
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Information System for Draw Competitions

Hlib Yarovyi

Ing. Marek Suchánek

Informatics

Web and Software Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

Draw competitions are a common phenomenon both in commercial and personal

environments. Various companies want to gain attention from potential customers by

creating a draw competition where people enter codes from products, answer some

questions, guess some product-related information, and so on. Similarly, friends or

groups of people may do their own competition. The common aspects are random

drawing of winner(s) and assigning prizes. The goal of this thesis is to create an

information system to support this activity:

- Analyse the domain of draw competitions (both commercial and personal).

- Research briefly the existing solutions.

- Design and implement a custom solution as a web information system that will help to

configure and manage such competitions, select winners, and provide API for

integrations.

- Test and evaluate the solution.

Electronically approved by Ing. Michal Valenta, Ph.D. on 12 October 2021 in Prague.

Bachelor’s thesis

Information System for Draw Competitions

Hlib Yarovyi

Department of Software Engineering
Supervisor: Ing. Marek Suchanek

May 10, 2022

Acknowledgements

I would like to express my gratitude to my supervisor, Ing. Marek Suchanek,
for his support for my thesis. Also, I would like to thank my parents for all
the support they have given me during my studies. And of course, I want to
thank myself for the diligence and immense work.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 10, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Hlib Yarovyi. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Yarovyi, Hlib. Information System for Draw Competitions. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2022.

Abstrakt

Tato bakalářská práce popisuje proces návrhu a implementace REST API pro
systém podporuj́ıćı losovaćı soutěže. Navržená implementace použ́ıvá archi-
tekturu mikroservis a několik návrhových vzor̊u souvisej́ıćıch s mikroservisy,
např́ıklad API Gateway nebo Load Balancer. REST API je navrženo pro in-
tegrace s jinými službami, obstarává manipulaci dat a vyhodnoceńı v́ıtěze
losovaćı soutěže. Navžený systém je implementován, otestován a také zdoku-
mentován pomoćı OpenAPI.

Kĺıčová slova Informačńı systém, Návrh, implementace, Microservices, Java,
Spring, API, API Gateway

Abstract

This bachelor thesis describes the process of designing and implementing a
REST API for the drawings competitions system. The proposed implemen-
tation uses the microservices architecture and several microservices-related
design patterns such as API Gateway or Load Balancer. The REST API
is designed for integrations with other services and manages data manipula-
tion and winner selection for drawing competitions. The designed system is
implemented, tested and also documented using OpenAPI.

vii

Keywords Information System, Design, Implementation, Microservices, Java,
Spring, API, API Gateway

viii

Contents

1 Introduction 1

2 Objectives 3

3 Analysis 5
3.1 Domain of commercial draw competitions 5
3.2 Domain of personal draw competitions 5
3.3 Requirements . 5

3.3.1 Must have . 6
3.3.2 Should have . 6
3.3.3 Could have . 7
3.3.4 Will not have . 7

3.4 OntoUML model . 8
3.5 Existing solutions . 10

3.5.1 Amazon fun zone . 10
3.5.2 E-bay auction . 10
3.5.3 Wheel of names . 11

4 Design 13
4.1 Microservices . 13

4.1.1 Discovery Server . 14
4.1.2 Identity Provider Service 15
4.1.3 Drawings Manager Service 16
4.1.4 Service per each Drawing type 16
4.1.5 Support Services . 17
4.1.6 API Gateway Service 17
4.1.7 Swagger UI Service . 17

4.2 Technology Stack . 17
4.2.1 GitLab . 17
4.2.2 MySQL database . 18

ix

4.2.3 Spring Boot . 18
4.2.4 Spring Security . 18

4.2.4.1 Authentication 19
4.2.4.2 Authorization 19
4.2.4.3 Servlet Filters 19

4.2.5 Spring Cloud Gateway 20
4.2.6 Netflix Eureka . 20
4.2.7 JSON Web Token . 21

4.2.7.1 JSON . 21
4.2.7.2 Token . 21

4.2.8 OpenAPI . 21
4.2.9 Postman . 22
4.2.10 JUnit5 . 22
4.2.11 Test Containers . 22

5 Implementation 23
5.1 Drawings Manager Service . 23
5.2 Docker-compose . 23
5.3 Codebase structure . 24
5.4 Common Library . 25
5.5 Limits service . 25
5.6 Config service . 25

6 Testing 27
6.1 Postman . 27
6.2 JUnit5 . 28
6.3 Swagger UI . 28

7 Evaluation and future steps 29
7.1 Completed requirements . 29
7.2 Future steps . 29

7.2.1 Set up HTTPS . 29
7.2.2 Distributed tracing . 30
7.2.3 Kubernetes . 30

Conclusion 31

Bibliography 33

A Acronyms 35

B Contents of enclosed CD 37

x

List of Figures

1.1 16th Century Italian Lotteries . 1

2.1 Software Development Life Cycle 3

3.1 OntoUML Model User part . 8
3.2 OntoUML Model Drawing part . 9
3.3 OntoUML Model Bank part . 10
3.4 Ebay auction for epdu . 11
3.5 Wheel of names page . 12

4.1 Architecture monolithic vs microservices 13
4.2 Netflix Eureka server workflow . 14
4.3 Login operation workflow . 15
4.4 Design: Quiz Drawing update . 16
4.5 Security filter chain . 19

5.1 Docker-compose configuration for database 24
5.2 Config Server code . 26
5.3 Config Server configuration . 26

6.1 Postman environment . 27

xi

Chapter 1
Introduction

The first lotteries and prize draws began a very, very long time ago. According
to the assumptions of some scientists, the appearance of hoaxes is associated
with Ancient Greece, but most of the history of occurrence is associated with
Ancient China or Rome.

The chronicle [1] says that from 100 to 44 BC. the ancient Roman rulers
Nero and Augustus loved to organize lotteries during the holidays, where slaves
and property were played. The first public lottery was also organized to raise
funds for the city needs of Rome: the repair of roads, bridges and buildings.
In addition, during major holidays, free lotteries were organized for local resi-
dents. People were given ”papers of happiness”, and a few lucky ones received
cash prizes. No wonder the lottery (from the Italian lotto) in Italian means
”Fate”.

Figure 1.1: 16th Century Italian Lotteries

These days draw competitions are a common phenomenon both in com-
mercial and personal environments. Various companies aimed at increasing

1

1. Introduction

sales, loyalty or visitor traffic by creating a draw competition where people
enter codes from products, answer some questions, guess some product-related
information, and so on. Similarly, friends or groups of people may do their
own competition. The common aspects are random drawing of winner(s) and
assigning prizes.

After some research, a lot of videos of people running private drawing
contests have been found on the YouTube platform. They are trying to draw
some things. If people want to win, they have to buy tickets for a small
price. Moreover, they do not use any software for this. All payments are
made through the messenger. If people are playing this game in such a bad
environment, it would be better if there was some safe platform for it. This
will save the owner time and money, and participants will be less nervous.

2

Chapter 2
Objectives

This paper is intended to analyse upon the implementation the domain of
commercial and personal draw competitions. During the creation of the thesis,
the traditional process of software development in software engineering was
followed [2].

Analysis

Planning

Design

Implementation

Testing

Evaluation

Figure 2.1: Software Development Life Cycle

The thesis has following objectives:

• Analyse the domain of draw competitions (both commercial and per-
sonal).

• Research briefly the existing solutions.

• Design and implement a custom solution as a web information system
that will help to configure and manage such competitions, select winners,
and provide API for integrations.

3

2. Objectives

• Test and evaluate the solution.

4

Chapter 3
Analysis

3.1 Domain of commercial draw competitions

Free draws and prize competitions can be run for commercial gain and can be
used when promoting a product. It is great opportunity to generate interest in
some product or service. Marketers are increasingly using online prize draws
to boost interaction and generate leads, especially during peak sales periods.

3.2 Domain of personal draw competitions

A personal drawing can be used in some variations. First of all, if a person
wants to sell some item for a good price, they can create a drawing ticket and
specify how much each ticket will cost. In addition, he will specify how many
tickets must be sold before a winner is determined. As a result, the winner will
have some expensive product at a very low price and great emotions because
he won it. Besides that, the owner will sell the item at full price.

Secondly, group of friends could buy some product for common use. Un-
fortunately, this item must be held by someone and friends start arguing. Here
drawing application can help. One of the solutions is free drawing, where they
can randomly choose a person who will receive the prize. Second solution is
quiz drawing, where each of friends can create some questions and add them
to system. Further, each of person will solve quiz and winner will hold prize.

3.3 Requirements

Before starting implementation an analysis was carried out using the MoSCoW
method. The MoSCoW method is a four-step process for determining which
project requirements will yield the most profit.

5

3. Analysis

3.3.1 Must have

• Support User authorization and authentication.
Sign in/up user to system.
Check if user has permissions to use API.

• Support Quiz type drawing.
Process Quiz information(prize details, deadlines, questions, etc.).
Add questions to system.
Provide quiz questions to user.
Process quiz answers from user.
Evaluate total result(win/lose).

• OpenAPI specification.
Specify all exposed URLs.
Specify all request and response data.
Specify all request fields in requested data.

3.3.2 Should have

• UI/UX.
Design UI and UX for any platform.

• Support ticket type drawing.
Process drawing information(prize details, amount of tickets, price

per ticket, etc.).
Add prize to system.
Provide ticket purchase service.
Provide random selection of a winner.
Provide prize to winner.

• Support free type drawing.
Provide free assigning to drawing.
Provide random selection of a winner.
Provide prize to winner.

• Mock bank system.
Structure for init implementation of bank system.
Should have money wallet.

6

3.3. Requirements

Mock for connection to real bank.
Provide purchase of local currency without payment.

• Support API for 3d party users.
Provide registration of new users through 3d party companies API.

3.3.3 Could have

• Support money transactions.
Create service to connect to real bank.
Provide purchase of local currency with real money payment.
Create bank account for application.

• Drawing chat for participants.
Chat window in drawing details where participants can discuss their

chances to win.

• Exposed host for public.
deploy application to public host.

• Licence service for 3d party.
Provide fixed-term license purchases for companies that want to

integrate the drawing application into their systems.

• NFT as prize.
Create NFT storage.
Support prize as NFT.
Store NFT prizes in storage.

• Blockchain wallet support.
Provide blockchain wallet registration instead of system one.

3.3.4 Will not have

• Perfect UI.

• Kubernetes implementation.
Create Docker containers for each service
Move all Docker containers to Kubernetes cluster as nodes

• Deliver installable image.
Provide package with application
Provide library with interfaces

7

3. Analysis

3.4 OntoUML model

Full OntoUML model can be found on CD.

Figure 3.1: OntoUML Model User part

User can be presented as basic person or some Company. Basic person can
fill in some contact links as Instagram or Facebook. Furthermore, 3d party
Company can create some drawing for their employees and register them in
system with special rules. Will be provided functionality to login through 3d
party identity provider API. Company admin should configure connection to
API.

8

3.4. OntoUML model

Figure 3.2: OntoUML Model Drawing part

Each drawing has multiple states and must be assigned by at least one
User(Owner who created). Drawings has public and private phases, it is mean
that private drawing you can access only by link. Moreover, each drawing can
have from 1 to many winners. Consequently, there should exist 1 to many
prizes. Drawing divided into three groups: Quiz, Ticket and Free. Owner can
choose which type of drawing he wants.

9

3. Analysis

Figure 3.3: OntoUML Model Bank part

For Ticket type drawing there exist price for each ticket and some states:
Booked and Created which show us if ticket was assigned to any person.
Assignment goes by paying the ticket price. Payment goes from Wallet which
holds current financial state of user in our system. User can pay for something
in the system or get money back by withdraw operation.

3.5 Existing solutions

3.5.1 Amazon fun zone

Amazon fun zone [3] is an official Amazon-run website where you can discover
daily quizzes, fascinating new games, and puzzles. There you can win prizes
everyday. As there are millions of people plays in amazon fun zone and the
number prizes are low. It was not possible to give rewards to everyone. There
is only one or two winner if they are giving good amount in Amazon pay or
some expensive item. Unfortunately, it exist on mobile app only.

Moreover, Amazon fun zone looks like a scam application. Users has not
trust to it. It you search for it you will find huge amount of question about
safety of the project. Fortunately, this opens up space for competition and
development of other quiz related products.

3.5.2 E-bay auction

EBay’s auctions use a fixed-time semi-sealed-bid modified second-price format.
The highest bidder at the end of the auction wins, regardless of when their
bid was put, even if it was received at the last second and didn’t appear on
your screen before the countdown reached zero, but the price is set second in
terms of participant size.

10

3.5. Existing solutions

Figure 3.4: Ebay auction for epdu

This is usually the lowest bidder’s highest bid plus one bid increment. Less
if the winning bid is not a complete step higher than the underbid, such as
in the case of a previous tie. More if the reserve in the reserve list needs to
be satisfied. If there is only one bidder and no reserve, the seller sets the
beginning bid amount.

3.5.3 Wheel of names

The main goal of making a name wheel is to pick a person at random from a
group of people [4]. This ensures that everyone has an equal chance of being
chosen.

For example, the selection could be for selecting a student to answer a
question in class. A wheel spin could also be used to determine who wins a
competition or a prize giveaway.

11

3. Analysis

Figure 3.5: Wheel of names page

This name picker wheel can also be used for a variety of other purposes.
Unfortunately, all names must be filled in manually and will not be saved in
the future. Furthermore, the implementation is not the highest quality.

12

Chapter 4
Design

4.1 Microservices

Microservices [5] was chosen as the architectural style for designing the appli-
cation. It’s a type of architecture that aims to break down monolithic apps
into smaller pieces. The application is built as a collection of self-contained
services, each with its own set of responsibilities.

Figure 4.1: Architecture monolithic vs microservices

Breaking an application down into smaller autonomous fragments makes
it easier to build and maintain. Depending on the demands of each service, it
can be built, launched, and managed individually, and it can use a variety of
programming languages, technology, and software environments.

13

4. Design

Moreover, multiple teams can be assigned for different services and divide
associated tasks. New components can be added without requiring downtime
and redeployment of the entire system. Because each module of an application
has a smaller codebase, it’s easier to release, scale, deploy, and test different
services.

The fact that each service can be written in a different language or tech-
nology gives opportunity for CI/CD team to choose the most suitable stack
of technologies for each service. Services can also be distributed across nu-
merous servers, reducing the performance effect of more resource-intensive
components.

In case of monolithic architecture that considered to be a traditional way of
building applications. A monolithic application is made up of one indivisible
unit. A client-side user interface, a server-side program, and a database are
typically included in such a system. All functions are handled and served from
a single location. Monolithic apps typically have a single huge code base and
lack modularity. Developers use the same code base when they wish to update
or replace something. As a result, they make changes to the entire stack at
the same time.

4.1.1 Discovery Server

Discovery server allows services to find and communicate with each other
without hard-coding the hostname and port. The service registry, with which
each service must register, is the only ’fixed point’ in such an architecture.
To interact with this fixed point, all clients must implement a specific logic –
register themselves as clients on discovery server.

Eureka ServerRequest

Identity
provider

service

Drawings
Manager

service

Register/Discover

Register/Discover

Figure 4.2: Netflix Eureka server workflow

The application makes use of Netflix Eureka [6], which allows any client
to act as a server and send its status to a connected peer. In other words, a

14

4.1. Microservices

client obtains a list of all connected peers from a service registry and uses a
load-balancing mechanism to make all subsequent requests to other services.
Load balancing is the process of distributing traffic among various instances
of the same application.

Advantages:

• Handles all instances.

• No need to specify exact host and port on client side.

• Reduce the load on your web servers.

• Optimize traffic.

Disadvantages:

• If the eureka server goes down, then the whole application goes down.

• Weighted Response Time.

4.1.2 Identity Provider Service

Main technologies are Spring Boot [7] and Spring Security [8].
Service can provide identity to user or service. Identity is provided in

the form of a JSON Web Token. Response contains access token and refresh
token. Access token – contains username, user roles and expiration date.

Figure 4.3: Login operation workflow

Moreover, identity provider service can authorize and authenticate user.
User can sign in and sign up to system via API requests.

Also, each service must have JSON Web Token to authenticate themselves.
The first action a identity provider service takes when receiving a request
is authentication of a request. It must have header with valid JWT which
contains username of registered service and valid roles for system service.
Thus we limit the work of the provider with unverified services directly.

15

4. Design

4.1.3 Drawings Manager Service

Main technology is Spring Boot [7].

This service handles requests around drawings. The service must create new
drawing and manage its common information. It also sends a request to the
identity provider to authenticate the user.

Furthermore, drawing manager cooperates with each service of draw com-
petition. So, it is somehow used as gateway. It must validate user information
and forward the request to the appropriate service.

All common drawings information stored in MySQL database [9].

Figure 4.4: Design: Quiz Drawing update

On the model presented workflow around request which updates quiz in-
formation.

Firstly, Drawings Manager Service receives request from different service.
Secondly, it start user validation through Identity Provider Service. The

application must ensure that the user has sufficient rights to update this quiz
drawing.

Thirdly, manager service forward request to quiz drawing service. This
service tries to update everything and send response back to drawings manager
service. The response can be empty with a CREATED(201) status, or an Error
response describing the problem that occurred.

4.1.4 Service per each Drawing type

Main technology is Spring Boot [7].
This services should handle all type specific operations.

• Quiz type drawing should handle requests to create question, create
prize, provide list of questions to solve, check answers and more.

• Ticket type should provide tickets, randomly select winner.

16

4.2. Technology Stack

4.1.5 Support Services

This services should handle all supportive operations.

• Prize service – save prizes per drawing and provide them when needed.

• Mail Sender service – should send email notifications, application an-
nouncements to users.

• Wallet service – should store users balance and manipulate with it.

4.1.6 API Gateway Service

Main technologies are Spring Boot [7] and Spring Cloud Gateway [10].

An API gateway is a solution for managing APIs that lies between a client
and a group of backend services. An API gateway serves as a reverse proxy,
accepting all API calls, aggregating the numerous services required to fulfill
them, and returning the appropriate result.

In case of a drawings application, the gateway must add a header with
service JWT [11] authorization to every request, since all services require an
authenticated request.

As a result, the API Gateway will receive a request, add a header with
an authorized access token, send a request to the appropriate service through
discovery server, send response back.

4.1.7 Swagger UI Service

Main technologies are Spring Boot [7] and OpenAPI [12].

Swagger is a set of open-source tools for designing, building, documenting,
and consuming REST APIs based on the OpenAPI Specification [12]. Swag-
ger’s most important tools are: Swagger Editor is a browser-based editor for
writing OpenAPI specifications. It’s a useful tool for seeing and interacting
with API resources without having to worry about the implementation.

In case of a drawings application it will be provided as a UI. Swagger UI
turns OpenAPI specifications into interactive API documentation.

4.2 Technology Stack

4.2.1 GitLab

GitLab [13] is a web-based Git repository that offers open and private repos-
itories, as well as issue tracking and wikis. Was used as hosting platform for
version control and issue planning tool.

17

4. Design

4.2.2 MySQL database

MySQL [9] is an open source SQL-based relational database management sys-
tem. A relational database is one that divides data into numerous independent
storage locations called tables and associates them with each other using keys.
A table is a collection of related data, and is made up of columns and rows.
A key is a unique numerical ID number. With key it is possible to link the
data from these tables together allowing you to manipulate and mix the data
in various tables as needed.

4.2.3 Spring Boot

Spring Boot [7] is a Java-based open source framework for developing mi-
croservices. It’s used to create self-contained, production-ready Spring ap-
plications. Configure Java Beans, XML settings, and Database Transactions
in a customizable fashion. Makes dependency management easier. It also
maintains REST endpoints and offers robust batch processing. Everything
is auto-configured in Spring Boot. Aids in avoiding extensive XML config-
uration in Spring, making it easier to design production-ready Spring appli-
cations, reducing development time, and allowing the application to function
independently.

4.2.4 Spring Security

Spring Security [8] is a framework that focuses on servlet filters that help
you easly add authentication and authorization to your web application. The
actual value of Spring Security, like all Spring projects, is in how readily it
can be modified to meet specific requirements. It works well with frameworks
such as Spring Boot and standards like OAuth2 and SAML.

18

4.2. Technology Stack

Client

Filter1 FilterN Authentication

Filter

Authorization

Filter
FilterN+J

Controller1

Controller2

Controller3

Figure 4.5: Security filter chain

4.2.4.1 Authentication

Authentication is the process of recognizing a user’s identity. It’s the process
of connecting a set of identifying credentials with an incoming request. The
credentials provided are compared to those stored in a database containing
the information of authorized users. Before any other code is authorized to
begin, the authentication process runs at the start of the application, before
the permission and throttle checks.

The credentials are usually in the form of a username and password. Pass-
word kept private and only known by the user and the system.

4.2.4.2 Authorization

Authorization is the process of giving the user permission to access a specific
resource or feature. It determines what resources a user has access to.

In secure environments, authorization must always come after authentica-
tion. The system determines what information the user is permitted to access
after successful user authentication. Before the system grants users access to
the requested resources, they must first verify their identities.

4.2.4.3 Servlet Filters

A filter is an object used to intercept the HTTP requests and responses of
application. By using filter, we can perform operations before sending the

19

4. Design

request to the controller or sending a response to the client. Mostly filters
used to validate the data coming from the client to server.

Spring Security provides a number of filters by default. In spite of this,
you can create a new filters to use them in the filter chain. Internally, Spring
Security maintains a filter chain, with each filter having a specific responsibility
and filters being added or withdrawn from the configuration based on which
services are required. Because there are dependencies between the filters, the
sequence in which they are applied is crucial.

4.2.5 Spring Cloud Gateway

Spring Cloud Gateway [10] is a Java and Spring-based library for creating
API gateways. An API gateway allows you to remove the complexity from
the client, shifting the responsibility from the user to the server. An API
Gateway is a single point of entry for a group of microservices. External
clients cannot access the microservices directly; instead, they must go through
the application gateway. This means that the client only has to know how to
communicate with the gateway. It makes no difference if the backend services
migrate, go down, or become unreliable as long as the gateway is prepared to
handle them.

Spring Cloud Gateway aims to provide a simple yet effective approach
to route to APIs and address cross-cutting concerns like security, resiliency,
and monitoring. Because the Spring Cloud Gateway is focused on routing
requests, it sends them to a Gateway Handler Mapping, which indicates what
should be done with requests that match a certain route. It is intended to sit
between a requester and a resource that’s being requested, where it intercepts,
analyzes, and modifies every request. That is, queries can be routed based on
their context.

Spring Cloud Gateway is a non blocking API. It follows that when you
use Spring Cloud Gateway, no incoming request is ever blocked. When using
a non-blocking API, a thread is always ready to handle the incoming request.
These requests are then processed asynchronously in the background, and the
response is returned once they have been completed.

4.2.6 Netflix Eureka

It is a lookup service where microservices has role of clients and can reg-
ister themselves and discover other registered microservices. When a client
microservice registers with Eureka [6], it gives metadata like host, port, and
health indicator, which other microservices can use to find it. Each Netflix
Eureka client can work as a server at the same time, replicating its state to a
linked peer. In other words, a client obtains a list of all connected peers from
a service registry and uses a load-balancing mechanism to make all subsequent
requests to other services.

20

4.2. Technology Stack

Discovery server is another name for Eureka Server. The discovery server
must be informed about the availability of a client, that is why each of clients
have to send a heartbeat signal to the registry. If an instance fails to deliver
a heartbeat on a regular basis, the discovery server will remove it from his
registry.

This will result in a very stable ecosystem of microservices that collaborate
with one another. Furthermore, we do not have to manually maintain the
addresses of other microservices, which is nearly impossible to do while scaling
up and down frequently.

4.2.7 JSON Web Token

JSON Web Token [11] is an open standard that allows two parties — a client
and a server — to share security information. Because of its relatively small
size, a JWT can be delivered through URL, POST parameter, or HTTP
header. Each JWT contains encoded JSON objects, including a set of claims.

JWTs use a cryptographic technique to ensure that the claims cannot be
changed after the token has been issued.

JWTs can be signed with either a secret (using the HMAC algorithm) or
a public/private key pair (using RSA or ECDSA). When public/private key
pairings are used to sign tokens, the signature additionally verifies that only
the party with the private key signed it. Signed tokens can be used to verify
the validity of the claims they contain, whereas encrypted tokens keep those
claims hidden from third parties. To avoid querying a database several times,
a JWT provides all of the required information about an entity. A JWT
recipient does not need to contact a server to verify the token.

4.2.7.1 JSON

JSON is a text-based data transfer standard for web applications. It keeps
information in an easily accessible format for both developers and computers.
Any programming language can utilize it as a data format.

4.2.7.2 Token

A token is a data string that represents another object, such as an identity.

4.2.8 OpenAPI

The OpenAPI specification [12] is an API description format for REST APIs.
It defines a standard, language-agnostic interface that is used to create, de-
scribe, consume, and visualize RESTful APIs and web services. An OpenAPI
file allows to describe entire API specifications in YAML or JSON formats
that allows both humans and computers to discover and understand the ca-
pabilities of the service without access to documentation or source code.

21

4. Design

The main advantage of using a standard definition is that when OpenAPI
specification is properly defined the third-party users can interact with and
understand the service with minimal amount of implementation logic. Fur-
thermore, documentation creation tools can leverage the OpenAPI specifica-
tion to display the API.

4.2.9 Postman

Postman [14] is an HTTP request testing API client. It allows developers to
easily design, share, test, and document APIs. When it comes to executing
APIs, Postman is quite useful. Postman improves collaboration and simplifies
each step of the API lifecycle so you can build better APIs faster.

Furthermore, Postman allows you to bundle different requests together.
Users allowed to create and save simple and complex HTTP/s requests that
can be simply reused over and over again, without having to remember the
exact endpoint, headers, API keys, or other. This feature is referred to as
’collections,’ and it aids in the organization of testing. These collections are
folders that store requests and can be structured in any way the user wants.
They can also be exported and imported.

4.2.10 JUnit5

In the Java ecosystem, JUnit [15] is one of the most prominent unit-testing
frameworks. The JUnit 5 version includes a number of exciting new capa-
bilities aimed at supporting new features in Java 8 and higher, as well as
providing a variety of testing techniques.

4.2.11 Test Containers

Testcontainers [16] is a Java package that enables JUnit tests by providing
lightweight, disposable instances of common databases and other applications
that may run in a Docker container. As a result, it is possible to write self-
contained integration tests that do not rely on other resources.

Any resource that has a docker image can be used in testing. Databases,
web browsers, web servers, and message queues, for example, all have images.
As a result, we may use them in our tests as containers.

22

Chapter 5
Implementation

Created as designed:

• Discovery Server

• Identity Provider Service

• API Gateway Service

• Swagger UI Service

5.1 Drawings Manager Service

This service handles requests around drawings. The service creates new draw-
ing and manage it. It also sends a request to the identity provider to authen-
ticate the user.

Drawing manager can create quiz drawing and handle all functionality
around it. It can provide quiz information, create questioner to solve, check
answers and more. Moreover, it handles all common information of drawing
competition.

5.2 Docker-compose

Docker-compose [17] file configuration was created for database initialization.

23

5. Implementation

Figure 5.1: Docker-compose configuration for database

This configuration downloads MySQL image from docker hub. The next
step, is to create docker container and deploy previously downloaded image
to this container. It expose port for outside world, that is why application
can use it directly as basic database. Moreover, before image deployment it
creates specific volume and runs SQL init script which creates database.

5.3 Codebase structure

Each service was written on Java and stored in one GitLab repository. More-
over, Apache Maven [12] was used as build tool. So, it was decided to create
a multi-module project. Root directory built from an aggregator POM that
manages a group of submodules and has common dependencies for each mod-
ule(service).

The submodules are regular Maven projects, and they can be built sep-
arately or through the aggregator POM. It provides easy way to compile all
services by one command.

24

5.4. Common Library

services........................ the directory wich contains all services
config-server .3 pom.xml maven configuration for this service
discovery-server

pom.xml......................maven configuration for this service
drawing-gateway

pom.xml......................maven configuration for this service
drawings-manager

pom.xml......................maven configuration for this service
identity-provider

pom.xml......................maven configuration for this service
limits-service

pom.xml......................maven configuration for this service
services-common-web

pom.xml..........................maven configuration for library
swagger-ui

pom.xml......................maven configuration for this service
pom.xml maven configuration for all services in package

pom.xml......................................root maven configuration

5.4 Common Library

This library used for storing common helpers. Each service, which handles
request, has special package in common library. This package stores DTOs
and URls per each service, which has request mappings. URLs storage is
really good approach to store it, because there exist no way to create invalid
handler per mapping.

Moreover, the application has very smart exceptions for REST part. All
common interfaces, services for exception are stored there as well.

5.5 Limits service

Provides limits per service. Limiting the number of concurrent requests avoids
the remainder of the system from failing by limiting the amount of system
resources that service invocations can consume.

5.6 Config service

Provides configurations to each service connected. All configuration stored
in private GitHub repository. Service connects to this repository and get
appropriate configuration file. The next step is to assign this configuration
file to appropriate connected microservice.

25

5. Implementation

Figure 5.2: Config Server code

Config service uses Spring Cloud Config Server [18] which allows easy
integration. Screenshot above demonstrates all codebase of rhis module.

Figure 5.3: Config Server configuration

To use this framework, you need to use a specific annotation in the source
code and a little extra configuration in resources package.

26

Chapter 6
Testing

Testing was carried out in several ways, both automated and manual. Many
simple and not so bugs have been fixed through testing. Thanks to this
process, the current version of the application is quite stable and predictable.

6.1 Postman

Figure 6.1: Postman environment

Postman was used as manual integration testing. It has the ability to make
various types of HTTP requests (GET, POST, PUT, PATCH, etc.). Addresses
to certain services have been created and saved along with data for sending.
This helped not to refill the data to send each time. After sending the request,
there was a check for the correctness of the response. The check was carried

27

6. Testing

out manually, it was checked if each response was correct. If the response
was not within the scope of validation, then the error was looked for in the
implementation.

Most of bugs were around error response. For example, when a user sub-
mits an invalid password, it should return an invalid credential error, while
it returned an invalid email address error. In addition, bugs were found with
the default error response. It must return custom error response and some-
times the application did not use template for it and sent with default trace
message.

6.2 JUnit5

JUnit5 framework was chosen for automated testing. Integration testing was
carried out. The verification consisted in sending data to a certain entry point.
After that, the response was received and validated. The result was checked
both positive and error.

Furthermore, integration testing does not harm the real data in the database,
the Test Containers framework was used. Technology can be used to establish
a temporary database within a Docker container. The real database must
then be replaced with one from the container.

Some bugs was discovered during testing. For example, once the user was
not found and the application did not check it. It threw a NullPointerExcep-
tion which broke the valid request processing. In addition, some issues were
found with user IDs being stored incorrectly in the database. Thanks to Unit
testing this issue was solved quickly.

6.3 Swagger UI

The Swagger UI helped to test the API gateway service. Swagger UI generated
above OpenAPI documentation. It provides functionality to send requests to
some servers. In the case of this application, the Swagger UI is configured to
send requests to the API Gateway service. All existing requests were sent,
and responses were manually reviewed.

28

Chapter 7
Evaluation and future steps

7.1 Completed requirements

The mandatory requirements set during the analysis phase were successfully
done. In addition, pre-designed services were also implemented successfully.

The most significant completed topics:

• Support User authorization and authentication.

• Support Quiz type drawing.

• OpenAPI specification.

• Discovery Server.

• Identity Provider Service.

• Drawings Manager Service.

• API Gateway Service.

• Swagger UI Service.

7.2 Future steps

7.2.1 Set up HTTPS

HTTPS is a secured HTTP request or response. HTTPS encrypts HTTP
requests and responses with TLS (or SSL), so an attacker would see a series
of seemingly random characters instead of the text.

TLS implements a technique known as public key encryption, in which two
keys, a public key and a private key, are shared with client devices via the
server’s SSL certificate. When a client establishes a connection with a server,

29

7. Evaluation and future steps

the two devices use the public and private key to agree on new keys, known
as session keys, to encrypt further communications between them.

7.2.2 Distributed tracing

The capacity of a tracing solution to follow and observe service requests as
they move through distributed systems by collecting data as the requests pass
from one service to the next is known as distributed tracing. In other words, it
will help to manage logs between services and it will show sequence of services
which was used for each request.

7.2.3 Kubernetes

Kubernetes [19] is an orchestration tool for containerized applications. It
enables the deployment of containerized microservices to be automated. This
makes it easy to manage all of the application’s components and microservices.

Service discovery and config server handled by Kubernetes automatically.
So, it will open ability to remove some services and stop writing configuration
for it.

30

Conclusion

The objective of this thesis was to implement the domain for commercial and
personal draw competitions. In addition, the implementation was built on the
basis of a Microservice architecture using some additional Design Patterns. As
a result, an API was developed and documented with OpenAPI. All microser-
vices were built on the basis of the Spring Boot framework, which simplified
the creation of each service and provided many additional features for easy
use of third-party technologies. Furthermore, the ground has been prepared
for the easy creation of new services and their integration into the project.

As far as analysis is concerned, the MoSCoW method was very helpful in
understanding architecture building. In the future, it is necessary to plan each
topic in more detail.

The design process was also carried out before the start of implementation.
With no experience in microservice architecture, the design was done quite
successfully. Only one service was done a little differently. The design was
carried out for more functionality, which will help in the future to immediately
start implementing new features.

Moreover, testing of the received API was carried out. Thanks to this, a
sufficient number of bugs were eliminated.

31

Bibliography

[1] Wikipedia. Lottery. Available from: https://en.wikipedia.org/wiki/
Lottery

[2] Dooley, J. Software Development and Professional Practice. 2011, ISBN
978-1-4302-3802-7.

[3] Amazon. Available from: https://www.amazon.in/b?ie=UTF8&node=
14351766031&ref_=nav_custrec_signin&

[4] wheelofnames.com. Available from: https://wheelofnames.com

[5] AppDynamics. What Are The Benefits of Microservices Architecture?
Available from: https://www.appdynamics.com/topics/benefits-of-
microservices

[6] Spring. Spring Cloud Netflix. Available from: https://spring.io/
projects/spring-cloud-netflix

[7] Spring. Spring Boot. Available from: https://spring.io/projects/
spring-boot

[8] Spring. Spring Security. Available from: https://spring.io/projects/
spring-security

[9] Oracle. MySQL. Available from: https://www.mysql.com

[10] Spring. Spring Cloud Gateway. Available from: https:
//docs.spring.io/spring-cloud-gateway/docs/current/reference/
html/

[11] Auth0. Introduction to JSON Web Tokens. Available from: https://
jwt.io/introduction

33

https://en.wikipedia.org/wiki/Lottery
https://en.wikipedia.org/wiki/Lottery
https://www.amazon.in/b?ie=UTF8&node=14351766031&ref_=nav_custrec_signin&
https://www.amazon.in/b?ie=UTF8&node=14351766031&ref_=nav_custrec_signin&
https://wheelofnames.com
https://www.appdynamics.com/topics/benefits-of-microservices
https://www.appdynamics.com/topics/benefits-of-microservices
https://spring.io/projects/spring-cloud-netflix
https://spring.io/projects/spring-cloud-netflix
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://www.mysql.com
https://docs.spring.io/spring-cloud-gateway/docs/current/reference/html/
https://docs.spring.io/spring-cloud-gateway/docs/current/reference/html/
https://docs.spring.io/spring-cloud-gateway/docs/current/reference/html/
https://jwt.io/introduction
https://jwt.io/introduction

Bibliography

[12] Swagger. OpenAPI Specification. Available from: https://swagger.io/
specification/

[13] GitLab. GitLab documentation. Available from: https:
//docs.gitlab.com

[14] Postman. Introduction. Available from: https://
learning.postman.com/docs/getting-started/introduction/

[15] JUnit. JUnit 5 User Guide. Available from: https://junit.org/junit5/
docs/current/user-guide/

[16] North, R. Testcontainers. Available from: https://
www.testcontainers.org

[17] Docker. Overview of Docker Compose. Available from: https://
docs.docker.com/compose/

[18] Spring. Spring Cloud Config. Available from: https://cloud.spring.io/
spring-cloud-config/reference/html/

[19] Kubernetes. Kubernetes Documentation. Available from: https://
kubernetes.io/docs/home/

34

https://swagger.io/specification/
https://swagger.io/specification/
https://docs.gitlab.com
https://docs.gitlab.com
https://learning.postman.com/docs/getting-started/introduction/
https://learning.postman.com/docs/getting-started/introduction/
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://www.testcontainers.org
https://www.testcontainers.org
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://cloud.spring.io/spring-cloud-config/reference/html/
https://cloud.spring.io/spring-cloud-config/reference/html/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

Appendix A
Acronyms

API Application Programming Interface

CI/CD Continuous Integration, Continuous Delivery.

DTO Data Transfer Object

Git Global Information Tracker

HMAC Hash-based message authentication code

ID Identity

JWT JSON Web Token

REST Representational State Transfer

SQL Structured Query Language

UI User Interface

URL Uniform Resource Locator

UX User Experience

35

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

docker-compose.yaml........docker-compose file to deploy database
db-init.sql............................script to initialize database
services directory with each service source code
pom.xml....................................root build configuration

docs................................the thesis documentation directory
latex.............the directory of LATEX source codes of the thesis
OntoUML Model.png...........................full OntoUML Model
thesis.pdf...........................the thesis text in PDF format

37

	Introduction
	Objectives
	Analysis
	Domain of commercial draw competitions
	Domain of personal draw competitions
	Requirements
	Must have
	Should have
	Could have
	Will not have

	OntoUML model
	Existing solutions
	Amazon fun zone
	E-bay auction
	Wheel of names

	Design
	Microservices
	Discovery Server
	Identity Provider Service
	Drawings Manager Service
	Service per each Drawing type
	Support Services
	API Gateway Service
	Swagger UI Service

	Technology Stack
	GitLab
	MySQL database
	Spring Boot
	Spring Security
	Authentication
	Authorization
	Servlet Filters

	Spring Cloud Gateway
	Netflix Eureka
	JSON Web Token
	JSON
	Token

	OpenAPI
	Postman
	JUnit5
	Test Containers

	Implementation
	Drawings Manager Service
	Docker-compose
	Codebase structure
	Common Library
	Limits service
	Config service

	Testing
	Postman
	JUnit5
	Swagger UI

	Evaluation and future steps
	Completed requirements
	Future steps
	Set up HTTPS
	Distributed tracing
	Kubernetes

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

