
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Exploration in Knowledge Transfer

Prozkoumávání prostoru v úloze přenosu znalostí

Master Thesis

Author: Bc. Adam Jedlička

Supervisor: Dipl.-Eng. Tatiana V. Guy, Ph.D.

Consultant: Ing. Marko Ruman

Academic year: 2022/2023

Název práce:

Prozkoumávání prostoru v úloze přenosu znalostí

Autor: Bc. Adam Jedlička

Obor: Aplikované matemaricko-stochastické metody

Druh práce: Diplomová práce

Vedoucí práce: Dipl.-Eng. Tatiana V. Guy Ph.D.

Konzultant: Ing. Marko Ruman

Abstrakt: Tato práce je zaměřená na prozkoumávání prostoru v přenosovém učení, i.e. přenos znalostí z úkolu
naučeného v minulosti, použité pro nový úkol za účelem zrychlení učícího se procesu nebo nalezení lepšího
řešení. Ojevování-využívání uvažuje novou zkušenost, kterou by agent mohl získat pomocí náhodné akce. Obje-
vování je obzvláště důležité v metodách zpětnovazebního učení, kdy může objevit výhodnější stavy. Cílem této
práce je vybrat několik objevovacích metod a použít je pro přenos znalostí pro hluboké zpětnovazební učení.
Konkrétně jsme použili algoritmus hlubokého cíleného přenosu Q-učení v kombinaci s ϵ-greedy, Boltzmanno-
vým a UCB prozkoumácím algoritmem a zjistili jsme, že fungují relativně dobře. Výsledky však zdůraznily
nekonzistenci výkonu několika algoritmů ve srovnání mezi sebou v souvislosti se zadaným úkolem.

Klíčová slova: Přenos znalostí, Q-učení, Metody prozkoumávání prostoru, Hluboký cílený přenost Q-učení.

Title:

Exploration in Knowledge Transfer

Author: Bc. Adam Jedlička

Abstract: This thesis focuses on exploration in knowledge transfer, i.e. when knowledge learned in past task
used for a new task with an aim to accelerate the learning process or find a better solution. The exploration-
exploitation balances the novel experience that the agent may obtain by applying a random action. In particular
the exploration is of high importance in reinforcement learning methods when it can discover more advan-
tageous states. The goal of this thesis is to select several exploration methods and use them for knowledge
transfer in deep reinforcement learning. We have used a deep target transfer Q-learning in combination with
ϵ-greedy, Boltzmann and UCB exploration algorithms and have found out that they work relatively well. How-
ever, the results highlighted the inconsistency of several algorithms in comparison with each other with regard
to different tasks.

Key words: Knowledge transfer, Q-learning, Exploration methods, Deep target transfer Q-learning

Contents

Introduction 7

1 Preliminaries 9
1.1 Notions and definitions . 9
1.2 Markov Decision Process . 9
1.3 Reinforcement Learning . 11

1.3.1 Q-learning . 11
1.3.2 Deep Q-learning . 11

2 Neural Networks 14
2.1 Basic introduction . 14
2.2 Activation functions . 15
2.3 Convolution and Pooling Layers . 15
2.4 Epochs, Batches and Dropout rate . 16
2.5 Calculating Loss . 16
2.6 Training . 17

3 Knowledge Transfer and exploration methods 18
3.1 Knowledge transfer . 18
3.2 Target transfer Q-learning (TTQL) . 18
3.3 Deep TTQL . 20
3.4 Exploration methods . 20
3.5 ϵ-greedy method . 20
3.6 Boltzmann exploration method . 21
3.7 Upper confidence bound method . 21

4 Implementation for a virtual drone 22
4.1 States and actions . 22
4.2 Rewards . 23
4.3 Deep Q-learning and knowledge transfer . 25
4.4 Parameters used . 26
4.5 ϵ and λ decrease . 26
4.6 Overall algorithm . 27

5 Experiments 28
5.1 Experiment 1 . 29
5.2 Experiment 2 . 31
5.3 Experiment 3 . 33

Conclusion 35

6

Introduction

In this section we will outline the basic ideas and motivations behind this thesis. This thesis will focus on explo-
ration methods in knowledge transfer between tasks, that are modeled by Markov Decision Processes (MDPs).
First let us clarify what we mean by knowledge. The amount of knowledge we have represents how much of
a model (MDP) we know. For example an experienced driver going through the city knows, where to turn, in
order to get to his final destination efficiently. Therefore he knows how to decide on each crossroad and we
say, that he has certain amount of knowledge about the city (Model) for performing his task. We say that driver
is an agent, but generally the agent can be anything - human, algorithm or machine solving some kind of task.
Knowledge transfer or transfer learning means, that knowledge accumulated in past task (source task) will be
partially used by the agent in solving a new task. Note that generally the transferred knowledge can be learned
by other agent in the different, but similar task (target task). This is useful, because it can speed up the learning
process in target task and the agent does not need to learn the target task from scratch. The agent solves the
task with reinforcement learning and this requires exploration.

Thus the topic can be broken down into three parts. Reinforcement learning (RL) [7], knowledge transfer and
exploration methods.

In RL the agent has neither the environmental model or the reward model. The agent is given reward (reinforce-
ment) as a reaction of the environment to his actions. The advantage of this type of learning is that the agent
can learn complex tasks by trial and error and given enough time he can even find nearly optimal solution. The
example of task for RL would be teaching the agent to find a path through the maze. A basic RL algorithm
is called Q-learning. If we come back to the driver example, we could call each crossroad the state in which
our driver is. The town has finite number of such states and information about all of them can therefore be
memorised. In a case where this number of states is very large (for instance image sequence) or infinite we
would have to create a model to determine information about the state instead. In this case we could use more
sophisticated version of Q-learning called deep Q-learning. The difference is that this algorithm uses neural
network to determine in which state the agent is, or some other attribute connected to Q-learning. This type of
RL algorithm will be used as basis for transfer learning (TL) algorithms in this thesis.

We have various types of TL options for Q-learning and Deep Q-learning. They can be divided into three
groups - representation transfer, parameter transfer and instance transfer [3]. Instance transfer methods hopes
to achieve speed-up of learning a target task by gathering samples of knowledge from a source task and using
them in the target task. Representation transfer focuses on some general characteristics, that are preserved in
both tasks (feature transfer) and parameter transfer focuses on changing the parameters of algorithm used for
learning the target task based on knowledge of parameters of the source task.

Parameter connected with exploration is called an exploration rate. It is an important parameter of both RL
and TL methods. This parameter determines how much agent is willing to try new unexplored states compared
to going for the most beneficial states that he knows of. Generally we would want the agent to explore more
new states when he has less knowledge and less new states when he has more knowledge and that is where the
exploration algorithm comes in. These methods allow us to modify this parameter during the learning process.
There are multiple approaches that we will consider. Namely ϵ-greedy method, Boltzmann exploration method
and Upper confidence bound method.

The thesis implemented knowledge transfer method with previously mentioned exploration methods and com-
pared it with Q-learning method in order to find out, if these methods are effective for knowledge transfer in
specific type of task. The considered task is virtual drone in virtual environment. The drone aims to navigate

7

through an environment based on images in its camera. The main focus of this thesis is to examine various
exploration methods in TL, and to find the most suitable and efficient one.

The thesis outline is as follows. Chapter 1 introduces necessary notions and definitions, recalls the theory
of Markov decision processes, reinforcement learning, Q-learning and deep Q-learning. Chapter 2 describes
details of neural networks. Chapter 3 briefly summarizes technique of knowledge transfer and the three most
broadly used exploration methods. Chapter 4 focuses on describing implementation of the RL and TL on the
model of the virtual drone. Chapter 6 summarizes the configuration and presents the obtained results of the
experiments. Chapter Conclusions summarises main findings, analyses them and outlines open questions.

8

Chapter 1

Preliminaries

1.1 Notions and definitions

This section defines basic notions and definitions used in the thesis. We will work with discrete time t that will
appear as sub index of respective variables. Calligraphic capital letters (A) denote sets and calligraphic small
letters (a) denote elements of those sets, unless stated otherwise. Letters in bold font (ϕϕϕ) denote vectors and
matrices. In Table 1.1 we define terms, that are used throughout this text.

Name Notation Meaning
Set of possible actions A ⊂ R A discrete finite set of actions
Set of possible states S ⊂ R A discrete set of observable states.
Time t ∈ N Discrete time
Action at ∈ A Action at time t
State st ∈ S State of the environment at time t
Policy π : S → A π(at|st) is a function assigning actions to states
Discount factor γ ∈ (0, 1] Determines the importance of future rewards.

Transition function p : S × S ×A → [0, 1]
p(st+1|st, at) is probability of state st+1 when applying
action at in state st,

∑
st+1∈S p(st+1|st, at) = 1, ∀st ∈ S,

∀at ∈ A

Reward function r : S × S ×A → R

Reward r(st+1, at, st) is received when transitioning from
state st to state st+1 by action at. Here, we distinguish
r(st+1, at, st) and rt. The first one denotes reward function
and the last denotes value of reward at time t.

Q - function Qπ : S ×A → R
Function Qπ(st, at) determines value of state-action pair
when policy π is executed.

Discrete mean value E[X] =
∑

i∈I pixi
Mean value of discrete random variable X, where pi is
probability of X = xi and xi are values of X.

Table 1.1: Notations and definitions

Note, that states an actions do not necessarily have to be subsets of R.

1.2 Markov Decision Process

This section focuses on defining Markov Decision Process and terms associated with it. Firstly, let us define the
general problem of decision making. We have an agent and an environment. The agent observes environment
states and has a goal to influence them. Agent takes action in order to reach a goal specified by the task that is
defined for him. The degree to which he reached his goal is measured by the reward agent obtains after each
action. Basic scheme of this interaction is shown in Figure 1.1. At each time t the agent observes environment
state st and chooses action at. The action changes environment state to state st+1 and the agent receives reward
rt+1, expressing the value of this transition (st, at)→ st+1 for the agent.

9

CHAPTER 1. PRELIMINARIES 10

Figure 1.1: Interaction of the agent with environment in MDP

The agent and the environment obey Markov property. This property means, that each state at any time depends
only on the previous state and action. Decision process with this property is called Markov decision process
(Definition 1.2.1).

Definition 1.2.1. Let us assume that environment follows Markov property. Then MDP is defined as a tuplet
(S,A, p, γ, r), see Table 1.1.

Policy π : S → A specifies action choice for each state. The agent has a goal to select policy that maximizes its
expected reward. The following definition introduces an important function.

Definition 1.2.2. The value function of state under policy π, Vπ(s), is defined as Vπ(s) = Eπ[
∑

t γ
tr(st+1, at, st)|s =

st], where r(·, ·, ·) is a reward function and γ is a discount factor.

The value function shows how good is given state s for the agent. It represents the value agent could get if
he uses policy π in states s. A finite MDP has a unique Vopt with regard to finding solution of (1.1) which
is unknown and at least one deterministic optimal policy. Solving an MDP means to find an optimal value
function Vopt and optimal policy πopt. Another way to evaluate the state for a given policy is via so-called
action-value function or Q-function Qπ(s, a)

Definition 1.2.3. Q-function is defined as Qπ(s, a) = Eπ[
∑

t γ
tr(st+1, at, st)|s = st, a = at], where r(·, ·, ·) is the

reward function and γ is a discount factor.

Both, value function Vπ and Q-function Qπ, obey Bellman equations (1.1) and (1.2) [6]. These equations
separate value functions into immediate reward part and discounted future reward part [16] and express a
relationship between the value of a state and the values of its successor states

Vopt(s) = max
a∈A

∑
st+1∈S

p(st+1|st, a)[rt + γVopt(st+1)] (1.1)

Qopt(st, at) =
∑

st+1∈S

p(st+1|st, at)(rt + γmax
a∈A

Qopt(st+1, a)). (1.2)

The optimal policy maximizes the overall accumulated reward and is derived by (1.3).

πopt(st) = at ∈ argmax
a∈A

Qopt(st, at). (1.3)

It is easy to see that both the value function and the Q functions represent the discounted cumulative reward
the agent obtains if following policy π. Unlike the value function, the Q-function also considers action. Both
functions are related as follows V(s) = maxa∈A Q(s, a). Equations (1.1) and (1.2) can be solved by dynamic
programming. Dynamic programming [19] is the optimisation framework for sequential decisions when tran-
sition model is known. It simplifies a large problem by dividing it into smaller subproblems that can be solved
recursively. These subproblems need to be overlapping i.e. solution of one is used for solution of another
subproblem. Another requirement is that optimal solution of the whole problem can be used to gain optimal
solution of its subproblems [19].

CHAPTER 1. PRELIMINARIES 11

1.3 Reinforcement Learning

In practice transition model and/or reward model might not be known. Reinforcement learning (RL) [7] solves
MDP with unknown transition model p and reward model r (Definition 1.2.1). The basic idea of how reinforce-
ment learning avoids the need for knowing transition and reward model is following. At each time t agent takes
action at in a form of reward. Initially, he does not need to know how the action influences in which state he
is going to end up he just measures the outcome of action at. i.e. he does not need to know transition model p
but learns it over time. Similarly, the reward is given by the environment at each transition so the agent maps
the reward given by each transition given by the environment. The higher the reward agent obtains the more
beneficial action. Eventually, over time, agent approximates transition and reward models based on informa-
tion gathered from exploring different transitions. Naturally, the richer the experience of agent the more precise
model of the environment the agent obtains. In RL agent balances between two kinds of actions, exploiting and
exploring. The first maximizes immediate reward and the second explores states in hope to find higher reward
in later steps. If the agent explores all the time, there is a risk that the cumulative reward will be low. If the
agent uses only greedy strategy, he might also get stuck on low reward. The key question of RL is what portion
of time should be dedicated to exploration and what portion of time should be dedicated to exploitation (based
on knowledge accumulated so far).

1.3.1 Q-learning

Q-learning is a model free off-policy RL algorithm and therefore is used when we do not have environment
model at disposal. This algorithm works with Q-function (Definition 1.2.3). Q-function satisfies equation (1.3).
The core of Q-learning is based on Bellman equation for Q-function (1.2). The Q-learning algorithm updates
Q-function via the weighted average of the current value of Q-function, Qold, and the maximum expected future
reward

Qnew(st, at) = Qold(st, at) + α[rt + γmax
a∈A

Qold(st+1, a) − Qold(st, at)], (1.4)

where α ∈ (0, 1] is learning rate that determines weight of newly gained information and expression in brackets
behind α is called temporal difference. If learning rate is close to 1, the agent takes into account only recently
gained information, if it is close to 0, the agent ignores it i.e. learns nothing. Finally, when algorithm con-
verges, we find optimal policy given the knowledge gathered using equation (1.3). An algorithm for Q-learning
is presented below.

Algorithm 1 - Q-learning

input - initial Q-function Qold, reward function r, learning rate α, factor γ, terminal state sterm, initial state sstart

and max_iter as maximum number of iterations of t.
set initial state s0 = sstart

set time t = 0
while t < max_iter

if st = sterm

set st to sstart

end if
choose action at and get following state st+1.
Qnew(st, at) = Qold(st, at) + α(rt + γmaxat+1 Qold(st+1, at+1) − Qold(st, at))
Qold(st, at) = Qnew(st, at)
t = t + 1

end while

1.3.2 Deep Q-learning

In practical applications we often deal with large or continuous state space and Algorithm 1 is not viable due to
computational complexity. In that case deep Q-learning may be of help. The algorithm has similar structure as
simple Q-learning and update rule is also derived from Bellman equation.

CHAPTER 1. PRELIMINARIES 12

In contrast with regular Q-learning, where we save Qold values into a table, Deep Q-learning uses neural net-
work to estimate them. Neural networks will be described in further chapters, however the basic idea is that
they function as a model with which we assign each state its Q-values (Figure 1.2) [9]. The information about
the Q-function is saved in parameters of neural network. Pseudocode is shown in Algorithm 2 [12]. The learn-
ing rate α mentioned in Q-learning is removed and replaced by similar parameter in neural network training
process mentioned in the next chapter instead. The meaning of other parameters is the same as in Q-learning.
Details of neural networks such as loss function and network training will be discussed in the next chapter.
Deep Q-learning also includes several new parameters such as train interval, batch and replaymemory.

Train interval is a number of iterations, after which training of the neural network happens i.e if train interval is
equal to 10, training happens every 10 iterations. Replaymemory is a set of transitions (st, at, st+1, rt) recorded
in a memory and batch is a randomly selected sample of transitions from replaymemory. Size of this subset
is denoted as batch size in pseudocode in Algorithm 2. The second index j in (st, j, at, j, st+1, j, rt, j) refers to the
j-th position of a transition in a batch chosen at time t.

The reason for using replaymemory is, that if we used consecutive samples instead, these samples might be
correlated. By using larger replay memory this problem is avoided.

Figure 1.2: Neural network example mapping states to Q-values corresponding to each action [9]

CHAPTER 1. PRELIMINARIES 13

Algorithm 2 - Deep Q-learning

input - initialize replay memory D, gamma factor γ, terminal state sterm, starting state sstart, batch size,
train interval n, maximum number of iterations max_iter and neural network estimating Q-function Qold with
random network parameters. Set t = 0 and s0 = sstart.
while t < max_iter

if st = sterm

set st to sstart

end if
choose action at based on estimate given by neural network Qold and get following state st+1 and reward rt.
store transition (st, at, st+1, rt) into D
if t is divisible by n
sample random batch from D
for j = 1:batch size

Qnew(j)=

Qold(st, j, at, j) + (r(st+1, j, at, j, st, j) + γmaxat+1 Qold(st+1, j, at+1) − Qold(st, j, at, j)) if st, j is not terminal
rt, j otherwise

Qold(j) = Qold(st, j, at, j)
end for
Train network on Qnew and Qold by minimizing appropriate loss function

end if
t = t + 1

end while

Chapter 2

Neural Networks

As mentioned in the previous chapter, the neural networks are necessary mathematical model for modelling
the Q-function in Algorithm 2. This chapter is focused on theory behind the neural networks and their training
process.

2.1 Basic introduction

We can describe a single layer neural network with Figure 2.1 [8]. The purpose of this section is to create
predictive model. We have the collected data of input variables X1, X2, X3, X4 and we will use them to calculate
function f (X), that predicts response Y [8]. The system of predicting response is slightly similar to classical

Figure 2.1: Single layer neural network

regression, however the function f (X) might not be linear. We start the mathematical description with activation
function. This function describes the value that comes to Ak neuron of hidden layer.
The value of Ak is then given by equation (2.1)

Ak = g(ωk,0 +

c∑
j=1

ωk, jX j), (2.1)

14

CHAPTER 2. NEURAL NETWORKS 15

where c is a number of input variables (in case of Figure 2.1 c=4), ωk, j network parameters associated with the
k-th neuron and g is an activation function. Finally the value of f (X) is described by equation (2.2)

f (X) = b0 +

K∑
k=1

bkAk = b0 +

K∑
k=1

bkg(ωk,0 +

p∑
j=1

ωk, jX j), (2.2)

where K is number of hidden units (Figure 2.1), bk are additional network parameters associated with these
units and b0 is parameter that plays the role of constant. Neural network, of course, does not have to have a
single hidden layer but can have multiple hidden layers.

2.2 Activation functions

Nowadays the most commonly used function is called "Rectified linear unit - ReLU" given by equation (2.3)
[8]

g(z) =

0 if z < 0
z otherwise.

(2.3)

This activation function restricts the output to positive real numbers. Another option is simple linear function
(2.4). The range of this activation function are the real numbers

q(z) = az + b. (2.4)

In case we choose linear function we get classical regression model (2.5)

f (X) = b0 +

K∑
k=1

bkωk,0 +

p∑
j=1

X j

K∑
k=1

ωk, jbk. (2.5)

This means, that in case we would use Linear activation function for every layer in the network, we would
get just a linear regression model with large amounts of parameters. These activation functions are usually the
same for each layer of neurons. Therefore we call these layers as Relu or Linear layers.

2.3 Convolution and Pooling Layers

These layers are mainly utilized for classification of images. Therefore, instead of input variables Xi and output
f (X) used previously, the input is an image represented by tensor M and output is represented by tensor O.
Convolution layers are used to find features in the image and pooling layers are used to condense large image
into a smaller one [8].

Let the input colored image be represented by m×n×3 (m and n represent the size of and image in this section)
tensor M of pixels with values corresponding to brightness of each pixel (with 3 channels corresponding to
red, green and blue channel). Now let us consider filter that is represented by a k × l × 3 tensor F, where the
dimensions of F are lower or equal than the dimensions of M. For simplicity let us call three coordinates of
the previously mentioned tensors x,y and z. Now let us pad the matrix M with additional matrix elements with
value of 0 in such a way, that there are ⌊ k

2⌋ (where ⌊⌋ is a floor function) additional elements on each side in
the x coordinate and ⌊ l

2⌋ on the top and on the bottom in the y coordinate. This way we get a matrix M2 and
such matrix is called a padded matrix of M. Now we can define a convolution of M2 ∗ F with the padding by
equation (2.6)

O(i, j) =
3∑

k=1

k∑
s=1

l∑
p=1

M2(i − ⌊
k
2
⌋ + s, j − ⌊

l
2
⌋ + p, k)F(s, p, k). (2.6)

We can see, that in this case we get a tensor that is of the same x and y coordinates as an input, but lacks the z
coordinate. In case we do not use the padding. We use the same formula but we limit the i and j coordinates.
The coordinates must satisfy conditions k < i < m−k and l < j < n−l. Result then has dimensions m−2k×n−2l.
Another way we can use the convolution layers to reduce the dimensions is to apply a "strides" parameter to

CHAPTER 2. NEURAL NETWORKS 16

it. This parameter chooses just certain pixels from the image to be presented in the output. As an example
if our strides parameter would be [a, b] we would only use every a − th pixel in the x coordinate and every
b − th pixel in the y coordinate. This method significantly reduces the amount of model parameters and thus
avoids overfitting. In the convolution layer we use pixels as input neurons and elements of filter are used as the
parameters for each separate neuron in the output. This way we get an output image. However we can use more
than one filter in the convolution layer. Output in this case will have an additional dimension representing filter
used. For example, if we use c amount of filters in the convolution layer, the output O will have dimensions of
m × n × c.

Convolution layer is often connected to the ReLu layer after convolution is done. Sometimes this is considered
as a part of the convolution layer and sometimes it is taken as a separate layer, in which case it is called a
detector layer [8].

Pooling layer provides a way to condense a larger image into a smaller summary image, while keeping the most
important features of the image [8]. The type of the pooling layer that will be used is called a Max-pooling
layer and compresses the image in a following way. For each pixel in the input we will find maximum in his
surrounding k× l area as an output at this point. Next, we will apply similar strides method as in the convolution
layer to compress the output [8].

2.4 Epochs, Batches and Dropout rate

Now, we will introduce epochs and batches. In practice we take a data set and split it into training and testing
sets. Next we take training set and choose a batch subset of fixed size and train our network on it. This net-
work has no information about the parameters in the beginning (they are set randomly). Once this happens, we
call this episode an epoch and we are left with the parameters on certain values. For each epoch we choose a
different batch and as the initial parameter values we use the parameter values that were gained from previous
epoch. With increasing number of the epochs we should converge to certain values of network parameters.
Next we will introduce layer dropout and dropout rate. This is a process during which we randomly dropout
certain percentage of neurons in hidden layers and thus temporarily removing them from the network in begin-
ning of each epoch. In the next epoch different neurons are chosen. The rate refers to percentage of neurons
that we leave out in each hidden layer. This process helps with overfitting by adding some noise into data and
improves the performance [8].

2.5 Calculating Loss

When fitting the network parameters for response we try to minimize a value of loss. This loss can take take
for example following shapes - mean squared error loss [8] (2.7) and Huber loss (2.8)

LMS E = (y − f (X))2 (2.7)

LHuber =

1
2 (y − f (X))2 if|y − f (X)| ≤ δ
δ(|y − f (X)| − 1

2δ) otherwise.
(2.8)

In these equation y is datapoint of test set and f (X) is the value neural network predicts in this datapoint. In
case of having more input variables, the loss is averaged over the number of these variables.
Each of the losses have some advantages and disadvantages. Mean squared error loss has the advantage of
having no local minima. However, it does not handle outliers well as it squares their error. On the other hand,
Huber loss handles outliers well at the cost of a larger computational complexity [25].

CHAPTER 2. NEURAL NETWORKS 17

2.6 Training

This section explains the process of optimization of neural network model. As we can see in (2.2) the model
f (X) has network parameters bk, b0 and ωk, j. Next, let us put all the network parameters from equation (2.2)
into a vector w. Let us denote the size of this vector as p. The purpose of training of neural network is to
estimate the values of these network parameters to gain a mathematical model f (X) that can predict Y (Figure
2.1). In deep Q-learning we will use this model to predict a value of the Q function.

Next, we will introduce an algorithm [14] which will be used to update network parameters based on the test
data, predicted responses and the network parameters learned in past epoch. This algorithm is called Adaptive
moment estimation (ADAM). It calculates first moment m and second central moment s of the gradient of the
activation function with respect to its parameters. Afterwards it calculates new values of the parameters. This
cycle happens k times, where k is the size of the training batch. Let us denote vector of collected responses
as Y and vector of collected data for i-th input variable as Xi (out of I input variables). The aforementioned
algorithm is described in Algorithm 3. Recommended values for for parameters β1, β2 and ρ are 0.9, 0.99 and
10−8 respectively. These values are going to be used everywhere, where this algorithm is utilized.

Algorithm 3 - Adaptive Moment Estimation

input - initialize network parameters of past epoch w, Collected data of input variables Xi for ∀i ∈ I, collected
response data Y,loss function g(X1, X2..Xm, y,w), parameters ρ, β1, β2 and learning rate l.
initialize moments m = 0 and s = 0 (size of these vectors is p).
calculate h(X1, X2, ...Xm, y,w) = grad(g(X1, X2, ...Xm, , y,w)) with respect to w.
for n = 1 : k

xni = Xni for ∀i ∈ I
yn = Yn

m = β1m − (1 − β2)h(xn1 , xn2 , ...xnm , yn,w)
s = β1s − (1 − β2)h2(xn1 , xn2 , ...xnm , yn,w)
mnorm =

m
(1−βn

1
)

snorm =
m

(1−βn
2
)

hnorm = l mnorm√
snorm−ρ

w = hnorm
end for

Chapter 3

Knowledge Transfer and exploration
methods

3.1 Knowledge transfer

Let us have the agent interacting with the environment solve an RL task. let there be a source task for which
agent found a model and got nearly optimal policy. Now, the agent is faced with a new target task. The target
task can have different domain (environment) or different goals. Knowledge transfer suggests that the relevant
knowledge from the source task will be used for solving the target task. This is useful in case we managed to
teach agent the source task and expended computational power on it, however afterwards we want to modify
the given the source task in some way and gain new task (target task). This approach will let us get solution
to this target task faster than if we were to start training the target task from the beginning without using any
knowledge.

The computational complexity of Algorithm 1 is quadratic in number of states and linear in number of actions.
The convergence slows as γ → 1. We are interested in reusing past experience and improving the agents
performance in the target task. Let us have two sets of tasks C, and C2 such, that C ⊂ C2. Now we consider any
task T . We say that there is a transfer if, after training agent for task T on C2, it performs equally well or better
than if only trained on C [2].

The main tasks of TL algorithms are to properly define what to transfer, when to transfer and how to transfer. We
want to transfer knowledge in form of Q-function from the source task to the target task. Naturally, knowledge
transfer makes sense only when it is beneficial for the target task, so we need some condition that stops the
most of the knowledge that is not beneficial for the target task from transferring. Lastly, we need to know how
to transfer the knowledge from the source task to the target task. For that we need some type of update rule or
equation, that inserts knowledge into our algorithm.

In following text we will describe TL via Q-function (TTQL) [1] as a temporal difference update of the target
task. It is expected, that a similarity between the source task and the target task implies the similarity of optimal
Q-functions [1].

3.2 Target transfer Q-learning (TTQL)

Let us assume that we have solved source task defined by MDP M1 = (S,A, r1, p1, γ1) with known estimate of
optimal Qπsource(s, a). Now let us consider similar target task defined by MDP M2 = (S,A, r2, p2, γ2). TTQL
algorithm allows us to use knowledge of Qπsource(s, a) to speed up the Q-learning algorithm for the target task
(Knowledge transfer). To perform successful TL one has to make sure that the distance between M1 and M2
is smaller than error given by Q-function of the target task [1]. This knowledge transfer method uses Bellman
error (MNBE) given by equation (3.1)

MNBE(Q(st, at)) = max
at∈A
st∈S

|Q(st, at) − (r(st+1, at, st) + γEst+1 max
at+1∈A

Q(at+1, st+1))|, (3.1)

18

CHAPTER 3. KNOWLEDGE TRANSFER AND EXPLORATION METHODS 19

as condition, If MNBE in the current state is lower for Q-function of the source task, than MNBE of Q-function
that agent constructed so far for the target task, the agent updates Q-function with value from the source task.
He also takes an action based on Q-function of the source task. TTQL algorithm can use a learning rate α, that
descends with each timestep to lower value. The pseudocode is given below [1].

Algorithm 4 - TTQL

input - initiate Q-function of the target task Qold, reward function r, learning rate α, gamma factor γ, terminal
state sterm. Q function of source task Qsource and maximum number of iterations max_iter
set initial state st = sstart

set time t = 0
while t < max_iter

if st = sterm

set st to sstart

end if
αt =

1
t (optional)

if(MNBE(Qsource(st, at)) ≤MNBE(Qt(st, at)))
Qtt = Qsource

else
Qtt = Qold

end if
choose action at and get following state st+1.
Qnew(st, at) = Qold(st, at) + αi(r(st+1, at, st) + γmaxat+1 Qtt(st+1, at+1) − Qold(st, at))
Qold(st, at) = Qnew(st, at)
t = t + 1

end while

CHAPTER 3. KNOWLEDGE TRANSFER AND EXPLORATION METHODS 20

3.3 Deep TTQL

In case we are using Deep Q-learning, the algorithm works in similar way but applied to Algorithm 2. This
means that we also compare Bellman errors to determine if to use Q-function of the source task in the update or
Q-function of the target task. The main difference is, that Qsource is estimated by neural network trained on the
source task and Q function of the target task is estimated by network we are currently in training. The training
is done by Algorithm 3.

Algorithm 5 - Deep TTQL

input - initialize replay memory D, gamma factor γ, terminal states sterm, starting state sstart, batch size b,
train interval n, maximum number of iterations max_iter, neural network estimating Qsource of the source task
with learned network parameters and neural network estimating Qold of the target task with random network
parameters. Set s0 to sstart and t = 0.
while t < max_iter

if st = sterm

set st to sstart

end if
choose action at using probability distribution θ(at|st) of one of the exploration methods (Sections 3.5
to 3.7) estimate given by neural network Qold and get following state st+1 and reward rt.
store transition (st, at, st+1, rt) into D
if t is divisible by n
sample random batch of size b from D
for j = 1:b
if MNBE(Qsource(st, j, at, j) ≤ MNBE(Qold(st, j, at, j))
Q j(st, j, at, j) = Qsource(st, j, at, j)

else
Q j(st, j, at, j) = Qold(st, j, at, j)

end if

Qnew(j) =

Qold(st, j, at, j) + (r(st+1, j, at, j, st, j) + γmaxat+1 Q j(st+1, j, at+1) − Qold(st, j, at, j)) if st, j is not terminal
rt, j otherwise

Qold(j) =Qold(st, j, at, j)
end for
Train network on Qnew and Qold by minimizing the chosen loss function using Algorithm 3 (see Section
2.6).

end if
t = t + 1

end while

3.4 Exploration methods

We have established TL in the previous sections of this chapter. However, the key factor of both TL and RL
is the method used for exploration. As we will discover in later chapters, the choice of such method has large
impact on the performance of TL. These methods focus on describing exploration of state space. It will focus
on defining probability distribution θ(at|st) that determines which action at should agent take from state st based
on Q(at, st) and other method-specific parameters. Ideally, we would want to have optimal widely applicable
method. However even though few works focusing on exploration methods exists [22] [23] [24], none of them
suggest any such solution.

3.5 ϵ-greedy method

This method is based on a simple idea that agent chooses action maximizing the expected reward with proba-
bility 1 − ϵ and any other action with probability ϵ

|A|−1 , where |A| denotes number of actions available in state

CHAPTER 3. KNOWLEDGE TRANSFER AND EXPLORATION METHODS 21

st. can be described by equation (3.2) [13]

θ(at|st) =

1 − ϵ if at = argmaxa∈A Q(st, at)
ϵ
|A|−1 otherwise.

(3.2)

In practice we usually decrease the ϵ over time. The ϵ-greedy method was discovered to be quite effective in
various machine learning problems, despite its simplicity. The problem of this method is that even with infinite
time horizon and every action-state pair visited indefinitely often, it asymptotically prevents the agent from
taking the best action. Another possible issue is for this method to converge too quickly on local optimum [18].

3.6 Boltzmann exploration method

Boltzmann method works with probability distribution that assigns each action probability dependant on ex-
pected reward. This probability distribution is given by equation (3.3) [13]

θ(at|st) =
exp(Q(st ,at)

λ)∑
at∈A exp(Q(st ,at)

λ)
. (3.3)

Parameter λ is called temperature. If this parameter approaches infinity, then θ(at|st) approaches uniform dis-
tribution and if it approaches infinity, then θ(at|st) will approach epsilon greedy method. In other words the
method assigns the highest probability to choosing the best action based on the value of temperature λ. There-
fore we will start out with large λ and decrease it over time which will cause increase in exploitation over time.
The potential problem of this method is over-exploration, which causes algorithm to take longer than we would
want to converge [18].

3.7 Upper confidence bound method

This method relies on counting number of times the action has been taken up until time t. Lets denote this
number as nt(at) for at ∈ A. We can see the probability distribution in equation (3.4) [13]

θ(at|st) =

1 if at = argmaxa∈A(Q(st, at) +
√

2ln(t)
nt(at)

)

0 otherwise.
(3.4)

In this method the basic premise is that less utilized actions are advantaged by adding a bonus to their Q-value
(as in (3.3)) over the more frequently utilized ones and thus utilizing actions that have not been as frequently
utilized before.

Chapter 4

Implementation for a virtual drone

The task for implementation was chosen to be a virtual drone navigating through an environment based on
images from its camera. The virtual environment is modeled in freely accessible Unreal Engine 4 [21] and
connected via Airsim [20] package to Python coding language. The following subsections will describe how
the MDP is implemented. The basic code for Deep Q-learning implemented for the drone was taken from [10]
and complemented by deep TTQL algorithm and several exploration methods, see Chapter 3.

4.1 States and actions

As suggested in section 2.3, the states in this task are represented by images taken from RGB camera of the
drone (see Figure 4.1). These images are then resized to match the pixel size that is later given by the parameter
input_size. This means that each state st is represented by 3 matrices of input_size × input_size pixels, where
each matrix describes red, green or blue color brightness. The considered terminal state in this implementation
is any state, where the drone physically hits an obstacle by getting there. Once this happens, the drone returns
to the initial state and another episode starts.

Figure 4.1: Image from RGB camera in virtual environment

Real drone would be controlled by actions "up","down", "forward", "backward", "left" and "right" indicating
preferred/optimal direction of the drone move. However, this would be a valid idea only if the state was
represented by the spatial coordinates, which is not the case of virtual drone, where the state is given by a
camera image (see Figure 4.1). Let us split the image by a grid with fixed amount of cells, then we can define
an action as moving in the direction of centre of targeted grid cell of an image. It will corresponds to the
physical drone moving in the targeted direction with a constant speed. As a movement of the real drone is
influenced by noise (for instance observation noise, imprecise control, unpredictable and not measured outer
conditions), we shall model that by artificial noise with characteristics reflecting the modelled phenomena.

22

CHAPTER 4. IMPLEMENTATION FOR A VIRTUAL DRONE 23

Thus in our case the number of possible actions in each state st is given by parameter num_actions reflecting
the number of grid cells. This parameter separates camera image into

√
num_actions ×

√
num_actions cells.

For instance, when num_action equals 4, as illustrated in Figure 4.2 i.e. The drone can move in the direction of
the centre of one of four depicted cells (rectangles).

Figure 4.2: Example of an image segmented by a grid into cells corresponding to actions

4.2 Rewards

The virtual drone, as a real one could be, is equipped with a depth of field (DoF) camera. This camera uses a
grayscale image, that shows closer objects darker and further objects brighter. The reward is obtained from this
image as it holds information about distance to the obstacles. The example of such image can be seen in Figure
4.3. The image brightness is scaled between 0 and 1. The reward is calculated from certain rectangular cell of
the image, which is different at every state. Dimensions of this cell are given by an empirical formula (4.1)

xsize = [xm/d],

ysize = [ym/d].
(4.1)

where d is given by (4.2)

d =

50
3n
∑n

i=1 o(i, st) if 50
3
∑n

i=1 o(i, st) > 1
1 otherwise.

(4.2)

In (4.1), (4.2) and (4.3) o(i, st) is the i-th pixel in state st, n is a total number of pixels in the image, xm is
size of the image over x-axis in pixels and ym is size over the y-axis. The centre of the location coordinates
[xlocation, ylocation] by (4.3)

xlocation =

0.9xm(d−1)
2d if 0.9xm(d−1)

2d > 0,
0 otherwise

ylocation =

 ym(d−1)
2d if ym(d−1)

2d > 0,
0 otherwise.

(4.3)

. These formulas are taken from source code [10], The reward in the terminal state is set as -1 to punish drone
for hitting an obstacle.

CHAPTER 4. IMPLEMENTATION FOR A VIRTUAL DRONE 24

Figure 4.3: Example of depth of field image for calculating reward

CHAPTER 4. IMPLEMENTATION FOR A VIRTUAL DRONE 25

4.3 Deep Q-learning and knowledge transfer

The architecture of the neural network used is in Figure 4.4. The layers function is described in Chapter 2.
From an input image we apply a set of five convolution layers with multiple filters and three max-pool layers.
The architecture is taken from [17]. Next, scheme divides into two very similar neural networks with four ReLu
and one linear layers each (see Chapter 2 for details). One network has a single dimensional output val and one
has a num_actions dimensional output adv. The network output is simplified in the scheme. It estimates the
Q-function of the virtual drone and it has a shape of a vector of size num_actions. Each element of the vector
corresponds to estimates Q(st, at) for each action at, given image state st, see more details in equation (4.3)
[17]. As loss we can use either Huber loss or mean squared error (MSE) loss

Q(st, at) = val + adv(at) −
1

num_actions

num_actions∑
at=1

adv(at), (4.4)

where val and adv are outputs called "Value" and "Advantage" of the two subbranches of the neural network in
scheme in Figure 4.4.

Figure 4.4: Network architecture

CHAPTER 4. IMPLEMENTATION FOR A VIRTUAL DRONE 26

As knowledge transfer method we use deep TTQL (Algorithm 5). The architecture of networks for the source
task and the target task is the same as well as most of the other parameters from the Section 4.6. The difference
is that the source task is going to be trained on completely different map than the target task.

4.4 Parameters used

When setting up the experiments we can adjust parameters that are listed in Table. 4.1.

Parameter Explanation
input_size Size of the edge of the rectangle cell of camera image that is taken as state.
num_actions Number of cells input image is divided into i.e. number of possible actions in each state

wait_be f ore_train
Number of iterations where algorithm just collects data before start of neural network
training

max_iter Maximum number of iterations
bu f f er_len Size of the replay memory
batch_size Size of the batch taken from the replay memory

epsilon_saturation
Parameter used in exponential and linear decline of ϵ. Only used in
ϵ-greedy exploration

Q_clip
True/False - if true temporal difference from equation (1.4) is clipped to interval [-1,1]
i.e. values greater than 1 are rounded to 1 and values lower than -1 are rounded to -1

train_interval Number of iterations after which training occurs
gamma Discount factor
dropout rate Dropout rate as mentioned in Chapter 2 applied to neural networks
learning_rate Neural network learning rate l (as mentioned in Algorithm 3)
starting_temperature Start temperature λ in Boltzmann exploration
end_temperature End temperature λ in Boltzmann exploration
end_epsilon The value where ϵ stops descending in ϵ-greedy algorithms

Table 4.1: Table of parameters

Note, that the reason for long names of parameters is so that they have the same name as in the code used for
implementation for a virtual drone.

4.5 ϵ and λ decrease

We have suggested a decrease of ϵ and temperature λ parameters for ϵ-greedy and Boltzmann algorithms from
Chapter 3. Here we will show the used equations calculate either of those parameter for each iteration of t in
each algorithm. For ϵ-greedy algorithm the equations were taken from [10].

ϵ-greedy algorithm with exponential decrease
For this method we will use (4.5)

ϵ =

exp(−2
epsilon_saturation−wait_be f ore_train)(t−wait_be f ore_train) if t > wait_be f ore_train

1 otherwise.
(4.5)

If ϵ should be lower than end_epsilon in any iteration of t it is automatically set to end_epsilon parameter
value.
ϵ-greedy algorithm with linear decrease
For this version of ϵ-greedy algorithm we will use (4.6)

ϵ =

(1 − end_epsilon) · (t−wait_be f ore_train)
(epsilon_saturation−wait_be f ore_train) if t > wait_be f ore_train

1 otherwise.
(4.6)

Again, if ϵ should be lower than end_epsilon in any iteration it is automatically set to end_epsilon parameter
value.

CHAPTER 4. IMPLEMENTATION FOR A VIRTUAL DRONE 27

Boltzmann algorithm
For Boltzmann algorithm we will use (4.7)

λ =

starting_temperature · (1 − t
max_iter) if t > wait_be f ore_train

starting_temperature otherwise.
(4.7)

If temperature λ should ever be lower in any iteration than end_temperature it is set to end_temperature
parameter value.

4.6 Overall algorithm

This section shows scheme of overall algorithm for better illustration of the final algorithm architecture (Figure
4.5). This scheme connects Deep TTQL in algorithm 5 and network training from algorithm 3.

Figure 4.5: Final TTQL architecture

The code is available at: https://drive.google.com/file/d/1XAUx7PfTnY1hwAiSAbeh28tlk2V6OfjK/view?
usp=share_link

Chapter 5

Experiments

This section describes results of TL experiments. The goal of the experiments is to compare exploration meth-
ods in transfer learning. The source task is for the drone to move through an environment with a goal to fly for
as long as possible before hitting an obstacle. The target task for the drone to fly through a different environ-
ment with the same goal i.e. to fly for as long as possible. By performing experiment on the various target tasks
we tested the robustness of each exploration method on this particular family of tasks.

For the source task we use an environment called indoor_pyramid [11], part of which is shown in Figure 5.1, in
every experiment. The knowledge about this environment will be learned using deep Q-learning with ϵ-greedy
algorithm with exponential decline of ϵ. We will test all the exploration methods (see Chapter 3) in conjunction
with Deep Q-learning and Target transfer deep Q-learning (see Chapter 1 and Chapter 3). Boltzmann and ϵ-
greedy algorithms use parameter descents from Section 4.7. The environments generally differ by layout, thus
RGB camera may have different images. Therefore, the environments are sufficiently different to verify transfer
of knowledge.

The output of the experiments will be a graph showing reward accumulated over an episode. The reward is
given by closeness to the obstacles or by hitting them. As mentioned in Section 4.1 episode is considered the
period between drone starting in initial state and hitting an obstacle which is its terminal state. The total number
of iterations (max_iter) will be the same for each exploration method and each single iteration corresponds to
a single time step. However, since each episode may have different amount of steps, depending on time till the
terminal state, drone takes different number of iterations per episode so graphs for each method will end on
different number of episodes. This means that when looking at the graphs we need to realise that each single
line symbolises the same total amount of iterations divided into different amount of episodes i.e. the graphs are
comparable. Table 5.1 contains the exploration methods used in the following experiments.

Notation Explanation

no transfer exponential epsilon greedy
Deep Q-learning (with no transfer) with ϵ-greedy exploration
algorithm and exponential epsilon decrease (See Section 4.7)

transfer linear epsilon greedy
Target Transfer Q-learning with ϵ-greedy exploration
algorithm and linear epsilon decrease (See Section 4.7)

transfer exponential epsilon greedy
Target Transfer Q-learning with ϵ-greedy exploration
algorithm and exponential epsilon decrease (See Section 4.7)

transfer Boltzmann
Target Transfer Q-learning with Boltzmann exploration
algorithm (See Section 4.7)

transfer UCB Target Transfer Q-learning with UCB Algorithm

Table 5.1: Exploration methods used in experiments

28

CHAPTER 5. EXPERIMENTS 29

Figure 5.1: Environment Indoor_pyramid

5.1 Experiment 1

In this experiment we transfer knowledge from the source task in Indoor_pyramid environment seen in Figure
5.1. to the target task in Indoor_techno [11] environment seen in Figure 5.2. The input parameters used for all
exploration methods in the target task and for the source task are in Table 5.2. We used mean squared error loss
(2.7) for training neural network.

Figure 5.2: Environment Indoor_techno

CHAPTER 5. EXPERIMENTS 30

Parameter Value
input_size 103
num_actions 25
wait_be f ore_train 5000
max_iter 150 000
bu f f er_len 10 000
batch_size 32
epsilon_saturation 100 000
Q_clip True
train_interval 16
gamma 0.99
dropout rate 0.1
learning_rate 0.000002
starting_temperature 1
end_temperature 0.05
end_epsilon 0.05

Table 5.2: Values of parameters in Experiment 1

The results of the experiment can be seen in Figure 5.3. The baseline no transfer exponential epsilon greedy
algorithm, has the worst result as expected. It managed to reach cumulative reward over an episode of 35 after
150 000 iterations and 3 753 episodes.

The best performing algorithm in this experiment is transfer UCB algorithm. After 150 000 iterations divided
into around 2000 episodes it managed to reach cumulative reward of 80. It is followed by transfer Boltzmann
algorithm that reached cumulative reward over an episode of roughly 75.

The ϵ-greedy algorithms with transfer performed considerably worse. However we can see, that despite transfer
linear epsilon greedy algorithm needing more episodes than transfer exponential epsilon greedy algorithm, it
managed to reach higher cumulative reward over an episode of 55 compared to an exponential descent result of
38.

Figure 5.3: Results of Experiment 1 - Reward accumulated over episodes with different number of iterations

CHAPTER 5. EXPERIMENTS 31

5.2 Experiment 2

In this experiment we transfer knowledge from the source task in Indoor_pyramid environment seen in Figure
5.1. to the target task in Indoor_twist [11] environment seen in Figure 5.4. The input parameters used for all
exploration methods in the target task and for the source task are in Table 5.3. This time we have used different
learning rate l used for training the Neural network (Algorithm 3), than in Experiment 1. We used mean squared
error loss (2.7) for training neural network.

Figure 5.4: Environment Indoor_twist

Parameter Value
input_size 103
num_actions 25
wait_be f ore_train 5000
max_iter 150 000
bu f f er_len 10 000
batch_size 32
epsilon_saturation 100 000
Q_clip True
train_interval 16
gamma 0.99
dropout rate 0.1
learning_rate 0.00001
starting_temperature 1
end_temperature 0.05
end_epsilon 0.05

Table 5.3: Value of parameters for Experiment 2

The results of the experiment can be seen in Figure 5.5. The baseline no transfer exponential epsilon greedy
algorithm, has the worst result as expected. It managed to reach a cumulative reward of 6 after 150 000 iterations
and 11 654 episodes.

The results of other algorithms are very close to each other. The best performing algorithm in this experiment

CHAPTER 5. EXPERIMENTS 32

is, as in Experiment 1, the transfer UCB algorithm. After 150 000 iterations divided into around 6700 episodes
it managed to reach a cumulative reward of around 13.

The transfer Boltzmann algorithm did worse than transfer exponential epsilon greedy algorithm for most of the
learning process but managed to reach a similar cumulative reward of around 11 in the end. Transfer linear
epsilon greedy algorithm did best out of all the algorithms for part of the learning. However, the cumulative
reward started to descend at around 6000-th episode and in the end this method gave the worst result out of all
the exploration methods. This exploration method only reached a cumulative reward of 6.

Figure 5.5: Results of Experiment 2 - Reward accumulated over episodes with different number of iterations

CHAPTER 5. EXPERIMENTS 33

5.3 Experiment 3

In this experiment we transfer knowledge from the source task in Indoor_pyramid environment seen in Figure
5.1. to the target task in Indoor_complex [11] environment seen in Figure 5.6. The input parameters used for
all exploration methods in the target task and for the source task are in Table 5.4. In comparison with previous
experiments, we used Huber loss (2.8) for training neural network.

Figure 5.6: Environment Indoor_complex

Parameter Value
input_size 103
num_actions 25
wait_be f ore_train 5000
max_iter 150 000
bu f f er_len 10 000
batch_size 32
epsilon_saturation 100 000
Q_clip True
train_interval 16
gamma 0.99
dropout rate 0.1
learning_rate 0.000002
starting_temperature 1
end_temperature 0.05
end_epsilon 0.05

Table 5.4: Values of parameters in Experiment 3

CHAPTER 5. EXPERIMENTS 34

The results of the experiment can be seen in Figure 5.5. The baseline algorithm, no transfer exponential epsilon
greedy algorithm, has the worst result as expected. It managed to reach a cumulative reward of 5 after 150 000
iterations and 8000 episodes.

The best performing algorithm in this experiment is, as in Experiment 1 and 2, the transfer UCB algorithm.
After 150 000 iterations divided into around 3000 episodes it managed to reach a cumulative reward of around
25. The second best is transfer exponential epsilon greedy algorithm. This algorithm managed to reach a
cumulative reward of 22 after 4800 episodes.

Transfer Boltzmann and Transfer linear epsilon greedy algorithms both a reached similar results. The first one
reached a cumulative reward of 16 over 6000 episodes. The second one reached a cumulative reward and of 13
over 6300 episodes.

Figure 5.7: Results of Experiment 3 - Reward accumulated over episodes with different number of iterations

Conclusion

This thesis was focused on exploration methods in knowledge transfer in sequential decision making. In par-
ticular, it focuses on exploration methods for knowledge transfer using Q-learning. Target transfer Q-learning
(TTQL) was used as knowledge transfer algorithm. Both Q-learning and TTQL were generalised into deep Q-
learning and deep TTQL respectively. Furthermore, we have introduced various types of ϵ-greedy, Boltzmann
and UCB exploration methods, that were used in deep TTQL.
These methods were implemented on a task with drone navigating through a room using its RGB and DoF
cameras to avoid obstacles and walls. The benefits of exploration methods in knowledge transfer were evaluated
based on comparison of results obtained using TTQL with different exploration methods and deep Q-learning
using ϵ-greedy method with exponential decrease of parameter ϵ. To asses the knowledge accumulated we used
an accumulated reward over an episode, that indicates how efficient a drone is at avoiding obstacles. We have
conducted three experiments, which illustrate usefulness of exploration methods on different maps given the
task mentioned. These experiments used knowledge of the source task used in an indoor_pyramid environment
on the target tasks of avoiding an obstacle in the following environments. Each with different layout and sets
of images camera can obtain. Furthermore, some parameters were changed in each experiments so the change
in the source task and the target task was significant.

• Experiment 1 - indoor_techno, baseline experiment (Figure 5.2)

• Experiment 2 - indoor_twist (Figure 5.4), higher learning rate

• Experiment 3 - indoor_complex (Figure 5.6), different loss function (Huber loss)

The results for each experiment have confirmed the impact of knowledge transfer, with slightly weaker results
in Experiment 1. As for exploration methods the experiment have consistently shown that UCB method per-
forms the best, with other methods giving worse results that were not as consistent between the experiments.
The issue of ϵ-greedy methods possibly converging too fast to local optimum has not been a problem in our ex-
periments with possible exception of Experiment 1, where ϵ-greedy method with exponential decrease seemed
to converge. As for Boltzmann method the over exploration has not been an issue in any of the experiments.
Future work could focus on improving the parameters decrease equations for Boltzmann and ϵ-greedy explo-
ration methods and involving more exploration methods into the analysis. Furthermore, the drone could, apart
from avoiding obstacles, have an additional task of reaching some area of the map or taking trajectory of certain
shape.

35

Bibliography

[1] Y. Wang, et.al, (2020), Target transfer Q-learning and its convergence analysis, Neurocomputing, 392,11-22

[2] A.Barreto, et.al, (2017), Successor Features for Transfer in Reinforcement Learning in Advances in Neural
Information Processing Systems 30, NIPS 2017

[3] A. Lazaric, (2012). Transfer in Reinforcement Learning: A Framework and a Survey.

[4] L. P. Kaelbling.,M. L. Littman, A. W. Moore, (1996). Reinforcement Learning: A Survey. Journal of
Artificial Intelligence Research, 4, 237–285.

[5] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley 2005

[6] R. Bellman, Dynamic Programming Princeton Univ.Press, 1957.

[7] R.Sutton, A.Barto, (2018) Reinforcement Learning: An Introduction, March 1, Second Edition MIT Press,
Cambridge, MA

[8] G.James, D. Witten,T. Hastie, R. Tibshirani, (2021). An Introduction to Statistical Learning with Applica-
tions in R, Second Edition. Springer New York.

[9] M. Wang, (2020). Deep Q-Learning Tutorial: minDQN. Towards Data Science.
https://towardsdatascience.com/deep-q-learning-tutorial-mindqn-2a4c855abffc

[10] A. Anwar, (2020). Pedra - Programmable Engine for Drone Reinforcement Learning Ap-
plications. https://towardsdatascience.com/pedra-programmable-engine-for-drone-reinforcement-learning-
applications-5b04423a42dd

[11] A. Anwar, (2019). Deep Reinforcement Learning for Drones in 3D realistic environments.
https://drive.google.com/drive/folders/1w-Il1vHhAcSf9V75y5-dXPUF76-AgbpY

[12] R. Jafari, M. Javidi, (2020). Solving the protein folding problem in hydrophobic-polar model using deep
reinforcement learning. SN Applied Sciences. 2. 10.1007/s42452-020-2012-0.

[13] F. Hůla, (2018). Bc. [Master´s Thesis].

[14] S. Ruder, (2020, March 20). An overview of gradient descent optimization algorithms,
https://ruder.io/optimizing-gradient-descent/index.htmladam

[15] M. Otterlo, M. Wiering, (2012). Reinforcement Learning and Markov Decision Processes. Reinforcement
Learning: State of the Art. 3-42. 10.1007/978-3-642-27645-3_1.

[16] J.Torres, (2020, June 11). The Bellman Equation. https://towardsdatascience.com/the-bellman-equation-
59258a0d3fa7

[17] A. Anwar ,A. Raychowdhury, (2019). Autonomous Navigation via Deep Reinforcement Learning for
Resource Constraint Edge Nodes using Transfer Learning, arXiv:1910.05547.

[18] S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, D. Precup, (2021). A Survey of Exploration Methods in
Reinforcement Learning, arXiv:2109.00157.

[19] R. Jagtap, (2020). Dynamic Programming in RL. https://towardsdatascience.com/dynamic-programming-
in-rl-52b44b3d4965

36

BIBLIOGRAPHY 37

[20] Microsoft Research created simulation platform for AI research and experimentation. (2017).

[21] 3D computer graphics game engine developed by Epic Games. (2012).

[22] M. Gimelfarb, A. Barreto, S. Sanner, C.-G. Lee (2021). Risk-aware transfer in reinforcement learning
using successor features, arXiv:2105.14127.

[23] D. Pathak, D. Gandhi and A. Gupta (2019). Self-Supervised Exploration via Disagreement. In Proceedings
of Machine Learning Research 97:5062-5071

[24] I. Osband, B. Van Roy and Z. Wen (2016). Generalization and Exploration via Randomized Value Func-
tions, ICML’16: Proceedings of the 33rd Int. Conference on International Conference on Machine Learn-
ing.

[25] N.Kapoor (2020), Loss functions - when to use which one. https://www.numpyninja.com/post/loss-
functions-when-to-use-which-one

