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Abstract

The thesis focuses on the design of a Field
Programmable Gate Array (FPGA) im-
plementation of image processing algo-
rithms used in the UltraViolet Direction
And Ranging (UVDAR) system, devel-
oped for mutual relative localisation of
Unmanned Aerial Vehicles (UAVs). In
general terms, the UVDAR system con-
sists of ultraviolet LED markers produc-
ing narrow-band signals, a UV-sensitive
camera and image processing algorithms
implemented in the C++ language. At
first, the original software implementa-
tions of the algorithms were analysed in
order to assess their computational com-
plexity and memory allocation require-
ments. The main focus was on the spe-
cialised variation of the Features from
Accelerated Segment Test (FAST) algo-
rithm used for detection of active LED
markers in camera images and on the 4D
Hough Transform used for retrieval of
linearly approximated image trajectories
of the detected markers. Based on the
analysis results, a FPGA architecture im-
plementing the FAST-like algorithm was
designed, producing identical outputs as
the original C++ implementation. A se-
lection of a suitable FPGA development
board followed, together with a hard-
ware design of a compatible circuit board
with integrated CMOS sensor. The devel-
opment platform Terasic DE10-Nano con-
taining Cyclone V System-on-Chip (SoC)
was selected for conducting real FPGA
experiments. The VHSIC Hardware De-
scription Language (VHDL) was used for
implementation of the proposed FPGA
architecture. Additional circuitry for vi-
sualisation of output data was designed
using VHDL as well, allowing an output
through HDMI interface in the form of
an annotated video stream. Lastly, the
current results, as well as an optional im-
plementation of the UVDAR system into

an embedded device are discussed, with
further proposals for future development
on the SoC.

Keywords: UVDAR, UAVs, mutual
relative localization, imaging sensor,
bright spot detection, Hough Transform,
3D line fitting, FPGA

Supervisor: Ing. Viktor Walter
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Abstrakt

Tato diplomová práce se zabývá ná-
vrhem implementace obrazových algo-
ritmů, které využívá systém UVDAR
(UltraViolet Direction And Ranging) vy-
vinutý pro vzájemnou relativní lokali-
zaci dron v rojích, na programovatel-
ných hradlových polích (FPGA). Systém
UVDAR je ve svém základu složen z ul-
trafialových (UV) LED diod produkují-
cích signály v úzkém pásmu spektra, ka-
merového senzoru citlivého v UV spek-
tru a obrazových algoritmů implemento-
vaných v jazyce C++. Nejprve byly ana-
lyzovány původní softwarové implemen-
tace těchto algoritmů a byla vyhodno-
cena jejich výpočetní a pamět’ová nároč-
nost, konkrétně u speciální variace algo-
ritmu FAST (Features from Accelerated
Segment Test) používané pro detekci ak-
tivních jasových značek ve snímcích z
kamery a u 4D Houghovy transformace
používané pro nalezení lineární aproxi-
mace trajektorií detekovaných značek v
obraze. Na základě výsledků analýzy
byla navržena FPGA architektura pro
implementaci variace FAST algoritmu,
která produkovala shodné výstupy jako
původní softwarová implementace. Ná-
sledoval výběr vhodné vývojové desky
s FPGA společně s návrhem hardwaru
pro kompatibilní desku plošných spojů
s CMOS kamerovým senzorem. Pro ex-
perimentální část práce byla vybrána vý-
vojová deska Terasic DE10-Nano obsahu-
jící čip Cyclone V SoC (System-on-Chip).
Poté byla implementována předložená
FPGA architektura v jazyce VHDL (VH-
SIC Hardware Description Language).
Ve VHDL byla implementována i doda-
tečná logika pro vizualizaci výstupních
dat v reálném čase ve formě anotova-
ného videa skrze rozhraní HDMI. V zá-
věru práce jsou diskutovány dosažené vý-
sledky, možnosti implementace systému
UVDAR do samostatného zařízení a au-

torovy náměty pro další vývoj.

Klíčová slova: UVDAR, drony,
vzájemná relativní lokalizace, obrazový
senzor, detekce jasových značek,
Houghova transformace, prokládání 3D
přímkami, programovatelná hradlová
pole

Překlad názvu: Implementace
zpracování obrazu v systému UVDAR
na FPGA
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Introduction

Localisation algorithms are used extensively in modern robotics, particularly for
multi-robot systems. The localisation task can be approached via multiple different
ways, traditionally using absolute localisation systems that cooperate with an exter-
nal source of localisation signals (e.g., a navigation satellite), requiring appropriate
receivers to be mounted on the robots. However, these systems are limited to
outdoor or well defined indoor environments because of their working principle
(e.g., due to a signal perception requirement) and with growing numbers of robots
in the multi-robot system, they usually introduce new challenging problems that
need to be solved for a proper functionality. In order to overcome the practical
limitations of the absolute localisation approaches, relative localisation systems are
being researched as they require only computational and sensory resources carried
by the robots themselves.

The UVDAR (UltraViolet Direction And Ranging) system [1] developed by the
Multi-Robot Systems Group at the Department of Cybernetics at the CTU is one
of relative localisation systems and is described in detail in the chapter 1. Camera
images are used as the only source of localisation information used by the UVDAR
system as it relies completely on two image processing algorithms, particularly on
FAST-like image feature detection and on a four-dimensional Hough Transform.
Thus, the chapter 1 covers theoretical background of these algorithms and also
describes the current software and hardware implementation of the UVDAR system.

The image processing algorithms are computationally demanding, which is
the primary motivation for finding a way to separate the UVDAR system from
computational resources which are used by the robots for many other important
tasks, such as odometry calculation, mapping, mutual communication, etc. A
FPGA (Field Programmable Gate Array) is considered for this task as is can be
programmed to efficiently process large amounts of data in parallel. In order to
evaluate feasibility of a FPGA implementation of the image processing algorithms,
their computational and memory requirements are analysed in the chapter 2. State-
of-the-art implementations of the FAST algorithm and of the Hough Transform
are found in literature and their aspects are considered for the proposed FPGA
architecture.

The chapter 3 is concerned with a selection of a suitable FPGA development board.
Two different SoC (System-on-Chip) boards are compared based on parameters of
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................................................
their FPGA and the CPU parts, as well as on their current price and availability on
the market. Also, a custom camera board hardware design with a CMOS imaging
sensor, which is originally utilised by the UVDAR system, is presented and a MCU
board for its initial testing is described.

The actual FPGA experiments are discussed in the chapter 4. Used interfaces and
their VHDL implementations are presented together with the VHDL implementa-
tion of the FAST-like algorithm. A setup of a HPS (Hard Processor System) of the
SoC is described in detail, including a development of a Linux kernel module and a
user space software application. At the end of the chapter, the total FPGA resources
utilised by the proposed architecture are shown.

A discussion of shortcomings of the proposed architecture follows in the chapter
5. Ideas concerning a FPGA implementation of the Hough Transform and future
improvements of the application software are discussed. The chapter 6 concludes
the thesis.

2



Chapter 1
The UVDAR System

This chapter focuses on explanation of the main aspects of the UVDAR system.
The system is overall complex and many different objectives must be fulfilled in
order to achieve a robust system and to deploy it to real-world UAV swarms (i.e.,
multi-UAV systems).

The mutual localisation of the robots in cooperative swarms is an important tool
for the performance of their cooperative tasks. All necessary information describing
the swarm nodes (e.g., the current position, orientation and dynamics) must be
always provided to each of them, otherwise no cooperation can be performed.
Usually, the tools used to address the problem are dependent on the surrounding
environment and also on the network architecture, which may be centralised or
distributed.

The centralised architecture uses one central node with a processor which fuses
all available information simultaneously to retrieve the state of all nodes. The
information is then transmitted to the nodes using some conventional communica-
tion infrastructure, such as Wi-Fi, Bluetooth or another radio-based transmission
method. The downsides of this approach are primarily:.All nodes need to communicate with the central node. Whenever a node

disconnects from the network, the state estimation of the swarm is incomplete.. The processing power requirements of the central node grow rapidly with
every node added to the swarm.. The central node also presents a single point of failure, so a back-up central
node should always be available in the swarm.

On the other hand, in the distributed architecture all the nodes process the
available data about the swarm locally. The processing power grows slowly with
the increasing swarm size, which results in better scalability of the whole system.
But not all the important information is always available for each node which often
means worse accuracy of the state estimation.

There are many methods of acquiring the current position and the orientation
of the nodes. The most frequently used methods for absolute localisation (i.e.,
providing exact localisation data in global and/or local reference frames) among
others are:

3



1. The UVDAR System .....................................
. GNSS (Global Navigation Satellite System) - This method relies on the percep-

tion of the satellite navigation signal where each node carries its own GNSS
receiver. Nowadays the precision of the GNSS-RTK (Real Time Kinematics)
localisation method is in a range of millimetres. However this method may
only be used outdoors in the open-sky conditions with a direct satellite link
and it may also suffer from jamming and/or spoofing. [2].Motion capture (MoCap) systems - These external localisation solutions are
suitable for well defined indoor environments. A ground station (the central
node) equipped with a set of cameras (usually infrared) calculates positions
of all nodes inside the covered area and then provides the results for their
coordination. [3]

Relative localisation frameworks are intended to be more flexible when used
in GNSS-denied or unknown environments. They can be separated into two main
categories:

.Distance-based frameworks - The relative distances between the nodes are
acquired by e.g., wireless communication devices such as ultra-wideband radio
(UWB) [4], Wi-Fi [5] or Bluetooth modules [6]. Their obvious advantage is the
omnidirectionality of the working principle, although a signal jamming and/or
wireless traffic overload may occur with increasing swarm size..Vision-based frameworks - The on-board camera sensors are used to detect
neighbour nodes carrying specific patterns (passive markers) or light-source
(active) markers to be easily detected by basic computer vision algorithms.
These methods overcome wireless network limitations but introduce new ones,
such as the FoV (Field-of-View) limits, dependence on the visibility and lighting
conditions and also higher computational complexity.

The UVDAR system is an example of the distributed, relative localisation, vision-
based framework which uses UV-light sources as node markers together with UV
band-pass filters mounted on the lens of the cameras to avoid the sunlight saturation
in the visible spectrum. [1] It is comprised of a complete software pipeline as well
as a commercially available and a custom designed hardware underlay.

The following parts of this chapter present the overview of the system design as
a whole, introduce the theory of the incorporated algorithms and also review the
current implementation of the system.

1.1 System Design Overview

The UVDAR system can be understood as a 4-step pipeline as shown in fig. 1.1.
Each step can be treated independently of the others as long as it produces data in a
format expected by the next step.

4



................................... 1.1. System Design Overview

Video
Source


(Camera)

Detector

(FAST)

Blink
Processor

(HT4D)

Pose
Estimation
& Filtering

1 2 3 4

Figure 1.1: Block diagram of the UVDAR pipeline..1. Video Source - In a real-world application, the pipeline input is represented
by a suitable camera device. The output of this block provides the raw images
(video frames) at a reasonably high frame rate. The UVDAR system requires
only monochromatic (grey scale) images at the input stage for the next steps...2. Detector - This block implements a bright-spot detection algorithm. In par-
ticular, the FAST-like algorithm (Features from Accelerated Segment Test) is
used. This block outputs a set of (x, y) pixel coordinates of the detected bright
points as well as a set of pixels belonging to the projection of the sun used for
additional filtration, while both sets are obtained once per each video frame...3. Blink Processor - The sets of the bright spots (or markers) gathered from
individual frames are first buffered as (x, y, t) triplets (referred to as t-points)
in t-sets, with the latest frame corresponding to t = 0. The t-points lie along
curves in (x, y, t) space (when the physical swarm node dynamics are limited)
that can be approximated by straight lines, defined by their origin points and
the pitch and yaw angles (ϕ, ψ). The lines are produced by the computation
of the 4D Hough Transform (HT4D). The transform is also used to separate
the sets of blinking markers belonging to individual swarm nodes as the
markers belonging to the same rigid body (node) tend to lie on parallel lines.
The swarm nodes can then be identified by their unique blinking patterns
and when multiple blinking patterns are used by the same swarm node, its
orientation can be also estimated. [7]..4. Pose Estimation & Filtering - Each set of the blinking markers should fit
a real model of a swarm node carrying the blinking LEDs. With the prior
knowledge of the mutual distances and positions of the LEDs on the UAV
model, multiple methods can be used to obtain a relative pose of the actual
swarm node carrying the camera w.r.t. an another swarm node observed as a
set of its blinking markers, such as a method based on the Unscented Transform
(UT) [8] [9], a solution to the Perspective-Three-Point (P3P) problem or the
Iterative Closest Points (ICP) algorithm, which is currently implemented in
the UVDAR system. These methods also translate the known precision of
markers’ detection into the covariance of the pose estimation for the next use in
a linear Kalman filter for correction of the measured poses and for additional
improvement of the robustness of the system.
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1. The UVDAR System .....................................
1.2 Theoretical Background

1.2.1 Features from Accelerated Segment Test (FAST)

The FAST algorithm is a feature detection algorithm used in computer vision primar-
ily for detection of corners or other visually distinctive features from an image based
on characteristics of the neighbourhood pixels. Other popular feature detection
algorithms include Harris corner detection, SIFT (Scale Invariant Feature Trans-
form), SURF (Speed-Up Robust Features) or BRIEF (Binary Robust Independent
Elementary Features).

Figure 1.2: Illustration of the FAST image feature detector. [10]

An illustration of a principle of the FAST algorithm is shown in fig. 1.2. As
explained in the original proposal of this algorithm in [11], the segment test is based
on pixel intensities of the circular neighbourhood of the candidate pixel at the centre
of the circle. The test is passed if all contiguous pixels of the selected neighbourhood
differ in their intensity from the intensity of the candidate pixel at least by a static
threshold value.

The FAST-like algorithm

A simplified pseudocode of the algorithm used by the UVDAR system is sum-
marised below. Intensity of every image pixel is tested for representing a marker
point (the candidate pixel is brighter than the circular neighbourhood) or a sun
point (the candidate pixel and the neighbourhood pixels are all very bright). When
the image point retains its potential to be a marker point after the iterations over
the neighbourhood pixels are finished, the pixel with highest intensity inside the
interior (i.e., between the candidate pixel and the neighbourhood pixels) is stored
as the detected marker.

In addition to the algorithm steps above, the UVDAR implementation also stores
a binary mask of interiors related to the stored markers, which enables the algorithm
to skip already processed marker areas so the markers are not processed and stored
more than once. The sun points are used to filter out the detected markers too close
to the projection of the sun as they might be just a result of a glare effect.

6



....................................1.2. Theoretical Background

Algorithm 1 The FAST-like algorithm pseudocode

Require: W > 0 ▷ image width
Require: H > 0 ▷ image height
Require: T > 0 ▷ static threshold value
Require: N[(i, j)] ▷ array with opposing pixel coordinates (i, j) in sequence

1: for 0 ≤ x < W, 0 ≤ y < H do ▷ iterate over image coordinates (x, y)
2: if Ix,y > T then ▷ if the point’s intensity Ix,y is large enough
3: S← False ▷ initially it does not have a potential to be a sun point
4: if Ix,y > 2T then ▷ if the point is very bright
5: S← True ▷ then has a potential to be a sun point
6: end if
7: M← True ▷ initially it has a potential to be a marker
8: s← 0 ▷ keep a count of very bright neighbourhood pixels
9: for (i, j) ∈ N do ▷ iterate over the neighbourhood

10: if (Ix,y − Ix+i,y+j) < T/2 then ▷ if the difference is too small
11: M← False ▷ then it cannot be a marker point
12: if S is True then ▷ if the point could be a part of the sun
13: s← s + 1 ▷ then the counter is incremented
14: else
15: break ▷ otherwise the point is not relevant anymore
16: end if
17: else ▷ if the difference is too large
18: S← False ▷ then it cannot be a sun point
19: end if
20: end for
21: if M is True then ▷ if the marker potential is preserved
22: Store argmax of the neighbourhood’s interior as a marker.
23: else if S is True and s = length(N) then

. ▷ if the sun potential is preserved and all neighbours are very bright
24: Store (x, y) as a sun point.
25: end if
26: end if
27: end for
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1. The UVDAR System .....................................
Circle approximations

A Bresenham’s circle [12] is usually used as an approximation of the circular neigh-
bourhood but arbitrary approximations are possible. The circle approximations
used by the UVDAR system are compared to the Bresenham’s approximations in
fig. 1.3. Only the circles with the radius of 4 pixels differ in their shapes.

(a) : Bresenham’s circles of radii 3 and 4.

(b) : Used circles of radii 3 and 4 with a denoted order of pixels for the algorithm.

Figure 1.3: Comparison of the used and Bresenham’s circle approximations.

The speed of the segment test can be increased by a smarter choice of the order of
the neighbourhood pixels. With the prior assumption of the size of the bright spots
to be detected by this algorithm and the respective pixel intensity gradients present
in the image, the UVDAR implementation minimises the number of required test
steps by a selection of the mutually furthermost pixels in the circular neighbourhood.
The order of the pixels used for the segment test (green) and the order of the interior
pixels used for the search of the maximum value (blue) are shown in fig. 1.3b.
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....................................1.2. Theoretical Background

An equivalent conditional approach

The FAST-like algorithm can be also described using the following equations:..1. The candidate point (x, y) cannot be a marker point if the following condition
is met:

∃(i, j) ∈ N :
(

Ix,y − Ix+i,y+j
)
<

T
2

⇔ min
(i,j)

(
Ix,y − Ix+i,y+j

)
<

T
2

⇔ Ix,y −max
(i,j)

(
Ix+i,y+j

)
<

T
2

(1.1)..2. The candidate point (x, y) retains its potential to be a marker point if the
following condition is met:

∀(i, j) ∈ N :
(

Ix,y − Ix+i,y+j
)
≥ T

2

⇔ min
(i,j)

(
Ix,y − Ix+i,y+j

)
≥ T

2

⇔ Ix,y −max
(i,j)

(
Ix+i,y+j

)
≥ T

2

(1.2)..3. The candidate point (x, y) cannot be a sun point if the following condition is
met:

∃(i, j) ∈ N :
(

Ix,y − Ix+i,y+j
)
≥ T

2

⇔ max
(i,j)

(
Ix,y − Ix+i,y+j

)
≥ T

2

⇔ Ix,y −min
(i,j)

(
Ix+i,y+j

)
≥ T

2

(1.3)..4. The candidate point (x, y) retains its potential to be a sun point if the following
condition is met:

∀(i, j) ∈ N :
(

Ix,y − Ix+i,y+j
)
<

T
2

⇔ max
(i,j)

(
Ix,y − Ix+i,y+j

)
<

T
2

⇔ Ix,y −min
(i,j)

(
Ix+i,y+j

)
<

T
2

(1.4)

It is obvious that the condition (1.1) is the negation of the condition (1.2), the
same holds for conditions (1.3) and (1.4). Also, the condition (1.2) directly implies
the condition (1.3) and (1.4) implies (1.1). When subtracting unsigned integer types
it is also desirable to check their values for possible underflow.
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1. The UVDAR System .....................................
Using the conditional expressions, the FAST feature detection can be separated

into two steps performed for each image patch (i.e., overlapping patches of size
7x7 pixels for the radius of 3 or 9x9 pixels for the radius of 4) containing the whole
circular neighbourhood:..1. For each image patch, find and store:..a. the maximum and minimum values of the neighbourhood pixels (i.e., max

and min of Ix+i,y+j)...b. the pixel intensity of the central candidate point (i.e., Ix,y)...c. the maximum value of the pixels in the interior together with its coordi-
nates (i.e., max and argmax)...2. If Ix,y > T, then evaluate the candidate point’s potential to be:..a. a marker point using the condition (1.2)...b. a sun point using a condition Ix,y > 2T together with (1.4).

This separation of the computation steps inherently leads to a minimal FPGA
implementation which is described later.

1.2.2 Hough Transform (HT)

The Hough Transform is a computer vision method of detecting complex patterns
of points in binary images. The patterns are characterised using their specific
parameters so that spatially extended patterns can be transformed into compact
features in the resulting parameter space (referred to as Hough space). This way, a
pattern detection problem in the image space is translated into a local peak detection
problem in the Hough space. [13]

A 2D lines search example

The simplest application of the Hough Transform is the search for straight lines
made up of the points of interest. Every line in (x, y) plane can be expressed as
y−mx− c = 0 using the slope parameter m and the intercept parameter c, however
the parameter m→ ∞ for lines approaching the vertical y axis.

More suitable line parameterisation in the form ρ = x cos(θ) + y sin(θ) is usually
used, where ρ and θ are the length and orientation of the normal vector to the line
from the image origin. This way the parameter θ can be limited to a range < 0, π)
and the parameter ρ’s magnitude is bounded approximately by the L1-norm of the
point vector.

Then each image point maps to a sinusoidal curve representing all lines the point
is incident on in the resulting parameter plane (ρ, θ) (i.e., the Hough space), so
the lines joining multiple points are found as the intersections of the matching
sinusoidal curves (i.e., as the local maxima after summation of the curves’ graphs).

Visual explanation is shown in fig. 1.4.
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....................................1.2. Theoretical Background

(a) : Points in the image plane:
pi = (xi, yi)

(b) : Sinusoidal curves in the Hough space:
ρ = xi cos(θ) + yi sin(θ)
The two rifest intersections correspond to
the two expected straight lines in the image
plane.

Figure 1.4: Application of the Hough Transform for the straight line search. [14]

An important note is the points in the discrete image plane (i.e., the pixel raster)
do not exactly lie on the incident lines in most cases which causes that the resulting
curve intersections in the discrete Hough space also may not be exact, which is
also determined by the resolution of discretisation of the parameters. The local
maxima obtained by the summation of the discretised curves therefore lead to an
approximation of the incident lines.

Similarly, more complicated analytic patterns such as circles [14] or ellipses [15]
can be detected using the Hough Transform, but for the price of increasing number
of dimensions of the Hough space resulting in higher computational and memory
requirements.
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1. The UVDAR System .....................................
Generalised Hough Transform (GHT)

Generalised Hough Transform (GHT) must be used when a detection of non-analytic
patterns (i.e., without a general shape formula) is needed. [16]

To perform the detection of arbitrary shapes using the GHT, the shape at first
has to be described using its edge points together with the angles between the
edge normal vectors originating in that points and the x-axis, as explained in fig.
1.5 where two different edge points with the same normal vector direction Φi are
shown. Also a fixed reference point (xc, yc) of that shape must be selected, allowing
to compute the relative distances ri

j and the angles αi
j related to a j-th edge point.

The parameters of the shape are usually referred to as a so-called object template (or
a R-table).

x

x
Φi

Φi α1
i

α2
i

r1
ir2

i

(xc, yc)

Figure 1.5: Explanation of parameters needed for arbitrary shape detection using the
GHT.

The search for the object in an image is simplified by carrying out a voting procedure
in the Hough space. The voting process refers to the maxima (peak) search in the
Hough space (an example of the voting procedure is also the search for sinusoidal
curve intersections in the aforementioned detection of 2D lines).

The GHT also allows adding more 2D shape parameters like its rotation θ or a
scale factor s, leading to a dense 4D parameter space. The resulting computational
complexity is defined by four nested loops, in particular by iterating over all image
points (points of interest) and by applying the object template (i.e., iterating over all
2D edge point coordinates defined for the desired shape, all possible rotations and
all possible scale factors), generating every possible parameter combination that is
used to increment the corresponding positions in the Hough space. [17]

The main principles behind the GHT (template generating and application on the
points of interest, the voting procedure) are the same as for a 3D line search used by
the UVDAR system.
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....................................1.2. Theoretical Background

A 3D line pattern detection (HT4D)

The UVDAR system utilises the Hough Transform to retrieve separate t-lines for
each t-set of the t-points, more specifically to retrieve the corresponding origin
points and the parameters of the t-lines, thus allowing retrieval of the blinking
sequences along them. Visual explanation of the t-points and the t-lines is in fig. 1.6.

(a) : Moving along smooth curves
(the green points are visible - ON, the red one
is temporarily invisible - OFF)

(b) : Straight line approximation
(the yellow point is the origin point in the cur-
rent frame - the blue plane)

Figure 1.6: Explanation of the t-points (the moving markers w.r.t. time). [7]

In order to detect a straight line pattern in a 3D space (i.e., the t-lines in the (x, y, t)
space), at least 4 parameters are required [18] which leads to a dense discretisation
of a 4D Hough space. The memory and/or computational resources on most
embedded UAV solutions usually do not suffice for a local maxima search in such
space, hence the novel UVDAR approach [7] performs several simplifications to
reduce the computational complexity:

. Relaxation of the t-lines reconstruction by discretising the t-line parameters
with a conveniently large steps ∆ϕ and ∆ψ:

ϕi = i
0.5π

∆ϕ
, i ∈

〈
ϕmin

∆ϕ
,

ϕmax

∆ϕ

〉
⊂N

ψj = j
2π

∆ψ
, j ∈

〈
ψmin

∆ψ
,

ψmax

∆ψ

〉
⊂N

(1.5)

That also ensures lower susceptibility to small errors emerging from the pre-
ceding pipeline stages. Realistic t-lines are also constrained by the physics of
the swarm system, permitting additional reduction of the Hough space size.. To avoid direct application of the 4D Hough Transform to the t-sets, the algo-
rithm uses a simpler 4D space of indices for permuted (ϕ, ψ) parameters. The
Hough Transform transforms the t-points into the Hough space in a form of
voxelated surfaces of pre-computed masks.
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1. The UVDAR System .....................................
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Figure 1.7: Generated masks for the pitch ϕ parameter (8 pitch and 10 time steps) -
with a cut for a more informative visualisation.
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Figure 1.8: Generated masks for the yaw ψ parameter (8 yaw and 10 time steps).

14



....................................1.2. Theoretical Background

Visualisations of generated voxel masks with sample parameter steps and
time steps are shown in figures 1.7 and 1.8. The voxel surfaces belonging to
consecutive time steps are overlapping to prevent discontinuities in the masks,
which is not visible in the visualisations (new colours belong to the new voxels
added at subsequent time steps).

The permutation of the t pairs of the generated 3D masks for the pitch (i.e.,
(x, y, ϕ)) and the yaw (i.e., (x, y, ψ)) parameters into t 3D arrays for the 4D
hybrid masks is done by representing the third dimension by the parameters’
indices combined in a yaw-pitch order (i.e., (x, y, Nϕ steps · j + i)). Projection of
the permuted hybrid masks to the x-y plane is shown in fig. 1.9.

-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
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-7
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4
5
6
7
8
9
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11
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13

Hybrid masks projected to the x-y plane (14 time steps, 16 pitch and yaw steps)
t 2
t 3
t 4
t 5
t 6
t 7
t 8
t 9
t 10
t 11
t 12
t 13

Figure 1.9: Projection of sample hybrid masks to the x-y plane.

If multiple t-points belong to the same marker, their images in the Hough space
intersect (i.e., the voxel values are summed up) at voxels corresponding to the
parameters of the t-line which they are incident to. [7]. The search for local maxima is conducted in a 2D space (referred to as maxima
array). The maxima array is obtained by flattening the aforementioned 3D
Hough space in the sense of selecting maxima in the t-axis direction. The
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1. The UVDAR System .....................................
indices of permuted (ϕ, ψ) parameters matching the maxima values are stored
in another 2D array (referred to as angle array) of the same shape.

Then the maxima found in the maxima array correspond to the expected origin
points of the t-lines (valid for both ON and OFF states of the markers) and the
matching t-line parameters are found using the angle array.

A summary of the t-lines retrieval algorithm

The process of retrieving t-lines is summarised in the following steps:..1. Initialisation:..a. Allocate memory resources to store the 3D Hough space, the maxima
array, the angle array and an accumulator array for t-sets of t-points (with
a length equal to the number of time steps)...b. Generate the steps for pitch and yaw parameters and store them in two
separate arrays...c. For each time step, generate the voxel masks for pitch and yaw, permute
them to 3D arrays for the 4D hybrid masks with combinations of the
parameter array indices...2. Insert a new t-set into the accumulator’s first position (t = 0), drop the eldest

t-set if the accumulator is full. The length of the most recent t-set is the number
of visible markers. The number of expected markers (i.e., the markers cur-
rently in the OFF state) is a difference between the maximum of lengths of all
accumulated t-sets and the number of the visible markers...3. Apply the Hough Transform on the updated accumulator:..a. Reset the Hough space and the maxima array...b. Apply the hybrid masks to the accumulated t-sets (i.e., increment the vox-

els of the Hough space belonging to the masks centred at the coordinates
of the t-points)...c. Flatten the Hough space to obtain the maxima array (i.e., store maxima
values from the third axis direction) and the angle array...4. Obtain the results:..a. Nullify the maxima array around the visible markers to limit the search
for the peaks only to the expected markers...b. Find the local maxima points in the maxima array and the corresponding
permuted indices in the angle array. The search can stop when the number
of found peaks is equal to the number of expected markers...c. Retrieve the blinking patterns, average yaw angles and average pitch
angles for the origin points that are stored in an array made of the visible
markers and the found peaks...5. Repeat from the step 2.
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Blinking pattern retrieval

The blinking frequencies (or the blinking patterns) are retrieved by clustering all
t-points close to the identified t-lines. This is done by considering small relative
distances of origin points of the relevant t-lines from the centre of a t-cylinder which
is generated around a t-axis of the retrieved t-lines (shown as yellow dashed line)
passing through the origin points (yellow) as visualised in fig. 1.10. The green
dashed line presents the real non-linear trajectory of the t-points.

Figure 1.10: Cylinder shell defined around the retrieved t-line. [7]

The expected radius range of the t-cylinder shell at a certain time step is calculated
using the pitch parameter already obtained from the angle matrix for the estimated
origin point. All visible t-points in the corresponding t-set in the accumulator are
then filtered by their distance from the estimated origin point compared with the
expected radius range, the pitch values of the valid visible matches are used in a
next iteration for an average pitch calculation. The visible matches are filtered again
using a t-cylinder generated using the estimated average pitch. If no visible matches
remain present in the filtered array at a certain time step, the state of the blinking
marker is considered to be OFF, otherwise ON. This way the blinking pattern is
reconstructed.
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1. The UVDAR System .....................................
1.3 Current Implementation Details

The current implementation [19] is written in the C++ language as a Robot Operating
System (ROS) package containing nodes and nodelets for the individual pipeline
stages.

The main nodes and nodelets with their description are shown in table 1.1.

Node / Nodelet Description

Detector Detects bright points from the UV camera image.

BlinkProcessor Extracts blinking signals and image positions of the
markers detected previously.

PoseCalculator Calculates approximate pose and error covariance
of the MAVs carrying the UV LED markers.

Kalman Filters out sets of detected poses with covariance
based on positions or the included identities.

BluefoxEmulator Generates an image stream similar to the output of
the Bluefox cameras with UV band-pass filters.

LedManager Sends commands to the controller boards that set
the signals of the blinking UV LEDs on the current
MAV using the Baca Protocol [20].

Table 1.1: UVDAR ROS nodes/nodelets and their description.

The software requirements (except the ROS distribution) include several ROS
packages maintained by the MRS group, containing utility libraries, message type
definitions and serial communication interface, a ROS package for accessing mvBlue-
FOX cameras and several libraries used for testing of the implementation in simula-
tion.

1.3.1 Hardware Overview

The cameras used by the UVDAR system are Matrix Vision mvBlueFOX-MLC200wG
[21]. The photo of the camera is in fig. 1.11a. This camera model has a 0.4MP
resolution (752x480 pixels) and a frame rate of 60 FPS is used. It uses a monochrome
global-shutter 1/3" CMOS imaging sensor MT9V034 from ON Semiconductor
(formerly Aptina) with a quantum efficiency of about 38% at the wavelength of 395
nm [22]. This wavelength is produced by the active LED markers placed on the
UAVs. [1]

The lens mounted on the camera modules are Sunex DSL215 fisheye lens with
approximately 180° of the horizontal FOV, depicted in fig. 1.11b. Also near-UV
band-pass filters MidOpt BP365-R6 are placed between the CMOS sensors and the
lens.

18



................................ 1.3. Current Implementation Details

(a) : Matrix Vision mvBlueFOX-MLC200wG
camera module.

(b) : Sunex DSL215 fisheye lens.

Figure 1.11: Photos of the camera module and the lens used by the UVDAR system.

The custom hardware developed specifically for the UVDAR system is a LED
controller board controlled by a STM32 microcontroller. [23] The LEDs driven by
the controller board are ProLight Opto PM2B-1LLE with an emission angle of 130°
and a maximum optical power of 315mW.

A custom camera board that was developed for this thesis uses the same CMOS
imaging sensor as the mvBlueFOX camera modules. This way the input stage of
the pipeline remains unchanged and the results can be easily validated against the
current implementation. The custom board design is presented in the following
chapter.
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Chapter 2
FPGA Use Case

This chapter determines the memory and computational requirements of the two
image processing algorithms considered for an implementation in the FPGA, i.e.,
of the FAST-like algorithm and of the 4D Hough Transform. Related approaches
to FPGA implementations of the FAST algorithm and of the Hough Transform are
also reviewed.

2.1 Initial Pipeline Stage

At first, the camera’s parameters are defined in table 2.1 with their default values
used by the current UVDAR implementation. The requirements of the input state
of the pipeline are in table 2.2.

Name Description Value

CAMIW Image width 752 px

CAMIH Image height 480 px

CAMIA Image area (i.e., CAMIW ·CAMIH) 360960 px2

CAMFR Frame rate 60 FPS

CAMCLK Pixel clock frequency 26.67 MHz

Table 2.1: Definition of the parameters of the camera.

The camera’s CMOS imaging sensor MT9V034 provides the image data through
a DCMI (Digital Camera Interface) running at the CAMCLK frequency and the
interface is described in detail in the next chapters of this work.

Requirement description Value

Memory requirements
Image (frame) (uint8_t[]) CAMIA = 360960 B

Table 2.2: The pipeline input stage requirements.
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2. FPGA Use Case .......................................
It is shown in the following section that it is not necessary to store complete

camera frame for the following image processing algorithms, thus reducing the
memory requirements of the initial stage of the pipeline of the UVDAR system.

2.2 The FAST-like Algorithm

The FAST-like algorithm implementation uses parameters shown in table 2.3 for
both radii of 3 and 4 pixels.

Name Description Value

FASTT Static threshold (8-bit unsigned) 105

FASTDP Maximum number of detected points 30

FASTSD Minimum distance of the markers from the sun 25 px

Radius of 3 pixels
FASTR3PS Image patch (square) size 7 px

FASTR3B Size of the circular boundary 16 px

FASTR3UI Size of the used neighbourhood’s interior 11 px

FASTR3TI Total size of the neighbourhood’s interior 21 px

Radius of 4 pixels
FASTR4PS Image patch (square) size 9 px

FASTR4B Size of the circular boundary 24 px

FASTR4UI Size of the used neighbourhood’s interior 23 px

FASTR4TI Total size of the neighbourhood’s interior 45 px

Table 2.3: Parameters of the FAST-like algorithm.

The pseudocode of the algorithm described in the previous chapter implies the
requirements shown in table 2.4.

The worst-case time complexities are theoretical upper bounds of usual time
complexities of the algorithm. The validation of a potential of a point to be a marker
or a part of the sun ends in a majority of cases after only a few of iterations over
boundary pixels of the neighbourhood, as there is usually a low number of the
visible markers in the image (usually up to FASTDP) and the sun’s projection is also
limited in its size. The usual time complexity of the sun-to-marker distance check
depends on the number of the detected sun points.

From the memory requirements perspective, it is disadvantageous to store the
sun points as an array of their coordinates because of their usual abundance in
the images. It is favourable to store the sun points in a binary mask array (i.e., a
binary image with bit values set to 1 when the binary coordinates correspond to
the detected sun points). Then the sun-to-marker distance checks can be performed
e.g., using a repeated dilation of the sun mask followed by a bit value checking at
the corresponding marker coordinates.
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................................... 2.2. The FAST-like Algorithm

Requirement description Value

Computational requirements
Worst-case complexity of potentials’ validation O (CAMIA · FASTRxB)

Usual complexity of the interior search O (CAMIA · FASTRxUI)

Worst-case complexity of the sun distance check O (CAMIA · FASTDP)

Memory requirements
Markers (coordinates) (uint16_t[]) 4 · FASTDP = 120 B

Sun points (coordinates) (uint16_t[]) 4 ·CAMIA = 1443840 B

Sun points (binary mask) (uint8_t[]) CAMIA/8 = 45120 B

Memory requirements - radius of 3 pixels
Boundary points (coordinates) (int8_t[]) 2 · FASTR3B = 32 B

Interior points (coordinates) (int8_t[]) 2 · FASTR3UI = 22 B

Memory requirements - radius of 4 pixels
Boundary points (coordinates) (int8_t[]) 2 · FASTR4B = 48 B

Interior points (coordinates) (int8_t[]) 2 · FASTR4UI = 46 B

Table 2.4: Requirements of the FAST-like algorithm.

2.2.1 Related FPGA Implementations

Many image co-processor (or accelerator) FPGA architectures can be found in the
literature [24] [25] [26] [27] [28] [29] for many different feature detection algorithms.
All of them possess an ability to process the image data stream with a minimal
processing latency (i.e., they are streaming architectures).

As the results of the FAST algorithm can be evaluated based on the neighbour-
hood of the pixels, which is completely contained in the corresponding image
patches, it is suitable to provide a way to access the image patches without unneces-
sary delays and also to minimise the requirements for storing intermediate results.
Usually, the sources of the image frames (e.g., cameras) provide the pixel data in
a row-first order, meaning all the data in the first row must be read and handled
before the second row’s data is available.

This fact enforces such co-processors to implement so-called line buffers to store
whole rows of the images. The buffers are filled sequentially with the incoming
pixels from the video source. When all the line buffers required for the main image
processing part are filled up, then the data then can be read from them in parallel,
i.e., whole columns of the image patches are provided to the main processing part
at once. [10]

The line buffers introduce an initial delay before the main image processing can
take place. There is also an additional delay caused by the processing part itself
before the first result is available at the output. After the two delays pass, the
processing results are synchronised with the new incoming pixel data (i.e., with the
pixel clock frequency). [30]

23



2. FPGA Use Case .......................................
This streaming approach reduces the needed amount of memory resources of the

FPGA chip as the image does not have to be stored in its memory completely.

2.2.2 Proposed FPGA Architecture

9x line buffer (752x 8-bit unsigned)


Video source

(DCMI / memory)


Pixel data in the
row-first order

Rotating the
current buffer
(row) index

(4-bit unsigned)

Whole column of the
image data (9 pixels)

LUT 1: Storage of boundary maxima values

 	 	 (7x/9x 8-bit unsigned)


LUT 2: Storage of boundary minima values

	 	 (7x/9x 8-bit unsigned)


LUT 3: Storage of central pixel values

	 	 (7x/9x 8-bit unsigned)


LUT 4: Storage of interior maxima values
	 	 (7x/9x 8-bit unsigned)


LUT 5: Storage of interior maxima coordinates

	 	 (7x/9x two 4-bit unsigned) 


Process: Part 1

For each pixel (row) in the column, do:

1. If the pixel belongs to the boundary:

  a) Find (compare and store) the maximum value
  b) Find (compare and store) the minimum value


2. Store the middle pixel of the column

3. Find (compare and store) interior

    maximum value with its coordinates


Process: Part 2

If all necessary (7 or 9) columns are processed:

Evaluate the content of the LUTs by evaluating the
conditional equations for the stored values in
order to determine the marker potential and the
sun potential.

Move results to the output (when positive).


Rotating the current
column index for all LUTs


(4-bit unsigned)


Results

Detection coordinates

(two 4-bit unsigned)
Sun & marker potentials

(two bits)


0 16/8 5/7

Figure 2.1: Proposed FPGA architecture for the FAST-like algorithm.

The proposed FPGA architecture for the implementation of the FAST-like algorithm
is shown in a form of a block diagram in fig. 2.1.

. It utilises 9 line buffers (or FIFOs) to store the consecutive image rows (i.e.,
with sizes equal to CAMIW bytes).

The resulting initial delay is thus equal to the height of the largest image patch
times the image width, i.e., CAMIW · FASTR4PS, in terms of the CAMCLK clock
cycles. The process which handles memory access to the line buffers uses a
row_shift signal to keep track of the currently filled line buffer. When the 9th
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row (i.e., the row_shift is equal to 8) is about to be written to the last buffer
(i.e., the initial delay passes), the new value is also read from the buffer (i.e., the
memory is used in a write-first mode) together with the other 8 pixel values
in the preceding buffers and the whole column is provided to the main FAST
process (including the row_shift signal). After the end of every 9th row, the
row_shift resets to 0 and the first line buffer gets overwritten as its old content
is not needed anymore.. The main process is split into 2 parts and uses the conditional approach as
described in the previous chapter. Five LUTs (Look Up Tables) are utilised to
store the local information about boundary minima and maxima values, central
pixel values and the interior maxima with their coordinates. Each of the LUTs
contain 7 (or 9) elements used by both of the steps (depending on the selected
circular radius).

The row_shift signal is used for a calculation of a row_index variable that
is used as an index of the r-th pixel in the column array, so the pixel with
r = 0 always lies in the topmost row of the image patch. The equation for its
calculation is shown in equation (2.1).

row_index = (row_shift + r) mod FASTR4PS; r = 0, ..., FASTR4PS − 1 (2.1)

. The first part of the sequential process implements the comparisons of the
maxima and minima values stored in the 5 LUTs with the pixel values in the
current column. Hence each column is processed 7 (or 9) times on the same
rising clock edge for the 7 (or 9) overlapping image patches and the results are
stored into the LUT at the position corresponding to a column_index variable.
When the first 7 (or 9) columns for each row are processed (i.e., the additional
delay passes and all columns and rows of the first image patch are evaluated),
the second part of the process takes place.

The column_index variable rotates in such a way that the different pixel com-
parisons for the current column c are saved to the correct LUT positions for
the overlapping patches. An auxiliary column_shift variable is initially set
to 0 and gets incremented by 1 up to 6 (or 8) after each completion of the first
part, then rewinds to value 0. The column_index for the currently processed
column c of the image patch is computed as shown in equation (2.2), hence the
pixels with c = 0 always lie in the leftmost column of the image patch.

col_index = (col_shift− c) mod FASTRxPS; c = 0, ..., FASTRxPS − 1 (2.2)

. The second part of the process is a straightforward implementation of the
conditional equations. The data is read from the 5 LUTs (using an incremented
column_shift variable as an index matching the currently finished image
patch) and the final comparisons with the static threshold value are performed.
Eventually the local coordinates of the detected marker or sun point inside the
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image patch are moved to the output signals, including two bits indicating the
designation of the point..At the moment when the detection results are read from the output, the final
detection coordinates inside the original image frame are computed as the de-
tection coordinates in the image patch plus the image coordinates of the current
pixel being written to the line buffer and with each coordinate decremented by
the processing delay (equal to the size of the image patch, FASTRxPS).

The comparisons in the first part of the process can be implemented with several
different approaches, depending on how the boundary and interior coordinates are
accessed or derived:..1. The relative coordinates of the circular neighbourhood can be stored in an-

other two LUTs (for the boundary and the interior coordinates respectively), in
similar fashion as they are stored in arrays used within the current implementa-
tion. This approach requires additional iterating over the LUTs and comparing
the stored coordinates with the current row and column indices used in the
process...2. The affiliation of a pixel inside the image patch to the circular boundary (or to
the interior) can be evaluated using its relative centred coordinates (x, y) with
equations (2.3).

(10r− 3)2 < 100(x2 + y2) < (10r + 5)2

100(x2 + y2) ≤ (10r− 3)2 (2.3)

The first equation produces the same circular boundary in a discrete pixel raster
as the one used by the current implementation for both radii r = 3 and r = 4,
the second equation refers to the interior...3. The comparisons for the particular pixels in the columns can be hard-wired
inside the VHDL process. No additional memory resources or loops are needed.
Arbitrary shapes of the neighbourhood can be used, but at the cost of worse
modifiability of the VHDL code.

For the proposed architecture, I opted for the third approach above as the VHDL
code can be easily generated using a simple and parameterisable Python script.

The data types used by the architecture are 8-bit unsigned integers for all pixel-
related values and 4-bit unsigned integers for all values related to coordinates, shifts
and indices (limited by the image patch size).

2.3 The 4D Hough Transform

The parameters relevant to the implementation of the 4D Hough Transform with
their default values are listed in table 2.5.
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Name Description Value

HT4DMS Number of memory (time) steps 14

HT4DPS Number of pitch steps for the masks generation 16

HT4DYS Number of yaw steps for the masks generation 16

HT4DNR Nullify radius for resetting the maxima array 5

HT4DRR Reasonable radius for the blinking pattern retrieval 6

HT4DMPS Max. pixel shift for the mask width calculation 1

HT4DFS Frame scale for the masks width calc. (0.3 ·CAMFR) 18

HT4DMW Mask width (1 + 2 ·HT4DMPS · (HT4DFS − 1)) 35

Table 2.5: Parameters of the 4D Hough transform algorithm.

The Hough Transform implementation requires the pre-generated hybrid masks
(i.e., the arrays of 3D coordinates) stored in the memory so that they are readily
accessible by the algorithm to be applied onto the accumulated t-points. For simplic-
ity of the visualisation of their sizes in fig. 2.2, an equal number of the pitch steps
and of the yaw steps ranging from 2 up to 32 is assumed (i.e., HT4DPS = HT4DYS),
for time step t ranging from 2 to 20.

The x and y point coordinates stored in the mask array for a time step t are in
practise limited to a range [−(t− 1), (t− 1)] and it is obvious from the visualisation
in fig. 1.9 in the previous chapter, the permuted yaw-pitch index (the z coordinate)
is limited to range [0, HT4DPS ·HT4DYS − 1]. It should be noted that the x, y range
limits arise from a maximum pixel shift parameter (i.e., the largest allowed pixel
distance between two t-points belonging to the same t-line in subsequent time steps)
which is equal to 1 for all assumptions stated in this thesis. In turn, the minimal
pitch angle of a t-line equals to 45◦.

With the assumption of the range limits, a 6-bit signed integer (range -32 to 31)
can be used to store both the x and y coordinates and 10-bit unsigned integer (range
0 to 1023) to store the z coordinate (for all the masks assumed in the aforementioned
visualisation).

For the default values listed in the table 2.5 (HT4DMS = 14, HT4DPS = 16,
HT4DYS = 16), sufficient data types are 5-bit signed integers for x and y, and 8-bit
unsigned integer for z (i.e., each 3D point takes 18 bits of the memory).

The sizes of the masks for the default parameter values are depicted in detail in
fig. 2.3. All the mask arrays together contain 30556 points, occupying 550008 bits of
the memory (or equally 68751 bytes, when the suggested data types are used).

As a side note, the mask sizes (and also their cumulative sums) form a surface in a
3D space with dimensions (HT4DPS, HT4DYS, mask_size) that can be approximated
by a function (2.4) with score R2 > 0.99 (the coefficient of determination) for all
numbers of steps in range 2 to 32 and t ≤ 20, as can be seen in fig. 2.4.

mask_size = a · (HT4DPS)
b · (HT4DYS)

c; a, b, c ∈ R (2.4)
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Furthermore, the parameters a, b, c can be approximated as well, as functions of
the time step t, leading to a formula (2.5) for computing the mask size (its number
of points) for a particular time step t.

mask_size =

(
αa +

βa

1 + γ−t+δa
a

)
· (HT4DPS)

(
αb+β

−t+γb
b

)
· (HT4DYS)

c (2.5)

Parameter Optimal value

αa -14.4478

βa 283.172

γa 1.27306

δa 12.0956

αb 0.03493

βb 1.25669

γb 1.98181

c 0.99576

Table 2.6: Optimal parameters of the formula approximating the computed sizes of
the hybrid masks.
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The formula (2.5) can be used to determine the upper bound of the necessary

memory utilisation when the hybrid masks are generated for new parameters. The
formula’s 8 real parameters have optimal values listed in table 2.6, with R2 ≈ 0.996
for all numbers of steps in range 2 to 32 and time steps t ≤ 20.

The computational and memory requirements of the current implementation of
the 4D Hough Transform are summarised in tables 2.7 and 2.8.

Apart from the main memory requirements listed in the table 2.8, there are also
several auxiliary arrays needed, e.g., for storing the detected blinking patterns and
the averaged pitch and yaw angles.

Comp. complexity description Value

A t-set insertion O (FASTDP)

The Hough space reset O (CAMIA ·HT4DPS ·HT4DYS)

The maxima array reset O (CAMIA)

The hybrid mask application O (max. mask size · FASTDP ·HT4DMS)

The Hough space flattening O (CAMIA ·HT4DPS ·HT4DYS)

The maxima array nullification O (FASTDP)

The maxima search O (CAMIA)

A blinking pattern retrieval O (FASTDP ·HT4DMS)

Table 2.7: Computational requirements of the HT4D algorithm.

Memory requirement description Value

Pitch steps (float32_t[]) 4 ·HT4DPS = 64 B

Yaw steps (float32_t[]) 4 ·HT4DYS = 64 B

Cotangent maxima (float32_t[]) 4 ·HT4DPS = 64 B

Cotangent minima (float32_t[]) 4 ·HT4DPS = 64 B

Accumulator for t-sets (uint16_t[]) 6 · FASTDP ·HT4DMS = 2520 B

Hough space (uint8_t[]) CAMIA ·HT4DPS ·HT4DYS ≈ 92 MB

Maxima array (uint8_t[]) CAMIA = 360960 B

Angle array (uint8_t[]) CAMIA = 360960 B

Hybrid masks ((u)int8_t[]) 3 · sum(mask sizes) = 91668 B

Table 2.8: Memory requirements of the HT4D algorithm.

It is obvious that unlike the memory requirements of the FAST-like algorithm,
the memory utilisation of the 4D Hough Transform is too large in comparison with
common internal memory resources inside embedded microcontrollers or FPGA
chips. For a practical embedded application of this algorithm in its current form, an
external memory resource has to be used.
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2.3.1 Related FPGA Implementations

One of the earliest implementations of the Hough Transform on FPGA for 2D line
pattern detection is presented in [31]. More specifically, the Fast Incremental Hough
Transform (FIHT2) [32] is used as it does not require any trigonometric operations
and only addition operations are needed. Their architecture also consists of constant
value multipliers needed for a correction of the values retrieved via incrementation.
This incremental approach, however, applies only to 2D line patterns.

More recent implementations for 2D line detection are discussed for instance in
[33] and [34] focusing on the its use for LDWS (Lane Departure Warning System)
application. The first paper uses the (ρ, θ) line parameterisation (as described in
the first chapter) and their implementation limits the θ parameter values to a range
of ±20 degrees with a step of 1 degree. Therefore 41 parallel units for individual
degrees are proposed in the system, each one processing only a 1D space for the
ρ parameter. In the second paper, the (ρ, θ) line parameterisation is simplified to
(b, θ) parameterisation at the cost of discarding horizontal lines and the required
cotangent trigonometric values are stored in a single LUT. This simplification is also
possible due to the intended use for a road lane detection because the horizon (i.e.,
a line passing through all vanishing points in the projective space) can be omitted.

Other FPGA implementations of the Hough Transform for detection of 2D lines
and/or circles are discussed in [35], [36], [37], [38] and [39]. Few of them involve
CORDIC (COordinate Rotation DIgital Computer) algorithm for simplification of
mathematical operations (e.g., trigonometric functions) by transforming them into
simple operators, such as adders and shift registers.

In [17], a complete FPGA architecture of Generalised Hough Transform (GHT)
for detection of arbitrary 2D shapes (with arbitrary rotation and scale, i.e., using
4D parameter space) from detected edges in images is presented. A hierarchical
system is proposed, splitting the architecture into a parameterisable number of
so-called GHT cells (accessing single global R-table). Each GHT cell contains an
edge buffer, a rotation unit processing only a part of all possible rotation angles
(which are divided among all GHT cells) and a set of scale units taking the rotated
points as inputs. Each scale units again processes only a portion of all possible scale
values and is connected to a voter unit with its own memory for a portion of the
parameter space. Thus each voter contains a portion of the total voting result that
is fetched into a maximum search tree at the cell’s output. Maximal votes and the
corresponding addresses from all GHT cells are then combined and analysed by a
software.

Moreover, the paper [17] also suggests the use of iterative refinement and crop-
ping, i.e., increasing a resolution of the parameter space and reducing the ranges of
parameter values after each iteration of the GHT, leading to a significant reduction
of the required memory resources as the coarse results are sequentially refined.
Similar approach might be considered for the UVDAR’s HT4D implementation on
FPGA.

A HLS (High Level Synthesis) for the Hough Transform acceleration on FPGA is
discussed in [40]. The HLS is an automated design process that relies on program-
ming languages (such as C/C++) in which the system design is prepared first as a
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functional software. The automation resides in the ability to directly transfer that
design into a RTL (Register-Transfer Level) architecture synthetisable for the target
FPGA chip, while using various memory and performance optimisation techniques
such as array partitioning, loop pipelining and loop unrolling. Therefore the HLS is
a tool preferred for a fast evaluation of new algorithms on FPGAs instead of time
consuming development using ordinary Hardware Description Languages (HDLs).
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Chapter 3
Hardware Selection & Design

3.1 FPGA Boards

An appropriate FPGA development board had to be selected for the experimental
part of this work, while addressing the computational and memory demands
of the image processing algorithms. Due to the current low availability of the
integrated components on the market, two different in-stock low-cost boards have
been considered for the task, namely the Microchip (Microsemi) Hello FPGA board
and the Terasic DE10-Nano board.

Both of the boards offer the conventional Arduino shield headers which were
selected as the input interface to a custom camera expansion board with a hardware
design described later in this chapter.

3.1.1 Microchip Hello FPGA Board

The main board of the Hello FPGA kit [41] is shown in fig. 3.1. The board of-
fers Microsemi M2S010-1VFG256 SmartFusion2 SoC chip connected to Micron
MT41K1G8RKB-107:N DDR3 8x1Gbit (1GB) SDRAM memory.

The SoC chip is programmed as a whole, i.e., the FPGA part together with the
single-core ARM Cortex-M3 MSS (Microcontroler SubSystem), using the USB 2.0
port and an on-board USB-UART bridge connected to a Microchip PIC32MX795F512L
microcontroller, which accesses a 8MB SPI flash memory to store compiled FPGA
and MSS designs, or via an external Microchip FlashPro4/5/6 programmer con-
nected to the JTAG interface of the SoC chip.

This kit also comes with a camera board containing a CMOS imaging chip Om-
niVision OV7725 with a VGA resolution of 640x480 pixels and with a 24-bit RGB
pixel format. The last part of the kit is a LCD display board also offering a VGA
resolution.

Unfortunately, the two expansion boards included in the kit are attached to the
main board using the 20-pin expansion headers in a way that makes the Arduino
headers inaccessible, especially when the LCD board is placed on the top side of the
main board, thus prohibiting to attach the custom camera board. The included cam-
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era board has also no further use for the UVDAR system because of the insufficient
quantum efficiency of the RGB CMOS chips in the UV spectrum range.

Figure 3.1: Microchip Hello FPGA Board Overview.

3.1.2 Terasic DE10-Nano Board

Figure 3.2: Terasic DE10-Nano Board Overview.

The main board of the Terasic DE10-Nano Kit [42] is shown in fig. 3.2. It of-
fers Intel Cyclone V SE 5CSEBA6U23I7 SoC chip, which is connected to two ISSI
IS43TR16256A-15HBL DDR3 16x256Mbit SDRAM memories (oferring 1GB in total).
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The programming of the FPGA part of the SoC chip is done either using a USB
2.0 port connected to an on-board Intel EPM570GF100C5N CPLD chip emulating a
JTAG interface (referred to as USB-Blaster II), or the compiled FPGA designs can be
loaded via SDMMC interface from a microSD card, which also contains a firmware
for the dual-core ARM Cortex-A9 HPS (Hard Processor System), during the boot of
the HPS.

3.1.3 Boards Comparison

The two boards considered for the UVDAR image processing implementation on
FPGA are compared by the most important parameters in table 3.1.

Terasic DE10-Nano [42] Microchip Hello FPGA [41]

SoC family Intel Cyclone V SE [43] Microsemi SmartFusion2 [44]

SoC chip 5CSEBA6U23I7 M2S010-1VFG256

SoC package UBGA-672 VFPBGA-256

Kit price (Dec 2022) ∼ $223 (academic $189) ∼ $255

Built-in ARM processor parameters
Core @ Max. freq. (2x) Cortex-A9 @ 800MHz Cortex-M3 @ 166MHz

Floating Point Unit Yes No

FPGA part parameters
Logic Elements 110000 12084

Logic Array Blocks 4191 1007

Internal mem. blocks
(BRAM)

553x M10K (10Kbit)
994x MLAB (640bit)

21x LSRAM (18Kbit)
22x uSRAM (1Kbit)

Total int. memory 6151Kbit (∼ 770KB) 400Kbit (∼ 50KB)

Multipliers (18x18) 224 22

Number of PLLs 6 2

External memory parameters
Chip family ISSI IS43TR16256A Micron MT41K1G8RKB

Type @ Max. freq. DDR3 @ 400MHz DDR3 @ 333MHz

Configuration (2x) 256M x 16bit 1G x 8bit

Total memory size 1GB (32bit data bus) 1GB (8bit data bus)

System development
FPGA IDE Intel Quartus Prime [45] Microsemi Libero SoC [46]

JTAG Flashing Tool USB-Blaster II (built-in) FlashPro4/5/6 (external)

Table 3.1: Comparison of the considered FPGA boards.

The Microsemi SmartFusion2 family is comparable to the older Intel Cyclone II
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family in the parameters of the FPGA part. A large disadvantage of the FPGA kit
from Microchip is the lack of available documentation, examples and tutorials, while
the DE10-Nano kit from Terasic is well documented and many design examples can
be found online. The DE10-Nano kit also offers a much better performance for a
lesser price, the development software (Intel Quartus Prime) is offered for free in a
Lite version without any usage limits [45] (in contrast, the Microsemi Libero SoC
is offered in a Silver version for free only for 1 year of usage [46]) and last but not
least, the flashing of the Hello FPGA kit through the built-in PIC32 microcontroller
is limited to an undocumented Windows GUI application (without a possession of
the expensive external FlashPro programmer to use the JTAG interface).

For the reasons mentioned above, I eventually opted for the Terasic DE10-Nano
kit and used it for the conduction of the experimental part of this work.

3.2 The MCU Board

For the possibility to evaluate the performance of the UVDAR’s image process-
ing algorithms on an embedded microcontroller, the STMicroelectronics Nucleo-
H745ZI-Q development board was chosen. This board is shown in fig. 3.3 and
includes STMicroelectronics STM32H745ZIT6U MCU [47] containing two 32-bit
ARM cores, one ARM Cortex-M7 core able to run at a frequency of 480MHz and
one ARM Cortex-M4 core able to run at 240MHz.

Figure 3.3: ST Nucleo-H745ZI-Q Board Overview.

This MCU chip offers a 2MB of flash memory for the compiled firmware and
about 1MB of internal RAM memory (split to 512KB of AXI-SRAM on domain D1,
3 SRAM blocks of 128KB, 128KB and 32KB on domain D2, one SRAM block of
64KB on domain D3, 4KB of backup SRAM, 64KB of instruction RAM and 128KB
of DTCM-RAM for critical real-time data), thus it is able to store a complete 8-bit
camera image to the AXI-SRAM block or a 16-bit camera image split between
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multiple blocks. The main asset of the chip relevant for this work is its built-in
DCMI peripheral interface fully accessible through the board’s Zio connectors,
which are backwards-compatible extensions of the ordinary Arduino headers.

3.3 The Camera Board

The custom camera board contains On Semiconductor MT9V034 CMOS imaging
sensor [22]. This sensor provides 10-bit monochromatic video output with a WVGA
resolution of 752x480 pixels at 60FPS. It is available in an easily solderable CLCC-
48 package (11.43mm x 11.43mm) with active imager size of 4.51mm x 2.88mm,
resulting in a real pixel size of 6.0µm x 6.0µm.

The CMOS sensor requires 3.3V supply voltage and 26.67MHz master clock input
for a proper operation. The sensor has a parallel DCMI output interface consisting
of a pixel clock (PIXCLK) signal (i.e., a delayed master clock input), horizontal
(HSYNC) and vertical (VSYNC) synchronisation signals and 10 data (D0 to D9)
signals.

A general frame timing diagram of the DCMI signals is shown in fig. 3.4. By
default, the MT9V034 provides HSYNC and VSYNC signals with active low state
instead, with data to be sampled on the falling edge of the pixel clock.

Figure 3.4: DCMI frame structure in hardware synchronisation mode. [48]

At the pixel clock frequency of 26.67MHz, the total frame time is 16.67 mil-
liseconds (i.e., 60FPS). When the synchronisation blanking intervals are taken into
account, the total frame resolution corresponds to 846x525 pixels.

The sensor is configured via a standard I2C (i.e., two-wire serial) interface. For
instance, it allows to choose any smaller image format of the video output (i.e., win-
dow size cropping), to change an exposure rate of the sensor using the Automatic
Exposure Control (AEC) or to set a gains for variable pixel regions of the sensor’s
internal ADC inputs using the Automatic Gain Control (AGC). The blanking times
and synchronisation polarities can also be changed by writing appropriate internal
registers of the sensor.
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3.3.1 Hardware Design

The schematic showing connection of the CMOS camera sensor is in fig. 3.5.
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Figure 3.5: Schematic of the MT9V034 CMOS imaging sensor pin connections.

Except the CMOS sensor, there is also an auxiliary step-down converter STMi-
croelectronics ST1S40 with a 5V output voltage (with up to 3A capability) for
unification of the supply source of the supported MCU and FPGA boards. The
converter is fed by input voltages 6-18V from a common 5.5/2.1mm jack adapter
connector. Optionally, an inertial measurement unit (IMU) sensor Bosch BMX160
can be soldered underneath the CMOS sensor for computation of the camera’s
orientation using an additional fusion algorithm.

The top layout of the camera board is shown in fig. 3.6. It has dimensions of 47x52
mm and supports a placement of a lens mount with distance of 22mm between the
screw holes.

The table 3.2 shows the connection of the custom board headers to the pins of
the supported boards. The star symbol next to the Nucleo pin names denotes their
specific affiliation to the ST’s Zio connector.
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Pin Camera signal Nucleo Hello FPGA DE0/DE10 Nano

D13 DCMI_D0 PC6* MSIO118NB4_R13 PIN_AH12

D11 DCMI_D1 PC7* MSIO115NB4_R11 PIN_AG16

D10 DCMI_D2 PC8* MSIO114NB4_M10 PIN_AF15

D7 DCMI_D3 PC9* MSIO110PB4_T7 PIN_AH8

D4 DCMI_D4 PC11* MSIO106NB4_R9 PIN_U14

D2 DCMI_D5 PD3* MSIO103PB4_P6 PIN_AG10

D15 DCMI_D6 PB8 MSIO112PB4_R8 PIN_AG11

D14 DCMI_D7 PB9 MSIO112NB4_P8 PIN_AH9

D5 DCMI_D8 PC10* MSIO109PB4_P10 PIN_U13

D3 DCMI_D9 PC12* MSIO104NB4_N7 PIN_AG9

D12 DCMI_PIXCLK PA6 MSIO115PB4_T11 PIN_AH11

D8 DCMI_VSYNC PG9 MSIO113NB4_R10 PIN_AF17

D9 DCMI_HSYNC PA4* MSIO113PB4_P9 PIN_AE15

D6 MASTER_CLK PA8 MSIO110NB4_T8 PIN_AG8

D0 I2C_SDA PB7 MSIO78NB7_F3 PIN_AG13

D1 I2C_SCL PB6 MSIO80PB7_G3 PIN_AF13

Table 3.2: Custom board signals connection to Nucleo and FPGA boards.

Figure 3.6: Top layout of the custom camera board.
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3. Hardware Selection & Design..................................
3.3.2 Board Validation

A photo of the assembled camera shield board is in fig. 3.7. The board’s functionality
has been validated using the Nucleo-H745 board using a STMicroelectronics HAL
(Hardware Access Library) in a STM32Cube IDE. The built-in hardware DCMI
peripheral of the microcontroller was used for accessing raw camera data, together
with an integrated DMA (Direct Memory Access) peripheral. The DMA peripheral
is able to handle memory-to-peripheral, peripheral-to-memory and memory-to-
memory transfers independently on the microprocessor’s core instructions. It was
configured to directly cooperate with the DCMI peripheral to transfer the image
data to the available SRAM memory regions. Internal PLL has been configured to
provide 26.67MHz clock output at the pin PA8 (alternate function MCO1). Pins PB6
and PB7 are used by the peripheral I2C1 (i.e., alternate functions SCL and SDA,
respectively).

Figure 3.7: Photo of the assembled custom camera board with mounted lens.

The camera board is designed in a way that exactly 10-bit image data can be
gathered using the built-in DCMI peripheral, because neither of the chips offer any
hardware option to truncate the 2 most significant bits of the image data, resulting
in a final data size of 16 bits per pixel in the memory. In turn, the complete image
of 752x480 pixels results in 360960 · 2 = 721920 bytes of the memory and hence
must be stored in multiple RAM sections. In particular, each third of the image
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(i.e., 160 rows occupying 240640 bytes) has to be transferred separately by the DMA
peripheral to two different sections of the internal RAM (i.e., on the domain D1 for
two thirds and on D2 for the last third of the image).

A completeness and an integrity of the captured image has been validated visually
after all three parts were transferred to a computer over a ST-Link programmer’s
UART interface. However, the camera frames cannot be transferred to the computer
in real time over the USB-UART interface due to the speed limitations of the imple-
mented Low-Speed USB interface (12Mbps) itself, the real data throughput required
to transfer the frames at 60FPS equals approx. 43.3MBps (or 346.5Mbps). The MCU
chip also offers an ULPI (UTMI+ Low Pin Interface) to access external High-Speed
USB (480Mbps) physical layer which is not present on the Nucleo board. To use this
feature, a fully custom hardware board would have to be developed involving the
MCU and the physical layer chips.
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Chapter 4
FPGA Experiments

This chapter describes all configuration and implementation details of the exper-
imental part of this work which was conducted on the Terasic DE10-Nano board
with Cyclone V SoC.

The VHDL (VHSIC Hardware Description Language) has been chosen as the
default HDL for the entire project because of its preservation of a delta cycle de-
terminism. Delta cycles are a HDL concept used to order events that occur in zero
physical time. Unlike the Verilog language, the VHDL handles value update events
(i.e., assignments of signals) and process evaluation events (i.e., a signal admission)
in separate phases and thus explicitly preserves the determinism of synchronous
architectures.

Prefix Description

i_ Entity input port

o_ Entity output port

io_ Entity bidirectional (inout) port

b_ Entity buffer port

g_ Generic definition

e_ Entity (component) instance

p_ Process instance

f_ Function/procedure instance

t_ Type/subtype definition

c_ Constant instance

v_ Variable instance

r_ Signal instance (register)
- driven by a sequential domain (i.e., process)

w_ Signal instance (wire)
- driven by a parallel domain

Table 4.1: Prefix notation of the VHDL statements.
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4. FPGA Experiments ......................................
For the sake of the transparency of the VHDL code, the prefix notation listed in

table 4.1 has been always observed, followed with uppercase instance names. No
prefix with uppercase was only used for input, output and bidirectional ports of the
top entity (i.e., when the ports refer to the assigned package pins), with lowercase
was only used for function/procedure parameters.

Terasic provides a GHRD (Golden Hardware Reference Design) Quartus project
for the DE10-Nano board, which was used as a base template for further develop-
ment. It comes with correct pin assignments for all hardware parts (buttons, keys,
DDR memory, etc.) on the board. It also contains important DDR memory timings
in the HPS configuration and shows example usage of a few of the available IP
blocks.

4.1 Clock Configuration

The board uses an on-board Texas Instruments CDCE937PWRG4 clock generator
chip to provide three 50MHz clock signals fed to the FPGA fabric, also additional
frequencies of 25MHz and 24MHz are generated for the HPS, USB and Ethernet
peripherals. The clock generator may be configured via its I2C interface to source
different clocks but it was left at the default configuration in this project.

The FPGA offers up to 6 PLL integer-N/fractional-N multipliers. For the purpose
of this project, the clock frequencies listed in table 4.2 were chosen as they can be
conveniently derived using a single PLL circuit and thus provide exact synchronous
clock edges for all internal logic.

Name Frequency Purpose Derivation

CLK1_50 50MHz HPS, PLL, I2C (External generator)

PLL_PRIM 320MHz PLL primary freq. CLK1_50 · (32/5)

CLK_BRAM 160MHz BRAM memory clock PLL_PRIM/2

CLK_VGA 40MHz VGA pixel clock PLL_PRIM/8

CLK_DCMI 26.67MHz DCMI pixel clock PLL_PRIM/12

Table 4.2: Summary of the FPGA clock signals.

The PLL Intel FPGA IP entity was used for the PLL circuit initialisation.

4.2 I2C Master Interface

The I2C interface is used for an initial configuration of multiple components in-
cluding the CMOS imaging sensor and a VGA-to-HDMI interface. Two following
approaches have been implemented for a component initialisation...1. HPS I2C peripheral - The built-in HPS I2C peripheral has been routed through

the FPGA fabric to the output pins associated with the MT9V034 imaging
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sensor. The I2C pins of the HPS peripheral are not open-drain and are inverted
by default, hence additional two ALTIOBUF IP Core bidirectional blocks for
both lines (SDA and SCL) had to be added in the FPGA fabric, as shown in fig.
4.1. The I2C peripheral is memory mapped on the HPS side which runs the
compiled configuration application and allows for easy changes of the camera
settings.

Figure 4.1: I2C wiring to the FPGA pins. [49]..2. VHDL I2C Master interface - The interface VHDL implementation as a finite
state machine (FSM) has been taken from [50] and used for configuration of the
on-board Analog Devices ADV7513 VGA-to-HDMI interface. This interface
chip requires regular configuration updates whenever its interrupt output pin
is triggered (e.g., when the HDMI monitor connection or resolution change
occurs), thus it has to be handled instantaneously by the FPGA fabric.

Figure 4.2: I2C data transfer diagram. [51]

The structure of the I2C data transfer is shown in fig. 4.2. The target SCL clock
(400kHz) is obtained directly by dividing the input 50MHz clock by an integer
prescaler value. All 9 required FSM states and their transitions are visualised in
fig. 4.3. The state changes are performed on falling edges of the SCL clock, the
SDA line is sampled on its rising edges. The FSM states are briefly described
below:..a. State ready - The default state, waiting until i_ENA is high, then the FSM

changes to the state start.

45



4. FPGA Experiments ........................................b. State start - The port o_BUSY is set high, the port io_SDA is set low
(must surpass the io_SCL low state). Then the FSM continues to the state
command.

Figure 4.3: I2C master state diagram. [50]..c. State command - The 7 address bits plus the last read/write bit (i_RW)
are passed to the io_SDA sequentially at each clock cycle (indexed by a
r_BIT_CNT signal). Then the FSM continues to the state slv_ack1...d. State slv_ack1 - The io_SDA should be low when the slave device is
successfully addressed. The state wr or the state rd then follows, based on
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..................................... 4.2. I2C Master Interface

the i_RW signal...e. State wr - All 8 bits of the i_DATA_WR port are sequentially passed to the
io_SDA. Then the FSM changes to the state slv_ack2...f. State slv_ack2 - Similarly as in the slv_ack1 state, the low state of io_SDA
indicates a success. Also, the o_BUSY signal is set low. If i_ENA is kept
high, the FSM goes back to the start state and next 8 bits transfer follows.
Otherwise the FSM changes to the stop state...g. State rd - All 8 bits are sequentially sampled from the io_SDA to the
o_DATA_RD port. Then the FSM changes to the state mstr_ack...h. State mstr_ack - The o_BUSY signal is set low and the io_SDA is set low to
indicate that all 8 bits of data were successfully captured by the master
interface. Then, similarly to the slv_ack2 state, a next transfer may follow
immediately when i_ENA is kept high and the FSM state goes back to
start, otherwise the state stop follows...i. State stop - The final FSM state. The io_SCL is released before the io_SDA.
The FSM then changes to its default ready state.

Besides the I2C interface FSM presented above, another simple FSM had to be
created to serve the interface with register addresses and values stored in a
correct order in a LUT memory. The FSM states and transitions are visualised
in fig. 4.4.

Figure 4.4: State diagram of the FSM serving the I2C interface.

The states are described as follows:..a. State start - The initial (default) state of the FSM. When an internal
integer variable v_INDEX is equal to the size of the LUT and also the
interrupt signal is triggered (i.e., i_HDMI_TX_INT is low), then the index
variable is reset to zero, otherwise the index variable is incremented. If
the updated variable is in a valid range, then register address and value
are loaded from the LUT, and the FSM continues to the write_reg state...b. State write_reg - The FSM waits until the I2C interface is not busy. Then
the interface is enabled and the loaded register address is handed over.
After that the state changes to write_val.
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4. FPGA Experiments ........................................c. State write_val - This FSM state works similarly as in the previous case,
but the interface’s enable signal is kept high resulting in a continuous
I2C transfer. The FSM changes to the end state on a falling edge of the
interface’s busy signal...d. State end - The interface’s enable signal is kept high until a falling edge of
the interface’s busy signal occurs. Then the FSM changes to its final wait
state...e. State wait - Because the FSM runs in a process at the 50MHz clock, addi-
tional delay cycles are needed to create sufficient time delays between the
adjacent I2C transfers. When an internal decrement counter v_WAIT_CNT
reaches zero from a predefined value, the FSM resets to the initial start
state.

4.3 DCMI Interface

The pin assignments for the camera board were taken directly from the table 3.2
in the previous chapter. The structure of the frames transferred via the DCMI
interface shown in fig. 3.4 inherently led to a design of the VHDL process treating
the interface signals. The excerpt of the process code is shown below.

Code 4.1: Excerpt of the DCMI process (VHDL)

1 p_DCMI : PROCESS (w_HW_NRST, w_CLOCK_26) IS
2 BEGIN
3 -- if hardware reset is active (i.e., key button is pressed)
4 IF w_HW_NRST = '0' THEN
5 -- [...] all relevant signals are reset to the default values
6 ELSE
7 IF rising_edge(w_CLOCK_26) THEN
8 -- BRAM write enable is disabled by default
9 r_BRAM_FRAME_WR_EN <= '0';

10

11 -- simple 2-state FSM for the DCMI is handled
12 CASE r_DCMI_STATE IS
13 WHEN c_DCMI_STATE_IDLE =>
14 -- image coordinate counters (UNSIGNED) are reset to 0
15 r_DCMI_POS_X <= (OTHERS => '0');
16 r_DCMI_POS_Y <= (OTHERS => '0');
17 -- pixel buffer (STD_LOGIC_VECTOR) matching the BRAM data width
18 r_DCMI_PIXELS <= (OTHERS => '0');
19 -- offset counter (UNSIGNED) for the pixel buffer
20 r_DCMI_OFFSET <= (OTHERS => '0');
21 -- write address set to maximum for overflow to 0 at the start
22 r_BRAM_FRAME_WR_ADDR <= (OTHERS => '1');
23

24 -- wait for the end of the latest frame
25 IF DCMI_VSYNC /= g_DCMI_VSYNC_ACTIVE THEN
26 r_DCMI_STATE <= c_DCMI_STATE_SNAPSHOT;
27 END IF;
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28 WHEN c_DCMI_STATE_SNAPSHOT =>
29 -- wait for a rising edge of VSYNC (frame start), also crop the frame

to its expected height (error prevention)↪→

30 IF DCMI_VSYNC = g_DCMI_VSYNC_ACTIVE AND r_DCMI_POS_Y <
g_DCMI_IMG_HEIGHT THEN↪→

31 -- wait for a rising edge of HSYNC (row start), also crop the frame
to its expected width (error prevention)↪→

32 IF DCMI_HSYNC = g_DCMI_HSYNC_ACTIVE AND r_DCMI_POS_X <
g_DCMI_IMG_WIDTH THEN↪→

33 -- if the pixel buffer is almost full
34 IF r_DCMI_OFFSET = c_BRAM_FRAME_NUM_BYTES - 1 THEN
35 -- increment the BRAM address
36 r_BRAM_FRAME_WR_ADDR <=

STD_LOGIC_VECTOR(UNSIGNED(r_BRAM_FRAME_WR_ADDR) + 1);↪→

37 -- store a new pixel value including the buffer
38 r_BRAM_FRAME_WR_DATA <= DCMI_D(9 DOWNTO 2) &

r_DCMI_PIXELS(r_DCMI_PIXELS'HIGH DOWNTO 8);↪→

39 -- set BRAM write enable high
40 r_BRAM_FRAME_WR_EN <= '1';
41 ELSE
42 -- append a new pixel value to the buffer (rotate right)
43 r_DCMI_PIXELS <= DCMI_D(9 DOWNTO 2) &

r_DCMI_PIXELS(r_DCMI_PIXELS'HIGH DOWNTO 8);↪→

44 END IF;
45

46 -- increment x coordinate with each new pixel in the row
47 r_DCMI_POS_X <= r_DCMI_POS_X + 1;
48 -- also increment the offset counter
49 r_DCMI_OFFSET <= r_DCMI_OFFSET + 1;
50 ELSE
51 -- check x coordinate to ensure only one execution
52 IF r_DCMI_POS_X > 0 THEN
53 -- increment the y coordinate when the row ends, reset x coord.
54 r_DCMI_POS_Y <= r_DCMI_POS_Y + 1;
55 r_DCMI_POS_X <= (OTHERS => '0');
56 END IF;
57 END IF;
58 ELSE
59 -- check y coordinate to ensure only one execution
60 IF r_DCMI_POS_Y > 0 THEN
61 -- reset the FSM state to IDLE
62 r_DCMI_STATE <= c_DCMI_STATE_IDLE;
63 -- keep track of the number of the received image frames
64 r_DCMI_NUM_FRAMES <= r_DCMI_NUM_FRAMES + 1;
65 END IF;
66 END IF;
67 END CASE;
68 END IF;
69 END IF;
70 END PROCESS;

The following list summarises the key aspects of this DCMI implementation.
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.Apart from the assigned signals in the excerpt above, FPGA-to-HPS interrupt

request signals were also assigned to inform the HPS about changes of the FSM
state (i.e., that the received image is completely stored in a BRAM memory).
The HPS involvement is described in detail later in this chapter.. The individual impedance of the DCMI signals on the custom camera board
was not perfectly matched, which led to inexact match of the synchronisation
signals with the data signals. Therefore additional cropping of the pixel data
based on the coordinate counter values had to be added in order to ensure a
correct number of stored pixels per row (and also rows per frame).. For a similar reason, the DCMI process was driven by the rising edge of the
generated pixel clock passed to the CMOS sensor instead of the DCMI_PIXCLK
input signal.. Only the 8 most significant bits of each 10-bit pixel intensity value were selected
and stored in the BRAM memory (i.e., DCMI_D(9 DOWNTO 2)). The truncated
pixel values were first buffered to be written in small groups, with a size
matching the data width of the BRAM’s write port in order to reduce the total
number of write operations. This way, every complete image frame (i.e., 360960
pixels) was stored in the BRAM memory, overwriting the previous frame.

The compilation procedure in the Quartus environment requires proper definition
of timing constraints stored in a Synopsys Design Constraints (SDC) file. Without
the constraints, the setup and hold times of the input and output signals are not
taken into account when the RTL architecture is mapped into particular parts of
the FPGA fabric, which results in additional input and output signal delays and
eventually in visual incompleteness and/or defects of the received images via the
DCMI interface. The required setup time (TSU) and hold time (TH) were taken
directly from the MT9V034 datasheet [22] and used in the SDC file as shown below.

Code 4.2: SDC timing constraints for the DCMI interface

1 set CLOCK_26
{e_PLL|pll_inst|altera_pll_i|general[2].gpll~PLL_OUTPUT_COUNTER|divclk}↪→

2

3 set DCMI_CLK_PERIOD [get_clock_info -period [get_clocks ${CLOCK_26}]]
4 set DCMI_TSU 16.0 # nanoseconds
5 set DCMI_TH 16.0 # nanoseconds
6 set DCMI_PAD 0.3 # nanoseconds
7 set DCMI_MAX [expr ${DCMI_CLK_PERIOD} - ${DCMI_TSU} - ${DCMI_PAD}]
8 set DCMI_MIN [expr ${DCMI_CLK_PERIOD} + ${DCMI_TH} + ${DCMI_PAD}]
9

10 set_output_delay -clock [get_clocks ${CLOCK_26}] -max ${DCMI_MAX} -min
${DCMI_MIN} [get_ports {CAM_MASTER_CLK}]↪→

11 set_input_delay -clock [get_clocks ${CLOCK_26}] -max ${DCMI_MAX} -min
${DCMI_MIN} [get_ports {DCMI_D[*]}]↪→

12 set_input_delay -clock [get_clocks ${CLOCK_26}] -max ${DCMI_MAX} -min
${DCMI_MIN} [get_ports {DCMI_VSYNC}]↪→

13 set_input_delay -clock [get_clocks ${CLOCK_26}] -max ${DCMI_MAX} -min
${DCMI_MIN} [get_ports {DCMI_HSYNC}]↪→

50



....................................4.4. VGA-to-HDMI Interface

4.4 VGA-to-HDMI Interface

The DE10-Nano board contains Analog Devices ADV7513 HDMI transmitter [52].
The video input is provided to this chip in a standard VGA format, while the
transmitter automatically recognises the resolution of the video stream based on
the used VGA timing (i.e., the blanking times and lengths of the synchronisation
pulses) and it supports a variety of HDTV formats. It also supports up to eight I2S
audio lines for a 7.1 surround audio (up to 768kHz), however it this feature was not
used in this project.

Figure 4.5: General VGA timing diagram.

The VGA timing diagram is visualised in fig. 4.5. Unlike the DCMI interface, the
synchronisation signals are activated by the VGA to determine the end of every
row (horizontal blanking) and of every frame (vertical blanking). The Front Porch
(FP) and Back Porch (BP) delays surround the Synchronisation Pulse (SP) inside the
blanking interval. The transmitter chip uses high logic state when the signals are
active. It also uses Data Enable (DE) signal, which is active in the visible area of the
image (both horizontal and vertical). The video line uses 24-bit RGB pixel format
(i.e., 8 bits per colour).

As it was mentioned in the Clock Configuration section, the VGA pixel clock was
set to 40MHz. Two different VGA timings could be used by the HDMI transmitter
at this frequency as shown in table 4.3. The preferred timing was then chosen using
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an on-board slide switch according to the aspect ratio of the connected display.

Visible Resolution 800x600 (SVGA) 960x540

Visible Aspect Ratio 4:3 16:9

Horiz. Visible Area (HVA) 800px 20µs 960px 24µs

Horiz. Front Porch (HFP) 40px 1µs 50px 1.25µs

Horiz. Sync. Pulse (HSP) 128px 3.2µs 100px 2.5µs

Horiz. Back Porch (HBP) 88px 2.2µs 90px 2.25µs

Total Frame Width 1056px 26.4µs 1200px 30µs

Vert. Visible Area (VVA) 600px 15.84ms 540px 16.2ms

Vert. Front Porch (VFP) 1px 26.4µs 2px 60µs

Vert. Sync. Pulse (VSP) 4px 105.6µs 10px 300µs

Vert. Back Porch (VBP) 23px 607.2µs 11px 330µs

Total Frame Height 628px 16.5792ms 563px 16.89ms

Real FPS value (rounded) 60.317 59.207

Table 4.3: Selectable VGA timings for the HDMI transmitter.

The main part of the VGA process written in the VHDL language is shown below.

Code 4.3: Excerpt of the VGA process (VHDL)

1 p_VGA : PROCESS (w_HW_NRST, w_CLOCK_40) IS
2 BEGIN
3 IF w_HW_NRST = '0' THEN
4 -- [...] all relevant signals and variables are set to the default values
5 ELSIF rising_edge(w_CLOCK_40) THEN
6 -- HDMI transceiver signals are reset
7 HDMI_TX_D <= (OTHERS => '0');
8 HDMI_TX_DE <= '0';
9 HDMI_TX_HS <= '0';

10 HDMI_TX_VS <= '0';
11 -- BRAM read enable signal is disabled
12 r_BRAM_FRAME_RD_EN <= '0';
13

14 -- increment POS_X and POS_Y of VGA output
15 IF r_VGA_POS_X < w_VGA_TOTAL_WIDTH - 1 THEN
16 IF r_VGA_POS_X = 0 THEN
17 IF r_VGA_POS_Y < w_VGA_TOTAL_HEIGHT - 1 THEN
18 -- start of a new line (row) - increment POS_Y
19 r_VGA_POS_Y <= r_VGA_POS_Y + 1;
20 ELSE
21 -- start of a new frame - reset POS_Y to zero
22 r_VGA_POS_Y <= (OTHERS => '0');
23 r_BRAM_FRAME_RD_ADDR <= (OTHERS => '0');
24 END IF;
25 END IF;
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26 r_VGA_POS_X <= r_VGA_POS_X + 1;
27 ELSE
28 r_VGA_POS_X <= (OTHERS => '0');
29 END IF;
30

31 -- inside the 480 lines (i.e., DCMI image height) in the frame centre
32 IF r_VGA_POS_Y >= w_VGA_MARGIN_TOP AND r_VGA_POS_Y < w_VGA_MARGIN_BOTTOM

THEN↪→

33 -- first read in the line
34 IF r_VGA_POS_X = w_VGA_MARGIN_LEFT - c_BRAM_FRAME_NUM_BYTES THEN
35 r_BRAM_FRAME_RD_EN <= '1';
36 END IF;
37 -- inside the 752 columns (i.e., DCMI image width) in the frame centre
38 IF r_VGA_POS_X >= w_VGA_MARGIN_LEFT AND r_VGA_POS_X < w_VGA_MARGIN_RIGHT

THEN↪→

39 -- load BRAM output to the variable, request next read
40 IF r_VGA_OFFSET = 0 THEN
41 v_PIXELS := r_BRAM_FRAME_RD_DATA;
42 r_BRAM_FRAME_RD_ADDR <=

STD_LOGIC_VECTOR(UNSIGNED(r_BRAM_FRAME_RD_ADDR) + 1);↪→

43 r_BRAM_FRAME_RD_EN <= '1';
44 END IF;
45 -- set the lowest byte (greyscale pixel) to output RGB channels
46 HDMI_TX_D <= v_PIXELS(7 DOWNTO 0) & v_PIXELS(7 DOWNTO 0) & v_PIXELS(7

DOWNTO 0);↪→

47 -- [...] also, output current pixel to the FAST-like alg. signals
48 -- shift the pixel buffer right by 1 element
49 v_PIXELS(v_PIXELS'HIGH - 8 DOWNTO 0) := v_PIXELS(v_PIXELS'HIGH DOWNTO

8);↪→

50 -- increment current offset within the loaded bytes
51 r_VGA_OFFSET <= r_VGA_OFFSET + 1;
52 ELSE
53 r_VGA_OFFSET <= (OTHERS => '0');
54 END IF;
55 END IF;
56

57 IF r_VGA_POS_X >= 0 AND r_VGA_POS_X < w_VGA_ACTIVE_WIDTH AND r_VGA_POS_Y
>= 0 AND r_VGA_POS_Y < w_VGA_ACTIVE_HEIGHT THEN↪→

58 HDMI_TX_DE <= '1'; -- set the data enable signal
59 END IF;
60 IF r_VGA_POS_X >= (w_VGA_ACTIVE_WIDTH + w_VGA_H_FRONT_PORCH) AND

r_VGA_POS_X < (w_VGA_ACTIVE_WIDTH + w_VGA_H_FRONT_PORCH +
w_VGA_H_SYNC_PULSE) THEN

↪→

↪→

61 HDMI_TX_HS <= '1'; -- set the horizontal sync signal
62 END IF;
63 IF r_VGA_POS_Y >= (w_VGA_ACTIVE_HEIGHT + w_VGA_V_FRONT_PORCH) AND

r_VGA_POS_Y < (w_VGA_ACTIVE_HEIGHT + w_VGA_V_FRONT_PORCH +
w_VGA_V_SYNC_PULSE) THEN

↪→

↪→

64 HDMI_TX_VS <= '1'; -- set the vertical sync signal
65 END IF;
66 END IF;
67 END PROCESS;
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The following list summarises the key aspects of the VGA implementation. Most

of the implementation parts are not included in the code excerpt above because of
the code length.

. The VHDL implementation also loads the binary values for the corresponding
image pixels from two binary masks updated by the FAST process (i.e., from
two additional BRAM memory instances). The masks are used to label the
pixels belonging to the sun projection (i.e., the points with the sun potential)
and to highlight detected marker points. The sun pixels are visualised by a
yellow colour and the markers are surrounded by blue rectangles.. The BRAM memory instance holding the DCMI frames was accessed through
the same port of its dual-port interface. For this purpose, the single port was
split into one read interface and one write interface. An additional process was
used for organisation of the write requests (DCMI) and read requests (VGA)
with a capability to remember single pending request when another request is
currently being handled.. The second port of the BRAM’s dual-port interface was used by the HPS. This
way, the HPS was able read the DCMI image frames and store them in real time
on a SD card, it was also able to write frames loaded from stored recordings to
the BRAM memory. The VGA process was then able to work the same way for
both of the video sources.. The implementation also sets FPGA-to-HPS interrupt signals to notify the HPS
about the last read request of the image frame from the BRAM.. The video frames could be paused using the second on-board key button (i.e.,
showing a constant image frame). If the video images were sourced by the
HPS, the HPS effectively stopped/restored loading of the stored recordings
from the SD card.. The VGA process was used as a source of the pixel data for the FAST-like
VHDL process, thus the FAST-like implementation was not dependent on the
DCMI interface (and the camera board) and could be used entirely just with
the HPS.. For visualisation purposes, a raster ASCII font was stored in additional ROM
memory, so additional information could displayed. This feature is described
in the following section.

Displaying a raster font in the video output

A raster font with symbol sizes of 16x12 pixels was taken from [53]. The symbols
were transformed from the C arrays to a binary representation and stored in a
Memory Initialisation File (MIF), that was used for initialisation of a ROM memory.
Each symbol took exactly 256 bits (32 bytes) of the memory and there were 97
symbols in total (starting with a 32th ASCII symbol used for white space), resulting
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in total utilisation of 3104 bytes of the memory. The ROM memory data port
width was selected as 256-bit to match the symbol size, then each ROM address
corresponded exactly to one symbol and every symbol could be read during a single
VGA clock cycle.

Below is a VHDL procedure used in the VGA process for drawing strings to the
output video stream.

Code 4.4: VHDL procedure used for displaying fonts in the VGA output.

1 VARIABLE v_SYM_BIT : STD_LOGIC := '0';
2 VARIABLE v_SYM_IDX : INTEGER RANGE 0 TO 63 := 0;
3 VARIABLE v_BIT_IDX : INTEGER RANGE 0 TO 12 := 0;
4

5 PROCEDURE f_DRAW_STRING (CONSTANT str : IN STRING; CONSTANT x : IN INTEGER;
CONSTANT y : IN INTEGER; CONSTANT rgb : IN INTEGER) IS↪→

6 BEGIN
7 IF r_VGA_POS_X >= x AND r_VGA_POS_X < (x + (v_BIT_IDX'HIGH * str'LENGTH))

AND r_VGA_POS_Y >= y AND r_VGA_POS_Y < (y + 16) THEN↪→

8 IF r_VGA_POS_X = x THEN
9 v_SYM_IDX := 0;

10 v_BIT_IDX := 0;
11 END IF;
12 IF v_SYM_IDX < str'LENGTH THEN
13 r_ROM_FONT_ADDR <=

STD_LOGIC_VECTOR(to_unsigned(CHARACTER'POS(str(v_SYM_IDX + 1)) - 32,
r_ROM_FONT_ADDR'LENGTH));

↪→

↪→

14 v_SYM_BIT := r_ROM_FONT_DATA(v_BIT_IDX + 16 * (to_integer(r_VGA_POS_Y) -
y));↪→

15 IF v_SYM_BIT = '1' THEN
16 HDMI_TX_D <= STD_LOGIC_VECTOR(to_unsigned(rgb, HDMI_TX_D'LENGTH));
17 END IF;
18 v_BIT_IDX := v_BIT_IDX + 1;
19 IF v_BIT_IDX = v_BIT_IDX'HIGH THEN
20 v_SYM_IDX := v_SYM_IDX + 1;
21 v_BIT_IDX := 0;
22 END IF;
23 END IF;
24 END IF;
25 END PROCEDURE;

The procedure must have been called inside the VGA process body. One of the
calls of the VHDL procedure is shown in the code excerpt below.

Code 4.5: Call of the VHDL procedure for a string constant visualisation.

1 IF r_VIDEO_SRC_RUNNING = '1' THEN
2 f_DRAW_STRING("Running", w_VGA_MARGIN_LEFT, w_VGA_MARGIN_TOP - 20,

16#00FF00#);↪→

3 ELSE
4 f_DRAW_STRING("Stopped", w_VGA_MARGIN_LEFT, w_VGA_MARGIN_TOP - 20,

16#FF0000#);↪→

5 END IF;
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Timing constraints for the HDMI transmitter signals

Similarly as for the DCMI interface, the signal inputs and outputs of the HDMI
transmitter must have been constrained. The setup and hold times were taken from
the ADV7513 datasheet [52] and added to the SDC file as shown below.

Code 4.6: SDC timing constraints for the HDMI transmitter (VGA input) interface

1 set CLOCK_40
{e_PLL|pll_inst|altera_pll_i|general[1].gpll~PLL_OUTPUT_COUNTER|divclk}↪→

2

3 set HDMI_CLK_PERIOD [get_clock_info -period [get_clocks ${CLOCK_40}]]
4 set HDMI_TSU 1.8 # nanoseconds
5 set HDMI_TH 1.3 # nanoseconds
6 set HDMI_PAD 0.3 # nanoseconds
7 set HDMI_MAX [expr ${HDMI_CLK_PERIOD} - ${HDMI_TSU} - ${HDMI_PAD}]
8 set HDMI_MIN [expr ${HDMI_CLK_PERIOD} + ${HDMI_TH} + ${HDMI_PAD}]
9

10 set_output_delay -clock [get_clocks ${CLOCK_40}] -max ${HDMI_MAX}
[get_ports {HDMI_TX_CLK}]↪→

11 set_output_delay -clock [get_clocks ${CLOCK_40}] -min ${HDMI_MIN}
[get_ports {HDMI_TX_CLK}]↪→

12 set_output_delay -clock [get_clocks ${CLOCK_40}] -max ${HDMI_MAX}
[get_ports {HDMI_TX_D[*]}]↪→

13 set_output_delay -clock [get_clocks ${CLOCK_40}] -min ${HDMI_MIN}
[get_ports {HDMI_TX_D[*]}]↪→

14 set_output_delay -clock [get_clocks ${CLOCK_40}] -max ${HDMI_MAX}
[get_ports {HDMI_TX_DE}]↪→

15 set_output_delay -clock [get_clocks ${CLOCK_40}] -min ${HDMI_MIN}
[get_ports {HDMI_TX_DE}]↪→

16 set_output_delay -clock [get_clocks ${CLOCK_40}] -max ${HDMI_MAX}
[get_ports {HDMI_TX_HS}]↪→

17 set_output_delay -clock [get_clocks ${CLOCK_40}] -min ${HDMI_MIN}
[get_ports {HDMI_TX_HS}]↪→

18 set_output_delay -clock [get_clocks ${CLOCK_40}] -max ${HDMI_MAX}
[get_ports {HDMI_TX_VS}]↪→

19 set_output_delay -clock [get_clocks ${CLOCK_40}] -min ${HDMI_MIN}
[get_ports {HDMI_TX_VS}]↪→

20 set_input_delay -clock [get_clocks ${CLOCK_40}] -max ${HDMI_MAX}
[get_ports {HDMI_TX_INT}]↪→

21 set_input_delay -clock [get_clocks ${CLOCK_40}] -min ${HDMI_MIN}
[get_ports {HDMI_TX_INT}]↪→

Final visualisation sample

A sample frame of the HDMI video output (800x600 pixels) is shown in fig. 4.6.
The image frames were sourced by the HPS from a recording stored in the SD
card. The visualisation shows the current video frame colourised using the binary
masks from the FAST-like algorithm process and a following textual information: a
running/stopped state of the video source, the current frame number, an average
HDMI output FPS value calculated by the VGA process, an elapsed time since the
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board power-up, a number of the detected markers and a number of the detected
sun points (ordered from the top-left image corner).

Figure 4.6: A sample frame captured from the HDMI video output.

4.5 FAST-like Algorithm

The architecture for the VHDL implementation of the FAST-like algorithm has been
already presented in the chapter 2.

VHDL subtypes t_PIX_INT, t_SHIFT_INT and t_COORD_INT are defined as inte-
gers with ranges sufficient for the contained values. Subtype t_PIX_VEC is defined
as a STD_LOGIC_VECTOR with a size matching its integer counterpart. VHDL types
with t_ARR_ prefix are defined as arrays of the subtypes (variable lengths).

Two similar VHDL entities were defined for both radii of 3 and 4 pixels of the
algorithm’s neighbourhood. The entity definition for the radius of 3 pixels is shown
in the code excerpt below.

Code 4.7: VHDL entity of the FAST-like algorithm using radius of 3 pixels.

1 ENTITY fast_r3 IS
2 GENERIC (
3 g_RAM_NUM : t_SHIFT_INT := 9; -- defined by the largest used radius
4 g_SIZE : t_SHIFT_INT := 7 -- (or 9 for the radius of 4 pixels)
5 );
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6 PORT (
7 i_CLOCK : IN STD_LOGIC; -- clock signal input
8 i_NRST : IN STD_LOGIC; -- reset signal input
9 i_THRESHOLD : IN t_PIX_INT := 120; -- threshold value signal input

10 i_DATA : IN t_ARR_PIX_VEC(0 TO g_RAM_NUM - 1) := (OTHERS => (OTHERS
=> '0')); -- array input containing the pixels of the current column↪→

11 i_ROW_SHIFT : IN t_SHIFT_INT := 0; -- row shift signal input
12 o_DET_COL : OUT t_SHIFT_INT := 0; -- detection column output
13 o_DET_ROW : OUT t_SHIFT_INT := 0; -- detection row output
14 o_SUN_POT : OUT STD_LOGIC := '0'; -- sun potential output
15 o_MARKER_POT : OUT STD_LOGIC := '0'; -- marker potential output
16 o_VALID : OUT STD_LOGIC := '0' -- valid signal output
17 );
18 END ENTITY;

The RTL architecture of this entity implements the following auxiliary signals.

Code 4.8: VHDL RTL architecture signals of the FAST-like implementation.

1 -- internal LUTs used to store the intermediate results
2 SIGNAL r_CENTER_ARR : t_ARR_PIX_INT(0 TO g_SIZE-1) := (OTHERS => 0);
3 SIGNAL r_MAX_BOUND_ARR : t_ARR_PIX_INT(0 TO g_SIZE-1) := (OTHERS => 0);
4 SIGNAL r_MIN_BOUND_ARR : t_ARR_PIX_INT(0 TO g_SIZE-1) := (OTHERS =>

t_PIX_INT'HIGH);↪→

5 SIGNAL r_MAX_INT_ARR : t_ARR_PIX_INT(0 TO g_SIZE-1) := (OTHERS => 0);
6 SIGNAL r_MAX_INT_COL_ARR : t_ARR_SHIFT_INT(0 TO g_SIZE-1) := (OTHERS => 0);
7 SIGNAL r_MAX_INT_ROW_ARR : t_ARR_SHIFT_INT(0 TO g_SIZE-1) := (OTHERS => 0);
8 -- signals containing threshold-related and coordinate-related values
9 SIGNAL r_THR_HALF : t_PIX_INT := 0; -- half of the threshold input

10 SIGNAL r_THR_X2 : t_PIX_INT := 0; -- double of the threshold
input↪→

11 SIGNAL r_ROW_SHIFT_PREV : t_SHIFT_INT := g_SIZE;
12 CONSTANT c_CENTER_POS : t_SHIFT_INT := g_SIZE / 2;

The following procedures are used in the VHDL process for calculation of the
column and row indices.

Code 4.9: VHDL procedures used in the FAST-like implementation.

1 -- procedure for calculation of the column index
2 PROCEDURE f_GET_COL_INDEX (
3 VARIABLE shift : IN t_SHIFT_INT;
4 CONSTANT column : IN t_SHIFT_INT;
5 VARIABLE col_index : OUT t_SHIFT_INT
6 ) IS
7 VARIABLE i : t_SHIFT_INT;
8 BEGIN
9 i := shift;

10 IF column > shift THEN
11 i := i + g_SIZE;
12 END IF;
13 col_index := i - column;
14 END PROCEDURE;
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15 -- procedure for calculation of the row index
16 PROCEDURE f_GET_ROW_INDEX (
17 SIGNAL shift : IN t_SHIFT_INT;
18 CONSTANT row : IN t_SHIFT_INT;
19 VARIABLE row_index : OUT t_SHIFT_INT
20 ) IS
21 VARIABLE i : t_SHIFT_INT;
22 BEGIN
23 i := shift + row;
24 IF i >= g_RAM_NUM THEN
25 i := i - g_RAM_NUM;
26 END IF;
27 row_index := i;
28 END PROCEDURE;

The main VHDL process also uses several auxiliary variables to store intermediate
results. The process runs synchronously at rising_edge(i_CLOCK) and the VHDL
code can be separated into the following parts based on their purpose...1. The initial part. Most importantly, the pixels from the column array are

organised into an auxiliary LUT variable v_PIXELS in the correct order.

Code 4.10: Initial part of the main VHDL process.

1 -- column shift reset on a new row
2 IF r_ROW_SHIFT_PREV /= i_ROW_SHIFT THEN
3 v_PROCESS_RES := '0';
4 v_COL_SHIFT := 0;
5 END IF;
6 r_ROW_SHIFT_PREV <= i_ROW_SHIFT;
7

8 -- reorder the column pixels
9 FOR r IN 0 TO g_SIZE - 1 LOOP

10 f_GET_ROW_INDEX(i_ROW_SHIFT, r, v_ROW_INDEX);
11 v_PIXELS(r) := to_integer(UNSIGNED(i_DATA(v_ROW_INDEX)));
12 END LOOP;..2. The comparison part. In the following excerpt, only the comparisons related

to the second column of the FAST image patch are shown. All columns are
processed in a similar manner.

Code 4.11: Comparison part (excerpt) of the main VHDL process.

1 -- get correct array column index for column 1
2 f_GET_COL_INDEX(v_COL_SHIFT, 1, v_COL_INDEX);
3

4 -- load current LUT values to auxiliary variables
5 v_MAX_BOUND_VAL := r_MAX_BOUND_ARR(v_COL_INDEX);
6 v_MIN_BOUND_VAL := r_MIN_BOUND_ARR(v_COL_INDEX);
7 v_MAX_INT_VAL := r_MAX_INT_ARR(v_COL_INDEX);
8 v_MAX_INT_COL := r_MAX_INT_COL_ARR(v_COL_INDEX);
9 v_MAX_INT_ROW := r_MAX_INT_ROW_ARR(v_COL_INDEX);

10
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11 -- obtain current column comparison results
12 IF v_PIXELS(1) > v_MAX_BOUND_VAL THEN
13 v_MAX_BOUND_VAL := v_PIXELS(1);
14 END IF;
15 IF v_PIXELS(1) < v_MIN_BOUND_VAL THEN
16 v_MIN_BOUND_VAL := v_PIXELS(1);
17 END IF;
18 IF v_PIXELS(2) > v_MAX_INT_VAL THEN
19 v_MAX_INT_VAL := v_PIXELS(2);
20 v_MAX_INT_COL := 1;
21 v_MAX_INT_ROW := 2;
22 END IF;
23 IF v_PIXELS(3) > v_MAX_INT_VAL THEN
24 v_MAX_INT_VAL := v_PIXELS(3);
25 v_MAX_INT_COL := 1;
26 v_MAX_INT_ROW := 3;
27 END IF;
28 IF v_PIXELS(4) > v_MAX_INT_VAL THEN
29 v_MAX_INT_VAL := v_PIXELS(4);
30 v_MAX_INT_COL := 1;
31 v_MAX_INT_ROW := 4;
32 END IF;
33 IF v_PIXELS(5) > v_MAX_BOUND_VAL THEN
34 v_MAX_BOUND_VAL := v_PIXELS(5);
35 END IF;
36 IF v_PIXELS(5) < v_MIN_BOUND_VAL THEN
37 v_MIN_BOUND_VAL := v_PIXELS(5);
38 END IF;
39

40 -- store column comparison results to the LUTs
41 r_MAX_BOUND_ARR(v_COL_INDEX) <= v_MAX_BOUND_VAL;
42 r_MIN_BOUND_ARR(v_COL_INDEX) <= v_MIN_BOUND_VAL;
43 r_MAX_INT_ARR(v_COL_INDEX) <= v_MAX_INT_VAL;
44 r_MAX_INT_COL_ARR(v_COL_INDEX) <= v_MAX_INT_COL;
45 r_MAX_INT_ROW_ARR(v_COL_INDEX) <= v_MAX_INT_ROW;..3. The final (result processing) part. When one full cycle of columns (of the

size of the image patch) passes, the final decisions about the candidate point
potentials are made.

Code 4.12: Final evaluation part of the main VHDL process.

1 -- increase column shift (modulo the patch size)
2 v_COL_SHIFT := v_COL_SHIFT + 1;
3 IF v_COL_SHIFT = g_SIZE THEN
4 v_COL_SHIFT := 0;
5 v_PROCESS_RES := '1'; -- enable result processing
6 END IF;
7

8 -- process results if the LUT values are ready
9 IF v_PROCESS_RES = '1' THEN

10 -- load LUT values to the auxiliary variables
11 v_CENTER_VAL := r_CENTER_ARR(v_COL_SHIFT);
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12 v_MAX_BOUND_VAL := r_MAX_BOUND_ARR(v_COL_SHIFT);
13 v_MIN_BOUND_VAL := r_MIN_BOUND_ARR(v_COL_SHIFT);
14 v_MAX_INT_COL := r_MAX_INT_COL_ARR(v_COL_SHIFT);
15 v_MAX_INT_ROW := r_MAX_INT_ROW_ARR(v_COL_SHIFT);
16

17 -- evaluate the loaded values
18 IF v_CENTER_VAL > i_THRESHOLD THEN
19 IF v_MAX_BOUND_VAL <= v_CENTER_VAL AND (v_CENTER_VAL -

v_MAX_BOUND_VAL) >= r_THR_HALF THEN↪→

20 -- the marker potential was preserved
21 r_MARKER_POT <= '1';
22 r_SUN_POT <= '0';
23 r_DET_COL <= v_MAX_INT_COL;
24 r_DET_ROW <= v_MAX_INT_ROW;
25 r_VALID <= '1';
26 ELSE
27 r_MARKER_POT <= '0';
28 IF v_CENTER_VAL > r_THR_X2 AND (v_MIN_BOUND_VAL >= v_CENTER_VAL OR

(v_CENTER_VAL - v_MIN_BOUND_VAL) <= r_THR_HALF) THEN↪→

29 -- the sun potential was preserved
30 r_DET_COL <= c_CENTER_POS;
31 r_DET_ROW <= c_CENTER_POS;
32 r_SUN_POT <= '1';
33 r_VALID <= '1';
34 ELSE
35 r_VALID <= '0';
36 END IF;
37 END IF;
38 ELSE
39 r_MARKER_POT <= '0';
40 r_SUN_POT <= '0';
41 r_VALID <= '0';
42 END IF;
43

44 -- reset the LUT values to defaults
45 r_MAX_BOUND_ARR(v_COL_SHIFT) <= 0;
46 r_MIN_BOUND_ARR(v_COL_SHIFT) <= t_PIX_INT'HIGH;
47 r_MAX_INT_ARR(v_COL_SHIFT) <= 0;
48 r_MAX_INT_COL_ARR(v_COL_SHIFT) <= 0;
49 r_MAX_INT_ROW_ARR(v_COL_SHIFT) <= 0;
50 END IF;

The VHDL code of the middle (comparison) part was generated using a parame-
terisable Python script taking the neighbourhood radius as one of its parameters.
This is the only part where the architectures of the both entities (for the two radii)
differ, the other parts of the process remain the same.

As mentioned in the previous section, both entities are driven synchronously
with the VGA process and use the 9 line buffers (LUTs) that are filled by pixels
obtained from the BRAM memory containing the full image frame. Thus one more
process running at the VGA clock is defined inside the top entity, which takes care
of:
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. Storing the pixel values provided by the VGA process into the 9 line buffers

(i.e., 9 single-port BRAM instances), keeping the FAST-like entities at reset until
a sufficient number of line buffers is ready.. Keeping track of the current pixel coordinates in order to compute the image
frame coordinates of the valid detected points.. Filtering the valid detected points based on their mutual distances using the
previous detected point coordinates stored in an additional LUT. This step
removes possible detection duplicates emerging from single or both of the
entities.. Providing the filtered detection results to the HPS and notifying it using FPGA-
to-HPS interrupt signals..Drawing the filtered detection results into the two binary masks used for
visualisation (as described in the previous section).

4.6 Hard Processor System (HPS)

The Cyclone V SoC HPS primarily contains a MPU (Microprocessor Unit) subsystem
with two ARM Cortex-A9 cores, subsystems for memory controllers (SDRAM,
FLASH and on-chip RAM), PLLs, interface peripherals and HPS-FPGA interfaces,
as shown in fig. 4.7. Both HPS and FPGA portions of the device have separate
power supplies, thus the HPS can run independently on the power state of the
FPGA (however the FPGA can be used only when the HPS is running). [54]

Figure 4.7: Altera SoC FPGA Device Block Diagram. [54]

The FPGA configuration scheme is determined by a 6-pin DIP switch placed on
the DE10-Nano board. By factory default, the FPGA is configured to be flashed
with a pre-programmed FPGA design image from an EPCS (a flash memory) device,
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that can be changed using the USB-Blaster on-board programmer. For this project, I
decided to set all positions of the DIP switch to "enabled" state, which means the
FPGA is configured from the HPS software, i.e., an compiled FPGA design image is
loaded from the SD card during boot time of the HPS. Also, the FPGA can be still
reprogrammed via JTAG using the USB-Blaster programmer during run time.

4.6.1 Initial Setup

The firmware for the MPU subsystem can be built in the two most common ways:..1. As a "Bare Metal" - This approach starts with compiling a Minimal Preloader
(MPL) provided in the Altera SoC Embedded Software and Tools (EDS) Suite
using an included cross-compiler (which is a port of arm-altera-eabi-gcc).
The EDS also contains Altera’s hardware libraries enabling a direct manage-
ment of the HPS peripherals using the memory-mapped registers, which can
be compiled together with the user application source code...2. As a Linux Operating System - The approach is similar to the Bare Metal option,
it consists of compiling a U-Boot Linux boot loader [55], a Linux kernel for
SoC-FPGA devices [56] and the preferred Linux distribution for the root file
system (e.g., Debian or Arch Linux) using a common ARM cross compiler with
enabled hardware floating point support (i.e., arm-linux-gnueabihf-gcc).

For both options, all the cross-compiled parts must be placed into correctly
formatted partitions of the selected boot media (e.g., the SD card or the FLASH
memory).

I chose the latter option because of the rich set of peripheral drivers in the Linux
kernel (e.g., for the Ethernet or I2C) and also because of the simplicity of compilation
of the user space applications directly in the device without a need for the cross-
compiler. Additional applications can be installed easily using the distribution’s
package manager (such as apt) while accessing the OS through, for example, a
local SSH connection. These benefits, however, come at the cost of leaving direct
control over the computational resources and over several of the memory-mapped
peripherals to the Linux kernel, mainly to its unpredictable scheduler [57] and its
memory manager.

A simple boot media image-building script was written, that performed the
following steps:..1. Cloning of the latest versions of the repositories, [55] and [56] (i.e., U-Boot

v2022.10 and kernel socfpga-5.19 at the time of the build)...2. Performance of all required modifications to the cloned files, e.g., a new device
MAC address was generated, the boot command was edited to process a boot
script which loads the FPGA design during each HPS boot, etc...3. Creation of a Debian root file system of the latest bullseye distribution version
using a debootstrap utility. Using a chroot session inside the created Debian
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file system, all needed modifications (an Ethernet configuration, a SSH access,
etc.) were made, including an installation of the apt packages...4. Using a new makefile, both cloned repositories together with a custom boot
script and with a kernel Device Tree Source (DTS) file were cross-compiled.
The primary purpose of Device Tree in Linux is to provide a way to describe
non-discoverable hardware and its configuration, such as the HPS peripherals,
the PLLs or the FPGA-HPS bridges. Along with the boot loader, a secondary
program loader (SPL) was also compiled. Unlike the primary program loader,
which loads a code from the ROM memory, the SPL loads the actual boot loader
and then the kernel from the boot media partitions...5. A new virtual boot media image file was created and mounted, containing 3
partitions with the following boot order:..a. U-Boot and SPL partition with a size of 1MiB and a custom Altera file

system type. The SPL in a binary form was placed into this partition...b. Kernel and Device Tree partition with a size of 254MiB and a fat32 file
system type. Apart from the compiled DTS file and the Linux kernel files,
the compiled boot script and the compiled FPGA design raw binary file
(RBF) from Quartus were copied into this partition...c. Root file system partition consuming the remaining space of the image
file and with a ext4 file system type. The complete pre-configured Debian
distribution was copied into this partition.

The boot media image file created by the script was flashed to a microSD card.
This concluded the initial HPS setup.

4.6.2 FPGA-HPS Communication using AXI/Avalon Interfaces

In the Quartus software, the VHDL entity for the HPS was created by the Platform
Designer (QSYS) tool. The input and output ports of the entity are given by the
used intellectual property (IP) blocks and by the Arria V/Cyclone V Hard Processor
System IP block configuration. The HPS block was configured with the correct DDR
memory timings (taken from the GHRD project). The HPS-FPGA bridges and the
HPS peripherals were enabled and/or disabled for the needs of this project using
this IP block.

All interfaces for a direct FPGA-HPS communication are built upon the AXI and
the Avalon interfaces. Both of the interfaces are compatible in their design, they
use a master-slave bus topology and offer variable address and data bus sizes. The
AXI interface is used as a universal bus to connect any utilised IP blocks to several
unidirectional AXI bridges, namely HPS-to-FPGA (32-/64-128-bit), FPGA-to-HPS
(32-/64-128-bit), lightweight 32-bit HPS-to-FPGA and up to six SDRAM FPGA-to-
HPS (i.e., directly to the DDR memory, 32-/64-/128-/256-bit). All the FPGA-HPS
interfaces are memory-mapped on the HPS side, i.e., the components connected to
the preferred AXI bridge can be accessed from the HPS software using the bridge’s
fixed memory address and the component’s address offset.
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4.6.3 Input/Output IP blocks

The PIO (Parallel Input/Output) Intel FPGA IP blocks were used for data sharing
between the FPGA and the HPS. One input and one output 32-bit blocks were used
to share basic configuration data (such as the running/stopped state of the video
source or the HPS software states), one output 32-bit block was used by the HPS to
set the threshold value of the FAST-like algorithm FPGA implementation from the
software and one input 32-bit block was used to transfer detection coordinates and
potential bits to the HPS software. All the blocks were connected to the lightweight
32-bit HPS-to-FPGA bridge which is accessible at a memory address 0xFF200000.

4.6.4 Handling FPGA-to-HPS Interrupts

Apart from the aforementioned AXI bridges, the HPS also offers two 32-bit FPGA-
to-HPS interrupt vectors to be triggered from the FPGA fabric (i.e., 64 f2h_irqX
VHDL signals). In the HPS partition, these vectors are connected to the ARM
Generic Interrupt Controller (GIC). The GIC is a part of the MPU and also processes
interrupt signals from the HPS peripherals. It enables the HPS firmware code to be
interrupted by asynchronous hardware events without a need for any CPU-blocking
mechanism (for checking of state changes).

In this project, the Linux kernel was used and a kernel module had to be devel-
oped and inserted during the boot time to make the interrupts available to the user
space software. The GIC and the associated interrupts had to be enabled in the
kernel DTS file.

The software then used the common poll method to catch the asynchronous
interrupts from the FPGA fabric, which was especially useful, e.g., when registering
the states of the VHDL process for the VGA output, because the next image frame of
the stored video recording could be immediately transferred using a DMA controller
to the BRAM memory as soon as the VGA process processed the previous image
frame.

4.6.5 Sharing Memory Resources with the FPGA

Three different ways of accessing the memory resources of the FPGA from the HPS
(such as the BRAM) and the HPS memory resources from the FPGA (such as the
DDR memory) in the Cyclone V SoC are presented below...1. Via a DMA Controller FPGA IP block - In the Platform Designer, this IP block

has a control Avalon slave port, a write Avalon master port and a read Avalon
master port. The control port may be connected to the HPS-to-FPGA bridge
or to the lightweight bridge, and is configured through its memory-mapped
registers at the corresponding address by the HPS software. The read port is
connected either to the FPGA-to-HPS AXI slave or to the SDRAM AXI slave,
the write port is connected to a slave port of the BRAM instance initialised by a
On-Chip Memory (RAM or ROM) Intel FPGA IP block in the Platform Designer.
This way, the content of a DDR memory is transferred to the BRAM memory
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on a request from the HPS software, the opposite data transfer direction can
be performed by switching the read and write ports. There is no way to
asynchronously initiate a DMA transfer from the FPGA side...2. Via an ARM DMA-330 Controller inside the MPU - The On-Chip Memory
block’s slave port is connected directly to the HPS-to-FPGA bridge. The DMA-
330 controller is configured through its own registers by the HPS software
and can access the connected BRAM memory directly at a memory address
0xFFFF0000. A DMA transfer can be initiated from the FPGA side using a WFP
(Wait For Peripheral) instruction of the controller that must be stored in the
controller’s microcode, which is prepared by the HPS software beforehand.
The DMA interrupt is triggered from the FPGA side using DMA peripheral
requests enabled in the HPS block (i.e., up to 8 f2h_dma_reqX VHDL signals)
and the DMA transfers work bidirectionally...3. Via a custom Platform Designer component written in a SystemVerilog lan-
guage - A custom AXI master/slave interface needs to be written and all the
AXI interface signals need to be handled manually. The FPGA side has a full
control over the SDRAM memory transfers in this case, the custom block is
invisible to the HPS without additional control circuitry.

After trying all the aforementioned options, I decided to use the ARM DMA-330
controller and I used a control hardware library included in the Altera EDS Suite.
Because I was not able to get the DMA request peripherals working, I used the
FPGA-to-HPS interrupts to start the execution of the DMA microcode from the HPS
software.

To be able to use any DMA controller to access the DDR memory, a coherent
page-aligned buffer in the kernel space had to be allocated. The Linux OS used
a page size of 4kB (0x1000 in hexadecimal) on 32-bit systems, which can be also
determined by the type of the DDR3 memory chip used. To make the allocated
buffer memory-mappable by the user space software, a publicly available kernel
module u-dma-buf [58] was utilised.

The On-Chip RAM (BRAM) memory was initialised with a 128-bit (16B) data
width, which is also the maximum data width of the HPS-to-FPGA interface. The
size of 360960 bytes was expanded to a page-aligned size to achieve the fastest
DMA transfers, thus 364544 bytes (0x59000 in hexadecimal) of the BRAM resources
were seized. The u-dma-buf kernel driver was configured by the kernel DTS file to
allocate a buffer of the same size in the DDR RAM memory during the boot time.

4.6.6 Software Description

The user space software was written completely in C language and it was con-
figured to be started by a systemd service in a detached tmux session after the
OS boots. When the tmux application is used, the terminal task in which the soft-
ware is executed can be accessed from any SSH connection and does not terminate
automatically when detached.

Several terminal commands were defined to control the application’s mode:
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................................. 4.6. Hard Processor System (HPS)..1. Grabbing the camera images - When the application was put into this mode,
the FPGA-to-HPS interrupts from the DCMI process were registered as soon as
the camera image was completely stored in the BRAM memory. Then the DMA
transfer was executed to transfer the camera image from the on-chip BRAM to
the image buffer in the DDR RAM memory. The images could be stored into
the file system in a raw binary form or compressed using a JPEG library...2. Playing the stored camera recordings - The application was able to read the
camera images from the file system to the image buffer, that was transferred
to the on-chip BRAM memory using a DMA transfer as soon as an interrupt
from the VGA process was registered. It also provided the frame number via
the PIO output component to the VGA process and the control output PIO
component was used to temporarily disable the DCMI process.

The application also stored the incoming detection results for their later compari-
son with the results from the current ROS implementation.

4.6.7 Complete Platform Designer Project

The complete Platform Designer project is shown in fig. 4.8. Most of the components
are described in the previous sections.

The On-Chip Memory component’s Avalon slave port is routed to the FPGA fabric
via an External Bus to Avalon Bridge IP block. The external bus signals are the
address bus, write and read buses, read and write enable signals, byte enable signals
and an acknowledge signal. Except the byte enable signals and the acknowledge
signal, the interface can be operated in the same way as a port of a BRAM instance
initialised by an Altera 1-port/2-port RAM IP block in Quartus. All bytes were
enabled as all 16 bytes were always read/written at once, the acknowledge bit
is used by the external bus interface to notify the FPGA fabric when read/write
operations are finished and the data is available on the data bus.

All the memory-related components were driven by the 160MHz clock signal
from the PLL circuit, the HPS and the PIO components were driven by the default
50MHz clock.
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Figure 4.8: Complete platform designer project.

4.7 Total Resources Utilisation

The total utilisation of the FPGA resources was taken from the Fitter summary in
the Quartus compilation report and is shown in table 4.4.
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Resource name Total usage

Logic utilization (in ALMs) 16479 / 41910 (39%)

Total registers 8686

Total pins 138 / 314 (44%)

Total block memory bits 3717248 / 5662720 (66%)

Total RAM Blocks (M10K) 496 / 553 (90%)

Total DSP Blocks 102 / 112 (91%)

Total PLLs 1 / 6 (17%)

Total DLLs 1 / 4 (25%)

Table 4.4: Total FPGA resources utilisation.

4.8 Complete Project Structure

A block diagram for the complete FPGA and HPS project structure is shown in fig.
4.9. Several less important interfaces and entities were omitted for simplification of
the block diagram.
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Figure 4.9: Complete project structure block diagram.

69



70



Chapter 5
Discussion & Future Work

5.1 Shortcomings of the FPGA Implementation

As it can be seen in the table 4.4, the FPGA implementation almost depleted all
BRAM resources due to the storage of whole camera images, which are however
needed for the visualisation by the VGA process.

At first, this project was designed without the HPS part in mind and thus only
minimal design changes were then performed when the HPS was added to the
project. Nonetheless, if a custom component interfacing the SDRAM Controller of
the HPS was implemented, the DMA controller could be omitted from the project
completely and the DDR RAM memory could be accessed from the FPGA fabric
the same way as the BRAM memory. This would release 384 M10K blocks (about
69% of the total BRAM size). Thus, this implementation change is considered as an
important step in the future.

5.2 Feasible HT4D FPGA Implementation

The current 4D Hough Transform algorithm cannot be directly used for a FPGA
implementation due to its untractable memory requirements. However, another
feasible approach was partially tested with a Python implementation, which does
not require the Hough space to be stored in the memory. The hybrid mask sizes
are limited in their size (as described in chapter 2 and as shown in fig. 1.9) and
when applied to overly distinct t-points, they cannot overlap in the Hough space. In
turn, this approach also does not require pre-generated hybrid masks but conducts
the voting process locally by evaluating the overlapping hybrid mask columns in
parallel for all t-points in a reasonable radius. Thus, instead of inserting all the
t-points to one global accumulator, the t-points were inserted to multiple smaller ac-
cumulators (clusters) based on the possible overlaps in the Hough space (i.e., based
on the mutual distances of all stored t-points). However, due to lack of time during
development of this project, this approach was not tested in VHDL simulation, but
the significant reduction of memory requirements makes this approach a promising
idea to be tested properly on the FPGA in future.
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5.3 Running ROS Distribution for Comparison of Results

Another feature which is planned to be implemented in future is running a ROS
distribution directly on the HPS in the Linux user space. This would allow for a
quick and simple comparison of the results obtained from the FPGA architecture
with the current ROS implementation of the UVDAR system. However, I was
unable to compile the ROS distribution under the Debian distribution due to a large
number of unresolved dependencies on the ARM architecture.

5.4 Embedded Application of the UVDAR System

The ultimate goal of a follow-up work on this project is embedding the UVDAR
system into an independent device. Such device should contain a CMOS imaging
chip and computational resources. Due to the current low availability of discrete
FPGA chips on the market, an embedded MCU can be considered for this task. The
choice of the MCU also simplifies the final board design of the device as MCUs
are usually available in a quad flat package (QFP), unlike most of the FPGA chips
available only in a ball grid array (BGA) packages.

Proposed board designs for a two-part embedded device are visualised in figures
5.1 (a camera board) and 5.2 (a MCU board). The boards are designed with same
dimensions and locations of mounting holes, a standard 2mm 24-pin header is used
for connection of the two parts.

(a) : 3D top view. (b) : 3D bottom view.

Figure 5.1: Proposed design for a camera board of the embedded UVDAR system.

The key components incorporated in the camera board design are:.ON Semiconductor MT9V034 - CMOS imaging sensor.. ST ALED8102S - Constant current LED driver with up to 6 LEDs to be con-
nected to the board.
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. (Optionally) ST IMP23ABSU - Analog bottom port microphone with frequency
response up to 80kHz.. (Optionally) Bosch Sensortec BMX160 - Absolute orientation MEMS sensor
with 9-DOF (3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer).

(a) : 3D top view. (b) : 3D bottom view.

Figure 5.2: Proposed design for a MCU board of the embedded UVDAR system.

The key components of the MCU board are:. ST STM32H750VB - Arm Cortex-M7 MCU with 128 Kbytes of Flash memory,
1MB RAM and 480 MHz (1027 DMIPS) CPU.. ST ST1S06 - Step-down DC-DC converter to provide 3.3V from USB 5V input..ON Semiconductor FUSB2805 - USB 2.0 High-Speed OTG Transceiver with
ULPI Interface..MicroSD card connector, UART and CAN interfaces exposed to pin headers.. (Optionally) AP Memory APS6404L - 64Mbit (8MB) PSRAM memory.

These designs, however, are not being elaborated on in this text any further, the
boards are presented as an alternative approach to a FPGA-based design. Moreover,
the image processing algorithms (especially the 4D Hough Transform) require
several modifications to be able to process real time data at 60 FPS on the selected
MCU, which is assumed to be a next step in a future evaluation of the proposed
MCU approach.
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Chapter 6
Conclusion

At first, the pipeline of the UVDAR system was presented with a focus on its two
main image processing algorithms, the FAST-like feature detection algorithm for
extraction of bright markers from camera images and the 4D Hough Transform
for extraction of lines approximating trajectories of the detected markers in an
image-time 3D space.

A custom camera board was designed in a way to be compatible with multiple
development boards, primarily with the selected DE10-Nano FPGA development
board. Its functionality was validated using a Nucleo MCU board at first, a VHDL
implementation of the DCMI camera interface was then tested with the camera
board using the FPGA board.

The FPGA architecture of the FAST-like algorithm was derived from the pseu-
docode of the algorithm to ensure consistency in the functionality. The VHDL
implementation was validated against the current C++ software implementation,
first in a simulation and then on the real FPGA hardware. The parity of the results
from both implementations was verified.

The FPGA project also contained a VGA process written in VHDL which was
used for a real time visualisation of the camera images with an overlay made
of detection results from the FAST-like algorithm implementation via the HDMI
interface on the board.

The processor part of the FPGA chip was utilised for storing of camera images
and detection results, also as an alternative source of camera images loaded from
recordings stored on a microSD card. The main software was written as a Linux user
space terminal application in C, running in a fully custom Linux OS build. Also,
a custom Linux kernel driver was written to add support for external interrupts
driven by the FPGA fabric.

Unfortunately, due to insufficient time resources, FPGA architecture of the 4D
Hough Transform was discussed only in theory and no FPGA implementation
was tested. The total utilisation of the FPGA resources by the proposed VHDL
implementations was discussed, together with ideas for future development of the
FPGA project and for an alternative approach with an embedded microcontroller.
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Appendix A
Complete Camera Board Design

Figure A.1: Complete camera board layout.
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