples of day→night translation on different datasets with
different generators. The input image (left column) is translated with (from left
to right) HEDNGAN, CycleGAN [57], CUT, DRIT [59], and ToDayGAN [87]
generator. The rows consists of example images from different datasets: SfM [43],
Aachen [93, 94], Tokyo [96], Oxford [95], and RobotCar [106], respectively.

76

............................... A. Generative Model Outputs

Night original CycleGAN DRIT ToDayGAN

Figure A.4: Examples of night→day translation on different datasets with
different generators. The input image (left column) is translated with (from left
to right) CycleGAN [57], DRIT [59], and ToDayGAN [87] generator. The rows
consists of example images from different datasets SfM N/D [51], Aachen [93, 94],
Tokyo [96], and RobotCar [106], respectively.

77

78

Appendix B
Image Retrieval Ablations

B.1 Divere Anchors and CLAHE

After the GeM baseline [43], the work of [51] proposed to use the CLAHE
photometric normalization [72] to bring the visual appearance of day and
night images together. Moreover, diverse anchors mining (covered in Section
4.2.2) is used, which could make comparison with baselines questionable, since
it was not used in previous works. Therefore, ablations with these two data
preprocessing techniques are conducted.

Results in Table B.1 show both diverse anchors mining (D) or CLAHE
(C) consistently improve day–night image retrieval (Tokyo 24/7) on both
baselines and data augmentation–based methods, while the performance on
the standard day–time retrieval (ROxf and RPar) remains mostly unchanged.
Slight improvement with the day–time retrieval is achieved, when both diverse
anchors mining and CLAHE are used. These improvements can be concluded
with the observation that diverse anchors mining further complements training
image enhancements, such as day→night image translation or CLAHE.

B.2 Edge–based Image Retrieval

To qualitatively compare the performance of the HED and HEDN edge
detectors, they are compared with the prior EdgeMAC [52] descriptor. All
three embeddings are trained on edge maps obtained by the tested method
from natural images. To be comparable with previous retrieval experiments,
the image size is increased to 362 and edge maps are not binarized.

Table B.2 shows embedding based on HEDN outperforms embedding based
on HED in edge–based retrieval. Using ensembles of edge map and image
embeddings, HEDN–based embedding also outperforms HED embedding
in all evaluation cases. However, it should be noted, that the higher re-
trieval performance with the ensembles has the cost of double descriptor
dimensionality.

79

B. Image Retrieval Ablations
Method Avg Tokyo ROxf RPar
GeM 70.0 80.4 59.9 69.8
GeM D 70.3 81.2 59.8 69.9
CLAHE C 71.9 85.4 60.0 70.1
CLAHE CD 72.2 85.9 60.3 70.5
GeM N/D ! 71.5 84.0 60.4 70.0
GeM N/D D ! 71.5 84.1 60.3 70.1
CLAHE N/D C ! 72.5 87.5 59.9 70.1
CLAHE N/D CD ! 73.0 87.7 60.8 70.7
HEDNGAN 72.7 88.0 60.2 70.0
HEDNGAN D 73.0 88.7 60.2 70.1
HEDNGAN C 73.2 88.7 60.5 70.4
HEDNGAN CD 73.4 88.8 60.7 70.6
CycleGAN 73.0 88.8 59.6 70.5
CycleGAN D 73.3 89.1 59.9 70.7
CycleGAN C 73.6 89.6 60.5 70.9
CycleGAN CD 74.0 90.2 60.7 71.0

Table B.1: The effect of diverse anchors mining (D) or CLAHE (C) as a data
preprocessing steps. In the top block, GeM baseline is compared with adding
diverse anchors or CLAHE. In the second, third, and last block, the same
experiments are performed with SfM N/D [51], HEDNGAN, and CycleGAN,
respectively. The best score for each dataset is in bold.

Method Avg Tokyo ROxf RPar
EdgeMAC [52] 45.6 75.9 17.3 43.5
HEDMAC 56.8 79.5 38.3 52.5
HEDNMAC 59.2 81.9 38.4 57.2
HEDMAC+GeM ‡ 72.0 84.8 60.9 70.3
HEDNMAC+GeM ‡ 72.6 85.7 61.1 70.9
HEDMAC+HEDNGAN CD‡ 73.8 90.9 60.1 70.5
HEDNMAC+HEDNGAN CD‡ 74.4 91.4 60.6 71.3
HEDMAC+CycleGAN CD‡ 74.2 91.5 60.0 71.2
HEDNMAC+CycleGAN CD‡ 74.7 91.8 60.4 71.9

Table B.2: The effect of trained HEDN detector (from HEDNGAN) on the
EdgeMAC descriptor [52]. In the top block, variants of EdgeMAC method,
specifically HEDMAC and HEDNMAC are compared with EdgeMAC. HEDMAC
or HEDNMAC use HED [73] edge detector with either original weights or weights
taken after HEDNGAN training, respectively. In the bottom block, ensembles of
EdgeMAC variants with chosen methods of image descriptor from Table 5.2 are
reported. GeM is from [43]. Ensembles have double the dimensionality (1024)
and are marked with ‡.

80

	Introduction
	Background
	Neural Networks
	CNN
	GAN
	Initialization

	Transfer Learning
	Transfer Learning Notation
	Domain Adaptation
	Domain Generalization

	Image Retrieval
	Retrieval with Local Features
	Retrieval with CNNs
	Retrieval Evaluation
	Image Retrieval Challenges

	Image–to–Image Translation
	Image Translation Notation
	pix2pix
	CycleGAN
	DRIT
	CUT

	Edge Detection
	Sobel Operator
	HED

	Related Work
	Day–Night Image Retrieval
	Sketch Recognition
	Image–to–image Translation

	Method
	Day–Night Image Retrieval
	Day–Night Translation Notation
	Edge Consistency Generators
	Metric Learning

	Sketch Recognition
	Thin-pix2pix
	Sketch Classification

	Implementation
	Datasets
	Training Datasets
	Evaluation Datasets

	Day–Night Image Retrieval
	Generator Training
	Metric Learning

	Sketch Recognition
	Thin-pix2pix Generator
	Sketch Classification

	Results
	Generator Training
	Architecture Comparison
	Optimization Towards Retrieval Performance
	Inference Comparison
	Edge Detection Comparison

	Day–Night Image Retrieval
	Concluding Results
	Impact of Data Augmentation

	Sketch Recognition
	Sketch Classification without Sketches

	Conclusions
	Bibliography
	Generative Model Outputs
	Image Retrieval Ablations
	Divere Anchors and CLAHE
	Edge–based Image Retrieval

