
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science

Enhancing security and privacy of
computer networks with OpenBSD as
network operating system on router

Bachelor thesis

Matyáš Vohraĺık

Supervisor: Ing. Pavel Troller, CSc.

January 2023

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474536 Osobní číslo:Matyáš Jméno:Vohralík Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologie Studijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Zvýšení zabezpečení a ochrany soukromí počítačové sítě s pomocí OpenBSD v roli síťového operačního
systému na routeru

Název bakalářské práce anglicky:

Enhancing security and privacy of computer networks with OpenBSD as a network operating system
of a router

Pokyny pro vypracování:
V teoretické rovině popište využití systému OpenBSD v roli síťového operačního
systému, nasazeného na směrovači počítačové sítě domácnosti či organizace a
rozšiřujícího běžně dostupné funkce obdobných zařízení o technologie zvyšující
úroveň zabezpečení a ochrany soukromí uživatelů.
Popište zvolené technologie a jejich vzájemnou integraci.
Porovnejte řešení založené na systému OpenBSD s jinými operačními systémy
použitelnými pro uvedený účel.
Následně vytvořte funkční řešení na jednodeskovém počítači platformy arm64 a
vyhodnoťte jeho parametry.

Seznam doporučené literatury:
[1] R. L. Rivest, A. Shamir, L. Adleman, A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems, 1978
[2] Michael W. Lucas. Absolute OpenBSD. 2nd Edition., 2013
[3] Peter N. M. Hansteen. Book of PF, 3rd Edition, 2014
[4] Larry Peterson, Bruce Davie. Computer Networks: A Systems Approach, 2012
[5] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone. Handbook of
Applied Cryptography, 2001
[6] Brandon Palmer. Secure Architectures with OpenBSD, 2004
[7] Marshal Kirk McKusick, Keith Bostic, Michael J. Karels, John S.
Quarterman. The Design and Implementation of the 4.4BSD Operating System, 1996
[8] Steve Pate. UNIX Filesystems: Evolution, Design, and Implementation, 2003
[9] Jason A. Donenfeld. WireGuard: Next Generation Kernel Network Tunnel, 2020

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Pavel Troller, CSc. katedra telekomunikační techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 10.01.2023 Datum zadání bakalářské práce: 07.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Pavel Troller, CSc.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZBP-2015.1

Declaration

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of the university thesis.

In Prague, January 10, 2023

Matyáš Vohraĺık

Acknowledgment

I would like to thank everyone who has supported me during the creation of this thesis.
To my supervisor, Ing. Pavel Troller, CSc., for all the advice, and to my family for all the
support.

Abstract

The aim of this thesis is to design complex high-level security measures for a model net-
work of organization or family. The model network consists of three geographically dis-
located subnets interconnected via VPN with unified and centralized Wi-Fi EAP-TLS
authentication. A center point of the network is router built on OpenBSD with additional
functions such as dynamic firewall, DNS server with AdBlock built on NSD & unbound,
FreeRADIUS and OCSP responder for certificate authority. After a brief introduction to
symmetric and asymmetric cryptography, the text describes the creation of robust two-tier
Elliptic curve Public Key Infrastructure built on HSM module Gemalto SafeNet 5110 CC
with OpenSSL toolkit. Each particular component of the solution is analyzed immediately
during the configuration process. The last part of this thesis introduces single board low
power arm64 platform NanoPi R4S and the installation of OpenBSD. All configuration
files, demonstrative certificate authority, photos and diagrams are in the attachment.

Keywords: OpenBSD, router, security, Wi-Fi, Wireguard, DNS, adblock, RADIUS,
EAP-TLS, PKI, Certificate authority, HSM, SafeNet eToken 5110

Abstrakt (in Czech)

Tato bakalářská práce se zabývá komplexńım zabezpečeńım modelové organizačńı respek-
tive rodinné poč́ıtačové śıtě tvořené třemi geograficky dislokovanými podśıtěmi propo-
jenými technologíı VPN s jednotnou a centralizovanou Wi-Fi autentizaćı protokolem EAP-
TLS. Ned́ılnou součást́ı je softwarový návrh śı̌tového routeru založeného na platformě
arm64 a operačńım systému OpenBSD doplněném o dynamický firewall, DNS server s
funkćı AdBlock postaveném na kombinaci NSD a unbound, FreeRADIUS server a OCSP
respondér pro certifikačńı autoritu. V daľśı části jsou čtenáři stručně představeny základy
symetrické a asymetrické kryptografie, aby se práce následně mohla v detailu věnovat
zř́ızeńı dvouvrstvé infrastruktury veřejných kĺıč̊u vytvořené pomoćı kryptografického toolk-
itu OpenSSL a vydáńı všech potřebných certifikát̊u. Je zde představen hardwarový bezpečnostńı
modul - USB token Gemalto SafeNet 5110 CC a jeho použit́ı pod systémem Linux.
Následně je na kĺıč́ıch v něm vygenerovaných vystavěna robustńı certifikačńı autorita
založená na kĺıč́ıch eliptické křivky prime256v1. V závěrečné části je představen ukázkový
ńızkopř́ıkonový jednodeskový poč́ıtač NanoPi R4S disponuj́ıćı achitekturou arm64 a popsána
instalace systému OpenBSD na tomto zař́ızeńı. Jednotlivé části celého řešeńı jsou analy-
zovány postupně v pr̊uběhu konfigurace. Součást́ı je také demonstrace připojeńı Linux,
Android a Windows zař́ızeńı do śıtě. Veškeré konfiguračńı soubory, kĺıče a certifikáty
certifikačńı autority, diagramy a fotografie jsou součást́ı př́ılohy.

Kĺıčová slova: OpenBSD, router, zabezpečeńı, Wi-Fi, Wireguard, unbound, nsd, DNS,
AdBlock, RADIUS, EAP-TLS, PKI, infrastruktura veřejných kĺıč̊u, Certifikačńı autorita,
HSM, SafeNet eToken 5110

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Alternatives . 1

1.2.1 OpenWrt . 1
1.2.2 Turris project . 2
1.2.3 Mikrotik RouterOS . 2

2 OpenBSD Operating System 3
2.1 OpenBSD introduction . 3

2.1.1 The OpenBSD Foundation . 3
2.1.2 OpenBSD security features . 3
2.1.3 OpenBSD limitations . 4

3 Model network 5
3.1 Model network . 5

3.1.1 Subnetting . 6

4 Encryption 8
4.1 Motivation . 8
4.2 Symmetric & asymmetric cryptography fundamentals 8

4.2.1 Symmetric-key algorithms . 9
4.2.2 Public-key algorithms . 9
4.2.3 SSL/TLS . 11
4.2.4 OpenSSL . 11

4.3 Public Key Infrastructure (PKI) . 12
4.3.1 Authorities . 12
4.3.2 PKI hierarchy . 12
4.3.3 Key storage . 15
4.3.4 Building PKI infrastructure . 18
4.3.5 DV TLS Certificate Authority . 21
4.3.6 EAP-TLS Certificate Authority . 24
4.3.7 Personal Certificate Authority . 26
4.3.8 Alternative ways of PKI management 27

5 Configuration and testing 28
5.0.1 Miscellaneous initial system config 29
5.0.2 Network configuration . 29
5.0.3 DHCP . 30
5.0.4 Firewall . 31
5.0.5 OCSP responder and CRL server . 36
5.0.6 DNS . 37
5.0.7 VPN . 43

v

5.1 System upgrade . 46
5.1.1 Updating packages . 46
5.1.2 Patching . 46
5.1.3 Upgrading . 46
5.1.4 Updating the Ports Tree . 46

6 WiFi security 47
6.1 Introduction . 47

6.1.1 IEEE 802.11i (WPA2) . 47
6.1.2 IEEE 802.1X (RADIUS) . 48

6.2 RADIUS server configuration and tests . 50
6.2.1 eapol test . 51

6.3 Authenticator configuration . 52
6.4 Connecting devices . 55

6.4.1 UNIX-like operating system with wpa supplicant 55
6.4.2 Android smartphone . 55
6.4.3 Windows 11 . 59

7 ARM64 platform 64
7.1 Introduction . 64
7.2 NanoPi R4S 4GB . 65

7.2.1 Preparing installation media . 66
7.2.2 Boot . 67
7.2.3 Installation . 67

8 Conclusion and Future work 70

A Attachment directory structure 72

B OpenSSL configuration template 73

vi

Chapter 1

Introduction

1.1 Motivation

Many contemporary Small Office/Home Office (SOHO) network devices suffer from com-
mon weakness. They stop receiving official firmware updates pretty soon after they are
sold, even though its hardware is not yet outdated. Another drawback is poor logging and
statistics options, which makes them hardly debuggable. Lack of Secure Shell (SSH) con-
nection support ties the users to web Graphical User Interface (GUI) interface, Hopefully,
there are few possibilities left for the owner.

1.2 Alternatives

Let’s take a look at projects that follow similar goals as OpenBSD either in security or
network field.

1.2.1 OpenWrt

OpenWrt is a Linux distribution well-known for being created and maintained especially
for embedded network devices (Wrt stands for Wireless Router). It can run many platforms
requiring at least 8MB Flash and 64MB RAM space.[1] Many SOHO devices meet these
requirements and are on the official Table of Hardware. OpenWrt is secure-by-default and
receives updates frequently.

1

https://openwrt.org/toh/start

CHAPTER 1. INTRODUCTION

1.2.2 Turris project

Turris is quite a new project maintained by CZ.NIC, the registry of the Czech national
top-level domain .CZ. The project focuses both on software and hardware. They pro-
duce Turris Omnia all-in-one box router and modular Turris MOX.[2] As for software,
Turris develops Turris OS, a Linux distribution adding some additional tools at the top
of OpenWrt. It has many attractive features:

� Sentinel system

– threat detection

– dynamic firewall

– Honeypot as a Service (HaaS) proxy application that forwards incoming WAN
SSH traffic to CZ.NIC HaaS server that represents end-user operating system
allowing the attacker to log in and do some job (execute commands or download
malware) that is recorded and further analyzed.

� Knot DNSSEC resolver (part of Knot Domain Name System (DNS) project main-
tained by CZ.NIC)

� reForis router administration interface (developed by Turris project)

� LuCI configuration interface (inherited from OpenWrt)

� multiple applications that may be installed and configured easily via reForis interface:

– Tools for network analysis

– Nextcloud

– OpenVPN client/server

� Wireguard is supported as well but with no Graphical User Interface (GUI) support
yet.

1.2.3 Mikrotik RouterOS

Mikrotik is quite odd in this list provided by the fact that they do not distribute opensource
operating system, that cannot run non-Mikrotik devices, but even the low-end devices,
like Mikrotik hAP Wi-Fi routers, come with fully-featured RouterOS and receive updates
as well as the high-end devices. Mikrotik is listed here because we will use Mikrotik Wi-Fi
Access Point as 802.1X authenticator.

2

Chapter 2

OpenBSD Operating System

2.1 OpenBSD introduction

2.1.1 The OpenBSD Foundation

OpenBSD is a free, multi-platform 4.4 BSD-based UNIX-like operating system, which
developers focus on security, correctness, and standardization.[3] OpenBSD developers
pose high requirements on code quality so OpenBSD is sometimes called ”a C language
documentation”. The quality and correctness of its documentation are appreciated often
as well. Besides the OpenBSD operating system, the OpenBSD Foundation includes many
related projects - OpenSSH, OpenBGPD, OpenNTPD, OpenSMTPD, LibreSSL[4] that
are well-known in whole UNIX-like world.

2.1.2 OpenBSD security features

The OpenBSD operating system implements multiple security that makes it suitable for
security-critical use cases like network router or firewall.

2.1.2.1 Address space layout randomization

OpenBSD implements randomized malloc(), mmap(), and kernel randomization, which
is a special case of Address space layout randomization (ASLR). During every boot,
OpenBSD relinks its kernel so every object that gets linked into the binary gets the
random address. This process is signaled by the message ”reordering libraries” and may
slow down the boot rapidly when running on single-core CPUs or on a single processor
kernel.

2.1.2.2 Privilege separation and chroot jailing

OpenBSD runs nearly all of the standard system daemons with privilege separation (each
daemon has its own user/group).
Also, most of the daemons are configured by default to change root right after start.

2.1.2.3 strlcpy() and strlcat()

According to the Common Weakness Enumeration (CWE), the out-of-bounds write/read
regularly tops the ranking of software weaknesses.[5] In C/C++ language, this vulnerabil-
ity is often introduced by misuse of string manipulation functions strcpy() and strcat().
The OpenBSD project implemented safe versions of these functions, called strlcpy() and
strlcat().

3

CHAPTER 2. OPENBSD OPERATING SYSTEM

1 size_t strlcat(char *, const char *, size_t)

2 size_t strlcpy(char *, const char *, size_t)

src/include/string.h

There are multiple safe implementations of strcpy() and strcat() from different authors.
RedHat Developer article ”Efficient string copying and concatenation in C”1 clearly de-
scribes the differences.[6]

2.1.2.4 LibreSSL

The OpenBSD foundation develops its own fork of OpenSSL, which has been improved
significantly. This topic is further described in the Certificate authority and encryption
section.

2.1.3 OpenBSD limitations

2.1.3.1 Giant lock

OpenBSD is one of the operating systems that still use the Giant lock approach which
makes each kernel call mutually exclusive so only a single kernel call may be executed at
the same time. This also means only one CPU core may be used for kernel calls. Giant
lock approach is implemented by __mp_lock in OpenBSD.

1 void __mp_lock(struct __mp_lock *);

2 void __mp_unlock(struct __mp_lock *);

3 int __mp_release_all(struct __mp_lock *);

sys/mplock.h

2.1.3.2 Lack of SMP support for armv7

As for version 7.2, OpenBSD does not support Symmetric Multiprocessor kernel mode
(SMP) on the armv7 platform.[7] This affects some Raspberry PI-like devices (the ones
with Allwinner H2 for example) so only one core works. Since these devices have multicore
low-power CPUs with low core frequency, this lack is sensible and slows down especially
kernel randomization (reoder of libraries) during boot.

1https://developers.redhat.com/blog/2019/08/12/efficient-string-copying-and-concatenation-in-c

4

Chapter 3

Model network

3.1 Model network

Let’s consider the following scenario imitating real-world example. We have:

� 3 dislocated sites A,B,C with:

– access to the Internet, one (A) with fixed, public IP address

– WiFi station

– one client device in each site

� 2 devices m1,m2 somewhere in the Internet

What we need:

� to connect the networks A,B,C via VPN

� to have the same WiFi SSID and 802.1x authentication in each site

� to run DNS service

Internet

rb

ra

rc

m1 m2

Internet

rb

ra

rc

m1 m2

Figure 3.1: Simplified network model

5

CHAPTER 3. MODEL NETWORK

3.1.1 Subnetting

IP address consists of two parts - network prefix and host identifier. A network prefix is a
group of the most significat bits of an IP address, host identifier is the rest of bits. Hosts
with the same network prefix are considered to be in the same network or subnetwork.[8]
The network may also be characterized with a bitmask (called netmask) or prefix. Sub-
netting is the practice of dividing a network into two or more subnetworks. The reasons
to divide networks into smaller subnetworks are numerous.

� Network performance - traffic is split which minimizes congestion probability

� Maintenance and administration responsibility distribution - computer networks
must reflect organization’s hierarchy with its policies

� Privacy - broadcasts are being distributed only within a subnet

� Troubleshooting - traffic monitoring and troubleshooting is easier in smaller networks

� Security - ensuring security includes the audit and network traffic monitoring

In our example network, we will divide the network to subnetworks also in favor of layer
3 VPN.

3.1.1.0.1 IPv4 private address space collision considerations Let’s consider a
typical situation when there is a client device (laptop) with Internet access, connected to
some public IPv4 Wi-Fi network that uses IPv4 private subnet address space. Let’s call
this network the network X. There is a chance that X’s address space will collide with
the address space of either networks A,B,C or the client-to-site VPN network, and the
routing will not work. Although there is no easy way to avoid such a situation by 100%,
we can reduce the chance substantially when we use ”random” network spaces for our net-
works. So instead of using 192.168.1.0/24, 192.168.2.0/24, and so on, we can pick subnets
from 10.0.0.0/8 or 172.16.0.0/12 private address space - 10.237.176.0/24, 10.237.177.0/24
for instance.

6

C
H
A
P
T
E
R

3.
M
O
D
E
L
N
E
T
W
O
R
K

Table 3.1: Subnetting the given IP range

IP range: 172.16.160.0/21, Hosts: 211 = 2046

ID Description Required IPs Size 2n Available IPs Prefix Mask Network address Available addresses Broadcast

A Site A 500 29 510 /23 255.255.254.0 172.16.160.0 172.16.160.1-172.16.161.254 172.16.161.255

B Site B 200 28 254 /24 255.255.255.0 172.16.162.0 172.16.162.1-254 172.16.162.255

C Site C 200 28 254 /24 255.255.255.0 172.16.163.0 172.16.163.1-254 172.16.163.255

X VPN client-to-site 100 27 126 /25 255.255.255.128 172.16.164.0 172.16.164.1-126 172.16.164.127

Y VPN site-to-site 5 23 6 /29 255.255.255.248 172.16.164.128 172.16.164.129-134 172.16.164.135

Free space 172.16.164.136-172.16.167.254

Internet

rb

ra

rc

m1 m2

.129

.130 .131

172.16.160.0/21

.1

.2 .3

.1

.2 .3

VPN site-to-site
172.16.164.128/29

VPN client-to-site
172.16.164.0/25

a.foo.org
172.16.160.0/23

b.foo.org
172.16.162.0/24

c.foo.org
172.16.163.0/24

Figure 3.2: Model network

7

Chapter 4

Encryption

4.1 Motivation

With the rapid expansion of the Internet and computer networks in general, and its use
for the exchange of private data, the risk and consequences of unauthorized access are
unacceptable. Thus, the use of some form of encryption in the context of unisolated
networks and/or sensitive data exchange is de-facto standard in these days. Moreover,
most of the devices now have the encryption algorithms hardware implemented, so it does
not affect the performance/throughput/power consumption dramatically. There are some
scenarios (static websites without private content, for example), when the encryption may
seem useless, and there is a discussion about that, but the purpose of encrypted HTTP
or DNS (DNSSEC) for example, is not just to prove the validity of the data. There is
also a privacy concern so that the unencrypted traffic, which may represent the contents
of a webpage or DNS query, can be easily monitored by anyone who has the access to the
network device which the traffic goes through. In 2014, the Internet Engineering Task
Force (IETF) published Request for Comments (RFC) 7258 in the category Best Current
Practice called ”Pervasive Monitoring Is an Attack” stating ”Pervasive monitoring is a
technical attack that should be mitigated in the design of IETF protocols, where possible.”[9]
That is why modern versions of web browsers show disturbing warnings or pictograms
when accessing insecure content. That significantly contributed to the spread of HTTPS
over Internet.

4.2 Symmetric & asymmetric cryptography fundamentals

Let’s take a brief look at the fundamental principles of symmetric and asymmetric cryp-
tography, which, in cooperation, stands for the security of today’s Internet. This will allow
us to understand better the following process of creating a public key infrastructure and
encryption settings of the services.
In 1978, the authors of the RSA algorithm, which is described below, came up with the
names Alice and Bob for the communicating participants.[10] This caught on and, besides
with other names, became a convention when discussing cryptography. The following text
will meet this convention as well.

8

CHAPTER 4. ENCRYPTION

4.2.1 Symmetric-key algorithms

Symmetric-key algorithms use the same key to encrypt and decrypt the plaintext / ci-
phertext meaning all communicating subject has to know the shared secret. Including the
Caesar Cipher, the symmetric cryptography is the oldest form. Symmetric-key algorithms
are divided into

� Stream ciphers that encrypt small portion of data (typically byte) one at time, and

� Block ciphers that take a larger block of bits of constant size (256 bits for example)
and encrypt the whole block at time

Most of modern symmetric-key block ciphers are based on Faistel networks.

4.2.2 Public-key algorithms

In 1874, William Stanley Jevons wrote the following sentence in his book The principles
of Science:
”Can the reader say what two numbers multiplied together will produce the number 8616460799?
I think it unlikely that anyone but myself will ever know.”[11]
This is the sense of the use of one-way function in cryptography.
Public-key cryptography was invented by Clifford Cocks and James H. Ellis at the UK
Government Communications Headquarters (GCHQ) in 1973, however, the research was
classified by the British government until 1997.
The public discovery was done in 1976 by Whitfield Diffie and Martin Hellman, who in-
vented Diffie-Hellman (DH) key exchange and, in 1977 by Ronald Rivest, Adi Shamir, and
Leonard Adleman, who invented the RSA algorithm.
In contrast to symmetric-key algorithms, the public-key algorithms rely on key pair - the
private and the public key being mathematically associated (as further described). The
public key is used for encryption and the private key for decryption. Asymmetric algo-
rithms are based on mathematical problems called one-way functions. Here is the list of
mathematical problems and cryptosystems that are based on them:

� integer factorization problem - RSA (Rivest-Shamir-Adleman)

� discrete logarithm problem - DH (Diffie-Hellman), DSA (Digital Signature Algo-
rithm)

� elliptic-curve discrete logarithm problem - ECDH & ECDSA

4.2.2.1 RSA

Let’s take a look at RSA principle, which is by far the most popular public-key algorithm
supporting encryption and digital signature.

4.2.2.1.1 Mathematical problem Assume three very large positive integers e, d, n.

(me)d =
(
md

)e
≡ m (mod n)

While knowing e and n or even m, it is extremely difficult to find d. ≡ denotes modular
congruence relation.

9

CHAPTER 4. ENCRYPTION

4.2.2.1.2 Keypair generation

1. Pick two random prime numbers p and q,

2. Compute product n = pq and the value of Euler’s totient function φ(n) = (p−1)(q−
1),

3. Choose an integer e so that 1 < e < φ(n) and gcd (e, φ(n)) = 1 (e and φ(n) are
coprime),

4. Determine d ≡ e−1 (d being the modular multiplicative inverse of e mod d).
This means to solve the congruence de ≡ 1 (mod φ(n)).

the public key is touple {n, e}
the private key is touple {n, d}
Since the numbers p and q are no longer needed, it is better to forget them instead of
keeping them secret.

4.2.2.1.3 Key distribution Alice and Bob publish their public key via reliable but
not necessarily secret channel (there is no such one yet). When Bob wants to send infor-
mation to Alice, he uses her public key to encrypt the message, Alice uses her private key
to decrypt the message and vice versa.

4.2.2.1.4 Encryption Bob wants to send the plaintext message M to Alice. He con-
verts M to padded message m such that 0 ≤ m < n. Ciphertext c is then computed using
the public key e as:

c ≡ me (mod n)

... and sent to Alice

4.2.2.1.5 Decryption Alice recovers m from c using her private key exponent d by
computing

cd ≡ (me)d ≡ m (mod n)

... and the original message M is gained by reversing the padding scheme.

4.2.2.2 ECC

ECC stands for Elliptic Curve Cryptography which is based on the algebraic structure of
elliptic curves over finite fields.
Elliptic Curve Cryptography allows us to use substantially smaller keys in comparison with
RSA, while preserving the same security level. This leads to encryption and decryption
speedup.[12]

10

CHAPTER 4. ENCRYPTION

−4 −2 2 4

−6

−4

−2

2

4

6 y2 = x3 + 7

x

y

Figure 4.1: Example elliptic curve

We will use ECDSA (Elliptic Curve Digital Signature Algorithm) in our example and will
generate keys using prime256v1 curve.

4.2.3 SSL/TLS

Symmetric-key algorithms perform much better in comparison with public-key algorithms.
TLS uses asymmetric encryption to establish a secure connection between the endpoints,
to exchange the symmetric key, which is then used for symmetric-key encryption of the
traffic exchange.

4.2.4 OpenSSL

OpenSSL is an open-source library/toolkit containing the implementation of almost every
cryptographic function and TLS protocol. After the Heartbleed vulnerability was revealed
in 2014[13], the OpenBSD project forked OpenSSL, pruned and modernized its codebase
radically to create a project named LibreSSL. The same did Google by creating the Bor-
ingSSL fork. LibreSSL now provides TLS for multiple operating systems, not only for
OpenBSD. Nevertheless, OpenSSL meanwhile resolved many issues.

11

CHAPTER 4. ENCRYPTION

4.3 Public Key Infrastructure (PKI)

4.3.1 Authorities

Formally, we distinguish at least four types of authorities in Public Key Infrastructure
(PKI):

� Registration Authority (RA) - verifies requests and tells the Certificate authority
to issue a certificate

� Certificate Authority (CA) - responsible for the issue process itself

� Validation Authority (VA) - maintains a list of issued certificates and keeps it
publicly accessible (CRL via HTTP, OCSP)

� Time-Stamp Authority (TSA) - issue signs for arbitrary data which serve as
evidence that a certain data blob existed at a given moment in the past. Time-
stamp authorities are used in critical use cases like e-government and e-contracting
and are usually not present in organizations, that rather use the services of widely
recognized and established qualified certificate authorities.

In small or medium size scenarios, we do not distinguish such authorities and refer to the
whole infrastructure as Certificate authority. This text will follow the same approach.

4.3.2 PKI hierarchy

While issuing all end certificates with a single Certificate Authority would still provide
trust to the network, while it would be cryptographically as strong as a multi-tier hi-
erarchy, this assumption erodes in real-world scenarios that include many people, many
organization units, and many devices using the PKI.

Many copies of the primary key would have to be given to many people and that is where
all troubles arise.
Such an organization would lose control completely and the risk of PK compromise or
malicious use would be very high.
Reliability is one of the greatest requirements that we pose on PKI. It provides us the
ability to build large systems and gives them trust which is essential for sensitive data
manipulation.
In the case of CA’s primary key compromise, the trust becomes broken completely and
organization-wide which brings inconceivable troubles.

With regard to these threats, we must pay strong attention to PKI design and create a
multi-level hierarchy where Root CA issues certificate for Issuing CA and the Issuing CA
issues multipurpose end-entity certificates for people, personal devices and infrastructure
devices.

Let’s consider the following two-tier PKI model for our example organization:

12

CHAPTER 4. ENCRYPTION

Figure 4.2: Example organizational Public Key Infrastructure hierarchy

In two-tier model, which meets most organization’s needs, we recognize three entities:

� Root Certificate Authority

� Issuing Certificate Authority

� End entities - people, personal computing devices and infrastructure devices

In the context of X.509 certificates, the devil is in the detail, in certificate extensions -
constraints and attributes.
The most important constraint is CA bit which can be either TRUE or FALSE. A certifi-
cate with CA:TRUE can issue (sign) a subordinate certificate and create another tier. On
the other side, the end entity’s certificate must always have CA set to FALSE to prevent
loss of control.

Apart from CA constraint, issuing certificate authorities have pathlen constraint set to
zero which means it is still able to issue certificates, but only end-entity certificates, not
certificate authorities. Individual issuing certificate authority certificate extensions do not
differ from each other.

Root CA stands on the top (root) of the hierarchy. Because there is no superior entity, Root
CA always have its certificate self-signed. Root CA issues intermediate CA certificates
(in three-tier model) or issuing CA certificates (in our two-tier model).

13

CHAPTER 4. ENCRYPTION

Figure 4.3: Certificate life cycle state UML diagram

4.3.2.1 Personal certificate

A personal certificate is issued to an individual person that can use it to sign documents
or emails (S/MIME). The use of this kind of certificate is mostly administrative. Personal
certificate links public key with an individual person. The Common Name attribute
represents a person’s full name.

4.3.2.2 Domain Validated certificate

Domain Validated certificate is issued to a device, that holds some critical function or crit-
ical data and other entities interacting with it necessarily need to verify the authenticity
of the device before starting to exchange critical data with the device.
DV certificate links public key with domain name and/or IP address. Certificate for RA-
DIUS server is a special case. End-device operating systems impose various requirements
on RADIUS server certificate. Ignoring these requirements would result in an inability to
connect. GÉANT list and discuss these requirements excellently on their website.[14] The
Common Name attribute represents a domain name or IP address of the device (or both).

4.3.2.3 EAP-TLS client certificate

EAP-TLS certificate is used to authenticate a device that tries to access a network (either
Ethernet or Wi-Fi). RADIUS server validates the supplied certificate against EAP-TLS
certificate authority and allows or prohibits an authenticator (Wi-Fi router or switch) to
connect such devices to the network.
Just like in the case of RADIUS DV certificate, EAP-TLS client certificate should also
meet special requirements.

4.3.2.4 VPN certificate

VPN certificate stands for almost the same purpose as EAP-TLS certificate but in the
context of a VPN server that connects devices in remote networks (typically in the In-
ternet) to the local network. We divide Personal, EAP-TLS, and VPN certificates, all
belonging to persons, due to different X.509 v3 extended key usage values and also for
administrative purposes.

14

CHAPTER 4. ENCRYPTION

4.3.3 Key storage

Cryptographic keypairs can be stored on various storage devices:

1. Personal Computer/server data storage device - HDD, SSD

2. Removable device - USB stick, MMC

3. Hardware Security Module (HSM) - Smart Cards, USB tokens, Cryptocurrency wal-
lets

4. Unconventional storage media...

While storing cryptographic keypairs directly in the filesystem is very convenient, straight-
forward, and easy to use, this approach brings many threats.
That way, keys are stored in regular files (with .pem and .key extensions) and it is com-
pletely up to the user to ensure that unauthorized entities do not have access to these
files. Securing files in the local filesystem is done namely via ownership and permissions.

PKCS#11 standardizes the interaction with HSM and enables us to generate keypair di-
rectly in HSM and use it to sign arbitrary data using the supported mechanisms so that
the private key never escapes the HSM itself. By using these devices, we kind of transfer
the trust to manufacturers of these devices and authorities that certified the devices.

These removable HSMs may be kept in a secure place for most of the time and the PIN code
may be split among multiple people. In general, this approach makes the manipulation
with critical keys much more transparent and traceable.

15

CHAPTER 4. ENCRYPTION

4.3.3.1 HSM SafeNet eToken 5110 CC

Let’s inspect an example USB Hardware Security Module, sometimes referenced as Smart Card
or Token. The Author of this text owns SafeNet eToken 5110 CC which is certified as a
Qualified Signature Creation Device (QSCD) according to eIDAS (EU regulation). That
means this particular HSM enables its owner to create Qualified Electronic Signatures and
Qualified seals recognized within the internal European government and market.
In 2023, this device is available for ¿43,56 incl. VAT.[15]
The manufacturer indicates support for Linux, MacOS, and Windows. In the context of
the UNIX OS family, the OpenSC project (SC stands for Smart Card) provides drivers,
tools, and middleware for such HSMs so they can be used in combination with OpenSSL.
Here, the Debian Linux distribution will be used to demonstrate the use SafeNet eToken
5110 CC. Although OpenBSD has OpenSC in ports as well, the manufacturer does not
provide libeToken.so library for OpenBSD that is necessary for pkcs11-tool to work with
eToken 5110 CC. The author did not test libeToken.so available for MacOS that also
belongs to the UNIX family.

Figure 4.4: USB Hardware Security Module - Gemalto SafeNet eToken 5110 CC

Figure 4.5: SafeNet Authentication Client - home page

16

CHAPTER 4. ENCRYPTION

Figure 4.6: SafeNet Authentication Client - token info

17

CHAPTER 4. ENCRYPTION

Let’s inspect how can we use pkcs11-tool to interact with HSM:

1 # pkcs11 -tool (part of OpenSC)

2 pkcs11 -tool --module libeToken.so --login --list -objects

3 pkcs11 -tool --module libeToken.so --login --show -info

4

5 # Generate keypair

6 pkcs11 -tool --module libeToken.so --login --keypairgen --id 1 --label <

KEYPAIR_LABEL > --key -type <KEY_TYPE >

7

8 # Possible key types:

9 EC:prime256v1

10 EC:secp384r1

11 rsa :2048

12 rsa :4096

13

14 # Example output of --keypairgen:

15 ca@linux :~/pki/root$ pkcs11 -tool --module libeToken.so --login --keypairgen

--id 1 --label foo -root -ecc -g1 --key -type EC:prime256v1

16 Using slot 0 with a present token (0x0)

17 Logging in to "Matyas ’s token".

18 Please enter User PIN:

19 Key pair generated:

20 Private Key Object; EC

21 label: foo -root -ecc -g1

22 ID: 01

23 Usage: decrypt , sign , derive

24 Access: sensitive , always sensitive , never extractable , local

25 Public Key Object; EC EC_POINT 256 bits

26 EC_POINT: 044104

cdaf5ad315b7bc035bdaeb5f88c1689e426e3c66e8bc96c310f556512199 (...)

27 EC_PARAMS: 06082 a8648ce3d030107

28 label: foo -root -ecc -g1

29 ID: 01

30 Usage: encrypt , verify , wrap , derive

31 Access: local

32

33 # Remove private and public key

34 pkcs11 -tool --module libeToken.so --login --delete -object --id <KEYPAIR_ID >

--type=privkey

35 pkcs11 -tool --module libeToken.so --login --delete -object --id <KEYPAIR_ID >

--type=pubkey

4.3.4 Building PKI infrastructure

In this section, we will demonstrate how to generate a whole PKI using OpenSSL.
Readers searching for more detailed explanation how to use OpenSSL to create PKI can
visit OpenSSL Certificate Authority from Jamie Nguyen.1[16]

4.3.4.1 Creating a system user

At first, we create a new system user dedicated for PKI manipulation called ca.

1 useradd -m -c "Certificate Authority" ca

2 passwd ca

3

4 # Enter some strong password

5

6 # Exit and login as ‘ca ‘ user

7 exit

8

1https://jamielinux.com/docs/openssl-certificate-authority/

18

https://jamielinux.com/docs/openssl-certificate-authority/

CHAPTER 4. ENCRYPTION

9 mkdir /home/ca/pki

10 cd /home/ca/pki

11 vim openssl.cnf.templ

12 # Insert contents from openssl.cnf.templ

13

14 # Set distinguished name defaults req_distinguished_name section

15 sed -i ’s#<DN_COUNTRY >#CZ#g’ openssl.cnf.templ

16 sed -i ’s#<DN_STATE ># Czechia#g’ openssl.cnf.templ

17 sed -i ’s#<DN_LOCALITY ># Prague#g’ openssl.cnf.templ

18 sed -i ’s#<DN_ORG >#Foo org#g’ openssl.cnf.templ

19

20 # Set OCSP and CRL URL addresses

21 sed -i ’s#<CRL_ROOT >#http ://ca.foo.org/root/ca.crl#g’ openssl.cnf.templ

22 sed -i ’s#<OCSP_ROOT >#http ://ca.foo.org/ocsp/root#g’ openssl.cnf.templ

23 sed -i ’s#<CRL_DVTLS >#http ://ca.foo.org/dvtls/ca.crl#g’ openssl.cnf.templ

24 sed -i ’s#<OCSP_DVTLS >#http ://ca.foo.org/ocsp/dvtls#g’ openssl.cnf.templ

25 sed -i ’s#<CRL_EAPTLS >#http ://ca.foo.org/eaptls/ca.crl#g’ openssl.cnf.templ

26 sed -i ’s#<OCSP_EAPTLS >#http ://ca.foo.org/ocsp/eaptls#g’ openssl.cnf.templ

27 sed -i ’s#<CRL_PERSONAL >#http ://ca.foo.org/personal/ca.crl#g’ openssl.cnf.

templ

28 sed -i ’s#<OCSP_PERSONAL >#http ://ca.foo.org/ocsp/personal#g’ openssl.cnf.

templ

29

30 # Set RADIUS server DNS name

31 sed -i ’s#<RADIUS_DNS ># radius.foo.org#g’ openssl.cnf.templ

32

33 # Set path to HSM OpenSC library in pkcs11_section.MODULE_PATH

34 sed -i ’s#<OpenSC_LIB >#/ usr/lib/libeToken.so#g’ openssl.cnf.templ

19

CHAPTER 4. ENCRYPTION

4.3.4.2 Root Certificate Authority

Let’s now move on by creating the Root Certificate Authority.

1 mkdir root

2 cd root

3

4 # Create directories and files for OpenSSL ca

5 mkdir certs crl csr newcerts private

6 chmod 700 private

7 touch index.txt

8 echo 01 > serial

9 echo 01 > crlnumber

10 cp ../ openssl.cnf.templ ./ openssl.cnf

11 sed -i ’s#<CA_NAME >#Root CA#g’ openssl.cnf

12 sed -i ’s#<CA_DIR >#root#g’ openssl.cnf

13 sed -i ’s#<DEFAULT_DAYS >#3650#g’ openssl.cnf

14 sed -i ’s#<POLICY ># policy_strict#g’ openssl.cnf

15

16 # Generate key in HSM

17 pkcs11 -tool --module libeToken.so \

18 --login --keypairgen \

19 --id 1 --label foo -root -ecc -g1 \

20 --key -type EC:prime256v1

21

22 # In computer

23 openssl ecparam -genkey -name prime256v1 | openssl ec -aes256 -out private/

ca.key.pem

24 chmod 400 private/ca.key.pem

25

26 # Create certificate on HSM

27 # -key accepts RFC7512 URI scheme

28 openssl req -config ./ openssl.cnf \

29 -new -x509 -days 7300 -sha256 -extensions v3_ca \

30 -engine pkcs11 -keyform engine \

31 -key 0:01 \

32 -out certs/ca.cert.pem

33

34 # Create certificate in computer

35 openssl req -config ./ openssl.cnf \

36 -key private/ca.key.pem \

37 -new -x509 -days 7300 -sha256 -extensions v3_ca \

38 -out certs/ca.cert.pem

39

40 chmod 444 certs/ca.cert.pem

41

42 # Verify the root certificate

43 openssl x509 -noout -text -nameopt utf8 -in certs/ca.cert.pem

44

45 # Generate CRL (by following the procedure in crl.txt) ...

46 # Issue OCSP certificate (by following the procedure in ocsp.txt)...

20

CHAPTER 4. ENCRYPTION

4.3.5 DV TLS Certificate Authority

1 cd /home/ca/pki

2 mkdir dvtls

3 cd dvtls

4 mkdir certs crl csr newcerts private

5 chmod 700 private

6 touch index.txt

7 echo 01 > serial

8 echo 01 > crlnumber

9 cp ../ openssl.cnf.templ ./ openssl.cnf

10 sed -i ’s#<CA_NAME >#DV TLS CA#g’ openssl.cnf

11 sed -i ’s#<CA_DIR ># dvtls#g’ openssl.cnf

12 sed -i ’s#<DEFAULT_DAYS >#730#g’ openssl.cnf

13 sed -i ’s#<POLICY ># policy_loose#g’ openssl.cnf

14

15 # Generate key in HSM

16 pkcs11 -tool --module libeToken.so \

17 --login --keypairgen \

18 --id 2 --label foo -dvtls -ecc -g1 \

19 --key -type EC:prime256v1

20

21 # Generate key in computer

22 openssl ecparam -genkey -name prime256v1 | openssl ec -aes256 -out private/

ca.key.pem

23 chmod 400 private/ca.key.pem

24

25 # Generate request using keypair on HSM

26 openssl req -config ./ openssl.cnf -new -sha256 \

27 -engine pkcs11 -keyform engine \

28 -key 0:02 \

29 -out csr/ca.csr.pem

30

31 # Generate request using keypair in computer

32 openssl req -config ./ openssl.cnf -new -sha256 \

33 -key private/ca.key.pem \

34 -out csr/ca.csr.pem

35

36 # Sign dvtls certificate by root CA

37 cd ../ root

38

39 # Sign the request using Root CA on HSM

40 openssl ca -config ./ openssl.cnf \

41 -extensions v3_issuing_ca -days 3650 -notext -md sha256 \

42 -engine pkcs11 -keyform engine \

43 -keyfile 0:01 \

44 -in ../ dvtls/csr/ca.csr.pem \

45 -out ../ dvtls/certs/ca.cert.pem

46

47 # Sign the request using Root CA in computer

48 openssl ca -config ./ openssl.cnf \

49 -extensions v3_issuing_ca -days 3650 -notext -md sha256 \

50 -in ../ dvtls/csr/ca.csr.pem \

51 -out ../ dvtls/certs/ca.cert.pem

52

53 chmod 444 ../ dvtls/certs/ca.cert.pem

54

55 # Verify the certificate

56 openssl x509 -noout -text -nameopt utf8 -in ../ dvtls/certs/ca.cert.pem

57 # Verify dvtls cert against root cert

58 openssl verify -CAfile certs/ca.cert.pem ../ dvtls/certs/ca.cert.pem

59

60 # Create fullchain certificate

21

CHAPTER 4. ENCRYPTION

61 cat /home/ca/pki/dvtls/certs/ca.cert.pem /home/ca/pki/root/certs/ca.cert.

pem > /home/ca/pki/dvtls/certs/ca.fchain -cert.pem

62 chmod 444 /home/ca/pki/dvtls/certs/ca.fchain -cert.pem

63

64 cd /home/ca/pki/dvtls

65 # Generate CRL (by following the procedure in crl.txt) ...

66 # Issue OCSP certificate (by following the procedure in ocsp.txt)...

22

CHAPTER 4. ENCRYPTION

4.3.5.1 Issuing Domain Validated certificate

Let’s now use our new DV TLS certificate authority to issue a certificate for mikrotik
router with 2-year validity.

1 cd /home/ca/pki/dvtls

2 openssl ecparam -genkey -name prime256v1 | openssl ec -aes256 -out private/

mikrotik.a.foo.org.key.pem

3 chmod 400 private/mikrotik.a.foo.org.key.pem

4

5 vim openssl.cnf

6 # [v3_server_alt_names]

7 # DNS.1 = mikrotik.a.foo.org

8 # #DNS.2 = localhost

9 # IP.1 = 172.16.160.2

10 # #IP.2 = 192.168.1.100

11

12 openssl req -config ./ openssl.cnf -new -sha256 \

13 -key private/mikrotik.a.foo.org.key.pem \

14 -out csr/mikrotik.a.foo.org.csr.pem

15

16 # Set CN to mikrotik.a.foo.org , leave email blank

17

18 # Transfer mikrotik.a.foo.org.csr.pem to signing machine (/home/ca/pki/

dvtls/csr/)

19 cd /home/ca/pki/dvtls

20

21 # Sign the request using DV TLS CA keypair on HSM

22 openssl ca -config ./ openssl.cnf \

23 -extensions v3_server_cert -days 730 -notext -md sha256 \

24 -engine pkcs11 -keyform engine \

25 -keyfile 0:02 \

26 -in csr/mikrotik.a.foo.org.csr.pem \

27 -out certs/mikrotik.a.foo.org.cert.pem

28

29 # Sign the request using DV TLS CA keypair in computer

30 openssl ca -config ./ openssl.cnf \

31 -extensions v3_server_cert -days 730 -notext -md sha256 \

32 -in csr/mikrotik.a.foo.org.csr.pem \

33 -out certs/mikrotik.a.foo.org.cert.pem

34

35 chmod 444 certs/mikrotik.a.foo.org.cert.pem

36

37 # Verify the certificate

38 openssl x509 -noout -text -nameopt utf8 -in certs/mikrotik.a.foo.org.cert.

pem

39 openssl verify -CAfile certs/ca.fchain -cert.pem certs/mikrotik.a.foo.org.

cert.pem

40

41 # Create fullchain certificate

42 cat /home/ca/pki/dvtls/certs/mikrotik.a.foo.org.cert.pem /home/ca/pki/dvtls

/certs/ca.fchain -cert.pem > /home/ca/pki/dvtls/certs/mikrotik.a.foo.org

.fchain -cert.pem

43 chmod 444 /home/ca/pki/dvtls/certs/mikrotik.a.foo.org.fchain -cert.pem

44

45 # Create PKCS #12 bundle

46 openssl pkcs12 -export -out private/mikrotik.a.foo.org.p12 -inkey private/

mikrotik.a.foo.org.key.pem -in certs/mikrotik.a.foo.org.fchain -cert.pem

23

CHAPTER 4. ENCRYPTION

4.3.6 EAP-TLS Certificate Authority

1 cd /home/ca/pki

2 mkdir eaptls

3 cd eaptls

4 mkdir certs crl csr newcerts private

5 chmod 700 private

6 touch index.txt

7 echo 01 > serial

8 echo 01 > crlnumber

9 cp ../ openssl.cnf.templ ./ openssl.cnf

10 sed -i ’s#<CA_NAME >#EAP -TLS CA#g’ openssl.cnf

11 sed -i ’s#<CA_DIR ># eaptls#g’ openssl.cnf

12 sed -i ’s#<DEFAULT_DAYS >#365#g’ openssl.cnf

13 sed -i ’s#<POLICY ># policy_loose#g’ openssl.cnf

14

15 # To generate key in HSM , use --id 3 --label foo -eaptls -ecc -g1

16

17 # And proceed the same way as for DV TLS CA

4.3.6.1 Issuing EAP-TLS certificate

1 # On client device , generate the key and request using openssl.cnf from /

home/ca/pki/eaptls/openssl.cnf

2 cd /home/ca/pki/eaptls

3 openssl ecparam -genkey -name prime256v1 | openssl ec -aes256 -out private/

matyas@foo.org.key.pem

4 chmod 400 private/matyas@foo.org.key.pem

5

6 vim openssl.cnf

7 # [v3_client_alt_names]

8 # email .1 = matyas@foo.org

9 # #email .2 = secondary@foo.org

10

11 openssl req -new -config ./ openssl.cnf \

12 -key private/matyas@foo.org.key.pem \

13 -out csr/matyas@foo.org.csr.pem

14

15 # Transfer matyas@foo.org.csr.pem to signing machine (/home/ca/pki/eaptls/

csr/)

16 cd /home/ca/pki/eaptls

17

18 # Sign the request using DV TLS CA keypair on HSM

19 openssl ca -config ./ openssl.cnf \

20 -extensions v3_eaptls_client -days 375 -notext -md sha256 \

21 -engine pkcs11 -keyform engine \

22 -keyfile 0:03 \

23 -in csr/matyas@foo.org.csr.pem \

24 -out certs/matyas@foo.org.cert.pem

25

26 # Sign the request using EAP -TLS CA keypair in computer

27 openssl ca -config ./ openssl.cnf \

28 -extensions v3_eaptls_client -days 375 -notext -md sha256 \

29 -in csr/matyas@foo.org.csr.pem \

30 -out certs/matyas@foo.org.cert.pem

31

32 chmod 444 certs/matyas@foo.org.cert.pem

33

34 # Verify the certificate

35 openssl x509 -noout -text -nameopt utf8 -in certs/matyas@foo.org.cert.pem

36 openssl verify -CAfile certs/ca.fchain -cert.pem certs/matyas@foo.org.cert.

pem

24

CHAPTER 4. ENCRYPTION

37

38 # Create fullchain certificate

39 cat /home/ca/pki/eaptls/certs/matyas@foo.org.cert.pem /home/ca/pki/eaptls/

certs/ca.fchain -cert.pem > /home/ca/pki/eaptls/certs/matyas@foo.org.

fchain -cert.pem

40 chmod 444 /home/ca/pki/eaptls/certs/matyas@foo.org.fchain -cert.pem

41

42 # Create PKCS #12 bundle

43 openssl pkcs12 -export -out private/matyas@foo.org.p12 -inkey private/

matyas@foo.org.key.pem -in certs/matyas@foo.org.fchain -cert.pem

25

CHAPTER 4. ENCRYPTION

4.3.7 Personal Certificate Authority

1 cd /home/ca/pki

2 mkdir personal

3 cd personal

4 mkdir certs crl csr newcerts private

5 chmod 700 private

6 touch index.txt

7 echo 01 > serial

8 echo 01 > crlnumber

9 cp ../ openssl.cnf.templ ./ openssl.cnf

10 sed -i ’s#<CA_NAME ># Personal CA#g’ openssl.cnf

11 sed -i ’s#<CA_DIR ># personal#g’ openssl.cnf

12 sed -i ’s#<DEFAULT_DAYS >#365#g’ openssl.cnf

13 sed -i ’s#<POLICY ># policy_loose#g’ openssl.cnf

14

15 # To generate key in HSM , use --id 4 --label foo -personal -ecc -g1

16

17 # And proceed the same way as for DV TLS CA

4.3.7.1 Issuing personal certificate

1 # On client device , generate the key and request using openssl.cnf from /

home/ca/pki/personal/openssl.cnf

2 cd /home/ca/pki/personal

3 openssl ecparam -genkey -name prime256v1 | openssl ec -aes256 -out private/

matyas@foo.org.key.pem

4 chmod 400 private/matyas@foo.org.key.pem

5

6 vim openssl.cnf

7 # [v3_client_alt_names]

8 # email .1 = matyas@foo.org

9 # #email .2 = secondary@foo.org

10

11 openssl req -new -config ./ openssl.cnf \

12 -key private/matyas@foo.org.key.pem \

13 -out csr/matyas@foo.org.csr.pem

14

15 # Transfer matyas@foo.org.csr.pem to signing machine (/home/ca/pki/personal

/csr/)

16 cd /home/ca/pki/personal

17

18 # Sign the request using DV TLS CA keypair on HSM

19 openssl ca -config ./ openssl.cnf \

20 -extensions v3_client_cert -days 375 -notext -md sha256 \

21 -engine pkcs11 -keyform engine \

22 -keyfile 0:04 \

23 -in csr/matyas@foo.org.csr.pem \

24 -out certs/matyas@foo.org.cert.pem

25

26 # Sign the request using EAP -TLS CA keypair in computer

27 openssl ca -config ./ openssl.cnf \

28 -extensions v3_client_cert -days 375 -notext -md sha256 \

29 -in csr/matyas@foo.org.csr.pem \

30 -out certs/matyas@foo.org.cert.pem

31

32 chmod 444 certs/matyas@foo.org.cert.pem

33

34 # Verify the certificate

35 openssl x509 -noout -text -nameopt utf8 -in certs/matyas@foo.org.cert.pem

36 openssl verify -CAfile certs/ca.fchain -cert.pem certs/matyas@foo.org.cert.

pem

26

CHAPTER 4. ENCRYPTION

37

38 # Create fullchain certificate

39 cat /home/ca/pki/personal/certs/matyas@foo.org.cert.pem /home/ca/pki/

personal/certs/ca.fchain -cert.pem > /home/ca/pki/personal/certs/

matyas@foo.org.fchain -cert.pem

40 chmod 444 /home/ca/pki/personal/certs/matyas@foo.org.fchain -cert.pem

41

42 # Create PKCS #12 bundle

43 openssl pkcs12 -export -out private/matyas@foo.org.p12 -inkey private/

matyas@foo.org.key.pem -in certs/matyas@foo.org.fchain -cert.pem

4.3.7.2 Trust

After creating the PKI infrastructure, we need to distribute certificate authority certifi-
cates among the network devices.
Every particular device should trust a minimal set of certificate authorities.
For example, the RADIUS server has to trust Root CA and EAP-TLS CA because clients
are proving their identity using certificates issued by EAP-TLS certificate authority. In
the contrary, there is no need for a client device to trust to EAP-TLS certificate authority
because no one else proves its identity to the client device using EAP-TLS certificate.

As expected, the process of installing certificate authority into the operating system is
specific for each one. This text is not aimed to describe how to install certificate authority
into every particular operating system. Readers are kindly recommended to follow the
instructions for installing CA certificate for their operating system. However, the instal-
lation process on Android and Windows is described in Wi-Fi security chapter.

In addition, it is common that some applications use their own list of trusted certificate
authorities independent on the operating system list. Users of these applications need to
import certificates into such applications as well.

4.3.8 Alternative ways of PKI management

When we take a look at OpenVPN GitHub, we find that it includes easy-rsa repository
that contains a shell script-based wrapper of OpenSSL that makes PKI maintenance much
more convenient and can be used for multi-tier PKI as well.[17]

FreeRADIUS project developers did something similar with the help of Makefile[18], so
FreeRADIUS users are able to build a single-tier PKI with certificates, that are claimed
to be compatible with most of operating systems.[19] According to commit 6678b3a2, the
developers already work on ECC PKI generation.

This text presents manual PKI management using OpenSSL library directly for demon-
strative purposes. For easy use in production, the above OpenSSL calls should be wrapped
by some Makefile or shell script.

2https://github.com/FreeRADIUS/freeradius-server/commit/6678b3a6f29d98e6bd93f783349832e325e1151f

27

Chapter 5

Configuration and testing

OpenBSD project claims ”Only two remote holes in the default install, in a heck of a
long time!”. It is important to keep in mind the fewer changes we make, the better. The
fewer diffs we make in the default configuration files, the easier a future system upgrade
will be, which prompts us to merge manually old configuration files with the new ones.[20]
System upgrade is described in System upgrade section.

Figure 5.1: UML Deployment diagram

28

CHAPTER 5. CONFIGURATION AND TESTING

5.0.1 Miscellaneous initial system config

1 # Set system hostname

2 echo srv.a.foo.org > /etc/myname

5.0.2 Network configuration

Assume we have 2 network interfaces in our system:

� re0 - WAN ethernet interface connected to ISP

� re1 - LAN ethernet interface connected to switch

For each network interface, there should be a config file /etc/hostname.if, where if

represents the interface name, rge0 for instance.

1 # Configure DHCP on WAN interface

2 echo ’dhcp ’ > /etc/hostname.re0

3

4 # Or set static IP and mask gained from ISP

5 echo ’inet 10.108.271.35 255.255.255.0 description "WAN uplink"’ > /etc/

hostname.re0

6

7 # Set ISP ’s default gateway

8 echo 10.108.271.1 > /etc/mygate

9

10 # Configure the ethernet LAN interface

11 echo ’inet 172.16.162.1 255.255.255.0 description "LAN"’ > /etc/hostname.

re1

12

13 # Apply the changes

14 sh /etc/netstart

We have to enable IP and IPv6 forwarding

1 echo ’net.inet.ip.forwarding =1’ >> /etc/sysctl.conf

29

CHAPTER 5. CONFIGURATION AND TESTING

5.0.3 DHCP

OpenBSD comes with DHCP daemon called dhcpd.

1 # Specify interfaces on which dhcpd should listen for broadcasts

2 rcctl set dhcpd flags re1

Configure DHCP daemon

1 subnet 172.16.160.0 netmask 255.255.254.0 {

2 option routers 172.16.160.1;

3 option domain -name -servers 172.16.160.1;

4 range 172.16.160.5 172.16.161.254;

5

6 host mikrotik {

7 fixed -address 172.16.160.2;

8 hardware ethernet 00:00:00:00:00:00;

9 }

10

11 host printer {

12 fixed -address 172.16.160.5;

13 hardware ethernet 00:00:00:00:00:00;

14 }

15

16 host pc {

17 fixed -address 172.16.160.6;

18 hardware ethernet 00:00:00:00:00:00;

19 }

20 }

/etc/dhcpd.conf

1 # Check configuration

2 dhcpd -n

3

4 # Run in debug mode

5 dhcpd -d

6

7 # If everything seems to work correctly , start and enable the daemon

8 rcctl start dhcpd

9 rcctl enable dhcpd

30

CHAPTER 5. CONFIGURATION AND TESTING

5.0.4 Firewall

OpenBSD uses the PF (Packet Filter) which configuration file is located at /etc/pf.conf
and pfctl command is used to control the firewall.

5.0.4.1 Changing configuration safely

Commonly, we are somewhere in the Internet (not present to the device) when we need
to make some changes in firewall settings. In such a case, there is a high risk that we may
accidentally saw off the branch on which we are sitting (kill the VPN connection). Even
though we can check the new configuration for syntax mistakes, we cannot be 100% sure
the new configuration will work as desired. The consequences would be catastrophic. The
following procedure prevents such a situation.

1. Create a copy of the old config
cp /etc/pf.conf /etc/pf.conf.new

2. Make changes in the new config
vim /etc/pf.conf.new

3. Check the new config for syntax mistakes. If there are any, go to step 2.
pfctl -nf /etc/pf.conf.new

4. Load the new config, wait a period and then load back the old configuration.
pfctl -f /etc/pf.conf.new && sleep 60 && pfctl -f /etc/pf.conf

The period should be long enough to allow us to check at least critical services like
SSH. If we have made some mistakes, we have the guarantee that after a while, our
old configuration will take effect again. If so, go to step 2.

5. If the new config works, we can overwrite the old one with the new one
mv /etc/pf.conf.new /etc/pf.conf

6. ...and finally load the new configuration
pfctl -f /etc/pf.conf

31

CHAPTER 5. CONFIGURATION AND TESTING

5.0.4.2 Router firewall configuration

The following pf configuration for router is based on the configuration posted on OpenBSD’s
FAQ[21].

1 lan="rge1"

2 adblock ="172.16.160.0"

3 adblock6 ="172.16.160.0"

4

5 # Non -routable addresses

6 table <martians > { 0.0.0.0/8 10.0.0.0/8 127.0.0.0/8 169.254.0.0/16 \

7 172.16.0.0/12 192.0.0.0/24 192.0.2.0/24 224.0.0.0/3 \

8 192.168.0.0/16 198.18.0.0/15 198.51.100.0/24 \

9 203.0.113.0/24 }

10

11 # Devices that are blocked from Internet access (a printer for example)

12 table <block_internet > { 172.16.160.5 }

13

14 # Silently drop rejected packets , do not send TCP RST

15 set block -policy drop

16

17 # Enable statistics collection on egress interface group

18 set loginterface egress

19

20 # Ignore traffic on loopback interface

21 set skip on lo0

22

23 # Normalize incoming packets

24 match in all scrub (no -df random -id max -mss 1440)

25

26 # Perform NAT between the LAN and WAN

27 match out on egress inet from !(egress:network) to any nat -to (egress :0)

28

29 # Antispoof

30 antispoof quick for { egress $lan }

31 block in quick on egress from <martians > to any

32 block return out quick on egress from any to <martians >

33

34 # Default deny.

35 block all

36

37 # pf-badhosts

38 table <pfbadhost > persist file "/etc/pf -badhost.txt"

39 block in quick on egress from <pfbadhost >

40 block out quick on egress to <pfbadhost >

41

42 # unbound -adblock

43 table <gooDNS4 > {8.8.8.8 8.8.4.4}

44 table <gooDNS6 > {2001:4860:4860::8888 2001:4860:4860::8844}

45 pass in quick to <gooDNS4 > rdr -to $adblock

46 pass in quick to <gooDNS6 > rdr -to $adblock6

47

48 # Wireguard VPN

49 pass in on { wg0 wg1 }

50 # Allow wg connection to UDP

51 pass in on egress proto udp to port { <PORT_SITE_TO_SITE > <

PORT_CLIENT_TO_SITE > }

52 # How to NAT a traffic from wg interfaces:

53 #pass out on egress inet from (wg0:network) nat -to (egress :0)

54 #pass out on egress inet from (wg1:network) nat -to (egress :0)

55

56 # HTTP OCSP , CRL

57 pass in proto tcp to port http

58

32

CHAPTER 5. CONFIGURATION AND TESTING

59 # Permit RADIUS

60 pass in proto udp to port radius

61

62 # block selected devices from Internet access

63 block on egress from <block_internet > to any

64

65 # Allow outgoing IPv4 traffic

66 pass out quick inet keep state

67 pass in on { $lan } inet

68

69 # Example port forwarding of HTTP & HTTPS to 172.16.162.3 (pc.a.foo.org)

70 # pass in on egress inet proto tcp from any to (egress) port { http https }

rdr -to 172.16.162.3

/etc/pf.conf

5.0.4.3 Dynamic firewall - pf-badhost

Nowadays, each device with a public IP address (not being behind NAT) exposed to the
Internet and providing any kind of service faces literally a constant attack attempts. At-
tackers, most of the time represented by botnet machines performing mass attacks, try
hard to exploit the particular software and break in our system in any way. Some at-
tempts target poorly secured servers and try to guess SSH credentials, the others are more
sophisticated and hidden.

The following extract from SSH daemon logfile shows a real example of 5 IP addresses
trying to guess SSH credentials at the same time after disabling the dynamic firewall for
several days:

1 sshd : Address 222 . 255 . 115 . 237 maps to s t a t i c . vnpt . vn , but t h i s does not map back to the address
= POSSIBLE BREAK=IN ATTEMPT!

2 sshd : I nva l i d user ubuntu from 222 .255 . 115 . 237 port 45060
3 sshd : i npu t u s e rau th r eque s t : i n v a l i d user ubuntu [preauth]
4 sshd : e r r o r : maximum authent i ca t i on attempts exceeded f o r i n v a l i d user ubuntu from

222 .255 . 115 . 237 port 45060 ssh2 [preauth]
5 sshd : Disconnect ing : Too many authent i ca t i on f a i l u r e s [preauth]
6 sshd : I nva l i d user gordor from 46 .101 . 224 . 184 port 48658
7 sshd : i npu t u s e rau th r eque s t : i n v a l i d user gordor [preauth]
8 sshd : e r r o r : maximum authent i ca t i on attempts exceeded f o r i n v a l i d user gordor from

46 .101 . 224 . 184 port 48658 ssh2 [preauth]
9 sshd : Disconnect ing : Too many authent i ca t i on f a i l u r e s [preauth]

10 sshd : r e v e r s e mapping checking ge taddr in f o f o r abts=mp=dynamic =035 .241 .70 .182 . a i r t e lbroadband . in
[1 8 2 . 7 0 . 2 4 1 . 3 5] f a i l e d = POSSIBLE BREAK=IN ATTEMPT!

11 sshd : I nva l i d user jordan from 182 . 70 . 241 . 35 port 47818
12 sshd : i npu t u s e rau th r eque s t : i n v a l i d user jordan [preauth]
13 sshd : e r r o r : maximum authent i ca t i on attempts exceeded f o r i n v a l i d user jordan from 182 . 70 . 241 . 35

port 47818 ssh2 [preauth]

Although there are many security measures, let’s take a look at simple but effective one -
a dynamic firewall.

Dynamic firewall (DynFW) is an attack prevention system based on the data provided
by the threat detection system and/or public abusive IP lists. Dynamic firewall can just
periodically download abusive IP addresses from public lists (acting passively) or it may
include a threat detection system that inspects log files of services periodically and proac-
tively add entries to abusive lists. While requiring critical access, such system should be
restricted on a system level to very minimal set of operations needed. Luckily, the devel-
opers of this software list these requirements clearly in the documentation so there is no
need to tune the permissions by reverse engineering.

33

CHAPTER 5. CONFIGURATION AND TESTING

Although writing a shell script that would accomplish that job would not be extremely
difficult, we would rather use well-reputed script called pf-badhosts by Jordan Geoghe-
gan.[22]
pf-badhost is a single file shell script that downloads public IP blocklists and populates
local file that serves as an IP database for the system’s pf firewall. It is a very simple and
neat solution compatible with the UNIX OS family (including MacOS). Public blocklist
URLs are shipped within the script and can be easily maintained especially when we
export the list to an external file.

1 _BLOCKLISTS=$(cat <<’__EOT’

2 ### Local File Example

3 # file:/path/to/local/file

4

5 ### Download popular IPv4 blocklists

6 https ://www.binarydefense.com/banlist.txt

7 https :// rules.emergingthreats.net/blockrules/compromised -ips.txt

8 https :// rules.emergingthreats.net/fwrules/emerging -Block -IPs.txt

9 https ://raw.githubusercontent.com/firehol/blocklist -ipsets/master/

firehol_level1.netset

10 https ://raw.githubusercontent.com/firehol/blocklist -ipsets/master/

firehol_level2.netset

11 ### Firehol level 3 can be a little aggressive.

12 ### Ill leave it up to users to choose to enable.

13 # https ://raw.githubusercontent.com/firehol/blocklist -ipsets/master/

firehol_level3.netset

14

15 ### Spamhause DROP lists (Dont Route Or Peer)

16 https ://www.spamhaus.org/drop/drop.txt

17 https ://www.spamhaus.org/drop/edrop.txt

18 https ://www.spamhaus.org/drop/dropv6.txt

19

20 ### Block Shodan

21 https ://isc.sans.edu/api/threatlist/shodan /?text

22

23 ### Block botnets + command and control servers

24 https :// feodotracker.abuse.ch/downloads/ipblocklist.txt

25 https :// sslbl.abuse.ch/blacklist/sslipblacklist.txt

26

27 ### Optional lists -- uncomment to enable

28 (...)

extract from pf-badhost.sh

34

CHAPTER 5. CONFIGURATION AND TESTING

Let’s install the pf-badhost finally.

1 useradd -s /sbin/nologin -d /var/empty _pfbadhost

2

3 cd /tmp

4 ftp https :// geoghegan.ca/pub/pf -badhost/latest/pf -badhost.sh

5 install -m 755 -o root -g bin pf -badhost.sh /usr/local/bin/pf-badhost

6

7 install -m 640 -o _pfbadhost -g wheel /dev/null /etc/pf-badhost.txt

8 install -d -m 755 -o root -g wheel /var/log/pf -badhost

9 install -m 640 -o _pfbadhost -g wheel /dev/null /var/log/pf-badhost/pf-

badhost.log

10 install -m 640 -o _pfbadhost -g wheel /dev/null /var/log/pf-badhost/pf-

badhost.log .0.gz

11

12 $ cat /etc/doas.conf

13 ...

14 permit root

15 permit nopass _pfbadhost cmd /sbin/pfctl args -nf /etc/pf.conf

16 permit nopass _pfbadhost cmd /sbin/pfctl args -t pfbadhost -T replace -f /

etc/pf -badhost.txt

17 # Optional rule for authlog scanning

18 permit nopass _pfbadhost cmd /usr/bin/zcat args -f /var/log/authlog /var/

log/authlog .0.gz

19 ...

20

21 # Run the script as _pfbadhost user with openbsd argument

22 doas -u _pfbadhost pf-badhost -O openbsd

23

24 # Reload pf rule set

25 pfctl -f /etc/pf.conf

26

27 # Edit _pfbadhost user crontab and run pf -badhost every day at random time

between 0:00 and 1:00

28 crontab -u _pfbadhost -e

29 ~ 0~1 * * * -s pf -badhost -O openbsd

35

CHAPTER 5. CONFIGURATION AND TESTING

5.0.5 OCSP responder and CRL server

When we created our certificates, we embedded an URL of the Client Revoke list and
OCSP in them.
We will use OpenBDS’s simple and neat httpd server as CRL publisher and OCSP val-
idator.

Figure 5.2: OCSP responder and CRL server UML deployment diagram

Certificate revoke lists will be served nativelly the same way as regular WWW files. As for
OCSP, careful reader may expect that we will run an instance of openssl ocsp behind
reverse HTTP proxy. Although it would definitelly also work, OpenSSL documentation
clearly states that most of the options are for testing or debugging purposes.[23], not for
regular use. Instead of that, we will create a simple shell CGI script, that will be invoked
by http daemon and which will call OpenSSL binary.

1 server "ca.foo.org" {

2 listen on * port 80

3 root "/htdocs/ca.foo.org"

4

5 location "/ocsp/*" {

6 slowcgi

7 root "/cgi -bin/ocsp.cgi"

8 }

9 }

/etc/httpd.conf

1 #!/bin/sh

2 # Inspired by https ://www.pbdigital.org/post /2019 -10 -28 -ca -ocsp -openbsd/

3

4 if ["$REQUEST_METHOD" == "POST"]; then

5 if ["$CONTENT_TYPE" == "application/ocsp -request"]; then

6 CA_NAME = $(basename "$DOCUMENT_URI")

7 BASEDIR="/etc/ssl/${CA_NAME}"

8

9 if [-d "$BASEDIR"]; then

10 INDEX="$BASEDIR/db/index"

11 CA="$BASEDIR/ca.crt"

12 RSIGNER="$BASEDIR/ocsp.crt"

36

CHAPTER 5. CONFIGURATION AND TESTING

13 RKEY="$BASEDIR/private/ocsp.key"

14

15 echo "Content -type: application/ocsp -response"

16 echo ""

17 cat | openssl ocsp -index $INDEX -CA $CA -rkey $RKEY -rsigner

$RSIGNER -nmin 5 -reqin /dev/stdin -respout /dev/stdout | cat

18 else

19 echo "Unknown Certificate Authority."

20 fi

21 else

22 echo "Invalid OCSP request."

23 fi

24 fi

/var/www/cgi-bin/ocsp.cgi

5.0.6 DNS

Domain Name System (DNS) is responsible for translating human-friendly domain names
into numerical IP addresses used in network.

OpenBSD default installation comes with nsd and unbound, which are opensource, se-
cure, and modern DNS implementations with disjunctive functions developed by NLnet
Labs.[24]

� nsd is strictly an authoritative DNS name server without recursive and/or caching
function

� unbound is DNSSEC validating, recursive and caching DNS resolver without au-
thoritative function. In this example, we will use unbound as dns-adblock as well.

Figure 5.3: DNS - nsd & unbound symbiosis UML diagram

At first, we allow incoming DNS in server’s firewall:

1 # Permit DNS and DNS over TLS

2 pass in proto {udp , tcp} to port {53, 853}

5.0.6.1 nsd

According to the Figure 5.1, we will configure nsd to run on loopback interface, because
only unbound, running on the same machine, will interact with nsd. We will start nsd on

37

CHAPTER 5. CONFIGURATION AND TESTING

port 54 to avoid collision with unbound running on standard DNS port 53, and to ease
debugging so we will be able to specify which DNS server we will query using dig tool.
Note that nsd changes it’s root to /var/nsd after start.

1 server:

2 # 0 for regular use , 1 for detailed information , 2 for soft errors , 3

prints more information

3 verbosity: 3

4 port: 54

5 ip -address: 127.0.0.1

6

7 hide -identity: yes

8 hide -version: yes

9

10 chroot: "/var/nsd"

11

12 logfile: "/var/nsd/log/nsd.log"

13

14 do -ip4: yes

15 do -ip6: no

16

17 remote -control:

18 control -enable: no

19

20 zone:

21 name: a.foo.org

22 zonefile: "master /%s.forward"

23 zone:

24 name: 160 -161.16.172.in-addr.arpa

25 zonefile: "master/a.foo.org.reverse"

26 zone:

27 name: b.foo.org

28 zonefile: "master /%s.forward"

29 zone:

30 name: 162.16.172.in-addr.arpa

31 zonefile: "master/b.foo.org.reverse"

32 zone:

33 name: c.foo.org

34 zonefile: "master /%s.forward"

35 zone:

36 name: 163.16.172.in-addr.arpa

37 zonefile: "master/c.foo.org.reverse"

/var/nsd/etc/nsd.conf

1 $ORIGIN a.foo.org.

2 $TTL 86400

3

4 @ 3600 SOA srv.a.foo.org. admin.foo.org. (

5 0 ; serial

6 1800 ; refresh

7 7200 ; retry

8 1209600 ; expire

9 86400 ; min TTL

10)

11

12 @ IN NS srv

13

14 srv IN A 172.16.160.1

15 mikrotik IN A 172.16.160.2

16 printer IN A 172.16.160.5

17 pc IN A 172.16.160.6

/var/nsd/zones/master/a.foo.org.forward

38

CHAPTER 5. CONFIGURATION AND TESTING

1 $ORIGIN a.foo.org.

2 $TTL 86400

3

4 160 -161.247.10.in -addr.arpa. IN SOA srv.a.foo.org. admin.foo.org. (

5 0 ; serial

6 1800 ; refresh

7 7200 ; retry

8 1209600 ; expire

9 86400 ; min TTL

10)

11

12 1.160.16.172.in-addr.arpa. IN PTR srv

13 2.160.16.172.in-addr.arpa. IN PTR mikrotik

14 5.160.16.172.in-addr.arpa. IN PTR printer

15 6.160.16.172.in-addr.arpa. IN PTR pc

/var/nsd/zones/master/a.foo.org.reverse

1 $ORIGIN b.foo.org.

2 $TTL 86400

3

4 @ 3600 SOA srv.a.foo.org. admin.foo.org. (

5 0 ; serial

6 1800 ; refresh

7 7200 ; retry

8 1209600 ; expire

9 86400 ; min TTL

10)

11

12 router IN A 172.16.162.1

13 mikrotik IN A 172.16.162.2

14 printer IN A 172.16.162.5

15 pc IN A 172.16.162.6

/var/nsd/zones/master/b.foo.org.forward

1 $ORIGIN b.foo.org.

2 $TTL 86400

3

4 162.16.172.in-addr.arpa. IN SOA srv.a.foo.org. admin.foo.org. (

5 0 ; serial

6 1800 ; refresh

7 7200 ; retry

8 1209600 ; expire

9 86400 ; min TTL

10)

11

12 1.162.16.172.in-addr.arpa. IN PTR router

13 2.162.16.172.in-addr.arpa. IN PTR mikrotik

14 5.162.16.172.in-addr.arpa. IN PTR printer

15 6.162.16.172.in-addr.arpa. IN PTR pc

/var/nsd/zones/master/b.foo.org.reverse

1 # Check nsd service configuration

2 nsd -checkconf /var/nsd/etc/nsd.conf

3

4 # For each zone , check the zone files

5 nsd -checkzone a.foo.org /var/nsd/zones/master/a.foo.org.forward

6 nsd -checkzone 160 -161.16.172.in-addr.arpa /var/nsd/zones/master/a.foo.org.

reverse

7

8 # Start and enable the Name Server Daemon

9 rcctl start nsd

39

CHAPTER 5. CONFIGURATION AND TESTING

10 rcctl enable nsd

11

12 # Perform test query. Note the port must be specified since nsd is not

running on the standard DNS port.

13 dig @127 .0.0.1 -p 54 srv.a.foo.org

14 dig @127 .0.0.1 -p 54 -x 172.16.160.1

5.0.6.2 unbound

Unbound will be configured to run on both loopback and external (LAN) interface and
to listen on standard DNS port 53. After some security measurements, namely setting
unbound to not expose its identity and version, we specify which IP addresses will be
able to access unbound DNS server and receive responses. Careful reader expects it to be
networks A,B,C and VPN site-to-site plus VPN client-to-site.

Response Policy Zone (RPZ) configuration is prepared there for DNS adblock which setup
is covered in the following section.

At the end of the configuration file, we specify stub zones which tells unbound to query
a specific DNS server for the specified domains. In our example, we instruct unbound to
query nsd instance running on localhost:54 that we configured in the previous section.

1 server:

2 verbosity: 5 # 1 for regular operation , 4 for debugging

3 num -threads: 4 # 1 means no threading

4

5 port: 53

6 interface: 127.0.0.1

7 interface: 172.16.160.1

8

9 do -ip4: yes

10 do -ip6: no

11 do -udp: yes

12 do -tcp: yes

13

14 hide -identity: yes

15 hide -version: yes

16 qname -minimisation: yes

17

18 access -control: 127.0.0.0/8 allow

19 access -control: 172.16.160.0/23 allow # Site A

20 access -control: 172.16.162.0/24 allow # Site B

21 access -control: 172.16.163.0/24 allow # Site C

22 access -control: 172.16.164.0/25 allow # VPN site -to -site

23 access -control: 172.16.164.128/29 allow # VPN client -to -site

24

25 chroot: "/var/unbound"

26 directory: "/var/unbound"

27

28 # relative path to directory variable

29 logfile: "log/unbound.log"

30

31 private -address: 10.0.0.0/8

32 private -address: 172.16.0.0/12

33 private -address: 192.168.0.0/16

34 private -address: 169.254.0.0/16

35 private -address: fd00 ::/8

36 private -address: fe80 ::/10

37

38 # Allow these domain , and all its subdomains to contain private addresses

.

40

CHAPTER 5. CONFIGURATION AND TESTING

39 private -domain: a.foo.org

40 private -domain: b.foo.org

41 private -domain: c.foo.org

42

43 # relative path to directory variable

44 root -hints: "db/root.hints"

45 auto -trust -anchor -file: "db/root.key"

46

47 insecure -lan -zones: yes

48 domain -insecure: a.foo.org

49 domain -insecure: 160 -161.16.172.in -addr.arpa.

50 domain -insecure: b.foo.org

51 domain -insecure: 162.16.172.in -addr.arpa.

52 domain -insecure: c.foo.org

53 domain -insecure: 163.16.172.in -addr.arpa.

54

55 # unbound by default refuses to send any DNS queries to localhost. Only

needed if localhost (127.0.0.1 @port) is used as stub -addr in stub zone

56 do -not -query -localhost: no

57

58 # Required modules for RPZ

59 module -config: "respip validator iterator"

60 rpz:

61 name: "unbound -adblock"

62 zonefile: "/var/unbound/db/adblock.rpz"

63 rpz -log: yes

64 rpz -log -name: "unbound -adblock"

65

66 # Enable remote control on loopback interface for unbound -adblock

67 remote -control:

68 control -enable: yes

69 control -interface: 127.0.0.1

70

71 # This local -zone line will tell unbound that private addresses like

172.16.160.5 can send queries to a stub zone authoritative server like

NSD.

72 local -zone: 160 -161.247.10.in-addr.arpa. nodefault

73 local -zone: a.foo.org nodefault

74 local -zone: 162.247.10.in-addr.arpa. nodefault

75 local -zone: b.foo.org nodefault

76 local -zone: 163.247.10.in-addr.arpa. nodefault

77 local -zone: c.foo.org nodefault

78

79 # Configure forward and reverse stub zones (point to NSD instance)

80 stub -zone:

81 name: a.foo.org

82 stub -addr: 127.0.0.1 @54

83 stub -zone:

84 name: b.foo.org

85 stub -addr: 127.0.0.1 @54

86 stub -zone:

87 name: c.foo.org

88 stub -addr: 127.0.0.1 @54

/var/unbound/etc/unbound.conf

1 # Check configuration

2 unbound -checkconf /var/unbound/etc/unbound.conf

3

4 # If there are no errors , start and enable the daemon

5 rcctl start unbound

6 rcctl enable unbound

7

8 # Test local domain queries

41

CHAPTER 5. CONFIGURATION AND TESTING

9 dig @127 .0.0.1 srv.a.foo.org

10 dig @127 .0.0.1 -x 172.16.160.1

11

12 # Test DNSSEC validation

13 dig @127 .0.0.1 com. SOA +dnssec

14

15 # Test DNSSEC validation with success expected

16 dig @127 .0.0.1 sigok.verteiltesysteme.net

17

18 # Test DNSSEC validation with fail expected

19 dig @127 .0.0.1 sigfail.verteiltesysteme.net

5.0.6.3 System resolver config

Since we have our local DNS server working, we can change the system’s resolver config
so primary DNS server is localhost.

1 domain a.foo.org

2 nameserver 127.0.0.1

3 nameserver 1.1.1.1

/etc/resolv.conf

5.0.6.4 DNS AdBlock - unbound-adblock

Users and devices in our network are targeted by pervasive monitoring - analytics and
tracking mechanisms that send data about how we use our devices to companies that col-
lect it. This relates to WWW browsing and affects almost every device connected to the
Internet - Laptops, smartphones, smart TVs, network printers, and generic IoT devices
like IP cameras or thermometers. While most of them should be blocked from Internet
access entirely (as shown in pf.conf), because we access them via VPN, some can not by
their very nature - smartphones, laptops, and smart TVs. We can effectively mitigate the
effects of pervasive monitoring by applying DNS AdBlock in our network.

It must be said, that there are many opensource alternatives (ready-to-use DNS servers)
as well. Here, we will use a very similar solution to pf-badhost, from the same author,
Jordan Geoghegan. Again, it is a very simple and neat shell script that downloads ma-
licious hostnames from public lists and populates local RPZ (Response Policy Zone) file
that can be used by unbound, BIND, Knot, and PowerDNS resolvers.[25]

Let’s see how to deploy unbound-adblock on our server by following install instructions
for OpenBSD.[26] Installation process is left uncommented because it is obvious and very
similar to pf-badhost.

1 cd /tmp

2 ftp https :// www.geoghegan.ca/pub/unbound -adblock/latest/unbound -adblock.sh

3 useradd -s /sbin/nologin -d /var/empty _adblock

4 install -m 755 -o root -g bin unbound -adblock.sh /usr/local/bin/unbound -

adblock

5 install -m 644 -o _adblock -g wheel /dev/null /var/unbound/db/adblock.rpz

6 install -d -o root -g wheel -m 755 /var/log/unbound -adblock

7 install -o _adblock -g wheel -m 640 /dev/null /var/log/unbound -adblock/

unbound -adblock.log

8 install -o _adblock -g wheel -m 640 /dev/null /var/log/unbound -adblock/

unbound -adblock.log.0.gz

9

10 cat /etc/doas.conf

11 ...

42

CHAPTER 5. CONFIGURATION AND TESTING

12 permit root

13 permit nopass _adblock cmd /usr/sbin/unbound -control args -q status

14 permit nopass _adblock cmd /usr/sbin/unbound -control args -q flush_zone

unbound -adblock

15 permit nopass _adblock cmd /usr/sbin/unbound -control args -q

auth_zone_reload unbound -adblock

16 ...

17

18 # Edit /var/unbound/etc/unbound.conf - we have already done it before

19 # unbound -checkconf /var/unbound/etc/unbound.conf

20

21 rcctl restart unbound

22 doas -u _adblock unbound -adblock -O openbsd

23

24 crontab -u _adblock -e

25 ~ 0~1 * * * -s unbound -adblock -O openbsd

As Jordan Geoghegan mentions, this is not sufficient, though. Many devices and apps use
hardcoded Google DNS servers. We need to add several rules in router’s firewall that will
redirect queries to Google DNS to our local DNS server. Luckily, router is our device itself
and we have already included the rules in pf.conf. All routers in our model network,
ra, rb, rc redirect to the same local DNS server being hosted on ra.

1 table <gooDNS4 > {8.8.8.8 8.8.4.4}

2 table <gooDNS6 > {2001:4860:4860::8888 2001:4860:4860::8844}

3 pass in quick to <gooDNS4 > rdr -to $adblock

4 pass in quick to <gooDNS6 > rdr -to $adblock6

5.0.7 VPN

The intention is to:

� Link the networks A,B,C

� Enable client devices in Internet to connect to networks A,B,C

In wireguard context, there is no client or server, there are just multiple communicating
endpoints called Peers. Unlike IPSec or OpenVPN, Wireguard does not take advantage
of X.509 certificate capabilities and Public Key Infrastructure as OpenVPN do. Instead,
it works only with private and public keys as integers.

5.0.7.1 Central router configuration

Central peer (router ra) runs OpenBSD. Although OpenBSD provides optional package
wireguard-tools that may be used to configure wireguard interface, we can do all job
with ifconfig command.
man ifconfig and man wg may be handy.

At first, let’s modify the firewall.

1 # Allow Wireguard connection to UDP (we have already did so)

2 pass in on egress proto udp to port { <PORT_SITE_TO_SITE > <

PORT_CLIENT_TO_SITE > }

3

4 # Create site -to -site and client -to -site interface

5 ifconfig wg0 create

6 ifconfig wg1 create

7

8 # Note the public keys , which will be needed for peer configuration

9 ifconfig wg0

10 ifconfig wg1

43

CHAPTER 5. CONFIGURATION AND TESTING

Next, we can create interface configuration file for both wireguard interfaces:

1 wgkey <PRIVATE_KEY >

2 wgport <PORT_SITE_TO_SITE >

3 wgpeer <RouterB_PUBKEY > wgaip 172.16.164.130/32 wgaip 172.16.162.0/24

4 wgpeer <RouterC_PUBKEY > wgaip 172.16.164.131/32 wgaip 172.16.163.0/24

5 inet 172.16.164.129/29

6 mtu 1500

7 !route add 172.16.162.0/24 172.16.164.129

8 !route add 172.16.163.0/24 172.16.164.129

9 up

/etc/hostname.wg0

Where the <PRIVATE_KEY> may be generated using openssl rand -base64 32

1 wgkey <PRIVATE_KEY >

2 wgport <PORT_CLIENT_TO_SITE >

3 mtu 1500

4 inet 172.16.164.1/25

5 mtu 1500

6 wgpeer <CLIENT1_PUBKEY > wgaip 172.16.164.2/32

7 wgpeer <CLIENT2_PUBKEY > wgaip 172.16.164.3/32

8 ...

9 up

/etc/hostname.wg1

Finally, apply the changes
sh /etc/netstart

44

CHAPTER 5. CONFIGURATION AND TESTING

5.0.7.2 Peripheral router configuration

Bellow is the example of rb configuration. There is only one, wg0 interface. The configu-
ration of rc is analogous to it.

1 wgkey <PRIVATE_KEY >

2 wgpeer <RouterA_PUBKEY > wgendpoint <RouterA_PUBLIC_IP >:<PORT_SITE_TO_SITE >

wgpka 25 wgaip 172.16.164.130/32 wgaip 172.16.160.0/23 172.16.162.0/24

172.16.163.0/24

3 inet 172.16.164.130/29

4 mtu 1500

5 !route add 172.16.160.0/23 172.16.164.130

6 !route add 172.16.163.0/24 172.16.164.130

7 up

/etc/hostname.wg0

5.0.7.3 Client device configuration

In the case of a client device, we usually need to redirect all traffic to a VPN tunnel (change
default route) to pretend we are in the remote network. Client devices may have different
Wireguard implementations (Android, Windows), so the general idea is as follows:

� Address: 172.16.164.2/25

� MTU: 1500

� DNS server: 172.16.160.1

� Peer

– Endpoint: <RouterA_PUBLIC_IP>:<PORT_CLIENT_TO_SITE>

– Persistent keepalive: 25 seconds to keep NAT table record on router

– Allowed IPs: 0.0.0.0/0 (default route)

45

CHAPTER 5. CONFIGURATION AND TESTING

5.1 System upgrade

OpenBSD developer team releases a new system version twice a year.[27] Besides that,
there are system patches released as soon as possible.[28]. Luckily, both patching and
upgrading is very simple and convenient in comparison with some Linux distributions for
example. OpenBSD has significant advantage of being developed as a complete operating
system.

5.1.1 Updating packages

If we decide to install software from precompiled package system, we can update the
packages using pkg_add command:

1 pkg_add -Uu

5.1.2 Patching

1 # We can list all available patches at first

2 syspatch -c

3

4 # Finally , we apply the patches

5 syspatch

5.1.3 Upgrading

Upgrades are only supported from one release to the release immediately following.[29]
Since OpenBSD 6.6, system upgrade became again far more simple with sysupgrade

tool. In addition, OpenBSD developers publish a special webpage with detailed upgrade
instructions for every single release.

1 sysupgrade

2 # Reboot

3 syspatch

4 pkg_add -Uu

5 sysmerge -d

6 # Resolve all conflicts in configuration

5.1.4 Updating the Ports Tree

1 rm -rf /usr/ports

2 cd /tmp

3 ftp https :// cdn.openbsd.org/pub/OpenBSD/$(uname -r)/{ ports.tar.gz ,SHA256.

sig}

4 signify -Cp /etc/signify/openbsd -$(uname -r | cut -c 1,3)-base.pub -x

SHA256.sig ports.tar.gz

5 cd /usr

6 tar xzf /tmp/ports.tar.gz

46

Chapter 6

WiFi security

6.1 Introduction

Securing the access to Wi-Fi networks is de-facto standard in 2023. We hardly find a
private Wi-Fi network that is not secured by any type of prevention of unauthorized access.
The number of portable devices that are being connected wirelessly increases for many
reasons. First of all, the number of devices that are being connected to computer networks
incessantly grows. IoT Analytics reports that in 2022, the number of connected IoT devices
was growing 18%[30]. Besides IoT devices that are usually hidden from our eye, there are
devices that we use directly - laptops, smartphones, smart watches, e-book readers, and
many more. Some of the mentioned devices even do not have any wired network interface
so they fully depend on wireless communication. In many use cases, it is also favorable to
connect a device wirelessly instead of making expensive construction changes. Sometimes,
we need to connect a device that moves permanently - robots, autonomous vehicles and
moving parts in machines. Wireless communication is, by its very nature, much more
vulnerable and much easier to eavesdrop. Unlike wired networks that are physical and
distinguishable, wired networks are intangible for a human. Most of the time when we use
public Wi-Fi networks, we have no clue about what device we connect to, what device do
we supply our credentials and data. The task is to ensure maximum security in this type
of networks. While there are numerous wireless standards, each suitable for a particular
use case, we will focus solely on Wi-Fi networks, which are the most common at homes
and in organizations. Wi-Fi is a trademark of the non-profit Wi-Fi Alliance[31], in our
context, it is a family of wireless network protocols based on the IEEE 802.11 family of
standards.

6.1.1 IEEE 802.11i (WPA2)

Small Wi-Fi networks at homes and small organizations typically use WPA or 802.11i
security, which use preshared secret that is distributed among all users. If we take strong
shared keys and it’s reasonable secreting into consider, securing such networks with shared
secret is acceptable.
However, a shared secret quickly becomes inapplicable when we imagine a larger-scale use
case that covers a higher number of people that may fluctuate - a typical situation in a
company. Would all of them share a credentials to a single mail account? Presumably no.
When an employee leaves the job, it is regrettably not always to the satisfaction of both
parties. Employer should always try hard to prevent any kind of sensitive information
leak. A shared secret does not help with that in any way. Through it all, there still exist
organizations that use such type of authentication. One of the aims of this thesis is to
make the world a bit better again in this particular field.

47

CHAPTER 6. WIFI SECURITY

6.1.2 IEEE 802.1X (RADIUS)

IEEE 802.1X is an IEEE standard for providing authentication mechanisms for both LAN
and WLAN. 802.1X introduces the following entities:[32]

� Supplicant - end device connecting to the LAN/WLAN

� Authenticator - a network device that provides a data link between the client and
network

� Authentication server - a trusted server that validates requests for networks access
and tells the authenticator to either connect a client to the network or to prevent

Figure 6.1: 802.1X overview

For us, the most interesting part is the Extensible Authentication Protocol (EAP) itself.
It is used to pass the authentication information between the supplicant and the authenti-
cation server. In the context of EAP, the authenticator acts only as proxy and allows the
two mentioned parties to communicate. EAP, represented by RFC 3748 defines multiple
authentication protocols.
EAP-TLS and EAP-PEAP authentication types are the most deployed ones. EAP-PEAP
provides support for password-based protocols, EAP-TLS is certificate-based.

6.1.2.1 EAP-TLS protocol

EAP-TLS protocol is considered to be the simplest, fastest and strongest among EAP
authentication methods.[33]. The reason is, it relies just on mutual authentication using
X.509 certificates which, being created using strong public key algorithms, provide very
strong security. As a bonus, it is an IETF open standard.
Let’s take a look at EAP-TLS authentication flow:

48

CHAPTER 6. WIFI SECURITY

Figure 6.2: EAP-TLS authentication sequence diagram. Source: [34]

Most important is the ”Mutual authentication” section. At first, authentication server
proves its identity to supplicant, then the supplicant proves it’s identity to the authenti-
cation server. In our scenario, server uses a certificate issued by Foo DV TLS CA, and
supplicant use a certificate issued by Foo EAP-TLS certificate authority. Both parties have
the certificate authorities installed mutually. After a successfull authentication, authen-
tication server tells the authenticator to finish the connect process with the end device.
Then, the access point and the device exchange Group Transient Key (GTK) and Pair-
wise Transient Key (PTK). Temporary keys (GTK and PTK) are then used for TKIP or
CCMP block encryption protocol which encrypts the communication channel.[35]

49

CHAPTER 6. WIFI SECURITY

6.2 RADIUS server configuration and tests

1 # Build FreeRADIUS ===============================

2 cd /usr/ports/net/freeradius

3 make show=FLAVORS

4 env FLAVOR="no_freetds no_iodbc no_ldap no_memcached no_mysql no_pgsql

no_python" make install

5 make clean

6

7 # Configure ======================================

8 cp -R /etc/raddb /etc/raddb.orig

9

10 # Remove inner -tunnel site that is used only for EAP -TTLS and PEAP

11 rm /etc/raddb/sites -enabled/inner -tunnel

12

13 # Disable unused modules

14 rm /etc/raddb/mods -enabled/pap

15 rm /etc/raddb/mods -enabled/chap

16 rm /etc/raddb/mods -enabled/mschap

17 rm /etc/raddb/mods -enabled/passwd

18 rm /etc/raddb/mods -enabled/ntlm_auth

19 rm /etc/raddb/mods -enabled/inner -tunnel

20 rm /etc/raddb/mods -enabled/realm

21

22 # Remove everything in certs directory except DH parameters and symlink to

random device

23 cd /etc/raddb/certs && rm -v !("dh"|"random")

24

25 # Move keys and certificates from CA to /etc/raddb/certs directory:

26 cp /tmp/certs/eaptls/ca.pem /etc/raddb/certs/

27 cp /tmp/certs/dvtls/radius.foo.org.pem /etc/raddb/certs/server.pem

28 cp /tmp/certs/dvtls/radius.foo.org.key /etc/raddb/certs/server.key

29 chown root:wheel /etc/raddb/certs/*

30 chmod 440 /etc/raddb/certs /*.key /etc/raddb/certs /*.pem

31

32 # Configure FreeRADIUS ---------------------------

33 # Configuration files are located in /etc/raddb

34

35 # define clients = authenticators = Wi -Fi APs of the RADIUS server

36 vim /etc/raddb/clients.conf

37 # Insert contents from freeradius_conf/clients.txt

38

39 # EAP -TLS --

40 vim /etc/raddb/mods -enabled/eap

41 # Insert contents from freeradius_config/eap.txt

42

43 # Sites --

44 vim /etc/raddb/sites -enabled/default

45 # Insert contents from sites -enabled_default.txt

46

47 # Modify PF firewall -----------------------------

48 # Permit RADIUS

49 pass in proto udp to port radius

50

51 # Debugging --------------------------------------

52 # Get freeradius version

53 /usr/local/sbin/radiusd -v

54

55 # Check configuration

56 /usr/local/sbin/radiusd -XC

57

58 # Run in debug mode

59 /usr/local/sbin/radiusd -X

50

CHAPTER 6. WIFI SECURITY

60

61 # !!! Perform tests following the eapol_tests.txt file !!!

62

63 tail -f /var/log/radius/radius.log

64

65 # Start and enable FreeRADIUS via system daemon manager

66 rcctl start freeradius

67 rcctl enable freeradius

6.2.1 eapol test

After configuring and starting RADIUS server, we will use eapol test tool to test RADIUS
server function locally without need to configure a real authenticator.
This way we can test authentication using fake certificates on both sides.

1 # Build wpa_supplicant ===========================

2 # eapol_test is part of wpa_supplicant project

3 cd /usr/ports/security/wpa_supplicant

4 make show=FLAVORS

5 make install clean

6

7 # Perform tests ==================================

8 # Login as non -root user

9 mkdir /tmp/eapol_test

10 chmod 700 /tmp/eapol_test

11 cd /tmp/eapol_test

12

13 cp /tmp/certs/dvtls/ca.pem ./ca-dvtls.pem

14 cp /tmp/certs/eaptls/matyas@foo.org.pem ./

15 cp /tmp/certs/eaptls/matyas@foo.org.key ./

16

17 vim eapol_test.conf

18 network ={

19 ssid="FooNet"

20 key_mgmt=WPA -EAP

21 proto=WPA2

22 pairwise=CCMP

23 group=CCMP

24 eap=TLS

25 ca_cert="/tmp/eapol_test/ca -dvtls.pem"

26 private_key="/tmp/eapol_test/matyas@foo.org.p12"

27 private_key_passwd="matyas"

28 }

29

30 # START THE SERVER

31

32 # By default , there is localhost client config with "testing123" secret

33 eapol_test -c eapol_test.conf -s testing123

34

35 # Successfull authentication is signalled by "SUCCESS" line

51

CHAPTER 6. WIFI SECURITY

6.3 Authenticator configuration

As we mentioned in the introduction of this text, we will use Mikrotik RB411AH as our
Wi-Fi access point and 802.1X authenticator.

Let’s assume we have already:

� Connected the device to our network

� Provided the following static IP configuration for ethernet interface

– IP: 172.16.160.2/24

– Gateway: 172.16.160.1

� Set primary DNS server to 172.16.160.1

� Configured wlan1 interface with SSID ”FooNet”

If we are configuring MikroTik for the first time, we can use ”Quick Set” configuration
wizard with ”WISP AP” or ”Home AP” mode.[36]

Before making any changes in the networking configuration, we first upload DV TLS
certificates to the device.

1. Upload mikrotik.a.foo.org.p12 file to ”Files” section

2. Move to System → Certificates section, click on Import

Figure 6.3: MikroTik Webfig certificate import - selecting the file

3. We will be prompted to enter the password for private key. We enter the exact
password we set when we created the private key for MikroTik DV certificate.

Figure 6.4: MikroTik Webfig certificate import - entering password

We can use MikroTik Command Line Interface to achieve the same result:

1 certificate import file -name=mikrotik.a.foo.org.p12

2 passphrase: ********

3

52

CHAPTER 6. WIFI SECURITY

4. After a successfull import, we can see three certificates in the list. Flag T denotes
trusted certificate, flag K denotes that the device has a primary key for the certificate.

Figure 6.5: MikroTik Webfig - certificate list

5. Next step is to enable HTTPS and assign the certificate to all TLS services. We go
to IP → Services, click on https and configure the service as follows:

Figure 6.6: MikroTik Webfig - configuring HTTPS service

Then, when we access Mikrotik via HTTPS from a client device that trusts DV TLS
Certificate Authority, we see no warning in address bar:

Figure 6.7: Mozilla Firefox - accessing MikroTik Webfig via HTTPS

53

CHAPTER 6. WIFI SECURITY

After clicking on lock icon in address bar, Firefox allows us to inspect the contents
of the certificate that is used by the remote server:

Figure 6.8: Mozilla Firefox - displaying HTTPS certificate details

Now, move on to EAP configuration:[37]

1 # Create a RADIUS profile for wireless use

2 /radius add address =172.16.160.1 secret=ourmikrosecret service=wireless

3

4 # Create WPA2 -Enterprise security profile

5 /interface wireless security -profiles add authentication -types=wpa2 -eap

mode=dynamic -keys name=security_foonet

6

7 # Assign the security profile to wlan interface

8 /interface wireless set wlan1 disabled=no mode=ap -bridge security -profile=

security_foonet ssid=FooNet

9

10 # Finally , we enable the wlan1 interface

11 /interface wireless enable wlan1

We have successfully configured our MikroTik Wi-Fi access point. We are ready to connect
end-user devices.

54

CHAPTER 6. WIFI SECURITY

6.4 Connecting devices

6.4.1 UNIX-like operating system with wpa supplicant

Open source operating systems use wpa supplicant, a free and open source implementation
of IEEE 802.11, 802.11i and 802.1X, to authenticate for network access.[38]

1 ctrl_interface =/var/run/wpa_supplicant

2 network ={

3 ssid=" FooNet"

4 key_mgmt=WPA -EAP

5 proto=WPA2

6 pairwise=CCMP

7 group=CCMP

8 eap=TLS

9 ca_cert ="/ etc/cert/ca -dvtls.pem"

10 private_key ="/etc/cert/user@foo.org.p12"

11 private_key_passwd ="< PRIVATE_KEY_PASSWORD >"

12 }

wpa supplicant.conf

6.4.2 Android smartphone

The following procedure demonstrates how to install CA certificate into system and how
to connect to Wi-Fi via EAP-TLS on Android One phone with Android version 12.
Android One devices come with the original Android by Google instead of having manu-
facturer’s customized system.[39]

55

CHAPTER 6. WIFI SECURITY

6.4.2.1 Installing certificate authorities

By following the procedure below, we import Root CA, DV TLS CA and Personal CA.

Figure 6.9: Android system configuration - importing a certificate

56

CHAPTER 6. WIFI SECURITY

6.4.2.2 Importing Wi-Fi certificates

This is how we import user’s keypair from PKCS#12 bundle (.p12) into system:

Figure 6.10: Android system configuration - importing a Wi-Fi keypair

Android distinguishes regular certificate authorities and ”Wi-Fi certificate” authorities.
We need to import Root CA again as an ”Wi-Fi certification authority”:

Figure 6.11: Android system configuration - importing a Wi-Fi certificate authority

Finally, we can inspect all user’s certificate authorities in Trusted credentials:’

57

CHAPTER 6. WIFI SECURITY

Figure 6.12: Android system configuration - trusted credentials

6.4.2.3 Connecting to Wi-Fi network

After importing all certificates in the system, we are finally ready to connect to FooNet
Wi-Fi network.

Figure 6.13: Android - configuring EAP-TLS authentication

Figure 6.14: Android - a successful connection to Wi-Fi network

58

CHAPTER 6. WIFI SECURITY

6.4.3 Windows 11

6.4.3.1 Certificate installation

Figure 6.15: Windows - importing Root certificate authority

Issuing certificate authorities (DV TLS and Personal CA) are installed almost in the same
way, but into ”Intermediate Certification Authorities” store.

After certificate authorities, we follow by installing user certificates from PKCS#12 bun-
dles - matyas@foo.org.eap.p12 and matyas@foo.org.personal.p12. We are prompted
to unlock the private key and can specify if we will make the private key exportable or not.

When all certificates have been installed, we see that our personal certificate is fully trusted
by the operating system:

59

CHAPTER 6. WIFI SECURITY

Figure 6.16: Windows - a fully trusted personal certificate

InWindows, we can manage the certificates via Microsoft Management Console certmgr.msc
extension. For Local Machine store, there is certlm.msc. Certificates can be managed
also via command line tool certmgr.exe.[40] Windows also allows organizations that use
Windows Server and deployed Active Directory domain, to distribute certificates to client
devices automatically by using Group Policy.[41]

60

CHAPTER 6. WIFI SECURITY

Figure 6.17: Windows Certificate Manager - list of root certificate authorities

Figure 6.18: Windows Certificate Manager - list of intermediate certificate authorities

61

CHAPTER 6. WIFI SECURITY

6.4.3.2 Connecting to Wi-Fi

Unfortunately, installing EAP-TLS Wi-Fi network in Windows operating system is over-
complicated. We need to configure network profile via Control panel.

Figure 6.19: Windows - creating wireless network profile manually

62

CHAPTER 6. WIFI SECURITY

After we successfully installed wireless network profile for FooNet, we are ready to connect
via system tray network wizard.
Unfortunately, that is not entirely true. When we have multiple personal certificates issued
for the same Common Name installed, then when we try to connect to FooNet network,
operating system does not provide any additional information except Common Name to us
so we have no choise but try the certificates until we succeed. Author of this text did not
manage to find any way how to display more certificate information in wireless connection
wizard.

(a) selecting certificate for EAP authentication (b) a successfull connection

Figure 6.20: Windows - System tray network connection wizard

63

Chapter 7

ARM64 platform

7.1 Introduction

Let’s now introduce a single-board arm64 computer (SBC) and demonstrate how to install
OpenBSD on it to create a complete solution.

These small, powerful, and low-power devices became very popular starting with the
original Raspberry Pi and alongside its clones, these devices are widely used in IoT ap-
plications mainly with Linux distributions like OpenWrt, Armbian, or Raspberry Pi OS.
Developers of these distributions support many devices and provide installation images
that can be easily flashed on SD card[42]. Such installation images usually come with a
preconfigured network so there is no need to connect to the board via a serial interface to
install the system manually.

These devices used to be widely available for very attractive prices in the past, but due
to Global Chip Shortage caused by strong demand and limited supply that origins in
COVID-19 pandemic, it is now harder to get a suitable device.[43]
The Author of this text had to obtain an aarch64 platform equipped with two gigabit eth-
ernet ports to use as LAN and WAN, with ethernet chips supported by OpenBSD. While
for Linux distributions mentioned above, these requirements would not narrow down the
selection, for OpenBSD, things got complicated. We can even find models that were
changed due to chip shortage so instead of having two genuine ethernet chipsets, manu-
facturers decided to replace one of them with a far less known and cheaper chip. This
happened to Orange Pi R1 Plus, where the manufacturer replaced one REALTEK chipset
by Motorcomm YT8511C to create Orange Pi R1 Plus LTS.[44]

After being unsuccesfull to find a suitable device during the COVID-19 pandemic, the
Author of this text finally managed to get the following FriendlyElec NanoPi R4S 4GB
for $130.

64

CHAPTER 7. ARM64 PLATFORM

7.2 NanoPi R4S 4GB

FriendlyElec NanoPi R4S 4GB is small and powerful single-board opensource aarch64
platform with two gigabit Ethernet ports and two USB 3.0 ports. A complete specification
can be found on the producer’s Wiki:[45]

� SoC: Rockchip RK3399 - a hexa-core heterogenous processor (MPSoC) integrating

– Dual-Core Cortex-A72 (up to 2.0GHz) optimized for high-performance

– Quad-Core Cortex-A53 (up to 1.5GHz) optimized for low power

– Mali-T864 GPU with H.264, MVC and VP8 hardware encoding

� RAM: 4GB LPDDR4

� Ethernet: one Native Gigabit Ethernet, one PCIe Gigabit Ethernet with RealTek
RTL8211E and R8111H chipsets

� Connectivity: microSD slot, two USB 3.0 Type-A ports, Debug UART

� LEDs: 1x power LED and 3x GPIO Controlled LEDs labelled on the case as SYS,
LAN, and WAN

� Powered by DC 5V/3A via USB-C connector (which does not support any data
transfer and Power Delivery), or 2x5-pin header

� Outer dimensions: 72 x 72 x 29 mm

� Weight: 289 g

The device has very robust case all made of aluminum which acts as thermal mass. To-
gether with indented top side, the case serves well as passive cooler so no fan is installed.
The price corresponds to high processing quality in every aspect.
From an overall perspective, it is very well made in comparison with cheaper products.

Powerful CPU, reasonably big 4GB RAM and fast USB 3.0 ports arouse ideas of ad-
ditional use cases like home NAS, small HTTP server, or Asterisk IP PBX. The device
meets Nextcloud system requirements for example.[46]

NanoPi R4S is produced in two versions:

� Enterprise version, which comes with unique, permanent and tamper-proof MAC
address stored in built-in EEPROM

� Standard version, which does not have EEPROM chip and MAC address is
software-generated

The producer recommends enterprise users to buy the enterprise version for use in large-
scale and / or complicated network scenarios.
Anyway, a MAC address can be changed from software.

65

CHAPTER 7. ARM64 PLATFORM

(a) overall view
(b) USB 3.0 ports, MMC slot and 1/4” camera
screw thread

(c) Ethernet ports, USB-C and Reset button (d) bottom shield removed

Figure 7.1: FriendlyElec NanoPi R4S 4GB

7.2.1 Preparing installation media

We will use a generic SD/MMC as an installation media. Since we will perform only a
single installation, we will choose a HTTP installation that downloads the dependencies
on the way.

Install Device Tree Blob (ensure having newest version)

1 cd /usr/ports/sysutils/dtb

2 make install

Install u-boot

1 cd /usr/ports/sysutils/u-boot

2 env FLAVOR="aarch64" make install

3

4 cd /tmp

5 ftp https :// cdn.openbsd.org/pub/OpenBSD /7.2/ arm64/SHA256.sig

6 ftp https :// cdn.openbsd.org/pub/OpenBSD /7.2/ arm64/miniroot72.img

7

8 # Verify checksum

9 signify -Cp /etc/signify/openbsd -72-base.pub -x SHA256.sig miniroot *.img

10

66

CHAPTER 7. ARM64 PLATFORM

11 # Wipe partition table

12 dd if=/dev/zero of=/dev/sd1 bs=2m count =1

13

14 # Write the miniroot image to an SD card:

15 dd if=miniroot72.img of=/dev/rsd1c bs=1m

16

17 # Add a board specific DTB file (Allwinner and Rockchip U-Boot images come

with a default DTB):

18

19 mount /dev/sd1i /mnt

20 mkdir /mnt/rockchip

21 cp /usr/local/share/dtb/arm64/rockchip/rk3399 -nanopi -r4s.dtb /mnt/rockchip/

22 umount /mnt

23

24 dd if=/usr/local/share/u-boot/nanopi -r4s -rk3399/idbloader.img of=/dev/sd1c

seek =64

25 dd if=/usr/local/share/u-boot/nanopi -r4s -rk3399/u-boot.itb of=/dev/sd1c

seek =16384

26

27 # Or alternativelly

28 dd if=/usr/local/share/u-boot/nanopi -r4s -rk3399/u-boot -rockchip.bin of=/dev

/sd1c seek =64

7.2.2 Boot

In order to be able to interact with the computer, we need to connect a 3.3V TTL console
via RX,TX and GND pins.

7.2.2.1 Serial console

RK3399 has default baud rate 1.5 Mbaud. OpenBSD sets the speed to 115200 baud. We
will use serial to USB converter with PL2303TA chip. We can open serial terminal using
a well-known cu command:

1 cu -l /dev/cuaU0 -s 115200

2 # exit with ~.

1 System hostname? (short form , e.g. ’foo’) srv.a.foo.org

2 Which network interface do you wish to configure? (or ’done’) [re0]

3 IPv4 address for re0? (or ’autoconf ’ or ’none’) [autoconf]

7.2.3 Installation

7.2.3.1 Partitioning

There is a slight difference in disk partition naming convention between Linux and BSD.
While in BSD, where disks are numbered and partitions labeled (typically a-h, some), in
Linux, disks are labeled and partitions numbered.[47] There are three reserved labels in
BSD:

� a for root partition

� b for swap partition

� c overlaps all partitions and describes the entire disk.

Drive partitioning should be set individually to meet specific requirements of router. Since
we will not extract the whole source and ports tree, we are free to change the size of
the appropriate partition. Partitioning represents an important part of the installation,

67

CHAPTER 7. ARM64 PLATFORM

because the security of the OpenBSD system inherits the advantages of having data on
separate partitions.[48] Future partitioning changes are very painfull or even impossible,
large concern should be given to this part.

7.2.3.1.1 Swap When the kernel panics, it dumps the contents of the RAM to the
swap partition, which should be at least of the same size as RAM. Provided by the fact that
Nano Pi has non-removable on-board RAM and further upgrade is not possible, allocating
the capacity of the RAM (4 GB) is fully sufficient even for the future.

7.2.3.2 File sets

� bsd, bsd.mp, bsd.rd Since most modern use-case scenarios include multiproces-
sor systems, we have to install a bsd.mp (multiprocessor kernel) instead of single-
processor kernel, bsd. Ramdisk kernel, bsd.rd is pretty useless on systems with
small RAM.

� baseXX.tgz [mandatory] core programs

� etcXX.tgz [mandatory] the contents of /etc and other directories.

� manXX.tgz [optional] man pages for the programs. May not be needed on end-
platform, but handy for development and debugging.

� compXX.tgz [optional] C and C++ compilers, libraries and other tthe ools needed
to develop or compile software from ports collection.

� gameXX.tgz [optional] simple games

� xbaseXX.tgz, xetcXX.tgz, xfontXX.tgz, xservXX.tgz, xshareXX.tgz [no]
X-server specific sets. Since we will interact with the server only via SSH, omitting
the installation of these sets enables us to save a considerable disk space.

7.2.3.3 MAC Address

When booting miniroot image, install script needs to download the sets from the Internet.
There is one problem that breaks this process.
When we check what is the MAC address of re0 interface, we see it has zero MAC address.

1 srv# ifconfig re0

2 re0: flags =808843 <UP ,BROADCAST ,RUNNING ,SIMPLEX ,MULTICAST ,AUTOCONF4 > mtu

1500

3 lladdr 00:00:00:00:00:00

4 llprio 3

5 groups: dhcp egress

6 media: Ethernet autoselect (1000 baseT full -duplex ,rxpause ,txpause)

7 (...)

When we try to ping a device on the same subnet, we succeed. But when we try to ping
any device in the Internet, we fail. Some device in the route drops packets with zero MAC
address. We need to assign a random MAC address to the re0 interface.
We can generate locally administered address for our device using any online tools like
Random Locally Administered Unicast MAC Address Generator from IAN Campbell.1

1 ifconfig re0 lladdr de:4c:c3 :08:73:7c

Now, we can ping openbsd.org and can continue installation. We should not forget to edit
the MAC address after the installation.

1https://www.hellion.org.uk/cgi-bin/randmac.pl

68

CHAPTER 7. ARM64 PLATFORM

7.2.3.4 Memory file system

OpenBSD, as well as other operating systems provides memory file system called mfs.[47]
This type of filesystem is suitable for storing data that changes frequently so the SD card
does not wear out. It is indeed important to keep in mind that RAM is volatile memory,
which means that it losts its data quickly after power cut. How to deal with this specific
is up to particular application.
Here is an example how to mount /tmp on memory filesystem of 1 GB size:

1 (...)

2 swap /tmp mfs rw,nodev ,nosuid ,-s=1024m 0 0

3 (...)

/etc/fstab

7.2.3.5 Problem with SD card

Author faced the following problem during installation OpenBSD on Nano Pi R4S.
After starting system for the first time, OpenBSD installation program booted successfully,
but we can see the following error in dmesg:

1 sdmmc0: can’t enable card

This causes that when we proceed to disk selection (before partitioning), system does not
list any disk. By the date of thesis submission deadline, author did not find any way how
to solve this problem. However, he had created a new thread on unix.stackexchange.com.2

Kind reader can track this issue via HTTP link in footnote.

The Author continued the installation by inserting a USB memory stick and installing the
system on it.

2https://unix.stackexchange.com/questions/728292/openbsd-7-2-nanopi-r4s-sdmmc0-cant-enable-card

69

Chapter 8

Conclusion and Future work

We have demonstrated how to use OpenBSD along with other technologies to improve
security in a computer network using multiple open-source technologies and tools.
We have created a robust Public Key Infrastructure that may be used in real-world sce-
nario and brings trust to computer intercommunication, human-machine communication
and human to human communication.
The only thing that is left up to reader is the manipulation with personal certificate. It
was generated to support S/MIME email signing and document signing. It is not difficult
to find a manual that describes how to import these certificates into individual application.
The attachment of this thesis contains printscreens how to use Personal certificate to sign
a document in LibreOffice Writer.

The approach described in this text may be deemed non-user-friendly. However, the way
how the Author descibed the processes targets at maximum comprehensibility and does
not aim to compete with out-of-the-box (and maybe blackbox) solutions.
Certificate generation and PKI manipulation done by manual OpenSSL calls is not a
sustainable approach as well. Future work should cover the development of some wrapping
script either using shell script or Makefile.
Since BSD is a complete operating system, not just kernel, a man coming from Linux may
be surprised by the quality of OpenBSD’s documentation and man pages.
On the other hand, user, that is not used to such a highly secured operating system, may
be paralyzed initially when dealing with security features (like chroot).
Although there are some differences when compared to Linux, we can get inspired by
plenty of guides and manuals for Linux distributions since the configuration of the ser-
vices is the same by most.

Further work should include a detailed benchmark of Nano Pi R4S. Testing VPN through-
put, benchmarking DNS server, FreeRADIUS authentications while measuring the use of
system resources and the temperature of the case to find possible overheating.
Although the Author originally intended to include this benchmark in this text, the global
chip outage together with problems with SD card did not give him a chance to manage it.
The Author plans to continue with research in this direction and will publish the results
later.

70

CHAPTER 8. CONCLUSION AND FUTURE WORK

This thesis does not target ordinary users. This indeed does not relativize the fact that
the Continual User Education is one of the most powerful security measures.
Users definitely must know at least the main principles of how the technology works. The
applications and wizards are quite benevolent and let user to decide. Users must know
how to act in that situation or who to ask for help. The Author is of the opinion that
there is still a big gap between the scale of the usage of technologies among people and
the knowledge about have about how to use them safely.
Our commitment is to search for solutions that may solve these problems or moderate
them at least.

71

Appendix A

Attachment directory structure

dhcpd/ DHCP daemon configuration files directory
diagrams/ Diagrams created for the purposes of this thesis
eap/ EAP-TLS related configuration files, certificates and printscreens
libreoffice/ Demonstrative use of personal certificate shown on printscreens
nanopi_r4s/ Photos and dmesg command output of Nano Pi R4S
nsd/ Name Server Daemon configuration files and DNS zone files
pf/ System firewall configuration
pki/ Public Key Infrastructure
unbound/ Configuration of the unbound DNS server

72

Appendix B

OpenSSL configuration template

1 # OpenSSL <CA_NAME > config

2

3 # PKCS11 Engine

4 openssl_conf = openssl_def

5

6 [ca]

7 # ‘man ca ‘

8 default_ca = CA_default

9

10 [CA_default]

11 # Directory and file locations.

12 dir = /home/ca/pki/<CA_DIR >

13 certs = $dir/certs

14 crl_dir = $dir/crl

15 new_certs_dir = $dir/newcerts

16 database = $dir/index.txt

17 serial = $dir/serial

18 RANDFILE = $dir/private /.rand

19

20 # The root key and root certificate.

21 private_key = $dir/private/ca.key.pem

22 certificate = $dir/certs/ca.cert.pem

23

24 # For certificate revocation lists.

25 crlnumber = $dir/crlnumber

26 crl = $dir/crl/ca.crl.pem

27 crl_extensions = v3_crl_ext

28 default_crl_days = 30

29

30 default_md = sha256

31

32 name_opt = ca_default

33 cert_opt = ca_default

34 default_days = <DEFAULT_DAYS >

35 preserve = no

36 policy = <POLICY >

37

38 [policy_strict]

39 # The root CA should only sign issuing certificates that match.

40 # See the POLICY FORMAT section of ‘man ca ‘.

41 countryName = match

42 stateOrProvinceName = match

43 organizationName = match

44 organizationalUnitName = optional

45 commonName = supplied

46 emailAddress = optional

47

73

APPENDIX B. OPENSSL CONFIGURATION TEMPLATE

48 [policy_loose]

49 # Allow the issuing CA to sign a more diverse range of certificates.

50 # See the POLICY FORMAT section of ‘man ca ‘.

51 countryName = optional

52 stateOrProvinceName = optional

53 localityName = optional

54 organizationName = optional

55 organizationalUnitName = optional

56 commonName = supplied

57 emailAddress = optional

58

59 [req]

60 # Options for the ‘req ‘ tool (‘man req ‘).

61 default_bits = 2048

62 distinguished_name = req_distinguished_name

63 utf8 = yes

64 string_mask = utf8only

65 nameopt = multiline ,utf8

66

67 # SHA -1 is deprecated , so use SHA -2 instead.

68 default_md = sha256

69

70 # Extension to add when the -x509 option is used.

71 x509_extensions = v3_ca

72

73 [req_distinguished_name]

74 # See <https ://en.wikipedia.org/wiki/Certificate_signing_request >.

75 countryName = Country Name (2 letter code)

76 stateOrProvinceName = State or Province Name

77 localityName = Locality Name

78 0. organizationName = Organization Name

79 organizationalUnitName = Organizational Unit Name

80 commonName = Common Name

81 emailAddress = Email Address

82

83 # Optionally , specify some defaults.

84 countryName_default = <DN_COUNTRY >

85 stateOrProvinceName_default = <DN_STATE >

86 localityName_default = <DN_LOCALITY >

87 0. organizationName_default = <DN_ORG >

88 organizationalUnitName_default =

89 emailAddress_default =

90

91 [v3_ca]

92 # Extensions for a typical CA (‘man x509v3_config ‘).

93 basicConstraints = critical , CA:TRUE

94 subjectKeyIdentifier = hash

95 authorityKeyIdentifier = keyid:always ,issuer

96 keyUsage = critical , digitalSignature , cRLSign , keyCertSign

97

98 [v3_issuing_ca]

99 # Extensions for a typical issuing CA (‘man x509v3_config ‘).

100 basicConstraints = critical , CA:TRUE , pathlen :0

101 subjectKeyIdentifier = hash

102 authorityKeyIdentifier = keyid:always ,issuer

103 keyUsage = critical , digitalSignature , cRLSign , keyCertSign

104 crlDistributionPoints = URI:<CRL_ROOT >

105 authorityInfoAccess = OCSP;URI:<OCSP_ROOT >

106

107 [v3_eaptls_server]

108 basicConstraints = CA:FALSE

109 subjectKeyIdentifier = hash

110 authorityKeyIdentifier = keyid:always ,issuer:always

74

APPENDIX B. OPENSSL CONFIGURATION TEMPLATE

111 keyUsage = nonRepudiation , digitalSignature , keyEncipherment

112 # TLS web serverAuth and

113 # EAP over LAN / WAN. See RFC 4334

114 extendedKeyUsage = 1.3.6.1.5.5.7.3.1 , 1.3.6.1.5.5.7.3.14

115 subjectAltName = @v3_eaptls_server_alt_names

116 # RADIUS server certificate is issued by DV TLS CA

117 crlDistributionPoints = URI:<CRL_DVTLS >

118 authorityInfoAccess = OCSP;URI:<OCSP_DVTLS >

119

120 [v3_eaptls_client]

121 basicConstraints = CA:FALSE

122 keyUsage = nonRepudiation , digitalSignature , keyEncipherment

123 extendedKeyUsage = 1.3.6.1.5.5.7.3.2

124 subjectAltName = @v3_client_alt_names

125 crlDistributionPoints = URI:<CRL_EAPTLS >

126 authorityInfoAccess = OCSP;URI:<OCSP_EAPTLS >

127

128 [v3_server_cert]

129 # Extensions for server certificates (‘man x509v3_config ‘).

130 basicConstraints = CA:FALSE

131 subjectKeyIdentifier = hash

132 authorityKeyIdentifier = keyid ,issuer:always

133 keyUsage = critical , digitalSignature , keyEncipherment

134 extendedKeyUsage = serverAuth

135 subjectAltName = @v3_server_alt_names

136 crlDistributionPoints = URI:<CRL_DVTLS >

137 authorityInfoAccess = OCSP;URI:<OCSP_DVTLS >

138 nsCertType = server

139 nsComment = "OpenSSL Generated Server Certificate"

140

141 [v3_client_cert]

142 # Extensions for client certificates (‘man x509v3_config ‘).

143 basicConstraints = CA:FALSE

144 subjectKeyIdentifier = hash

145 authorityKeyIdentifier = keyid ,issuer

146 keyUsage = critical , nonRepudiation , digitalSignature ,

keyEncipherment

147 extendedKeyUsage = clientAuth , emailProtection ,

1.3.6.1.4.1.311.10.3.12

148 subjectAltName = @v3_client_alt_names

149 crlDistributionPoints = URI:<CRL_PERSONAL >

150 authorityInfoAccess = OCSP;URI:<OCSP_PERSONAL >

151 nsCertType = client , email

152 nsComment = "OpenSSL Generated Client Certificate"

153

154 [v3_eaptls_server_alt_names]

155 DNS.1 = <RADIUS_DNS >

156

157 # NAIRealm from RFC 7585

158 otherName .0 = 1.3.6.1.5.5.7.8.8;FORMAT:UTF8 ,UTF8:<RADIUS_DNS >

159

160 [v3_server_alt_names]

161 DNS.1 = server.foo.org

162 DNS.2 = localhost

163 IP.1 = 127.0.0.1

164 #IP.2 = 192.168.1.100

165

166 [v3_client_alt_names]

167 email.1 = user@foo.org

168 #email.2 = secondary@foo.org

169

170 [v3_crl_ext]

171 # Extension for CRLs (‘man x509v3_config ‘).

75

APPENDIX B. OPENSSL CONFIGURATION TEMPLATE

172 authorityKeyIdentifier = keyid:always

173

174 [v3_ocsp]

175 # Extension for OCSP signing certificates (‘man ocsp ‘).

176 basicConstraints = CA:FALSE

177 subjectKeyIdentifier = hash

178 authorityKeyIdentifier = keyid ,issuer

179 keyUsage = critical , nonRepudiation , digitalSignature ,

keyEncipherment

180 extendedKeyUsage = critical , OCSPSigning

181

182 # PKCS11 Engine

183 [openssl_def]

184 engines = engine_section

185

186 [engine_section]

187 pkcs11 = pkcs11_section

188

189 [pkcs11_section]

190 engine_id = pkcs11

191 #dynamic_path = /usr/local/lib/engines/pkcs11.so

192 MODULE_PATH = <OpenSC_LIB >

193 init = 0

openssl.cnf.templ

76

List of Tables

3.1 Subnetting the given IP range . 7

List of Figures

3.1 Simplified network model . 5

3.2 Model network . 7

4.1 Example elliptic curve . 11

4.2 Example organizational Public Key Infrastructure hierarchy 13

4.3 Certificate life cycle state UML diagram . 14

4.4 USB Hardware Security Module - Gemalto SafeNet eToken 5110 CC 16

4.5 SafeNet Authentication Client - home page 16

4.6 SafeNet Authentication Client - token info 17

5.1 UML Deployment diagram . 28

5.2 OCSP responder and CRL server UML deployment diagram 36

5.3 DNS - nsd & unbound symbiosis UML diagram 37

6.1 802.1X overview . 48

6.2 EAP-TLS authentication sequence diagram. Source: [34] 49

6.3 MikroTik Webfig certificate import - selecting the file 52

6.4 MikroTik Webfig certificate import - entering password 52

6.5 MikroTik Webfig - certificate list . 53

6.6 MikroTik Webfig - configuring HTTPS service 53

6.7 Mozilla Firefox - accessing MikroTik Webfig via HTTPS 53

6.8 Mozilla Firefox - displaying HTTPS certificate details 54

6.9 Android system configuration - importing a certificate 56

6.10 Android system configuration - importing a Wi-Fi keypair 57

6.11 Android system configuration - importing a Wi-Fi certificate authority . . . 57

6.12 Android system configuration - trusted credentials 58

6.13 Android - configuring EAP-TLS authentication 58

6.14 Android - a successful connection to Wi-Fi network 58

6.15 Windows - importing Root certificate authority 59

6.16 Windows - a fully trusted personal certificate 60

77

LIST OF FIGURES

6.17 Windows Certificate Manager - list of root certificate authorities 61
6.18 Windows Certificate Manager - list of intermediate certificate authorities . . 61
6.19 Windows - creating wireless network profile manually 62
6.20 Windows - System tray network connection wizard 63

7.1 FriendlyElec NanoPi R4S 4GB . 66

78

Acronyms

ASLR Address space layout randomization. 3

BSD Berkeley Software Distribution. 3

CA Certificate Authority. 12

CPU Central processing unit. 3

CRL Certificate revocation list. 12

CWE According to the Common Weakness Enumeration. 3

DNS Domain Name System. 2

DNSSEC Domain Name System Security Extensions. 2

DV domain validated. 14

EAP Extensible Authentication Protocol. 14, 48

eIDAS electronic IDentification, Authentication and trust Services. 16

EU European Union. 16

GND Ground. 67

GTK Group Transient Key. 49

GUI Graphical User Interface. 1, 2

HaaS Honeypot as a Service. 2

HDD Hard disk drive. 15

HSM Hardware Security Module. 15, 16

HTTP Hypertext Transfer Protocol. 12

IEEE Institute of Electrical and Electronics Engineers. 47, 48

IETF Internet Engineering Task Force. 8, 48

IP Internet Protocol (RFC 791). 5

MMC MultiMediaCard. 15

79

Acronyms

OCSP Online Certificate Status Protocol. 12

PIN Personal identification number. 15

PK private key. 12

PKI Public Key Infrastructure. 12, 18

PTK Pair-wise Transient Key. 49

QSCD Qualified Signature Creation Device. 16

RA Registration Authority. 12

RADIUS Remote Authentication Dial-In User Service. 14

RAM Random Access Memory. 1

RFC Request for Comments. 8, 48

SMP Symmetric Multiprocessor kernel mode. 4

SOHO Small Office/Home Office. 1

SSD solid-state drive. 15

SSH Secure Shell. 1, 2

TLS Transport Layer Security. 14

TSA Time-Stamp Authority. 12

USB Universal Serial Bus. 15, 16, 67

VA Validation Authority. 12

VAT Value-added tax. 16

WAN Wide Area Network. 2

Wi-Fi . 2, 14, 47

WPA Wi-Fi Protected Access. 47

80

Bibliography

[1] OpenWrt Project. “General requirements for openwrt support.” (), [Online]. Avail-
able: https://openwrt.org/supported_devices#general_requirements_for_
openwrt_support.

[2] Turris project. “Turris routers.” (2023), [Online]. Available: https://docs.turris.
cz/basics/models/.

[3] The OpenBSD Foundation. “Openbsd project goals.” (2023), [Online]. Available:
https://www.openbsd.org/goals.html.

[4] The OpenBSD Foundation. “Funding for openbsd and related projects.” (2023),
[Online]. Available: https://www.openbsdfoundation.org/index.html.

[5] CommonWeakness Enumeration. “Cwe top 25 most dangerous software weaknesses.”
(2021), [Online]. Available: https://cwe.mitre.org/top25/archive/2021/2021_
cwe_top25.html.

[6] Red Hat, Inc., “Efficient string copying and concatenation in c,” [Online]. Available:
https://developers.redhat.com/blog/2019/08/12/efficient- string-

copying-and-concatenation-in-c#.

[7] The OpenBSD Foundation. “Openbsd armv7.” (2022), [Online]. Available: https:
//www.openbsd.org/armv7.html.

[8] J. Postel, “Dod standard internet protocol,” RFC, Jan. 1980. doi: 10 . 17487 /

RFC0791. [Online]. Available: https://www.rfc-editor.org/info/rfc791.

[9] Internet Engineering Task Force. “Pervasive monitoring is an attack.” (2014), [On-
line]. Available: https://datatracker.ietf.org/doc/html/rfc7258.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” 1978. [Online]. Available: https://doi.org/10.
1145/359340.359342.

[11] W. S. Jevons, The Principles of Science: A Treatise on Logic and Scientific Method.
Macmillan & Co., London, 1874.

[12] N. Naziridis. “Comparing ecdsa vs rsa.” (Jun. 27, 2018), [Online]. Available: https:
//www.ssl.com/article/comparing-ecdsa-vs-rsa/.

[13] Synopsys, Inc. “The heartbleed bug.” (2014), [Online]. Available: https://heartbleed.
com/.

[14] GÉANT Association. “Eap server certificate considerations.” (2021), [Online]. Avail-
able: https://wiki.geant.org/display/H2eduroam/EAP+Server+Certificate+
considerations.

[15] QSCD.eu. “Eidas usb token gemalto safenet etoken 5110 cc (940).” (2023), [Online].
Available: https://www.qscd.eu/eidas-usb-tokens/gemalto-safenet-etoken-
5110-cc/.

81

https://openwrt.org/supported_devices#general_requirements_for_openwrt_support
https://openwrt.org/supported_devices#general_requirements_for_openwrt_support
https://docs.turris.cz/basics/models/
https://docs.turris.cz/basics/models/
https://www.openbsd.org/goals.html
https://www.openbsdfoundation.org/index.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://developers.redhat.com/blog/2019/08/12/efficient-string-copying-and-concatenation-in-c#
https://developers.redhat.com/blog/2019/08/12/efficient-string-copying-and-concatenation-in-c#
https://www.openbsd.org/armv7.html
https://www.openbsd.org/armv7.html
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC0791
https://www.rfc-editor.org/info/rfc791
https://datatracker.ietf.org/doc/html/rfc7258
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://www.ssl.com/article/comparing-ecdsa-vs-rsa/
https://www.ssl.com/article/comparing-ecdsa-vs-rsa/
https://heartbleed.com/
https://heartbleed.com/
https://wiki.geant.org/display/H2eduroam/EAP+Server+Certificate+considerations
https://wiki.geant.org/display/H2eduroam/EAP+Server+Certificate+considerations
https://www.qscd.eu/eidas-usb-tokens/gemalto-safenet-etoken-5110-cc/
https://www.qscd.eu/eidas-usb-tokens/gemalto-safenet-etoken-5110-cc/

BIBLIOGRAPHY

[16] J. Nguyen. “Openssl certificate authority.” (), [Online]. Available: https://jamielinux.
com/docs/openssl-certificate-authority/.

[17] OpenVPN, Inc. “Openvpn inc.” (2023), [Online]. Available: https://github.com/
OpenVPN.

[18] FreeRADIUS project. “Freeradius - a multi-protocol policy server.” (2023), [Online].
Available: https://github.com/FreeRADIUS/freeradius-server.

[19] FreeRADIUS. “Certificate compatibility.” (Dec. 30, 2020), [Online]. Available: https:
//wiki.freeradius.org/guide/certificate-compatibility.

[20] The OpenBSD Foundation. “Sysmerge(8) - openbsd manual pages.” (2016), [Online].
Available: https://man.openbsd.org/sysmerge.

[21] The OpenBSD Foundation. “Computer networks: A systems approach.” (), [Online].
Available: https://www.openbsd.org/faq/pf/example1.html.

[22] J. Geoghegan. “Pf-badhost - stop the evil doers in their tracks!” (Jan. 10, 2021),
[Online]. Available: https://www.geoghegan.ca/pfbadhost.html.

[23] The OpenSSL Project Authors. “Openssl - online certificate status protocol utility.”
(Dec. 21, 2021), [Online]. Available: https://www.openssl.org/docs/man1.1.1/
man1/ocsp.html.

[24] Stichting NLnet Labs. “Certificate compatibility.” (2023), [Online]. Available: https:
//www.nlnetlabs.nl/.

[25] J. Geoghegan. “Unbound-adblock - the ultimate dns firewall!” (Jan. 10, 2021), [On-
line]. Available: https://www.geoghegan.ca/unbound-adblock.html.

[26] J. Geoghegan. “Unbound-adblock openbsd installation instructions.” (Jan. 10, 2021),
[Online]. Available: https://www.geoghegan.ca/pub/unbound-adblock/latest/
install/openbsd.txt.

[27] The OpenBSD Foundation. “Openbsd faq - introduction to openbsd.” (2023), [On-
line]. Available: https://www.openbsd.org/faq/faq1.html.

[28] The OpenBSD Foundation. “Errata and patches.” (2023), [Online]. Available: https:
//www.openbsd.org/errata.html.

[29] The OpenBSD Foundation. “Upgrade guide: 7.1 to 7.2.” (2023), [Online]. Available:
https://www.openbsd.org/faq/upgrade72.html.

[30] IoT Analytics GmbH. “State of iot 2022: Number of connected iot devices growing
18% to 14.4 billion globally.” (May 18, 2022), [Online]. Available: https://iot-
analytics.com/number-connected-iot-devices/.

[31] Wi-Fi Alliance. “Who we are - our brands.” (2023), [Online]. Available: https:
//www.wi-fi.org/who-we-are/our-brands.

[32] IEEE, “Ieee standard for local and metropolitan area networks–port-based network
access control,” IEEE Std 802.1X-2020 (Revision of IEEE Std 802.1X-2010 Incor-
porating IEEE Std 802.1Xbx-2014 and IEEE Std 802.1Xck-2018), pp. 1–289, 2020.
doi: 10.1109/IEEESTD.2020.9018454.

[33] Intel Corporation. “802.1x overview and eap types.” (Oct. 28, 2021), [Online]. Avail-
able: https : / / www . intel . com / content / www / us / en / support / articles /

000006999/wireless/legacy-intel-wireless-products.html.

[34] E. Raphaely. “802.1x eap-tls authentication flow explained.” (2023), [Online]. Avail-
able: https://www.securew2.com/blog/802-1x-eap-tls-authentication-
flow-explained.

82

https://jamielinux.com/docs/openssl-certificate-authority/
https://jamielinux.com/docs/openssl-certificate-authority/
https://github.com/OpenVPN
https://github.com/OpenVPN
https://github.com/FreeRADIUS/freeradius-server
https://wiki.freeradius.org/guide/certificate-compatibility
https://wiki.freeradius.org/guide/certificate-compatibility
https://man.openbsd.org/sysmerge
https://www.openbsd.org/faq/pf/example1.html
https://www.geoghegan.ca/pfbadhost.html
https://www.openssl.org/docs/man1.1.1/man1/ocsp.html
https://www.openssl.org/docs/man1.1.1/man1/ocsp.html
https://www.nlnetlabs.nl/
https://www.nlnetlabs.nl/
https://www.geoghegan.ca/unbound-adblock.html
https://www.geoghegan.ca/pub/unbound-adblock/latest/install/openbsd.txt
https://www.geoghegan.ca/pub/unbound-adblock/latest/install/openbsd.txt
https://www.openbsd.org/faq/faq1.html
https://www.openbsd.org/errata.html
https://www.openbsd.org/errata.html
https://www.openbsd.org/faq/upgrade72.html
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://www.wi-fi.org/who-we-are/our-brands
https://www.wi-fi.org/who-we-are/our-brands
https://doi.org/10.1109/IEEESTD.2020.9018454
https://www.intel.com/content/www/us/en/support/articles/000006999/wireless/legacy-intel-wireless-products.html
https://www.intel.com/content/www/us/en/support/articles/000006999/wireless/legacy-intel-wireless-products.html
https://www.securew2.com/blog/802-1x-eap-tls-authentication-flow-explained
https://www.securew2.com/blog/802-1x-eap-tls-authentication-flow-explained

BIBLIOGRAPHY

[35] A. Alabdulatif1 and X. Ma, “802.1x eap-tls authentication flow explained,” Inter-
national Journal for Information Security Research, vol. 4, 2 Jun. 2014. [Online].
Available: https://infonomics- society.org/wp- content/uploads/ijisr/
published-papers/volume-4-2014/Analysing-the-EAP-TLS-Handshake-and-

the-4-Way-Handshake-of-the-802-11i-Standard.pdf.

[36] SIA Mikrot̄ıkls. “Manual:quickset.” (May 23, 2022), [Online]. Available: https://
wiki.mikrotik.com/index.php?title=Manual:Quickset&oldid=34546.

[37] SIA Mikrot̄ıkls. “Manual:wireless eap-tls using routeros with freeradius.” (May 19,
2019), [Online]. Available: https://wiki.mikrotik.com/index.php?title=
Manual:Wireless_EAP-TLS_using_RouterOS_with_FreeRADIUS&oldid=33254.

[38] J. Malinen. “Wpa2-eap/ccmp using eap-tls.” (2022), [Online]. Available: https:
//w1.fi/cgit/hostap/plain/wpa_supplicant/examples/wpa2-eap-ccmp.conf.

[39] C. Singh. “802.1x eap-tls authentication flow explained.” (Dec. 26, 2018), [Online].
Available: https://fossbytes.com/stock- android- vs- android- one- vs-
android-go-best/.

[40] Microsoft Corporation. “Certmgr.exe (certificate manager tool).” (Sep. 15, 2021),
[Online]. Available: https://learn.microsoft.com/en-us/dotnet/framework/
tools/certmgr-exe-certificate-manager-tool.

[41] Microsoft Corporation. “Distribute certificates to client computers by using group
policy.” (Jun. 18, 2021), [Online]. Available: https://learn.microsoft.com/en-
us/windows-server/identity/ad-fs/deployment/distribute-certificates-

to-client-computers-by-using-group-policy.

[42] Armbian. “Download.” (2023), [Online]. Available: https://www.armbian.com/
download/.

[43] JPMorgan Chase & Co. “Supply chain issues and autos: When will the chip shortage
end?” (Aug. 11, 2022), [Online]. Available: https://www.jpmorgan.com/insights/
research/supply-chain-chip-shortage.

[44] Shenzhen Xunlong Software Co., Ltd. “Orange pi r1 plus lts.” (2023), [Online]. Avail-
able: http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/
details/orange-pi-R1-Plus-LTS.html.

[45] FriendlyELEC. “Nanopi r4s.” (2023), [Online]. Available: https://www.friendlyelec.
com/index.php?route=product/product&product_id=284.

[46] Nextcloud GmbH. “Nextcloud system requirements.” (2023), [Online]. Available:
https://docs.nextcloud.com/server/latest/admin_manual/installation/

system_requirements.html.

[47] S. Pate, UNIX Filesystems: Evolution, Design, and Implementation. Robert Ipsen,
2003, isbn: 0-471-16483-6.

[48] M. W. Lucas. “Absolute openbsd, 2nd edition.” (2013), [Online]. Available: https:
//nostarch.com/obenbsd2e.

83

https://infonomics-society.org/wp-content/uploads/ijisr/published-papers/volume-4-2014/Analysing-the-EAP-TLS-Handshake-and-the-4-Way-Handshake-of-the-802-11i-Standard.pdf
https://infonomics-society.org/wp-content/uploads/ijisr/published-papers/volume-4-2014/Analysing-the-EAP-TLS-Handshake-and-the-4-Way-Handshake-of-the-802-11i-Standard.pdf
https://infonomics-society.org/wp-content/uploads/ijisr/published-papers/volume-4-2014/Analysing-the-EAP-TLS-Handshake-and-the-4-Way-Handshake-of-the-802-11i-Standard.pdf
https://wiki.mikrotik.com/index.php?title=Manual:Quickset&oldid=34546
https://wiki.mikrotik.com/index.php?title=Manual:Quickset&oldid=34546
https://wiki.mikrotik.com/index.php?title=Manual:Wireless_EAP-TLS_using_RouterOS_with_FreeRADIUS&oldid=33254
https://wiki.mikrotik.com/index.php?title=Manual:Wireless_EAP-TLS_using_RouterOS_with_FreeRADIUS&oldid=33254
https://w1.fi/cgit/hostap/plain/wpa_supplicant/examples/wpa2-eap-ccmp.conf
https://w1.fi/cgit/hostap/plain/wpa_supplicant/examples/wpa2-eap-ccmp.conf
https://fossbytes.com/stock-android-vs-android-one-vs-android-go-best/
https://fossbytes.com/stock-android-vs-android-one-vs-android-go-best/
https://learn.microsoft.com/en-us/dotnet/framework/tools/certmgr-exe-certificate-manager-tool
https://learn.microsoft.com/en-us/dotnet/framework/tools/certmgr-exe-certificate-manager-tool
https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/distribute-certificates-to-client-computers-by-using-group-policy
https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/distribute-certificates-to-client-computers-by-using-group-policy
https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/distribute-certificates-to-client-computers-by-using-group-policy
https://www.armbian.com/download/
https://www.armbian.com/download/
https://www.jpmorgan.com/insights/research/supply-chain-chip-shortage
https://www.jpmorgan.com/insights/research/supply-chain-chip-shortage
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/orange-pi-R1-Plus-LTS.html
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/orange-pi-R1-Plus-LTS.html
https://www.friendlyelec.com/index.php?route=product/product&product_id=284
https://www.friendlyelec.com/index.php?route=product/product&product_id=284
https://docs.nextcloud.com/server/latest/admin_manual/installation/system_requirements.html
https://docs.nextcloud.com/server/latest/admin_manual/installation/system_requirements.html
https://nostarch.com/obenbsd2e
https://nostarch.com/obenbsd2e

	Introduction
	Motivation
	Alternatives
	OpenWrt
	Turris project
	Mikrotik RouterOS

	OpenBSD Operating System
	OpenBSD introduction
	The OpenBSD Foundation
	OpenBSD security features
	OpenBSD limitations

	Model network
	Model network
	Subnetting

	Encryption
	Motivation
	Symmetric & asymmetric cryptography fundamentals
	Symmetric-key algorithms
	Public-key algorithms
	SSL/TLS
	OpenSSL

	Public Key Infrastructure (PKI)
	Authorities
	PKI hierarchy
	Key storage
	Building PKI infrastructure
	DV TLS Certificate Authority
	EAP-TLS Certificate Authority
	Personal Certificate Authority
	Alternative ways of PKI management

	Configuration and testing
	Miscellaneous initial system config
	Network configuration
	DHCP
	Firewall
	OCSP responder and CRL server
	DNS
	VPN

	System upgrade
	Updating packages
	Patching
	Upgrading
	Updating the Ports Tree

	WiFi security
	Introduction
	IEEE 802.11i (WPA2)
	IEEE 802.1X (RADIUS)

	RADIUS server configuration and tests
	eapol_test

	Authenticator configuration
	Connecting devices
	UNIX-like operating system with wpa_supplicant
	Android smartphone
	Windows 11

	ARM64 platform
	Introduction
	NanoPi R4S 4GB
	Preparing installation media
	Boot
	Installation

	Conclusion and Future work
	Attachment directory structure
	OpenSSL configuration template

