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Abstract

The work done in this thesis primarily deals with the description of a Speaker Identification system, a type of
Speaker Recognition system. Theoretically, It mainly focuses on the different configurations, acoustic
analysis, and methods, where the main attention is given to GMM-UBM with i-vector, and current baseline
deep learning methods, namely, X-vector and ECAPA-TDNN.
The practical part deals with implementing a Speaker identification pipeline based on the specific task
assigned by MAMA AI. It consists of implementing a pipeline using an open-source speech toolkit,
SpeechBrain. Pre-trained models were tested for various test cases the best-performing model was selected.
The model has then experimented under varying scenarios namely, performance against varying lengths of
audio samples, performance against noisy data (non-intelligible and intelligible), performance against
various languages, and performance against artificially generated audio samples. The selected model,
ECAPA-TDNN, performed excellently for all of these scenarios, with the lowest IR (%) being no less than
70% (apart from the final experimentation, where IR values were lower, but is favorable based on the
experimentation circumstances) and was concluded to be used in the final Speaker Identification pipeline.
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1.  Introduction

Biometric recognition refers to identifying a person based on the unique traits present in all people. However,
amongst the popular recognition methods such as fingerprint scanners and face recognition, the most robust
and easily acquired form is speech recognition. We refer to such methods/systems as Speaker Recognition
[1]. Not only is speaking one of the fundamental parts of human interaction, but a person’s voice can express
a person’s individual traits due to varying auditory factors such as the vocal tract resonance, individual pitch,
and other unique “quirks” people may have such as various manners of speaking and regionally dependant
accents. Speaker Recognition also only requires no more than a simple microphone, adding more to its
simplicity. Such technology is useful in cases such as bank transactions, and other auditory banking tasks,
security and authorization purposes, and even for surveillance [1], [5].

2. Speaker Recognition

Speaker recognition generally refers to two separate tasks: Speaker verification and Speaker identification.
Speaker Verification involves identifying a speaker’s voice with their claimed identity. In contrast to this,
Speaker Identification involves using a speaker’s voice sample and comparing with all stored samples in the
voice database, which results in higher time complexity. As such, Speaker Verification systems are utilized
strictly for situations where single user verification is needed such as bank authorization given their name.
This thesis is focused on Speaker Identification, and it aims to explore the process behind it, including the
audio processing and the state-of-the-art pattern recognition and machine learning techniques used for
classification [3],[5] and an implementation of such a system based on the survey.

2.1. Speaker Identification

Speaker identification is a process that can be defined as a system that utilizes the voice characteristics of a
speaker that best matches a person from a given pool of known speakers.  The complexity of such a process
depends on the number of the already stored known speakers in the system. This system can be derived into
two parts: open-set and closed-set identification. It can then be further derived into text-dependent and
text-independent [1],[2].

There are various steps involved in the process of Speaker Identification. Firstly, it contains two major parts,
training, and testing. In the training phase, all the voice samples from known users in the pool are used to
train specific “voice models” for each speaker. When the system is given a voice sample of an unknown
person, it calculates the degree of similarity with each model present in the database and identifies the person
based on the highest degree selected [2],[5].

2.1.1. Applications of a speaker identification system

There are several use cases for a speaker identification system, but mainly they are utilized in the area of
authentication, surveillance, and forensics [2]. Users are able to authenticate themselves using speaker
identification systems, depreciating previous methods such as PINs or passwords and providing a more
secure and robust method using the unique attributes in one’s voice [2].
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While collecting data using auditory samples, Speaker Identification technologies may be useful for filtering
out specific people of interest, thereby making their discovery significantly more efficient [3].
Speaker Identification Systems may also be used for simple forensics in criminal cases, making identifying
criminals easier and assisting in evidence production at the court [3].

2.1.2. Open and closed set settings

Under a closed-set setting, the system always results by matching the unknown voice sample with at least
one model present in the database; it is expected that under this type of setting, speakers from outside the
domain of the speaker database are not expected to appear. Therefore, such a setting is useful for a small
group of people. In broader areas with more people, open-set settings are preferred [2].

Under an open-set setting, after calculating the degree of similarity of the unknown voice sample, the degree
is then compared with a threshold value and only permitted if it is below it [2]. Refer to Figures 1 and 2 for
visualization.

Figure 1: Closed-set [right] and Open-set [left]

2.1.3. Text-dependent and text-independent

In the case of text-dependent Speaker Identification, an utterance is particularly requested when training by
the speaker, and during testing, the utterance must be repeated for identification by the unknown speaker.
This is generally a more reliable but more complex method compared to the text-independent method since it
requires the need for a speech recognition system as well [2],[1].

Text-independent Speaker Identification primarily relies solely on the unique voice features extracted from a
voice sample given by the unknown speaker and thus does not require the unknown speaker to adhere to
anything specific. However, during training, more rigorous and higher-quality voice samples may be
required to ensure the correct classification during testing. The voice sample provided during testing by the
unknown speaker generally also is required to be of higher quality and more detailed than for the case with
text-dependent Speaker Identification  [2],[1].
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2.2. Acoustic Analysis.

2.2.1 Biology of human voice production.

Sound is produced through vibrations, which causes the air molecules to oscillate which causes changes in
the air pressure and produces a wave. Speech produced by us humans is due to the vibrations in our vocal
cords. The contraction and relaxation of the muscles in the vocal cords and the wideness of the slit present in
the middle are the factors that allow us to produce intricate sounds by simply moving those muscles as
needed [4].

There are three parts that are involved in sound production in humans, namely, the lungs, the larynx (voice
box), and the articulators. Vocal cords are a reference to the folds present in the voice box. The lungs, acting
as “pumps”, push out air which is then moderated by the muscles present in the larynx. This results in sound
with various frequencies, pitches, and resonances. Due to the involvement of three various parts, each and
every slight variation, be it the frequency or the length of the vocal cords present, produces different sounds
which is the factor utilized for speaker identification [4].

Figure 2: The structure of the human throat. [4]

The varying shapes of the vocal cords are the main factor for the uniqueness present for everyone, and this
feature, namely the vocal cords resonance (also called formants [5]) and “Thus, the vocal tract shape can be
estimated from the spectral shape (e.g., formant location and spectral tilt) of the voice signal.” [5].

2.2.2. Representation of audio signals

Sounds that are produced and recorded are analog signals. They can be classified into many various types,
such as periodic and aperiodic, simple and complex, continuous and discrete, and so on. For the digital
analysis of audio, the conversion of the received signals into the digital form is a necessary step for Speaker
Identification. This is generally accomplished by an Analog-Digital-Converter (ADC). ADCs are systems
that take in analog signals, such as audio signals from a microphone, and convert them into digital signals to
process on a computer [6].
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Figure 3: The speech signal of the utterance “will we ever forget” [6].

The most effective way to represent a given audio signal would be as feature vectors. The goal of the
front-end part of the Speaker Identification system is to isolate effective information that represents the
human voice and represent the signal at a low dimensional level [8].
Audio signals are generally presented as spectrograms before going through the backend. To obtain these
spectrograms, a few pre-processing methods are commonly applied to the audio signal [1]. The most
common procedure is as follows:

1. Digitization: Audio signals are present as continuous in nature, therefore we need to convert them to
discrete for further analysis. Quantization is a commonly used technique where the signal is divided
into finite intervals with the goal of mapping continuous infinite values to a set of discrete values [8].

2. Pre-emphasis: Simply put, this part of the process emphasizes the higher frequencies in a given
waveform by amplifying them. This is done by using a simple high-pass filter,

(1)𝑦(𝑡) = 𝑥(𝑡) − 0. 97𝑥(𝑡 − 1)       
Where x(t) is the input signal and y(t) is the resulting signal and the value of 0.97 is commonly used
as a coefficient. [1]

3. Framing: The division of the waveform into fixed segments is known as framing. The typical
duration is 25 ms, each one generated every 10 ms [1]. Each frame is also multiplied with a
windowing function to ensure a smooth and artifact-free spectrum [1]. The most commonly used one
is Hamming window:

ω(𝑛) = 0. 54 − 0. 46𝑐𝑜𝑠(2π𝑛 ÷ 𝑁 − 1)                                                   (2)
Where N is the number of data in each frame and n = 0,1,2… N-1 [8]

4. Voice Activity Detection: To emphasize on speech data and also improve CPU processing
efficiency, silent parts from the audio waveform are removed. Experiments [8] suggest that
zero-crossing rate and short-time energy are the two useful ways to distinguish silence in a given
audio waveform.
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2.2.3. Feature Extraction

The aim of this part of the system is to convert the provided speech signal into a parametric form for further
processing and analysis. We need to extract speaker-specific features from each frame [1]. The most
common feature is the Mel-Frequency Cepstral Coefficients (MFCCs), but others such as Linear Prediction
Coefficients (LPCs), which are directly derived from the speaker model, Perceptual Linear Prediction (PLP)
coefficients, are utilized [1][5][6][8].

According to research in [7], the main basis for the extraction of features was the variations in pitch, and in
addition to that, other parameters such as individual word durations, the spectral gradient, and the voice
source, which represent the glottal-based vocal effects, the voice onset time, which is the length of time
between stop release and voice onset. Models based on the cepstrum, such as the linear prediction cepstral
coefficients (LPCCs) and the MFCCs performed better than other coefficients [7].

2.2.3.1 Mel-Frequency Cepstral Coefficients

MFCCs are commonly utilized as they represent the auditory perception of the human ear really well [8].
The resultant feature also contains a large number of coefficients which further improves the performance of
a speaker recognition system. The use of the Mel-scale highly assists it to be one of the most popular feature
extraction methods used today.

The procedure of obtaining MFCCs overlaps with the transformations mentioned in the previous section.
The algorithm generally involves framing, windowing, Fast Fourier Transform, Extracting Mel filters,
Taking logs of energies from N filters, and finally, a Discrete Cosine Transform at the very end [8].

1. DFT spectrum: This step allows the conversion from the time domain to the frequency domain. For
each frame, Discrete Fourier Transform (DFT) is applied to obtain the magnitude spectrum.
The algorithm is given by:

𝑋(𝑘) =  
𝑛=0

𝑁 − 1

∑  𝑥(𝑛) 𝑒
− 𝑗2π𝑛𝑘

𝑁 ;  0 ≤ 𝑘 ≤ 𝑁 −  1                                          (3)

Where N is the number of points used for the computation of DFT [9].
2. Mel-scale: The Mel-scale is used to perceive sound the same way humans do. As the human hearing

does not perceive pitch linearly, this scale was introduced to compensate for that and allow for a
better representation. It can be approximated by:

𝑓
𝑀𝑒𝑙

=  2595 𝑙𝑜𝑔
10

1 + 𝑓
700( )                                                             (4)

Where f is the frequency in Hz and the result is the Mel frequency.
While filter banks can be obtained from both the time and frequency domains, for the calculation of
MFCCs, they are commonly obtained from the frequency domain [9].
The mel-filters are obtained by multiplying the magnitude spectrum from equation 3, X(k) by each
of the triangular Mel weighing filters:

𝑠(𝑚) =  
𝑘=0

𝑁−1

∑ 𝑋(𝑘)| |2𝐻
𝑚

(𝑘)⎡⎢⎣
⎤⎥⎦;  0 ≤ 𝑚 ≤ 𝑀 − 1                                         (5)

“where M is the total number of triangular Mel weighting filters [5, 6]. Hm(k) is the weight given to
the kth energy spectrum bin contributing to the mth output band and is expressed as” [9, page 2]:
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Figure 4: Mel filterbanks [35].

3. Discrete Cosine transform (DCT): The final step is to perform a discrete cosine transform to the
obtained Mel frequency coefficients. According to [9] most of the signal is represented by a small
number of MFCC coefficients, which can be extracted by “ignoring the higher-order DCT
components”[9, page 2]. This can be calculated by:

𝑐(𝑛) =  
𝑚=0

𝑀−1 

∑ 𝑙𝑜𝑔
10

(𝑠(𝑚))𝑐𝑜𝑠 π𝑛(𝑚−0.5)
𝑀( );  𝑛 = 0,  1,  2,......  𝐶 − 1                      (6)

Where C represents the number of MFCCs and c(n) represents the resultant cepstral coefficients [9].
Typically, only 12 MFCCs are extracted [1] however, values such as 20 or higher aren’t very
uncommon to observe in many publications regarding speaker recognition systems.

2.2.3.2 Filterbanks

Although MFCCs are a widely popular choice, using simply the Filterbank coefficients in the Step 2 in the
previous sections is becoming a popular choices of recent.A publication [31] discusses that the final DCT
(Step 3 in the previous section) might not be a necessary step when dealing with Deep Neural Networks.
This is due to the fact that the filter banks computations are the values that represent the human perception of
signals, while the final DCF step is mainly done to decorrelate the filter bank coefficients, a step needed for a
method such as the popular Gaussian Mixture Model, but not with Deep Neural Network as they are less
susceptible to highly correlated input. It should also be noted that it is a linear transformation, thereby
discarding non-linear information from the signal which may help deliver better performance.

3. Survey of methods

This section aims to deliver a survey on the methods used for speaker identification, which will be further
utilized in the implementation part of this thesis.
While there have been many different techniques used with various machine learning algorithms, the most
successful usage is:

1) Training a background speaker-independent model, trained with a fairly large and diverse corpus to
serve as an “embedding extractor”.

2) Extracting speaker embeddings from said “embedding extractor” for a particular audio sample of a
unique speaker for either storage in the enrollment phase or testing in the test phase.
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3.1. History of methods

While this thesis will primarily concern itself with the more recent deep learning modeling methods in the
implementation section, I believe it is imperative to describe how the idea of a speaker embedding extraction
technique came to be used with the baseline machine learning techniques used today.
Over time, many modeling techniques have been utilized to produce the background model. The goal is to
obtain a speaker-independent model, which emphasizes the features of the human voice.
They can be largely split into two parts, generative and discriminative.
A popular, depreciated technique used was Vector Quantization (VQ), which famously utilizes the K-means
algorithm [7]. This type of model follows an encoder-decoder type structure, where the encoder encodes a
given feature vector, which is usually based on cepstrum models defined in section 3.4, and quantizes them
into a smaller subset, called a codebook [10]. Each element at index value i is called a “codeword”[10]
which represents the centroids for the particular codebook. The decoder also contains the same codebook,
and given a certain index, outputs the vector in a lookup-table type fashion. For an SR task, a codebook is
generated for each speaker during the training session, and in the testing phase, each input is vector
quantized using the trained codebooks, and the distance between the resultant vectors and the codewords
from known speakers is calculated. The codebook which has the least distance is chosen and the speaker
corresponding to that is outputted as a result. This can be applied in the case of speaker verification, where
the vector is compared against a particular codebook, or in the case of speaker identification where the vector
is compared against every codebook in the database. VQ is an example of a template model, another
example being dynamic time warping (DTW), which was popular prior to the emergence of stochastic
models, in particular, the Gaussian Mixture Model (GMM).

3.1.1 Gaussian Mixture Models (GMM)

Originally proposed by Reynold [11], GMM quickly became one of the most popular and long-running
modeling methods for the Speaker Recognition task.  The feature vectors extracted are expected to follow a
Gaussian distribution, and each distribution, also known as a mixture model, is unique to each speaker
trained in the training phase.

Other clustering techniques such as K-means follow a “hard clustering” format, where it always points a data
point towards one cluster or another, hence no probabilistic estimations. GMM solves the problems where
clusters overlap each other, see Fig 3, by using a probabilistic estimate for some unknown data point. Each
cluster is referred to as a “Mixture model”. [12] For the task of speaker identification, each model represents
the vocal characteristics of a particular speaker,

Each Mixture model is represented by three distinct parameters [11]:
μ - the mean, defining the center.
∑ - the covariance matrix, which defines the “shape” of the cluster
wk - Some mixture weight

Where it is true for all mixture weights belonging to N mixture models:

𝑘=1

𝑀

∑ 𝑤
𝑘

= 1                                                                             (7)
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Therefore, the Gaussian density function can be formulated as

𝑝(𝑥 | λ) =  
𝑘 = 1

𝑀

∑ 𝑤
𝑘
𝑁(𝑥 | µ

𝑘
, Σ

𝑘
)                                                       (8)

Where M is the total number of component densities, for some d-dimensional vector x , refers to the𝑤
𝑘

mixture weight, and the multivariate gaussian function is given by:

𝑁(𝑥 | µ
𝑘
, Σ

𝑘
)  = 1

(2π)𝑑/2 Σ
𝑘| |1/2 𝑒𝑥𝑝 − 1

2 (𝑥 − µ
𝑘

)'Σ
𝑘
−1(𝑥 − µ

𝑘
)

⎰
⎱

⎱
⎰                            (9) 

Where is the mean vector and is the covariance matrix for mixture model k, and represents theµ
𝑘

Σ
𝑘

λ

combination of all mixture models and their respective components.

The training phase of a GMM-based architecture for some unknown speaker 𝜽 is a parameter estimation task
with the goal of estimating parameters for model 𝜽. There are numerous ways to accomplish this task, but
according to [11], the most common and well-established method is maximum likelihood estimation.

Given some training vector X, the estimation formula is as follows:

) (10)𝑝(𝑋 | 𝜽) =  
𝑖=1

𝑁

∏ 𝑝(𝑥
𝑖
 | 𝜽

Where belongs to a given set of training vectors X = { , ….. }.𝑥
𝑖

𝑥
1

𝑥
2

𝑥
𝑁

An iterative algorithm, namely, the expectation-maximization (EM) algorithm is used, with some initial
model set as t which is utilized to generate a new model t+1 until convergence, under the restriction [11]:𝜽 𝜽

11)𝑝(𝑋 | 𝜽
𝑡+1

) ≥  𝑝(𝑋 | 𝜽
𝑡
)                                                                       (

Where t represents the iteration, and therefore, can also be terminated by some convergence threshold t’.
Each iteration, the mean, the variances, and the mixture weight for the model are updated using re-estimation
formulas [11].
Means:

(12)µ
𝑘

= 𝑖 =1

𝑁

∑  𝑝(𝑘 | 𝑥
𝑖
, 𝜽)𝑥

𝑖

𝑖 =1

𝑁

∑  𝑝(𝑘 | 𝑥
𝑖
, 𝜽)

     

Variances:
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𝑘

2
= 𝑖 =1

𝑁

∑  𝑝(𝑘 | 𝑥
𝑖
, 𝜽)𝑥

𝑖
2

𝑖 =1

𝑁

∑  𝑝(𝑘 | 𝑥
𝑖
, 𝜽)

− µ
𝑖

2
                                                                           (13)

And the mixture weight is calculated by:

(14)𝑤
𝑘

=  1
𝑁

𝑖=1

𝑁

∑ 𝑝(𝑘 |𝑥
𝑖
,  𝜽)                                                                             

The a posteriori probability for some speaker class k is given by:
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Where K is a pre-selected order of the mixture.
Given a set of M speakers in some database where M = {𝜆1, 𝜆2, …. 𝜆M} and given a sequence of test vectors
X = { , ,….. }, for the task of identification in the testing phase, the classification can be performed by:𝑥

1
𝑥

2
𝑥

𝑁

𝑦 =  𝐴𝑟𝑔𝑚𝑎𝑥 
𝑖=1

𝑁

∑ 𝑙𝑜𝑔 𝑝(𝑥
𝑖
 | 𝜆

𝑘
)                                                                 (16) 

3.1.2 Universal Background Model (UBM) and GMM-UBM.

While the GMM alone is a powerful statistical technique, training a specific GMM for each speaker in a
database can be resource hungry and requires a lot of speaker-specific data [13]. To combat this issue, a
general speaker-independent model named the Universal Background Model (UBM) was formally
introduced in the publication [15].

UBM is a model created using a large quantity of data with the goal of representing the distribution of speech
characteristics. It can be, and is generally, gender-specific and is trained using the EM algorithm. [14]
Similar to GMM, speaker-specific models are extracted but rather than initiating an iterative algorithm from
scratch, the model parameters are estimated using Bayes adaptation techniques using the UBM model. This
has proven to perform better than the usual GMM approach and also allows for faster backend processing
[15].

The pipeline for a GMM-UBM follows the three-phase structure described in earlier sections:
1) Training: A large UBM is trained for usually around 512 to 2048 mixtures, using the EM algorithm

described in section 4.1.1, and trained parameters are outputted.
2) Enrollment: For each speaker to be enrolled, speaker-dependent model parameters are estimated

using Bayes adaptation methods.
3) Testing: Scoring is done for the Speaker Identification system.

The process of generating the UBM model is similar to the speaker-dependent model training described in
section 4.1.1. The adaptation in the enrollment phase is done using the Maximum a Posteriori Adaptation
(MAP) method [15]. The trained parameters obtained from the UBM are used as initial values and using
MAP, the mean, variances, and mixture weight for specific speakers using the speech vectors provided for
the enrollment are calculated. [15] After the speaker-dependent models are generated, the identification is
done as described in equation (16).
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Figure 5: Pipeline for GMM-UBM system

3.1.3 Supervectors and identity vector

GMMs provide a frame-level representation of an audio sample, which tends to disregard the
channel/session distortions present in various speech signals. The channel variability can be defined as the
differences in the utterances belonging to the same speaker but in different recording sessions. Research [18]
suggests the use of latent factor analysis compensates for the variabilities. One such approach is to stack the
means of the mixture components [18, 19].

The model based on Joint Factor Analysis (JFA) accomplishes this by separating the speaker and channel
variabilities into two subspaces [17]. The main way of obtaining this model is by mapping each GMM
component in a model adapted from the UBM, using a kernel mapping function which then results in
fixed-length vectors. These vectors are then combined together to obtain a high-dimensional supervector
[19]. It is defined as [17]:

𝑠 =  𝑚 +  𝑉𝑦 +  𝑈𝑥 +  𝐷𝑥                                                               (17)

Where m is a speaker- and channel-independent supervector generated from the UBM, V, U, and D are eigen
speaker, eigenchannel and residual matrices respectively, and x,y,z are speaker, channel and residual factors,
respectively. The process of utilizing this model was to first estimate the subspace matrices (V, U, and D
matrices) using sufficient labeled data, and then approximate the speaker and channel factors (x,y, and z)
forming a speaker-dependent vector for a particular speaker utterance. The unique feature of the JFA model
is that the speaker subspace is isolated from the channel subspace. However, in an experiment described in
[17], the channel factors were found to contain important speaker-related information as well, which may
dwarf the performance of the SR system. As a result, a new low-dimensional model based on "total
variability space", which combined both the speaker and channel subspace, was introduced, named the
“i-vector” [17]. Due to its low dimensionality and post-extraction channel compensation (as total variability
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space is susceptible to channel distortions) [17], this model remained the best performing model for the task
of speaker recognition for a long time. The model is defined as:

𝑠 =  𝑚 +  𝑇𝑤                                                                          (18)

Where m is a speaker- and channel-independent supervector generated from the UBM, T is the total
variability matrix obtained using a similar process as the eigenspeaker matrix described in the JFA model,
with the difference being the assumption that every utterance from a single speaker belongs to different
speakers and w is the total variability factor [17].

As described in [17], The total factor w is obtained using Baum-Welch statistics, which are extracted using
the UBM. Given a speech utterance u and an UBM 𝜆 with C components defined in D dimension:

𝑤 = (𝐼 +  𝑇𝑡Σ−1𝑁(𝑢)𝑇)−1𝑇𝑡Σ−1𝐹(𝑢)                                                   (19) 

Where, where Σ of dimension CD × CD represents the covariance matrix modeling the residual variability,
N(u) and F(u) being the Baum-Welch statistics of a given utterance u, in particular, N(u) is a CD × CD
diagonal matrix having the diagonal blocks as NcI where c = {1, 2, . . . , C} matrix of size D and F(u) is of
dimension CD × 1 and is obtained by stacking up all first-order Baum-Welch statistics F’c and T is the total
variability matrix.

To handle the channel distortions, two post-processing techniques were tested in [17], namely, the
within-class covariance normalization (WCCN) and linear discriminant analysis (LDA), with the
advantage of LDA being the minimization of the removal of relevant speaker information and
maximization of the inter-class variation, while disregarding the directions in space, compared to
WCCN, which compensates for inter-class variation while preserving the directions. The best
results were found when LDA and WCCN were combined [17]. For classification, two methods,
cosine distance formulation (CDF) and Probabilistic Linear Discriminant Analysis (PLDA) were
used, with CDF producing the best results [17].

3.1.4. Deep-vector
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Figure 6: DNN model for d-vector extraction [25]

Deep vector or more commonly referred to as D-vector is one of the very first DNN-based embeddings to be
introduced [21]. While inspired by the i-vector, they are fundamentally different. As described in the
previous sections, i-vectors are obtained from an unsupervised, generative model, while d-vectors are
obtained from a supervised, discriminative model, specifically a neural network. These vectors are better
performing than the former [25] and have various advantages, namely,

● it represents speaker-relevant information by reducing speaker-irrelevant variance,
● Can be produced given very short utterances.

The architecture trained in order to extract the d-vectors is given in Figure, where the inputs are frame-level
40-dimensional log filterbank energies stacked, and the resultant vector is N-dimensional, where N
corresponds to the number of speakers in the training data, and the only non-zero component in the vector
refers to the identity of the speaker [25]. Then, every frame from a given utterance belonging to a speaker
from outside the training dataset, is propagated through the trained neural network in a feedforward fashion,
and the activations in the final activation layer are extracted as the new representation of the speaker, that is,
the d-vector. The extracted vector is then stored in some database, serving as a speaker-dependent model.
The evaluation is then performed in a similar fashion as the i-vector, using some similarity matching
technique present in the backend part of the speaker recognition system.

In the experiment performed in [25], The background DNN model is trained using the dropout strategy,
which prevents overfitting by deploying regularization techniques. Only the last two layers are configured to
drop 0.5 activations. Rectified linear units were used as activation functions, and 0.001 as the value for the
learning rate with exponential decay set to 0.1 for every 5M steps. The final model consisted of 600,000
parameters which are comparable to “the smallest baseline i-vector system”[25]. The results mentioned that
the d-vector system outperformed the i-vector in both noisy and clean environments, and was also quite
robust to additive noise.

3.2. Current Baseline Methods

Over the years, due to advancements made in the field of machine learning and the increasing performance
of modern computer hardware [7], Deep Neural Networks (DNNs) have become quite popular, especially in
the field of image and speech recognition, and is an active area of research in the field of speaker
recognition. In recent years, many speaker recognition competitions such as the NIST Speaker Recognition
Evaluation (NIST SRE), VoxCeleb Speaker Recognition Challenge, etc have reported their best performing
models to be based on DNN architectures.
The main point of inception for the utilization of DNNs for the task of speaker recognition originally came
from their feature extraction capabilities [21], which were applied alongside the i-vector method, yielding
impressive results which outperformed the traditional GMM-UBM model [7, 21]. Motivated by this success,
numerous speaker recognition methods based on deep neural networks were introduced, delivering
state-of-the-art performance even under challenging conditions [22, 23]. Inspired by the i-vector method,
deep speaker embeddings-based models such as the d-vector and x-vector were introduced [21, 24, 25],
which further gave inspiration to models as such the “Emphasized Channel Attention, Propagation and
Aggregation in a Time Delay Neural Network” (ECAPA-TDNN) [23, 26]. However, most of these
implementations were built on top of baseline architectures such as the time delay neural network, residual
networks, and convolutional neural networks.
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3.2.2. X-vector

A new model was introduced in [24]. Compared to the frame-level representation for the d-vector, This
model aims to represent the entire utterance [24]. The extraction of the embedding for an enrolled speaker is
similar to the way described for the d-vector, with the differences lying in the architecture of the model and
the specific layer that is extracted. This architecture builds upon the baseline time-delay neural network.
Figure 7 describes the architecture, where the DNN is split into groups of layers, the first five layers operate
on a frame-level using time-delay architecture, where layers of size 512 to 1536 are outputted. Then, a
statistics pooling layer aggregates the output of the frame-level operational layers, then passes through two
hidden layers of dimensions 512 and 300 respectively, which can be used as “speaker embeddings”. Finally,
the final layer is a softmax classification layer. The final model consists of 4.4 million parameters. [24]

Figure 7: The architecture of the DNN for embedding extraction. The layer extracted comes after the
statistics pooling, namely, the embedding b [24].

The input consists of 20-dimensional MFCCs with a frame length of 25ms, which are normalized to up to 3
seconds using a sliding window. A VAD is then used to isolate speech frames from the non-speech ones.
Compared to the d-vector input, the frames are not stacked but rather handled by layers inspired by the
time-delay neural network (the first five layers). The same PLDA backend used for the i-vectors was utilized
here.

The results produced were quite competitive with the i-vector results, with the i-vectors performing better for
longer utterances however, the embeddings generated using this architecture produced better results for
shorter utterances. [24] It was also noted in the conclusion that the PLDA backend may not be the best
method for matching the embeddings generated by a Deep Neural Network.

This method was then later improved upon even further in [31], where the embeddings extracted were
officially coined as “x-vectors”. One of the biggest differences in the publication [31] was the idea of neural
networks being able to handle larger amounts of data more effectively than the earlier baselines. Therefore,
an expensive way of introducing noise in the training data was used, by simply augmenting the training data
with noise audio files [31]. The architecture used in [31] is detailed below:
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Table 1: X-vector architecture, where the embeddings are extracted via segment 6, and N in the softmax layer
represents the number of speakers [31].

The results reported that the x-vectors performed better than the then baseline i-vector, tested on the same
data, producing a new industry standard. It should also be noted that the i-vector utilized for comparison in
[31] was the best performing version at the time which even utilized transcribed speech for improved
performance, while on the other the x-vector did not, and still managed to outperform the baseline method.

3.2.3. Emphasized Channel Attention, Propagation and Aggregation in TDNN

While the x-vector implementation showed promising results [21, 24], several improvements were made to
the original implementation. For the VOiCES 2019 Challenge, three “extended” X-vector systems were
introduced which outperform the original implementation [28]. Surveying every improved model would be a
difficult task due to the time constraints, but one interesting improved implementation will be discussed in
this section. [26] introduces a novel approach where it highlights the shortcomings of the x-vector and
manages to outperform the state-of-the-art structure.

Figure 8 provides the topology of the newly proposed model:

Figure 8: The topology of the proposed ECAPA-TDNN architecture. k and d stand for kernel size and
dilation respectively, and C and T correspond to the channel and temporal dimension respectively [26].
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The intuition behind this architecture is the improvement on the statistic pooling layer and the introduction of
1-Dimensional Squeeze-Excitation Res2Blocks. [26] Soft self-attention is utilized in recent x-vector
architectures for the calculations for the weight statistics in the temporal pooling layer [26]. Self-attention
mechanism allows the network to focus on relevant frames by giving them higher weights, which can be
interpreted as a Voice Activation Detection (VAD) method discussed in the 3rd chapter of this thesis,
Acoustic Analysis. A multi-headed attention technique, which can be described as running several attention
mechanisms in parallel allowed for the extraction of a wider variety of speaker characteristics as mentioned
in [26]. Due to this, [26] proposed an extension for the temporal attention mechanism to better cater for
speaker characteristics that do not activate at the same time such as e.g. ``speaker-specific properties of
vowels versus speaker-specific properties of consonants.” [31].

Furthermore, the introduction of 1-Dimensional Squeeze-Excitation Res2Blocks (SE-Res2Block) expands
the temporal context, as it has shown to benefit the performance. This method was borrowed from recent
advancements made in computer vision, namely, the “Squeeze-and-Excitation” Networks. These new blocks
essentially are able to better map the global channel interdependencies. The figure below this specific block:

Figure 9: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [16] Conv1D with scale dimension s = 8 expands the

temporal context through kernel size k and dilation spacing d [31].

Another concept introduced was the multiplayer feature aggregation. In the x-vector architecture, only
complex features strongly correlated with the speaker are used from the feature map in the last frame layer,
[26] less complex features can also contribute towards producing robust embeddings. This is done by
aggregating all output feature maps from every SE-Res2Block, which are then processed by a dense layer,
producing features for the attentive statistical pooling layer. Additionally,  residual connections between each
of the SE-Res2Blocks is made for each of the previous blocks, where the sum of the output is served as the
input as another way to exploit multi-layer information, which provided promising results in other
publications [31]. Cosine similarity was used to match the produced speaker embeddings. This architecture
was evaluated against other baselines such as the x-vector and r-vector and showed significant
improvements.
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4. Implementation

This section lists the details of the implementation part of the thesis. The aim for the implementation is to
survey available datasets, utilize the survey done for the acoustic analysis, modeling methods, dataset survey
in the earlier sections to produce an industry standard speaker identification pipeline, which meets the
required task of this thesis.

4.1. Aim

Task for this thesis is to implement a speaker identification system that is catered toward identifying
customers on call. Upon receiving a call from an unknown customer, a bot should be able to utilize this
pipeline to recognize the unknown customer, given their consent, while prioritizing ease of use, and
delivering a quick service for the customer. If the customer’s voiceprint is not stored in the database, the bot
may prompt the customer to record their voice print, for a better telephony experience in the future, and
therefore, the pipeline should be able to produce a voiceprint of the customer and subsequently store it in the
database in real-time.

The proposed system is produced using Python Programming Language, and using an open-source
PyTorch-powered speech toolkit named, SpeechBrain. In the experimentation part of this thesis, a
signal-to-noise ratio concatenation module named, audiolib, found in the Microsoft Scalable Noisy Speech
Dataset (MS-SNSD).

4.2. Technical information

All the scripts in the experimentation section are run on the same computer. The configuration are as follows:

Operating System - Ubuntu 22.04 LTS
CPU - AMD Ryzen 5 5800H (8 physical cores, 16 threads)
Graphic Card  - Nvidia RTX 3070 mobile
RAM - 16 Gb

Since pre-trained models are utilized, they have been trained on some other system.

4.3. SpeechBrain Toolkit

SpeechBrain is an open-source all-in-one speech toolkit[33] based on PyTorch, mainly focusing on deep
learning technology.  This toolkit is aimed towards research and development of speech technologies, such
as speech recognition, speaker recognition, etc. The main advantage of this toolkit is the ease of use,
flexibility and the availability of not only pre-trained models but also recipes to train the models using
state-of-the-art architectures. The biggest advantage of this toolkit is the non-restrictive format for
utilization. The training scripts are easily automated, and hyperparameters are set using .yaml files. The
“Brain” class allows for easy creation of model architectures and data loaders.

For the scope of this thesis, the training recipes and pre-trained models for the X-vector and ECAPA-TDNN
will be utilized.
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4.4. The Architecture of the speaker identification system.

Judging by the nature of the task, a text-independent speaker identification system is proposed under an
open-set configuration.

The system is split into three phases:
1. Training Phase
2. Enrollment Phase
3. Testing Phase

All the three phases go through audio augmentation and feature extraction. While the audio augmentation
may differ based on which phase the system is currently at, the feature extraction remains the same for all the
three phases. The feature extraction is handled by SpeechBrain classes while augmentations are manually
implemented depending on the task at hand.

The training phase produces a speaker-independent model, which is saved in the ‘models’ directory or if
using pre-trained models, is downloaded automatically from HuggingFace database online. For the
enrollment phase, the raw audio signal is processed as needed and is sent through the model which then
produces an embedding for that speaker, which is stored in the ‘database’ directory. Finally, for the testing
phase, the raw audio signal is processed as needed and passed through the model which then produces an
embedding, which is then compared against all the models stored in the ‘database’, using a similarity
technique. The highest similarity score is saved and compared against the pre-set threshold.

Figure 10: Proposed pipeline for the Speaker Identification system.

We have an open-set configuration which expects to encounter speakers during testing which may not belong
in the database. In general, given a set of known speakers S ={S1, S2, ….. SN} where N refers to the total
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number of speakers enrolled in the database, and given some test utterance u from an unknown speaker, The
output for the open-set configuration using some decision-making technique f would be

𝑠' =  𝑚𝑎𝑥 𝑓(𝑢)                                                                           (20) 
𝑠 =  𝑠',     𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝑠' >  θ                                                      (21) 

Where s’ is the speaker with the highest similarity score, is a pre-set threshold described earlier and s isθ
the predicted speaker.

It should be noted that speaker verification is performed in a similar way, the difference being N = 1. A lot of
fundamental techniques are shared between the two systems, therefore it can be hypothesized that techniques
that perform well for speaker verification, perform similarly well for the task of speaker identification [21].

4.4.1. Implementation Structure

This section details the implementation structure of the proposed speaker identification system. The
tree-structure of the project directory is as follows:

- root
- Database
- Models
- Train
- Data

- Enroll
- Identify

- identification.py
- main.py

Where ‘Database’ stores the enrolled embeddings, ‘Models’ stored the trained or pre-trained models, ‘Train’
contains the recipes for training specific models, ‘Data’ consists of two subdirectories, where ‘Enroll’ is the
directory where the audio files for the speakers to be enrolled are stored, and ‘Identify’ is where the audio
file from the unknown speaker will be stored. In addition to the directories above, there are other directories
for experimentations where the results and scripts for the experimentations are stored.

In the identification.py module, the class SpeakerIdentificationSystem is present, which takes in five
arguments,

● db - which refers to the path where the generated embeddings will be stored [Default is ‘Database’ in
root directory; if not found, will create automatically]

● threshold - for setting a custom threshold value for the identification task.
● enroll_prompt - [Default = True],  whether to ask the user for enrollment is not found in the

database.
● logs - [Default = True] toggling logs for the system.

In the main.py module, a class instance of the system defined above is initialized and runs on an endless loop
with 5 second intervals. This script scans the ‘Enroll’ directory every interval and enrolls the speakers into
the database, (note: the title of the audio files will be stored as their identification) and scans the ‘Identify’
directory to identify the unknown speaker or prompt to enroll if not in the system.
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5. Experimentation

The goal of this section is to produce a model by determining the best performing model from the selected
baseline models based on the survey done in the earlier sections, perform a survey of publicly available
datasets, select and calculate other factors of the speaker identification system based on the previous surveys,
and finally experiment under various conditions and optimize the model if needed.

5.1. Experimentation Setup

Two architectures were selected based on the survey of methods, namely,
1) DNN-based based on X-vector
2) DNN-based based on TDNN-ECAPA

The reason for selecting these specific architectures are as follows:
● They are recent methods that have been experimented with and shown impressive results when

compared against other state-of-the-art architectures.
● They had freely available pre-trained models, readily available for usage.
● They were implemented using SpeechBrain that allows for easy experimentation with custom data.

Before the experimentations, it is imperative to declare few elements of the speaker identification system,
namely,

1) The technique for decision making.
2) The method for threshold estimation.
3) The method for the evaluation of the models.

5.1.1 Decision Making

Based on the survey from various publications [1, 17, 21, 23, 24, 25, 27, 28], Cosine Distance
formulation (CDF) is the two most prominent techniques, especially where speaker
embeddings such as the i-vector, and deep speaker embeddings such as x-vector are utilized.

Given two speaker-representation vectors xtarget and xtest, the measure of cosine similarity between
them is calculated as

(22)𝑠𝑐𝑜𝑟𝑒(𝑥
𝑡𝑒𝑠𝑡

, 𝑥
𝑡𝑎𝑟𝑔𝑒𝑡

) =
𝑥

𝑡𝑒𝑠𝑡
 ·  𝑥

𝑡𝑎𝑟𝑔𝑒𝑡

𝑥
𝑡𝑒𝑠𝑡| || | × 𝑥

𝑡𝑎𝑟𝑔𝑒𝑡| || |

5.1.2  Evaluation of performance

The basis of the evaluation of a speaker identification system is usually an identification measure, which
signifies the system’s ability to discriminate between different speakers.
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Given a set of known speakers S ={S1, S2, ….. SN} where N refers to the total number of speakers enrolled in
the database, and SC is the number of correctly predicted speakers, the Identification rate I can be calculated
as:

𝐼 (%) =
𝑆

𝐶

𝑁                                                                               (23) 

Due to the open-set encountering not enrolled speakers, there also is a need to set a threshold. The metrics
used for speaker verification purposes, namely the EER allow the ability to set the ideal threshold.

5.1.3  Threshold Estimation

The threshold estimation is an important factor to consider under the open-set configuration. The optimal
threshold value highly depends on the chosen model and the data the model is being tested on. In this thesis,
for the selected model, a threshold estimation test will be conducted where the optimal value will be
estimated. This will be done by selecting a number of speakers, and enrolling only a part of them into the
system. The remaining speakers will be unauthorized speakers. Then, the selected model will be tested using
the decision making technique described in the earlier section, where the threshold value will fluctuate
between the range of 0 and 100, with 1 increment. To estimate the optimal threshold, two values need to be
recorded from the test, namely, False Acceptance Rate (FAR) and False Rejection Rate (FRR).

a. FAR is defined as the number of unauthorized speakers accepted into the system.
b. FRR is defined as the number of authorized speakers rejected by the system.

At a low threshold value, FAR performs better and as the threshold increases, the FRR performs better. The
point of their intersection is estimated to be the optimal threshold value for the selected model, also known
as the Equal Error Rate (EER).

Figure 11: Example of a FAR vs. FRR graph [33].

5.2. Survey of publicly available datasets

In this section, a brief survey of publicly-available datasets is presented in order to make an educated
selection for the implementation part of this thesis. It is to be noted that this section does not list every
dataset publicly available, but rather the ones that were found either through other publications on Speaker or
Speech recognition or by researching on the internet.
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Table below summarized the datasets, and also lists information regarding those datasets, namely:
● The name of the dataset
● Language
● Sample rate
● The number of speakers available (if provided)
● The availability status, and whether the dataset is freely available or not
● Details on the dataset

Name Language Sample
Rate

Number
of
speakers

Access Details

VoxCeleb 1 & 2 Multilingual 16 Khz 7000+ Free A mix of clean and noisy data; primarily
collected from multi-media sources

LibreSpeech English 16 Khz 2484 Free Very clean data; Audio Book Recordings

TIMIT* English 16 Khz 630 Licensed
[LDC]

Broadband recordings of various
American dialects. The speech was
recorded at TI, transcribed at MIT and
verified and prepared for CD-ROM
production by the National Institute of
Standards and Technology (NIST).

NTIMIT English 16 Khz 630 Licensed
[LDC]

Broadband recordings of various
American dialects. (TIMIT corpus
re-recorded after being transmitted
through various channels)

CABank English
CallHome
Corpus

English 8 Khz 240 Free Mix of noisy and clean data; Telephone
conversation recordings. Each recording
contains two speakers having a
conversation.

The Voices
Obscured in
Complex
Environmental
Settings
(VOiCES)

English 16 Khz 300 Free Noisy data; Recordings in acoustically
challenging environments, with a lot of
reverberations to simulate real-life
scenarios.

VoxForge Multilingual 8 Khz -
44.1 Khz

2000+ Free Random online audio contributions, a mix
of clean and dirty data, however, the
repository really messy (need a lot of
arranging and cleaning)

Mozilla
Common Voice

Multilingual 8 Khz -
44.1 Khz

- Free Random online audio contributions, a mix
of clean and dirty data.

Speaker
Identification
and Verification
Archives (SIVA)

Italian 8 Khz 400+ Licensed
[ELRA]

Telephony speech dataset based on Italian
telephone conversations.

Switchboard-1 English 8 Khz 543 Licensed
[LDC]

American two-sided Telephone speech
corpus collected by Texas Instruments.
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National
Institute of
Standards and
Technology
Speaker
Recognition
Evaluation
(NIST SRE)
(2000 - 2022)

Multilingual 8 Khz - 16
Khz

- Licensed
[LDC]

Training, Evaluation and Test datasets
specially curated by the National Institute
of Standards and Technology (NIST) and
LDC for the NIST Speaker Recognition
Challenges.

RedDots Multilingual 8 Khz -
44.1 Khz

572 Free Random speech recordings collected via
mobile devices from online submissions,
with emphasis on diversity.

English
Language
Speech Database
for Speaker
Recognition
(ELSDSR)

English 16 Khz 22 Free Corpus designed by Technical University
of Denmark (DTU).
Speech recorded under controlled
environment to deliver rich audio from a
limited number of speakers.

Technology,
Entertainment,
Design -
Laboratory of
Informatics of
Le Mans
University
(TED-LIUM)

English 16 Khz - Free Corpus created by collecting
public-speaking presentations posted
online by TED Talks.

* Title derived due to corpus design being a joint effort among the Massachusetts Institute of Technology (MIT), SRI
International (SRI) and Texas Instruments, Inc. (TI)

Table 2: Summaries for the surveyed datasets.

5.2.1. VoxCeleb

A large-scale dataset primarily designed for the task of speaker recognition under noisy and unconstrained
conditions. The samples are multilingual and collected from YouTube. In total, there are over a million
utterances, a total duration of 2000+ hours, with a split of 39% female to 61% male, consisting of more than
7000 speakers, where each segment is at least 3 seconds long. The dataset is freely available for research
purposes, upon sending a form to receive credentials for access [23, 36, 37].

5.2.2. LibreSpeech

A corpus consisting of read English speech, primarily designed training and evaluation for speech
recognition. However, unlike most datasets for speech recognition, LibreSpeech contains a high number of
speakers (2848), which makes it suitable for speaker recognition as well. The data was derived from the
LibriVox project and contains 1000 hours of speech, all sampled at 16 Khz, and noisy segments from the
speech data were filtered out [38]. The dataset is freely available for anyone at OpenSLR [39], using the
identifier SLR12.
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5.2.3. TIMIT

An American read speech corpus consisting of broadband recordings of 630 speakers of eight major dialects
of American English, each reading ten phonetically rich sentences. The corpus was mainly designed for the
task of automatic speech recognition. The sound samples are provided at 16 Khz, and are single channel. The
corpus was designed by the Massachusetts Institute of Technology (MIT), SRI International (SRI) and Texas
Instruments, Inc. (TI). Access to the dataset is not freely available and requires a license through the
Linguistic Data Consortium (LDC) [40]

5.2.4. NTIMIT

This corpus was created by transmitting the TIMIT dataset through a telephone over varying channels as a
telephone bandwidth supplement to the TIMIT dataset. It was developed by NYNEX Science and
Technology Speech Communication Group, and contains similar characteristics to the TIMIT dataset,
including the access to the dataset. [41]

5.2.5. CABank English CallHome Corpus

This is a telephone speech, collected and transcribed by the LDC, primarily for the use in Large Vocabulary
Conversational Speech Recognition (LVCSR), sponsored by the U.S. Department of Defense. This corpus
contains 120 unscripted two-way conversations between native American speakers, with 5 to 10 minutes
long segments. A total of 240 speakers are present, where each segment consists of 2 speakers. The licensing
to the dataset is similar to the previous one.

5.2.6. VOiCES

This creative commons corpus consists of speech segments in acoustically challenging environments with
truth data for the purpose of transcription, denoising and speaker identification. Clean dataset from
LibreSpeech was augmented with acoustic noise samples, primarily focusing on various reverabial
environments. A total of 300 speakers are provided, sampled at 16 Khz. Dataset is freely available for usage
via the Registry of Open Data on AWS [42, 43].

5.2.7. VoxForge

This is a database containing a collection of transcribed speech, submitted through online submissions,
primarily used for speech recognition tasks. A large variety of speech samples are available for various
languages, dialects, sample rate, and containing a mix of both clean and noise speech. All data is very well
labeled. The dataset is available publicly for free [44].

5.2.8. Mozilla Common Voice

This corpus consists of submission by online contributors from around the world. There are specific
datasets available for various languages, and prior to the release of a dataset, it gets validated.
Therefore, it is a fairly reliable source to get quality audio files. There are a lot of 15,234 validated
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hours and about 96 languages. All audio samples are provided at 44 Khz sample rate. There is no
specific task for which the dataset was created, but rather as an open source source for quality audio
samples. There is no distinction between the noisy and clean data. The dataset is available publicly for
free [45].

5.2.9. SIVA

A corpus consisting of telephony data in Italian language, primarily created for the task of speaker
verification. There are more than 2000 calls included in the dataset. This dataset contains a total of 637
speakers, with a split between normal speakers and imposters. All audio samples are sampled at 8 Khz. This
dataset is distributed by the European Language Resources Association (ELRA). [46, 47]

5.2.10. Switchboard-1

A telephony speech corpus consisting of approximately 260 hours of American English speech, collected by
Texas Instruments in 1990, designed for speech recognition and speaker identification. There about 543
speakers present in the dataset, and the audio samples are sampled at 8 Khz. This dataset is distributed by the
LDC [48].

5.2.11. NIST SRE Datasets

The National Institute of Standards and Technology Speaker Recognition (NIST SRE) is a series of speaker
recognition evaluations held by the NIST since 1996. The languages, quality, number of speakers and other
technical details for this dataset provided by them varies vastly depending on the plan for the competition of
that respective year. This dataset is distributed by the LDC [49].

5.2.12. RedDots

This is an english corpus containing short duration audio samples of variable phonetic content. The
recordings are made by having speakers read a large text on their mobile phones, and is expected to contain
rich inter-speaker and intra-speaker variabilities.  Currently, only 62 speakers are available. As the dataset is
primarily aimed towards Speaker Verification, the dataset also contains varying splits of target speakers and
imposters. It should be noted that the dataset is still under production and hopes to expand into a large
dataset. The dataset is freely available for download for research purposes [50].

5.2.13. ELSDSR

ELSDSR is an English language speech database primarily developed for the task of automatic speaker
recognition. It consists of read speech collected by a small group of researchers and students at the Technical
University of Denmark (DTU). There are a total of 22 speakers. The aim for this dataset is to produce rich
audio samples under controlled conditions by a small group of non-native english speakers. The audio
samples are sampled at 16 Khz.  The dataset is freely available for download for research purposes [51].
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5.2.15. TED-LIUM

This corpus was developed by LIUM for Automatic Speech Recognition (ASR), based on the TED Talks.
It is composed of approximately 452 hours of speech, alongside their respective transcripts [52].

5.3. Selection of the background model

5.3.1. Setup

As mentioned in 5.1, two architectures were selected, namely:
● X-vector (please reference section 3.2.2. for description)
● ECAPA-TDNN (please reference section 3.2.3. for description)

As the objective is to produce the best performing model possible, the use of a large augmented dataset is
imperative. As training such a model can be extremely resource heavy, this thesis will be utilizing the
pre-trained models available via the SpeechBrain toolkit. Both the models were trained as mentioned in the
original publication [26] with the only difference being the features extracted are Filterbanks rather than
MFCCs.

VoxCeleb2-test dataset was selected for this test.

Dataset Type Number of
speakers

Total number of
files for enrollment

Total number of
files for
identification

VoxCeleb2-test Mixed 100 100 1000

Table 3: Distribution of speakers for the test datasets.

5.3.2. Results

It should be noted that both the models were trained on the same corpus, namely, VoxCeleb1+2.
Furthermore, the ECAPA-TDNN model was built upon the shortcomings of the X-vector architecture,
therefore, it is hypothesized to perform better. However, accuracy is not the metric that will be considered for
this test. To make sure the customer experience is as smooth as possible, the technical performance of the
model is also important to consider. Therefore, while the ECAPA-TDNN has produced better results in [26]
against the X-vector, factors such as identification accuracy, time taken for enrollment and identification and
the space occupied by the embeddings produced were not reported. Therefore, the additional metrics
described below were also tested:

1) Top-1 percentage (Top-1): The percentage of correctly predicted speakers against total number of
speakers. This value was measured for each sample from each speaker, averaged over the number of
samples taken, and then averaged again over the total number of speakers present.

2) Top-5 percentage (Top-5): The percentage of currently predicted speakers present in the top five
predictions made by the model against the total number of speakers. This value was measured for each
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sample from each speaker, averaged over the number of samples taken, and then averaged again over the
total number of speakers present.

3) Time taken for enrollment (TTE): The average amount of time it takes the model to enroll a speaker. The
value was calculated for each speaker and then averaged over N number of speakers.

4) Time taken for identification (TTI): The average amount of time it takes the model to identify an
unknown speaker. The value for identification per test sample was averaged over the total number of
samples.

5) Size per embedding (SDS): The size of each embedding produced by each model.

Model Top-1 (%) Top-5 (%) TTE (ms) TTI (ms) SDS (kb)

X-vector 63.4 83.2 4.72 41.353 2.795

ECAPA-TDNN 96.9 98.7 14.46 50.389 1.515

Table 4: Metric results tested on mixed data.

5.3.3. Assessment

From the results generated by the test, the biggest differences can be noticed in the Top-1 (%) and TTE
values. While it takes the ECAPA-TDNN system approximately 3 times longer to enroll a speaker, the
ECAPA-TDNN performs 33% better in terms of accuracy. In addition to that, ECAPA-TDNN performs
about 15% times better for the Top-5 (%) and also takes up almost twice as less space per embedding.
Another important measure is the time taken for identification. As we can observe, ECAPA-TDNN only
takes about 1.2 times more time to identify, therefore, ECAPA-TDNN is selected to be the better model.

This decision was made due to the fact that in the case of enrollment, the process will occur only once per
customer, and will take place once they give their consent to have their voice print be stored in the database.
Furthermore, the process takes place after the customer has entered the call and in the background, thereby
not hindering their experience.

5.3.4. Threshold estimation

As mentioned in section 5.1.3, threshold estimation test was run for the ECAPA-TDNN model.
The same dataset used in 5.3.1 was used for this test as well, with the difference being only half the number
of speakers were enrolled.
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Figure 12: Threshold estimation results.

Based on the results observed, the threshold estimate is 0.34.

5.4. Optimization Task

The selected model from the previous section was further experimented on in this section. The aim of this
section is to identify various factors affecting the identification task during a call received, evaluate the
model  and optimize and produce the best performing model possible within the scope of the author of this
thesis. Knowing the nature of the task, there are certain factors that affect the overall quality of the
identification system. The factors experimented with are:

● Performance against variation in the length of the test utterances.
● Performance against noisy data (non-intelligible).
● Performance against noisy data (intelligible).
● Performance against multiple languages.
● Performance against artificially generated voice samples.

It should be noted that all the experiments are conducted under the “closed set” configuration. While the goal
of this thesis is to produce an Speaker Identification system under the open set configuration, the addition of
a threshold for these experimentation scenarios impedes the inference to be made from their results.
Additionally, the estimated threshold in the earlier section, while fairly robust, can be subjected to weak
performance and possible false rejections due to various real-life factors such as large amounts of noise
present in a signal.

5.4.1. Datasets utilized

LibreSpeech dataset is utilized for clean speech utterances. Specifically, hundred speakers were taken from
the train-clean dataset [38], where each speaker contains at least fifteen minutes worth of speech.
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Noise samples are gathered from Freesound [53] and Demand [54] for noise concatenation experiments. All
audio samples are present in .wav format, sampled at 16 Khz and are single channel.
For the multilingual experiment, datasets were gathered from Mozilla Common Voice Dataset [45]. All audio
samples are present in .mp3 format, sampled at 16 Khz (downsampled from the original 32 Khz) and are
single channel. Finally, for the mimicry experiment, audio samples were provided from MAMA AI.

5.4.2. Performance against variation in the length of the utterances.

5.4.2.1. Setup

The objective of this experiment is to determine the model’s ability to identify speakers given varying
lengths of utterances as test data. In a real-life scenario, it is expected from the system to be able to identify
the unknown speaker ideally within the first few seconds. For this experiment, clean speech audio files from
LibreSpeech were taken, and merged together. The merged file was then systematically split into varying
lengths ranging from  3 to 10 seconds, and at least 10 samples were generated for each length.

Task Number of speakers Number of files

Enrollment 100 100

Identification 100 8000

Table 5: File distribution for experiment.

5.4.2.2. Results

Both the identification rate (IR) and top three confidence values are generated for each utterance length.
For each utterance length, the IR was averaged over ten samples per speaker, and then averaged by the
hundred speakers. Additionally, to hypothesize the model’s ability to distinguish between each speaker
model, the top three confidence values that are produced for every test sample are also recorded. Similar to
the IR value, these values are averaged over the number of samples per speaker, and then over the total
number of speakers for each utterance length.

Length of
utterance (s)

IR (%) Top three confidence values (%)

3 99.3 0.676 0.352 0.311

4 99.3 0.714 0.364 0.320

5 99.4 0.738 0.372 0.329

6 99.4 0.756 0.375 0.331

7 99.5 0.766 0.377 0.344

8 99.8 0.781 0.384 0.339
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9 99.8 0.791 0.386 0.341

10 99.8 0.799 0.390 0.344

Table 6:Results of the experiment.
5.4.2.3. Assessment

The results produced look very promising. Performance was expected to drop given a short utterance length,
however, the identification rate is on par with the longer ones. The most noticeable drop can be observed for
the best matched confidence value for the 3 and 10 second utterances, 0.676 compared to 0.799.

5.4.3. Performance against noisy data (non-intelligible)

5.4.3.1. Setup

The objective of this experiment is to determine the model’s ability to handle noisy data, specifically,
non-intelligible noise where human speech is not present. Noise in a signal is one of the most popular
problems in speech analysis, and considering the task of the proposed Speaker Identification System is
concerned with customer service, noisy signals are to be expected. While it is difficult to measure the level
of background noise present in a signal, however, a signal-to-noise ratio (SNR) is commonly used as an
estimate [55]. It is defined as ratio between the intensity of the signal and the intensity of the noise present in
a signal, expressed using decibels (dB):

𝑆𝑁𝑅
𝑑𝐵

= 10𝑙𝑜𝑔(𝑆
𝐸

 / 𝑁
𝐸

) [55]                                                               (24)

Where SE and NE are the energies of the signal and noise signal, respectively, which can be calculated by

𝐸 = 𝑠𝑢𝑚(𝑠[𝑛]2) [55]                                                                        (25)  

If, for instance, a clean speech signal at 80 dB and some background noise signal at 50 dB are concatenated
together, the SNR value of the resultant signal would be 30 dB, or in other words, the clean speech is 30 dB
“louder” than the noise in the signal.

To simulate the noisy signals, this experiment takes the clean speech used in the previous experiment, and
concatenates noise to each sample at varying SNR ratios. This is done using the audiolib module provided by
the Microsoft Scalable Noisy Speech Dataset (MS-SNSD). A range from -5 dB till 20 dB was considered.
Furthermore, four non-intelligible noise profiles were selected, namely, sound from a vacuum cleaner
(cleaner), air conditioner (aircon), various noises in a park (park) and noises from passing traffic (traffic).
The noise samples were collected from Freesound and Demand [53],[54] (only files with Creative Commons
license were selected).

While it is imperative to expect noise from test samples, it is also important to consider the case where the
audio samples used for enrollment may also contain noise. Therefore, two cases were tested,

1) Clean speech for enrollment, Noisy Speech for testing.
2) Noisy speech for enrollment, Noisy Speech for testing.
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1)  Clean speech for enrollment, Noisy speech for testing.

Similar to the previous experiment, 100 speakers were selected, where a clean, 10 second-long sample was
obtained for each speaker for enrollment, and 10 samples each from 3 second and 10 second utterances for
each speaker were utilized. Each test sample was also then concatenated with the four noise profiles, at
different SNR values ranging from -5 till 20 dB.

2)  Noisy speech for enrollment, Noisy speech for testing.

Similar to the previous experiment, 100 speakers were selected, where a clean, 10 second-long sample was
obtained for each speaker for enrollment, and was concatenated with a randomly chosen noise profile and
SNR value. For testing, the same distribution as the previous case was used.

Task Number of
speakers

Number of
samples per
speaker

Number of
lengths for
utterances

Number of
noise
profiles

Number of
SNR values

Total
number of
files

Enrollment 100 1 1 (10
seconds)

None,
1 (noisy;
randomly
selected)

None,
1 (noisy;
randomly
selected)

100

Identificatio
n

100 20 2 (3 and 10
seconds)

4 6 48000

Table 7: File distribution for the experiment.
5.4.3.2. Results

Similar to the previous experiment, both IR and confidence values were generated, the difference being only
the top one confidence values are averaged over all the samples, due to the large number of samples present.

1) Clean speech for enrollment, Noisy speech for testing.

Figure 13: IR (%) values  for 3 seconds (left) and 10 seconds (right) length utterances. (clean speech enrolled,
noisy speech tested)
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Figure 14: Top Confidence (%) values for 3 seconds (left) and 10 seconds (right) length utterances. (clean speech
enrolled, noisy speech tested)

2) Noisy speech for enrollment, Noisy speech for testing.

Figure 15: IR (%) values for 3 seconds (left) and 10 seconds (right) length utterances. (noisy speech enrolled, noisy
speech tested)

Figure 16: Top Confidence (%) values for 3 seconds (left) and 10 seconds (right) length utterances. (noisy speech
enrolled, noisy speech tested)
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5.4.3.3. Assessment

For the case where clean speech was enrolled, results are very similar for both 3 and 10 second utterances.
The lowest IR was given by the vacuum cleaner (cleaner) noise profile. This may be due to the fact that
unlike the other noise profiles, the noise in the sample was constantly present throughout. The performance
of the model was good, with the lowest IR value being 75.9% for 3 second utterance for the cleaner noise
profile, while the lowest confidence value being 32.8% for the same. As this value is lower than the
estimated threshold in the previous section, the threshold will be lowered to 32%.
For the case where noisy speech was enrolled, results are slightly lower than the clean speech enrollment,
however, the confidence values are higher than the previous case. This may be due to the fact that some of
the random noise profiles that were concatenated to enrollment samples were able to match the noise profiles
in the test samples at similar SNR levels. Additionally, while the confidence values may have risen for
certain samples, the overall accuracy has dropped by a small percentage. Nevertheless, the performance of
the model still remains good, with the lowest IR value being 74.2% for again, the 3 second utterance for the
cleaner noise profile.

5.4.4. Performance against noisy data (intelligible)

5.4.4.1 Setup

The objective of this experiment is to determine the model’s ability to handle noisy data, specifically,
intelligible noise where human speech is present.
To simulate the noisy signals, this experiment concatenates noise unto clean audio as done in the previous
experiment, however, four intelligible noise profiles were selected, namely, background noise from a cafe
(cafe), background noise from a nearby crowd (crowd), noise from neighbors (neighbors) and airport
announcements at an airport (airport). The noise samples were collected from Freesound and Demand
[53],[54] (only files with Creative Commons license were selected). Additionally, the same two cases for
speech enrollment were also tested.

1)  Clean speech for enrollment, Noisy speech for testing.

Similar to the previous experiment, 100 speakers were selected, where a clean, 10 second-long sample was
obtained for each speaker for enrollment, and 10 samples each from 3 second and 10 second utterances for
each speaker were utilized. Each test sample was also then concatenated with the four noise profiles, at
different SNR values ranging from -5 till 20 dB.

2)  Noisy speech for enrollment, Noisy speech for testing.

Similar to the previous experiment, 100 speakers were selected, where a clean, 10 second-long sample was
obtained for each speaker for enrollment, and was concatenated with a randomly chosen noise profile and
SNR value. For testing, the same distribution as the previous case was used.
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Task Number of
speakers

Number of
samples per
speaker

Number of
lengths for
utterances

Number of
noise
profiles

Number of
SNR values

Total
number of
files

Enrollment 100 1 1 (10
seconds)

None,
1 (noisy;
randomly
selected)

None,
1 (noisy;
randomly
selected)

100

Identification 100 20 2 (3 and 10
seconds)

4 6 48000

Table 8: File distribution for the experiment 3
5.4.4.2. Results

Similar to the previous experiment, both IR and top confidence values were generated.

1) Clean speech for enrollment, Noisy speech for testing.

Figure 17: IR (%) values  for 3 seconds (left) and 10 seconds (right) length utterances. (clean speech enrolled,
noisy speech tested)

Figure 18: Top Confidence (%) values for 3 seconds (left) and 10 seconds (right) length utterances. (clean speech
enrolled, noisy speech tested)

Page 42



2) Noisy speech for enrollment, Noisy speech for testing.

Figure 19: IR (%) values for 3 seconds (left) and 10 seconds (right) length utterances. (noisy speech enrolled, noisy
speech tested)

Figure 20: Top Confidence (%) values for 3 seconds (left) and 10 seconds (right) length utterances. (noisy speech
enrolled, noisy speech tested)

5.4.4.3. Assessment

For the case where clean speech was enrolled, results are very similar for both 3 and 10 second utterances.
The lowest IR was given by the crowd noises (crowd) noise profile.This was expected, considering crowd
noises or babble is the most challenging type of background noise in speech technology, due to the fact it
overlaps the clean signal. Regardless, the performance of the model was still good, with the lowest IR value
being 74.9% for 3 second utterance for the crowd noise profile, while the lowest confidence value being
32.1% for the same.
For the case where noisy speech was enrolled, results are slightly lower than the clean speech enrollment,
however, the confidence values are higher than the previous case. This may be due to the fact that some of
the random noise profiles that were concatenated to enrollment samples were able to match the noise profiles
in the test samples at similar SNR levels. Additionally, while the confidence values may have risen for
certain samples, the overall accuracy has dropped by a small percentage. Nevertheless, the performance of
the model still remains good, with the lowest IR value being 73.2% for again, the 3 second utterance for the
crowd noise profile.
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5.4.5. Performance against multiple languages.

5.4.5.1. Setup

In this experiment, the multilingual capabilities of the model were assessed. Given that the training data used
for the model is a multilingual dataset (VoxCeleb), the model is expected to perform fairly well. The data for
this test was gathered from Mozilla Common Voice Dataset [45]. Four varying languages were selected,
namely, Czech, Hindi, Japanese and Chinese.
Since a large corpus with a high number of speakers from the same dataset can be difficult to source, only 10
speakers per language were selected. For every language dataset from Common Voice, metadata is provided,
which details information for every audio sample, including speaker_id, transcription, age, gender etc.
The test.tsv file selected for every language, and 10 speakers and about 200 seconds worth of their speech
was extracted. Since the audio samples are provided at a sample rate of 44 Khz, all audio samples were
downsampled to 16 Khz.

Task Number of
speakers

Number of
samples per
speaker

Number of
lengths for
utterances

Number of
languages

Total number
of files

Enrollment 10 1 1 (10 seconds) 4 40

Identification 10 20 2 (3 and 10
seconds)

4 800

Table 9: File distribution for the experiment 4

5.4.5.2. Results

Similar to the previous experiments, IR (%) and the top CR (%) was generated.

Figure 21: IR (%) values for 3 seconds (left) and 10 seconds (right) length utterances.

Page 44



Figure 22: CR (%) values for 3 seconds (left) and 10 seconds (right) length utterances.

5.4.5.3. Assessment

The results seem fairly promising. The highest IRs was Chinese for both the 3 and 10 second utterances,
while Japanese was the lowest. The lowest IRs was Japanese for 3 second utterances at 75.9%, while highest
being Chinese for the 10 second utterances at 98%.  Furthermore, None of the CRs dropped below the
threshold 0.32.

5.4.5. Performance against artificially generated voice samples.

5.4.5.1. Setup

In this experiment, the model’s capability to distinguish between voice samples from a real speaker and an
artificial generated one. Due to deep neural voice technology being out-of-scope for this thesis, data for this
experiment was obtained from MAMA AI. A combination of FastSpeech Text-to-Speech model and vocoder
based on Univnet Generative adversarial neural network, was utilized to generate samples based on both
professional and non-professional speakers. However, due to time constraints and the fact that constructing a
speech synthesizer for a speaker is resource heavy, audio samples from 5 models were generated.

In total, 4 speakers are present, Jana, Tomas, Karolina and Lenka. Similar to the previous experiments, 10
seconds long audio samples from the real speaker were enrolled, and 10 samples for 3 second and 10 second
long samples from each of the speakers were generated by the deep neural voice model.

Task Number of
speakers

Number of
samples per
speaker

Number of lengths
for utterances

Total number of
files

Enrollment 4 1 1 (10 seconds) 100

Identification 4 20 2 (3 and 10
seconds)

80

Table 10: File distribution for the experiment 5
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5.4.5.2. Results

The audio samples provided for enrollment have a sample rate of 48 Khz, while the samples for test files
(artificially generated) have a sample rate of 16 Khz. Therefore, three distinct tests were performed, where
the samples for enrollment were enrolled at 48 Khz, 22 kHz and 16 kHz.

Similar to the previous experiments, both IR and CR values are calculated.

Figure 23: IR (%) values for 3 seconds (left) and 10 seconds (right) length utterances.

Figure 24: CR (%) values for 3 seconds (left) and 10 seconds (right) length utterances.

5.4.5.3. Assessment

Due to the setup of this experiment, lower accuracy values are preferred (artificially generated utterances are
not able to fool the system). As it can be observed, the best performance is observed when the enrollment
samples are present in their original sample, and when they are downsampled to 16 Khz. While the accuracy
values may seem high, one should take a note of the confidence values. The highest confidence value
calculated for 16 and 48 Khz, is 13.2 % (or 0.13) which is much lower than our previously set threshold for
the system, 0.13. However, the main oddity is when the samples are downsampled to 22 Khz. The highest IR
rate is calculated for the 10 second utterance at 97.5 %, with the highest confidence rate being 76.6 % (or
0.76). This will completely bypass the threshold set previously, and be able to fool the speaker identification
system. This may be due to the fact that for the production of the speaker model, the training files have a
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sample rate of 22 Khz. Nevertheless, this experiment was catered more towards future research since the
topic is out-of-scope of the thesis.

6. Conclusion

The work done in this thesis deals with methods for speaker identification from an acoustic signal. The
theoretical part highlights the extensive research to educate the author of the process of speaker
identification, where emphasis was given towards acoustic analysis, which consisted of the extraction
process of the popular feature that represents human speech, MFCCs and also details on why Filterbanks
might be a better choice for especially neural networks. Another highlight is dedicated towards the
architecture of the past and current baseline methods, namely, GMM-UBM with i-vector and X-vector,
ECAPA-TDNN respectively.
The practical part consisted of the implementation of a speaker identification pipeline based on a particular
task described by MAMA AI, and a survey on publicly available datasets. The speaker identification pipeline
was implemented using an open-source speech toolkit called SpeechBrain, and other auditory python
libraries. Two pre-trained models were selected which were based on the current baseline architecture
detailed in the theoretical part, and were tested against each other using various metrics. Both the pre-trained
models were trained using the same features, training dataset, augmentations and training parameters. The
ECAPA-TDNN model performed approximately 33% better in terms of Top-1 identification rate, 15% better
in terms of Top-5 identification rate, taking up almost twice as less space to store the embedding than the
competitor, with the only drawbacks being the time taken to enroll a speaker was 3 times slower and time
taken to identify being 1.2 times slower than the competition, X-vector. However, the process of enrollment
is of less importance than the other metrics, and as time taken for identification is not much different, it was
selected as the better performing model. The optimal threshold was then estimated by performing a test
where 50% of the speakers were imposters. The intersection value for the False Rejection and False
Acceptance rate was found to be 0.34, which was set as the estimated “optimal threshold”.
The selected model was then experimented on under various scenarios, namely, performance against varying
of utterances, noise concatenation (intelligible and unintelligible), various languages. The model portrayed
excellent performance against all the experiments, with the lowest IR (%) being 73.2, and lowest confidence
value being 32.1%. A final experimentation was performed which was concerned with the ability of the
model against artificially generated voice samples using Text-to-speech synthesizers. This experiment was
out of scope for this thesis and is meant as a reference for future research. This was the only experiment
where the model performed poorly, as the artificially generated voice samples were able to fool the system
for one of the three cases tested.
In conclusion, the model portrayed satisfactory results given all the challenges, and was selected to be part of
the final speaker identification pipeline produced in the implementation part of this thesis. The estimated
value of the threshold was lowered from 0.34 to 0.32 to accommodate noisy signals with crowds.
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