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Abstract

Neural Networks with binary weights are of special interest as they are computation
friendly and do not demand a lot hardware. However, training is rather challenging as
they these binary weights do not have a gradient.

Bayesian learning averages over a range of models that fit the data well and is thus
able to provide us with a decent model itself. Another advantage Bayesian learning
posses over existing common methods for training binary neural networks is that it is
not empirical. However, despite these advantages over their continuous counter parts,
Binary Neural Networks are significantly lag behind traditional neural networks in terms
of performance. This is because training Binary networks is particularly difficult as it
involves a discrete optimization problem. Moreover, traditional methods such Stochastic
Gradient Descent can not be used to update the weights as the they are discrete and do
not have a gradient.

In this thesis, various Bayesian methods were explored such as Variational Bayesian
Learning and Maximum Likelihood. Their performance is analyzed on a toy dataset
drawn from generative data model. Existing methodology is also reviewed.

Keywords: Deep Neural Networks, Binary Neural Networks, Bayesian Learning, Vari-
ational Bayesian Learning, Maximum Likelihood, Training Binary Networks, Bayesian
Inference.
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Chapter 1

Introduction

The idea of Neural networks began with the intention of modelling a machine learning

algorithm around the functioning of a biological neuron. This, however, has not been

achieved as the functioning of a biological neuron is far more complex than previously

imagined. Nonetheless, Artificial Neural Networks have come a long way and have sub-

stantially pushed the boundaries of Artificial Intelligence and Machine Learning. They

have proved to be the state of the art solution in many fields, including computer vision,

speech recognition, statistical machine translation and many more.

Training Deep Neural Networks requires a lot of hardware and often takes a very long

time [1]. They are almost exclusively trained on power hungry Graphic Processing Units

as a result of which it has become extremely difficult to run on low powered devices. Com-

ing up with an energy efficient Deep Neural Networks is absolutely essential in realising

the potential of mobile applications Artificial intelligence. Energy efficient Deep Neural

Network models will be absolutely critical in the field of Internet of things.

Various solutions have been proposed to combat this issue, Binary Neural Networks

being one of them. The first methodology regarding binary neural networks was intro-

duced by Courbariaux et al. in [2]. Here, both the weights and activation were binary

and were used in the subsequent inference and propagation training.

To train Binary Neural Networks, a few of the ideas that have been explored are

mentioned below.

• Using empirical ST methods, the maximum likelihood estimate of the weights is

estimated.

• Straight Through estimators [3] and Binary Optimizer [4] are used to overcome the

1



CHAPTER 1. INTRODUCTION 2

difficulty of not having a gradient to work with as the weights are binary.

• Ensemble of binary networks is known to give an improvement [5].

1.1 Aim of this thesis

In this thesis, we aim to do the following.

• Compare exact Bayesian learning solutions to Maximum Likelihood and Variational

Approximate Bayesian Learning.

• Theoretically derive improved variational Bayesian learning method using mixture

of factorized approximations and demonstrate its connection to ensemble methods.

• Compare existing models and methodologies.





Chapter 2

Introduction to Binary Neural

Networks

2.1 McCulloch-Pitts Neuron

The first mathematical model of a biological neuron was proposed by McCulloch and

Pitts in 1943. This model had binary inputs as well as a binary output.

Figure 2.1: McCulloch-Pitt Neuron

All the input values can either be inhibitory, that is, 0 or excitatory, that is 1. g takes

in an input and performs an agragate of sorts while f makes the decision. A very simple

example of g and f can be is given below.

4



CHAPTER 2. INTRODUCTION TO BINARY NEURAL NETWORKS 5

g(x) =
n∑

i=1

xi (2.1)

y = f(g(x)) = 1 if g(x) > 0 (2.2)

= 0 if g(x) ≤ 0 (2.3)

This model was only binary in nature but however it was not until much later, in 2016

[2], a deep binary neural network was trained.

2.2 Early attempts at binarization

Early binarization had only a single hidden layer [6]. This also introduced us to the unique

problems such layers with binary weights bring to the table. Known algorithms such as

backpropogation and stochastic gradient descent did not work as the weights can not be

incremented by small values. As a result of which, Bayesian inference was used to train

these networks and the same would be discussed in this thesis.

The first to claim to have trained a Binary Neural Network was Courbariaux et al.

in [2]. However, it can be said that their network was not truly binary as they used real

valued weights which were binarized before using the network This method uses latent

real valued weights which are binarized in each forward pass during training and testing

[7][8]. The gradients needed to update the latent weights are calculated at the binary

weights [8].

The first group to bring focus in binary weights in neural networks were Soudry et

al. in [9]. They also used Bayesian methods to get around the problems posed by binary

weights.

2.3 Review of existing methodology

The work on training binary neural networks can be broadly classified into two different

approaches. The first involving designing special architecture which can cater for binary

weights, activations and operations [10] [2] [11] [12] [13]. The other being focused on
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training methods [8]. Courbariaux et al. developed the methodology related to binary

neural networks that is used by most [7] [2]. In this section, we will review the most

commonly used methodologies.

2.3.1 Binarization of weights and activation

The primary problem with using binary weights is that they cannot be updated using

gradient descent methods such as Stochastic Gradient Descent. In order to tackle this

problem, Courbariaux et al. use a set of real valued weights which are binarized within

the network to obtain binary weights [2]. Let us denote these real weights with Wr and

the binary weights with Wb. Wr is converted to Wb simply as follows.

Wb = sign(Wr) (2.4)

Thus, Wr can be updated during back-propagation and during inference Wb can be stored

and used [2] [7].

Now the next problem that is presented to us is that we cannot calculate the gradient

of the sign function as it is undefined. This is solved by using something called a Straight

Through Estimator [3] [7]. The weights are binarized in the forward pass and an identity

function is performed in the backward pass. Here, since the value ofWr is changed without

any change in Wb, the value of Wr is constraint between -1 and +1 [7].

Figure 2.2: Figure visualizing STE [7]

The binarization of activation values was also introduced by Courbariaux et al. in the
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same paper [2]. The activation are passed through a sign function as was the case for the

weights and a Straight Through Estimator is used in the backward pass.

2.3.2 Bitwise operations

The reason why binary weights reduce computation costs is that the dot product is reduced

to just bitwise operation. Using a logical XNOR operation is the equivalent of multiplying

these binary values. These bitwise operation are much simpler than computing floating

point multiplications [7]. It is claimed by Courbariaux et al. that these operation sped

up optimization by 23 folds [2]. In another paper, it was shown that XNOR operations

could replace multiply-accumulate operations and thus resulting in a 58 fold speedup on

CPUs [11].

2.4 Other Existing Methodologies

2.4.1 Courbariaux et al.

Courbariaux et al. tested their methodology on the MNIST, SVHN and CIFAR-10

datasets and reported their results in [2]. They have also discussed using stochastic

binarization which can lead to better results with their binary neural network model [2]

[7].

2.4.2 XNOR-Net

Soon after [2], Rastegari et al. introduced their model called XNOR-Net. XNOR-Net

uses most of the methodology from [2] while incorporating a a new term. This new term

is called ’gain term’ and is introduced to compensate for the lost information during

binarization [7]. The addition of this gain term showed improvement in the performance

of their binary neural network [11]. Rastegari et al. also reported a 64x speed up from

traditional neural networks [11].

2.4.3 DoReFa-Net

Zhou et al. introduced a model which allowed variable size for weights and activations

during backpropogation in [14]. They also put an emphasis on speeding up training time
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instead of just inference [14] [7]

2.4.4 Bayesian Binary Neural Network

Khan et al. proposed a Bayesian algorithm to train binary neural networks. This approach

of theirs claims to justify the use of Straight Through Estimator [3] and Binary Optimizer

[4], which are claimed to be derived based on intuition and are not theoretically justified

[8].

2.4.5 Why is training Binary Neural Network hard?

Despite the advantages Binary networks posses over traditional neural networks, the for-

mer still lags behind the latter in terms of performance. Since the weights are binary,

binary neural networks can only represent a subset of discrete function which makes them

weaker than continuous function approximators [5] [15]. Their training is challenging

since in theory it involves a discrete optimization problem [8]. Zhu et al. state that the

two other major issues are the issues with robustness with respect to input perturbations,

and the stability issue with respect to network parameters [5].

2.5 Motivation for Bayesian Learning

Most of the common methodologies that have been discussed in this section are based on

empirical learning. Even if we manage to find the maximum likelihood estimate of the

weights, there is little guarantee that it will perform well as it is based on a finite data

sample.

Bayesian Binary Neural Networks can also help us by providing uncertainty estimates

[8] which can further help us in decision making. This uncertainty can also enable us to

perform continual learning [8] [16]. We also wish to see if a Bayesian Model can average

over multiple good models.





Chapter 3

Bayesian Learning for Binary Neural

Networks

3.1 Basic Bayesian Models

The reason for choosing a basic Bayesian model over an exact Bayesian learning model

that exact model are often intractable. Here, we intend to inspect the model where we

can compute it precisely. Thereafter, we intend to visualize the predictive distributions

and run experiments so as to statistically compare these methods.

3.1.1 Network architecture and toy data

We will consider a simple one layered neural network with two inputs and a single output.

We will also consider a sample test data which comprises of multiple Gaussian mixtures

labelled as positive or negative. The points will drawn from a generative model which

is capable of providing us with as many points as needed for training and testing. The

points will be divided into two classes based on which Gaussian they belong to.

For this experiment, we will consider 4 different models which will have n = 10, 12,

14 and 16 nodes or neurons in the hidden layer. Another thing to note is that W1 and b1

are real valued and W2 is binary. W1 and b1 are random and this is because we wish to

able to track the exact Bayesian learning and thus implement a randomized embedding

of the data. Thus, we will only be concerned with learning W2.

10



CHAPTER 3. BAYESIAN LEARNING FOR BINARY NEURAL NETWORKS 11

Figure 3.1: Figure visualizing the single layer neural network

W1, b1 ∈ R (3.1)

W2 ∈ ±1 (3.2)

Now, for any given set of W1 and b1, we can have 2n different possible networks. Our

model can be defined as follows.

model : p(y | x;W2,
1

n
) (3.3)

In short, our model can be defined only by W2.

W1 and b1 are generated as follows.

S := {x | 0 ≤ x < 1} (3.4)

w ∈R S (3.5)

b1 ∈R S (3.6)

W1 = w / norm(w) (3.7)

The data points for the toy data are drawn from a known Gaussian mixture model.
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The following figure 3.2, shows us the contour plot of a Gaussian mixture model. From

here, each point will be classified into one of two classes based on which Gaussian it

belongs to.

Figure 3.2: Figure visualizing a Gaussian mixture model with 6 Gaussians

3.1.2 Predictive Distribution

Now, the probability of a point belonging to the positive class is given by

p(y = 1|s) = 1

1 + exp(−s)
(3.8)

Here, s = output of our network.

Now, to find the optimal combination, W ∗
2 , we will maximise the log likelihood of this

probability. This is the Maximum Likelihood estimate of W2.

W ∗
2 = argmin

( n∑
i=1

− log p(y = yi|xi;W2i)) (3.9)

This would give us the predictive distribution,

p(y = 1|x;W ∗
2 ) (3.10)
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3.1.3 Bayesian Predictive Probability

For this part, we would make use of the same architecture as in the previous section.

Here, the bayesian posterior is defined as follows.

p(W2|D) =

∏n
i=1 p(y = yi|xi);W2∑

W2

∏n
i=1 p(y = yi|xi;W2)

(3.11)

Now, the predictive probability is given as follows.

p(y = 1|D) =
∑
W2

p(y = yi|xi)p(W2|D) (3.12)

A thing to note here is that is that the computation for this toy model is tractable as

we can exhaustively sum over 2n possible combinations of the binary weights.

3.1.4 Results

The ground truth for the data used is shown in the Figure 3.3

Figure 3.3: Figure showing the ground truth for the experiment. The blue points belong
to first set of Gaussians and the red points belong to the second set of Gaussians. The
dotted red line the line separating the two classes of points and is considered to be the
ground truth for this model.
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(a) Contour Plot for n = 10 (b) Contour Plot for n = 12

(c) Contour Plot for n = 14

(d) Contour Plot for n = 16

Figure 3.4: Figures visualizing the contour of the predictive probability. The black line
represents where the p(y = 1 — x, D) = p(y = 2— x, D) = 0.5. The white dotted lines
represent the random initializing of W1 and b1



CHAPTER 3. BAYESIAN LEARNING FOR BINARY NEURAL NETWORKS 15

Now, the Bayesian predictive distribution that comes up is shown in 3.4.

As seen from Figure 3.4, the resulting Bayesian distribution is not very accurate. The

following reasons can be given to explain this.

• In this class of networks, there are no good models so a Bayesian model cannot do

much in this scenario.

• A good set of models are needed to average over.

3.2 Variational Bayesian learning for Binary Neural

Networks

In the model described in the previous section, we were not trying to learn the binary

weights but rather which combination of weights gave us the best results. Here, we intend

to learn the posterior distribution.

We consider a layer of binary weights w with wi ∈ {0, 1}. Other weights and biases

will be real-valued and fixed or their point estimates will be learned (not Bayesian).

For Bayesian learning we need a prior model of the weights (what we know without any

data). We assume a factorized uniform prior: p(w) =
∏

i p(wi); p(wi=1) = p(wi=0) = 1
2
.

Let D denote our training data. The goal is to approximate the posterior distribution

p(w | D) = p(D|w)p(w)
p(D)

with the variational distribution q(w) that we choose to also factorize

over the weights:

q(w) =
∏
i

q(wi), (3.13)

where q(wi) is a Bernoulli distribution with outcomes {0, 1} which can described by

specifying either of:

• probability of state 1: θi = Pq(wi=1);

• logit: ηi = log θi
1−θi

.

It is trivial to convert one parameterization into other and is a matter of convenience

which parameterization to use when.
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The variational Bayesian problem is to minimize the KL divergence

KL(q(w)∥p(w | D)) =
∑
w

q(w) log
q(w)

p(w | D)
=

∑
w

q(w) log
q(w)p(D)

p(D | w)p(w)
(3.14)

= −
∑
w

q(w) log p(D | w) + KL(q(w)∥p(w)) + log p(D).

The term log p(D) does not depend on q and thus can be omitted from minimization.

Expanding data log-likelihood as the sum over all data points, we get

log p(D | w) =
∑
j

log p(xj | w) =
∑
j

lj(w). (3.15)

When multiplying with 1
N
, the first term becomes the usual expected data likelihood,

where the expectation is in training data and parameters w ∼ q(w). The VB problem

reads

min
θ

−Ew∼Ber(θ)
1

N

∑
j

lj(w) +
1

N
KL(q(w)∥p(w)) + const , (3.16)

where Ber(θi) shall denote Bernoulli variable with probability θi and Ber(θ) a vector of

independent such variables.

We employ mirror descent to handle constraints θ ∈ [0, 1] in this composite function,

linearizing only the data part and keeping the prior KL part non-linear. Let

g =
1

N

∑
j

∇θEw∼Ber(θ)lj(w)

be the stochastic gradient of the data term in the weight mean parameters θ. The (stochas-

tic) mirror descent step solves the following proximal step problem:

min
θ

(
gTθ +

1

ε
KL(Ber(θ)∥Ber(θt)) + 1

N
KL(Ber(θ)∥Ber(0))

)
. (3.17)

Notice that KL(Ber(θ)∥Ber(0)) = −H(Ber(θ)) – the entropy of Bernoulli distribution

with probabilities θ. For brevity, we introduce the prior scaling coefficient λ = 1
N

in front

of the entropy (may be optionally be lowered to decrease the regularization effect). Let



CHAPTER 3. BAYESIAN LEARNING FOR BINARY NEURAL NETWORKS 17

θt be the current parameters. The composite proximal problem becomes

min
θ

(
gTθ +

1

ε
KL(Ber(θ)∥Ber(θt))− λH(Ber(θ))

)
. (3.18)

To minimize this equation and solve for θ, we simply to differentiate equation 6.

∂

∂θ

(
gTθ +

1

ε
KL(Ber(θ)∥Ber(θt))− λH(Ber(θ))

)
= 0 (3.19)

∂

∂θ
(gTθ) +

∂

∂θ
(
1

ε
KL(Ber(θ)∥Ber(θt)) + ∂

∂θ
(λH(Ber(θ))) = 0 (3.20)

Note that the entropy for a Bernoulli distribution is as follows,

H(Ber(θ)) = −θ ln(θ)− (1− θ) ln((1− θ) (3.21)

gT +
1

ε

∂

∂θ
(
∑
i

θi ln(
θi
θTi

) + (1− θi) ln(
1− θi
1− θTi

) +
∂

∂θ
(−θi ln(θi)− (1− θi) ln((1− θi))) = 0

(3.22)

gT +
1

ε
(ln(

θi
θTi

) +
θi
θi

− ln(
1− θi
1− θTi

)− 1− θi
1− θi

) + λ(− ln(θi)−
θi
θi

+ ln(1− θi) +
1− θi
1− θi

) = 0

(3.23)

gT +
1

ε
(ln(

θi
θTi

)− ln(
1− θi
1− θTi

)) + λ(ln(1− θi)− ln(θi)) = 0 (3.24)

Recall that the logit parameter is described as follows,

ηi = log
θi

1− θi
. (3.25)
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Therefore, the following substitutions can be made.

gT +
1

ε
(ηi − ηTi ) + λ(−ηi) = 0 (3.26)

Now, solving for ηi, we get the following.

ηi =
ηTi − εgT

1− λε
(3.27)

Algorithm 1:
Variational Bayesian Learning Using Mirror Descent Update

Inp. : training data (xi, yi)
N
i=1, predictive model p(y|x;w) with binary weights w

Outp.: Factorized Bernoulli distribution over weights with probabilities θ
1 Initialize: η = 0 /* natural parameters of Bernoulli over weights */

2 for iterations t = 0 . . . T do
3 Compute weight probabilities θ = sigmoid(η);
4 Sample (x, y) from the dataset /* or a mini-batch */

5 Define L(w) = − log p(yi|xi, w);
6 Use ARM estimator [17] to obtain g, gradient of Ew∼Bernoulli(θ)L(w) in θ;
7 Update η = η−εg

1−λε

3.3 Finite Mixture Variational Baysian Learning

Let θ̄
(s)
i ∈ [0, 1] be chosen at random from Beta(α, α) and for the purpose of this section

considered fixed for s = 1 . . . S, where S is the number of such samples.

Let the prior be given by the mixture model:

p(w) =
1

S

S∑
s=1

∏
i

Ber(wi; θ̄
(s)
i ), (3.28)

where S is the number of mixture components for each weight. It can be equivalently

stated in terms of the mixture hidden component variable s with uniform categorical
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distribution and the conditional distribution:

p(s) =
1

S
; (3.29)

p(w|s) =
∏
i

Ber(wi; θ̄
(s)
i ); (3.30)

p(w) =
∑
s

p(s)p(w|s). (3.31)

This prior is not uniform any more, however it can be made not too far away from the

uniform distribution on average. This is affected by both: the choice of α and the choice

of the number of samples. In particular, in the limit of the number of samples going to

the infinity, for any α we have

p(wi=1) →
∫ ∞

−∞
Beta(θ;α, α)dθ =

1

2
. (3.32)

On the other hand, for α approaching infinity, Beta(α, α) approaches the delta distribution

at 1
2
and we can have a uniform prior with one sample only. However, small values of α

will be beneficial for the variational approximation below. In practice we will choose the

number of samples, guided by computation constraints and can chose the value of α as

the trade-off between prioring the solution by a specific probability distribution p(w) and

the accuracy of the subsequent variational inference.

We then consider the variational approximate posterior in a form of a mixture of

factorized distributions:

q(w) =
1

S

S∑
s=1

∏
i

Ber(wi; θ
(s)
i ), (3.33)

Again, the distribution q(w) can be given as the marginal distribution of

q(w, s) = p(s)q(w|s), (3.34)

where q(w|s) =
∏
i

Ber(wi; θ
(s)
i ). (3.35)

Let us consider the following variational learning of the mixture:

min
q

KL(q(w, s)∥p(w, s|D)). (3.36)
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KL(q(w, s)∥p(w, s|D)) =
∑
s,w

q(w, s)
log q(w, s)

log p(w, s|D)
(3.37a)

=
∑
s

p(s)KL(q(w|s)∥p(w|s,D)) (3.37b)

Minimization in the collection of θ therefore decouples into independent minimizations

for each s. The difference from 3.2 is only that for each s the prior is not uniform but is

given by p(w|s), which is a Bernoulli distribution with mean parameters θ̄(s). It can be

derived similar to 3.2 that the resulting mirror descent update for ηs is:

η(s) = η(s)
1

1− λε
+ η̄(s)

1

1− λε
− εgs

1

1− λε
, (3.38)

where εgs is the gradient of the expectation of the likelihood with w ∼ Bernoulli(θs).

The resulting algorithm for finding the optimal mixture model is to apply Algorithm 1

for each mixture component independently using the update (3.38) which has a term

keeping each η(s) close to its initialization η̄(s). Therefore it is also reasonable to initialize

η(s) to η̄(s). The learning is thus equivalent to S instances of Variational Bayesian learning

with the weight decay towards different random intitializations. In the end the mixture

model is composed out of learned η(s) and we can sample from it a finite ensemble for

testing.





Chapter 4

Conclusion

4.1 Comparison of existing methodologies

Table 4.1 shows the accuracy of each methodology discussed in 2 as claimed by the

respective authors.

The CIFAR dataset was used as the primary source of validation only in [8].Cour-

bariaux et al. [2] shows best results on CIFAR dataset. The rest of the work has been

more focused on improving accuracy on the ImageNet dataset.

Methodology Accuracy(%)
Courbariaux et al. 89.95
XNOR-Net 89.83
DoReFa-Net 83.92
Khan et al. 93.72

Table 4.1: Table comparing different methodologies on CIFAR-10 dataset

Here, clearly the model proposed by Khan et al. works the best and coincidentally

happens to be based on Bayesian Learning.

4.2 Review of the derived Bayesian models

The basic Bayesian models that we used in this thesis did not provide us with satisfactory

results. This was mainly because it did not have a good set of models to average over.

22
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A Varitational Bayesian Learning using mirror descent method was also derived. Al-

gorithm 1 described how how factorized distribution over weights with probability θ is

learnt. In section 3.3, we saw how Algorithm 1 can be used to optimal mixture model for

each independent mixture component.

To understand how these models perform on real world data, we would first to evaluate

it’s performance on the toy data used in this thesis and then, if the results are satisfactory,

we would need to extrapolate this learning to a more complex binary neural network.
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