
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Rendering Detailed Models in Unreal
Engine

Dan Juříček

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
May 2022

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

495555Osobní číslo:DanJméno:JuříčekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Zobrazování detailních modelů v Unreal Engine

Název bakalářské práce anglicky:

Rendering Detailed Models in Unreal Engine

Pokyny pro vypracování:
Zmapujte existující metody zobrazování detailních modelů v reálném čase. Seznamte se s technologií Nanite
implementovanou v Unreal Engine 5 a podrobně ji popište.
Vytvořte vizualizace, které budou ilustrovat vnitřní fungování technologie Nanite. Konkrétně vizualizujte proxy mesh a
clustery v závislosti na vzdálenosti od kamery a parametrech dostupných v nastavení Nanite. Získané poznatky podrobně
popište.
Vytvořte nejméně čtyři různé testovací scény, které budou demonstrovat možnosti technologie Nanite. Scény vytvořte jak
ve formě klasické LOD reprezentace tak v reprezentaci Nanite. Porovnejte vytvořené varianty scén z hlediska paměťové
náročnosti a rychlosti zobrazování na nejméně dvou různých platformách. Nejméně pro jednu scénu vytvořte škálovatelnou
variantu, která umožní vyhodnotit závislost rychlosti a kvality zobrazování na celkovém množství trojúhelníků ve scéně.

Seznam doporučené literatury:
[1] Lindstrom, Peter, et al. Real-time, continuous level of detail rendering of height fields. Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. 1996.
[2] De Floriani, Leila, Leif Kobbelt, and Enrico Puppo. A survey on data structures for level-of-detail models. Advances in
multiresolution for geometric modelling. Springer, Berlin, Heidelberg, 49-74, 2005.
[3] Dietrich, Andreas, Enrico Gobbetti, and Sung-Eui Yoon. Massive-model rendering techniques: a tutorial. IEEE Computer
Graphics and Applications 27.6, 20-34, 2007.
[4] Yoon, Sung-Eui, Christian Lauterbach, and Dinesh Manocha. R-LODs: fast LOD-based ray tracing of massive models.
The Visual Computer 22.9, 772-784, 2006.
[5] Áfra, Attila T. Interactive ray tracing of large models using voxel hierarchies. Computer Graphics Forum. Vol. 31. No.
1. Oxford, UK: Blackwell Publishing Ltd, 2012.
[6] Nanite Virtualized Geometry. https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Nanite/

Jméno a pracoviště vedoucí(ho) bakalářské práce:

doc. Ing. Jiří Bittner, Ph.D. Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 09.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Jiří Bittner, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I would firstly like to express my thanks
to my parents and family, for the only
reason I was able to study until now, is
thanks to them. I would then like to
thank my friends, with whom I could com-
plain or talk about any problems I expe-
rienced when writing this thesis. I would
namely want to thank my good friend Do-
minik Dinh, for having discussions with
me throughout the creation of this thesis
and for letting me use his models for my
thesis. Lastly I would like to thank doc.
Ing. Jiří Bittner, Ph.D for his patience,
guidance, and for motivating me to finish
this project.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

v

Abstract
The aim of this thesis is to analyze the
newly released technology from Unreal
Engine 5 called Nanite Virtualized ge-
ometry and to compare its capabilities
with the traditional optimization tech-
nique known as discrete level of details.
This thesis presents a brief introduction
to optimization techniques and an analy-
sis of the functionality of Nanite. Several
test scenes were created with results com-
paring Nanite technology in with various
settings . . .

Keywords: Nanite, Unreal Engine,
Level of Details

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.

Abstrakt
Cílem této práce je analýza nově vytvo-
řené technologie Unreal Engine 5 nazý-
vaný Nanite Visualed Geometry. A ná-
sledné porovnání rozdílů mezi použitím
tradiční optimalizační technikou nazýva-
nou diskrétní úrovně detailů. Tato práce
představuje různé optimalizační techniky
a analyzuje funkcionalitu technologie Na-
nite. Vytvořilo se několik testovacích scé-
nek s porovnáváním Nanite technologie s
různými nastavení . . .

Klíčová slova: Nanite, Unreal Engine,
Level of Details

Překlad názvu: Zobrazování detailních
modelů v Unreal Engine

vi

Contents
1 Introduction 1
1.1 Goal . 1
2 Rendering 3
2.1 Polygonal Mesh 3
2.1.1 Triangle mesh 3

2.2 Model optimization 5
2.2.1 Types of LOD’s 5
2.2.2 Discrete LOD 5
2.2.3 Continuous LOD 5
2.2.4 View-Dependent LOD 6
2.2.5 Overview of LODs 6
2.2.6 Normal maps 6

2.3 Mesh simplification 7
2.3.1 Edge collapse 7
2.3.2 Triangle collapse 8

2.4 Error Metrics 8
2.4.1 Quadric Error Metrics 8
2.4.2 Space-screen error 9

2.5 Imposters . 9
2.6 Culling . 9
2.6.1 View Frustrum Culling 9
2.6.2 Occlusion Culling 10
2.6.3 Instancing 10

3 Nanite 13
3.1 Rendering Pipelines 13
3.2 Forward Rendering 14
3.3 Deferred Rendering 14
3.4 Nanite culling 14
3.5 Visibility Buffer 15
3.6 Nanite LOD creation 16
3.6.1 Cluster Hierarchy 17

3.7 Cluster Creation 17
3.8 Runtime LOD selection 19
3.9 Two-Pass Occlusion Culling 20
3.10 Rasterization 21
3.11 RenderDoc 21
4 Nanite in practice 25
4.1 Nanite support 25
4.1.1 Unsupported Nanite settings 25
4.1.2 Aggregate geometry 25
4.1.3 Concerning foliage 26

4.2 Nanite inside Unreal Engine 5 . . 26
4.3 Viewport . 27
4.4 Details Panel 27
4.5 Nanite mesh settings 27

4.5.1 Overdraws 29
4.6 Standard optimization workflow in
Unreal Engine 30

4.7 Testing scenes 31
5 Statistics 33
5.1 Data graphs 33
5.2 User feedbacks 33
5.3 Drawcall test 34
5.4 Outdoor scene 35
5.5 Indoor scene 37
5.6 Foliage scene 39
5.7 Scene Playground 43
5.8 Test results 45
6 Conclusion 47
Bibliography 49
A Electronic Appendix 53
B User Manual 55

vii

Figures
2.1 Image of a polygon mesh using
quads in Blender. 4

2.2 Difference between detailed
geometry and a simplified geometry
with a normal map. (Source: [4]) . . 7

2.3 A model captured with 3 different
LODs. (Source: [26]). 7

2.4 Representation of an edge collapse
operation (Source: [3]) 8

2.5 Difference between occlusion
culling in Nanite (right) and Static
Mesh (left). 11

3.1 Visualization of the GBuffer in
Indoor scene with Scene visualisation
(top left) using RenderDoc. 15
3.2 Difference in occlusion between
HZB (left) and Hardware Occlusion
Queries(right). 16

3.3 Visualization of a simple build
operation for a cluster. 18

3.4 Difference between choosing the
children group of clusters(left) and
choosing the parent group of clusters
(right). The boundaries drawn with
white colors do not change, however
the number of clusters, therefore
triangles do. 20

3.5 Screenshot of the RenderDoc
application. 22

3.6 One frame capture of the indoor
scene in RenderDoc. 22

3.7 Simple visualization of the Nanite
render pipeline. This pipeline has to
pass two times. 23

4.1 Visualization of the static mesh
editor with a hand made model
without optimization. 27

4.2 Table with trim error applied. . . 29
4.3 A scene with Nanite Visualization
turned on. 30

5.1 Graph depicting the frametime
with increasing objects that have
high drawcalls. 34

5.2 Image of the plane with 64 unique
meshes. Every square represents one
unique material. 35

5.3 Image of the outdoor scene. 37
5.4 Graph depicting the difference in
time for rendering a frame in a
camera flythrough in the Outdoor
scene. 37

5.5 Graph depicting the difference in
time for rendering a frame in a
camera flythrough in the Indoor
scene. 40

5.6 Image of the Indoor scene. 41
5.7 Graph depicting the difference in
time for rendering a frame in a
camera fly-through in the Foliage
scene. 41

5.8 Image of the Foliage scene with the
difference of Nanite(left) and distance
culled LOD(right) 42

5.9 Graph depicting the framerate
according to the increasing number of
objects. 43

5.10 Image of the stress scene with 1
million objects being rendered. . . . 44

viii

Tables
4.1 Table of hardwares used to
produce data in the test scenes. . . . 31

5.1 Table of meshes present in
Drawcall scene. 34

5.2 Table of performance for Drawcall
scene. The values were captured after
all the meshes had been rendered. . 35

5.3 Table of meshes present in Outdoor
scenes. 36

5.4 Table of performance for Outdoor
scene. 36

5.5 Table of meshes present in Indoor
scenes. 38

5.6 Table of performance for Indoor
scene. 39

5.7 Table of meshes present in Foliage
scenes. 40

5.8 Table of performance for Foliage
scene. 41

5.9 Table of performance for Stress
scene. 43

5.10 Table of meshes present in
Playground scenes. 44

5.11 Table of performance for Stress
scene. 44

ix

Chapter 1
Introduction

Since the beginning of computer graphics, programmers have struggled with
balancing complexity and representation for several years up until date. With
better hardware coming out each year, the boundary of model representations
in scenes has been pushed to its limits with more detailed models coming
out. However, even to this date, hardware cannot keep up with the demands
that detailed models need. In order to make up for this, several optimization
techniques were invented to reduce the demands made on hardware.

With the recent release of the early access for Unreal Engine 5 in May 2021,
they also introduced a new technology called Nanite virtualized geometry.
According to Unreal Engines Documentation, to quote Nanite’s definition:
"Nanite is Unreal Engine 5’s new virtualized geometry system that uses a new
internal mesh format and rendering technology to render pixel scale detail
and high object counts. It intelligently does work on only the detail that can
be perceived and no more. Nanite’s data format is also highly compressed,
and supports fine-grained streaming with automatic level of detail." [9]. This
would mean that artists no longer need to be concerned about polycounts,
drawcalls, or memory.

1.1 Goal

In this thesis, we will be researching how Unreal Engine represents mesh and
how Unreal Engine represents mesh with Nanite. We will also look at how
Nanite fairs, comparing the differences between using Nanite-ready models
and manually prepared optimized models and unoptimized models, and how
it affects the framerate, visualization, and memory of a scene. For testing
purposes, several scenes will be created using Unreal Engine 5, where Nanite
will be used, and traditional optimization techniques will be used on a larger
scale scene and a smaller scale scene.

1

2

Chapter 2
Rendering

Nanite is a complex technology that uses several optimization techniques to
work. In this thesis, we shall only touch upon the very basics and then show
some results comparing the capabilities of Nanite with the most popular and
widely used optimization technique known as "Level of detail." In order to
further examine these methods, we first must have a basic understanding of
how models are represented.

2.1 Polygonal Mesh

There are several ways how to render a model in 3D graphics. On a broader
scale, representations can be divided into boundary representation, discrete
representation, and procedural modeling. However, due to a pretty volumi-
nous topic, we will expand only on boundary representations, more precisely
polygonal meshes, since Unreal Engine renders objects using triangles that
make up polygonal meshes. For more information concerning other represen-
tations, please refer to this book [28]

Polygonal meshes, which will be referred to as meshes for short, use polygons
as a base. Polygons, which we will later refer to as faces, are shapes created
from sets of vertices. The minimum number of vertices needed to create a
face is three, which creates a triangle shape, and four vertices create a quad.
We can create more complex models by grouping and connecting several
polygons together. By connecting triangular polygons, we create something
known as triangle meshes.

2.1.1 Triangle mesh

Triangle meshes are probably the most used due to their simplicity and effi-
ciency. Several efficient algorithms exist that can rapidly render triangles onto
a screen, and hardware natively supports triangle rasterization. Furthermore,
since triangles are the simplest form of a polygon, any general, more complex
polygon can be reduced to a triangle form, which also ensures planar surfaces.

A downside to triangles is that texturing and modeling using triangles is
very unintuitive. It is much easier to create models using quads than triangles
in a 3D modeling program. However, since quads take longer to render and

3

2. Rendering

Figure 2.1: Image of a polygon mesh using quads in Blender.

4

..................................2.2. Model optimization

some drivers might not even support quad rendering, it is much faster and
easier to split the quads into triangles and render the triangles instead. This
applies to any general polygon.

2.2 Model optimization

Model optimization is a relatively large area as several techniques are used
simultaneously to achieve the best results. Because of this, only the most
used techniques shall be discussed here, such as level of details, occlusion
culling, imposters, and instancing.

2.2.1 Types of LOD’s

This chapter will briefly review one of the most used model optimization
techniques known as "Levels of detail" or "LOD" for short. For simplicity,
level of details will be referred to as LODs throughout this paper. LODs can
be generally categorized into three main methods.

2.2.2 Discrete LOD

A traditional and widely used method is a discrete level of detail (DLOD for
short) which James H. Clark proposed in 1976 [5]. The basic concept of DLOD
lies in creating several objects with varying data complexion (with several
level of details) pre-render. Depending on their distance, adequate LODs
would be loaded into the scene during run-time. Since more distant objects
would have fewer polygons to process, the rendering speed and performance
would increase. In the past, this would mean an artist would have to create
several models with different complexions. However, throughout the years,
various simplification algorithms have been made to ease the workload of
artists.

A downside to DLOD is that due to ready-made sets of models, there is no
way to know from which angle the model will be viewed. Therefore the model
simplification has to be made on the whole model. This might result in a
phenomenon called "visual popups" if mishandled. Visual pop-ups happen
when the more detailed model is switched to the less detailed model. If either
the model has been too simplified or the distance was not far enough, the
viewer might be able to distinguish between different models.

2.2.3 Continuous LOD

The idea of Continuous LODs is to quickly render coarse meshes that, through
a series of reconstructions, progressively recreate the initial mesh.

The most famous continuous LOD is a progressive mesh [19]. Unlike DLOD,
continuous LOD functions at run-time. This method creates a data structure
offline, also known as the progressive mesh. Taking in the highest detailed
mesh, a series of suitable decimate algorithms, known as the edge-collapse[19]

5

2. Rendering
is then applied to continually remove vertices and faces, resulting in a much
simpler model, until the simplest desired model is left, also known as the base
mesh. Then through a series of inverse operations for edge-collapse, known
as vertex-splits, the model is then reconstructed from its simple shape to the
formal mesh.

Therefore, for a progressive mesh, we store the simplest model and the
sequence of vertex-splits, that create a more complex mesh from the previous
simpler mesh. This forms a hierarchical structure that helps to create a model
in the chosen level of detail. This, in return, provides better granularity
and better fidelity since the level of detail can be specified precisely and not
through a set of ready-made models. As a result, lesser polygons are needed,
allowing said polygons to be used for other objects.

2.2.4 View-Dependent LOD

View-Dependent LODs [20] is an abstraction of Continuous LODs. It can
dynamically select the most appropriate level of detail for the current view
by only using the vertex split operations where it is needed. For example,
one object can be sectioned into several parts, each with its own level of
detail that will vary according to what the person sees in the current view.
This further increases granularity and fidelity and is especially adequate for
massive objects with many details. This sort of technique is mostly used for
terrains due to its drawbacks.

2.2.5 Overview of LODs

Despite several advantages of Continuous and View-Dependent LODs, the
traditional, discrete LOD still remains the most common method. The static
method of creating several level of details beforehand is simple and best for
most graphical hardware. The extra processing overhead and memory needed
to create a Continuous or View-Dependent LOD is not suitable for simple
objects. However, Nanite has found a way to effectively and cheaply use
View-Dependent LODs.

2.2.6 Normal maps

A normal map is a texture mapping technique used to add details to meshes
by faking how light bounces on the object. It is a texture map where each
pixel represents the X,Y,Z vectors in an RBG value. This helps add details
to the mesh without the need to add extra layers of geometry. A common
technique used is to create a low-poly model first that will then use the
normal map. Afterward, create a high-poly version of this model and bake
the normal map. The baking process is to recalculate and bend the normals
of the low-poly model to the high-poly models. This method can have very
impressive results, as can be seen in Figure 2.2

The downside to normal maps is that it becomes very distinguishable when
observed from up close that a texture has been used.

6

.................................. 2.3. Mesh simplification

Figure 2.2: Difference between detailed geometry and a simplified geometry
with a normal map. (Source: [4])

Figure 2.3: A model captured with 3 different LODs. (Source: [26]).

2.3 Mesh simplification

Early practitioners created LODs manually by either recreating the model
with fewer polygons or deleting certain mesh parts. This proved to be a
laborious task, and as such, several simplification algorithms were invented
to speed up this process. Only two widely used operations will be introduced
here. For more information and a detailed description of different operations,
it is highly recommended to read Level of Detail for 3D Graphics [22].

2.3.1 Edge collapse

A widely used method was proposed by Hoppe [19] called edge collapse. This
method takes in two vertices va, vb that create an edge and collapses them
into a single new vertex vnew. By doing so, it removes two vertices and also
removes the triangle that was made up of said vertices. The inverse operation

7

2. Rendering

Figure 2.4: Representation of an edge collapse operation (Source: [3])

is called vertex split, which adds two vertices that make up a triangle. (2.4)
The method can be further extended to variations known as half-edge collapse
and full-edge collapse. In the half-edge collapse, one of the vertices that
create the edge is considered an end point, to where the edge collapses to.

2.3.2 Triangle collapse

A very similar method to edge collapse is a triangle collapse, which simplifies
a mesh by collapsing a whole triangle, made of out vertices va, vb, vc, to a
new single vertex vnew [27]. The vnew is either one of the three older vertices
or a newly computed vertex. A triangle collapse can be replicated by creating
two edge collapses. However, it requires less memory. Due to collapsing more
vertices at once, triangle collapses are less adaptable than edge collapses.

2.4 Error Metrics

When using simplification algorithms or rendering level of detail, the visual
aspect of the output quality is also essential to maintain visual fidelity. Error
metrics are used to determine how much is a simplified model different from
the original main model.

This used to be done by the modeler, who could determine how simple
an object might look and how far it should be from the camera to make
it indistinguishable from the highly detailed object. This approach worked
perfectly since it relied on the visual feedback of a human. However, for
larger scenes, this laborious would take too long.

Therefore several autonomous methods were created to ease the workload
of modelers.

2.4.1 Quadric Error Metrics

QEM, for short, is a method introduced by Garland and Heckbert [12] that
measures how much a simplified mesh has changed as opposed to the original
mesh. Briefly, QEM uses an abstraction of the edge-collapse simplification
method called iterative vertex contraction. Like edge-collapse, it takes in
two vertices and contracts them into one new vertex. However, this does not
apply to vertices with edges only. This method also contracts non-edge pairs

8

...................................... 2.5. Imposters

of vertices that will remove one vertex and then join previously unconnected
regions. The error is then calculated as a sum of squared distances from a
vertex for each vertex.

2.4.2 Space-screen error

This method is used for determining which LOD should be rendered into
a screen. It can be viewed as a method to calculate screen pixel difference
when an LOD is switched. In order to roughly estimate a screen space error,
a set of viewing parameters and a mesh with its calculated error metrics
is needed. From all this, we can calculate an error on the screen space in
pixels and according to a threshold, determine if the object in a lower detail
is suitable. [7]

2.5 Imposters

Another interesting concept in computer graphics concerning LODs is image-
based LODs, also known as either stand-ins or imposters[22]. Their main
goal is to replace geometric mesh LOD with a singular image of the object
placed onto a flat polygon, usually a quad. Then by using an alpha map
texture, we can achieve a semi-transparent image mimicking an object. For
most purposes, we would want to have the imposter facing the camera. This
technique is called billboarding and is generally used for foliage, for example,
grass or tree leaves. Transparency in computer graphics is expensive work and
time-consuming, but due to the convenience of imposters, several pipelines
were built to render transparency as fast as possible.

2.6 Culling

Culling is another helpful method for increasing game performance. Unreal
Engine has methods for visibility and occlusion enabled by default. For
visibility, the method is called View Frustrum Culling, and for occlusion, it is
called Dynamic Occlusion. The basic concept of these methods is to reduce
the number of objects being drawn on a scene, thus increasing performance
and decreasing memory usage. In order to test the objects faster, each object
has a simple bounding box and sphere that automatically scales to the size
of the object. The bounding boxes are used since it is better to check for a
box than a complicated mesh.

2.6.1 View Frustrum Culling

In order to visualize a scene, a virtual camera is used that, through various
functions, determines what is visible on the screen. The view frustum is the
volume created by a near and far plane that contains any potentially visible
objects. This volume usually takes a pyramid shape-like appearance. The
near plane is the closest point to the camera where objects may appear, and

9

2. Rendering
the far plane is the furthest. Since the view frustum is what the user will see,
anything that is not even partially within the frustum does not need to be
rendered. The goal of the view frustum culling method is to identify if the
objects are inside the view frustum, even partially. If they are not, they are
not rendered, saving a lot of time and memory for the GPU.

2.6.2 Occlusion Culling

View frustum culling optimizes the scene by not rendering objects that are not
within the frustum of the camera. However, in some instances, the object is
within the camera but is fully occluded behind another object. Nevertheless,
this object is unnecessarily rendered, even though the viewer cannot see the
object. Occlusion culling [6] methods are used to identify if an object is
being occluded by another object. If it is, it will not be rendered. To do this,
methods check for the visibility of objects within the frustum and if another
object occludes them. This is done by issuing a query to the GPU / CPU to
check for the visibility state of each object. This task is very memory and
time-consuming. Therefore occlusion culling is usually used after all the other
culling methods have culled the objects, thus reducing the number of objects
that need to be checked.

Hardware Occlusion Queries

The main dynamic occlusion culling used by Unreal Engine is Hardware
Occlusion Queries and is enabled by default. This method issues a query to
the GPU for each frame for each object. The result of the object’s visibility
is returned one frame later. Duo to this latency, this might sometimes cause
visual pop-ups if the camera moves too fast. The cost of occlusion scales with
the number of objects to process. This cost can be optimized by other, faster
culling methods like distance culling so that there will be fewer objects to
process. Like frustum culling, if even a tiny portion of the object is visible, it
will not be occluded.

2.6.3 Instancing

Sometimes several copies of a single mesh need to be used when creating a
scene. The foliage could be considered a prime example. Rendering several
same meshes at once tends to be taxing since this will result in several
drawcalls. Drawcalls contain all the information such as textures, shaders,
and buffers that a CPU needs to process to send to the GPU. Therefore,
several properties need to be prepared for rendering a single mesh, resulting
in at least one drawcall per mesh. A different way to look at drawcalls is as a
group of polygons sharing the same property.

For this reason, Unreal Engine can use instancing, where there is only one
template for all copies of a mesh. This can prove to be very cheap since all
that is needed is to store various transformations of the copies into an array
and send this to the GPU with the cost of only one drawcall. This, however,

10

....................................... 2.6. Culling

Figure 2.5: Difference between occlusion culling in Nanite (right) and Static
Mesh (left).

also does not work well with LODs. In order to use LODs for instanced
meshes, Hierarchical Instanced meshes will have to be used [21].

Even with LODs available, instanced meshes have the same functionality as
a single grouped mesh. This means occlusion culling does not affect Instanced
meshes. Therefore even if a single object is visible, all the instances will be
rendered. It is advised to use instances for objects in close vicinity. Instancing
meshes work both for Static meshes and for Nanite meshes resulting in a
significant boost in performance seen in the test, which can later be seen in
Section 5.11.

I encountered an interesting observation when testing out hierarchical
instancing. When I tried to render several triangles at once, the instance
would disappear completely whenever a certain bound of frametime had been
reached. Due to minimal to no information on Hierarchical instancing, I can
only assume that when a scene in Unreal Engine takes too long to render
thanks to instancing, it instead decides not to render the instance altogether.

11

12

Chapter 3
Nanite

3.1 Rendering Pipelines

Nanite meshes use triangles for rendering. Therefore one of the main goals
is to create a pipeline that renders triangles as fast as possible. Rendering
pipelines are the backbone of rendering 3D models on 2D computer screens.
CPU/GPU rendering pipelines used to be the norm, where the CPU handles
most of the data that it then sends to the GPU to render on the screen. In
contrast to the CPU, a GPU has more computational power meaning it is
able to process several tons of data faster than a CPU. However, the problem
was that GPU used to have less memory available than the CPU. This could
prove to be a problem since highly detailed models will take up much memory.
Another reason is that most of the rendering commands need data that comes
from the CPU.

Due to technological advancements, however, that is no longer the case,
and with DrawIndirect, GPU rendering commands are now supported for the
GPU. Therefore a workaround was created to have GPU draw without getting
a draw command from the CPU. This meant utterly bypassing the CPU-GPU
roundtrip approach, eliminating the bottleneck, where either CPU/GPU had
to wait for each other to finish their process. This also means that the CPU
will be available to do other work. This is also known as the GPU-Driven
Rendering pipeline [17].

The high-level idea of GPU-driven pipelines is to use a DrawIndirect, which
takes its parameters from the GPU buffer. Then based on the position in the
GPU buffer, the GPU will execute the draw in that buffer. In order to make
this happen, the main idea is to have the whole scene with all of its objects
stored in the GPU. This goes well and does well when the amount of binds is
minimized, which is also known as "Bindless" Rendering [8].

Since Unreal Engine 4.22 was released, the mesh rendering pipeline has
been redesigned from immediate mode to retained-mode. [9] Briefly, this
means that except of drawing everything visible in the scene every frame, all
scene draws are prepared beforehand and stored in the video memory (GPU),
where they are only slightly updated when things change. Unreal Engine 5
extended on this. Nanite meshes are also neatly stored in a large resource. If
we were to draw depth only, it would only take one DrawIndirect. This will

13

3. Nanite..
be very useful in the future for culling.

3.2 Forward Rendering

The two core techniques for shading a scene are deferred lightning and forward
lightning [23]. Lightning calculations tend to be very costly, especially for
forward rendering. The idea of forward rendering is to render an object
in one pass, meaning taking in the data, creating triangles, transforming
and splitting it into fragments that are then used to calculate lightning
for each light present in the scene. This method scales by the number of
(objects) fragments * number of lights in a scene. Also, fully calculating the
lightning per object means that if part of an object is later occluded, the light
calculations would be wasted.

3.3 Deferred Rendering

Deferred Rendering [23] takes a different path to forward lightning by decou-
pling geometry from lightning. This is also the rendering technique set by
default in Unreal Engine 5 that Nanite uses. As the name suggests, the light
rendering is delayed after all the geometry has been prepared. It first goes
through the geometry pass, where the scene is rendered once, with all the
important information for light calculations stored in a collection of buffers
(images) called a GBuffer. Visualization of a GBuffer can be seen in Figure
3.1. As can be seen in the Scene color (top left), it is entirely black, as the
lightning has not been calculated yet, only the geometries have been rendered.

With the GBuffers now ready, the delayed calculation of lightning can
begin. It takes the GBuffer, which it iterates over pixel by pixel and with
the information provided, calculates the lightning for the scene. As such,
complexity only scales with screen resolution and the number of lights.

This, however, comes with certain disadvantages. GBuffers are relatively
large. Therefore, they take up much memory and bandwidth. Another
disadvantage is that it cannot render transparent objects. In order to have
transparent objects, a combination of Forward and Deferred rendering can be
used for just those objects. Anti-aliasing is also not supported for deferred
rendering.

3.4 Nanite culling

As was already stated, culling is one of the main points to consider when
optimizing a game. As opposed to the old system, where the model wasn’t
rendered only when it was fully occluded, Nanite’s culling system is more
practical, as it doesn’t render parts of the model that are occluded and
renders the ones that can be seen as can be seen in Figure 2.5. This is done
by grouping triangles into "clusters" and giving each cluster a bounding box

14

................................... 3.5. Visibility Buffer

Figure 3.1: Visualization of the GBuffer in Indoor scene with Scene visualisation
(top left) using RenderDoc.

for cull testing. It is important to note that each cluster is made out of 128
triangles. A more detailed look into the cluster will be in 3.6.1.

As opposed to the older pipeline, where the occlusion culling was done by
Hardware occlusion culling, Nanite culls against a Hierarchical Z-Buffer or
HZB for short [14]. An HZB is a mipmapped, down-sampled version of a
depth buffer used to check the bounds of objects that also use fewer texture
fetches, making them faster. However, due to its more conservative nature
and loss of information, it sometimes does not occlude objects that should
be occluded, as can be seen in Figure 3.2. However, because Nanite does
not occlude whole objects but just the clusters that have their own bounding
bounds, this technique proves to be more viable. We will explore the Nanite
culling section a little more in Section 3.9.

In order to create an HZB, something has to be rendered first. The core
idea is that what was visible last frame will most probably be visible again in
this frame. With this idea, a "Two-pass occlusion culling" was created. First,
draw what was visible in the last frame, build the HZB from this, then draw
what is visible now but was not in the last frame. This creates an almost
perfect occlusion culling that only fails during high visibility changes.

3.5 Visibility Buffer

With the base setup, it can be seen that drawing depth can be done very fast.
Nanite wants to decouple visibility from materials when adding materials
into the mix. This is done by using a visibility buffer[2] [18]. A visibility

15

3. Nanite..

Figure 3.2: Difference in occlusion between HZB (left) and Hardware Occlusion
Queries(right).

buffer in the past was meant to substitute the GBuffer, which has a very large
bandwidth and takes much memory, by reducing these disadvantages. It only
saves TriangleID and InstanceID, where parameters can be easily fetched
from here.

Nanite uses visibility buffer differently, however. It uses it to create a
GBuffer faster and more efficiently. The visibility buffer stores the depth,
triangles and instance ID’s. With all of this information saved, the material
shaders load the visibility buffer and calculate the data for GBuffer per pixel.
However, it sounds like much work has to be done, but due to several cache
hits, it is not as slow as it seems. Minor speculations on my side, but one
of the reasons for several cache hits is probably due to the fact that several
pixels will have the same material shader in their vicinity. Therefore a new
material shader does not have to be loaded for each pixel.

This has several benefits. With faster GBuffer creation, it also does
not need to switch shaders during rasterization and eliminates pixel quad
inefficiencies with dense meshes. Pixel quad inefficiencies happen when a
mesh has tiny triangles. Pixel shaders work on a 2x2 group of pixels that
are called quads. The problem happens when pixel-sized triangles are being
rendered. Except for rendering only one pixel for one triangle, additional 3
pixels are being rendered. Article [18] has an in-depth explanation and shows
that visibility buffers generating GBuffers can operate faster with smaller
triangles as opposed to forward and deferred rendering.

3.6 Nanite LOD creation

Being able to draw depth within one draw call speeds things up a lot. However,
this still scales linearly with instances and with triangles. Instance scaling
for Unreal Engine does not prove to be a problem as it can process several
multitudes of instances without any problem. Linear scaling in triangles,
however, proves to be a problem as processing a multitude of triangles will
slow down the GPU.

The idea of Nanite is to render as many triangles as there are pixels. For
clusters, this means there should be a constant amount of clusters for every

16

................................... 3.7. Cluster Creation

frame, regardless of scene complexity. To do this, LODs are needed.

3.6.1 Cluster Hierarchy

Since Nanite’s written presentation [1] provides quite a certain amount of
information, I will only briefly introduce how Nanite does LOD and later on
delve into their code to have a deeper understanding of the idea. I would also
recommend these to papers, as Nanite used the approach stated there as a
building block with some minor tweaks [24]. Unreal Engine is open-source.
Therefore I will be commenting on snippets of code in this section. The core
codes of Nanite can be found by navigating through: Engine > Source >
NaniteBuilder > Private. In order to access these codes, a GitHub account is
needed with a registered Epic Games Account. The GitHub repository can
be found here [13].

3.7 Cluster Creation

Nanite approaches LOD in a view-dependent way. The same clusters that
are made out of 128 triangles that were used for culling are used to calculate
LODs for each cluster of an object. Nanite clusters consist of two parts,
a preprocess, where the clusters are created and LODs calculated, and a
runtime, where loading LODs and culling are done. Clusters can be used for
LODs, by creating a hierarchy tree of them, where the leaves are the most
detailed segments of the original mesh and their parents are the simplified
versions. At runtime, we can find a cut of the tree that has the LOD needed.
This is calculated by the screen space error projection of the cluster. Another
good perk is streaming, meaning the whole tree does not need to be in the
memory at all times. When the children nodes are needed, they can be
requested and streamed. When we use parents and have not used their child
nodes for a while, they can be removed from the memory.

It is important to note that if a series of simplifications were executed on
every cluster of a mesh regardless of their neighbors, then it could cause
several topological problems as the edges that connect two or more clusters
would not match. In order to bypass this problem, locked boundaries of
edges are created by grouping clusters together and performing simplifications
within this boundary. These boundaries are then alternated with each LOD
simplification.

The LOD creation process for clusters can be seen in Figure 3.3 and can
be described as such:

1. Create clusters Creates clusters out of 128 triangles

2. Group clusters Selects a group of N clusters to create. Clusters with
most boundary edges are grouped together.

3. Merge clusters Merge the triangles of clusters to a shared list

4. Simplify Simplify the new cluster by 50% of the number of triangles

17

3. Nanite..
5. Split Split the simplified triangle list to N/2 clusters of 128 triangles.

This process continues by having the newly made clusters be able to form
groups again, until only one single cluster remains as the root.

The split and merge operations create DAG instead of a normal tree. This
has a suitable property, that locked boundaries cannot stay locked. It is also
important to note that in Figure 3.3 the 2. Select cluster and 5. Split has
the same boundaries. This will be important later on, as it allows to choose
between different LODs per cluster.

Nanite simplification

Nanite uses most of the simplification methods that have been briefly in-
troduced in Section 2.3. For simplifying, Nanite uses edge-collapse, where
the error metric is calculated using the Quadric Error Metrics, QEM. The
vertex position is optimized for minimal error, which returns an estimate of
an error of a simplification. This estimated error is then used for screen space
projected error to calculate the number of pixel error that determines which
LOD is going to be used. The pixel error is not entirely accurate, also due to
the fact that by this point, only the triangles have been rasterized. There is
no information about materials, texture or colors and others. According to
Unreal’s statement, their code concerning simplification has been optimized
for quality and speed to beat any commercially available option.

This would briefly encompass the creation of clusters and LODs during
preprocess.

Figure 3.3: Visualization of a simple build operation for a cluster.

18

................................ 3.8. Runtime LOD selection

3.8 Runtime LOD selection

Runtime comes after all the clusters have been built (in the editor). Later,
when the program is running, we want it to be able to select for each frame
which cluster will be rendered based on the view. When choosing a cluster to
be rendered, two clusters with the same boundaries but different LODs are
chosen (refer to Figure 3.3). Then, based on the estimated screen projected
error, a LOD is selected at runtime. However, it also depends on which
LOD is selected since there may be more LODs with lower errors than the
threshold. Another thing to keep in mind is that for larger-scale levels, many
clusters will be too detailed to even be considered since it would just waste
time. Therefore, some sort of cluster culling for LODs has to be created.

Listing 3.1: Cluster groups structure implemented in Unreal engine 5
struct FClusterGroup
{

FSphere3f Bounds ;
FSphere3f LODBounds ;
f loat MinLODError ;
f loat MaxParentLODError ;
in t32 MipLevel ;
u int32 MeshIndex ;
bool bTrimmed ;

u int32 PageIndexStart ;
u int32 PageIndexNum ;
TArray< uint32 > Chi ldren ;

This code snippet is a structure of a ClusterGroup. The MinLODError
and MaxParentLODError play an essential part in LOD selections. When
a group of clusters is formed, they store the minimum error of a cluster in
the group and the highest error of its parent. This is to ensure that all the
clusters always make the same decision. These errors are calculated at a point
that will maximize the projected error inside a bounding sphere around the
cluster. That is why Clusters and ClusterGroups have FSphere3F Bounds /
LODBounds. The process of LOD selection is then simple. An error threshold
of 1 pixel is set to minimize visible pop-ups when the child/parent changes.
This is why accurate error estimates have to be made during LOD cluster
creation. Then we want to only render cluster groups with an error smaller
or equal to the threshold. Figure 3.4 shows how one view chooses the parent
and another chooses the children after a slightly closer look. The boundaries
stay the same. However, the number of clusters decreases. It also accurately
depicts the essence of View-dependent LOD, since all the surrounding clusters
stay the same. Therefore in order to choose between the two boundaries, a
simple check is run as so:

Render if : ParentError > error threshold && ClusterError <= error

19

3. Nanite..

Figure 3.4: Difference between choosing the children group of clusters(left) and
choosing the parent group of clusters (right). The boundaries drawn with white
colors do not change, however the number of clusters, therefore triangles do.

treshold

Cull if : ParentError <= error treshold

With all this, the LOD selection should always select the most accurate
representation of parts of an object. Moreover, since it does not depend
on the full path from the root to the node, it can be processed in parallel.
However, there is still too much work. Since Nanite is made to process several
millions of triangles, millions of clusters will be made, resulting in a very
large DAG. Several clusters will be too detailed to be selected if the scene is
very large, so there is no point in checking them. The same rules apply for
the culling and the LOD selection, as can be seen in this condition 3.8. In
order to ensure parallel and faster traversal, a Bound Volume Hierarchy or a
BVH [15] is constructed, where nodes are ParentErrors. This can also ensure
hierarchical culling, which means popping a node from the queue, checking
the condition, and pushing back its children if they pass the condition, until
the queue is empty. Therefore large amounts of unwanted clusters can be
culled since they will not even enter the queue. The BVH is traversed using
Persistent Threads [16]

3.9 Two-Pass Occlusion Culling

Since LOD culling is being done, it would also be good to do visibility culling.
This can be done at the same time the LOD culling is done. However, some
problems might rise up such as: LOD Selection from frame to frame will
most likely be different, therefore some clusters might be occluded unlike
last frame and some clusters don’t even have to be present in the memory
anymore. Moreover, we don’t even have the current HZB buffer yet.

The Two-Pass occlusion culling method should solve these problems. The
core idea is to test the current clusters, if they would be visible in the last
frame, by testing their bounds against the last frame’s HZB with the previous
transforms. In order to correctly render and occlude everything, the render
goes as so:

20

.................................... 3.10. Rasterization..1. Test if the clusters would be visible from last frame’s HZB...2. Draw what would be visible and save the occluded for later...3. Build the HZB for this from from the depth buffer...4. Using the current HZB, test what was occluded from the last frame
again...5. Draw what is visible (from the current HZB), but was occluded...6. Build a complete HZB from this and use it for the next frame.

Since we have to redraw the scene two times, the Nanite pipeline has two
passes, where the second pass just rerenders the previously occluded clusters
or instances, that are supposed to be visible.

3.10 Rasterization

Nanite wants to have pixel-scaled detail and in order to achieve that, pixel-
sized triangles are needed. However, hardware rasterizers are not optimized
to work with microtriangles since they work on a 2x2 pixel block. Therefore it
would still compute 4 pixels even if only one pixel is supposed to be computed.
A very nice statistic can be seen here [11]. Therefore, Nanite has its own
GPU software rasterizer, specifically built to render tiny triangles around
three times faster than a hardware rasterizer. So every cluster is chosen to
either be rasterized by the software or hardware based on the length of the
triangle. If the triangles in a cluster are less than 32 pixels long, they are
software rasterized.

3.11 RenderDoc

In order to get a broader view of how Nanite’s pipeline worked, I opted to use
RenderDoc. RenderDoc is a free graphics debugger that allows developers
a single-frame capture, and detailed inspection of applications created with
Vulkan, DirectX, OpenGL and more. Using RenderDoc, we can see what
Unreal does in order to render one frame. Unreal Engine also supports
RenderDoc in the form of an in-editor plugin. The program layout can be
seen in 3.5. As can be seen, it captures each state of the program with the
timestamp of how long each action took. There are also several visualization
tabs on the right side. When writing about what RenderDoc does, it will be
applied knowledge without any backing facts.

I decided to capture a frame from the Indoor scene, as the objects are more
clustered together and it has more unique objects than other scenes. The
frame capture can be seen in Figure 3.6.

21

3. Nanite..

Figure 3.5: Screenshot of the RenderDoc application.

a) b) c)

Figure 3.6: One frame capture of the indoor scene in RenderDoc.

Nanite Cull and Rasterize

The first important part is the Nanite::CullRasterize, where as the name
suggests, Nanite meshes first cull each other and then rasterizes what needs
to be rasterized. These are the parts that were mentioned in Section 3.6.1.
As can be seen in Figure 3.6a), the Nanite::CullRasterize has two passes. The
main pass and the post pass. This is the two pass occlusion culling, coupled
with rendering that we talked about in Section 3.9. Having the HZB built
from objects that were visible the last frame, first perform the InstanceCull,
where instances that fully occluded are saved for later testing, then perform
the PersistantCull, where it culls clusters of an instance that are not visible
and saves them for later.

After the work has been HW Rasterize and SW Rasterize are used for
drawing differently sized triangles. Very smaller triangles are drawn us-
ing the SW(software) Rasterize and larger triangles are drawn using the

22

..................................... 3.11. RenderDoc

HW(hardware) Rasterize. This can further be confirmed by opening the drop
down window. HW Rasterize calls a function IndirectDraw(<384>, <1769>)
which is the traditional way of using the hardware rasterization. The issued
command wants the hardware to draw 1769 instances of 384 triangles per
instance. The SW Rasterize calls a function IndirectDispatch(<2825,1,1>).
This function calls 2825 compute shaders to rasterize tiny triangles.

With this, the first pass is done. Rebuild the HZB, which can be seen as
BuildPreviousOccluderHZB and start testing the occluders. The Post Pass
is the second step that does the same, except with the newly made HZB
(Figure 3.6b) BuildHZB).

BasePass

Up until now, the whole process was focused on only rendering the geometry
without materials. BasePass (Figure 3.6c)) is where the materials are pro-
cessed and rendered on screen by applying the materials and transforming
the Visibility buffer to a GBuffer. The BasePass is separated into two parts:
Classify Materials and EmitGbuffer. Classify Materials takes in a Visibility
Buffer as input however does not seem to have a visible output through Ren-
derDoc. Since EmitGBuffer looks like a series of drawcalls for each Material
ID, my guess that Classify Material classifies materials present in the frame
in a texture and EmitGbuffer then goes through the the texture for each
drawcall and renders the material, if present.

Now with this general knowledge we can visualize the Nanite RenderPipeline
as can be seen in Figure 3.7.

Figure 3.7: Simple visualization of the Nanite render pipeline. This pipeline
has to pass two times.

23

24

Chapter 4
Nanite in practice

4.1 Nanite support

4.1.1 Unsupported Nanite settings

Nanite can be used for Static meshes and joined static meshes also called
Geometry collections. However, it is very limited when it comes to rigid
meshes. Any form of mesh deformation is not supported by Nanite technology.
This for example includes:..1. Skeletal Animation..2. Spline meshes

Additionally, certain settings for materials are also not supported. Using
such settings will usually result in either an error or will not be an option to
begin with. These settings include for example:..1. Any Blend mode setting, excluding Opaque..2. Wireframe..3. World position offeset..4. Two sided material

The examples presented are only a selected few, that are more usually used,
when creating a scene. For all examples, I recommend reading the official
Unreal Engine documentation[9].

4.1.2 Aggregate geometry

Furthermore, it is important to note that even though Nanite works on
any kind of Static mesh, it is advised to not use it everywhere. The main
example would be aggregate geometry. Aggregate geometry stands for several
smaller, disjoint objects, that together create a larger volume for example
hair, grass, leaves and other. Nanite’s main principle is to try and draw no
more triangles than there are pixels and it does so by using two primary

25

4. Nanite in practice...................................
techniques: fine-grained level of detail and occlusion culling. However with
meshes that have aggregate geometry, it is harder for Nanite to determine
how occlusion culling or LOD should be used, usually resulting in a lot more
triangles being drawn, than is needed.

The most obvious case of this would be foliage. Not only does it have
several disjointed meshes, that make up a volume, but also usually scenes
would want to apply wind effects or some other effects, that could affect the
position of the grass. This all the more supports the fact, that Nanite should
not be used for foliage. However, this does not mean Nanite is completely
inapplicable for foliage. For example using Nanite for leaves of a tree would
certainly not work, using Nanite for the tree trunk might be useful. However,
wind support for Nanite is planned in the future.

4.1.3 Concerning foliage

When it comes to foliage, there are three general methods of how to render
foliage into a scene. One uses a technique called billboarding and the other
uses a mesh. The third method is a form of hybrid, using both techniques
for different scenarios. Usually, when using foliage such as leaves, bushes
etc. the most used approach would be with billboards, as it has very little
amount of vertices and realistic results. However, when rendering grass, this
approach might be debatable. An interesting article surfaced, where several
tests were done using billboards and using geometric meshes for rendering
grass. Visually the result were similar, but surprisingly for the speed tests,
geometric meshes were faster and took less memory.

Since we primarily want to test Nanite, tests using grass billboards will be
completely omitted as Nanite will have no effects at all. It is also important
to note, that Unreal Engines foliage tools uses Hierarchical Instancing for
grass by default.

4.2 Nanite inside Unreal Engine 5

Unreal Engine is a complex engine with several features spanning from
animation creation to blueprint programming. One of the features we will
be mostly using will be the Static Mesh editor User Interface and the scene
viewport to test out Nanite capabilities. The Static Mesh Editor can be
divided to four parts as can be seen in Figure 5.1 consisting of:..1. Menu Bar..2. Toolbar..3. Viewport Panel..4. Details Panel

26

...................................... 4.3. Viewport

Figure 4.1: Visualization of the static mesh editor with a hand made model
without optimization.

4.3 Viewport

The most important part for testing LOD and Nanite meshes will be the View-
port panel and Details panel. The Viewport gives us a visual representation
of a rendered object as it would be rendered in-game. It also has a viewmode,
that lets us see the representation in different views such as wireframes, unlit,
with or without lightning and more. The view mode also gives us access to
"Nanite Overview". Since Nanite meshes are different from Static meshes,
this overview needs to be turned on in order to see more details for Nanite
meshes. Viewport also has simple statistics for each individual models, where
our main focus will be directed to the number of triangles and vertices.

4.4 Details Panel

The Details panel shows specific properties and settings for the static mesh
such as materials, LOD settings and more importantly Nanite settings. This
is where the Nanite meshes are generated. The generation of a Nanite mesh
in Unreal Engine is really simple. Import a Static Mesh, open the static mesh
in the Static Mesh Editor, navigate to the Details Panel and in the Nanite
settings, check the "Enable Nanite".

4.5 Nanite mesh settings

When enabling Nanite, several settings are available. One pair of settings
concern the Nanite mesh itself and another consists of its proxy mesh, also
called a Fallback mesh. These settings allow users to control the representation

27

4. Nanite in practice...................................
of Nanite meshes, and its fallback mesh and can be observed in Figure 4.1 in
the details panel.

Nanite storage

Nanite meshes can be stored in memory or streamed in. By storing the mesh
in memory, it will take up the memory space that can be limited, although
it will be faster to process and might reduce streaming pop-ins artifacts.
Minimum residency allows the users to set how much memory of a Nanite
mesh should be stored in bytes. By default it is set to 32KB which is the
minimum needed (and usually more than enough).

Nanite meshes are highly compressed that means they are able to store
millions of data without instantly filling the hard drive memory. Position
precision allows the user to set the quality of the compression of the asset.
By default it is set on auto, which automatically sets the best possible
compression based on the mesh size and triangle density. However this might
sometimes result in unwanted errors so the user has the option to set the
compression manually.

Nanite original mesh settings

Sometimes, even after a Static Mesh has been converted to a Nanite mesh,
it might still take a lot of disk space, therefore there is an option to trim
data by either using the Keep Triangle Percent or Trim Relative Error
options. By changing their values, it decimates the mesh, reducing its size
before storing it as a Nanite mesh.

Keep Triangle Percent decimates the mesh until the triangle percentage
is reached from 100 being the default, and the original mesh to 0 being the
most decimated model.

Trim Relative Error sets an error that is calculated if a triangle is
removed. If the removed triangles produces an error that is lower or equal to
the relative error, the triangle will be decimated. The relative error is relative
to the size of the mesh. The default value is 0, meaning without decimation.

There is almost no difference between using any of the settings. An example
can be seen in Figure 4.2 where the table handle has over 1 million triangles
resulting in over 81MB for a Static mesh and 51MB for a Nanite Mesh. After
using the trim error, it can be seen that the size has decreased by a lot. This
of course depends on the mesh itself. If a mesh has a lot of unnecessary
triangles as was this case, then the model will be almost unchanged while
decreasing the size.

Fallback mesh

A fallback mesh is essentially a coarse representation of the Nanite mesh
as a Static mesh. For a Nanite this is important, as lightning or collision
calculations would be very demanding, it is much better to calculate it on a
coarse representation of the Static Mesh. Another good reason is to have a

28

................................. 4.5. Nanite mesh settings

Figure 4.2: Table with trim error applied.

fallback mesh is when a a certain hardware doesn’t support Nanite. When
this happens, except of rendering the Nanite mesh, it renders the fallback
mesh.

Fallback meshes have the same settings as the Nanite meshes that are
Fallback Triangle percent and Fallback Relative Error. By default
Fallback triangle percent is 100 (no decimation) and Fallback relative error is
1.00 (minor decimation).

After enabling Nanite and applying the settings, Unreal Engine will auto-
matically do all the calculations and create the mesh all by itself in a matter
of a few seconds. The Nanite mesh is now ready to use. By disabling the
Nanite mesh, it will revert to its original static mesh form.

Unreal Engine offers a Nanite Visualization mode, that lets us visualize
different aspects of a Nanite mesh. When enabling Nanite Visualization there
are several different options that can be used to visualize Nanite meshes(4.3),
where the most imporant one would be:..1. Mask - visualization that colors Nanite meshes green and Non-Nanite

meshes red..2. Triangle - displays all triangles of the Nanite meshes in the current scene..3. Clusters - displays colored representations of grouped triangles that form
a cluster..4. Overdraw - displays the amount of overdraw for a scene geometry. Closely
stacked objects cause overdraw that can be seen as heat signatures.

4.5.1 Overdraws

When creating a scene with Nanite objects, it is important to not cause
too much overdraws for Nanite to work correctly. Overdraws happen, when

29

4. Nanite in practice...................................

Figure 4.3: A scene with Nanite Visualization turned on.

several Nanite meshes are closely stacked together and overlap each other.
Due to this Nanite has problems with occlusion cullings and will render
objects even though they are hidden. In the Nanite visualization, they can
be perceived as heat signatures, where the higher temperature is equaled to
higher overdraws, which negatively affects performance.

4.6 Standard optimization workflow in Unreal
Engine

Having now introduced the essential optimization techniques when rendering
meshes. A standard workflow for optimizing meshes will be introduced to
show the difference between Nanite and Static mesh optimization.

Before a mesh can be imported into the Unreal Engine, it needs to be first
created. The general process of model creation in a 3D modeling software
is first to create a low-poly mesh and then create a detailed high poly mesh.
Additional textures would be baked from the high-poly model, such as normal
maps, which would then be applied to the original low-poly mesh to cheaply
fake various intricate details of a mesh. This results in fewer vertices and
triangles needed to create a detailed model.

Afterward, the mesh would then go through several phases of mesh sim-
plification to create several levels of detail, which will then be applied in a
game engine. This can be either done in the desired 3D modeling software or
directly in Unreal Engine after the mesh has been imported. Unreal Engine
not only allows the users to control how simplified each LOD can be, but
they can also choose when to render each LOD based on the distance. It is,
however, advised not to set it manually since, primarily, the algorithm will
pick the best possible solution.

Since Occlusion culling is enabled by default, having several objects might
be demanding on the hardware. Therefore the best practice would be to
instance several copies of the same mesh (if there are any), thus decreasing

30

.................................... 4.7. Testing scenes

Hardware GPU CPU Memory Resolution
Machine 1 NVIDIA GeForce RTX 2070 Intel Core i7-9750H 2x 8GB DDR4 SDRAM 1920x1080
Machine 2 NVIDIA GeForce GTX 970 Intel(R) Core(TM) i7-4790K 2x 8GB DDR4 1920x1080

Table 4.1: Table of hardwares used to produce data in the test scenes.

draw calls and workload for occlusion testing. Due to frustum culling being
enabled by default, only cull distance might need to be set up additionally in
order to cull objects far away from the viewer.

If even after these standard optimizations, the scene is still slow, it is
advised to do a CPU / GPU profiling to find out where the problems might
be.

This is laborious work that sometimes does not work very well compared
to Nanite. Nanite completely changes this workflow. Modelers no longer
need to create high poly models for normal maps. They can import the high
poly model right away without worrying about the number of triangles or
drawcalls. After importing a high poly mesh, all that needs to be done is to
enable Nanite the mesh, and it will automatically process all the optimization
for them. Additionally, according to statistics and tests in Section 5, it does
it substantially better in some cases.

4.7 Testing scenes

In order to compare the difference between Nanite and LOD, test scenes were
created. Each scene has a Nanite and LOD variant with cameras capturing
the same scene. This is crucial since the same conditions have to be applied
to both variants in order to gain the most exact data used for comparison
as possible. The scenes were tested on two machines with these hardware
properties:

31

32

Chapter 5
Statistics

In order to compare the scenes with different meshes, several data, such as
draw time, number of draw calls, frames per second, triangle count need to be
gathered. We can give Unreal Engine a command that will start gathering all
the data we need. By using the command "stats startfile", Unreal creates its
own data format, where it stores everything that happened during rendering
the scene. After we accumulated enough data, we can stop it by issuing
another command "stats stopfile". By doing so, an Unreal data format will
be stored into the project. This data format can then be viewed inside of
Unreal Engine using a "Session Frontend" tool. The data format stores all
information about everything needed to render the scene, from commands
used to number of triangles drawn.

Each scene has cameras that are binded to a keyboard key that will then
start a camera animation and start gathering data. This is done in order to
have the same conditions when we start gathering data to have it as precise
as can be.

5.1 Data graphs

The data graphs were created using Unreal Engine to gather the information
with the StartFPSChart and StopFPSChart commands. This command
gathers data concerning RenderThread (CPU), GameThread, and GPU each
millisecond. Due to the huge amount of data gathered, I shortened it by
writing a small python program to convert the data to seconds, averaging
them for each second. I then plotted graphs with data relevant to their time
in seconds or relevant to the number of objects in the scene.

5.2 User feedbacks

User feedbacks were done in person, as a lot of people do not own an
appropriate hardware to run the tests and in order for me to portray the
same experience to every tester. As a result I was able to have 7 testers fully
test the scenes and give feedback. The testers background knowledge about
computer graphics are diverse, from completely none, to very experienced.

33

5. Statistics
They were tested without knowing which scene is which in order to get the
most accurate result For each scene I will summarize the feedbacks I had
gained.

5.3 Drawcall test

In Section 2.6.3 we stated that a lot of drawcalls / materials tend to be worse
than a lot of triangles for modern GPU. This test scene was done to confirm
what was previously stated and to see how Nanite deals with drawcalls.

As can be seen in Table 5.1, a simple plane was created with only 128
triangles. This plane however had 64 unique materials, that will increase
drawcalls and overhead. 225 planes were than added each second for 15
seconds, until 3375 planes were rendered in one scene.

Figure 5.1: Graph depicting the frametime with increasing objects that have
high drawcalls.

Mesh Name LOD Triangles Nanite Trian-
gles Instances

Plane LOD0: 128 128 3375

Table 5.1: Table of meshes present in Drawcall scene.

In Figure 5.1 and Table 5.2 we can see how a lot of drawcalls can negatively
effect performance. In Section 5.5 over 3 million more triangles are being
rendered, yet the framerate is still stable. The difference is in drawcalls. The
CPU spends a lot of time, in order to get 4500 drawcalls ready every frame,
so the GPU has to wait for the CPU to finish.

34

.................................... 5.4. Outdoor scene

Test Drawcall AVG. GPU AVG. CPU AVG. FPS AVG. Tris
With Nanite (RTX) 9.05 ms 6.55 ms 85.72 FPS 100k Tris
With LOD (RTX) 110.12 ms 95.56 ms 9.45 FPS 1 mil Tris
LOD Drawcalls 4500
Nanite Drawcalls 44

Table 5.2: Table of performance for Drawcall scene. The values were captured
after all the meshes had been rendered.

Figure 5.2: Image of the plane with 64 unique meshes. Every square represents
one unique material.

Since Nanite decouples visibility and materials, the materials need to only
be processed once, which reduces the amount of drawcalls needed.

5.4 Outdoor scene

For this scene, only models from Megascans [25] were used. Megascans make
highly detailed models from 3D scanning objects in real life. These models
usually have thousands of triangles in order to correctly represent a highly
detailed model from a 3D scan. However, the model can be significantly
simplified without losing most of its visual fidelity. The model of a cliff that
was used here originally had over 4 million triangles. After simplification
the final number of triangles for the most detailed LOD0 was around 25,000
triangles. The Nanite version of this model was created from the robust,
original model that had over 4 million triangles, more can be seen in Table 5.3.

Interestingly, for a scene made out of Megascans objects, traditional LODs
proves to be somewhat better, outperforming a little in all cases. Taking in
account, that several Nanite meshes derive from the original source, that has
a lot more triangles than the LOD as can be seen in Table 5.3, they both have
very stable performance, with Nanite having the opportunity to show more
detailed parts. It is also important to note, that the scene itself averages
only at around 1.5 million triangles for LODs, which for todays modern GPU,
isn’t a lot.

However, even with several LODs, visual popping was still a little evident
in the case of LODs, to the point, that some of the testers, who were a
little more knowledgeable about LODs were able to find them even without

35

5. Statistics

Mesh Name LOD Triangles Nanite Trian-
gles Instances

LOD0: 13,104
LOD1: 6552

Boulder LOD2: 3276 2 million 40
LOD3: 1638
LOD4: 818
LOD0: 25,168
LOD1: 12,584

RockFormation LOD2: 6291 2 million 37
LOD3: 3146
LOD4: 1573
LOD0: 11,854
LOD1: 5927

RockGround LOD2: 2964 2 million 45
LOD3: 1482
LOD4: 740
LOD0: 24,943
LOD1: 12,471

HugeCliff LOD2: 6236 4 million 7
LOD3: 3117
LOD4: 1559
LOD0: 25,163
LOD1: 12,582

MassiveCliff LOD2: 6290 4 million 15
LOD3: 3146
LOD4: 1572

Table 5.3: Table of meshes present in Outdoor scenes.

Test Outdoor AVG. GPU AVG. CPU AVG. FPS AVG. Tris
With Nanite (RTX) 14.67 ms 6.18 ms 67.93 FPS 2.5mil Tris
With LOD (RTX) 13.39 ms 4.81 ms 74.47 FPS 1.5mil Tris
With Nanite (GTX) 29.07ms 9.30 ms 34.30 FPS 2.5mil Tris
With LOD (GTX) 23.91ms 7.55 ms 41.76 FPS 1.5mil Tris
LOD Drawcalls 430
Nanite Drawcalls 320

Table 5.4: Table of performance for Outdoor scene.

36

.....................................5.5. Indoor scene

Figure 5.3: Image of the outdoor scene.

11
11.5

12
12.5

13
13.5

14
14.5

15
15.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fr
am

et
im

e
[m

s]

Time [s]

Outdoor Scene RTX

Nanite LOD

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fr
am

et
im

e
[m

s]

Time [s]

Outdoor scene GTX 970

Nanite LOD

Figure 5.4: Graph depicting the difference in time for rendering a frame in a
camera flythrough in the Outdoor scene.

being prompted to. Though for normal viewers, the visual pop ups are
imperceptible. In Nanites case, no visual pop-ups were visible at all.

Most of the people who tested this scene individually agreed, that the
Nanite version of the scene looked better, than the LOD version. Most of
them pointed out, that the shadows and some parts of the rock formations
seemed more natural. The more experienced ones even found visual pop-ups
in the LOD scene, while the less experienced ones said there wasn’t any
difference.

5.5 Indoor scene

The second scene is made out of meshes created by amateurs without the
applications of LODs. It is meant to be a representation of an indoor of a

37

5. Statistics

Mesh Name LOD Triangles Nanite Trian-
gles Instances

FrontWall LOD0: 20,309 20,309 18
Chess_Bishop LOD0: 46,648 46,648 4
Chess_Pawn LOD0: 8192 8192 16
Chess_King LOD0: 11,109 11,109 2
Chess_Knight LOD0: 26,095 26,095 4
Chess_Queen LOD0: 51,602 51,602 2
Chess_Rook LOD0: 35,302 35,302 4
Armchair LOD0: 83,331 83,331 3
Chessboard LOD0: 958 958 1
Book LOD0: 1520 1520 79
Bookshelf LOD0: 13,438 13,438 3
Chair LOD0: 45,916 45,916 2
Drawer LOD0: 79,421 79,421 2
Table LOD0: 744 744 2
Grandfathers
Clock LOD0: 8952 8952 1

Gramophone LOD0: 90,960 90,960 1
BankLamp LOD0: 17,633 17,633 1
Newspaper LOD0: 1880 1880 1
Pipe LOD0: 39,232 39,232 1
RoundTable LOD0: 6840 6840 3
Female Statue
White LOD0: 9256 9256 1

Female Statue
Orange LOD0: 10,094 10,094 1

Fireplace LOD0: 7978 7978 1
Wooden Trim LOD0: 19,682 19,682 5
Wooden Ceil-
ing1 LOD0: 5376 5376 9

Wooden Ceil-
ing2 LOD0: 15,730 15,730 19

Sofa LOD0: 57,738 57,738 2
Cushion LOD0: 7076 7076 4
Chest LOD0: 19,996 19,996 1
Wooden Lamp LOD0: 19,996 19,996 1
Living Table LOD0: 504 504 1
Writing Table LOD0: 17,210 17,210 1
Telephone LOD0: 69,672 69,672 1

Table 5.5: Table of meshes present in Indoor scenes.

38

.................................... 5.6. Foliage scene

Test Indoor AVG. GPU AVG. CPU AVG. FPS AVG. Tris
With Nanite (RTX) 12.49 ms 4.43 ms 79.91 FPS 400k Tris
With LOD (RTX) 12.70 ms 6.02 ms 78.58 FPS 4 mil Tris
With Nanite (GTX) 20.93 ms 6.15 ms 47.75 FPS 400k Tris
With LOD (GTX) 20.33 ms 8.36 ms 49.15 FPS 4 mil Tris
LOD Drawcalls 750
Nanite Drawcalls 300

Table 5.6: Table of performance for Indoor scene.

household. Because of this, the triangles will be closely clustered resulting
in several triangles being rendered at once. This is to see how Nanite will
be able to process several abundant triangles of unoptimized models and
how the scene will be compared with having non-Nanite and non-optimized
models. It is also a test of Nanite being used in game ready made scene.
Another reason is to see, how Nanite would fair with some models that are
topologically incorrect.

An overview of all meshes present in this scene can be seen in Table 5.5.
The reason why Nanite triangles are same as LOD0 triangles is due to the
fact, that the Nanite mesh was created from the LOD0. This is an issue I
will later discuss.

In Figure 5.5 Nanite seems to be fairing slightly better than meshes without
LODs for the RTX hardware. Looking at Table 5.6 the GPU times seem to
be the same, however, the CPU is slightly slower for the LOD. This is most
likely because of drawcalls, since this since has several materials and meshes
that need to be processed.

The graph for the GTX hardware and Table 5.6 seem to be fairly similar.
All of the testers agreed, that the scene looked completely the same,

without any distinguishable difference. One tester however found out, that
the bookshelves in the Nanite scene had an overlap problem, where one shelf
kept switching textures. Upon closer inspection in a 3D modeling software,
the shelf had doubled faces. It seems that since the faces were overlapped,
Nanite had trouble deciding which face to actually render. Meanwhile in the
LOD, no such artifact could be seen.

5.6 Foliage scene

The goal of this test was to see how Nanite would fair with aggregate geometry,
specifically foliage. The best candidate for this would be to try Nanite on
grass as it’s pretty normal for grass to be made out of geometric mesh unlike
other foliage.

The scene was simplistic with the main focus on grass only. Unreal Engine
has its own inbuilt foliage system, which makes placing foliage easier. With
this system, developers can select different types of foliage and place several
meshes around a circled area with adjustable width and density. Upon
placing, Unreal Engine automatically creates several instances according to

39

5. Statistics

11

11.5

12

12.5

13

13.5

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fr
am

et
im

e
[m

s]

Time [s]

Indoor Scene RTX 2070

Nanite LOD

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fr
am

et
im

e
[m

s]

Time [s]

Indoor Scene GTX 970

Nanite LOD

Figure 5.5: Graph depicting the difference in time for rendering a frame in a
camera flythrough in the Indoor scene.

Mesh Name LOD Triangles Nanite Trian-
gles Instances

Grass LOD0: 1152 1152
1 million
(culled for
LOD)

Table 5.7: Table of meshes present in Foliage scenes.

the settings. [10] This simple tool makes it possible to create more test results.
For this purpose, Nanite and Non LOD meshes will be tested with one million
instances. The model consists of several grass blades per one instance with
1152 triangles in total.

Since Nanite cannot handle world position offsets, a simple Wind shader
will be applied to the grass that will change its world position offset. This
is to test what will happen if a world position offset is forcibly applied to a
Nanite mesh.

However, even though using a foliage tool for grass is the standard procedure,
it has one problem that was stated in Section 2.6.3. Since Foliage tools create
Hierarchical instances, it completely disappears after a certain framerate
threshold is reached. In order to still be able to continue with the testing,
cull distance was added for the LOD grass. This means that after a certain
distance has been reached from the camera, the grass beyond this region will
not render, unless the viewer gets closer. Therefore LOD test will not be
rendering one million instances at once. I decided to keep the one million
instances for Nanite in order to show the huge difference between the two.

Another problem with Instanced meshes is that the profiler cannot correctly
calculate how many triangles are being rendered and how many drawcalls are
being used for Instanced meshes, therefore they will not be included in the
tables.

40

.................................... 5.6. Foliage scene

Figure 5.6: Image of the Indoor scene.

Test Foliage AVG. GPU AVG. CPU AVG. FPS AVG. Tris
With Nanite (RTX) 19.13 ms 9.15 ms 52.25 FPS 25 mil Tris
With LOD (RTX) 45.56 ms 8.39 ms 21.93 FPS -
With Nanite (GTX) 43.79 ms 10.86 ms 22.85 FPS 25 mil Tris
With LOD (GTX) 67.32 ms 11.95 ms 14.87 FPS -

Table 5.8: Table of performance for Foliage scene.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fr
am

et
im

e
[m

s]

Time [s]

Foliage Scene RTX 2070

Nanite LOD

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fr
am

et
im

e
[m

s]

Time [s]

Foliage Scene GTX 970

Nanite LOD

Figure 5.7: Graph depicting the difference in time for rendering a frame in a
camera fly-through in the Foliage scene.

41

5. Statistics

Figure 5.8: Image of the Foliage scene with the difference of Nanite(left) and
distance culled LOD(right)

As was already stated, adding World offset (grass wind) doesn’t work with
Nanite. Since World Offsets are added through materials, when assigned the
material, the grass will turn black without any world offset. This alone might
be enough to encourage others to not use Nanite for foliage. However, for
non-moving foliage, Nanite bears exceptionally better results.

When using over one million instances, Nanite can effortlessly render all
the instances at once with pretty high and stable FPS. Static mesh completely
falls short on this part. It is unable to render all the instances at once, as it
would take too long to process. Even with cull distance, the performance for
large amounts of grass is poor. According to the Table 5.8, the bottleneck
is the GPU. This is most probably due to the fact, that for instances, any
visible instance, all the instances will be rendered. That means a lot of
triangles have to be rendered at once. For Nanite this would mean around
one billion triangles, but since Nanite only scales with screen resolution, it
actually renders only around 25 million triangles.

The reason sudden drop, that can be seen in the graph Figure 5.7 is because
towards the end there is no more grass.

All the tester agreed, that the Nanite foliage scene looked better, which
was to be expected as grass didn’t suddenly appear as was the case of the
LOD scene. Some testers have noticed a small problem with Nanite. Due to
its problems with aggregate geometry, some patches of grass would disappear
if the camera was far enough, even though it should still be seen. This was
quite a big problem with the Early Access of Unreal Engine 5, that was
supposedly fixed, but for some cases, it still seems to be a problem.

42

.................................. 5.7. Scene Playground

0

50

100

150

200

250

0

2
1

7
8

4
3

5
6

6
5

3
4

8
7

1
2

1
0

8
9

0

1
3

0
6

8

1
5

2
4

6

1
7

4
2

4

1
9

6
0

2

2
1

7
8

0

2
3

9
5

8

2
6

1
3

6

2
8

3
1

4

3
0

4
9

2

3
2

6
7

0

3
4

8
4

8

Fr
am

et
im

e
[m

s]

Number of objects

Stress Scene GTX 970

Nanite LOD

0

20

40

60

80

100

120

140

160

180

200

0

2
1

7
8

4
3

5
6

6
5

3
4

8
7

1
2

1
0

8
9

0

1
3

0
6

8

1
5

2
4

6

1
7

4
2

4

1
9

6
0

2

2
1

7
8

0

2
3

9
5

8

2
6

1
3

6

2
8

3
1

4

3
0

4
9

2

3
2

6
7

0

3
4

8
4

8

Fr
am

et
im

e
[m

s]

Number of objects

Stress Scene RTX 2070

Nanite LOD

Figure 5.9: Graph depicting the framerate according to the increasing number
of objects.

Test StressScene AVG. End GPU AVG. End CPU End FPS Total Tris
With Nanite (RTX) 11.82 ms 8.31 ms 90.17 FPS 25 mil Tris
With LOD (RTX) 72.53 ms 56.10 ms 5FPS 250 mil Tris
With Nanite (GTX) 20.75 ms 16.02 ms 40.47 FPS 25 mil Tris
With LOD (GTX) 230.42 ms 162.03 ms 4.21FPS 250 mil Tris
LOD Drawcalls 39,500
Nanite Drawcalls 44

Table 5.9: Table of performance for Stress scene.

5.7 Scene Playground

The last scene made is a playground for testing the capabilities of Nanite
with various settings. There is an option to choose from the editor how many
objects will be rendered for a column, row and height.

The mesh used is a simple sphere with several layers of subdivisions and
deformations, adding up to 250,000 triangles per mesh. These meshes can
be tested only with either Nanite or LOD. Up to 3 LODs were created with
Unreal Engine. The main test for this scene is to stress test Nanite and LOD
by having several instances with a lot of triangles at once.

Table 5.9 is a little different from the previous tables as the tests were done
per added objects. Therefore the table is made out of values that have been
captured after all the objects had been rendered, in this case 35,937 instances.

The graphs in Figure 5.10 perfectly depicts the problem with the normal
standard rendering pipeline. It accurately depicts that poor performance
linearly scales in number of triangles. The more triangles present, the worse
performance gets. As can be seen in Table 5.9, Nanite renders only 25 million
triangles, without losing visual fidelity, while LOD renders around 250 million
triangles in the end. Another reason that can be seen in the table is the
number of drawcalls. While Nanite has only 40 drawcalls, the CPU time
is really low. For LOD, that has 39,500 drawcalls, the CPU time increases
substantially and makes the GPU wait.

In order to test the limits of Nanite, I tired spawning as many objects as
possible, to see how the framerate will change.

43

5. Statistics

Mesh Name LOD Triangles Nanite Trian-
gles Instances

LOD0: 250,880 250,880
StressMesh LOD1: 62,720 62,720 35,937

LOD2: 31,360 31,360

Table 5.10: Table of meshes present in Playground scenes.

Test Limit AVG. GPU AVG. CPU AVG. FPS AVG. Tris
100k objects 25.58ms 17.25 ms 40 FPS 25-50 mil Tris
200k objects 43.40ms 24.32 ms 22.99 FPS 25-75 mil Tris
1 mil objects 21.31 ms 14.98 ms 47.03 FPS 75 mil Tris
(Instanced)

Table 5.11: Table of performance for Stress scene.

Figure 5.10: Image of the stress scene with 1 million objects being rendered.

44

..................................... 5.8. Test results

Table 5.11 shows that with an RTX 2070, over 100,000 objects with 250,000
triangles can be rendered with still stable framerate. That is around 25
billion triangles without any form of optimization. This however linearly
drops as more instances are added. This is most likely because Nanite meshes
still scale with instance. After creating instanced meshes and adding one
million instanced meshes, the performance improved. However, when trying
2 millions instances, the same problem happened as stated before, where
instances started to disappear.

5.8 Test results

The test results have shown, that in terms of performance, Nanite performs
similarly to the the standard optimization technique (Section 5.4) and outper-
forms when working with larger scenes, where a lot of triangles and drawcalls
are present (Section 5.7) and that it isn’t only dependent on newer generation
GPU’s. Although according to Unreal Engine documentation that Nanite
should not be used for aggregate geometry, the test results in Section 5.6
have shown, that Nanite can work on static grass.

It is my opinion, that the test results were not completely in favor of
Nanite. Nanite’s potential starts to show, when a lot of details has been
added through geometry. However, because abundance of geometry used to
be expensive, the standard pipelines used models with less geometry and
applied normal maps to fake the details. Because of this, most free models
online today are made this way, therefore I had no means to test a geometry
detailed models where the difference could be more apparent.

45

46

Chapter 6
Conclusion

We have briefly introduced different optimization techniques and how they
are used to render detailed objects in Unreal Engine 5. We have then studied
how Nanite works and how it is used in Unreal Engine 5 with all its settings.
Test results have shown, that Nanite has either similar or better performance
than the standard optimization technique. It had substantially better results,
when several millions of triangles had to be rendered it once even with older
generation GPUs. Furthermore, the tests confirm, that drawcalls are no
longer a concern with Nanite meshes. We have also shown how Nanite might
completely revolutionize the workflow of creating models. However, the tests
were not done to accommodate this new workflow.

Nevertheless, we have also shown, that Nanite isn’t a perfect replacement
for all optimization techniques, as it cannot accurately represent foliage and
the mesh has to be static.

Nanite is still under development and in the future, will have more func-
tionality, such as animations, VR compatibility, foliage, world offset and more.
This all could be an initiative for more tests and research in the future.

47

48

Bibliography

[1] Graham Wihlidal Brian Karis, Rune Stubbe. Nanite a deep dive.
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf,
2021.

[2] Christopher A. Burns and Warren A. Hunt. The visibility buffer: A cache-
friendly approach to deferred shading. Journal of Computer Graphics
Techniques (JCGT), August 2013.

[3] Hung-Kuang Chen, Chin-Shyurng Fahn, Jeffrey Tsai, Rong-Ming Chen,
and Ming-Bo Lin. Generating high-quality discrete lod meshes for 3d
computer games in linear time. Multimedia Syst., 11:480–494, 05 2006.

[4] Paolo Cignoni. Normal map example.
https://commons.wikimedia.org/wiki/File:Normal_map_example.png.

[5] James H. Clark. Hierarchical geometric models for visible surface algo-
rithms. Commun. ACM, 19(10), oct 1976.

[6] Satyan Coorg and Seth Teller. Real-time occlusion culling for models
with large occluders. Proceedings of the Symposium on Interactive 3D
Graphics, 01 2001.

[7] Patrick Cozzi and Kevin Ring. 3D Engine Design for Virtual Globes. A.
K. Peters, Ltd., USA, 1st edition, 2011.

[8] NVIDIA Documentation. Nvidia bindless rendering.
https://www.nvidia.com/en-us/drivers/bindless-graphics/.

[9] Unreal Engine documentation. Unreal engine 5.
https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-
in-unreal-engine/.

[10] Unreal Engine documentation. Unreal engine foliage.
https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/Foliage/.

[11] G-Truc. How bad are small triangles on gpu and why? https://www.g-
truc.net/post-0662.html.

49

6. Conclusion......................................
[12] Michael Garland and Paul Heckbert. Surface simplification using quadric

error metrics. Proceedings of the ACM SIGGRAPH Conference on
Computer Graphics, 1997, 07 1997.

[13] Unreal Engine GitHub. Unreal engine github.
https://github.com/EpicGames/UnrealEngine.

[14] Ned Greene, Michael Kass, and Gavin Miller. Hierarchical z-buffer
visibility. 1993.

[15] Yan Gu, Yong He, Kayvon Fatahalian, and Guy Blelloch. Efficient bvh
construction via approximate agglomerative clustering. 2013.

[16] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. A study of persistent
threads style gpu programming for gpgpu workloads. 2012.

[17] Ulrich Haar and Sebastian Aaltonen. Gpu-driven rendering pipelines.
http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf,
2015.

[18] John Hable. Visibility buffer rendering with material graphs.
http://filmicworlds.com/blog/visibility-buffer-rendering-with-material-
graphs/.

[19] Hugues Hoppe. Progressive meshes. SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interactive techniques,
August 1996.

[20] Liang Hu, Pedro V. Sander, and Hugues Hoppe. Parallel view-dependent
level-of-detail control. IEEE Transactions on Visualization and Computer
Graphics, 16(5), 2010.

[21] Intel. Unreal engine 4 optimization tutorial, part 2.
https://www.intel.com/content/www/us/en/developer/articles/training/unreal-
engine-4-optimization-tutorial-part-2.html.

[22] David Luebke, Martin Reddy, Jonathan D. Cohen, Amitabh Varshney,
Benjamin Watson, and Robert Huebner. Level of Detail for 3D Graphics.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[23] Vera Mommersteeg. The differences between deferred and forward
rendering. January 2015.

[24] Federico Ponchio. Multiresolution structures for interactive visualization
of very large 3d datasets. 2009.

[25] Megascans Quixel. Quixel, megascans. https://quixel.com/megascans.

[26] Francisco Ramos, Miguel Chover, Oscar Ripolles, and Carlos Granell.
Continuous level of detail on graphics hardware. Discrete Geometry for
Computer Imagery, 13th International Conference, DGCI 2006, Szeged,
Hungary, October 25-27, 2006, Proceedings, 4245:460–469, 2006.

50

...................................... 6. Conclusion

[27] Issac Trotts, Bernd Hamann, Kenneth Joy, and David Wiley. Simplifica-
tion of tetrahedral meshes. Proc. IEEE Visualization, pages 287–295, 01
1998.

[28] J. Žára, B. Beneš, J. Sochor, and P. Felkel. Moderní počítačová grafika.
Computer Press, 2004.

51

52

Appendix A
Electronic Appendix

The project and build files can be find in the README, which has the link
to the repository. The repository has a folder with the build inside that has
an .exe file and a project folder, that can be downloaded and then launched
with Unreal Engine 5.

All images are included in the images folder. Latex files can be found in
the Latex folder.

53

54

Appendix B
User Manual

The build can only be run with GPU’s that support DirectX12, as Nanite
needs it.

Controls for the build version: There are 7 scenes in total. 6 scenes are
pairs of Nanite / LOD. Last scene is the playground and stress test scene.

In order to cycle between scenes, use the 1-7 keys.
To know which scene is currently displayed, press the "G" key.
Use the "WASD" key to move and the mouse to look around.
Use the "L" key to increase speed and "K" key to decrease speed.
When not in the playground scene, you may enable the camera mode, that

automatically captures data by the "C" key. The data will then automatically
open in the folder.

When in the Playground scene, press "N" to either enable or disable Nanite.
You will be prompted by a true(Enable Nanite) / false (Disable Nanite) text
in the top right section. Press "M" to enable or disable data gathering. You
will be prompted by the true / false text again

55

	Introduction
	Goal

	Rendering
	Polygonal Mesh
	Triangle mesh

	Model optimization
	Types of LOD's
	Discrete LOD
	Continuous LOD
	View-Dependent LOD
	Overview of LODs
	Normal maps

	Mesh simplification
	Edge collapse
	Triangle collapse

	Error Metrics
	Quadric Error Metrics
	Space-screen error

	Imposters
	Culling
	View Frustrum Culling
	Occlusion Culling
	Instancing

	Nanite
	Rendering Pipelines
	Forward Rendering
	Deferred Rendering
	Nanite culling
	Visibility Buffer
	Nanite LOD creation
	Cluster Hierarchy

	Cluster Creation
	Runtime LOD selection
	Two-Pass Occlusion Culling
	Rasterization
	RenderDoc

	Nanite in practice
	Nanite support
	Unsupported Nanite settings
	Aggregate geometry
	Concerning foliage

	Nanite inside Unreal Engine 5
	Viewport
	Details Panel
	Nanite mesh settings
	Overdraws

	Standard optimization workflow in Unreal Engine
	Testing scenes

	Statistics
	Data graphs
	User feedbacks
	Drawcall test
	Outdoor scene
	Indoor scene
	Foliage scene
	Scene Playground
	Test results

	Conclusion
	Bibliography
	Electronic Appendix
	User Manual

