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Abstract
The usefulness and the impact of natu-
ral language processing methods is be-
coming ever more relevant. The intro-
duction of the Transformer allowed to
easily tackle many tasks, such as ques-
tion answering and document summariza-
tion, using a single architecture. Never-
theless, its quadratic computational com-
plexity and memory requirements make
it infeasible to use for processing long
input sequences. A majority of the
pre-trained models based on the Trans-
former architecture has a restriction on
the length of the input, and usually ac-
cepts sequences of length up to 512 to-
kens. This thesis constructs a classi-
fier of long input sequences by combin-
ing the already pre-trained Transformer-
based models for short inputs with graph
neural networks, a class of deep learning
methods for processing graph data. The
resulting model is able to process inputs
as long as 13,926 tokens. The proposed
model is tested on three distinct datasets
and its performance is reported and dis-
cussed. Furthermore, its possible draw-
backs are identified and future work direc-
tions for the use of graph neural networks
for long input classification are suggested.

Keywords: natural language processing,
transformer, graph neural networks,
classification, long input processing

Supervisor: Ing. Jan Drchal, Ph.D.

Abstrakt
Užitečnost a dopady metod zpracování
přirozeného jazyka stále nabývají na dů-
ležitosti. Představení Transformerů dovo-
lilo snadné řešení mnoha úloh, jako na-
příklad zodpovídání otázek nebo sumari-
zace dokumentů, pomocí jednotné archi-
tektury. Jejich kvadratická výpočetní slo-
žitost a pameťové nároky ale zapříči-
ňují problematické zpracování dlouhých
vstupních sekvencí. Většina předtrénova-
ných modelů založených na Transformer
architektuře zavádí omezení pro délku
vstupu a běžně přijímá vstupy délky
až 512 tokenů. Tato diplomová práce
konstruuje klasifikační model dlouhých
vstupních sekvencí kombinací již předtré-
novaných jazykových modelů založených
na Transformer architektuře určných pro
zpracování kratších vstupů a grafových
neuronových sítích, třídě metod hlubo-
kého učení pro zpracování grafových dat.
Výsledný model je schopen zpracovat na-
příklad vstupy obsahující 13926 tokenů.
Navrhovaný model je testován na třech
různých datových sadách a jeho klasifi-
kační schopnosti jsou představeny a dis-
kutovány. Možné nedostatky představe-
ného modelu jsou následně identifikovány
a další možné postupy pro využití gra-
fových neuronových sítích pro klasifikaci
dlouhých vstupů jsou navrženy.

Klíčová slova: zpracování přirozeného
jazyka, transformer, grafové neuronové
sítě, klasifikace, zpracování dlouhého
vstupu
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Chapter 1
Introduction

Natural Language Processing is a field that enjoys great attention. It offers a lot of
opportunities for practical use and automation, ranging from document classification to
machine translation and chatbots. It underwent a significant shift with the introduction
of Transformers. The Transformer architecture, despite being initially designed for neural
machine translation, is a universal approximator of sequence to sequence functions. It is
useful for other tasks as well, such as text generation, classification, question answering,
or document summarization. As opposed to recurrent neural networks, it is not necessary
for Transformers to process the input tokens sequentially, but instead are able to process
them in parallel. This allows the models to process large quantities of data, which helps
them learn complex tasks. In spite of their popularity, most language models based on
the Transformer architecture have a restriction on the length of the input sequence. That
is due to their quadratic computational complexity and memory requirements in terms of
the input sequence length.

This diploma thesis aims to construct a classifier that is able to process input sequences
of lengths that exceed the limitations of the Transformer-based models. We will attempt
to do so using graph neural networks, a class of deep learning methods for processing graph
data. At the same time, we will reuse the already pre-trained language models, despite
their limitations. This will also give us the ability to process long inputs that would in
some cases require us to perform resource-demanding pre-training of Transformer models
for long inputs from scratch.

The remainder of this thesis is structured as follows.

Chapter 2 introduces the field of natural language processing. It describes how the
Transformer architecture came about, the motivations behind it, and its initial use cases.
It is then described more in detail, along with its core technique, the self-attention mecha-
nism. Finally, we introduce BERT, the Transformer-based language model for generating
sequence representations.

We lay out an overview of graph neural networks in Chapter 3. Different categories of
graph neural networks are introduced and described. We also present a number of specific
graph neural network methods, the types of tasks that graph neural networks can solve,
and examples of their applications.

In Chapter 4 we state the problem with Transformer-based models, which we will at-
tempt to address, and quickly go over a few methods that were designed to tackle it.

Chapter 5 introduces our proposed model and describes its inner workings. We describe
the way we utilize graph neural networks to process long input sequences.

1



1. Introduction ..........................................
We go over three classification tasks and their respective datasets used to assess the

model’s performance in Chapter 6. We describe each one of them and give examples of
what their data looks like. One of these three is also a task that we introduce as a part of
this work and that we designed so that it is possible to control its difficulty.

In Chapter 7 we carry out experiments using the previously introduced datasets and
compare the performance of our model to the baseline methods.

We discuss our propsed model, go over some of its drawbacks, and suggest possible
future work in Chapter 8. Finally, we conclude the thesis in Chapter 9.

2



Chapter 2
Natural Language Processing

The aim of natural language processing (NLP) is to understand the information
conveyed using natural language and subsequently use this understanding to solve var-
ious tasks. For example, the tasks that NLP tackles include document and sentiment
classification, named entity recognition, machine translation, and text summarization.

Some of these tasks, such as machine translation and text summarization, require the
model to generate a new text based on the one it was given. Initial approaches to translat-
ing a text from one language to another mostly involved rule-based systems and statistical
methods [Brown et al., 1990].

The subsequent neural network based approaches for machine translation usually follow
an encoder-decoder framework. An encoder reads the input sequence and encodes it into
a vector of a fixed dimension. This vector is passed to the decoder, which then utilizes
this encoding to generate individual output sequence tokens.

Most of the time, the encoder and decoder modules were recurrent neural networks
(RNNs), such as the Long short-term memory networks [Hochreiter and Schmidhuber,
1997, Sutskever et al., 2014]. These neural networks sequentially read an input sequence
while maintaining a hidden state vector. The final hidden state vector is then used as the
encoding of the sequence.

[Bahdanau et al., 2014] recognized that encoding the input sequence into a single
vector of a fixed dimension is likely a bottleneck that restricts the ability of the model to
extract the necessary information for the generation of a proper translation. Therefore,
they proposed the usage of a technique called the attention mechanism, which utilizes
individual hidden states generated during the recurrent computation. These are used
when generating the output sequence, where every new output token being generated can
choose which of the input tokens’ hidden states it should pay attention to and assigns it
a score, which signifies its importance.

2.1 The Transformer

The renowned paper by [Vaswani et al., 2017], called ‘Attention Is All You Need’, has
shown that the attention mechanism is very powerful on its own, without the involvement
of RNNs. It introduced a natural language processing model called the Transformer, whose
central components rely solely on this mechanism.

More specifically, the Transformer is based on the self-attention mechanism, which is
essentially equivalent to the original attention mechanism. The main difference is that the
tokens of the input sequence pay attention to other tokens of that same sequence, and as
a result, the self-attention mechanism computes a representation of the input sequence.

The decision to use only the attention mechanism allows the model to disregard any

3



2. Natural Language Processing...................................

Figure 2.1: Illustration depicting the architecture of the Transformer. Left side of the illus-
tration shows the encoder, whose ouput is then fed to the decoder, shown on the right side.
Reprinted from [Vaswani et al., 2017].

recurrence computations, which were used prominently in the field of natural language
processing. The usage of recurrent models turned out to be a hurdle in modeling long-
range dependencies contained within input sequences. The Transformer does not have
this limitation, since the attention mechanism allows every token to attend directly to any
other token in the sequence. Furthermore, recurrence computations do not lend themselves
well to computation optimizations because of their sequential nature, whereas the partial
computations of the attention mechanism can be done for every token independently.

The flexibility of Transformer-based models allowed them to tackle tasks such as ques-
tion answering, natural language inference, and text summarization.

The original Transformer follows the encoder-decoder architecture, where the input
tokens are transformed into context-aware embeddings by the encoder stack, which are
then utilized by the decoder stack to generate the output sequence. Its architecture is
illustrated in Figure 2.1.

The Transformer model and its descendants are one of, if not the most, popular and
utilized NLP models at the time of writing this thesis.

Apart from being used in NLP, the Transformer architecture has also been modified
so that it can be used for example in computer vision for image classification or object
detection [Chen et al., 2020, Carion et al., 2020, Liu et al., 2021] or to process audio and
perform speech recognition [Gulati et al., 2020,Chen et al., 2021,Radford et al., 2022].

4



........................................ 2.1. The Transformer

2.1.1 The Attention Mechanism

This section takes a closer look at the inner workings of the attention mechanism used in
the Transformer-based models, which the authors call the scaled dot-product attention.

The attention mechanism receives three different vectors for each of the tokens of the
processed sequence. These three vectors are called the query q, the key k, and the value
v.

Figure 2.2: Figure illustrating the attention coefficients computed between different pairs of
tokens in a model for machine translation. The tokens on the x-axis are from the original
input sequence, and the y-axis shows the tokens of its generated French translation. Reprinted
from [Bahdanau et al., 2014]

Then, for every token i, the attention mechanism determines its attention score for
every sequence token j by computing the dot-product of query vector qi and key vector kj
and applying the softmax function to all of these query-key dot-products. The output of
the attention mechanism for the token i is then a linear combination of the value vectors
weighted by their respective attention scores.

These operations can be easily expressed in matrix form, given that we pack the query,
key, and value vectors in matrices Q, K ∈ Rn×dk , V ∈ Rn×dv respectively.

Attention (Q, K, V) = softmax
(

QKT

√
dk

)
V (2.1)

The authors of the Transformer architecture further introduced a novel technique called
multi-head attention. This technique allows the model to compute the attention mecha-
nism for different transformations of the input vectors. The outputs are then concatenated
and projected to form the final output. This gives the model the ability to capture different
types of information contained within the sequence and combine them together.

The multi-head attention is computed as follows

MultiHead (Q, K, V) = Concat (head1, . . . , headh) WO

headi = Attention
(
QWQ

i , KWK
i , VWV

i

) (2.2)

5



2. Natural Language Processing...................................
where WQ

i , WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel are the projec-
tion matrices.

The encoder stack of the Transformer is made up of several encoder modules. These
perform the multi-head attention mechanism and apply an additional feed-forward neural
network to each of its outputs. The input vectors supplied to the first of these encoders
consist of token embeddings, which are learned during the training of the model.

One can see that the computation is invariant to the permutation of the tokens. Since the
order of the tokens can be an important piece of information, the initial token embeddings
are also enhanced with positional encodings, which are constructed using a combination
of the sine and cosine functions.

One of the downsides of the attention mechanism is that it has a Θ
(
n2) computational

and memory complexity, where n is the number of input tokens. That is because an
attention score is computed between every pair of tokens.

There is no dependency between the computations of the attention coefficients for the
individual source tokens. Thanks to that fact, they can be expressed in a matrix form
and computed simultaneously, as shown in equation 2.1. Nevertheless, the quadratic
complexity makes it difficult to process longer inputs.

2.2 Bidirectional Encoder Representations from
Transformers

In spite of the Transformer being originally introduced as a model for sequence-to-sequence
modeling, it has been found that the embeddings generated by the Transformer’s encoder
stack can form very useful representations of the input sequences.

This is something that one of the most popular modifications of the Transformer model,
called BERT [Devlin et al., 2018], makes use of. BERT, or the Bidirectional Encoder Rep-
resentations from Transformers, expands on the idea of learning useful input embeddings.

From the perspective of the model’s architecture, BERT’s construction is identical to
that of the encoder stack of the Transformer. However, as opposed to unidirectional
language models, it allows the attention mechanism to attend to both the previous and
the following tokens in the sequence, thus creating a bidirectional language model that is
better at capturing the context of the entire input.

The model is pre-trained using the Masked Language Modelling (MLM) and the Next
Sentence Prediction (NSP) tasks, which require an understanding of both the left and the
right context.. Masked Language Modelling. A token-level prediction task. A percentage of

the tokens is replaced by special [MASK] tokens, and the objective is to predict the
original tokens based on the context given by the other tokens in the input sequence.. Next Sentence Prediction. A sequence-level prediction task. Two sentences are
given to the model, with a special [SEP] token used as a separator between them. The
task is then to predict whether these two sentences follow each other in the original
document.

The pre-trained model can then be quite easily fine-tuned for a specific downstream
task, simply by adding an appropriate layer on top of the BERT’s output and training
this extended model in an end-to-end fashion. Fine-tuned BERT models have shown the
ability to perform well on various downstream tasks, such as question answering, sentiment
classification, or natural language inference.

6



.......................2.2. Bidirectional Encoder Representations from Transformers

BERT can handle both sequence-level and token-level tasks, such as the MLM and NSP
tasks presented earlier. Every input sequence of tokens starts with a special token called
[CLS]. The common practice is to use the final embedding of this token for sequence-level
classification tasks. Furthermore, BERT is designed so that it can process a pair of input
sequences, each of them intended to have a different meaning for the task at hand. The
pair of sequences is presented as a single sequence, with a special [SEP] token seperating
the two. This comes in handy for example when dealing with question answering tasks.

The process of fine-tuning can be seen as a case of transfer learning, where the model
makes use of the knowledge it already gained during its pre-training. Transfer learning is
well known in other fields that also utilize deep learning methods, for example in computer
vision.

The pre-training of the model happens only once, and after that, the pre-trained model
can be readily shared with the community. An example of this is the Hugging Face [Wolf
et al., 2020] community, where thousands of different pre-trained models and their open-
source implementations are publicly available for further use.

This framework of pre-training and subsequently fine-tuning a deep learning model is
also inexpensive relative to training the entire model from scratch, since the fine-tuning
part is not that resource-demanding. Nevertheless, due to the quadratic complexity of the
attention mechanism, the models are usually limited to handle inputs no longer than 512
tokens.
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Chapter 3
Graph Neural Networks

Information can be represented in various ways and take on different forms. One of the
forms that often occurs naturally is that of a graph structure. Formally, a graph is a pair
G = (V, E), where V is a set of vertices (or nodes) and E is a set of edges connecting these
vertices. For directed graphs, the edges are represented as ordered vertex pairs (vi, vj),
where vi, vj ∈ V are the source and the target nodes, respectively. For undirected graphs,
the edges are symmetrical and therefore represented as an unordered pair of vertices
{vi, vj}.

Graphs usually model relationships between different objects. They can be found in
many places. Take for example a social network, where each vertex would represent a
person, and an edge between two vertices might indicate that there exists a friendship be-
tween the two individuals. Another example might be that of a molecule structure, which
can be represented using a graph whose nodes represent the molecule’s atoms and edges
represent the bonds that connect them. Many interesting domains can be transformed
so that the information they contain can be conveyed using graph structures. The indi-
vidual nodes and edges of a graph can be enhanced with their respective feature vectors,
describing their properties.

Processing graph data using deep learning methods has its difficulties. One needs to
account for different aspects of the graph data, such as variable-sized node neighbourhoods,
dependencies between the nodes of the graph, and the requirement for the model to be
invariant or equivariant to the permutations of the input.

Generally, the neural-based methods that accept and are able to process graph data are
called Graph Neural Networks (GNNs).

This chapter introduces the main categories of graph neural networks and briefly presents
some of their specific implementations.

3.1 Classification of Graph Neural Networks

[Wu et al., 2020] introduced a classification of different approaches of handling graph data
using neural networks. These are namely Recurrent GNNs, Convolutional GNNs, graph
autoencoders and spatio-temporal GNNs. In this section we introduce more closely the
first two of these categories.

3.1.1 Recurrent Graph Neural Networks

Methods that classify as recurrent graph neural networks (RecGNNs) were one of
the first proposed approaches in the field of GNNs. They update node representations by
exchanging information among nodes of a neighbourhood, until a convergence criterium on
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3. Graph Neural Networks .....................................
the states of the nodes is satisfied. The representations are transformed using a function
f whose parameters are fixed throughout the whole computation and are shared among
the nodes. It is required for this function to represent a contraction mapping, so that
the states of the nodes converge. This approach can be further modified so that the node
states are updated only for a fixed number of time steps, which allows to disregard the
contraction mapping restriction on f .

3.1.2 Convolutional Graph Neural Networks

The convolutional graph neural networks (ConvGNNs), also work by propagating
information through node neighbourhoods. However, the propagation takes place only for
a fixed number of steps, and neural network layers with different weights can be used for
each of the steps.

This allows them to work around computationally demanding recurrent updates. How-
ever, in doing so, they effectively restrict the amount of information each nodes has access
to and can account for in its final representation. By performing the propagation for k
steps, any node has access to information only from the nodes in its k-neighbourhood.

The ConvGNNs can be further classified into spectral-based and spatial-based approaches.

Spectral-based ConvGNNs

The spectral-based methods perform the convolution operation in the spectral domain
of the graph’s Laplacian matrix. They have a strong mathematical foundation in signal
processing [Sandryhaila and Moura, 2013,Shuman et al., 2013].

Formally, a graph’s normalized Laplacian matrix is defined as L = I − D− 1
2 AD− 1

2 ,
where A is the graph’s adjacency matrix and D is a diagonal matrix of its node degrees.
Thanks to being positive semidefinite, the Laplacian matrix has an eigen-decomposition
L = UT ΛU, where U is a matrix of eigenvectors and Λ is a diagonal matrix of their
respective eigenvalues. The graph Fourier transform for a node’s feature vector x ∈ Rm

and its reverse are
F (x) = x̂ = UT xF−1 (x̂) = Ux̂ (3.1)

After projecting the node’s features into coordinates of the space spanned by the eigen-
vectors of L, a filter gθ is applied to performe the convolution.

x ∗ gθ = F−1 (F (x)⊙F (gθ)) = U
(
UT x⊙UT gθ

)
(3.2)

The differences between individual spectral-based ConvGNNs lie in the choice of the
filter gθ, which often belong to a family of parametrized learnable functions.

Since the computation is based around the graph’s Laplacian matrix, the learned filter gθ

will be inevitably influenced by the structure of the graph. This unfortunately means that
once trained, the spectral-based methods are not able to generalize to graphs of different
sizes and structures. Nevertheless, this can be avoided for example if the filter gθ is
represented as a fixed-order polynomial function of the matrix of eigenvalues Λ [Defferrard
et al., 2016].

Spatial-based ConvGNNs

The spatial-based methods are very similar to convolutional neural networks. One can
think of them as generalizing the convolution operator from regular grids to graphs. They
construct a new representation of a node by directly aggregating its representation and

10
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the representations of the nodes in its neighbourhood. This approach directly acknowl-
edges the spatial topology of the graph, and operates in the original domain of the node
representations instead of the graphs spectral domain. The representations are usually
transformed before the aggregation using a learnable function, in order to compute higher
level features. The methods of this category are more popular than those of the spectral-
based ConvGNNs. A method representative of the spatial-based ConvGNNs is presented
more closely in Section 3.4.

3.2 Message Passing Neural Networks

After inspecting different graph neural network methods, the authors of [Gilmer et al.,
2017] observed, that many specific implementations of graph neural networks can be en-
compassed using a single unified framework. This framework, called Message Passing
Neural Networks, is closely related to the notions of spatial-based ConvGNNs. As its
name suggests, it is based on a concept of messages, which the nodes pass between each
other in order to update their representations.

The framework takes a graph G = (V, E) on the input, with node features xi and edge
features eij . It operates for T number of steps, during which the nodes’ messages are
generated and communicated through the graph. Each node gathers message sent to it by
the nodes in its neighbourhood, and then utilizes the received information by accordingly
updating its embedding.

The message sent to node i by the node j during step t, is generated using a learnable
function Mt which takes as an input the current representations hi, hj of the two nodes
and features eij of the edge connecting them.

After the messages are generated and gathered, a parametrized function Ut, which is
once again learned from the data, creates the node’s new representation ht+1

i .

mt+1
i =

∑
j∈N (i)

Mt

(
ht

i, ht
j , eij

)
ht+1

i = Ut

(
ht

i, mt+1
i

) (3.3)

Different specific graph neural network implementations can be then obtained by choos-
ing different families of functions for the functions Mt and Ut.

After the message passing phase is completed, a representantion of the entire graph can
be constructed using the final hidden states of the nodes, if it is required for the task
at hand. This representation is computed using a readout function R, which should be
permutation invariant and also should accept inputs of an arbitrary size.

ŷ = R
({

hT
i |i ∈ G

})
(3.4)

The authors show that using this framework, it is easy to describe many different already
existing GNN methods.

3.3 Graph Convolution Networks

One of the most popular convolutional graph neural network methods is the Graph Con-
volution Network (GCN) [Kipf and Welling, 2016]. The authors base their work in
a spectral-based graph convolution network method [Defferrard et al., 2016], where the
convolution filter gθ is seen a function of eigevalues Λ of the graph’s Laplacian, and is
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3. Graph Neural Networks .....................................
approximated using a Chebyshev’s polynomial of a fixed order K. The usage of Cheby-
shev’s polynomial has been first suggested in [Hammond et al., 2011]. The authors of
GCN propose to fix the order of the approximation to K = 1. This, along with other
minor approximations and simplifications, yields a graph convolution operation that is
expressed by the following equation

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H(l)W(l)

)
(3.5)

where Ã = A + I, D̃ii =
∑

j Ãij .
The authors originally intended this type of GNN to be used for transductive tasks

(see 3.5), although it can generalize to induction tasks as well.
Note that by taking a first-order polynomial approximation of the graph filter gθ, the

method follows the principles of spatial-based ConvGNNs, even though it is based on a
spectral-based approach. This is also apparent from the Equation 3.5. Therefore, one can
see the spatial-based ConvGNNs as approximations of the spectral-based ConvGNNs.

3.4 Graph Attention Networks

Another quite popular method of the ConvGNNs category is the Graph Attention Net-
work (GAT) [Veličković et al., 2017]. It introduces a graph attentional layer, that easily
generalizes to neighbourhoods of various sizes while at the same time discerns the impor-
tance of individual neighbourhood nodes, thanks to the attention mechanism it uses to
aggregate node features.

Let us inspect the inner workings of GAT. The GAT layer receives a set of node features
h = {h1, . . . , hn}, hi ∈ RF , where n is the number of nodes and F is the dimensionality of
the nodes’ features. It outputs a transformed set of features h′ = {h′

1, . . . , h′
n} , h′

i ∈ RF ′ .
A linear transformation W ∈ RF ′×F is applied to each of the nodes’ features, so that

higher-level features can be obtained. A self-attention mechanism a is then applied to
compute attention coefficients eij between pairs of nodes xi and xj . It is defined as

eij = LeakyReLU
(
aT [Whi ∥Whj ]

)
(3.6)

where ∥ indicates the concatenation of two vectors and a ∈ R2F ′ is a learnable projection
vector.

The mechanism computes the attention coefficient eij for nodes i and j only if there
exists an edge from i to j. The attention coefficients between nodes that are not directly
computed are equal to zero. By doing so, GAT accounts for the graph’s topology.

The attention coefficients are then normalized using the softmax function,

αij = softmaxj (eij) = exp (eij)∑
k∈Ni

exp (eik)
(3.7)

where Ni is the neighbourhood of the node i.
Finally, the resulting transformed node features h′

i are the linear combination of the
node’s neighbourhood where the attention coefficients α act as weights. A non-linearity σ
is further applied to the linear combination.

h′
i = σ

∑
j∈Ni

αijWhj

 (3.8)

12



............................... 3.5. Application of Graph Neural Networks

Figure 3.1: Figure showing the application of multi-head attention in GAT. The different
styles of arrows signify computations of different heads. Reprinted from [Veličković et al.,
2017].

The use of the attention mechanism allows GAT to assign different importances to neigh-
bourhood nodes and therefore select which are more relevant to the query node, instead of
weighing their contributions equally. It also allows it to naturally handle neighbourhoods
of varying sizes, without receding to trivial approaches.

The authors also make use of the multi-head attention, similarly to [Vaswani et al.,
2017]. The output of each individual head is computed as in equation 3.8. The authors
then propose to either concatenate or average their outputs, according to what purpose
they should serve further.

3.4.1 Modification of the Attention Mechanism

Despite GAT’s popularity and empirical evidence of its performance [Veličković et al.,
2017], it has been found that the utilized attention mechanism has a hardly noticeable
flaw, which nevertheless restricts its expressivity [Brody et al., 2021]. The computation
presented in [Veličković et al., 2017] creates attention coefficients which are unconditioned
on the query node.

This can be fixed by simply changing the order of operations in the computation of eij

to
eij = aT LeakyReLU (W [hi ∥ hj ]) (3.9)

where now W ∈ RF ′×2F .
The authors of this modification call the resulting layer GATv2. They have shown,

both theoretically and experimentally, that GATv2 is strictly more expressive than GAT
and that the attention coefficients it computes are correctly conditioned on the query node.

3.5 Application of Graph Neural Networks

By using the graph neural networks, we derive new representations of the graph’s nodes.
These are then utilized to solve different tasks. The tasks that GNNs solve can be classified
according to the granularity level they are related to into graph-level, node-level, and
edge-level tasks.

13



3. Graph Neural Networks .....................................
Graph-level tasks. These tasks are concerned about generating a prediction for

the entire graph, be it a regression or a classification objective.

Node-level tasks. Node level tasks perform a prediction for each of the graph’s
nodes.

Edge-level tasks. Edge level tasks are related to individual edges of the graph.
Apart from tasks concerning already existing edges, we can also predict for
example the existence of an edge between each pair of nodes.

Furthermore, we can distinguish between transductive and inductive tasks, which,
while being general terms in machine learning, are often a topic of discussion in the field
of GNNs.

Transductive tasks. Transductive tasks require to perform the inference directly
by reasoning from already observed data. An example of such a task would be
to predict labels for unlabeled nodes based on graph nodes that have already
been labeled.

Inductive tasks. Inductive tasks involve learning certain rules from a training
dataset, and then being able to apply them to previously unseen data. An
inductive task is for example the classification of a previously unseen graph.

For graph-level tasks, a final representation of the entire graph has to be constructed.
One of the options to acquire this representantion is to introduce an additional global node,
that is connected to every node of the graph, and then use its final representation as the
representation of the graph.

Other approach is to construct the graph’s representation using the representations
of individual nodes. To this effect, a pooling (or a readout) operation is applied. This
pooling operation should be permutation-invariant, so that the order in which the nodes
are presented does not affect the resulting representation. The simplest functions that
have this property and a regularly used include the sum, mean, and max aggregation
operators. These are usually applied to the final node embeddings, and do not take into
account the topology of the graph.

More complex pooling methods have been introduced, for example DiffPool [Ying et al.,
2018] or SAGPool [Lee et al., 2019]. They reduce the number of nodes in the graph and
can be interleaved with GNN layers in order to construct hierarchical representations of
the graph. Furthermore, these pooling methods can be trained jointly with the rest of the
neural network.

After the final representations have been obtained, they are processed further to perform
the specific task. For graph or node classification and regression tasks, a simple feed-
forward neural network usually suffices.

3.5.1 Application examples

Graph neural networks have been used for various tasks. The authors of [Stokes et al.,
2020] used GNNs to predict the antibacterial activity of molecules. This allowed them
to identify molecules that could have the potential to be used as new antibiotics. The
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graph neural networks helped the authors discover one specific molecule, which they called
Halicin. The effectivity of this molecule has then been shown also experimentally.

We can find examples of usage of GNNs also in the context of natural language pro-
cessing. The authors of the Text Graph Convolutional Network (Text GCN) [Yao et al.,
2019], use GNNs to classify documents contained within a corpus. They construct a single
graph for the entire corpus, with nodes representing documents and single words. The
text classification task is then expressed as a node classification task.
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Chapter 4
Problem Statement

Transformers and their various modifications and derivatives quickly became the most
prominent models in the field of NLP. Their ability to tackle different tasks while reusing
the same general architecture and the ability to capture context and long range depen-
dencies within text made them a rather popular choice for majority of the NLP tasks.
Nevertheless, their usability is limited when it comes to processing long input sequences.
As we already mentioned in Section 2.1.1, the computational complexity and memory re-
quirements of the self-attention mechanism are Θ

(
n2), where n is the number of input

tokens. Therefore, one can see that due to this operation, the usage of Transformers
becomes quickly unfeasible for longer sequences.

In order to aleviate this setback, different approaches were proposed as to how to deal
with long input sequences. One of the easiest ones is to truncate the input sequence so
that it does fit within the limits of the utilized model. This truncation can be executed
differently based on the specifics of the task at hand. The most common way is to keep the
first Nmax tokens, or concatenate different parts of the input sequence that are assumed
to be important, like part of its beginning and part of its end.

Other techniques choose to modify the attention mechanism itself, and as a result
decrease its computational complexity [Beltagy et al., 2020, Zaheer et al., 2020], while
others choose to directly approximate the full attention mechanism [Choromanski et al.,
2020,Xiong et al., 2021]. Such methods are then able to process much longer inputs.

Being able to process long input sequences and in doing so capture larger amount of
information is quite relevant for some of the NLP tasks, such as question answering or
summarization. Providing the model with a larger context has been shown to increase its
performance on such tasks [Beltagy et al., 2020,Zaheer et al., 2020].

This thesis aims to make use of graph neural networks in combination with pre-trained
lanuguage models to be able to handle the classification of input sequences of challenging
lengths. Before we present our approach, we go over some of the existing methods.

4.1 Related Literature

We introduce some of the techniques aimed at processing long input sequences.

4.1.1 Longformer

The Longformer [Beltagy et al., 2020] retains the architecture of the original Transfomer.
However, it modifies the inner workings of the utilized attention mechanism. Instead of
allowing every token of the input sequence to attend to every other of the tokens, it only
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allows the interactions of a limited number of certain tokens, chosen according to different
attention patterns.

(a) : Full n2 attention (b) : Sliding window
attention

(c) : Dilated sliding
window

(d) : Global+sliding
window

Figure 4.1: Comparison of the full attention mechanism pattern and the attention patterns
introduced in the Longformer [Beltagy et al., 2020] paper. Reprinted from [Beltagy et al.,
2020].

The attention patterns include for example a sliding window pattern, which allows each
token to attend only to tokens in its neighbourhood of a constant size. The dilated window
pattern is similar to the sliding window, but it introduces gaps between the attended
tokens. Furthermore, the Longformer allows a predefined number of the tokens to attend
to every other token. The different attention patterns are shown in Figure 4.1.

The restriction of the possible attention pairs effectively reduces the computational
complexity and memory requirements of the attention mechanism from Θ

(
n2) to Θ (n).

Therefore, it is easier for the Longformer to process long sequences, since the computational
complexity and memory requirements increase only linearly with the length of the input
sequence n. Even though tokens are not allowed to directly access all of the other tokens,
stacking multiple sparse self-attention layers essentially increases the receptive window of
the tokens.

This restriction of the attention mechanism can be also readily used in any of the already
pre-trained Transformer-based language models.

4.1.2 Big Bird

(a) : Random attention (b) : Window attention (c) : Global attention (d) : Big Bird

Figure 4.2: Comparison of the different attention patterns that make up the Big Bird’s sparse
self-attention mechanism. Reprinted from [Zaheer et al., 2020].

Another model that is built around constructing a sparse attention mechanism is called Big
Bird [Zaheer et al., 2020]. It is very similar to Longformer, as it also makes use of the sliding
window pattern and specifies a predefined set of tokens with global attention. In addition
to that, Big Bird also creates random connections between the tokens. This decision is
motivated by graph theory, and its purpose is to decrease the average lengths of the shortest
paths between pairs of tokens. This results in faster propagation of information through
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different parts of the sequence. Furthermore, the authors prove that sparse attention
mechanisms have theoretical properties very similar to that of the full quadratic attention
mechanism and can be constructed so that they are universal approximators of sequence
functions. Note that both Big Bird and Longformer can be likened to a special use case
of graph neural networks and the attention patterns they introduce are essentially graph
adjacency matrices.

4.1.3 Performer

The authors of Performers [Choromanski et al., 2020] note that many approaches aim-
ing to reduce the computational complexity and memory requirements of the attention
mechanism, such as Longformer and Big Bird, do not attempt to directly approximate
the mechanism itself, but apply additional restrictions that result into different types of
attention mechanisms that are not as resource demanding and easier to compute.

Therefore, they introduce the Performers architecture using a method that provably
estimates the full self-attention mechanism without relying on any prior restrictions us-
ing a newly proposed mechanism called Fast Attention Via positive Orthogonal Random
features (FAVOR+).

The authors approximate the (non-normalized) attention matrix A ∈ Rn×n, which is
originally computed using a dot product of the query and key vectors,

A = exp
(

QKT

√
d

)
(4.1)

as Ai,j = K (qi, kj), where K (x, y) = E
[
φ (x)T φ (y)

]
is a kernel function defined for

some randomized mapping φ : Rd → Rr
+.

By introducing transformed query and key matrices Q′, K′ ∈ Rn×r, such that their
rows are the original query and key vectors transformed by the randomized mapping φ,
the computation of the attention mechanism can be done efficiently as follows

̂Attention (Q, K, V) = D̂−1
(
Q′
((

K′)T V
))

, D̂ = diag
(
Q′
((

K′)T 1n

))
(4.2)

This approach allows to compute an approximation of the full self-attention mecha-
nism in time and space complexity linear in terms of the sequence length, given that the
computation order indicated by the parentheses in the formula is respected.

Furthermore, the authors propose that the random feature map φ takes the following
form

φ (x) = h (x)√
m

(
f1
(
ωT

1 x
)

, . . . , f1
(
ωT

mx
)

, . . . , fl

(
ωT

1 x
)

, . . . , fl

(
ωT

mx
))

(4.3)

where f1, . . . , fl : R → R, h : Rd → R, and ω1, . . . , ωm ∈ Rd are chosen either deter-
ministically or sampled i.i.d from some distribution D ∈ P

(
Rd
)
. They also show the

specific form of φ for approximating the attention matrix. One of the important parts of
FAVOR+ is to use ωi such that they are orthogonal, which strictly reduces the variance of
the estimator.
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Chapter 5
Proposed Solution

This work aims to utilize graph neural networks to be able to classify documents that
exceed the size limitations of the Transformer-based models. As stated in Section 3, the
GNNs are flexible and can represent various relationships. Therefore, as can be expected,
there are various different options to make use of them to achieve our goal.

One option would be to treat each input token as a node and construct restricted con-
nections between nodes. However, this would lead to models that are conceptually similar
to those introduced in [Beltagy et al., 2020,Zaheer et al., 2020]. In fact, as mentioned in
Section 3.2, GNNs represent a quite general framework and can be even used to model
the original Transformer architecture. Therefore, we choose a different approach.

In this thesis, we utilize graph neural networks in combination with Transformer-based
models. The text classification model that we present is based on processing parts of the
input sequence separately. We split the input sequence into multiple parts, and initially
process each of the parts individually. We create an embedding for every part using a
pre-trained BERT-like model, which can be obtained for example from the Hugging Face
model repository. The parts of the input are then thought of as nodes of a graph, and
their embeddings are used as the features of these nodes. Nodes of textual graphs were
previously encoded using embedding vectors for example in [Hamilton et al., 2017]. Having
created this graph, we use GNNs to allow for interactions between different encoded parts
of the input sequence. Finally, the text classification is seen as a graph classification task.
An encoding of the entire graph is obtained through a pooling operation and then utilized
to perform the final classification. The entire process is illustrated in Figure 5.2.

This approach remains quite general and can be applied to different specific text classi-
fication tasks. The way the input is separated into individual parts can be tailored to the
task at hand.

This method makes use of the valuable knowledge that is already contained within the
pre-trained language models, such as BERT and its derivatives [Devlin et al., 2018,Liu et al.,
2019]. Once trained, it is possible to scale this model quite simply to inputs of various
sizes. Note that this method can be also quite easily modified to perform classifications
at the level of individual parts of the input, by classifying the corresponding nodes of the
graph.

One of the important aspects of this approach is the decision as to which nodes should
be connected with an edge. We propose two different ways of creating the edges between
the parts of the input. The first one of these is to create a connection between each pair of
nodes, thus making a complete graph. This allows the nodes to directly exchange messages,
without any necessary intermediary. On the other hand, it disregards the ordering of the
input parts and therefore is permutation invariant. An illustration of this topology is
shown in part a) in Figure 5.1.

The second approach involves creating connections between nodes that correspond to
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(a) : complete (b) : local + global

Figure 5.1: Figure showing the two proposed graph topologies. Section a) of the figure shows
a complete graph with six nodes, and section b) shows the local + global topology configuration
with the additional latent node, which is shown in orange. Self-loops are not shown for clarity.

parts of the input that appear next to each other in the input sequence. Furthermore, an
additional latent node is created and connected to every other node of the graph. Nearby
parts of the input are therefore allowed to communicate directly with each other, and all
nodes can exchange messages indirectly through this additional node. The embedding of
the latent node is initialized as a mean of the embeddings of the original graph nodes.
We call this topology configuration local + global. As opposed to the complete graph
configuration, it is not permutation invariant, and the order of the inputs affects which
input parts are connected with an edge. A small example of a local + global graph with 4
nodes is shown in part b) in Figure 5.1.

Both of these topology configurations are quite general and straightforward. Therefore,
no assumptions are being made about the nature of the specific underlying classification
task.

The implementation of the proposed model is publicly available.1

1https://github.com/aic-factcheck/long-input-gnn
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Figure 5.2: An overview diagram of the proposed model. The input document is first split into
multiple parts. An embedding is created for every part using a Transformer-based language
model. These embeddings are then used as features of the nodes in the constructed graph,
which connects different parts of the input. Finally, a graph neural network composed of
multiple GNN layers is used to obtain the final classification of the input document.
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Chapter 6
Datasets

6.1 MultiSource

Since we found it difficult to obtain a text classification dataset that would contain a
considerable amount of examples (satisfying the data-intensive needs of the Transformer-
based architectures) and at the same time would be composed of examples with input
sequences of challenging lengths, we decided to propose our own text classification task
and also to create a custom dataset for this task.

The goal of the proposed task, which we call MultiSource, is to detect whether the text
of the input sequence originates from a single source document, or whether it is composed
of parts that come from different documents.

The nature of this task allows us to generate custom datasets. To do that, it is required
that we have access to a collection of documents, using which the individual examples
will be constructed. For our purposes, we chose to use the English Wikipedia snapshot,
originally meant for the Fact Extraction and Verification (FEVER) task [Thorne et al.,
2018]. It includes only the abstracts of the Wikipedia entries.

The by-product of being able to generate the datasets is the ability to control the length
of the dataset’s examples.

The process of generating the datasets for the MultiSource task is quite general and
highly customizable. New dataset instances based on various corpora can be made quite
easily. The task itself might be considered in some sense similar to that of the Next
Sentence Prediction, introduced in Section 2.2.

6.1.1 Dataset Generation Process

The process of generating a MultiSource dataset goes as follows. We treat the documents
from the utilized collection at the level of sentences. The train, validation, and test splits
of the dataset are generated individually. Each split is composed of multiple parts. For
each of these parts, it is possible to define the number of sentences Sn that each of their
examples should contain, and the number of sentences Srandom ≤ Sn that should originate
from different sources. Furthermore, every part defines the number of examples N it
should contain.

Then, to generate a single example of a part, we sample an initial original document
dorig from an available set of documents D, such that it has at least Sn−Srandom sentences.
From this document, Sn − Srandom sentences are sampled. These sentences form the base
of the example. Subsequently, Srandom other documents are sampled from D, and a single
sentence is randomly selected from each of them. These sentences are added to those
already selected from the original document. The resulting set of sentences forms the
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complete generated example. The label of the example is determined by the number of
random sentences Srandom, with examples where Srandom > 0 being labeled as positive.

Finally, the sentences are randomly permutated. This is done to encourage the classifier
to truly learn to compare different parts of the text and not simply detect possible abrupt
changes in the structure of the text.

The sentences from the original article are sampled without replacement. This prevents
the occurrence of some unintentional cues that the classifier might be able to detect, such
as the same sentence occurring multiple times within a single example.

Algorithm 1 Generating a part of a MultiSource dataset split.
1: procedure GenerateMultiSourceSplit(D, N , Sn, Srandom)
2: examples← ∅
3: for i = 1 to N do
4: example← ∅
5: dorig ← sample_document (D, min_sentences = Sn − Srandom)
6: example← example ∪ sample_sentences (dorig, n_sentences = Sn − Srandom)
7: for j = 0 to Srandom do
8: drandom ← sample_document (D, min_sentences = 1)
9: example← example ∪ sample_sentences (drandom, n_sentences = 1)

10: end for
11: examples← examples ∪ {example}
12: end for
13: end procedure

The process of generating a part of the dataset’s split is also described by pseudo
algorithm 1.

To prevent data leakage between the individual dataset splits, we track which documents
were used for generating individual splits. This information is then used when generating
a new dataset split, with documents used to generate the previous splits being removed
from the set of available documents D.

The complete dataset for the MultiSource task is then the composition of the train,
validation, and test splits.

6.1.2 Document Sampling

The way we select the documents from which the random sentences are sampled greatly
influences the resulting difficulty of a particular MultiSource dataset. During our initial
inspections of the generated datasets, we quickly noticed that sampling the documents
uniformly at random generates examples that are quite easy to classify.

Therefore, we decided to add an option to sample documents that are more similar
to the original document dorig. This modification makes the positive generated examples
harder to detect and makes the task more challenging. We say that such examples were
generated using a similar sampling.

To retrieve similar documents, we have utilized the Anserini toolkit for information
retrieval [Yang et al., 2017,Lin et al., 2021]. For every original document dorig, we would
run a query to retrieve the top r documents from the complete collection of documents.
These documents would then be filtered so that only those present in the currently available
set of documents D are kept. Out of the remaining documents, we sample uniformly from
the top k most similar to obtain the random documents. It is possible that there are
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no similar documents such that they were not yet used in other dataset splits. In that
case, a random document is sampled from the available set without paying respect to its
similarity. Nevertheless, such cases were almost non-existent and occurred only rarely.

The process of generating a MultiSource dataset allows us to modify its specific char-
acteristics and in effect gives us some control over the difficulty of the task. One of the
options is to use the sampling of similar documents, as we have just described. The other
is being able to directly specify the number of random sentences that should appear within
positive examples.

The configuration of the positive examples can, for example, be pushed to the extreme,
where only a single sentence would originate from a different source document, which would
additionally be sampled out of documents similar to the original one. In such instances,
the task could even be thought of as a within-text anomaly detection.

1 {
2 "label": true,
3 "ids": ["Robert_Punkenhofer", "Robert_Punkenhofer", "

↪→ Julius_von_Bismarck", "Salvador_Mas_Conde"],
4 "sentences": [
5 "He currently serves as the Austrian Trade Commissioner in

↪→ Barcelona, a job he has also performed in Mexico City, Berlin and
↪→ New York City.",

6 "Robert Punkenhofer (born July 7, 1965 in Austria) His career
↪→ intertwines art, design and architecture as well as international
↪→ business development.",

7 "This equipment is positioned in a public place to capture and
↪→ subsequently airbrush pigeons as they chart their path within the
↪→ vicinity.",

8 "Born in Barcelona, the conductor Salvador Mas-Conde started his
↪→ musical studies in Escolaria de Montserrat, continuing at the
↪→ Conservatorio Superior Municipal de Música of Barcelona (CSMM), in
↪→ Salzburg with Bruno Maderna, in Siena with Franco Ferrara, and at
↪→ the Vienna University of Music and Dramatic Art with Hans
↪→ Swarowsky and Günther Theuring."

9 ]
10 }

Figure 6.1: A small MultiSource example generated using the similar sampling. It is composed
of four sentences, where two come from a single identical source, and the other two sentences
originate from two different sources.

An example generated using a similar sampling is shown in Figure 6.1, and Figure 6.2
shows an example generated using a purely random document sampling.
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1 {
2 "label": true,
3 "ids": ["Agnes_Campbell","Bold_hypothesis", "Agnes_Campbell", "

↪→ Mohamed_Ayoub_Ferjani"],
4 "sentences": [
5 "At that time O'Neill had been supporting the English.",
6 "The concept is nowadays widely used in the philosophy of

↪→ science and in the philosophy of knowledge.",
7 "She helped mobilise Scottish support for the Irish.",
8 "He will compete in Rio de Janeiro with his brother Fares, who

↪→ qualified in men's sabre."
9 ]

10 }

Figure 6.2: A small MultiSource example. The sentences originating from different sources were
sampled from documents obtained using random sampling, without regards to the ‘original’
source document.

We use the described generation process to create several different MultiSource datasets,
which are further described in Section 7.2.

6.2 Hyperpartisan News Detection

The Hyperpartisan News Detection dataset [Kiesel et al., 2019] is composed of articles from
various online news websites. The goal is to detect articles whose content shows strong
support for a single political party and disregards any opposing opinions or views. The
information provided in these articles can be presented in a way that is quite misleading.
The form of the used language is often such as to provoke a strong emotional response in
the reader.

The reason we chose this dataset, apart from being an interesting task, is that the token
count of the majority of the examples significantly exceeds the most common limitations
of models with Transformer-based architecture. The median of the examples’ token counts
is 863, and the longest input sequence has 13,926 tokens. Therefore, we will be able to
test the ability of our model to handle truly long sequences. The cumulative distribution
function of the token counts is shown in Figure 6.3. However, the size of the dataset is
quite small, having only 645 examples. Furthermore, it is necessary to be cautious when
using this dataset to train classification models since its class distribution is not balanced.
We have split the dataset into training, validation, and test splits. The splits have been
obtained using stratified sampling, retaining the label distribution of the complete dataset.
Their individual label distributions are shown in Table 6.1. The news articles are provided
in an HTML format. A single example from the dataset is shown in Figure 6.4.

label
dataset split positive negative

train 164 281
validation 37 63
test 37 63

Table 6.1: The class distributions for different splits of the Hyperpartisan News Detection dataset.
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Figure 6.3: The cumulative distribution function of the token counts of the Hyperpartisan
News Detection dataset examples. Most of the examples contain more than 512 tokens. The
median length of an example is 863 tokens, and the dataset contains examples as long as 13,926
tokens.

1 {
2 "title": "WATCH: This Man Tells The Truth! Exposes politicians

↪→ creating opportunities for violence",
3 "label": 1,
4 "url": "https://politicalcowboy.com/watch-man-tells-truth-exposes-

↪→ politicians-creating-opportunities-violence/",
5 "published_at": "2017-08-24",
6 "text": "<p>Yet again we see more evidence that the media and

↪→ leftist government officials are lying to the American public.
↪→ What is the agenda? What reality are they try to protect? Why are
↪→ they risking violence when it is unnecessary?</p> \n<p>Watch this
↪→ video posted on Facebook by Will Johnson, a common sense
↪→ conservative, who intends to be a part of a free speech rally this
↪→ weekend in San Francisco. As he states it is intended to be a pro
↪→ Trump rally, however it is clearly being painted by politicians
↪→ and the media as a white supremacist rally with a call for the
↪→ presence of Antifa. How is it possible to have a white supremacy
↪→ rally when the rally barely has any white people attending?</p> \n
↪→ <p>I'll let you figure that one out! Watch the video below.</p> \n
↪→ <p>https://www.facebook.com/newlypress/videos/1875854002678972/</p
↪→ > 60 Celebrities Who Are Mega Trump Supporters - #20 Is
↪→ Unbelievable!"

7 }

Figure 6.4: An example of a hyperpartisan news article from the Hyperpartisan News Detection
dataset.
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6.3 CTKFacts

Last but not least, we introduce the CTKFacts dataset [Drchal et al., 2022], a Czech fact-
checking dataset. The fact-checking task takes a written statement, a claim, as its input
and utilizes a knowledge base in form of a simple database of text documents according
to which it attempts to verify the veracity of the statement. It is one of the tasks where
the usage of natural language processing could be beneficial and help with its automation.
It is then not that surprising that systems for automated fact checking have been gaining
a considerable amount of attention [Thorne and Vlachos, 2018].

The dataset was collected by the FactCheck group at AIC CTU in collaboration with
the Department of Journalism at the Faculty of Social Sciences of Charles University.
The collection process and further cleaning and quality inspections resulted in a dataset
composed of 3,097 original manually annotated textual claims in Czech. An example of
a claim with accompanying evidence is shown in Figure 6.5. We refer the reader to the
original research paper [Drchal et al., 2022] for specific information about the process of
the data collection.

Claim: Spojené státy americké hraničí s Mexikem.
EN: The United States of America share borders with Mexico.
Evidence 1: “Mexiko a USA sdílejí 3000 kilometrů dlouhou hranici,
kterou ročně překročí tisíce Mexičanů v naději na lepší životní podmínky (…)”
EN: Mexico and the U.S. share a 3,000-kilometer border, crossed by thousands
of Mexicans each year in hopes of better living conditions (…)

Evidence 2: “Mexiko také nelibě nese, že Spojené státy stále budují na vzájemné,
několik tisíc kilometrů dlouhé hranici zeď, která má zabránit fyzickému ilegálnímu
přechodu Mexičanů do USA (…)”
EN: Mexico is also uncomfortable with the fact that the United States is still
building a wall on their mutual, several thousand kilometers long border, to prevent
Mexicans from physically crossing illegally into the U.S. (…)

Figure 6.5: An example of a claim from the training split of the CTKFacts dataset, along with
its evidence. The claim is supported by the information contained in the knowledge base. The
example is reprinted from [Drchal et al., 2022].

The dataset itself is inspired by the FEVER dataset [Thorne et al., 2018], and we utilize
a similar approach to claim verification as the one used by the authors of FEVER. The
verification is done using an automated fact checking pipeline, which is composed of two
main steps; document retrieval and natural language inference (NLI). Since the textual
claims are not paired with their respective documents that might be used to verify them,
a set of evidence documents has to be retrieved from the knowledge base. This is the
purpose of the document retriveval step. Once the evidence is retrived, it is passed along
with the claim to a classification model, which performs the NLI step. The output of this
automated fact checking system is then a label classifying the textual claim into one of
three classes, specifying its veracity according to the information available in the evidence
retrieved from the knowledge base. The specific labels are SUPPORTS, REFUTES, and NOT
ENOUGH INFORMATION (NEI). The distribution of labels in individual splits of the dataset is
shown in Table 6.2. This thesis focuses on the NLI part of the fact checking pipeline. The
documents to be used as evidence have been already retrived and sorted by their relevance
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using the Anserini toolkit [Yang et al., 2017]. A diagram of the automated fact checking
pipeline is shown in Figure 6.6.

label
dataset split SUPPORTS REFUTES NEI

train 1,104 556 723
validation 142 85 105
test 176 79 127

Table 6.2: The class distributions for different splits of the CTKFacts dataset.

Even though the dataset takes inspiration from the FEVER dataset, it uses a different
type of knowledge base, which it then regards as the ground truth when verifying the
claims. The FEVER dataset makes use of Wikipedia entries, whereas CTKFacts uses an
archive of news articles published by the Czech News Agency (Česká Tisková Kancelář).

Figure 6.6: The automated fact checking pipeline. The model proposed in this thesis performs
the natural language inference step. The classification label can be one of SUPPORTS, REFUTES,
and NOT ENOUGH INFORMATION.
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Chapter 7
Experiments

We have carried out number of experiments using the datasets presented in Chapter 6. The
first experiments are done using the MultiSource task, where we examine the properties of
our model as well as of the task itself. After that, we continue with the Hyperpartisan News
Detection dataset, which provides a challenge in form of long inputs and a limited number
of examples. Finally, we test the performance of our model on the CTKFacts dataset.

7.1 Experimental Setup

Our proposed model has a number of configurable parameters, specified in the following
list, that need to be chosen accordingly.

. Type of the utilized language model. Our model allows to use different language
models to create the embeddings of individual parts of the input. This choice can
play an important role, based on the language of processed data and even on the
nature of the task.. Type of the GNN layers. Different types of GNN layers can be used. Nevertheless,
we restrict our experiments to the usage of the GATv2 [Brody et al., 2021] layer, which
will allow the model to decide the importance of different input parts during GNN
message propagation.. Number of GNN layers. The number of GNN layers will control the size of the
neighbourhood in which different nodes can affect the represenations of other nodes.
In our experiments, we consider using 1 to 4 layers.. Number of heads per GNN layer. Since the GAT layer allows us to use multi-
head attention, we can also control the number of heads being used. The outputs of
individual heads are concatenated and then transformed using a linear projection, sim-
ilarly to the approach chosen in the original Transformer architecture. We experiment
with 1, 2, and 4 heads.. Size of the node embeddings. We can control the size of the embeddings of the
graph nodes. After computing the embeddings of the input parts using the language
model, the GNN layers project them into a linear space of this size. This size is then
same for every GNN layer. We refer to this parameter also as the hidden size.. Topology of the graph. The topology of the graph will specify which of the nodes,
and consequently parts of the input, can exchange information directly.
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7. Experiments ..........................................
. Pooling operation. The pooling operation can be any function, which is permu-

tation invariant. We restrict our experiments to usage of the simple max pooling
operation.

Throughout our experiments we use the following pre-trained language models or their
previously fine-tuned versions. We utilize the base architectures of these models.. BERT. The plain BERT model described in Section 2.2.. mBERT. The multilingual version of BERT, trained on the Wikipedia dumps of

the top 100 languages with the most Wikipedia pages. This exposes the model to
different languages, including Czech, during its pre-training.. RoBERTa. A model with an architecture identical to that of BERT, however, it is
pre-trained on a much larger dataset with larger batches and its pre-training does
not include the Next Sentence Prediction task [Liu et al., 2019]. Furthermore, the
masking for the MLM task is done dynamically during the training, as opposed to
BERT’s pre-training, which generates the masks beforehand.. RoBERTa @ SQuAD2. A RoBERTa model that has been additionally fine-tuned using
the SQuAD2 task [Rajpurkar et al., 2018].. XLM-RoBERTa. A multilingual version of the RoBERTa model, pre-trained using a
dataset containing texts in 100 different languages. It was introduced by [Conneau
et al., 2019].. XLM-RoBERTa @ SQuAD2. The XLM-RoBERTa model fine-tuned using the SQuAD2
task.. FERNET-C5. A BERT model targeted for Czech language, pre-trained on a cor-
pus of Czech entries extracted from the Common Crawl project. It was introduced
by [Lehečka and Švec, 2021].. RobeCzech. A RoBERTa model pre-trained exclusively on Czech data, introduced
by [Straka et al., 2021].

We train the models using the AdamW optimizer [Loshchilov and Hutter, 2017] with
learning rate α = 2× 10−5 and weight decay λ = 0.01. During the training of a model, we
track its performance on the validation split of a dataset, and store the model parameters
that resulted in the best value of the performance criterion. As not all of the datasets
used within this thesis are balanced, we select and report different performance metrics
accordingly.

Due to the large number of possible configurations of our model, we either restrict our
choices or select certain hyperparameters independently in a greedy manner. The specific
approach is described for each of the experiments.

7.1.1 Baselines

In order to be able to evaluate the performance of our model, it is required that we have
baseline results that we can compare to. The baselines chosen here are Transformer-like
models without any modifications. The input is truncated in case its size exceeds the
limitations of the specific model. The model architecture of the Transformer-like baselines
corresponds to the architecture used for the encoding of the parts of the input in our own
model, i.e., if BERT is used for obtaining the embeddings of different parts of the input,
then the baseline to which comparisons are made is a fine-tuned BERT model.
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7.1.2 Implementation Details

The utilized Transformer models and input tokenizers have been obtained through the
Hugging Face model repository [Wolf et al., 2020]. Our model has been implemented in
PyTorch with the help of the PyTorch Geometric library [Fey and Lenssen, 2019], which
provides tools for deep learning on graphs and contains implementations of many graph
neural network methods. We also used the PyTorch Lightning library for the ease of
development and training of the models. The implementation of the model is publicly
available1.

7.2 MultiSource

We use differently configured MultiSource datasets in order to try and ascertain the be-
haviour of our model and explore the difficulty of the MultiSource task. During these
experiments, we mostly restrict our model to the use of the base BERT model for comput-
ing the input embeddings.

The generated datasets were created so that the size of individual examples is within
the limitations of the used pre-trained language models, and therefore the baseline models
are able to utilize the entire input sequences. Each of the datasets contains only examples
with 10 sentences, however the specific configuration of the examples can differ.

When using our model, we treat the examples at the level of individual sentences and
each sentence represents a single node of the generated graph. This will allow us to see
how GNNs are able to combine information from different parts of the input.

7.2.1 Hyperparameters selection

In order to select how many GNN layers should our model have and how many multi-
attention heads should be used by GATv2, we chose perform a grid search over multiple
values of these two hyperparameters. During these experiments, the graph topology was
fixed to the complete graph setting, and the hidden size was set to equal 256. We expect
that the performance of our model will not match that of the baseline, as the baseline
Transformer model will be able to process the entire input directly, whereas our approach
will have to process each sentence individually before it can relate them all to each other.

We generated a dataset which we call MultiSource-Mix-40k. It contains a mixture of
examples with different numbers of random sentences, obtained using the similar sampling
approach. All of the examples have a total of 10 sentences, and the number of positive and
negative examples is balanced within each of the dataset splits. The specific configuration
of this dataset is shown in Table 7.1.

1https://github.com/aic-factcheck/long-input-gnn
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split

random sentences count train validation test
0 20,000 1,000 1,000
2 5,000 250 250
4 5,000 250 250
6 5,000 250 250
8 5,000 250 250

Table 7.1: Configuration of the MultiSource-Mix-40k dataset splits. The individual entries
indicate the number of examples.

The resulting test accuracy of the different model configurations trained on the MultiSource-
Mix-40k dataset is shown in Table 7.2.2

heads count
layers count 1 2 4
1 77.85 79.75 79.45
2 76.45 79.70 80.35
3 77.45 78.60 78.05
4 75.80 80.80 79.65

Table 7.2: The test set accuracies of our model with different choices for the graph neural
network hyperparameters on the MultiSource-Mix-40k dataset. The baseline test accuracy,
obtained using the BERT language model, was 89.55%.

The results of this grid search show that there is a larger increase in performance
when increasing the number of multi-attention heads from 1 to 2 for all of the layer
counts. However, increasing the number of heads further does not provide any additional
advantage, and in most cases even hinders the classifier’s performance. There does not
seem to be any noticeable trend in the performance with respect to the number of GNN
layers. Nevertheless, the best performing classifier had 4 GATv2 layers with 2 attention
heads. We chose to use this configuration in the subsequent experiments for both the
complete and local + global topologies.

It is important the note, that even the best performing configuration achieved a signifi-
cantly lower test accuracy in comparison to the baseline obtained using the BERT model,
which was 89.55%.

Furthermore, we also tested the effect of changing the size of the node embeddings. The
test accuracy results shown in Table 7.3 indicate that using smaller hidden sizes negatively
affects the performance. Increasing it to 512 gives a similar performance as when we set it
to 256, and therefore the results do not show much potential for further improvement with
increasing the hidden size. As a result, we chose to keep the size of the node embeddings
at 256.

2Correctly, the comparison of the configurations would have been done using the validation split per-
formance instead of the test one. Nevertheless, this experiment serves only to select a base configuration
for further experiments, where we utilize newly generated datasets in majority of the cases.
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node embedding size 64 128 256 512
test accuracy 76.85 76.65 80.80 79.85

Table 7.3: The influence of the node embedding’s size on the classifier’s performance. Results
shown are the test accuracies.

7.2.2 Task Difficulty Analysis

Since we propose the MultiSource task as a part of this work, we wanted to ascertain
its complexity and at the same time observe the behaviour of our model under different
circumstances. To this effect, we generated different MultiSource datasets with specific
configurations, each designed to observe a different aspect of the task and its requirements.

The first property of the MultiSource task that we inspected was the influence of the
random sentences sampling strategies. As mentioned in 6.1.2, the usage of the similar
sampling strategy should result in examples that are hard to classify, due to the similarity
between the sampled sentences. On the other hand, sampling the sentences purely at
random with no regards to their similarity should give examples where the differences
between different sources should be much easier to detect.

For this purpose, we generated a dataset with a configuration identical to that of
MultiSource-Mix-40k, with the only difference being that we utilized the purely random
sampling strategy.

model
sampling strategy our model BERT
purely random 96.55 99.30
similar 80.80 89.55

Table 7.4: Results of an experiment showin the influence of the sampling strategy on the
difficulty of the MultiSource task. Along with the test accuracy of our model, we also show the
test accuracy of the BERT baseline.

The outcome of the experiment is shown in Table 7.4. It is clear that the sampling
strategy greatly impacts the difficulty of detecting examples composed of parts originating
from different sources. When the purely random sampling is used the baseline model has
little problem with learning to classify the examples, classifying correctly 99.7% of them.
When we change the sampling strategy to the similar one, we can immediately see a drop
in the performance of the baseline model. The same pattern is repeated for our proposed
model as well, where it achieves an accuracy of 96.55% for the purely random sampling
strategy and an accuracy of 80.8% for the similar sampling one.
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1 sentence 2 sentences

random sentences count complete local + global complete local + global
2 63.90 63.50 72.85 67.30
4 75.70 71.20 83.15 83.40
6 81.25 80.65 90.70 87.30
8 87.40 86.45 92.30 91.75

Table 7.5: Results of the experiment inspecting the influence of the ratio of sentences from
a single source and sentences from different sources. Shows comparison between different
topologies and the effect of using a sliding window over sentences.

Another thing that can be controlled during the generation of the examples is the
number of random sentences from different sources contained within the examples. It is
quite logical to expect that when the ratio of sentences from different sources to sentences
from the original source is large, the difficulty of the task is easier than when it is quite
small. Looking for a single out of place sentence in a set of ten similar sentences can be
likened to looking for a needle in a haystack.

Due to the nature of this task, one can expect that the performance of the classifier
will improve if the encoder is given direct access to larger parts of the input. We check if
this property can be observed by creating parts of the input using a sliding window over
the sentences of the input. We set the size of the window to 2 sentences and keep the
stride equal to a single sentence. Each node of the graph will therefore represent a pair of
consecutive sentences.

We inspect the influence of the ratio of random sentences and of the encoding of pair
of sentences jointly in a single experiment. We create multiple MultiSource datasets, each
with a different configuration. Each of them has a different predefined number of random
sentences contained within its positive examples. That way, we can observe how the
classifier behaves according to different ratios of sentences from a single source and from
multiple sources. The results of this experiment are shown in Table 7.5.

The experiment confirms our expectations, and the performance of the classifier in-
creases with the number of sentences from different sources. Furthermore, we can see
that most of the time the complete topology achieves better results than the local + global
topology. According to our expectations, using a 2-sentence sliding window helps the
classifier achieve higher accuracy.

7.2.3 Importance of Graph Neural Networks

When using the graph neural networks as we do in our model, it is quite natural to ask to
what extent do they influence the performance of the classifier. Therefore, we conducted
an ablation study to test exactly that. In order to do that, we tested how our model will
perform in case we simply do not create any edges between the nodes of the graph, and
keep only the nodes’ self-loops. That will prohibit the model from exchanging information
between different parts of the input. Each part will therefore be processed individually by
the Transformer-based encoder as well as by the GNN model built on top of it. Note that
further transformations using feed-forward neural network layers, identical in structure
(but not parametrization) to those that are applied when the edges are created, will be
applied to the embeddings, and only the ability to propagate the information is restricted.

Furthermore, we try whether further increasing the size of the moving window has any
effect, and how will its usage affect the performance of the model when no edges are
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topology
window size complete local + global local none
1 sentence 80.80 76.45 74.35 56.40
2 sentences 84.80 83.85 83.10 81.20
3 sentences 84.85 85.85 85.40 84.75
4 sentences 87.60 87.40 88.05 87.15

Table 7.6: The results of the graph neural networks ablation experiment. The best results for
each of the window sizes are shown in bold.

created.
We also try removing the latent global node in the local + global topology. This modified

topology is called simply local, and it connects only the nodes that represent neighbouring
parts of the input.

Table 7.6 shows the results of this experiment on the MultiSource-Mix-40k dataset. We
can see that when the parts of the input and consequently the node embeddings are formed
by single sentences, the model has the best performance with the complete topology. The
second best performance is achieved by the local + global topology. Note that its accuracy
decreases when the global node is removed, as seen in the result of the local topology.
When no edges between the nodes are created, the classifier does not perform much better
than if it was guessing at random. Therefore, we can see that in this case, the graph neural
networks truly allow the model to combine information coming from different parts of the
input sequence.

Nevertheless, it is apparent that when the size of the input used for generating node
embeddings is increased, the differences between the topologies diminish. This can be
somewhat explained by the nature of the task. It is reasonable to expect that once the
Transformer-based encoder has access to multiple sentences, it is able to detect whether
these sentences originate from different sources. If it then includes this information in the
embeddings of the nodes, it can be easily collected by the final graph pooling operation.
This would effectively decrease the importance of the chosen topology, and in fact even
the importance of using graph neural networks, and would be in line with what we have
seen in this experiment.

7.3 Hyperpartisan News Detection

We inspect the performance of our classifier on the Hyperpartisan News Detection dataset.
Since this dataset has imbalanced positive and negative classes, we assign different weights
to each of them when computing the loss during the training of a model. The weights are
calculated so that the sums of weights per class are equal. We use the F1 score as the
performance metric.

We choose a simple approach to dividing the text into multiple parts. We separate it
into parts that have the largest length such that they can still be processed by the language
model utilized for creating their embeddings.

Once again, we begin by inspecting the hyperparameters of our model. Given the size
of the dataset, we were able to perform the grid search for both of the complete and local
+ global topologies separately. We use BERT as the model’s encoder to create the node
embeddings, and the hidden size is set to 256. The results of these grid searches are shown
in Tables 7.7 and 7.8 for the complete and local + global topologies, respectively.
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heads count

layers count 1 2 4
1 80.00 80.60 77.50
2 76.54 84.93 75.68
3 82.19 76.19 76.71
4 76.47 77.29 80.56

Table 7.7: The F1 validation scores for different choices of the GNN settings for the complete
topology.

The best configuration found for the complete topology was 2 GATv2 layers with 2
heads, achieving an F1 score of 84.93 on the validation set. On the other hand, the local
+ global topology performed the best with 3 layers and only a single head. It achieved an
F1 score of 83.78.

Furthermore, we also try changing the size of the node embeddings, however do not find
any improvement over the already selected size.

heads count
layers count 1 2 4
1 82.19 81.69 80.00
2 81.69 78.26 80.00
3 83.78 75.68 77.11
4 73.17 68.29 78.95

Table 7.8: The F1 validation scores for different choices of the GNN settings for the local +
global topology.

7.3.1 Language Models Comparison

We also inspect the influence of the used language model. We compare the achieved
performance when the BERT language model is swapped for RoBERTa when creating the
embeddings of an article’s parts. The number of GNN layers and number of heads are
selected according to the previous experiment. We consider both the complete and local
+ global topologies. The results of this comparison are shown in Table 7.9. Despite our
expectations, using RoBERTa to obtain encodings of parts of the input did not improve
the performance of the classifier. Therefore, we continue using BERT as the encoder of
the parts of the input.

encoder
topology BERT RoBERTa
complete 84.93 82.93
local + global 83.78 82.67

Table 7.9: Comparison of F1 scores on the validation split when the BERT model is swapped
for RoBERTa. Interestingly enough, using RoBERTa does not yield better results.
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7.3.2 Baseline Comparison

Finally, we compare the resulting test F1 scores achieved by our models and the baseline
BERT classifier in Table 7.10. Since the F1 score does not provide us with a complete
picture of the classifiers’ performance, we also report the precision and the recall of our
best performing model configurations and the baseline model. We can see that our model
with the local + global topology outperforms the BERT classifier. On the other hand, the
complete topology did not yield very good results, achieving an F1 score of only 73.42.
Compared to the other classifiers, it lacks the ability to correctly identify the positive
examples, as it has the lowest precision score.

We also wanted to compare the performance of our model to that of the Longformer.
Unfortunately, the composition of the dataset splits used by Longformer’s authors is not
made exactly clear and we had to create our own dataset splits. Therefore, we fine-tuned
a Longformer classifier ourselves using its pre-trained checkpoint from the Hugging Face
repository. Similarly to the authors of this language model, we applied global attention
to the [CLS] token. The fine-tuned Longformer outperformed every other model.3 Never-
theless, our proposed model with the local + global topology was able to almost match its
performance in terms of the F1 metric.

metric
model F1 precision recall
BERT 77.14 81.82 72.97
Longformer 80.60 90.00 72.97
complete 73.42 69.05 78.38
local + global 80.00 78.95 81.08

Table 7.10: The resulting F1 test scores. Our proposed model with the local + global topology
outperforms the baseline BERT model and matches the Longformer in the F1 metric.

Note that these experiments also show that our model is able to process inputs as long
as 13,296 tokens, which is the longest example contained within this dataset.

7.4 CTKFacts

The fact checking dataset introduces a new challenge by containing only Czech input,
which is a low resource language. This means it would be difficult to use for example the
original BERT model for encoding the documents, because it has been pre-trained on an
English corpora, and might not generalize that well to Czech. Therefore, we make use of
language models which have been pre-trained on data that contains Czech text. These
include for example mBERT and a fine-tuned version of XLM-RoBERTa. Furthermore, we
also test the FERNET-C5 and RobeCzech models, both of which have been pre-trained
exclusively on Czech data.

We also have to decide how exactly to process the claims along with their retrieved
evidence sets using our model. An initial idea one might come up with is to treat the
claim and every evidence as a single part of the input. However, this might make it
difficult to convey the relationship between the claim and the evidence, or even to learn

3The authors of Longformer achieved significantly better results on different splits of this dataset, ob-
serving an F1 validation score of 94.8.
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that the “claim” node should be interepreted differently with respect to the “evidence”
nodes as opposed to how the “evidence” nodes treat each other.

Therefore, we decided to make use of BERT’s ability to process a pair of input sequences,
separated using the special [SEP] token. Each one of the retrieved evidence ei is encoded
together with the factual claim c as a pair of sequences (c, ei). This allows the encoder to
directly relate the inspected claim with the evidence. These encodings are then used to
create the graph. This approach can also be said to be motivated by the idea that at first,
the language model extracts information relevant to the claim from the evidence, which
is then further combined by the graph neural network.

The input is processed similarly for the baseline methods, only the evidence set is
concatenated and possibly trimmed by the tokenizer.

The usage of graph neural networks has a consequence which might have an impact
on the performance of our classifier. Recall that the automated fact checking pipeline
operates in two consecutive steps, the document retrieval and natural language inference
(see Figure 6.6). The document retrieval module returns an evidence set for a given claim.
Along with this set, it also provides an ordering of the evidence, communicating which of
the evidence it considers as being more important for the actual fact checking. This infor-
mation is preserved when the classification is done using the Transformer-based models,
since we can concatenate the evidence according to this ordering. However, in Chapter 3
we stated that GNNs for graph-level tasks are permutation invariant. This fact, combined
with the usage of complete topology, results in the loss of the evidence importance infor-
mation. This information is also partially lost when using the local + global topology,
with the evidence of consecutive importance being represented by neighbouring nodes in
the graph.

It is also important to note that we perform our experiments in the full pipeline setting,
which means that we utilized evidence sets retrieved by the method for document retrieval,
and not sets of golden evidence as indicated by the dataset’s annotators. As a result, the
quality of the predictions is inherently limited by the quality of the retrieved evidence.

We would also like to note that we noticed that our resulting approach is similar to that
presented in [Zhou et al., 2019].

7.4.1 Initial Experiments

Our experiments for the CTKFacts carry on in a similar fashion to those conducted as
part of the previous experiments. During these experiments, we make use of the top 10
evidence from the retrieved evidence set.

heads count
layers count 1 2 4
1 58.73 56.93 59.94
2 57.83 58.73 60.24
3 60.24 57.23 58.73
4 57.83 54.22 54.82

(a) : mBERT

heads count
layers count 1 2 4
1 57.23 50.60 50.30
2 55.42 51.20 53.31
3 51.51 46.99 47.59
4 49.70 51.51 49.10

(b) : XLM-RoBERTa @ SQuAD2

Table 7.11: Comparison of validation F1 micro scores when using the cross-lingual language
models, mBERT and XLM-RoBERTa @ SQuAD2, as encoders along with different configurations
of the GNNs with complete topology.
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heads count
layers count 1 2 4
1 61.75 60.84 63.86
2 62.35 64.16 57.23
3 62.35 61.14 62.65
4 63.55 58.43 58.13

(a) : FERNET-C5

heads count
layers count 1 2 4
1 61.75 55.72 59.34
2 60.84 58.73 56.02
3 64.46 59.64 56.63
4 61.75 42.77 54.52

(b) : RobeCzech

Table 7.12: Comparison of validation F1 micro scores when using the Czech monolingual
language models, FERNET-C5 and RobeCzech, as encoders along with different configurations
of the GNNs with complete topology.

We begin by inspecting the classifier’s performance on validation set for different config-
urations of the graph neural network in complete topology setting for all of the language
models we set out to test. The results for the cross-lingual models and the Czech mono-
lingual models are summarized in Tables 7.11 and 7.12, respectively. They indicate that
out of the considered models, the ones trained exclusively on Czech data are better accus-
tomed for this task. Interestingly enough, XLM-RoBERTa @ SQuAD2 seems to perform the
worst, even though it has shown the best performance during the inital NLI experiments
in [Drchal et al., 2022].

Based on these results, we consider only FERNET-C5 and RobeCzech for the encoder
of our model in further experiments. We also examine the performance using the lo-
cal + global topology, and find that it yields slightly better but comparable results for
FERNET-C5, although with different configuration of GNNs, as shown in Table 7.13. On
the other hand, it hinders the classifier’s ability when RobeCzech is used. This result seems
somewhat curious, as one might expect a similar change in performance for both of the
encoders when the graph’s topology is changed.

heads count
layers count 1 2 4
1 59.94 59.94 60.84
2 58.13 61.45 65.06
3 61.45 63.25 59.94
4 59.94 58.73 62.65

(a) : FERNET-C5

heads count
layers count 1 2 4
1 58.73 59.64 59.04
2 62.05 59.34 56.93
3 57.83 56.02 54.22
4 59.34 53.31 54.22

(b) : RobeCzech

Table 7.13: Comparison of CTKFacts validation F1 micro scores for different configurations of
GNNs with local + global topology and different language models.

Finally, we compare the best performing model configuration with the baseline FERNET-
C5 model in Table 7.14. It appears that our classifier outperfomed our chosen baseline
in both F1 micro and macro metrics. Nevertheless, it achieved only comparable results
to that of the best classifier presented by the authors of CTKFacts, which achieved an F1
macro score of 59.69 [Drchal et al., 2022].
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metric

model F1 micro F1 macro
FERNET-C5 58.12 54.32
local + global 62.83 59.59

Table 7.14: Comparison of our best performing model configuration in the complete and local
+ global topology settings and the FERNET-C5 baseline.

REFUTES SUPPORTS NOT ENOUGH INFO

Predicted label

REFUTES

SUPPORTS

NOT ENOUGH INFO

T
ru

e
la

b
el

39 19 21

9 140 27

17 49 61

Confusion Matrix
local + global, FERNET-C5

REFUTES SUPPORTS NOT ENOUGH INFO

Predicted label

REFUTES

SUPPORTS

NOT ENOUGH INFO

T
ru

e
la

b
el

0.49 0.24 0.27

0.051 0.8 0.15

0.13 0.39 0.48

Normalized Confusion Matrix
local + global, FERNET-C5

20

40

60

80

100

120

140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.1: Confusion matrix for the test set of CTKFacts. The predictions were obtained
using our proposed model with FERNET-C5 as the encoder, local + global topology, and 2
GATv2 layers with 4 heads. The node embedding size was set to 256.

Figure 7.1 shows the confusion matrix and its normalized version for the predictions of
our classifiers. It seems that it can identify claims that are supported by the evidence the
best, whereas it struggles when it comes to the other two classes.

We also find it important to note that after performing an ablation experiment similar
to that carried out in Section 7.2.3, we observed that the introduction of a topology
connecting different parts of the input provided only a small benefit over a model which
did not create any edges between the nodes. The model without node connections achieved
a test F1 micro and macro scores of 62.04 and 58.44, respectively, which is a performance
comparable to that of the classifier utilizing a local + global topology.

The benefits of using graph neural networks might prove to be greater in a multi-hop
setting, where it is neccessary to combine information from several sources in order to
make a correct prediction. Unfortunately, we were not able to examine this behaviour
using CTKFacts (or any other of our datasets), since it contains only a small number of
multi-hop examples.

7.4.2 Changing the Amount of Available Evidence

During our initial experiments, we utilized the top 10 evidence retrieved from the knowl-
edge base. We inspect the influence of the amount of provided evidence on the performance
of our classifier. Increasing the amount might possibly introduce additional unnecessary
noise, since the retrieved evidence does not have to be closely related to the claim that
we are fact checking. On the other hand, restricting the amount of information available
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to the model might possibly hinder its performance as well. Therefore, we compare the
performance of our classifier when 5, 10, 15, and 20 most semantically relevant evidence
as provided by the document retrieval method are used.

metric
evidence count F1 micro F1 macro
5 61.26 57.62
10 62.83 59.59
15 60.21 56.06
20 60.21 55.45

Table 7.15: The resulting CTKFacts test set performances of our classifier for different numbers
of provided evidence.

As can be seen in Table 7.15, neither decreasing nor increasing the amount of evidence
available improved the performance of the classifier. We would like to note that the median
token counts of the claims paired with their concatenated evidence sets for 10, 15, and 20
evidence were 708, 1,056, and 1,416, respectively.

7.4.3 Embedding the Importance of the Evidence

As mentioned in the introduction to Section 7.4, the information about evidence impor-
tance provided by the document retrieval method is either completely disregarded or at
least partially lost when using our model in combination with the proposed topologies.
We attempt to alleviate this shortcoming by embedding the importance as a positional
information into the embeddings of the different input parts generated by the language
model. We adopt a technique for positional encoding identical to that introduced by the
authors of the Transformer architecture [Vaswani et al., 2017]. An example of the posi-
tional encodings is shown in Figure 7.2. We generate the positional encoding pi for every
evidence ei corresponding to its position in the retrieved set and modify its embedding xi

generated by the Transformer-based model by adding the two, obtaining its representation
with embedded position x′

i = xi + pi.
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Figure 7.2: An example of 128-dimensional positional encodings, generated for the first 50
positions.
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metric

positional encoding F1 micro F1 macro
no 62.83 59.59
yes 59.42 57.11

Table 7.16: The influence of embedding the evidence importance using positional encoding.

We test this modification with our best performing configuration of the classifier, and
present the results in Table 7.16. Unfortunately, including the information about the
evidence importance did not help us achieve better results. It is possible that embedding
the importance using this approach is not correct, and only introduces additional noise in
the encoding of the input.
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Chapter 8
Discussion

During our experiments, we have not observed our model achieving any significant im-
provements over the selected baseline methods, and at times it was not even able to
match their performance. Because of that, we discuss what might be the reasons behind
this fact, identify some of the drawbacks of our proposed method, and propose further
research possibilities.

One of the possible limiting factors that we identified is the embedding of parts of the
input into a single vector. This can be likened to the case of recurrent neural networks,
where the usage of a single vector to represent an input sequence was one of the reasons
that hindered their performance. The disadvantage of relying on this single vector has been
shown through the use of the attention mechanism [Bahdanau et al., 2014]. Nevertheless, it
was also the main property of our model which allowed us to process long input sequences.

Another weak point of our proposed method is that it treats the input parts indepen-
dently during the generation of their embeddings. This can result in the loss of certain
information, where parts of the input might not be considered important for the embedding
until they are combined with a different part of the sequence. Therefore, this information
could be lost during the encoding stage. It is possible that this could be partially miti-
gated through an approach similar to that used in [Yang et al., 2021], where graph neural
network layers are interleaved with self-attention layers, thus entangling the encodings of
different sequences.

Furthermore, we made limited use of the flexibility of graph data during our experiments
by restricting ourselves to only two simple topologies, the complete topology and the local
+ global topology. However, one might propose more involved methods for generating the
graph connecting different input parts. For example, edges between different parts might
be created based on their semantic similarities. We have assumed that the attention
mechanism of GATv2 will infer the importance of the connections. Another possibility
might be to treat the input on different levels of granularity and create its hierarchical
representation, similarly to [Fang et al., 2019]. For example, one could create separate
nodes for the sentences of the input, and nodes for different paragraphs of the input.
The “sentence” nodes could then be connected to their respective “paragraph” node, and
“paragraph” nodes could be connected using a complete graph.

Nevertheless, we were able to successfully reuse the already pre-trained language models
for processing long inputs. This made it possible to process long sequences, for example in
Czech, without having to pre-train a model such as Longformer from scratch using Czech
data. However, the importance of graph neural networks should be investigated more
thoroughly based on the results from Sections 7.2.3 and 7.4.1. It is possible that they act
only as an aggregator of partial results, as proposed in Section 7.2.3.
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Chapter 9
Conclusion

This thesis set out to construct a classifier of sequences that exceed the limitations of the
Transformer-based architecture, while at the same time making use of the already pre-
trained language models. We presented the field of natural language processing, including
the Transformers architecture and its original motivation. We gave an overview of deep
learning on graphs using graph neural networks, presented their different categories, and
introduced a few specific implementations. We also studied and described some of the
already existing approaches for processing long input sequences.

We proposed and implemented a model that is able to process long input sequences by
dividing the input sequence into multiple parts, embeddeding each individually using a
pre-trained language model and further processing these embeddings using a graph neural
network. We proposed two general approaches for creating the graph’s topology.

We introduced three different tasks, one of which, the MultiSource task, we presented
as a part of this work. Datasets for this task can be constructed from an arbitrary corpus,
and their difficulty can be controlled by configuring the process of their generation. We
used the different tasks to assess the performance of our classifier, compared it to the
baseline models, and performed various experiments. We have shown that our model is
able to process inputs as long as 13,296 tokens.

Finally, we discussed the properties of our model, identified some of its weak points,
and proposed possible future work.
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