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Abstract

This work is looking into the problem
of autonomous vehicle path tracking.
The purpose of this work is to design
and implement path tracking algorithm
that could reflect the capabilities of
the over-actuated vehicle platform and
test this algorithm against the baseline
path-tracking algorithm.
The vehicle platform that was used in this
work is an RC vehicle modified so that
it can independently turn every wheel.
The platform has also got distributed
computational power in a form of several
units which are part of the ROS2 network.
The baseline algorithm used for purpose
of this work was the Stanley Control
Law, which was designed at Stanford
University for purpose of controlling
the autonomous vehicle in the DARPA
Challenge.
The other algorithm designed was MPC
based algorithm that could reflect that
the vehicle platform can independently
steer all wheels.
The algorithms deployed on the vehicle
platform were implemented a the ROS2
nodes to be able to communicate with
the rest of the vehicle.
The path-tracking algorithms were tested
in the real environment within the park
of the CTU FEE on Charles Square.
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Abstrakt

Tato se práce se zabývá problémem vedení
autonomního vozidla po referenční cestě.
Cílém této práce bylo vytvořit a imple-
mentovat algoritmus pro sledování cestz,
který by byl schopný brát v úvahu mož-
nosti přeauktuované platformy a otestovat
tento algoritmus ve srovnání se základním
algoritmem pro sledování cesty.
Testovací platforma použitá v této práci
je RC vozidlo modifikováno tak, aby bylo
schopno nezávisle natáčet všechnz kola.
Platforma má také distribuovanou výpo-
četní sílu v podobě několika výpočetních
jednotek, které jsou součástí sítě ROS2.
Základní algoritmus použitý v této práci
je tak zvaný Stanley Control Law, který
byl navržen na Stanfordské Univerzitě,
pro potřeby sledování cesty autonomním
vozidlem při DARPA Challenge.
Dalším použitým algoritmem je algorit-
mus založený na MPC, který je schopný
využít nezávislého natáčení všech kol, če-
hož je platforma schopna.
Algoritmy nasazené na platformě bzli im-
plementovány jako uzly sítě ROS2, aby
byli schopné komunikovat se ybztkem plat-
formy.
Algoritmy byli testovány v prostředí
parku uvnitř komplexu budov ČVUT na
Karlově Náměstí.

Klíčová slova: MPC, Stanley Control
Law, autonomní vozidlo, sledování cesty,
přeaktuaovaná platforma, ROS2

Překlad názvu: Algoritmy vedení po
trati pro autonomní vozidlo

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Formulation . . . . . . . . . . . 2

1.3 State of the Art . . . . . . . . . . . . . . . 4

1.3.1 Over-actuated vehicles . . . . . . . 4

1.3.2 Path planning . . . . . . . . . . . . . . 4

1.3.3 Path tracking . . . . . . . . . . . . . . . 5

2 Vehicle Platform 11

2.1 Introduction . . . . . . . . . . . . . . . . . 11

2.2 Hardware Configuration . . . . . . . 12

2.2.1 Drivetrain . . . . . . . . . . . . . . . . . 12

2.2.2 Steering mechanism . . . . . . . . 12

2.2.3 Computational Units . . . . . . . 13

2.2.4 Low-level Hardware Modified 14

2.3 Communication Network . . . . . . 15

2.3.1 ROS2 Network . . . . . . . . . . . . 15

2.3.2 Serial Connections . . . . . . . . . 16

2.4 Measurements . . . . . . . . . . . . . . . . 17

2.4.1 Position measurement . . . . . . 17

2.4.2 Heading measurement . . . . . . 17

2.4.3 IMU units . . . . . . . . . . . . . . . . 18

2.4.4 Velocity measurement . . . . . . 18

2.4.5 Side-slip angle measurement . 19

2.5 Coordinate frames and
transformations . . . . . . . . . . . . . . . . . 19

2.5.1 Global coordinate systems . . 19

2.5.2 Vehicle coordinate frames . . . 21

2.5.3 Transformations between global
and vehicle coordinate systems . . 22

2.6 Sensor Fusion . . . . . . . . . . . . . . . . 22

3 Vehicle Model 27

3.1 Introduction . . . . . . . . . . . . . . . . . 27

3.2 Modelling . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Kinematic singletrack model . 27

3.2.2 Nonlinear single-track model 28

vi



3.2.3 Linear Lateral Dynamics
Model . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Identification . . . . . . . . . . . . . . . . . 29

3.3.1 Modified Experiment . . . . . . . 31

3.4 Vehicle Dynamics Simulator . . . . 33

4 Path Tracking Architecture 35

4.1 Overall Architecture . . . . . . . . . . 35

4.2 Planning and Control Interface . 36

4.2.1 Path Planning . . . . . . . . . . . . . 36

4.2.2 Integration . . . . . . . . . . . . . . . . 37

4.3 Vehicle and Control Interface . . . 37

4.3.1 Position Control . . . . . . . . . . . 37

4.3.2 Velocity Control . . . . . . . . . . . 38

4.3.3 Integration . . . . . . . . . . . . . . . . 40

5 Velocity Controller 41

5.1 Approximation of longitudinal
dynamics . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Controller design . . . . . . . . . . . . . 43

5.3 Velocity reference . . . . . . . . . . . . . 46

5.4 Rate Limiter . . . . . . . . . . . . . . . . . 47

6 Path Tracking 49

6.1 Stanley Control Law Inspired
Algorithm . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Predictive part . . . . . . . . . . . . 51

6.1.2 Error measurement . . . . . . . . . 52

6.2 Model Predictive Control . . . . . . 53

6.2.1 Basic tracking problem . . . . . 53

6.2.2 Prediction reference . . . . . . . . 55

6.2.3 Formulation of optimization
problem . . . . . . . . . . . . . . . . . . . . . . 57

6.2.4 Implementation . . . . . . . . . . . . 60

7 Experiments 63

7.1 Velocity Controller . . . . . . . . . . . . 64

7.2 Stanley Control Law . . . . . . . . . . 65

7.2.1 Controller without predictive
measurements . . . . . . . . . . . . . . . . . 65

7.2.2 Controller with predictive
measurements . . . . . . . . . . . . . . . . . 70

7.3 MPC based algorithm . . . . . . . . . 75

vii



7.3.1 MPC with both axles steered 75

7.3.2 MPC with the rear steering
disabled . . . . . . . . . . . . . . . . . . . . . . 82

7.3.3 Comparison . . . . . . . . . . . . . . . 88

8 Conclusion 91

8.1 Discussion . . . . . . . . . . . . . . . . . . . 91

8.2 Future Work . . . . . . . . . . . . . . . . . 92

A Bibliography 93

B PCB Designs 97

B.1 STM Nucleo breakout board . . . 97

B.2 Arduino Nano breakout board 101

B.3 Safety circuit board . . . . . . . . . . 105

C Project Specification 109

viii



Figures

1.1 Full pipeline . . . . . . . . . . . . . . . . . . 2

1.2 Example of the image processing
[Kon22] . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Path generated by planning
algorithm [Boh22] . . . . . . . . . . . . . . . . 3

1.4 Planned development of states
[Boh22] . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Ilustration of carrot following
algorithm functionality from
[TYKAM15] . . . . . . . . . . . . . . . . . . . . 6

1.6 Illustration of pure pursuit
algorithm [TS] . . . . . . . . . . . . . . . . . . . 7

2.1 Vehicle platform . . . . . . . . . . . . . . 11

2.2 Ackermann steering principle
[HRK10] . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Computational units connections
[BTKS] . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Manufactured and assembled PCB
of the safety circuit . . . . . . . . . . . . . 15

2.5 Communication architecture . . . 16

2.6 ECEF coordinate system [Şe17] . 20

2.7 Local tangential plane NED
coordinate system [MB16] . . . . . . . 21

2.8 North coordinate estimation
branch of the complementary filter 23

2.9 East coordinate estimation branch
of complementary filter . . . . . . . . . . 23

2.10 North coordinate estimation
branch of the complementary filter 23

3.1 Lateral identification data . . . . . 30

3.2 Inputs for lateral identification . 30

3.3 Comparison of identified system
response and measured data . . . . . . 31

3.4 Lateral identification data . . . . . 32

3.5 Inputs for lateral identification . 32

3.6 Comparison of identified system
response and measured data . . . . . . 33

4.1 Control layout block diagram. . . 35

4.2 Reference path visualization . . . . 36

4.3 Block diagram of the interface
between position control and vehicle
hardware . . . . . . . . . . . . . . . . . . . . . . 38

ix



4.4 Block diagram of the interface
between velocity control and vehicle
hardware . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Measured velocity and engine
input . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Result of first-order approximation
identification . . . . . . . . . . . . . . . . . . . 43

5.3 Root locus plot for the
approximation of system
longitudinalal dynamics with forced
PI regulator structure . . . . . . . . . . . 44

5.4 Step response of controlled design
model . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Shadow vehicle projection . . . . . . 46

5.6 Velocity projection . . . . . . . . . . . . 47

6.1 Diagram of Stanley Control Law
inspired algorithm . . . . . . . . . . . . . . 50

6.2 Lookahead point . . . . . . . . . . . . . . 51

6.3 Calculation of cross-track error . 52

6.4 Visualization of prediction
reference . . . . . . . . . . . . . . . . . . . . . . . 56

6.5 Block Diagram of MPC Node . . 61

7.1 Bird’s eye view of the testing
facility . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Comparison of measurements and
reference signals . . . . . . . . . . . . . . . . 64

7.3 Vehicle positions and references in
NE plane . . . . . . . . . . . . . . . . . . . . . . 65

7.4 Comparison of measurements and
reference signals . . . . . . . . . . . . . . . . 67

7.5 Control errors . . . . . . . . . . . . . . . . 68

7.6 Velocity profile . . . . . . . . . . . . . . . 69

7.7 Vehicle positions and with
references in NED plane . . . . . . . . . 70

7.8 Vehicle positions and reference
signals in NE plane . . . . . . . . . . . . . 71

7.9 Comparison of measurements and
reference signals . . . . . . . . . . . . . . . . 72

7.10 Control errors . . . . . . . . . . . . . . . 73

7.11 Control signal of the algorithm 74

7.12 Predictive Stanley Control Law
velocity profile . . . . . . . . . . . . . . . . . . 75

7.13 Vehicle positions and reference
signals in NE plane . . . . . . . . . . . . . 76

7.14 Measurement and reference
signals comparison . . . . . . . . . . . . . . 77

7.15 Control errors . . . . . . . . . . . . . . . 79

x



7.16 Untracked states of the system 80

7.17 Control action of the algorithm 81

7.18 Velocity profile . . . . . . . . . . . . . . 82

7.19 Vehicle positions and reference
signals in NE plane . . . . . . . . . . . . . 83

7.20 Measurement and reference
signals comparison . . . . . . . . . . . . . . 84

7.21 Control errors . . . . . . . . . . . . . . . 85

7.22 Untracked states of the system 86

7.23 Control action of the algorithm 87

7.24 Velocity profile . . . . . . . . . . . . . . 88

7.25 Comparison of deployed
algorithms . . . . . . . . . . . . . . . . . . . . . 89

Tables

2.1 Parameters of complementary
filter . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Identified parameters of linear
parameter varying model . . . . . . . . 31

3.2 Modified parameters of linear
parameter varying model . . . . . . . . 31

4.1 Path message definition. . . . . . . . 37

4.2 Definition of Pose2D message . . 38

4.3 Definition of Twist message . . . . 39

4.4 Definition of Vector3 message . . 39

5.1 Parameters of the PI controller
tuned on design model . . . . . . . . . . 44

5.2 Parameters of the PI controller
tuned for design model . . . . . . . . . . 44

7.1 Stanley Control Law tuning
constants . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Predictive Stanley Control Law
tuning constants . . . . . . . . . . . . . . . . 70

xi





Chapter 1

Introduction

1.1 Motivation

This work was highly motivated by papers published at the ITCS conference
[VCH+21] and [CHK+21]. The mentioned papers were aimed to examine a
way to estimate and predict parameters of the driving surface using image
data from cameras placed somewhere on the vehicle. Image data can then
provide prior information about what surface is ahead of the vehicle so the
assistance systems or algorithms deployed on a vehicle can be adjusted to have
better performance on the given driving surface. An example of this behavior
could be seen for example in [BFP+20], where road friction properties are
provided to the braking control algorithm in order to adjust vehicle response.
The problem of adjusting vehicle parameters based on a prediction of surface
properties can be then reformulated into a problem of following the path with
optimal driving parameters. That means that based on image data one can
estimate surface properties ahead of the vehicle and then plan a path that
will lead the vehicle to the positions with the optimal driving surface. This
could be especially useful when for example vehicle has to avoid frozen-over
places on the road.
Another motivation for this work was to examine the possibilities of a relatively
new concept of over actuated vehicles. The over actuation of the vehicle can
lie in having a vehicle with all wheels steered or powered independently. This
concept can be then used to develop control or assist algorithms with better
performance in certain situations.

1



1. Introduction .....................................
1.2 Problem Formulation

The fundamental problem here is to develop a pipeline of algorithms, which
will allow the vehicle to classify surface ahead and independently on the human
operator lead vehicle through a surface with optimal driving properties. This
problem can be further divided into three subproblems namely prediction of
surface properties from image data, path planning with respect to predicted
data and path tracking.

Figure 1.1: Full pipeline

The surface properties prediction algorithm is described in [Kon22]. This
algorithm uses an artificial neural network to process images from a camera
placed on the vehicle in order to obtain an estimation of surface properties.

Figure 1.2: Example of the image processing [Kon22]

The second part of the pipeline is a path planning algorithm described in
[Boh22]. This algorithm uses data from the image processing part to plan the
optimal path through the environment. The path planned by this algorithm
chooses the best available surface according to several conditions described
in related work.

2



................................. 1.2. Problem Formulation

Figure 1.3: Path generated by planning algorithm [Boh22]

Figure 1.4: Planned development of states [Boh22]

The last part of the pipeline is the path-tracking part. This algorithm uses
the path obtained from the path planning part to safely navigate the vehicle
along it. The development of this part of the pipeline is the main focus of
this work.

3



1. Introduction .....................................
1.3 State of the Art

1.3.1 Over-actuated vehicles

The over-actuated vehicle is the vehicle that has got more forms of actuation
than it is necessary to control it. The over-actuation in our platform lies in
the independent steering of all wheels.
Another example of the over-actuated vehicle might be the vehicle platform
used in [CW14]. The vehicle used there has got four inwheel BLDC motors
and front wheel steering.

1.3.2 Path planning

There are many approaches to the path planning problem. The simplest
approach is to use the algorithm from the family of graph-based algorithms.
This family groups algorithms like A*, D*, the Dijkstra algorithm, breadth-
first search and many others. One example of the usage of graph-based
algorithms can be seen in [SNK19]. In this work the Hybrid A* algorithm is
used to plan the optimal path to the parking spot. However, the drawback of
the graph search algorithm is that the quality of output of these algorithms
strongly depends on the resolution of the searched space and it is quite
difficult to incorporate the constraint on vehicle dynamics or kinematics into
the algorithm.
Another group of path-planning algorithms is based on sampling methods.
These algorithms are based on a random sampling of the given state space.
For example, in [KFT+08] the RRT-based algorithm is used to plan a path in
the urban environment. The algorithm selects a starting point (measurements
in the given time), take a random sample of the input to the mathematical
model and apply the input to the mathematical model. The mathematical
model is then "simulated" with the applied inputs and the states, where the
simulation ends, are marked as a node of the algorithm. The node and the
state trajectory are then compared with a feasibility map to check if there
are any possible collisions. After the collision check the node is added to the
search tree.
The MVP (minimum violation planning) framework [RCCT+13, TRCK+13]
based on RRt* also belongs to sample-based planning methods. The advantage
of the MVP framework is that it can handle logical conditions and also it can
handle multiple rules of different importance.
There are also optimization-based methods for path planning. These on

4



................................... 1.3. State of the Art

defining the path planning problem as the optimization problem. A notable
member of this family is MPC based path planning algorithm described in
[LLVT17]. The drawback of the MPC-based planning algorithm is that the
algorithm needs the convex optimization problem to find the globally optimal
solution and not be stuck in the local optimum. The algorithm then needs
some sort of heuristic for example a cost-to-go heuristic from [RH05].

1.3.3 Path tracking

There are many path-tracking algorithms that can be used to navigate au-
tonomous vehicles and robots in general.
According to [BSA+17], path-tracking algorithms can be divided into several
categories, geometric algorithms, kinematic algorithms and dynamic algo-
rithms.
Geometric algorithms take into consideration only vehicle position and ori-
entation and its geometry. These algorithms are the simplest ones because
they don’t reflect any internal or external forces affecting the vehicle or the
velocities of the vehicle.
Kinematic algorithms are designed using a kinematic vehicle model. This
means that these algorithms take into consideration also the velocity and
angular velocity of the vehicle. However, these algorithms still don’t consider
forces affecting the vehicle.
The last group of algorithms is the group of dynamic control algorithms.
These algorithms are designed using dynamic vehicle models and are capable
of considering also forces affecting the controlled vehicle.

Geometric Control Algorithms

. Carrot Following Algorithm
This algorithm uses so-called lookahead point s =

(
xs ys

)T
which is a

point on a path in a given distance from the vehicle reference point. Then
let vector v =

(
x y

)
be the position of the vehicle, ψ be its heading

and V vector describing vehicle orientation. There can be introduced
vector d = s − v and the angle between vector d and vector V can be
denoted as ψd which is also the tracking error.

5



1. Introduction .....................................

Figure 1.5: Ilustration of carrot following algorithm functionality from
[TYKAM15]

The cornering ability of this algorithm strongly depends on the structure
of the controlled robot and also on the choice of the distance of the
lookahead point. If the distance of the lookahead point is too long the
robot will suffer from large deviation from the given path and can end
up in dangerous situations. On the other hand, if the lookahead distance
is too short then the robot doesn’t have to be able to track curves with
a smaller radius and is more likely to overshoot.
This algorithm is mainly used for two-wheeled circular-shaped robots
because these robots have much simpler steering geometry than vehicles.

. Pure Pursuit Algorithm
Pure pursuit is an algorithm used for front-wheel steering vehicles. Its
reference point is situated in the center of the rear axle of the vehicle.
This algorithm also uses the concept of the look-ahead point (see section
1.3.3).
This algorithm uses the center point of the rear axle as its reference point.
The algorithm then creates a circular arc that will lead the reference to
the look-ahead point. The control action (steering angle of the front axle
wheels) is then calculated based on the circular arc using the equation
1.1.

δF = arctan(2L sin(α)
ld

), (1.1)

where δF is the steering angle of the front axle, L is the distance between
the front and rear axle, α is the difference between the vehicle heading
and heading of the line segment between the reference point and look-
ahead point and d is a distance of the look-ahead point from the reference
point.

6



................................... 1.3. State of the Art

Figure 1.6: Illustration of pure pursuit algorithm [TS]

. Stanley Control Law
Stanley Control Law is a path-tracking algorithm that was invented for
purpose of controlling autonomous the vehicle called Stanley through
the DARPA challenge. This algorithm was first introduced in article
[HTMT07]
This algorithm uses two error metrics to track the desired path. The
first error metric is the so-called cross-track error ec, which describes the
signed perpendicular distance of the vehicle’s front axle from the reference
path. The second error metric is heading error eψ = ψref − ψ, which
describes the deviation of vehicle body heading ψ from reference heading
ψref . Base Stanley Control Law can then be described by equation 1.2.

δ(t) = (ψref (t)− ψ(t)) + arctan( ec(t)
ks + v(t)) (1.2)

The Stanley Control Law used in the DARPA challenge has two additional
features. The first additional feature is a yaw rate damper. This damper
can be described by equation 1.3.

kd,yaw(rmeas − rtraj), (1.3)

where kd,yaw is a tuning parameter, rmeas is the vehicle yaw rate and
rtraj is an estimated yaw rate vehicle has to achieve to precisely track
the reference path. The second additional feature is the steering damper
which can be described by equation 1.4.

kd,steer(δmeas(i)− δmeas(i+ 1)) (1.4)

7



1. Introduction .....................................
where kd,steer is a tuning parameter, δmeas is steering angle on the
servos in given moment, i is the index of the measurement one period
earlier. This additional feature should damp the response of the steering
mechanism, servos in our case.

Kinematic Control Algorithms

Kinematic algorithms are algorithms designed with the use of a kinematic
model of the controlled vehicle.
One example of the MPC-based tracking algorithm comes from [PSLM17].
This MPC-based algorithm uses a discrete-time kinematic model of the four-
wheel steered vehicle as a predictor for the MPC algorithm. The discrete-time
model can be described by the equations below.

Xi+1 = Xi + Tsvi cos (Ψi + βi), (1.5)
Yi+1 = Yi + Tsvi sin (Ψi + βi), (1.6)
Ψi+1 = Ψi + Tsviκi, (1.7)

where X is the position on the x-axis, Y is the position on the y-axis, Ψ is
the vehicle body heading, β is side-slip angle and is taken as a first input and
κ is a curvature of the curve vehicle has to do and is taken as a second input.
This model is then linearized using the reference points on the path and used
as the predictor for the MPC framework.
This particular formulation gives optimal side-slip angle β∗ and optimal
curvature κ∗. These are not exactly the control inputs for the vehicle so
κ∗ and β∗ have to be recalculated into front wheel steering angle δF and
rear wheel steering angle δR using geometric properties of Ackerman steering
geometry. Another approach proposed in [TYZ+20] is to use MPC in cascade
with PID controller on a yaw rate of the vehicle. The MPC algorithm is
designed to track the position and heading of the vehicle and output the
optimal yaw rate. The yaw rate from the MPC is then used as a reference
yaw rate for the PID controller. This cascade connection according to the
authors will result in a significant reduction of tracking errors.

Dynamic Control Algorithms

Dynamic control algorithms are algorithms that are designed using a dynamic
model of the vehicle. They can reflect for example forces affecting the vehicle’s
wheels or the vehicle itself.
One of the examples of the dynamic control algorithm comes from [YGP+19].

8



................................... 1.3. State of the Art

There was designed a robust MPC controller based on a steady-state error
model.
There is also a possibility to use NMPC (Non-linear model predictive control)
introduced in [LLZ+19]. This work uses NMPC to track the desired path.
The NMPC then outputs the optimal front wheel steering angle δF and also
a requirement on the yaw moment of the vehicle Mz. The requirement on
the yaw moment of the vehicle is then handed over to the distribution logic,
which will select the appropriate braking torques on the wheels.

Adaptive Control Algorithms

The control algorithm proposed in [SZC+20] uses a combination of pure
pursuit algorithm and PID controller. These algorithms are combined using
reinforcement learning.
Another approach introduced in [LJKK19] is to LQR (linear quadratic regu-
lator) controller with Kalman Observer. This control technique is enhanced
with lookahead measurements. That means the measurements are also taken
some distance in front of the vehicle. This distance is also adaptively changed.
The work [PN14] is solving the vehicle overtaking problem. The proposed
solution is to design a nonlinear controller based on the relative kinematics
of the two vehicles. The unknown velocity of the overtaken vehicle is then
estimated based on error metrics. The estimated velocity of the overtaken
vehicle is then used to adaptively tune the nonlinear control law.

9
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Chapter 2

Vehicle Platform

2.1 Introduction

The vehicle platform is built on the commercially available RC car Losi
Desert Buggy. The RC car was further modified to meet up requirements for
developing advanced algorithms.

Figure 2.1: Vehicle platform
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2. Vehicle Platform ...................................
2.2 Hardware Configuration

2.2.1 Drivetrain

The vehicle platform is powered by one BLDC engine with motor controller.
The engine is then connected through the shaft and differential to the rear
wheel axle. The vehicle has only the rear wheels powered.
The engine is controlled by changing the width of the PWM signal applied
to the motor controller. This change is done using the ROS2 node directly
controlling hardware actions which then communicate with Navio using the
serial interface.
Control signal uD ∈ [−100, 100] is the signed percentual value of allowed
PWM width, where uD = 100% is the maximal allowed value of PWM width
and uD = −100% is the minimal allowed PWM width. The value uD is then
recalculated to the PWM width and Navio then set the appropriate PWM
output to this width.

2.2.2 Steering mechanism

The vehicle platform is equipped with four standalone servo motors, which
independently control every wheel’s steering angle. This steering configura-
tion allows the development of advanced control algorithms for over-actuated
vehicles.

Figure 2.2: Ackermann steering principle [HRK10]
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However, in this work, the single-track vehicle approximation is used. That
means that the wheels which are on the same axle are moving with each other
according to the rules of the Ackermann steering mechanism. The Ackermann
steering mechanism causes the wheels on the same axle to turn at different
angles so that the circular trajectory of both wheels has the same center. This
mechanism helps to prevent additional slips of wheels during turn maneuvers.
The Ackermann steering mechanism is implemented on both the front and
the rear axles. The vehicle platform has this mechanism implemented in
a software manner opposite to commercially produced cars that have this
mechanism implemented mechanically.

2.2.3 Computational Units

Figure 2.3: Computational units connections [BTKS]

the computational power of the vehicle platform is distributed into several
computational units.

Computational units list.
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. NVIDIA Jetson AGX Xavier. Raspberry Pi 3B with Navio HAT (further in text only referred to as

Navio). Raspberry Pi 4B (further in text only referred to as Central Raspberry).Microcontrollers.Arduino Nano. STM Nucleo

NVIDIA Jetson AGX Xavier serves as a graphic accelerator and is used
to compute high-level tasks like forward propagation in an artificial neural
network.
Navio is used to measure certain data and furthermore, Navio is equipped
with PWM output.

2.2.4 Low-level Hardware Modified

Low-level microcontrollers and the hardware circuits were at first soldered
on universal PCB (illustration can be seen in Fig. 2.4) with external wire
connections soldered directly to the board. This design was prone to damage
mechanical damage. The external wires often break in the soldered point.
The circuits were almost impossible to repair when something got broken
because the wires were directly soldered to the circuit and the circuit then
couldn’t be extracted from the vehicle platform. There was a need to find a
solution to these problems.
The first change in the platform was the design of the printed circuit boards

(further used as PCB) for the microcontrollers and the safety circuit. The
design of the PCBs was done using open-source software named KiCAD
(https://www.kicad.org/). This change then means that connections be-
tween elements in circuits are no longer connected using wires but they are
connected by printed copper paths. This fact also contributes to the general
resistance of the circuits to the effects of the environment.
The designed PCBs were equipped with connectors to solve the problem
of extracting the PCBs from the platform. The connectors used in this
particular case are 9-pin DSub Cannon connectors (https://cz.mouser.
com/ProductDetail/571-5747840-6) and 15-pin DSub Cannon connectors
(https://cz.mouser.com/ProductDetail/649-10090926-P156VLF).
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Figure 2.4: Manufactured and assembled PCB of the safety circuit

All the single wires were also changed for jacketed cables to reduce the
effect of the electrical disturbance on the signals transferred through cables.
All the PCB designs and final products will be shown in the Appendix of this
work.

2.3 Communication Network

Communication between computational units is held by two kinds of interfaces.
The first interface used is the Ethernet connection this connection is used by
the ROS2 layer, which is establishing the connection between Jetson Xavier
and central raspberry. The second interface is UART. UART is used to collect
data from microcontrollers (Nano, Nucleo) and Navio and also to send control
signals back to Navio, which then set appropriate values for PWM outputs.

2.3.1 ROS2 Network

ROS2 network creates an application layer above the Ethernet connection of
the Raspberry Pi 4B and Jetson Xavier. The ROS2 network provides some
basic synchronization tools and communication tools.
ROS2 network in this particular case is used mainly for its communication
tools. It allows us to asynchronously send and receive messages between
Raspberry Pi and Jetson Xavier.
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Figure 2.5: Communication architecture

In this case, the ROS2 network transfers image data from the ZED camera,
transformations between coordinate frames, path data, the control commands
from the controllers and also other vital measurements.

2.3.2 Serial Connections

The serial connections are used to transfer the data from the low-level hard-
ware to the Raspberry Pi 4B. The data are then processed by the ROS2
node deployed on the Raspberry Pi 4B and propagated to the ROS2 network
in a form of messages. The serial connection between the Raspberry Pi 4B
and Navio is also used to transfer direct commands for servos and a motor
controller to the Navio.

Specifications of serial interfaces.

. Raspberry Pi 4B and STM Nucleo. Data transfer rate: 100 Hz. Baud rate: 115200 Bd. Data type: int16

16



.................................... 2.4. Measurements

. Data length: 8. Number of bytes: 16 bytes. Raspberry Pi 4B and Arduino Nano. Data transfer rate: 100 Hz. Baud rate: 230400 Bd. Data type: float. Data length: 8. Number of bytes: 32 bytes. Raspberry Pi 4B and Navio

. Data transfer rate: 100 Hz. Baud rate: 460800 Bd. Data type: float. Data length: 70. Number of bytes: 280 bytes

2.4 Measurements

2.4.1 Position measurement

The measurement of position data is done using a dual GPS on the vehicle
and a base station GPS, which is positioned in a certain spot with a known
position. The dual GPS setup is giving a precise measurement of the heading
of the vehicle body. Base station GPS is used to compensate for an error,
which arises from GPS signal passaging magnetosphere.
Positional data are measured with sample frequency fGPS = 10Hz.

2.4.2 Heading measurement

There are two different headings measured. The first measured heading is the
body heading ψb of the vehicle which describes the orientation of the vehicle
body in the plane. This heading is measured by the dual GPS receivers which
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have their antennas situated on the opposite sides of the vehicle.
The second measured heading is the travel heading ψt which describes the
orientation of the velocity vector of the vehicle. This measurement is done
using measured velocities in NED coordinate frame and then calculating the
travel heading ψt using a formula 2.1.

ψt = atan2(vE , vN ), (2.1)

where vE is the velocity to the east and vN is the velocity to the north.

2.4.3 IMU units

The Navio unit has two inbuilt IMU units namely MPU9250 (https://
invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.
1.pdf) and LSM9DS1 (https://cdn.sparkfun.com/assets/learn_tutorials/
3/7/3/LSM9DS1_Datasheet.pdf). These units have magnetometers, ac-
celerometers and gyroscopes on all three axes.

2.4.4 Velocity measurement

The vehicle platform has Hall effect sensors with magnetic rings mounted on
the half-shaft of each wheel. These sensors are used to measure the frequency
of wheel revolutions in revolutions per minute.
These measurements are collected by STM Nucleo mentioned in section 2.2.3.
The microcontroller then resends these data via the UART interface to the
Navio unit with frequency fSTM = 100 Hz. These data are further processed
in the Navio unit.
The Hall effect sensors on the front wheels are also used to calculate the
tangential velocity of the wheels. Only the frequency of the front wheels is
included in the calculation of velocity because front wheels aren’t affected
by the motor and thus we can assume that front wheels have zero slip in the
longitudinal direction. Calculation of the front wheels’ tangential velocity vf
is done using the equation

vf = (fFL + fFR
2 ) · 1

60 · 2 · π · r, (2.2)

where fFL and fFR are revolutions per minute of the front left and front right
wheel and r is the radius of the vehicle wheel in meters.
Another velocity measurement then comes directly from GPS which provides a
ground speed of the vehicle. This measurement is updated with the frequency
of 10 Hz.
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2.4.5 Side-slip angle measurement

Measurement of side-slip angle β is done using vehicle both vehicle headings
mentioned in section 2.4.2. The side-slip angle β is then calculated using a
formula 2.3.

β = ψt − ψb, (2.3)

where ψt is the travel heading of the vehicle and ψb is the body heading of
the vehicle.

2.5 Coordinate frames and transformations

2.5.1 Global coordinate systems

There are used two global coordinate systems. The first used coordinate
system is the so-called Eart-Centered, Eart-Fixed (ECEF) coordinate sys-
tem. This system has the origin in the center of gravity of Earth, Z-axis is
directed towards the north pole, X-axis is directed towards the intersection
Prime Meridian (zero longitude) and Equator (zero latitude) and Y-axis is
perpendicular to both Z- and X-axis.
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Figure 2.6: ECEF coordinate system [Şe17]

The second global coordinate system is the approximation of the North-
East-Down coordinate system using a local tangential plane. Approximation
of the global coordinate system by using a local tangential plane is done by
the creation of a plane, which touches Earth in certain ECEF coordinates.
These ECEF coordinates are then the origin point of the approximation of
the NED coordinate system.
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Figure 2.7: Local tangential plane NED coordinate system [MB16]

Coordinates in the ECEF coordinate system can be transformed into NED
coordinates in the local tangent plane using the following equation

p⃗NED = RT (p⃗ECEF − p⃗ref ), (2.4)

where p⃗NED is a vector of coordinates in the NED coordinate system, p⃗ECEF
is a vector of coordinates in the ECEF coordinate system, p⃗ref is a vector of
coordinates of the origin of the NED coordinate system in ECEF coordinate
system and R is a rotation matrix. Rotation matrix m can be defined as

R =

− sin(ϕ) cos(λ) − sin(λ) − cos(ϕ) cos(λ)
− sin(ϕ) sin(λ) cos(λ) − cos(ϕ) sin(λ)

cos(ϕ) 0 − sin(ϕ)

 , (2.5)

where ϕ is latitude and λ is longitude. Similarly, this conversion can be also
used to convert the NED coordinates back to the ECEF coordinates.
The nature of this approximation implies that this approximated NED co-
ordinate frame holds only in the local neighborhood of reference point p⃗ref .
However, according to the fact that the vehicle platform is driving only inside
a testing facility, the approximation of the NED coordinate frame can be
safely assumed as a global coordinate system.

2.5.2 Vehicle coordinate frames

There are three coordinate frames on the vehicle which are used for purpose
of the trajectory tracking. These coordinate frames are gps, base_footprint
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and front_axle_footprint.
The gps coordinate frame is positioned at the center of the Navio processing
unit. All position measurements are related to that coordinate frame.
The base_footprint coordinate frame has its origin approximately at the
center of gravity of the vehicle with its z-coordinate equal to zero.
The front_axle_footprint has its origin positioned in the center of the front
axle with its z-coordinate equal to zero, which means that this coordinate
frame shows a projection of the center of the front axle to the ground.

2.5.3 Transformations between global and vehicle coordinate
systems

There are defined two coordinate frames to describe vehicle position in the
global coordinate system.
The first coordinate frame is called map. This coordinate frame is identical to
NED coordinate frame described in the section above. The second coordinate
frame is called odom. The position of the vehicle in this frame is measured
by the GPS sensor.

2.6 Sensor Fusion

The GNSS receiver has only limited measurement frequency fGPS = 10Hz.
This measurement rate doesn’t have to be sufficient for attitude tracking.
This problem is solved by the implementation of vehicle attitude estimation.
The estimation algorithm uses a fusion of several sensors to estimate the
attitude.
The estimation algorithm consists of three separate branches of cascaded
complementary filters, one for each estimated value. The estimated values
are the north position in local tangent plane Nest in meters, the east position
in local tangent plane Eest and vehicle body heading ψest in radians.

22



.................................... 2.6. Sensor Fusion

Figure 2.8: North coordinate estimation branch of the complementary filter

Figure 2.9: East coordinate estimation branch of complementary filter

Figure 2.10: North coordinate estimation branch of the complementary filter

23



2. Vehicle Platform ...................................
The branch for the vehicle heading, shown in figure 2.10, ψest estimation

uses a gyroscope measuring rotation around the z-axis of the vehicle body
ψ̇gyro and absolute measurement of the vehicle body heading from the GNSS
receiver ψGPS . This branch consists of only one complementary filter which
combines the two signals using a low-pass filter and a high-pass filter. The
heading complementary filter equations can be seen in the following equation

Ψpgyro(s) = τψs

τψs+ 1
1
s
sΨgyro(s), (2.6)

ΨpGPS(s) = 1
τψs+ 1ΨGPS(s), (2.7)

Ψfilter = Ψpgyro(s) + ΨpGPS(s), (2.8)

where capital letters denotes laplacian images corresponding variables, Ψpgyro(s)
and ΨpGPS(s) are outputs of corresponding filters and τGPS are tuning con-
stants.
The branch for the north position Nest estimation uses accelerometers from
the IMU unit, an absolute position given by the GNSS receiver, and velocity
in the reference point at the vehicle calculated using the kinematic model
from 3.2.1 from revolutions of front wheels. Data from the accelerometers
are related to the vehicle body coordinate frame and have to be converted
into a NED coordinate frame using the equation

aN = ax · cos(ψ + β)− ay · sin(ψ + β), (2.9)
aE = ax · sin(ψ + β) + ay · cos(ψ + β), (2.10)

where aN and aE are accelerations corresponding to NED coordinate system
axes, ax and ay are accelerations related to the vehicle body coordinate frame,
ψ is the heading of the vehicle body and β is slip angle of the reference point
at the vehicle. A similar transformation must be done for the velocity of
the vehicle at reference point vc. This transformation can be described using
equations

vN = vc · cos(ψ + β), (2.11)
vE = vc · sin(ψ + β), (2.12)

where vN and vE are velocities whose directions correspond to NED coordinate
system axis, vc is a value of the velocity at the reference point on the vehicle,
ψ is the vehicle body heading and β is the side slip angle of the reference
point on the vehicle calculated using the kinematic model.
This branch has two complementary filters connected in cascade, as can be
seen in figure 2.8. The first filter is used to estimate the value of the velocity of
the vehicle in the north direction. This filter uses the value of the acceleration
of the vehicle in the north direction aN and the value of velocity in the north
direction vN to return the estimated value of velocity in the north direction
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vN,est. The equation of the filter is then

VpaN (s) = τvN s

τvN + 1
1
s
AN (s), (2.13)

VpvN (s) = 1
τvN s+ 1VN,model(s), (2.14)

VN,est(s) = VpvN (s) + VpaN (s), (2.15)

where capital letters denote Laplace images, VpvN , and VpaN are outputs of
the corresponding filter, VN,est is the estimated value of the velocity of the
vehicle in the north direction and τvN is tuning constant.
The second filter in cascade uses the north position of the vehicle N and the
estimated value of the velocity of the vehicle in the north direction vN,est and
returns the estimated north position of the vehicle Nest. Filter mathematical
description can be seen in the following equations.

NpvN (s) = τNs

τN + 1
1
s
VN,est(s), (2.16)

NppN (s) = 1
τNs+ 1N(s), (2.17)

Nest(s) = NppN (s) +NpvN (s), (2.18)

where capital letters denote laplace images, Npvn, and NppN are outputs of
corresponding filters, Nest is estimated north position of the vehicle, and τN
is a tuning constant.

Heading branch Heading filter τψ 0.2

North branch Position filter τN 0.1
Velocity filter τvN 0.75

East branch Position filter τE 0.1
Velocity filter τvE 0.75

Table 2.1: Parameters of complementary filter
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Chapter 3

Vehicle Model

3.1 Introduction

There were several mathematical vehicle models used for different purposes.
All models used in this work are single-track models. This kind of vehicle
model should be sufficient to properly describe the use vehicle platform
because Ackermann steering geometry implemented in the platform allows
for collapsing wheels on the same axle to the single wheel in the center of the
axle without significant loss of precision of the model.

3.2 Modelling

3.2.1 Kinematic singletrack model

The kinematic single-track model is used as an odometry model for the
complementary filter described in section 2.6. Inputs to the kinematic model
are the steering angles on the front axle δF and on the rear axle δR in radians
and the value of the velocity of the front wheels vf . Outputs of this model
are velocity in reference point on the vehicle vc in meters per second, slip
angle of reference point beta in radians, yaw rate of vehicle ψ̇ in radians per
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second, and curvature κ of a turning vehicle is doing. The outputs of the
kinematic model could be described by equations

β = arctan
(

lr
(lf + lr)

(tan(δf )− tan(δr)) + tan(δr)
)
, (3.1)

ψ̇ = vf · fracsin(δf − δr)(lf + lr) cos(δr), (3.2)

vc = vf ·
cos(δf )
cosβ , (3.3)

κ = sin(δf − β)
lf · cos(δf ) (3.4)

3.2.2 Nonlinear single-track model

The nonlinear single-track model used in this work was adopted from [EKHH20].
This model extends the functionality of the kinematic single-track model by
taking into account the dynamics of tires or dissipative forces affecting a
vehicle. Due to the complexity of the nonlinear model of the vehicle dynamics,
the equations won’t be shown here. The linear lateral model described in the
next section is derived from this nonlinear model.

3.2.3 Linear Lateral Dynamics Model

The nonlinear single-track vehicle model described in 3.2.2 can be used to
derive the linear model, which assumes only the lateral dynamics of the
vehicle. Derivation of the linear model is described in [EZKH21].
The linear approximation of lateral dynamics is modeling only side slip angle
β in the center of gravity of the vehicle and yaw rate of the vehicle body ψ̇.
This model can be described by the equation

(
β̇

ψ̈

)
=

 −Cf +Cr

mv
lrCr−lfCf

mv2 − 1
lrCr−lfCf

Iz
− l2fCf +l2rCr

vIz

(β
ψ̇

)
+
(

Cf

mv
Cr
mv

lfCf

Iz
− lrCr

Iz

)(
δf
δr

)
. (3.5)

This model is a linear parameter-varying model. The parameter varying in
this model is velocity v. Parameters lf and lr are distances of axles from the
center of gravity, Iz is the moment of inertia of the vehicle body with respect
to the z-axis and m is the mass of the vehicle. The parameters Cf and Cr are
cornering stiffnesses of the front and rear tires. These parameters are slopes
of the bilinear approximation of the Pacejka simplified lateral tire model and
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can be obtained using the equation

Cr = Dyr ·Byr · Cyr · Fzr, (3.6)
Cf = Dyf ·Byf · Cyf · Fzf , (3.7)

where D, B, and C are respective tire parameters and Fzr, and Fzf are forces
affecting tires in z-axis direction.
This model in its discrete form is further used as a predictor for attitude
control using MPC algorithm.

3.3 Identification

The identification of vehicle parameters was done only for the linear lat-
eral vehicle model. The parameters m, lf , and lf were identified by direct
measurement of the vehicle platform. The parameters Iz, Cf and Cr were
identified by fitting system response to measured data. This identification of
parameters was done by minimizing the deviation of states trajectory from
measured data. The optimization problem can be written as

min
p∈R3

J(p) = min
p∈R3

(y(t)−
∫ t1

t0
f(t, x, u, p)dt)2 (3.8)

where p =
(
Iz Cf Cr

)T
is parameter vector, y(t) is representing measured

data and f(t, x, p) is function of parameters

f(t, x, u, p) = Ax+ Bu (3.9)

where A is system matrix from equation 3.5, B is input matrix from equation
3.5, x =

(
β ψ̇

)T
is vector of states and u =

(
δr δf

)T
is vector of inputs.

Data for identification were obtained by performing a so-called crab walk.
This maneuver is done with both steering axles turning about the same angle.
This maneuver then ends up with the side slip angle being the same as a
steering angle on axles and only very small or short time deviations of the
yaw rate of the vehicle. Experimental data can be seen in figure 3.1 and
inputs used to generate these data can be seen in figure 3.2.
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Figure 3.1: Lateral identification data
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Figure 3.2: Inputs for lateral identification

Identified parameters can be seen in table 3.1. Figure 3.3 shows a compari-
son of the response of the identified linear system and measured data.
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Figure 3.3: Comparison of identified system response and measured data

lf [m] 0.3 lr [m] 0.3
m [kg] 21 Iz [kg·m2] 85.334
Cf [-] 1000 Cr [-] 1000

Table 3.1: Identified parameters of linear parameter varying model

3.3.1 Modified Experiment

The data used from the first identification attempt didn’t include slips of
the vehicle and also the experiment was done with a lower velocity of the
vehicle. Under these circumstances, the model couldn’t be properly identified.
The second experiment was performed at a higher speed and the steering
was more aggressive than in the experiment. The data from the second
experiment included slips of the tires and not only a slip of the vehicle body.
The parameters identified from the data from the second experiment can be
seen in table 3.2.

lf [m] 0.3 lr [m] 0.3
m [kg] 21 Iz [kg·m2] 1.2562
Cf [-] 53.3964 Cr [-] 68.8640

Table 3.2: Modified parameters of linear parameter varying model
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Unfortunately, these new data couldn’t be used as data for the MPC

predictor because there was no time left to perform new experiments.
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Figure 3.4: Lateral identification data
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Figure 3.5: Inputs for lateral identification
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Figure 3.6: Comparison of identified system response and measured data

3.4 Vehicle Dynamics Simulator

To simulate the algorithms there were used a HIL simulator built in ROS2
environment. The simulator was implemented as a ROS2 node and was run
on the Jetson Xavier. This simulator had the interface built according to the
real ROS2 node which operates the vehicle to be as close to it as possible.
This simulator was used to test the interface of the algorithms before they
were deployed on the vehicle platform and also to check the behavior of
the algorithm. The visualization tool used with the simulator was a ROS2
built-in package named RViz (https://github.com/ros2/rviz), which has
the capability of visualizing the ROS2 messages in real time.
The mathematical model used as a simulation model was composed of the
LPV model described in section 3.2.3, the nonlinear transformation of the
polar velocity to x-axis and y-axis velocities and first-order velocity system
approximation. The equation describing the simulation model can be seen in
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the equations below.β̇ψ̈

ψ̇

 =


−Cf +Cr

mv
lrCr−lfCf

mv2 − 1 0
lrCr−lfCf

Iz
− l2fCf +l2rCr

vIz
0

0 1 0


βψ̇
ψ

 (3.10)

+


Cf

mv
Cr
mv

lfCf

Iz
− lrCr

Iz

0 0

(δf
δr

)
(3.11)

ẋ = cos (β + ψ) · v (3.12)
ẏ = sin (β + ψ) · v (3.13)
v̇ = a · v + b · u (3.14)
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Path Tracking Architecture

4.1 Overall Architecture

Figure 4.1: Control layout block diagram

Vehicle control was divided into two separate control tasks as can be seen in
figure 4.1.
The first part is the velocity controller, which takes the reference velocity
from the planning algorithm and outputs the engine command in a form of
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PWM width.
The second part is the path tracking algorithm, which takes the [N,E] position
and heading as a reference from the planning algorithm and outputs a control
signal in a form of steering angles of the front and rear axle.

4.2 Planning and Control Interface

4.2.1 Path Planning

Path planned by planning algorithm is an ordered set of points pk =(
Nk Ek ψk vk

)T
, these values are then used as reference signals for the

attitude control algorithm and velocity control algorithm. Nk and Ek are
positions in the NED coordinate system of the local tangent plane namely
Nk is a north position in the local tangent plane in meters and Ek is an east
position in the local tangent plane in meters. Both position coordinates are
relative to the origin of the local tangent plane approximation described in
section 2.5.1. Heading ψk gives desired heading of the vehicle to get from
point pk to pk+1 taking a straight line. The size of the velocity vk is the
velocity for which the path from point pk to point pk+1 was planned.

Figure 4.2: Reference path visualization
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4.2.2 Integration

Planning and control algorithms are implemented as separate nodes inside
the ROS2 network. The path planning node is deployed on NVIDIA Jetson
AGX Xavier and the path tracking algorithm and velocity controller are
deployed on Raspberry Pi 4B. These two computational units are connected
via Ethernet and communication between them is established by the ROS2
layer. Path planning algorithm sends Path filled with information mentioned
above in section 4.2.1. Path message [PAT] is an inbuilt message of the ROS2
environment, namely nav_msgs package. The definition of the path message
can be seen below.

Message name Element Type
Path

header Header
poses Array of PoseStamped

Table 4.1: Path message definition

4.3 Vehicle and Control Interface

4.3.1 Position Control

The path-tracking algorithms control the steering angle of both the rear and
the front axle. The output of the path tracking algorithm is a request on
the steering angle on the given axle in radians, δF for the front axle and δR
for the rear axle. Maximal allowed steering angle deviation of both axles is
|δmax| = π

6 rad. These steering angles sent by the attitude control algorithm
are then received by the node controlling a vehicle, converted to PWM width
value, and sent to servo motors controlling the steering angles of particular
axles.
These steering angle requests are sent in ROS2 message called Pose2D (ROS
message definition http://docs.ros.org/en/noetic/api/geometry_msgs/
html/msg/Pose2D.html). The definition of this message could be seen in the
table below.
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4. Path Tracking Architecture...............................
Message Name Elements Types

Pose2D
x float64
y float64

theta float64

Table 4.2: Definition of Pose2D message

In this particular case Pose2D message’s element x was used to transfer
front axle steering angle δF and element y was used to transfer rear axle
steering angle δR. Element theta was left unassigned and not used.

Figure 4.3: Block diagram of the interface between position control and vehicle
hardware

4.3.2 Velocity Control

The control action uD outputted from the velocity controller is the command
that is directly proportional to the width of the PWM signal applied to
the motor controller. This signal is in the range uD ∈ [−100, 100]. The
control signal from the velocity controller is sent wrapped in a ROS2 message
to the ROS2 node communicating with the hardware of the vehicle. The
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message used for this is the Twist (http://docs.ros.org/en/melodic/api/
geometry_msgs/html/msg/Twist.html).

Message name Element Type
Twist

linear Vector3
angular Vector3

Table 4.3: Definition of Twist message

Message name Element Type
Vector3

x float64
y float64
z float64

Table 4.4: Definition of Vector3 message

Figure 4.4: Block diagram of the interface between velocity control and vehicle
hardware
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4. Path Tracking Architecture...............................
4.3.3 Integration

Communication between control algorithms and the vehicle is also established
by the ROS2 layer. As mentioned in chapter 2.3.1 manipulation of vehicle
actuators is also implemented as a ROS2 node. These two nodes are deployed
on the same computational unit. ROS2 nodes in which the velocity controller
and path tracking algorithm are implemented communicate with ROS2 node
that manipulates vehicle actuators namely the engine and steering mechanism.
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Chapter 5

Velocity Controller
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5. Velocity Controller ..................................
5.1 Approximation of longitudinal dynamics

Observation of the data shown in figure 5.1 shows that transfer from input
uD to velocity v can be safely approximated using a first-order linear system.
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Figure 5.1: Measured velocity and engine input

Longitudinal dynamics was only considered as a transfer from input uD
mentioned in section 4.3 to vehicle velocity in a reference point. We can
assume the transfer function of longitudinal dynamics approximation to
proper transfer without zeros. The equation could be seen 5.1.

Hlong(s) = k

s+ a
(5.1)

The transfer was then converted to a state space description

v̇(t, x) = −a · v(t, x) + k · uD(t) = f(t, x, c), (5.2)

where c =
(
a k

)T
is a parameter vector and t is time in seconds. This

system was identified using the least-squares fitting method. That means that
model was fitted to the data acquired by doing experiments on the vehicle.
Parameters were then obtained by minimization of the equation

min
c∈R2

J(c) = min
c∈R2

(y(t)−
∫ t1

t0
f(t, x, c)dt)2. (5.3)
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................................... 5.2. Controller design

This minimization problem is formulated as a nonlinear least squares problem
and was solved with the use of MATLAB function called lsqnonlin [Mata].
Data used for identification were generated using engine input uD = 58% and
zero steering angle. Experimental data can be seen in figure 5.1.
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Figure 5.2: Result of first-order approximation identification

Identified parameters are

a = 0.9144, (5.4)
k = 0.0690. (5.5)

This first-order approximation was then directly used to design a velocity
controller.

5.2 Controller design

The design of the controller was done using the root locus method with a
forced controller structure. It was decided to use a PI controller because this
type of controller is capable of holding steady-state error at zero and also
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5. Velocity Controller ..................................
provides some degree of robustness. This could help with inaccuracies in a
model used for the design of the controller. The parameters tuned on the
design model can be seen in table 5.1.
The resulting regulator was then tuned using tests on the real platform to
meet the requirements.

However, these parameters were too aggressive for the real system. The

Figure 5.3: Root locus plot for the approximation of system longitudinalal
dynamics with forced PI regulator structure

parameters were tuned using experiments with the real system. These pa-
rameters can be seen in table 5.2

Kp 31.65
Ki 34.78

Table 5.1: Parameters of the PI controller tuned on design model

Kp 23
Ki 15

Table 5.2: Parameters of the PI controller tuned for design model
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Figure 5.4: Step response of controlled design model
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5.3 Velocity reference

Figure 5.5: Shadow vehicle projection

The problem with velocity while tracking trajectory is that velocity given by
time gaps between points on the trajectory is assumed in case the vehicle is
moving precisely along the planned trajectory. This means that if the vehicle
deviates from the given path the velocity reference has to be modified.
This can be solved by introducing a so-called "shadow" vehicle, which is a
projection of the vehicle onto the trajectory, as can be seen in figure 5.5. The
shadow vehicle projection can be used to calculate the velocity of the real
vehicle necessary to achieve point pk+1 in time. When a vector of velocity is
projected on the direction vector line segment given the position of points
pk and pk+1, it gives the size of the velocity vector vg of the shadow vehicle
moving along the trajectory. The size of velocity vector vg then becomes a
controlled value and planned velocity vk between points pk and pk+1 is taken
as a reference value.
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Figure 5.6: Velocity projection

The projection can be calculated using the following formula

|vg| =
vTk · v
|vk|

, (5.6)

which gives us the size of the velocity vector of the shadow vehicle vg.

5.4 Rate Limiter

The velocity controller was supplemented with a rate-limiting feature. This
feature is changing the step change of the reference to the linear change with
a given slope.
The rate limiter is designed to limit the acceleration of the vehicle to amax =
1 ms−2. The velocity control algorithm runs with sampling period Tcc = 0.01
s. The rate-limiting feature was implemented as a software feature described
by the algorithm 1.

Algorithm 1 Rate limiter algorithm
if New reference available then

vrate ← Measured velocity
vref ← New reference velocity

end if
if vref − vrate ≤ 0 then

vrate ← vref
end if
while |vrate − vref | <= ϵ do

vrate ← vrate + γ
end while
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5. Velocity Controller ..................................
where vrate is the velocity reference outputted by the rate limiter algorithm,

vref is the external velocity reference and γ is the constant increase. In our
case γ = 0.01 ms−1 due to the while loop having the sample period Tcc = 0.01
s and frequency fcc = 100 Hz the rate limiting algorithm will limit the rate
of change of the reference velocity to amax = 1 ms−2.
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Chapter 6

Path Tracking

Algorithms designed to track trajectory are mainly controllers with some level
of predictivity. In trajectory tracking problems predictivity of controllers
could be crucial when performing certain maneuvers, for example driving
through a turn with a high value of curvature at high speed. Reactive
controllers like basic PID can have a slower reaction and cause the vehicle
to deviate too much from the path and it might crash into the crash barrier
alongside the road. A good analogy to using reactive controllers for a path
tracking problem could be driving a vehicle and looking only into a side
mirror, the driver will know that there is a turn just when he actually passes
the turn.

6.1 Stanley Control Law Inspired Algorithm

This controller is highly inspired by Stanley Control Law used in the publica-
tion [HTMT07].
Stanley control law is consisting of several parts namely heading part ψctrl,
cross-track part dctrl, and curvature part rctrl, this can be understood as a
yaw damper, and steering part sctrl. The full equation of Stanley control law

49



6. Path Tracking ....................................

Figure 6.1: Diagram of Stanley Control Law inspired algorithm

used can be written as

δ(t) = (ψref − ψ)︸ ︷︷ ︸
ψctrl

+ arctan ke(t)
ksoft + v(t)︸ ︷︷ ︸
dctrl

+

+ kd,yaw(rmeas − rtraj)︸ ︷︷ ︸
rctrl

+ kd,steer(δmeas(i)− δmeas(i+ 1))︸ ︷︷ ︸
sctrl

,

(6.1)

where δ(t) is the steering angle calculated with control law, ψref is the refer-
ence heading, ψ is the measured vehicle heading, e(t) is a cross-track error,
ksoft is softening constant, which prevents division by zero, rmeas is yaw rate
of the vehicle, rtraj is estimated yaw rate of reference trajectory, δmeas is
discrete time measurement of steering, i is time index of measurement of
steering one period earlier and k, kd,yaw and kd,steer are tuning constants.
The architecture of the baseline controller used in this work is highly inspired
by Stanley control law. When designing this controller, curvature part rctrl
and steering part sctrl were removed, because the vehicle platform doesn’t
allow measurement of the steering angle of axles. The designed baseline
algorithm was supplemented with the predictive part in form of lookahead
measurements of the vehicle heading.

The equation of this controller could be written as

δ(t) = kyaw(ψref − ψ)︸ ︷︷ ︸
ψctrl

+ arctan ke(t)
ksoft + v(t)︸ ︷︷ ︸
dctrl

+ klh(ψlh − ψ)︸ ︷︷ ︸
ψlh,ctrl

, (6.2)

where ψ is measured heading of vehicle, ψref is heading reference in current
position, ψlh is heading reference in lookahead distance, e(t) is cross-track

50



......................... 6.1. Stanley Control Law Inspired Algorithm

error, ksoft is softening constant, v(t) is vehicle velocity in reference point
on vehicle and k and klh are tuning constants. Additionally, Stanley Control
Law output action is restricted only to the allowed range

[
δmin, δmax

]
so the

final output of the controller is described by equation 6.3.

δF (t) = satδmax
δmin

(δ(t)) (6.3)

where δF is steering angle on front axle, δ is control command from modified
Stanley algorithm and satδmax

δmin
is saturation operator with upper bound in

δmax and lower bound in δmin.

6.1.1 Predictive part

The predictive part in this controller is designed using lookahead distance
dependent on the vehicle velocity. Calculation of the lookahead point is done
using constant time gap tGAP between vehicle and lookahead point and ghost
vehicle velocity defined in section 5.3.

Figure 6.2: Lookahead point

Calculation of lookahead point distance is done using the equation

dlh = d0 + |vg| · tGAP . (6.4)
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6. Path Tracking ....................................
the lookahead point is then found in distance dlh "walked" along the path, |vg|
is the size of the velocity vector and d0 is the offset constant. The reference
heading of the lookahead part of the controller is a reference of the path
segment given by points pi and pi+1 to which the lookahead point plh belongs.

6.1.2 Error measurement

Calculation of heading error and lookahead heading error is done using the
following equations

ψerr = ψref − ψ, (6.5)
ψlh,err = ψlh − ψ, (6.6)

where psierr is current heading error and ψlh,err is heading error in distance
of lookahead point.
However, the calculation of cross-track error could be a bit tricky. Cross-track
error when considering smooth trajectory is defined as the length of the line
segment between the closest point on the path and the reference point on the
vehicle, which is also perpendicular on the line tangential to the closest point.
However, cross-track error calculation, when considering trajectory as a set
of positions connected by line segments as in this case, can be done using
vector rejection, which will calculate the size of vector e⃗ using vectors p⃗ and t⃗
as is shown in figure 6.3.

Figure 6.3: Calculation of cross-track error
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Rejection of vector t⃗ from vector p⃗ =
(
px py

)T
can be calculated as

projection of vector t⃗ on vector p⃗⊥ =
(
py −px

)T
perpendicular to vector p⃗.

The equation of this projection is then

|e⃗| = t⃗ · (p⃗⊥)T

|p⃗⊥|
(6.7)

This calculation gives the signed cross-track error so that the cross-track error
is negative when the path is closer to the right side of the vehicle and positive
if the path is closer to the left side of the vehicle.

6.2 Model Predictive Control

6.2.1 Basic tracking problem

The basic tracking problem is that it is given the desired heading and the
desired position of the vehicle by waypoints on the reference path. The
basic problem is to track these references directly. To be able to do this the
predictor has to be composed of several parts.
The first part is the linear parameter variable model introduced in section
3.2.3.
The LPV model can be then extended with the integrator of the heading.
This extended model can be expressed by equation 6.8.β̇ψ̈

ψ̇

 =


−Cf +Cr

mv
lrCr−lfCf

mv2 − 1 0
lrCr−lfCf

Iz
− l2fCf +l2rCr

vIz
0

0 1 0


βψ̇
ψ

+


Cf

mv
Cr
mv

lfCf

Iz
− lrCr

Iz

0 0

(δf
δr

)
.

(6.8)
The body heading of the vehicle can be directly obtained by integration of
yaw rate ψ̇ and in addition, the equation describing the integration is also
linear.
The velocity of the vehicle could be broken down to the north and the east
part of the velocity using equation 6.9.

Ṅ = cos(β + ψ) · v, (6.9)
Ė = sin(β + ψ) · v, (6.10)

where Ṅ is the north part of the velocity, Ė is the east part of the velocity,
v is the value of the velocity at the reference point on the vehicle, β is side
slip angle of the reference point on the vehicle, and ψ is body heading of
the vehicle. The equations 6.9 have to be linearized to use these equations
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6. Path Tracking ....................................
in the linear predictor. The lateral linear model is already the LPV model
parametrized by the variable velocity of the vehicle v, thus it is possible to
approach the linearization in the same way and also take the velocity as a
variable parameter.
This system although has no equilibrium if holds that v > 0, so it has to be
linearized along the state trajectory. The system linearized in this way will
have a form described in equation 6.11.

ẋp + ∆ẋ = Ap∆x+ Bp∆u, (6.11)
∆x = x− xp (6.12)
∆u = u− up (6.13)

where ẋp is a vector that describes the direction of the state development,
∆ẋ is a vector that describes the direction in which states deviate from the
trajectory, ∆x is a vector of state increases, xp is the operational point and
∆u is the input vector increase and because the input operational point up is
equal to zero vector it can be written that ∆u = u.
The linearization is then done by calculation of the Jacobi matrix of the
subsystem mentioned in equations 6.9 taking β and ψ as state variables.

J =
(
− sin(βe + ψe) · v − sin(βe + ψe) · v
cos(βe + ψe) · v cos(βe + ψe) · v

)
(6.14)

where βe and ψe are state values in which the system is linearized and v is the
velocity at the reference point on the vehicle taken as a variable parameter.
Matrices of the linear predictor could be then composed of the LPV model
extended with heading integrator and the linearized velocity model from
equation 6.14. The resulting matrices and the predictor can be seen in
equations 6.15 - 6.17.

−Cf +Cr

mv
lrCr−lfCf

mv2 − 1 0 0 0
lrCr−lfCf

Iz
− l2fCf +l2rCr

vIz
0 0 0

0 1 0 0 0
− sin(βe + ψe) · v 0 − sin(βe + ψe) · v 0 0
cos(βe + ψe) · v 0 cos(βe + ψe) · v 0 0


︸ ︷︷ ︸

Ap

, (6.15)



Cf

mv
Cr
mv

lfCf

Iz
− lrCr

Iz

0 0
0 0
0 0


︸ ︷︷ ︸

Bp

, (6.16)


∆β̇
∆ψ̈
∆ψ̇
∆Ṅ
∆Ė

 = Ap ·


∆β
∆ψ̇
∆ψ
∆N
∆E

+ Bp ·
(
δf
δr

)
. (6.17)

54



............................... 6.2. Model Predictive Control

Because the linearization is done along the trajectory it is necessary to
calculate the vector ẋp using the formula 6.18.

ẋp = Ap · xp, (6.18)

where xp =
(
βe ψ̇e ψe Ne Ee

)T
is the operational point and ẋp =(

βd ψ̇d ψd Nd Ed
)

describes a trajectory the system’s states are devel-
oping. The operational point was chosen as the position and heading of the
shadow vehicle (see subsection 5.3) with zero the side-slip angle and yaw rate.

The predictor has to be discretized every time any of the parameters
changes its value. The discretization method used for the discretization of the
predictor was the zero-order hold method. The predictor was discretized with
sample period Tp = 0.1 s. The discretization was done only for the subsystem

∆x = Ap∆x+ Bpu, (6.19)

because only this subsystem will be used as the predictor inside the MPC
framework.
For the discretization, it was necessary to calculate the matrix of state
development eApT . The system matrices were then discretized using formulas
6.20.

Ad = eApTp (6.20)

Bd = Bp

∫ Tp

0
eApτdτ (6.21)

6.2.2 Prediction reference

Path tracking algorithm using MPC needs to know future references to be
able to fully exploit its predictive nature. The reference signals have to be
evenly spaced in time according to the sample period of the predictor Tp.
Shadow vehicle concept introduced in 5.3 could be used to project the position
of the vehicle on the path and then "drive" the shadow vehicle along the path
and "sample" points on the path to get the reference signals which can be
seen in figure 6.4.
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Figure 6.4: Visualization of prediction reference

Assuming that the vehicle is moving with velocity |v| there exists a projec-
tion of the velocity vector v on the path. This is the velocity vector of the
shadow vehicle vs and it describes how fast the vehicle is moving along the
path. The size of the shadow vehicle velocity vector |vs| is used to calculate
spacing between reference points on the path. The spacing is calculated using
formula 6.22

d = Tp · |vs|, (6.22)

where Tp is the sampling period of the predictor, and |vs| is the size of the
velocity vector of the shadow vehicle when driving along the path segment
described by points pk and pk+1. The first point s0 is the shadow vehicle
position. Then there can be constructed points sl, l ∈ 1, . . . H so that they
lie on the path and their distance along the path is equal to d.
Reference signal rl =

(
ψl Nl El

)T
then consists of north and east coordi-

nates, which are directly taken from coordinates of points sl, 1, . . . H on the
path, and the vehicle body heading ψl, which is taken from initial point pk of
the line segment to which sl belongs.
Due to the formulation of MPC problem described in section 6.2.1 the refer-
ences have to be further transformed into a suitable form. In order to do that
it is necessary to introduce a new vector rd =

(
ψd Nd Ed

)T
where Nd, Ed
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and ψd are elements of vector ẋp defined in section 6.2.1. The transformed
reference vector can be then described by equation 6.23.

r̂j = rj − j · Tp · rd, j ∈ 1, . . . H (6.23)

where rj is the transformed reference vector and Tp is the predictor sampling
period.

6.2.3 Formulation of optimization problem

The tracking problem described in 6.2.1 can be written as an optimization
problem. There is introduced new labeling where state increases are labeled
zk = xk − xp = ∆x and control input is labeled vk = uk. For the sake of
simplicity, it can be assumed that in every sampling period Tp there is a new
measurement z0 and the MPC algorithm is reinitialized. The optimization
problem is then described by the equations below.

min
z1,...,zN ,v0,...,vN−1∈Rm

J(z1, ..., zN , v0, ..., vN−1, r̂1, ..., r̂N ) (6.24)

s.t. : zk = Azk−1 + Bvk−1, k ∈ 1, ..., N (6.25)

with cost function defined as

J(z1, ..., zN , v0, ..., vN−1) = (6.26)

=
N∑
k=1

1
2((r̂k −Czk)TQ(r̂k −Czk) + vTk−1Rvk−1). (6.27)

This formulation has a problem in that the steady-state error won’t be zero
because the controller minimizes absolute values of inputs uk, thus controller
cannot maintain the constant non-zero value of inputs vk and cannot regulate
error to zero in steady state.
This tracking problem can be solved by the augmentation of the controlled
system. The system will be augmented by introducing additional state
equations 6.28.

∆vk = vk − vk−1 (6.28)
vk = vk−1 + ∆vk (6.29)

This means that there is a new state vk−1 = zuk and ∆v is virtual input. State
equation can be then rewritten into the following vector equations

z̃k+1 =
(

A B
0 I

)
︸ ︷︷ ︸

Ã

(
zk
zuk

)
︸ ︷︷ ︸
z̃k

+
(

B
I

)
︸ ︷︷ ︸

B̃

∆vk, (6.30)

yk =
(
C 0

)
︸ ︷︷ ︸

C̃

(
zk
zuk

)
(6.31)
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Cost function J can be now reformulated using augmented system matrices
into

J =
N∑
k=1

1
2((r̂k − C̃z̃k)TQ(r̂k − C̃z̃k) + ∆vTk−1R∆vk−1). (6.32)

The cost function J can be further modified and after modification and
removal of constant terms, which have no effect on minimization, there
remains the following cost function

J =
N∑
k=1

(1
2 z̃k

T C̃TQC̃z̃k − r̂Tk QC̃z̃k + 1
2∆vTk−1R∆vk−1). (6.33)

The optimization variables can be further associated into vectors

z̃ =


z̃1
z̃2
...
z̃N

 , ∆v =


∆v0
∆v1

...
∆vN−1

 , r =


r̂1
r̂2
...
r̂N

 . (6.34)

The cost function can be then written as a vector function of these associated
optimization variables

J = 1
2 z̃

T


C̃TQC̃

. . .
C̃TQC̃


︸ ︷︷ ︸

Q

z̃ − r̂


QC̃

. . .
QC̃


︸ ︷︷ ︸

T

z̃

+∆v

R
. . .

R


︸ ︷︷ ︸

R

∆v

. (6.35)

Minimization problem constraints can be written similarly as

z̃ =


0

Ã . . .
. . . . . .

Ã 0

 z̃ +


B̃

. . .
B̃

∆v +


Ã
0
...
0

 z̃0. (6.36)

The number of optimization variables can be further reduced by converting
this problem to a so-called dense formulation by elimination of state variables
using only initial state z̃0 and vector of optimization variables ∆v. All states
can be expressed as the following function of initial state z0 and optimization
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variables vector ∆v described as

z̃ =



Ã
Ã2

...
Ãk

...
ÃN


︸ ︷︷ ︸

C

z̃0 +



B̃
ÃB̃ B̃

... . . .
Ãk−1B̃ Ãk−2B̃ . . . B̃

... . . .
ÃN−1B̃ . . . . . . B̃


︸ ︷︷ ︸

Â

∆v. (6.37)

the cost function can be then reformulated into the form only with vector
∆v as optimization variable and furthermore into the form of QP problem
cost function as can be seen in equations 6.38.

J = 1
2∆vT (ÂTQÂ + R)︸ ︷︷ ︸

H

∆v +
(
x̃T0 rT

)(CQÂ
−TÂ

)
︸ ︷︷ ︸

F

∆u (6.38)

J = 1
2∆uTH∆v +

(
x̃T0 rT

)
F︸ ︷︷ ︸

b

∆v (6.39)

J = 1
2∆uTH∆v + b∆v (6.40)

Minimization of this cost function then yields a sequence of control input
increments. This incremental formulation of the MPC problem gives integral
behavior of the controller because of the minimization of input increments
instead of absolute values of inputs.
Minimization of cost function J gives a whole vector of control inputs over
the given horizon and thus calculation of current control input vt is needed.
Current control input can be obtained by using element ∆v0 from vector ∆v
and last applied control input vt−1 in a way described in equation 6.41.

vt = vt−1 + ∆v0 (6.41)

This minimization solves only unconstrained problems. The vehicle has
constraints on its steering angle thus there have to be added equations
describing bounds on control inputs. Let’s assume that vmin is a vector of
lower bounds of control inputs and vmax is a vector of upper bounds of control
inputs. Input constraints can be then written as

vmin ≤ vk−1 ≤ vmax, k = 1, . . . , N. (6.42)

This equation can be then modified using system augmentation from 6.30
and selection matrix E to

vmin ≤ Ãz̃k−1 + B̃∆vk−1 ≤ vmax, k = 1, . . . , N. (6.43)

59



6. Path Tracking ....................................
Selection matrix E selects states of the augmented system, which will be
constrained. When only inputs are to be constrained the selection matrix E
has the following form

E =
(
0 I

)
, (6.44)

where matrix I ∈ Rm×m is identity matrix and m is number of controlled
inputs.
Matrices from 6.37 can be then used to eliminate state vector zk from the
equation and to adjust the constraint equation for whole optimization sequence
∆v as follows

I
...
I


︸ ︷︷ ︸

Ī

vmin ≤

E
. . .

E


︸ ︷︷ ︸

Ē

(Â∆v + Cz̃0) ≤

I
...
I


︸ ︷︷ ︸

Ī

vmax (6.45)

Equation adjustment then give

Īumin − ĒCx̃t︸ ︷︷ ︸
bl

≤ ĒÂ∆u ≤ Īumax − ĒCx̃t︸ ︷︷ ︸
bu

, (6.46)

which describes constraint on the sequence of input increments ∆v.

The whole optimization problem can be then described as

min
∆v

1
2∆vTH∆v + b∆vT , (6.47)

s.t. : bl ≤ ĒÂ∆u ≤ bu. (6.48)

6.2.4 Implementation

This algorithm was at first implemented in Matlab & Simulink environment.
This implementation allowed fast prototyping and debugging of the whole
algorithm. The Simulink model implementing MPC framework was after test-
ing and debugging used to generate a C++ class using the Embedded Coder
[Matb] from Matlab & Simulink. This C++ class was then integrated into
the ROS2 interface node to be able to communicate with the rest of the vehicle.
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Figure 6.5: Block Diagram of MPC Node

The solver used to solve the QP problem defined in the section 6.2.3 was
quadprog [Matc] from Matlab & Simulink. This solver is capable of solving
constrained QP problems. The solver takes the QP problem in from described
by equation 6.49.

min
x

1
2x

THx+ fTx, (6.49)

s.t. :A · x ≤ b, (6.50)
Aeq · x = beq (6.51)
bl ≤ x ≤ bu (6.52)
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Chapter 7

Experiments

The path algorithms were tested in two scenarios. The first scenario was
the piecewise linear path with two turns. This scenario is good for testing
because the two curves are curved in the opposite direction.
The second scenario was the big loop around the testing facility this scenario
was designed to test if the algorithms can sustain longer runs.
The velocity controller was tested on a straight road with different velocity
references.

Figure 7.1: Bird’s eye view of the testing facility
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7.1 Velocity Controller
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Figure 7.2: Comparison of measurements and reference signals

The function of the velocity controller can be seen in figure 7.2. Approximately
2 s from the start of the experiment a new reference signal arrives. The rate
limiter algorithm is initialized to the current velocity of the vehicle and starts
to rise with a slope of alim = 1m/s. There are also large oscillations of the
vehicle velocity visible at the start of the experiment. This effect is probably
caused by deadzone of the motor controller and also the measurement of the
velocity from revolutions of the front wheels. On the other hand, after the
deadzone region is surpassed the vehicle tends to the reference velocity with
a small overshoot.
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7.2 Stanley Control Law

7.2.1 Controller without predictive measurements

The tuning constants used in these testing scenarios can be seen in table 7.1

ksoft 1
k 0.5

kyaw 1

Table 7.1: Stanley Control Law tuning constants
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Figure 7.3: Vehicle positions and references in NE plane

Figure 7.3 shows the measured position of the vehicle compared to the
reference path. From picture, it can be seen that the Stanley Control Law can
track the path correctly but with small deviation. This deviation results from
its non-predictive nature and also from the nonideal vehicle platform. The

65
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platform has got some asymmetry in its steering geometry so it spontaneously
turns a bit to the right. Stanley Control Law can’t solve this problem by
itself because the control law is equivalent to the proportional controller.
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Figure 7.4: Comparison of measurements and reference signals
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Figure 7.5: Control errors
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Figure 7.6 shows that the control action on the front steering angle isn’t
smooth. This effect is caused by the piece-wise continuous heading reference.
The controller gets the reference and tries to track it and after the new
reference is received there is a step from the previous reference and this
results in the steps in the control action.
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Figure 7.7: Vehicle positions and with references in NED plane

7.2.2 Controller with predictive measurements

The tuning constants used in this testing scenarios can be seen in table 7.2

ksoft 1
k 0.5

kyaw 0.7
klh 0.3
tGAP 0.3 s
d0 0.5 m

Table 7.2: Predictive Stanley Control Law tuning constants
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Short test
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Figure 7.8: Vehicle positions and reference signals in NE plane

Figure 7.8 shows that the Stanley control law with a predictive part performed
really well in the first turn because it started to turn sooner than thanks
to the lookahead measurement. However, in the narrow part of the path it
started to deviate from the path due to the spontaneous turn of the vehicle.
The maximal deviation was in the final turn probably because the direction
of the turn matches the direction of the spontaneous turn of the vehicle.
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Figure 7.9: Comparison of measurements and reference signals
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Figure 7.10: Control errors
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Figure 7.11: Control signal of the algorithm
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Figure 7.12: Predictive Stanley Control Law velocity profile

7.3 MPC based algorithm

MPC algorithm was tested in two different variants. The first variant of the
MPC algorithm had steering with both front and rear axles enabled. The
second variant had the rear axle steering disabled.

7.3.1 MPC with both axles steered

The cost matrices of this MPC variant can be seen below.

Q =

100000 0 0
0 100 0
0 0 100

 , (7.1)

R =
(

1000 0
0 1000

)
, (7.2)
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The prediction horizon of the MPC was set to Hp = 10.
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Figure 7.13: Vehicle positions and reference signals in NE plane
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Figure 7.14: Measurement and reference signals comparison
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This experiment shows the capability of MPC based control algorithm fully

exploits the features of the over-actuated vehicle platform. Figure 7.17 that
the vehicle is using the so-called crabwalk to track the reference position.
The integral nature resulting from the difference formulation of the MPC is
able to neglect the steady state error resulting from the nonideal steering
geometry of the vehicle.
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Figure 7.15: Control errors

79



7. Experiments .....................................

0 2 4 6 8 10 12 14 16

t (s)

-40

-20

0

20

40

60

80

100

 (
°
)

Side-slip angle

0 2 4 6 8 10 12 14 16

t (s)

-250

-200

-150

-100

-50

0

50

100

r 
(d

e
g
/s

)

Yaw rate

Figure 7.16: Untracked states of the system
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Figure 7.18: Velocity profile

7.3.2 MPC with the rear steering disabled

The cost matrices of this MPC variant can be seen below.

Q =

1000 0 0
0 1000 0
0 0 1000

 , (7.3)

R =
(

1000 0
0 1000

)
, (7.4)

The prediction horizon of the MPC was set to Hp = 10.
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Figure 7.19: Vehicle positions and reference signals in NE plane
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Figure 7.20: Measurement and reference signals comparison
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Figure 7.21: Control errors
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Figure 7.22: Untracked states of the system
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Figure 7.23: Control action of the algorithm
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Figure 7.24: Velocity profile

7.3.3 Comparison

Figure 7.25 shows that the MPC with both axle steering enabled performs the
best in the test scenario. The MPC algorithms overall had better performance
in this test.
The Stanley control law inspired algorithms used in this test can’t handle the
nonideal steering of the vehicle and have a steady deviation from the path.
The MPC algorithms have got a known issue. The heading reference signal
is wrapped to region [−180◦; 180◦) and the MPC algorithms try to turn the
vehicle about a full circle to match the reference when the reference signal
overflows the range [−180◦; 180◦).
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Chapter 8

Conclusion

8.1 Discussion

The purpose of this work was to design a suitable control algorithm for
over-actuated vehicle platform that would track the reference path and then
compare it to a baseline algorithm.The baseline algorithm used in this work
was the modified Stanley Control Law [HTMT07] from Stanford Unirversity.
The designed control algorithm was the MPC based algorithm. This algorithm
was capable of exploiting the features of the over-actuated platform and also
has the effect of the anticipation. That means that it can react to curves on
the path before the curve starts. This resulted in better tracking performance
then algorithm without preview.
The algorithms were also succesfully deployed on the vehicle platform, which
could also serve as the demonstrator for these algorithms.
The comaprison of the MPC based algorithm and baseline algorithm shows
that the anticipation capability of MPC results in tighter tracking of the
reference path and also the MPC could be suitable algorithm to use with the
over-actuated vehicles. The MPC based algorithm also has capability to add
constraint to the vehicle motion so that the path tracking much likely doesn’t
end up in dangerous situations.
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8.2 Future Work

.Adaptive MPC algorithm
There is a possibility to enahnce basic MPC algorithm with external
setting of cornering stiffnesses from the estimator described for example
in this article [VCH+21].Nonlinear MPC
The MPC can be also formulated using nonlinear predictor and with
that also nonlinear QP solver.Adding torque vectoring There is also a possibility to include infor-
mation about velocity and torque inside the MPC framework and further
enahance it to include torque vectoring to the optimization problem.
This possibility would also require more suitable vehicle platform.. Soft constraints on the vehicle position The MPC framework can
be also enhanced with sof constraints which could reflect for example
dimensions of the lane on the road or other vehicles in the traffic..Deploying of the algorithm in the real vehicle Lathough, the
algorithm was deployed oon the real vehicle platform it could be inter-
esting to deploy it in the real commercially available vehicle with some
modifications.
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