
Bakalářská práce

České
vysoké
učení technické
v Praze

F4 Fakulta jaderná a fyzikálně inženýrská
Katedra fyziky

Programování kvantového počítače

Vlastimil Hudeček

Vedoucí: Aurél Gábor Gábris, Ph.D.
Obor: Matematické inženýrství, zaměření Matematická fyzika
Studijní program: Aplikace přírodních věd
Prosinec 2022

ii

vi

Poděkování

Předně chci poděkovat Aurélu Gáboru
Gábrisovi za veškerou odbornou pomoc
při psaní této práce. Vždy se mi trpělivě
věnoval, pomáhal mi svými radami a inspi-
roval mě k dalšímu prohlubování znalostí.
Děkuji ČVUT, za veškerou poskytnutou
podporu v průběhu studia.

Prohlášení

Prohlašuji, že jsem předloženou práci vy-
pracoval samostatně, a že jsem uvedl veš-
kerou použitou literaturu.

V Praze, 22. prosince 2022

vii

Abstrakt

Díky rychlému vývoji kvantových počí-
tačů v nedávné době, narůstá zájem o
kvantové algoritmy a jejich využití. V
prvních kapitolách této práce je podán
stručný úvod do tématu kvantové výpo-
četní techniky a algoritmů. Dále jsou v
nich shrnuty principy, vlastnosti a použití
dvou významných kvantových algoritmů,
variační algoritmus hledání vlastních čísel
(VQE) a kvantový aproximační optimali-
zační algoritmus (QAOA). V dalších ka-
pitolách jsou nastíněny v současné době
dostupné softwarové nástroje pro vývoj
kvantových programů, důraz je zde kla-
den na SDK Qiskit od IBM. Poslední část
práce se věnuje implementaci zkoumaných
algoritmů.

Klíčová slova:. Kvantové počítání,
kvantový algoritmus, QAOA, VQE,
Qiskit

Vedoucí:. Aurél Gábor Gábris, Ph.D.
Katedra fyziky,
Fakulta jaderná a fyzikálně inženýrská
ČVUT v Praze

Abstract

Thanks to the rapid development of quan-
tum computers in recent years, the in-
terest in quantum algorithms and their
applications is rising. The first chapters
of this work gives a brief introduction
to the topic of quantum computing and
algorithms. Additionally, they summa-
rize the principles, properties and appli-
cations of two major quantum algorithms,
the variational quantum eigensolver and
the quantum approximate optimization
algorithm. The following chapters outline
the currently available software tools for
development of quantum programs with
focus on the IBM Qiskit software devel-
opment kit. Final part of work deals with
implementation of the studied algorithms.

Keywords:. Quantum computing,
quantum algorithm, QAOA, VQE, Qiskit

Title translation:. Programming
quantum computers

viii

Contents

1 Introduction 1

1.1 Basic concepts 2

1.1.1 Qubits and qubit registers 2

1.1.2 Quantum circuits and gates . . 2

1.2 Quantum algorithms 7

2 Quantum approximate
optimization algorithm 9

2.1 General QAOA algorithm 10

2.2 The properties of the general
QAOA . 12

2.3 QAOA for fixed p 13

2.3.1 MaxCut for graphs with bound
degree . 14

2.3.2 Alternative approach to 〈HP 〉
simplification using Pauli Solver . 20

2.4 Algorithms related to QAOA . . . 26

3 Variational quantum eigensolver 29

3.1 Description of VQE 30

3.1.1 VQE steps outline 31

3.2 Components of VQE 32

3.2.1 Hamiltonian 34

3.2.2 Encoding of fermionic
operators . 40

3.2.3 Measurement optimizations . 47

3.2.4 Ansatz 49

3.2.5 Optimization of the ansatz
parameters 54

3.2.6 Suppression of errors and noise 57

4 Quantum programming tools 59

4.1 Early quantum programming . . . 60

4.2 Quantum programming languages
and SDKs . 60

4.2.1 Quantum instruction sets . . . 60

4.2.2 Quantum programming
languages . 61

4.2.3 Quantum SDKs by developer 62

4.2.4 Qiskit . 63

4.2.5 Cirq . 65

5 Algorithm implementation and
application 67

5.1 Basic implementations 67

5.1.1 QAOA: Basic implementation 67

5.1.2 VQE: Basic implementation . 72

ix

5.2 Applications 75

5.2.1 QAOA application 75

6 Conclusion 79

A Additional information 81

A.1 Acronyms 81

Source code . 81

B Bibliography 83

x

Chapter 1

Introduction

At the end of 1970s the idea to use the extraordinary properties of quantum systems in computation
was first proposed and soon led to development of theoretical foundations to study its potential. At the
beginning of 1980s the concept was introduced to broader public by Richard Feynman[1]. The interest in
the quantum effect used for the computational purposes was renewed when in the 1980s researches, such
as David Deutsch, explored the theory of quantum information and quantum information processing in
particular. Finally, in the 1990s emerged the first truly quantum algorithms which were proven to be
superior over classical alternatives. The theoretical advantages of the new approach to computation
motivated further research and in 1994 Peter Shor presented polynomial-time quantum algorithm for
factoring integers. New improvements in this field of study were made throughout the rest of twentieth
century. The new quantum algorithms introduced more efficient solutions not only to problems such
as factorization, but also to search problems and quantum simulations. Promising results of research
motivated the creation of first quantum computers. At the current moment such devices appear to have
significant advantages over classical computers. Further progress depends not only on development of
more advanced hardware but also on progress in quantum algorithms.[2, 3]

In this project I would like to give an introduction to the topic of quantum algorithms, and to
summarize the key terms and concepts. The next goal is to present two important quantum algorithms,
the Quantum approximate optimization algorithm and the Variational quantum eigensolver. The first
one being concerned with solving combinatorial problems and the latter with finding eigenvalues. These
algorithms are in the centre of interest for this project, because they are examples of significant building
blocks in terms of algorithms that can be used to create more complex programs. Both algorithms
are subject of current research as they were discovered in recent past. This project will also give on
overview of currently publicly available quantum SDK frameworks as well as demonstrate some of their
possibilities of simulating of discussed quantum circuits.

The main goal of project is to give detail and rigorous description of discussed topics that can be
used for further research. Apart from description of algorithms the project aims to discuss advantages
and pitfalls of quantum algorithms mentioned above.

1

1. Introduction ..
1.1 Basic concepts

In order to discuss the quantum algorithms let us summarize the basic terminology first. The concepts
explained below are necessary to be able to describe the algorithms that are studied in Chapters 2
and 3. It should be emphasized that the general formalism of quantum computing, which is used to
work with the abstract qubits, is theoretically independent of the physical qubit realization. This is
true as long as the realization is ideal. In real conditions the abstract models need to be adjusted in
order to account for the properties of physical object.

1.1.1 Qubits and qubit registers

The fundamental concept in theory of quantum information is a qubit, which is a quantum unit of
information, that unlike a classical bit can be in a linear combination of states. A qubit can be
understood as a vector in Hilbert space H. If we define an orthogonal computational basis |0〉 , |1〉 of H,
then we can describe the state of qubit |ψ〉 = α |0〉+β |1〉 for α, β ∈ C. The meaning of α and β can be
seen from the Born rule, which states that the probability of measuring a certain result, e.g. 0, is equal
to |α| 2 = |〈0|ψ〉| 2. This implies |α| 2 + |β| 2 = 1. Another important property of qubit is the phase.
The global phase can be seen, when we express the qubit state as |ψ〉 = eiγ

(
cos φ2 |0〉+ eiϕ sin φ2 |0〉

)
.

The register refers to an array of multiple qubits that are being worked with during computations.
It is important to note that in order to describe the state of a system composed of multiple qubits the
tensor product operation is applied. The state of the composed system is an element of the tensor
product of respective Hilbert spaces of qubits that are included. In this project we use the standard
notation |0〉 ⊗ |1〉 = |01〉. If we describe qubits in matrix notation we can write

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, |0〉 ⊗ |1〉 =

(
1
0

)
⊗
(

0
1

)
=




1 · 0
1 · 1
0 · 0
0 · 1


 = |01〉 . Eq (1.1.1)

Once we have described a qubit register we can discuss the convention that is often used to name and
describe states of qubit register. Let n ∈ N and N = 2n ∈ N be the number of basis states. Then
the x-th state, where x ∈ 0, . . . , 2n − 1, can be naturally identified with the state |x1x2 . . . xn〉, where
x =

n∑

i=1
xi2n−i.[4]

1.1.2 Quantum circuits and gates

In order to describe manipulations with classical bits on the level of individual Boolean operations the
logic circuit formalism can be used. In quantum computing there is the same necessity to describe
manipulation with qubits. A frequent solution of this necessity is the use of so-called quantum circuits.
The quantum circuit notation is similar to classic circuits, because utilizes the concepts of wires that

2

...1.1. Basic concepts

carry units of information and gates that have various effects on these units. In this project we will
use the circuit notation to keep the schematics compatible with the description used by the quantum
SDKs.

The qubits can be understood as vectors on H and the quantum gates represent the allowed
transformations that are described by unitary operators. Some of the most important gates, including
both single qubit and multiqubit gates, in standard basis are listed below.

Single qubit gates

First we shall list the identity and Pauli matrices1 and their effect of qubit in standard basis. Let
|ψ〉 = a |0〉+ b |1〉.

I =
(

1 0
0 1

)
I |ψ〉 = a |0〉+ b |1〉 Eq (1.1.2)

X = σX =
(

0 1
1 0

)
σX |ψ〉 = b |0〉+ a |1〉 Eq (1.1.3)

Y = σY =
(

0 −i
i 0

)
σY |ψ〉 = −ib |0〉+ ia |1〉 Eq (1.1.4)

Z = σZ =
(

1 0
0 −1

)
σZ |ψ〉 = a |0〉 − b |1〉 Eq (1.1.5)

These operators are sometimes marked σ0, σ1, σ2, σ3, because together the sigma operators form an
basis of 2× 2 Hermitean matrices. The Pauli gates are also linked to the following useful identities for
outer product[5].

|0〉〈0| = 1
2(I + Z) I = |0〉〈0|+ |1〉〈1| Eq (1.1.6)

|0〉〈1| = 1
2(X + iY) Z = |0〉〈0| − |1〉〈1| Eq (1.1.7)

|1〉〈0| = 1
2(X − iY) Y = i(|1〉〈0| − |0〉〈1|) Eq (1.1.8)

|1〉〈1| = 1
2(I − Z) X = |0〉〈1|+ |1〉〈0| Eq (1.1.9)

1The Pauli matrices bear the name of Wolfgang Pauli, Austrian physicist and a pioneer of quantum physics.

3

1. Introduction ..
Next we shall list other important single qubit gates with their names leaving out the effect for the
sake of brevity.

H = 1√
2

(
1 1
1 −1

)
Hadamard gate Eq (1.1.10)

S =
(

1 0
0 i

)
Phase gate Eq (1.1.11)

T =




1 0
0 exp

{
iπ4

}

 π/8 gate Eq (1.1.12)

Rx =




cos φ2 −i sin φ2
−i sin φ2 cos φ2


 Rotation about x̂ axis Eq (1.1.13)

Ry =




cos φ2 − sin φ2
sin φ2 cos φ2


 Rotation about ŷ axis Eq (1.1.14)

Rz =




exp
(
−iφ2

)
0

0 exp
(

iφ2

)


 Rotation about ẑ axis Eq (1.1.15)

The Hadamard gates have special importance, because they are able to change states |0〉 and |1〉 to
so-called balanced states, i.e. states for which there is an equal probability of measuring 1 or 0 in
standard basis.

H |0〉 = 1√
2

(|0〉+ |1〉) H |1〉 = 1√
2

(|0〉 − |1〉) Eq (1.1.16)

The operation of applying Hadamard transformation to multiple qubits of a quantum register, equivalent
to a tensor product of the necessary number of H gates, is called Hadamard transformation, marked
H = H⊗n.

Multiqubit gates

Most common example of multiqubit gates are the controlled unitary gates. For example a controlled
X, which is usually denoted as CX, gate works similarly to a classical controlled NOT logical gate, i.e.
CNOT, if we consider only |0〉 and |1〉 states. This means that X gate is applied to target qubit only if
the control qubit is in |1〉 state. This implies how the matrix representation of such gate looks. Other

CX = CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 =

Table 1.1: The CX or CNOT gate matrix and the circuit symbol

controlled gates represented by Pauli matrices have similar form. It can be proved that an controlled
arbitrary single qubit gate with a unitary matrix form can be created only using two CNOT gates,
three single qubit gates and a phase adjustment. The next multiqubit gate we mention is the Toffoli

4

...1.1. Basic concepts

=

(
1 0
0 eiα

)

U A B C

Figure 1.1: Circuit realizing controlled U gate using unitary and CNOT gates that satisfy ABC = I and
U = exp(iα)AXBXC.



I6,6 ~0 ~0
~0T 0 1
~0T 1 0


 =

Table 1.2: The CNOT gate matrix and the circuit symbol

gate, a triple qubit gate. Its function can be simply described as an X controlled by two qubits.[4][2]
Its importance lies in it being the foundation for reversible computation on quantum computer with
classical Boolean logic. Hence, it and other equivalent gates are needed to prove theorems about general
properties of quantum computers in comparison with classical computers.

Gates based on matrix functions

Many quantum algorithms use gates which are based of functions with matrix argument. More generally
the operator functions are considered.
Definition 1.1 (Operator function). Consider a normal operator (resp. matrix) A, which has a spectral
decomposition A =

∑

a

a |a〉〈a|, then we define an operator (resp. matrix) function f its action

f(A) :=
∑

a

f(a) |a〉〈a| . Eq (1.1.17)

In many practical situations an approximation of the function by a Taylor series is used, where the
argument of function appears as a power of the argument to a positive integer, which can be applied
to a matrix easily.
Example 1.2 (Basic operator functions). In order to explain the term of operator functions, few examples
are listed below.

. The first example could be defined even without the formalism of operator functions. Taking
f(x) :=

√
x and arbitrary normal A, then the matrix A1/2 can be computed for a small matrix

using the fact that A1/2 ·A1/2 = A.. Consider f(x) := ex and A := θ · Z. It can be seen that Z = (+1) · |0〉〈0|+ (−1) |1〉〈1|. Thus

f(θZ) = eθ |0〉〈0|+ e−θ |1〉〈1| =
(

eθ 0
0 e−θ

)
Eq (1.1.18)

5

1. Introduction ..
. Through the Euler identity it can be seen that for f(x) := ex and A := iθ~v · ~σ, where ~v ∈ R3 and

~v · ~σ :=
3∑

i=1
vi · σi we have

f(iθ~v · ~σ) = cos(θ)I + i sin(θ) (~v · ~σ) Eq (1.1.19)

. The last identity can be further generalized, f : C→ C and A := θ~n · ~σ, where ~n is a normalized
real vector:

f(θ~n · ~σ) = f(θ) + f(−θ)
2 I + f(θ)− f(−θ)

2 ~n · ~σ Eq (1.1.20)

Analysis of quantum circuits

To understand and analyse complicated multiqubit circuits it is useful to define several concepts. The
most trivial metric of the resources needed by an algorithm is the number of physical qubits needed for
a realization. In some cases it is desirable to include the number of additional qubits, i.e. the ancillary
qubits defined below 1.6, if their number is significant. To quantify the number of steps needed to
execute the algorithm using an abstract quantum computer capable of performing arbitrary number of
parallel operations we define the circuit depth.
Definition 1.3 (Circuit depth). The depth of a quantum circuit denotes the number of distinct time
steps at which a parallel set of gates is applied.

Apart from the quantum specific metrics, many conventional characteristics are used as well. For
example for approximative algorithms it is important to quantify the dispersion of the result.

For many algorithms an important role is played by so-called weight characteristics. Examples of
widely used weights are the Hamming weight and Pauli string weight.
Definition 1.4 (Hamming distance, Hamming weight). [4] Let S1 and S2 be a binary strings composed
of ones and zeros that have the same length, i.e. they contain the same number of symbols. For these
strings we define the Hamming distance as the number of symbols in which S1 and S2 differ. The
Hamming distance is denoted as dH(•, •). For example S1 = 0011, S2 = 0110 we have dH(S1, , S2) = 2.

Using the Hamming distance the Hamming weight for a string S can be defined as dH(S, S0), where
S0 represents a string consisting of zeros of the same length as S. The Hamming weight is equal to the
number of non-zero symbols in a string.
Definition 1.5 (Pauli string weight). [6] Consider a Pauli string, that is a tensor product of n ∈ N of
Pauli gates. The Pauli weight represents the number of qubits Pauli string acts on non-trivially. Hence,
it is equal to the number of X,Y, Z operators in the Pauli string. In this project the Pauli weight of a
Pauli string Pa is denoted a wa.

6

.. 1.2. Quantum algorithms

Ancilla qubits

Another important concept in quantum computation are the ancillary qubits. In order to perform
some algorithms or even implement some gates, e.g. implement CNOT or a NOT gate using Toffoli gates,
additional qubits need to be used.
Definition 1.6 (Ancilla qubit). Consider a quantum circuit. A qubit in register which is initially in a
known state and its value does not contain the result of the computation at the end of circuit is called
an ancillary qubit2. The ancillary qubits are often not explicitly measured, i.e. their end “value” is
discarded. In other cases they hold the result of a more complex operation on circuit, such as the
Hadamard test[6], which is used to measure real an imaginary part of an amplitude of form 〈Ψ|U |Ψ〉.

The ancillary qubits are important parts of quantum circuits because the quantum computing is
reversible, so the values of qubits cannot be set to arbitrary values without loss of information. The
ancillary qubits often play role of a record of performed operations on work qubits. The number of
ancillary qubits has to be taken into account of total number of used qubits in quantum circuit since
the ancillary qubits have to be physically present in the register.

1.2 Quantum algorithms

The goal of an algorithm is to effectively solve the assigned problem using the given resources. The
classical algorithms rely on the classical resources of information, communication and information
processing. On the other hand the quantum algorithms apart from quantum counterparts of classical
resources have physical resource such as superposition entanglement and simulation capabilities
inaccessible to classical algorithms. These resources can be harnessed in order to create algorithms
with quantum advantage3.

Since the theoretical breakthroughs of the beginning of the 21st century the efforts to built quantum
computers with hundreds or more qubits are increasing. The current quantum computers suffer many
technological limitations, such as low number of available qubits and presence of noise which cannot be
decreased by the means of error correction, because of the small size in terms of qubit quantity. This is
the reason they are often called Noisy Intermediate-Scale Quantum (NISQ) devices[7]. Nevertheless,
the NISQ devices have already proven to be capable of solving problems otherwise intractable on
conventional computers[8, 9]. For example the Gaussian boson sampling computation model is a prime
example of an approach which may lead to a practical advantage of physical quantum computers over
the conventional devices[10]. The phenomenon of quantum devices outperforming classical counterparts
is usually referred to as quantum supremacy[11]. These restrictions of NISQ devices mean additional
requirements the algorithms have to meet. The algorithms should require minimal number of physical
qubits, use the facilities of hybrid computers, i.e. perform parts of computation using classical computer,
and be reasonably resistant to noise. The last feature is often called noise resilience[6].

2Sometimes referred to as ancilla for short.
3Some literature the “quantum advantage” and “quantum supremacy” are treated as synonyms. In this project the

“quantum advantage” will be considered as a reference to an instance of “quantum supremacy” and a property of having
an advantage over classical alternative in a tangible application. This approach is also used in [6]

7

1. Introduction ..
As was stated in the introduction 1, the algorithms this works focuses on are QAOA and the VQE,

both of these algorithms are considered to be low level optimization algorithms, which can be realized
on NISQ devices and possibly have potential in reaching quantum supremacy in practically demanded
problem. From the quantum technological point of view QAOA and more prominently VQE are
variational quantum algorithms.
Definition 1.7 (Variational Quantum Algorithms). The term Variational Quantum Algorithms (abbrevi-
ation VQA) refers to a group of hybrid quantum algorithms, which share a common structure. The
problem is encoded into a parametrized cost function 2.2. This function defines a hypersurface, a
cost landscape. The ansatz denotes the choice of cost function encoding and the choice of parameters.
The solving procedure is based of a loop consisting of evaluation of the cost function by means of a
quantum computer and the following optimization of the parameters using a conventional computer.
The process of optimization is sometimes called training in this context. The variational principles are
applied to prove the success of training.

Other common features of VQAs aim to use only low depth circuits and rely on precision of
optimization methods rather than quantum error correction and fault-tolerance. Both features arise
from demands of current NISQ devices.[12].

8

Chapter 2

Quantum approximate optimization algorithm

The combinatorial optimization problems in general are concerned with finding the maximum or the
minimum of an objective function. Unfortunately in many cases, such as NP optimization problems, it
may be difficult to compute the precise solution in a straightforward way. The common approach in such
cases is to use an approximative algorithm that is generally capable of finding an approximate solution
in polynomial time. To quantify the performance of an approximation algorithm an approximation
ratio is defined.

Definition 2.1 (Approximation ratio). [13] Let A(f) denote value of objective function f at x as
calculated by the algorithm and OPT(f) denote the optimal value of the objective function for f . Then
we define an approximation ratio R by formula

R := A(f)
OPT(f) . Eq (2.0.1)

This definition means that for a maximization problem we get 0 ≤ R ≤ 1, where R = 1 is equivalent
to the best possible result. It is worth nothing that this definition is significantly different from that
used in classical discrete optimization and approximation methods. The approximation ratio in classical
optimization is defined so that the success occurs for R = 0 and R = 1 is a failure[14] or as an upper
bound for performance ratio[15].

The development of quantum computation theory motivated research of new quantum approaches to
optimization problems that could offer performance improvements. Some of the most recent quantum
algorithms in this field are the Quantum Annealing (QA) and Quantum Approximate Optimization
Algorithm (QAOA). The latter is often seen as a promising algorithm that does not suffer with
performance problems of QA and has a simple structure that makes it a candidate for implementation
on the NISQ devices[13].

9

2. Quantum approximate optimization algorithm

. . .

.

. . .

|s〉1

UP (γ1) UM (β1) UP (γp) UM (βp)
Optimization
of 〈HP 〉 (γ,β)

...

|s〉1

Figure 2.1: Schematic of a QAOA circuit, [16]

2.1 General QAOA algorithm

First let us define the problem to be solved. A combinatorial problem is specified by number of answer
bits n and the number of clauses m. The clauses can individually be satisfied for certain assignments
and be unsatisfied for others. This motivates the following definition of an objective function.
Definition 2.2 (Objective function). The term objective functions denotes a map, which represents
an optimization problem, by mapping the values of one or more variables onto a real number. The
process finding the solution of the optimization problem is then reduced to finding a set of values which
minimize or maximize the objective function. An objective function in case of minimization is called
cost function1. For our case let z = z1z2 . . . zn represent answer string and function ∀α ∈ 1, . . .m,Cα
represent the clause, where

Cα(z) =
{

1 if satisfied,
0 otherwise.

Then we define the objective function

C(z) =
m∑

α=1
Cα(z). Eq (2.1.1)

To implement the objective function using quantum formalism we first consider the Hilbert space. In
our case we have 2n dimensional H with computational basis vectors |z〉 that represent answer string.
To encode the objective function we define the phase Hamiltonian HP which acts diagonally on basis
states |z〉
Definition 2.3 (Phase Hamiltonian, phase operator). Let |z〉 denote a computational basis state. Then
we define phase Hamiltonian HP using computational basis as

HP |z〉 := C(z) |z〉 , Eq (2.1.2)

where for C(z) =
m∑

α=1
Cα(z) we have

Cα |z〉 = Cα |z〉 Eq (2.1.3)
1Is it worth mentioning that the objective function for maximalization is, by analogy to cost function for minimization,

called a profit function.

10

...................................... 2.1. General QAOA algorithm

Using the phase Hamiltonian we define the phase operator UP with parameter γ as

UP (γ) := e−iγHP = exp(−iγHP) =
m∏

α=1
exp(−iγCα). Eq (2.1.4)

Here we notice that the terms of product Eq (2.1.4) commute and that γ can be restricted to interval
[0, 2π). The first is consequence of the terms being diagonal in computational basis and the second is
implied by the HP having only integer eigenvalues.

The second component needed for QAOA algorithm are the mixing operators.
Definition 2.4 (Mixing Hamiltonian, mixing operators). Let n be the number of work qubits, equal to
length of answer string and σXj denote the Pauli X operator acting on j-th qubit in register. Then we
define the mixing Hamiltonian HM as follows:

HM :=
n∑

j=1
σXj . Eq (2.1.5)

Now we define the mixing operator UM :

UM := e−iβHM = exp(−iβHM) =
∏

j=1
exp

(
−iβσXj

)
, Eq (2.1.6)

where β ∈ [0, π).

Note that thanks to the identity

exp(iAx) = cos(x)I + i sin(x)A, Eq (2.1.7)

which holds for operators satisfying A2 = I, we can interpret the UM as UM =
∏

j=1

(
Rx(2β)

)
j
.

The third component is the initial state, it is defied to make the following text and circuit diagrams
easier to read. To represent all possible answer strings in the initial state we use the Hadamard
transformation form Section 1.1.2.
Definition 2.5 (Initial state). For a quantum circuit the state, to which is the quantum register set
before any computation is referred to as initial state. The initial states may be set differently for
various algorithms.

The QAOA uses the following initial state: Let H be a 2n = N dimensional Hilbert space with
computational basis |z〉. Then we define the initial state2 as

|s〉 := 1√
N

∑

z

|z〉 . Eq (2.1.8)

Now we may proceed to define the p-level the QAOA state.
2The initial state of this form is the equal superpositon state, which can be prepared by applying hadamard

transformation to a register initialised to |0〉⊗N state.

11

2. Quantum approximate optimization algorithm
Definition 2.6 (p-level QAOA state). Let p be a positive integer and γ1, . . . , γp ∈ [0, 2π) and β1, . . . , βp ∈
[0, π) be parameters. For short ~γ :=

(
γ1, . . . , γp

)
and ~β :=

(
β1, . . . , βp

)
. Then we define p-level QAOA

state as ∣∣∣~γ, ~β
〉

:= UM (βp)U(γp) . . . U(β1)Up(γ1) |s〉 Eq (2.1.9)

The formula Eq (2.1.9) implies that to prepare p-level QAOA in general case the depth of circuit
has to be m · p+ p, where m is the depth of one UP implementation. The next step in QAOA is to
measure the expectation value for Hp

〈Hp〉 = 〈Hp〉 (~γ, ~β) :=
〈
~γ, ~β

∣∣∣Hp

∣∣∣~γ, ~β
〉

= 〈C〉 Eq (2.1.10)

and find the maximum of expectation value 〈HP 〉 over the angles

Mp := max
~γ∈[0,2π),~β∈[0,π)

〈Hp〉 (~γ, ~β). Eq (2.1.11)

Once the optimal values of ~γ, ~β are found, all that is left is to find the optimal answer string z∗ and
the value of objective function C(z∗). The former can be found using with repeated measurements in
computational basis and the latter can be calculated using classical computer.

The remaining problem is that it is not clear, what angles ~γ, ~β to pick. The process of finding
the optimal ~γ, ~β for the maximum can be implemented in various ways. Let p be a fixed constant
independent of n. One possible approach is to perform the algorithm with angles chosen from a set
of points G := [0, 2π]p × [0, π]p. The points of the set form a grid, which is then gradually explored
by the computer. Due to the searched set G being compact and the partial derivatives of 〈Hp〉 being
bound by O(m2 +m · n), using the big O notation, this procedure produces an answer string z∗, such
that C(z∗) is close to Mp. Another approach is to use a classical computer and a classical optimization
to find the optimal ~γ, ~β. The quantum computer is in this case used only to prepare

∣∣∣~γ, ~β
〉
state and

perform the measurements to get the answer string z∗[16, 13].

2.2 The properties of the general QAOA

The QAOA has distinctive properties that characterize its potential application. As can be seen from
the equation Eq (2.1.11) the value of Mp−1 can be considered a case of constrained maximization at p,
thus Mp−1 ≤Mp.

The QAOA may be compared another algorithm the Quantum Adiabatic Algorithm (QAA) although
their principles are different. While the QAOA is an approximative algorithm that is designed to find
a good approximation of the solution, the QAA is specialized in finding the optimal solution exactly,
of course up to an error. This difference can be used to prove that for QAOA

lim
p→∞

Mp = max
z∈[n]

C(z). Eq (2.2.1)

In order to show Eq (2.2.1) the same problem is solved using QAA. First the initial state |s〉 = |+ · · ·+〉
from Eq (2.1.8) is prepared. Then the objective function is used to define the time dependent

12

... 2.3. QAOA for fixed p

Hamiltonian H(t) = (1 − t

T
)HM + (t

T
)HP , where the Hamiltonians HM , HP are not the same

Hamiltonians as in previous section. This definition allows usage of QAA because |s〉 is the highest
energy state of HM and the objective is to find the highest energy state of HP . According to its
definition the HM has only non-negative elements outside of diagonal, therefore the Perron-Frobenius
theorem[17, 18] for non-negative irreducible matrices can be applied. The theorem states that there is
a non-zero gap between the top and one below energy states for t < T . This is a sufficient condition
for the QAA to succeed if the run time T is large enough. The evolution described by Hamiltonian
H(t) an be approximated using a modification of the Trotter formula[4]

lim
n→∞

(exp
(

iA t

n
exp

(
iB t

n

))n
= exp(i(A+B)t), Eq (2.2.2)

such as
exp(i(A+B)δt) = exp(iAδt) exp(iBδt) +O(δt2), Eq (2.2.3)

where A and B are Hermitian operators. The approximation consists of altering operators UP (γ) and
UM (β). To reach good approximation the parameters γ, β are chosen to be small while the p should be
large to provide longer time T .

The approximation ratio can be applied to illustrate the performance of the QAOA. Consider a
combinatorial optimization problem defined as maximization of an objective function. The p-level
QAOA is then applied and produces optimal parameters γ∗ and β∗. From the formula Eq (2.0.1)
follows that

r := 〈C〉 (γ
∗, β∗)

Cmax
= 〈γ∗, β∗|HP |γ∗, β∗〉

Cmax
. Eq (2.2.4)

In publication [16] it was shown that for 1-level QAOA r = 0.6924 ≤ R for MaxCut on unweighed
3-regular graphs. This result means that even for p = 1 QAOA has good performance.

2.3 QAOA for fixed p

To further explore the algorithm, we can focus on the case of fixed p. This assumption is reasonable
as for practical implementation of the algorithm the QAOA level parameter p would be set first. In
section 2.2 it was shown that the QAOA implementation strongly depends on the objective function
C(z) of the examined problem. From this follows that many properties of QAOA apply only for certain
classes of problems and associated objective functions. One such class are the problems with objective
functions that can be expressed using Boolean operators. This class of problems has a significant
subclass of problems with an objective function of form

C(z) = a+
n∑

j=1
cjzj +

∑

j<k

djkzjzk ; cj , djk ∈ R Eq (2.3.1)

This subclass is often referred to as Quadratic unconstrained binary optimization (QUBO) class and is
implementable on D-Wave quantum computers using the quantum annealing algorithm[19].

In order to describe some properties of the QAOA in more comprehensive way, the MaxCut problem,
which belongs to the class of problems with Boolean objective functions, will be used as an example to
illustrate the methods of deriving some properties for other problems of this class. The shown methods
are generally applicable to problems with the same constitutional elements of objective functions.

13

2. Quantum approximate optimization algorithm
2.3.1 MaxCut for graphs with bound degree

The MaxCut problem was suggested as an example of a problem that can be solved with the help of
the QAOA. First let us define the MaxCut problem.
Definition 2.7 (MaxCut problem). [20] Given an undirected edge-weighted graph G = (V,E), where V is
the set of vertices and E the set of edges, the maximum cut problem (MaxCut) is to find the bipartition
of vertices, i.e. a cut dividing the set V so that the resulting sets V1 and V2 are complementary, that
maximizes the weight of the edges crossing the partition.

This problem is a problem with many applications, some of the most prominent are circuit layout
design and models in statistical physics, e.g. Ising model[21]. Finding new more efficient ways to this
problem is desirable, because the MaxCut problems belongs to NP-complete problems[22].

In this work we will be concerned only with unweighted graphs, this means we are only concerned
with maximizing the number of edges crossed by the cut on a graph G = (V,E), where |V | = n and
|E| = m3.

1

2

3

4

5

1

2

3

4

5

Figure 2.2: Illustration of a cut solving MaxCut problem for a simple graph

To define the configuration space of the problem we realize that the cut divides the vertices of the
graph G into two disjoint subsets V1 and V2. The position of vertex can be marked by a binary value.
Definition 2.8 (Configuration space of MaxCut). Let V1 and V2 be the complementary sets of vertices
created by a cut. Then the configuration space of MaxCut is the set of n bit strings x = x1x2 . . . xn,
where

xi =
{

1 if vertex i ∈ V1,

0 if vertex i ∈ V2

From the definition it can be seen that the requirement for the vertices of an edge to be on the
opposite sides of the edge cut implies the following equation

IF(Edge 〈u, v〉 is cut according to MaxCut definition) = xu ⊕ xv.
From this the form of objective function is deduced.
Definition 2.9 (Objective function of MaxCut). Supposing the MaxCut problem is given in the form
defined above. Then the objective function is defined by equation

C(x) =
∑

〈u,v〉
(xu ⊕ xv), Eq (2.3.2)

3From the perpective of profit function, each edge cut gives the same profit.

14

... 2.3. QAOA for fixed p

where u ∈ V1 and v ∈ V2.

To derive phase Hamiltonian corresponding to the objective function Eq (2.3.2) the following
theorem[19] is applied.4

Theorem 2.10 (Fourier transformation for Boolean functions). A Boolean function f : {0, 1}n → {0, 1}
can be represented by a unique Hamiltonian on n-qubits, which satisfies Hf |x〉 = f(x) |x〉 for all
computational basis states |x〉. This Hamiltonian is

Hf =
∑

S⊂[n]
f̂(S)

∏

j∈S
Zj = f̂(∅)I +

n∑

j=1
f̂({j})Zj +

∑

j<k

f̂({j, k})ZjZk + . . . Eq (2.3.3)

where the Fourier coefficients are

f̂(S) = 1
2n

∑

x∈{0,1}n
f(x)(−1)S·x =

m∑

j=1
f̂j(S) ∈ [−1, 1].

The notation S · x :=
∑

j∈S
xj is used. The Fourier coefficients satisfy the relation

∑

S⊂[n]
(f̂(S))2 = 1

2n
∑

x∈{0,1}n
f(x) = f̂(∅).

Proof. Firstly it is useful to realize that the condition (∀x ∈ {0, 1}n)(Hf |x〉 = f(x) |x〉) is equivalent
to Hf =

∑

x∈{0,1}n
f(x) |x〉〈x| =

∑

x:f(x)=1
|x〉〈x|. Secondly it can be seen that Z |0〉 = |0〉 and Z |1〉 = − |1〉,

thus the product of Zj acts as ∏

j∈S
Zj |x〉 = ξS(x) |x〉 ;

where ξS(x) : {0, 1}n → {−1,+1} is the parity function ξS(x) = (−1)S·x. Important observation is
that the set of parity functions on n-bits gives an orthonormal basis for real functions:

〈f, g〉 := 1
2n

∑

x∈{0,1}n
f(x)g(x).

Using this observation any Boolean function f : {0, 1}n → {0, 1} may be written using Fourier expansion

f(x) =
∑

S⊂[n]
f̂(S)ξS(x), Eq (2.3.4)

with Fourier coefficients given as

f̂(S) = 1
2n

∑

x∈{0,1}n
f(x)ξS(x) = 〈f, ξS〉. Eq (2.3.5)

It is important to realize that the class of functions that can be represented using this method is
broader than only the class of Boolean functions. This fact is illustrated in the following theorem.

4To improve legibility the Pauli gates will be noted in the following way for the rest of this section: σxi = Xi, σ
y
i =

Yi, σ
z
i = Zi.

15

2. Quantum approximate optimization algorithm
Theorem 2.11 (Weighted Boolean function Fourier transformation). For an n-bit function f : {0, 1}n → R

given as f(x) =
m∑

j=1
wjfj(x), where (∀j ∈ [m])(wj ∈ R and fj : {0, 1}n → {0, 1}5, Hamiltonian on

n-qubits, which satisfies Hf |x〉 = f(x) |x〉, is given as

Hf =
∑

S⊂[n]
f̂(S)

∏

j∈S
Zj =

m∑

j=1
wjHfj , Eq (2.3.6)

where Fourier coefficients are

f̂(S) = 1
2n

∑

x∈{0,1}n
f(x)(−1)S·x =

m∑

j=1
f̂j(S) ∈ R

and Hamiltonians Hfj are given by Eq (2.3.4)

Proof. The proof is a direct consequence of application of the previous theorem and the linearity of
the formula Eq (2.3.3) in this theorem.

Although it is not necessary in this case, another useful tool in designing Hamiltonians for more
complex problems are the composition rules.
Theorem 2.12 (Composition rules). Let f, g : {0, 1}n → {0, 1} be Boolean functions with Hamiltonian
representations Hf and Hg. The Hamiltonian that represent the basic operations on f and g are
derived by the following rules:

H¬f = I −Hf Hf =⇒ g = I −Hf +HfHg Eq (2.3.7)
Hf∧g = HfHg Hf∨g = Hf +Hg −HfHg Eq (2.3.8)
Hf⊕g = Hf +Hg − 2HfHg Haf+bg = aHf + bHg a, b ∈ R Eq (2.3.9)

Proof. First the Boolean operations are translated using logical identities into (·,+) formulas. Then
the formulas modified to Hamiltonians using the fact that Fourier transform is linear and that the
logical values 1 and 0 can be represented by the identity matrix (I) and zero matrix (O).

(¬f) = (1− f) (f =⇒ g) = (¬f + fg) Eq (2.3.10)
(f ∧ g) = (fg) ((f ∨ g) = (f + g − fg) Eq (2.3.11)
(f ⊕ g) = (f + g − 2fg) (af + bg) = (af) + (bg) Eq (2.3.12)

The theorems can be used to derive the Hamiltonian representations of basic Boolean functions that
can be then further combined using composition rules theorem.

The correct phase Hamiltonian definition for MaxCut can now derived by first observing that the
objective function takes simple form

C(x) =
∑

〈u,v〉
(xu ⊕ xv), Eq (2.3.13)

where each summand is 0 is vertices are in the same partition and 1 if the are not, and the information
from the table 2.1.

5(∀k ∈ N)([k] := 1, 2, . . . , k)

16

... 2.3. QAOA for fixed p

f(x) Hf f(x) Hf

x
1
2I −

1
2Z ¬x 1

2I −
1
2Z

x1 ∧ x2
1
4I −

1
4(Z1 + Z2 − Z1Z2)

k∧

j=1
xj

1
2k
∏

j

(I − Zj)

x1 ∨ x2
3
4I −

1
4(Z1 + Z2 + Z1Z2)

k∨

j=1
xj I − 1

2k
∏

j

(I + Zj)

x1 ⊕ x2
1
2I −

1
2Z1Z2 x1 =⇒ x2

3
4I + 1

4(Z1 − Z2 + Z1Z2)

Table 2.1: Hamiltonian representation of Boolean functions

Definition 2.13 (Phase Hamiltonian of the MaxCut). The objective function Eq (2.3.2) of MaxCut is
represented according to formula C(x) =

∑
xu ⊕ xv in the table 2.1 by a phase Hamiltonian

HP =
∑

〈u,v〉
Hp〈u,v〉 =

∑

〈u,v〉

1
2(1− ZuZv). Eq (2.3.14)

It should be mentioned that this form of Hamiltonian expressed using the Pauli operators is often
referd to as Ising Hamiltonian[23].

The expectation value of 〈HP 〉 is

〈HP 〉 =
∑

〈u,v〉
〈γ, β|Hp〈u,v〉|γ, β〉

=
∑

〈u,v〉
〈s|U †P (γ1) . . . UM (βp)Hp〈u,v〉UM (βp) . . . UP (γ1)|s〉 .

Eq (2.3.15)

To perform the classical optimization in QAOA the formula (2.3.15) needs to be simplified. The
approach to simplification can be illustrated for p = 1, in this case it can be seen that the mixing
operators “partially commute” through the HP 〈u,v〉 and cancel.

U †P (γ1)U †M (β1)HP 〈u,v〉UM (β1)UP (γ1) =
= U †P (γ1)eiβ1(Xu+Xv)HP 〈u,v〉e−iβ1(Xu+Xv)UP (γ1) Eq (2.3.16)

This for arbitrary p means that the operator involves only some edges, specifically the edges at most
p steps away from the inspected edge 〈u, v〉. This implies that only certain possible subgraphs, each
containing number of qubits independent of n because the degree is bounded, need to be analysed to
evaluate 〈HP 〉. This reduction can be shown on input graphs of fixed degree 3 and p = 1. In this case
the possible subgraphs for edge 〈u, v〉 are in figure 2.3. For the analysis of a subgraph G we define

u v

(a) : Subgraph type G4

u v

(b) : Subgraph type G5

u v

(c) : Subgraph type G6, tree

Figure 2.3: Possible subgraphs for graph of fixed degree 3 and p = 1.[16]

17

2. Quantum approximate optimization algorithm
CG :=

∑

〈u,v〉∈G
C〈u,v〉

HPG :=
∑

〈u,v〉∈G
HP 〈u,v〉 UPG(γ) := exp{−iγCG}

HMG :=
∑

j∈G
Xj UMG(β) := exp(−iβHMG)

|sG〉 :=
∏

j∈G
|+〉 .

Contribution to 〈HP 〉 of an edge 〈u, v〉 considering the subgraph G(u,v) associated with it is

fg(~γ, ~β) =
〈
sG(u,v)

∣∣∣U †PG(u,v)
(γ1) . . . U †MG(u,v)

(βp)HP 〈u,v〉UMG(u,v)(βp) . . . UPG(u,v)(γ1)
∣∣∣sG(u,v)

〉
. Eq (2.3.17)

Since all isomorphic subgraphs produce the same contributions, the number of occurrences of different
subgraph types can be taken as a weight wg in sum over subgraph types g.

〈HP 〉 (~γ, ~β) =
∑

g

wgfg(~γ, ~β), Eq (2.3.18)

where the weight wg denotes number of subgraphs of type g. The benefit of this method for the classical
computation of 〈HP 〉 is that the function fg are independent of m and n. It is useful to note that the
upper bound for the number of qubits involved in subgraph contribution Eq (2.3.17) is the number of
qubits in tree type subgraph. In case of a graph with maximum degree d this number is

Ntree = 2 · (d− 1)p+1 − 1
(d− 1)− 1 , Eq (2.3.19)

showed in [16]. Moreover, the number of types of subgraphs is finite for each p. The values of the m
and n parameters affect only the wg can be found from the complete graph using little resources. From
this follows that the evaluation of 〈HP 〉 using Eq (2.3.18) does not require resources growing with n.

To evaluate the performance of the QAOA it is useful to focus of the “concentration of results” of
algorithm. In order to make the proofs easier to read, the objective function C will be considered to be
an abstract equivalent of HP , So these two symbols will be interchanges at appropriate places. The
previously mentioned method can be also used to derive the upper bound for standard deviation using
the formula for an observable M

[∆(M)]2 =
〈

(M − 〈M〉)2
〉

=
〈
M2

〉
− 〈M〉2 , Eq (2.3.20)

proved in [4]. The standard deviation in the analysed case can be written as

[∆(C)]2 =
〈
~γ, ~β

∣∣∣C2
∣∣∣~γ, ~β

〉
−
〈
~γ, ~β

∣∣∣C
∣∣∣~γ, ~β

〉2
=

=
∑

〈u,v〉,〈j,k〉∈E

[
〈s|U †P (γ1) . . . UM (βp)HP 〈u,v〉HP 〈j,k〉UM (βp) . . . UP (γ1)|s〉

− 〈s|U †P (γ1) . . . UM (βp)HP 〈u,v〉UM (βp) . . . UP (γ1)|s〉
· 〈s|U †P (γ1) . . . UM (βp)HP 〈j,k〉UM (βp) . . . UP (γ1)|s〉

]
Eq (2.3.21)

The terms in sum in Eq (2.3.21), where the subgraphs G(u,v) and G(j,k) do not share common qubits
will vanish. This condition is fulfilled if there is no path connecting G(u,v) with G(j,k) of length 2p+ 1

18

... 2.3. QAOA for fixed p

or shorter. This implies that for each edge 〈u, v〉 the number of edges which can contribute to sum
in Eq (2.3.21) is upper bound by Ntree from Eq (2.3.19), where p := 2p+ 1. The summands can be
also estimated, they are at most 1 in norm. Thus, the standard deviation [∆(C)] can be bound as

[∆(C)]2 =
〈
~γ, ~β

∣∣∣C2
∣∣∣~γ, ~β

〉
−
〈
~γ, ~β

∣∣∣C
∣∣∣~γ, ~β

〉2
≤ 2 · (d− 1)2p+2 − 1

(d− 1)− 1 ·m, Eq (2.3.22)

where d is the maximum degree of the graph and |E| = m. Thus, for fixed v and p the standard
deviation [∆(C)] is at most of the order

√
m. The interpretation of this result is that the sample mean

calculated of order m2 values of objective function C(z) will be within 1 of 〈HP 〉 (~γ, ~β) with probability
equal to (1−m−1). This generally means that there is only a small probability that we get an answer
string z with C(z) much bigger than 〈Hp〉.

Another significant result that quantifies the performance of QAOA for a specific problem is the
approximation ratio for MaxCut on 3-regular graphs, also known as cubic graphs, for p = 1 which
was shown in [16]. The first step is to analyse the investigated graphs. A cubic graph with vertices
|V | = n has |E| = 3n

2 edges, because each vertice has three neighbours. Then the number of following
subgraphs is read from the graph. Where the leaving edges in G4 end in distinct vertices and the two

(a) : Subgraph type G4 (b) : Subgraph type G�

Figure 2.4: Significant subgraphs for 3-regular graph, [16]

edges leaving G� are not the same edge.

N4 := # (G4) Eq (2.3.23)
N� := # (G�) Eq (2.3.24)

G4 and G� do not have common vertices, this implies that 3N4 + 4N� ≤ n. Using the notation from
figure 2.3 it can be seen that the G� consists of 1 edge with G4 type subgraph and 4 edges with G5

type subgraph, while the G4 has 3 edges with G5 type subgraph. Other (3n
2 − 5N� − 3N4) edges

there are G6 type subgraph. Thus, 〈HP 〉 can be expressed as

〈HP 〉 = N�fG4(γ, β) + (4N� + 3N4)fG5(γ, β) + (3n
2 − 5N� − 3N4)fG6(γ, β). Eq (2.3.25)

From the definition Eq (2.1.11) now follows that M1 is function only of n,N�, N4

M1(n,N�, N4) = max
γ,β
〈HP 〉 (γ, β). Eq (2.3.26)

Last step is to give an upper bound for the number of satisfied edges. For both subgraphs G4 and G�

the best cut leaves 1 edge not crossed. This gives the upper bound (3n
2 −N�−N4). Hence the ratio is

R ≥ M1(n,N�, N4)
(3n

2 −N� −N4)
= M1(1, n�, n4)

(3n
2 − n� − n4)

, Eq (2.3.27)

19

2. Quantum approximate optimization algorithm
where n� := N�

n
and n4 := N4

n
. The last expression can be computed using classic computer. Using

this method in publication [16] it was shown that the minimum of Eq (2.3.27) is reached for n� = 0
and n4 = 0 and is equal to 0.6924. In conclusion this means that the approximation ratio is

R ≥ 0.6924. Eq (2.3.28)

2.3.2 Alternative approach to 〈HP 〉 simplification using Pauli Solver

The presented way of solving the problem of 〈HP 〉 simplification is naturally not the only possible. An
interesting alternative, named Pauli Solver, to the first approach was presented in publication [19].
This approach is based on using more general properties of the objective function elements, so it can
be applied to broader class of objective functions. Its basic principles make the Pauli Solver easier to
implement on classic computer.

Definition 2.14 (Pauli Solver algorithm). Let C(z) =
m∑

i=1
Ci(z) be the objective function with phase

Hamiltonians HP and HPi. For p = 1 define Q := UM (β)UP (γ). The Pauli expansion of Q†HPiQ is

Q†HPiQ = a0I +
n∑

j=1

∑

σ∈{X,Y,Z}
ajσσj +

∑

j 6=k

∑

σ,λ∈{X.Y,Z}
ajkσλσjλk + . . . , Eq (2.3.29)

where aα ∈ R. Now the following property of initial state is used

〈+|I|+〉 = 1 〈+|Y |+〉 = 0 Eq (2.3.30)
〈+|X|+〉 = 1 〈+|Z|+〉 = 0 Eq (2.3.31)

to write

〈γ, β|HPi|γ, β〉 = 〈s|Q†HPiQ|s〉 = a0 +
n∑

j=1
ajX +

∑

j 6=k
ajkXX + Eq (2.3.32)

The following algorithm is applied to compute 〈HP 〉. This algorithm is then generalized for level p ≥ 1

Algorithm 1: Pauli solver algorithm
Data: Objective function C(z)
Result: Expectation value 〈HP 〉 formula
begin

Decompose C(z) to sum of Ci(z)
for i in [m] do

Apply the Pauli expansion Eq (2.3.29) on Q†HPiQ
Keep only the terms containing X and I operators.
Set 〈HP 〉 to the sum of remainder according to Eq (2.3.32)

by using Qp = UM (βp)UP (γp) . . . UM (β1)UP (γ1)

Apart from the obvious application of Pauli Solver to simplify expressions programmatically, e.g.
using a Python program, the identities of the solver can be used to prove important closed form
formulas for MaxCut problem[19].

20

... 2.3. QAOA for fixed p

Theorem 2.15 (QAOA for MaxCut). Let |γ, β〉 be a 1-level QAOA state on a graph G. Then for each
edge 〈u, v〉 the expectation value 〈γ, β|Cuv|γ, β〉 is

〈Cuv〉 (U, V, T) := 〈γ, β|Cuv|γ, β〉

=1
2 + 1

4 sin (4β) sin γ(cosU γ + cosV γ)

− 1
4 sin2(2β) cosU+V−2T γ(1− cosT (2γ))

Eq (2.3.33)

where U = (deg u− 1), V = (deg v − 1) 6 and T represents the number of triangles in the graph
containing the edge 〈u, v〉7. Hence, the expectation value for whole graph G is

〈C〉 = 〈γ, β|C|γ, β〉 =
∑

〈u,v〉
〈Cuv〉

(
U(u, v), V (u, v), T (u, v)

)

=
∑

(U,V,T)
〈Cuv〉 (U, V, T)n(U, V, T)

Eq (2.3.34)

where n(U, V, T) is the number of edges with parameters (U, V, T) in the whole graph G.

Proof. Let Q = e−iβB according to definition 2.14. Using the formula Eq (2.3.14) it can be seen that

〈C〉 = 〈s|Q†HPQ|s〉

= 〈s|Q†(
∑

〈u,v〉,|E|=m

1
2(I − ZuZv)

)
Q|s〉

=m

2 −
1
2
∑

〈u,v〉
〈s|Q†ZuZvQ|s〉 .

Eq (2.3.35)

Hence, only the second term needs to be simplified further. As in Pauli Solver, commutation properties
imply eiβHMZuZve−iβHM = e2iβXue2iβXvZuZv. Using the identities[4]

e−iθσi = cos(θ)I − i sin(θ)σi Eq (2.3.36)

where θ is an angle in [0, 2π] and σi for i ∈ {0, 1, 2, 3} is a Pauli matrix, and

iXiZi = −Yi Eq (2.3.37)

and substitution a = cos(2β), b := sin(2β), we can see that

eiβHMZuZve−iβHM =
(

cos(2β)
)2
ZuZv + sin(2β) cos(2β)(YuZv + ZuYv)

+
(

sin(2β)
)2
YuYva

2ZuZv

+ ab(YuZv + ZuYv) + b2YuYv

Eq (2.3.38)

This expression can now be simplified term by term. Starting with first term, the commutation property
of ZuZv with e±HP along with identity Eq (2.3.30) imply that its contribution will be zero. For the
second term a procedure similar to Eq (2.3.38) is used

〈s|eiγHP YuZve−iγHP |s〉 = 〈s|e2iγCuve2iγCuYuZv|s〉
= 〈s|e−iγZuZve−iγ

∑
w∈W ZuZwYuZv|s〉

= [Substitution: c := cos γ, d = sin γ]

= 〈s|(cI − idZuZv)
U∏

j=1

(
cI − idZuZwj

)
YuZv|s〉

Eq (2.3.39)

6deg is the degree of a vertex, i.e. the number of its neighbours
7The case of a graph with no triangles is covered in Theorem 2.16.

21

2. Quantum approximate optimization algorithm
where Cx =

∑

w∈W
Cxw and W = {w ∈ E|w is neighbour of u} \ {v}. In the last result it can be seen

that upon expanding the product the only term in resulting sum with non-zero contribution will be

〈s|eiγHP YuZve−iγHP |s〉 = 〈s|−idcUZuZvI⊗UYuZv|s〉
=
[
Using identity: ZuZvI⊗UYuZv = −iXu

]

= 〈s|−idcU (−iXu)|s〉
=− idcU

Eq (2.3.40)

Similarly for 〈s|eiγHPZuYve−iγHP |s〉 = −dcV . The third term is simplified in following way

〈s|eiγHP YuYve−iγHP |s〉 = 〈s|e2iγCue2iγCvYuZv|s〉

= 〈s|
U∏

j=1

(
cI − idZuZwj

) V∏

k=1
(cI − idZuZwk)YuYv|s〉 .

Eq (2.3.41)

In the last expression the terms which contribute fall into several categories. The first category is
〈
cU+V−2d2

∣∣∣(cI)U+V−2(−idZuZw)(−idZvZw)YuYv
∣∣∣cU+V−2d2

〉
Eq (2.3.42)

where the contribution is implied by the procedure applied before for second term. This category
appears in the sum T times. If T > 2 other categories need to be considered because ZuZwiZuZwi = I.
The next category contains three different pairs of ZuZwi and ZvZwi . This implies the contributions

will be proportional to
(
d2
)3

= d6 and that this category contains
(
T

3

)
terms. This observation can

be generalized to formula

〈s|eiγHP YuYve−iγHP |s〉 =
(
T

1

)
(cU+V−2d2) +

(
T

3

)
(cU+V−6d6) +

(
T

5

)
(cU+V−10d10) + . . .

=cU+V−2T
T∑

j=1,3,5...

(
T

j

)
c2(T−j)d2j

= [Binomial theorem for N ∈ N, A,B ∈ R]

=cU+V−2T 1
2(c2 + d2)T − (c2 + d2)T

=1
2c

U+V−2T (1− cosT (2γ)),

Eq (2.3.43)

where the used binomial formula is
N∑

i∈{1,3,5,... }

(
N

i

)
AN−iBi = 1

2
(
(A+B)N−(A−B)N

)
. The sum of the

found simplifications gives proof of equation Eq (2.3.33) and sum over all edges 〈u, v〉 proofs Eq (2.3.34)

What is left is to show the following theorem for much simpler case of graph without triangles.
Theorem 2.16 (QAOA for MaxCut for graph without triangles). For QAOA on MaxCut applied to..1. a D-regular graph G without triangles the expectation value can be computed as

〈C〉 = m

2 + m

2 sin(4β) cosD−1 γ. Eq (2.3.44)

22

... 2.3. QAOA for fixed p

The maximum value of 〈C〉is

max
γ,β
〈C〉 = m

2 + m

2
1√
D

(
D − 1
D

)D−1
2
. Eq (2.3.45)

This value will be noted as Creg
max(D) = max

γ,β
〈C〉 For this case the approximation ratio 2.1 has

lower bound
max
γ,β
〈R〉 > 1

2 + 1
1
√

eD
= 1

2 + Ω
(1√

D

)
Eq (2.3.46)..2. an arbitrary graph G without triangles with maximum degree DG with ND vertices of degree D,

for D ∈ {2, 3, . . . } the expectation value can be computed as

〈C〉 = m

2 + 1
4 sin(4β) sin γ

∑

D∈{2,3,... }
D cosD−1 γ. Eq (2.3.47)

The max
γ,β
〈C〉 and max

γ,β
〈R〉 are according to Eq (2.3.45) and Eq (2.3.46) respectively

max
γ,β
〈C〉 ≥ Creg

max(DG) > 1
2 + m

2
√

eDG
, Eq (2.3.48)

max
γ,β
〈R〉 > 1

2 + 1
1
√

eDG
. Eq (2.3.49)

Proof. The equation Eq (2.3.44) is given by the previous Theorem 2.15, the following Eq (2.3.45)
is derived by plugging angles from the next Theorem 2.18 into Eq (2.3.44). To get the third equa-
tion Eq (2.3.46) we use the approximations

〈R〉 ≥ 〈C〉
m

Eq (2.3.50)

and
(

k

k + 1

)k
>

1
e , both of which follow from respective definitions.

The edges one edge u of deg(u) = 1 can be always cut, thus the considered D ∈ {2, 3, . . . }. Hence,
the Eq (2.3.44) can be trivially modified to Eq (2.3.47).

This theorem gives many interesting results without need to perform simulations such as those in [16].
The equation Eq (2.3.45) gives

D 2 3 4 5
max
γ,β
〈R〉 0.75 0.69245 0.66238 0.64310

Table 2.2: Numeric values of approximation ratio for various graph degrees

From the second part of Theorem 2.16 it can be seen that max
γ,β
〈C〉 > m

2 , and the approxima-
tion Eq (2.3.50) implies that approximation ratio can always be made greater than 0.5 by setting γ, β
accordingly.

To get more valuable numeric results for graphs without triangles the following theorem[19] is to be
proved.

23

2. Quantum approximate optimization algorithm
Definition 2.17 (Optimal angle). [19] The angles (γ̃, β̃) are optimal, when the lower bound of approxi-
mation ratio is maximal for (γ̃, β̃), i.e.

〈R〉 (γ̃, β̃) = max
γ,β
〈R〉 . Eq (2.3.51)

This condition can be approximated by calling (γ̃, β̃) optimal angles, if they maximize 〈C〉
m

according
to Eq (2.3.50).
Theorem 2.18 (Properties of optimal angles for graph without triangles). Consider 1-level QAOA applied
to MaxCut problem on a graph G without triangles...1. If G is a D-regular, then there is only one pair (γ̃, β̃)

(γ̃, β̃) =
(

arctg 1√
D − 1

,
π

8

)
, Eq (2.3.52)

for D ∈ {2, 3, . . . }, such that all other optimal angles (γ̃′, β̃′) satisfy 0 ≤ γ̃ < γ̃′ and 0 ≤ β̃ < β̃
Larger optimal angles are characterized by D.. For D even all optimal angles have forms:

(
γ̃ + kπ, β̃ + l

π

2

)
, Eq (2.3.53)

(
−γ̃ +mπ,−β̃ + n

π

2

)
, Eq (2.3.54)

where k, l,m, n ∈ Z. For D odd all optimal angles have forms:
(
γ̃ + k2π, β̃ + l

π

2

)
, Eq (2.3.55)

(
−γ̃ + k2π,−β̃ + l

π

2

)
, Eq (2.3.56)

(
−γ̃ + (2k + 1)π, β̃ + l

π

2

)
, Eq (2.3.57)

(
γ̃ + (2k + 1)π,−β̃ + l

π

2

)
, Eq (2.3.58)

Eq (2.3.59)

where k, l ∈ Z...2. If G is an arbitrary graph with maximum degree Dmax
G and minimum degree Dmin

G , then there is

only one pair (γ̃, β̃) ∈
[
0, π2

]⊗2

arctg 1√
Dmax
G − 1 ≤ γ̃ ≤ arctg 1√

Dmin
G − 1

β̃ = π

8 Eq (2.3.60)

Using this pair (γ̃, β̃), all optimal angles can be written as
(
γ̃ + 2kπ, β̃ + l

π

2

)
, Eq (2.3.61)

(
−γ̃ + 2mπ,−β̃ + n

π

2

)
, Eq (2.3.62)

where k, l ∈ Z.

24

... 2.3. QAOA for fixed p

D 2 3
(γ̃, β̃) (π/4, π/8) (0.6155, p/8)

Table 2.3: Numeric values of optimal angles for various graph degrees

This theorem gives the values of optimal angles used in proof of 2.16.

Proof. To find the “smallest” optimal angles, the usual procedure for finding function extremes using
partial derivatives is applied. The other optimal angles can be found by applying the following
observations:

. The expectation value from equation Eq (2.3.44) from theorem 2.16 can be written as

〈C〉 (γ, β) = m

2 + f(γ) · g(β), Eq (2.3.63)

. f(γ) and g(β) are odd and periodic, i.e.

f(γ) = f(−γ) g(β) = g(−β) Eq (2.3.64)
f(γ) = f(γ + π) For D odd Eq (2.3.65)
f(γ) = f(γ + 2π) For D even Eq (2.3.66)

g(β) = g(β + π

2) Eq (2.3.67)

.∑
D

DND = 2m, where m = |E|, and DND > 0,∀D ∈ {2, 3, . . . }. This means that Eq (2.3.44) can

be viewed as a convex combination of Eq (2.3.47). Hence, we get the third part of theorem.

It is now straightforward to generalize the results for optimal angles to get the approximations for
max
γ,β
〈C〉 and max

γ,β
〈R〉.

Corollary 2.19. Consider QAOA applied to MaxCut problem on..1. a graph G, such that maximum degree is DG and containing T triangles. Then

max
γ,β
〈C〉 ≥ max

{m
2 + m

2
√

eDG
−O

(
T

DG

)
,
m

2
}

Eq (2.3.68)..2. a graph G, with maximum degree DG = O(1). Then

max
γ,β
〈R〉 ≥ 1

2 + 2
2
√

eDG
−O

(1
DG

)
. Eq (2.3.69)

Proof. The first statement is the result of plugging γ̃ = arctg 1√
DG − 1

, β̃ = π

8 from equation Eq (2.3.60)
into Eq (2.3.44) and repeating selected of the approximation used to derive Eq (2.3.45). The theorems

25

2. Quantum approximate optimization algorithm
for graph without triangles can be used because max

γ,β
〈C〉 ≥

〈
γ̃, β̃

∣∣∣C
∣∣∣γ̃, β̃

〉
, where the term on right

side is our approximation. For large T the expression m

2 + m

2
√

eDG
− O

(
T

DG

)
may become lower

than m

2 . In this case the trivial choice γ̃ = β̃ = 0 gives the other approximation.

To derive the second statement from the first, the lower bound for approximation ration Eq (2.3.50)
is used along with in terms of m = |E| we have DG(m) = O(1) and T = O(m).

The results from [19] were further developed and applied in [24].

To put the results above into perspective, few notable results are listed bellow. The result above
improves upon the previous results from 2015 technical report [25] where the number of cut edges, i.e.
max
γ,β
〈C〉, for D-regular graph was bound by

(
1
2 + O(1)√

D ln(D)

)
. Eq (2.3.70)

The approximation of 〈C〉 for D-regular triangle-free graphs is superior to best known classical
alternative for D > 3. However, for D = 3, there is a classical algorithm with better result.[24]

D Quantum 〈C〉 Classical C(z)

> 3
(1

2 + 0.3032√
D

) (1
2 + 0.3032√

D

)

Table 2.4: Comparison of classical and quantum algorithms for MaxCut[24]

2.4 Algorithms related to QAOA

Prior to discovery of the QAOA the Quantum Adiabatic Algorithm (QAA) was presented in [26]. As
mentioned in 2.2 the QAA find an optimal solution unlike the QAOA, which find an approximate
solution. However, the QAOA has several advantages over other algorithms. Firstly its low level variant
has simpler implementation on quantum computers capable of working with arbitrary unitary gates.
Secondly there are cases where the QAOA succeeds, whereas the QAA fails. An example was presented
in publication [27]. It was shown that if the objective function is symmetric in all n bits, i.e. it depends
only on the Hamming weight8, the QAA produces false minimum for subexponential run time T . The
properties of QAOA suggest that for large n there are angles γ and β such that the final state is near
true solution for p as little as 1. Finally, its approximation of solution improves with increasing p. On
the other hand the success probability of the QAA depends on total run time T . This relation may not
be monotonous and the necessary run time T may grow exponentially with n.[16]

Since the QAOA was first presented, new modifications were suggested. The Quantum Alternating
Operator Ansatz may be considered as an extension of the QAOA specialized in problems with

8The distance from all zero string, equal to number of ones in string.[4]

26

.....................................2.4. Algorithms related to QAOA

constraints. The essence of the extension is usage of partial mixing operators. The mixing operators
UM (β) are decomposed into multiple partial mixing operators UM,j(β). This approach allows more
convenient mapping of general problems to quantum circuits.[13, 28]

. . .

. . .

. . .

. . .

...
... . . .

=

UM,1 UM,k

UM,j

UM (β)
UM,2 UM,k+1

UM,j+1

Figure 2.5: Schematic of a mixing operator decomposition into partial mixing operators[28]

27

28

Chapter 3

Variational quantum eigensolver

A common problem in many fields of research is to find the eigenvalues of a given operator, i.e. the
values λ for a linear operator T such that

T (v) = λv, Eq (3.0.1)

where v an eigenvector. In the terminology of quantum physics the problem can be seen as finding the
states of the quantum system. A particular interest is in finding the state with the lowest energy, i.e.
the ground state. To solve the eigenvalue problem, number of specialized algorithms were developed,
which are referred to as eigensolvers.
Definition 3.1 (Eigenvalue algorithm, Eigensolver). The group of algorithms used to find or estimate
one or more eigenvalues of an operator, i.e. λ from Eq (3.0.1), is referred to as eigenvalue algorithms
or eigensolvers. Some eigensolvers may also compute the eigenvectors of the operator. The eigenvalues
can be than used to explore the spectrum of the studied operator.[20]

It needs to be emphasized that the algorithms for operators given by matrix with size larger than
four are, except for special matrices, numeric. This means that their results are approximations of
the eigenvalues. The numerous examples of classical eigensolvers includes Jacobi eigenvalue algorithm,
power iteration algorithm and QR algorithm for Hessenberg matrices. But the broad definition 3.1
applies to both the classic and the quantum eigensolvers. In the case of quantum algorithms the
problems are formulated in terms of eigenstates of Hamiltonians rather than general operators or
matrices.

This brings us to the other algorithm covered in this project, that is the Variational Quantum
Eigensolver (VQE). The VQE is an eigenvalue algorithm designed to find the upper bound for the
ground-state of a given Hamiltonian. It was presented in 2015 article [29] along with practical a
demonstration using photonic hybrid quantum computer and applied to problems of quantum chemistry.
This result information from VQE can be then used to study properties of molecules, by the means
of their electron structures[30], and condensed-state matter[31]. This gives the VQE a wide range of
application including quantum chemistry[13], material sciences[32], medicine[33] and nuclear physics[34].
The topic of applications for discussed algorithms is continued in Chapter 5. Although VQE is not
a quantum simulation, which could directly profit from the fact that the resources necessary for

29

3. Variational quantum eigensolver
simulating a quantum system grow exponentially for a conventional simulation and only linearly for
quantum simulation, the VQE may still offer quantum advantage in comparison to classical eigenvalue
algorithms.

As it was noted in the introductory chapter, VQE belongs to family of VQA algorithms which use an
optimization loop and parametrized ansatz to reach the solution of the problem. The VQE is similar to
QAOA described in chapter 2 in that it is based around applying a quantum circuit with parametrized
Hamiltonian, that is initialized as an ansatz, on a quantum register in initial state |0〉⊗N , which is
different from the initial state used in QAOA 2.5, and optimizing the parameters according to the
result of measurement. This variational optimization of ansatz parameters is performed to minimize
the trial energy1 while satisfying the constraint to stay higher than exact ground-state energy by means
of variational principle[35, 36][37]. Before we can proceed to describe the algorithm in pseudocode
manner in Section 3.1.1, the motivation and theory needs to be presented.

3.1 Description of VQE

The theoretical foundations of VQE from article [29] were later built upon in research [38], to extend
the possibilities of the new algorithm. In order to give a consistent picture of the algorithm, the
formalism used in more recent [38] will be employed.

To describe the VQE we will consider two quantum systems, a quantum computer C consisting
of N qubits and target system T with Hamiltonian H, which is the object of our study. The only
requirement for T is that, the Hamiltonian H has to act on space of less than N qubits. Considering
an operator O acting on system T , as a more general case instead of H. The second requirement is
that O needs to have a decomposition

O =
∑

α

wαOα, Eq (3.1.1)

where Oα are terms easily measurable in system C. This requirement is implied by the limitations of
the computer C to projective measurements. It is worth noting that the limitation can be solved by
using the ancillary qubits, this allows the application of POVM measurements[4].

As mentioned in the introduction of this chapter, the VQE is based on optimizing the lowest upper
bound for the minimal expectation value of a given observable, in the studied case a Hamiltonian H,
by finding the optimal parametrization of trial wave function |ψ(θ)〉, where θ represents a vector of
parameters. This can be seen from the variational theorem of quantum mechanics, which gives the
following inequality for |ψ(θ)〉 of C applied to Hamiltonian H of T ,

E0 ≤
〈ψ(θ)|H|ψ(θ)〉
〈ψ(θ)|ψ(θ)〉 , Eq (3.1.2)

where E0 is the ground-state for H, equivalent to the lowest eigenvalue, and |ψ(θ)〉 is the trial
wave function, which has the role of an approximation of an eigenvector. From Eq (3.1.2) follows the
conclusion that by minimizing the right-hand side we can approximate the ground-state for H. The trial
state |ψ(θ)〉 is constructed according to the ansatz from the initial state |0〉 := |0〉⊗N using a unitary

1Energy in the meaning of expectation value for hamiltonian with set trial parameters

30

...3.1. Description of VQE

operator U(θ) (U(θ) represents the part of circuit, not a single gate), where θ is the parameter vector.
To keep the inequality simple we require |ψ(θ)〉 to be normalized, i.e. 〈ψ(θ)|ψ(θ)〉 = 1. The equation
Eq (3.1.2) takes form 〈H〉 (θ) := 〈ψ(θ)|H|ψ(θ)〉 ≥ E0. This procedure ends with measurement of the
trial energy, which is to be minimized

EVQE = min
θ
〈0|U †(θ)HU(θ)|0〉 . Eq (3.1.3)

Appling the requirement Eq (3.1.1) we conclude that in order to implement the Hamiltonian, it has to
be first mapped to spin operators, which are converted to so-called Pauli strings, i.e. a tensor products
of N Pauli operators Eq (1.1.2), where N stands for the number of qubits in the circuit. Hence, the
desired Hamiltonian in matrix form can be rewritten in form a weighted sum of Pauli strings

H =
NP∑

α

wαPα, Eq (3.1.4)

where NP ∈ N is the number of Pauli strings in the Hamiltonian, wα ∈ R are the weight coefficients and
finally Pα ∈ {I,X, Y, Z}⊗N . The decomposition of Hamitonian in Eq (3.1.4) is possible for the Ising
Hamiltonins2 and more general Hamiltonian by virtue of encoding which is described for molecular
Hamiltonians in Section 3.2.1. Thus, Eq (3.1.3) takes form

EVQE = min
θ

NP∑

α

wα 〈0|U †(θ)PαU(θ)|0〉 . Eq (3.1.5)

This from clearly hints that a great advantage of VQE lies in parallelization. Each summand can be
evaluated in parallel, leaving only summation and optimization to the conventional computer.

To see one of the advantages of VQE, we rewrite the trial function |ψ(θ)〉 as a density matrix[4]

ρ(θ) = |ψ(θ)〉〈ψ(θ)| Eq (3.1.6)

and write the expectation value formula

〈H〉 (θ) = Tr[ρ(θ)H]. Eq (3.1.7)

The ground-state variational principle still holds for an arbitrary θ, so 〈H〉 (θ) = Tr[ρ(θ)H] ≥ E0.
The equation Eq (3.1.7) does not apply only to pure states as Eq (3.1.6), but also to cases where the
density matrix represents ensemble influenced by environment. This fact implies that the optimization
in VQE is capable of suppressing some errors and noise in form mixed states.

It is worth mentioning the fact that the objective of the described algorithm is to find the approxi-
mation of ground-state E0 does not mean VQE cannot be used to find higher eigenstates representing
excited states. This can be achieved by utilizing the folded spectrum method[38] by applying the VQE
to modified Hamiltonian H̃ := (H − γI)2 where γ ∈ R. This transformation ensures the ground-state
of H̃ corresponds to the eigenvalue of H closest to the parameter γ.

3.1.1 VQE steps outline

The equations Eq (3.1.3) and Eq (3.1.5) suggest the individual steps of the algorithm:
2The Ising Hamitonians can also be product of encoding of a boolean function as it was shown in Eq (2.3.3).

31

3. Variational quantum eigensolver1. Choice of ansatz, trial wavefunction parametrization by θ..2. Preparation of |ψ(θ)〉..3. Measurement of 〈H〉 (θ) expectation value..4. Classical optimization to retrieve new parameter vector θ that decreases the expectation value
〈H〉 (θ)..5. Iteration of the last four steps until 〈H〉 (θ) converges..6. The final parameter vector θ defines the eigenvector approximation |ψ(θ)〉 while the final value of
〈H〉 (θ) holds the upper bound approximation of the lowest eigenvalue

To explore the properties of VQE i greater detail, the next subsection describes the individual
components of VQE implementation.

3.2 Components of VQE

The VQE as described in previous subsection can be broken down into multiple components. For some
component there exist various possible renditions suitable for different implementations. Term VQE
stack is used to refer to a such implementation composed of selected components, The information
presented below is based on recent publication [6], which details current progress on different components
of VQE.

32

.. 3.2. Components of VQE

Trial wavefunction ini-
tialization, e.g. |0〉

Ansatz and state
preparation, U(θ)

Rotation to measurement
basis, Pα = U†α(Z⊗N)Uα

Measurement of Pauli strings,
〈|ψ(θ)〉|U†α(Z⊗N)Uα||ψ(θ)〉〉

Computation of the observables, e.g.

〈H(θ)〉 =
∑

α

wα 〈|υ(θ)〉|Pα||υ(θ)〉〉

∂

∂θj

(
〈H(θ)〉

)
=
〈
H(θ6=j , θj + π

2)
〉

−
〈
H(θ6=j , θj −

π

2)
〉

Hamiltonian representation, e.g.

Ĥ =
∑

p,q

hpqâ
†
pâq

+ 1
2
∑

p,q.r.s

hpqrsâ
†
pâ
†
qârâs

Encoding of fermionic operators
to Pauli strings, H =

∑
α wαPα

Grouping and measurement
weighting, UτU† = σ

q(i)
Z

Parameter vector update,
e.g. using gradient descent
θ̃j = θj − β ∂

∂θj

(
〈H(θ)〉

)

Figure 3.1: Schematic of the general VQE stack, based on[6]; The blocks with orange background ()
represent the operations performed of a quantum computer, blocks with blue () background represent
operations on classical computer, blue arrows represent transported classical information, orange arrows
represent transported quantum information, blocks grouped into red () box can be performed in parallel
and blocks grouped into cyan () box are performed in preparatory phase of the algorithm; examples are
further described in the Subsection 3.2.

33

3. Variational quantum eigensolver
3.2.1 Hamiltonian

Before any steps to prepare VQE can be taken, the studied system3 needs to be defined. Since VQE
was developed for the application in quantum chemistry, the most explored system models are the ab
initio molecular, solid-state system or spin-lattice model[39].

To illustrate the structure of Hamiltonian we use the ab initio molecular Hamiltonian as an example.

The ab initio molecular Hamiltonian plays role of an operator representation of total energy for a
studied molecular system. The objective to find the total energy requires to determine the electronic
wavefunction equivalent to the probability amplitudes for the electrons around the nuclei. The input
data for this computation are the atomic composition of the system and the relative positions of the
nuclei. Widely used approach for the non-relativistic case is the Born-Oppenheimer approximation,
which simplifies the model by considering the nuclei static4. For this approximation the Hamiltonian
can be set up to a constant as following.
Definition 3.2 (ab initio molecular Hamiltonian). Let Rk be the position and Zk be the atomic number
of the nucleus k, ri be the i-th electron position, Mi be the i-th electron mass, e be the elementary
charge, } be the reduced Planck constant and ∇2

i be the i-th electron Laplace operator. Then we
define the ab initio molecular Hamiltonian for Born Oppenheimer approximation as

H := Te + Vne + Vee, Eq (3.2.1)

where

Te :=−
∑

i

}2

2Mi
∇2
i , Eq (3.2.2)

Vne :=−
∑

i,k

e2

4πε0
Zk

|ri −Rk|
, Eq (3.2.3)

Vee :=1
2
∑

i 6=j

e2

4πε0
1

|ri − rj |
Eq (3.2.4)

It is worth noting that the formula Eq (3.2.1) can be simplified by applying atomic units[39], which
are derived from a dimensionless Schrödinger

[
− }2

2meλ2∇
2 − e2

4πε0r

]
φ = Eφ→

[
− }2

2meλ2∇
′2 − e2

4πε0r′

]
φ′ = Eφ′ Eq (3.2.5)

(where the substitution x, y, z 7−→ λx, λy, λz), which gives the natural requirement

}2

meλ2
!= e2

4πε0λ
:= Ea. Eq (3.2.6)

The atomic unit of energy Ea from previous equation Eq (3.2.6) is referred to as Hartree. The unit of
length λ called Bohr is expressed from Eq (3.2.6) as

λ := 4πε0}2

mee2 = a0, Eq (3.2.7)

3The system named T in 3.1.1.
4The movement of nuclei may be computed after the electronic wavefunction is found.

34

.. 3.2. Components of VQE

where a0 is the Bohr radius. In the atomic units the equation Eq (3.2.1) takes form

H = −
∑

i

1
2∇

2
i −

∑

i,k

Zk
|ri −Rk|

+ 1
2
∑

i 6=j

1
|ri − rj |

. Eq (3.2.8)

Another step in the Hamiltonian construction is the so-called construction of the wavefunction.
In this step the set of basis functions is defined, so that it can be used to represent the electronic
wavefunction. The limitations of the real computer mean, we require the basis set to be compact and
provide accurate description of the modelled system. It needs to be emphasized that the choice of
basis has great impact of the overall performance of the VQE or any other used algorithm[6]. The
size of the basis set also depends on the size of studied system, i.e. the number of qubits. An example
of this step arises for the ab initio models. For these systems the atom-centred Gaussian orbitals are
used as the basis set. Namely, for the VQE the most researched choice are Slater-Type Orbitals[40].
The functions from category of atomic orbitals are generally defined as weighted sums of Gaussian
functions. This definition it ensures the expected radial distribution and long range behaviour are
satisfied. The paper [6] gives an example of such function:
Example 3.3 (Minimal STO-3G basis). In the minimal STO-3G basis for each atom the atomic orbital
function is given by the following formula:

ξ(r) = c1γ1(r) + c2γ2(r) + c3γ3(r), Eq (3.2.9)

where γi represent Gaussian functions, r is the distance between electron and the nucleus of the atom
and ci are the weight parameter, which are fitted for the studied case.

The word minimal used in this paragraph refers to fact that the basis is chosen to be the smallest
necessary to describe the relevant orbitals. The minimal basis usually describes orbital for the valence
shell of the atom. To enable representations of correlation and study of more complex phenomena, the
basis is expanded to contain higher energy atomic orbitals[41]. A great obstacle in research of other
possible bases, such as plane wave basis or grid of points in real space, on current NISQ devices is the
large number of physical qubits required for their implementation[42].

The process then continues by combination of the non-orthogonal atomic orbitals into orthogonal
molecular orbital by the virtue of mean field theory such as Hartree-Fock theory[41]. This theory also
give us the means to transform (by rotation) the Hamiltonian matrix elements into new molecular
orbital basis and calculate the energy for single-particle molecular orbital[43]. To give more detailed
description of this procedure of transition from single-particle basis functions to many-body basis,
consider non-interacting Hamiltonian. For this case the Hartree-Fock theory gives a single many-body
basis function with optimized orbitals[6]. The wavefunction constructed from product of many-body-
functions describes the electrons in our model, thus it has to satisfy the Pauli exclusion principle.
From this follows that it, as a function, has to be antisymmetric, if two electrons are exchanged. The
antisymmetric property can be introduced into wavefunction in two fundamental ways, via the first or
the second quantization formalism.

The first quantization

This formalism relies on the device of Slater determinants describing the many-body functions.

35

3. Variational quantum eigensolver
Definition 3.4 (Slater determinant). Let φi(xi) stand for a spin-orbital (function) of the chosen basis,
where the variable xi := (ri, σi) contains the spatial position and spin of the i-th electron. We define
the Slater determinant as a representation of wavefunction of n occupied orbitals by the following
formula

Ψ(x1,x2, . . . ,xn,) := 1√
n!

∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) · · · φn(x1)
φ1(x2) φ2(x2) · · · φn(x2)

...
...

φ1(xn) φ2(xn) · · · φn(xn)

∣∣∣∣∣∣∣∣∣∣

, Eq (3.2.10)

which denotes the many-body basis functions described above. With the Slater determinant we can
introduce the Fock space, which is a abstract linear vector space with inner product. Thus, Fock space
is a Hilbert space, consisting of so-called occupation number (ON) vectors representing the Slanter
determinants through a map.

|k〉 := |k1, k2, . . . , kn〉 , ki =
{

1 φi(x) is occupied
0 φi(x) is unoccupied

, 〈k|m〉 :=
n∏

P=1
δkPmP Eq (3.2.11)

Note that for a system without electrons, the vacuum state is defined |vac〉. This map enables us to
work with Slater determinant as with vectors. The vector representation has the advantage of being
easy to realize on a quantum computer, e.g. the occupied spin-orbital can be denoted by an up-spin
and similarly the unoccupied by a down-spin on a spin based quantum computer described in [4].

To keep the notation simple and more illustrative, we deviate from the traditional notation by setting

|φ1, φ2, . . . , φn〉 := |k1, k2, . . . , kn〉 . Eq (3.2.12)

In order to preserve the antisymmetry of the Slater determinant in the occupation number representation
by defining

|σ(φ1, φ2, . . . , φn)〉 := (−1)π(σ) |φ1, φ2, . . . , φn〉 , Eq (3.2.13)

where π(σ) denotes parity of the permutation σ of the basis functions. Hence, the antisymmetry is
addressed in the wavefunction, this is the main difference from the second quantization. Finally, the
Hamiltonian is constructed in terms of the wavefunctions by the means of projection. For one-electron
the resulting formulas are

hpq = 〈φp|Te + Vne|φq〉 Eq (3.2.14)

=
∫

dxφ∗p(x)
(
− }2

2Mi
∇2
i −

e2

4πε0
∑

k

Zk
|r −Rk|

)
φq(x) Eq (3.2.15)

hpqrs = 〈φpφq|Vee|φrφs〉 Eq (3.2.16)

= e2

4πε0

∫
dx1dx2

φ∗p(x1)φ∗q(x2)φr(x2)φs(x1)
|r1 − r2|

. Eq (3.2.17)

Hence, the Hamiltonian in the single-particle basis is expressed as

H =
m∑

i=1

n∑

p,q=1
hpq

∣∣∣φ(i)
p

〉〈
φ(i)
q

∣∣∣+ 1
2

m∑

i 6=j

n∑

p,q,r,s=1
hpqrs

∣∣∣φ(i)
p φ

(j)
q

〉〈
φ(i)
r φ

(j)
s

∣∣∣ Eq (3.2.18)

To summarize the paragraphs above, in the general case after choosing the model it is necessary to
set the parameters of the model according to the chosen model and its geometry. In order to construct
the Hamiltonian for T, we first need to find the set of basis functions for the relevant problem, which

36

.. 3.2. Components of VQE

represent individual degrees of freedom for single particles. The Hamiltonian is composed of specific
operators and their weights found from the selected basis. The possibility of different constructions
follows from the fact that single-particle unitary transformations applied to the chosen basis functions
preserve the ground-state energy. This implies that the individual degrees of freedom can be rotated
while keeping total energy unchanged.

Now the question of applying the results of the first quantization theory to quantum computer
can be addressed by means of method from paper [44]. Let n be the number of functions on the
single-particle basis and m denote the number of electrons in the modelled wavefunction. We assume
that one electron can occupy at most one function from basis. Now we apply a map to represent basis
functions with qubits:

φk(xk) 7−→ |φk〉 = |(k)2〉 , ∀k ∈ {1, . . . , n}, Eq (3.2.19)

where (k)2 is the big endian binary representation of the number k, e.g. φ0(x0) 7−→ |φ0〉 = |00 . . . 00〉
and φ1(x1) 7−→ |φ1〉 = |10 . . . 00〉. Thus, the basis function is represented by log2(n) qubits. From this
follows that the product state for m electrons takes N := m · log2(n) qubits. The paper [5] details the
procedure to maintain the antisymmetry requirement for first quantization using O(m log2(n)) ancillary
qubits and circuit depth bound as O(logc2(m) log2(log2(n))). The antisymmetrization algorithm can be
summarized in the following way.
Example 3.5 (Antisymmetrization algorithm outline). [5] Consider a quantum computer with the following
registers:

. T - standing for target, contains sorted repetition-free quantum array. S - standing for seed, ancillary register, is prepared according to function f defined bellow. R - standing for record, ancillary register, initialization depends on the implementation details,
e.g. |0〉

Let η denote the number of particles, f : R 7→ R be a function satisfying the relation f(η) ≥ η2,∀η.
The antisymmetrization algorithm outlined bellow performs the following transformation:

T : |r1 . . . rη〉 7−→
∑

σ∈Sη
(−1)π(σ) |σ(r1, . . . , rη)〉 , Eq (3.2.20)

where π(σ) denotes the parity of the permutation σ...1. S is prepared in an even superposition of states corresponding to all strings of numbers from
{0, 1, . . . , f(η)− 1} of length η. For f(η) := 2η this is equivalent to applying Hadamard gate to
every qubit.

S : 1
f(η)η/2

f(η)−1∑

l=0
|l0, l2, . . . , lη−1〉 Eq (3.2.21)..2. S is sorted using a reversible sorting network which is storing its comparator output to register R.

Thus the state before the can be written as
∑

0≤l0≤···≤lη−1≤f(η)

∑

σ∈Sη
|σ(l0, l2, . . . , lη−1)〉S |ι〉R , Eq (3.2.22)

37

3. Variational quantum eigensolver
where ι denotes the identity permutation5. The state after the sorting network is applied is

∑

0≤l0≤···≤lη−1≤f(η)
|l0, l2, . . . , lη−1〉S

∑

σ∈Sη
|σ1, . . . , σt〉R , Eq (3.2.23)

Thus the resulting state after sorting is a product state, the register S can be discarded after the
following step...3. Collisions, i.e. strings with duplicate entries, are deleted from seed. This is performed via
measurement of seed and accepting only the repetition free results...4. Reverse sort is applied to T according to record in R. This step generates the desired antisym-
metrized state.

The second step relies upon the theory of quantum sorting. There are various sorting algorithms, which
can be implemented on quantum computers, for example heapsort or bubble sort have quantum versions.
However, the complexity of the quantum is not the same as on conventional computer. The quantum
heapsort needs O(η2) operations due to overhead of indexing elements, unlike the classical which has
only O(η) operations. The problems of quantum versions of classical algorithms lead to sorting networks
being preferred. The sorting networks are a category of sorting algorithms which place comparisons and
swaps on a set of fixed locations. An example of network sorting algorithms are bitonic sort algorithms,
which exist for both classical and quantum computers. The sorting networks have a primary functional
element, the comparator. The comparator component sorts two inputs like its classical analogy. For
two numbers x, y ∈ R a classical comparator performs operation (x, y) 7→ (

min (x, y),max (x, y)
)
. The

quantum comparator is a reversible comparator operating on a quantum register, which records the
result of comparison and performs conditional swap. The broad topic of sorting will not be further

discarded

x

=

x min(x, y)

y y max(x, y)

|0〉 x > y

Figure 3.2: Quantum reversible comparator, recording the result to ancillary qubit[5]

discussed in this project.

In the following step the Hamiltonian is translated from
∣∣∣φ(i)
p

〉〈
φ(i)
q

∣∣∣ to directly measurable operators
by expressing the operators as tensor products of single qubits operators |0〉〈0| , |0〉〈1| , |1〉〈0| , |1〉〈1| ,
and mapping to Pauli operators using the identities from Eq (1.1.6) from Chapter 1. To quantify the
performance of this approach we shall give an upper bound for the number of operators in Pauli strings
expressing the Hamiltonian. The dominant part of the Hamiltonian are the two-body terms in the
second sum. Their number in equation Eq (3.2.18) scales as O(n4m2) (for the sum terms there are
four spin-orbitals and two electrons). A representation of a spin-orbital takes log2(n) qubits, so there
are total of 2 log2(n) tensored qubit outer products, where each outer product is decomposed into a
sum of two Pauli matrices. In total we get a sum of 22 log2(n) = n2 Pauli strings. Thus, the Pauli string
s scale as O(n6m2). To conclude the topic of first quantization formalism for VQE we discuss the

5The R register holds the encoded record of performed permutations. Thus identity permutation is the initial value
representing that no sorting was performed.

38

.. 3.2. Components of VQE

significance of the first quantization in context of the NISQ computers. The current research of this
method shows [45] that while the first quantization has high resource demands for number of qubits
including the ancillary qubits and requires computation of spatial integrals (Eq (3.2.14)). However, the
first quantization can offer advantage for special cases of models with large basis. This case appears for
particular choice of basis functions in certain quantum chemistry problems explored in the article[42].

The second quantization

The second quantization approach to antisymmetry differs from first quantization in where the
antisymmetry is encoded. The antisymmetry is enforced through the operators used to express the
Hamiltonian and their properties. This formalism allows construction of all operators and states using
the fermionic operators described in [41].
Definition 3.6 (Creation operators). Consider a Hilbert space (most notably the Fock space) with
dimension M containing occupation number vectors. Then M elementary creation operators a†i are
defined by their actions:

a†i |k1, k2, . . . , 0i, . . . , kM 〉 = Γki |k1, k2, . . . , 1i, . . . , kM 〉 , Eq (3.2.24)
a†i |k1, k2, . . . , 1i, . . . , kM 〉 = 0, Eq (3.2.25)

where symbol Γki denotes

Γki :=
i−1∏

j=i
(−1)kj , Γki =

{
+1 if #(electrons in spin-orbitals j < i) is even
−1 if #(electrons in spin-orbitals j < i) is odd

Eq (3.2.26)

It can be seen that the creation operator action is equivalent to adding an electron to an orbital
specified by the creation operator indices. Thus, it has some properties of the Slater determinant, in
terms of the antisymmetry and being zero, if an element is repeated. From the meaning of the operator
follows a useful notation

|k〉 =
[
M∏

i=1
(a†i)

ki

]
|vac〉 . Eq (3.2.27)

The advantage of this notation becomes clear from formulas below, which follow from the definition 3.6.

a†i |k〉 = δki0Γki |k1, . . . , 1i, . . . , kM 〉 Eq (3.2.28)
a†ia
†
i |k〉 = a†iδki0Γki |k1, . . . , 1i, . . . , kM 〉 = 0 =⇒ a†ia

†
i = 0 Eq (3.2.29)

a†ia
†
j |. . . , ki, . . . , kj , . . .〉 = δki0δkj0Γki Γkj |. . . , ki, . . . , kj , . . .〉 Eq (3.2.30)

a†ja
†
i |. . . , ki, . . . , kj , . . .〉 = δki0δkj0Γki (−Γkj) |. . . , ki, . . . , kj , . . .〉 Eq (3.2.31)

The summation of Eq (3.2.30) and Eq (3.2.31) gives
(
a†ia
†
j + a†ja

†
i

) |k〉 = 0 =⇒ {a†i , a†j} = 0, Eq (3.2.32)

where the implication follows from the fact that the first part hold even for i > j from substitution
of indices in Eq (3.2.30) and Eq (3.2.31). The other new operator is the conjugate of the creation
operator, the annihilation operator. Its action and properties follow from the creation operator.
Adjoining Eq (3.2.32) we get

aiaj + ajai = 0. Eq (3.2.33)

39

3. Variational quantum eigensolver
To find the action the matrix element expressed

〈m|ai|k〉 = 〈k|a†i |m〉 =
{
δmi0Γmi for ki = mi + δij

0 otherwise
Eq (3.2.34)

which can be simplified by realizing that Γmi = Γki , 〈m|ai|k〉 = δki1Γki , if mi = ki− δji and 0 otherwise.
Hence, by plugging in we get the definitional equation.
Definition 3.7 (Annihilation operators). Consider the same Hilbert space as in the definition of the
creation operator 3.6. The annihilation operator ai is defined as a conjugate operator to the creation
operator a†i with action

ai |k〉 = δki1Γki |k1, . . . , 0i, . . . , kM 〉 Eq (3.2.35)

From the definitions 3.6 and 3.7 follows the anticommutation relation

{ai, a†j} = δij Eq (3.2.36)

Further on in this project the simplified notation utilizing the basis functions rather than the ON
vectors, similar to the one used for the first quantization, will be used.

a†i |φ〉 = a†i |φ1φ2 . . .〉 = δφi0Γi |φ1φ2 . . . 1i . . .〉 Eq (3.2.37)
ai |φ〉 = ai |φ1φ2 . . .〉 = δφi1Γi |φ1φ2 . . . 0i . . .〉 Eq (3.2.38)

Using this notation we rewrite the equation Eq (3.2.18) as

H =
∑

pq

hpqa
†
paq + 1

2
∑

pqrs

hpqrsa
†
pa
†
qaras. Eq (3.2.39)

To implement the fermionic operators in a quantum computer they need to be encoded into the
measurable Pauli operators or more precisely to Pauli strings. This topic, in its entirety, is extensive
and not related to the problem of Hamiltonian, so it is considered a separate component of the VQE
stack and is included in the section below.

3.2.2 Encoding of fermionic operators

As it was mentioned in the preceding section the creation and annihilation operator representation
of the Hamiltonian has to be encoded into the Pauli strings. The transformation has to preserve
the antisymmetry of the operators. The problem is much like the encoding for the first quantization.
Because the second quantization approach is considered more perspective for the NISQ computers,
currently there are more transformations than this project can explore. We restrict ourselves to the
selected transformations relevant to general case and discussed implementations. The theory of the
transformations of the fermionic space to spin space is given in greater detail in the publication [6].

The considered transformations are the maps T : Fn 7→ (C2)⊗N , where Fn denotes the Fock states
of n orbitals, i.e. the ground states outlined in 3.2.1 and studied in detail in[39], and (C2)⊗N stand
for the Hilbert space of the operators acting on N qubits. The transformations are usually divided
into generalized and special. The former are concerned with transformations of the whole Fock space
Fn and are significant for the ab initio models. The latter are adjusted for special cases and their
geometry. The special will not be discussed in this project as stated in the first paragraph. In [6] a set
of three characteristics was suggested to compare the studied transformations.

40

.. 3.2. Components of VQE

.NQ — denotes the number of qubits used to represent the wavefunction; NQ depends on the number
of modelled spin-orbitals; it is desirable to decrease NQ as much as possible by concentrating the
contained information as suggested in [46]

.WP — defined in 1.5; lower WP enables increased parallelization, increases the resilience to
so-called barren plateau problem of the optimization algorithms and to some types of errors [12,
47]; the effects of WP for different encodings were benchmarked in [23].

.NP — stands for the number of Pauli strings, in [6] it was shown that NP scales as O(n4) for the
molecular Hamiltonian.

Method WP Description
Jordan-Wigner O(n) Most commonly used method. Encodes

orbital occupation directly and locally onto
qubits.

Parity O(n) Encodes orbital parity directly and locally
onto qubits.

Bravyi-Kitaev O(log2(n)) Minimizes WP by mixing occupation and
parity encodings. Usually gives lower cir-
cuit depth, but not higher noise resilience.

Optimal general encod-
ing on ternary trees

O(log3(2n)) Reaches optimal WP asymptotically. Cur-
rently, not benchmarked.

Table 3.1: Comparison of fermionic operator encoding methods, abbreviated from [6]

Jordan-Wigner method

To encode the fermionic operators, so that a†j |0〉j = |1〉j and aj |1〉j = |0〉j , a method inspired by the
Jordan-Wigner transformation presented in 1928 may be applied. The Jordan-Wigner method maps
the occupation number of n spin-orbitals to qubits by setting |0〉j , if j-th orbital (φj) is unoccupied,
and |1〉j otherwise. The indexing j merges the spatial and spin orbitals together. The original
transformation was solving the opposite problem, so the Jordan-Wigner encoding is essentially inverse
of this transformation. The basic ideal is to perform map

a†j → |1〉〈0|j =
(

0 0
1 0

)
= Xj − iYj

2 , aj → |0〉〈1|j =
(

0 1
0 0

)
= Xj + iYj

2 , Eq (3.2.40)

where the outer products are rewritten to Pauli operators according to Eq (1.1.6). This simple mapping
has to be modified in order to reintroduce the antisymmetry. A string of tensor products Z0 ⊗ · · ·Zj−1
is added by a tensor product to the representation Eq (3.2.40). The added string has an eigenvalue +1
and −1 for even and odd number of occupied orbitals respectively. Thus, the fermionic sign prescription
is present. The anticommutation relations Eq (3.2.32), Eq (3.2.33) and Eq (3.2.36) follow from the
antisymmetries XZ = −ZX, Y Z = −ZY and the definition
Definition 3.8 (Jordan-Wigner encoding for the fermionic operators). For the fermionic operator the

41

3. Variational quantum eigensolver
Jordan-Wigner mapping is defined as

a1/a
†
1 =

(
X ± iY

2

)
⊗ I ⊗ I ⊗ I · · · ⊗ I Eq (3.2.41)

a2/a
†
2 = Z ⊗

(
X ± iY

2

)
⊗ I ⊗ I · · · ⊗ I Eq (3.2.42)

a3/a
†
3 = Z ⊗ Z ⊗

(
X ± iY

2

)
⊗ I · · · ⊗ I Eq (3.2.43)

aj/a
†
j = Z0 ⊗ · · ·Zj−1 ⊗

(
X ± iY

2

)
Eq (3.2.44)

Apart from the notation used in Eq (3.2.41), some literature[38] introduces more compact symbolism
for the fermionic operators

a†p =


∏

m<p

σZm


σ+

p , ap =


∏

m<p

σZm


σ−p , σ± := σX ∓ iσY

2 Eq (3.2.45)

The definition 3.8 directly gives the Pauli weight WP = O(N) as the result of adding the Z strings. The
map creates two Pauli string for each fermionic operator and since the number of fermionic operators
scales as O(n4), due to the two-body terms, we conclude that NP = O(N4). There exist methods of
lowering the WP , such as the spin operator level parameters described in [48].

Parity encoding

In parity encoding method, the meaning of the qubit register is different from that in section 3.2.2.
The encoding principle is explained in the definition 3.9 below.
Definition 3.9 (Parity encoding of state). The states are encoded as

|0〉j − if the number of occupied orbitals with indices {0, 1, . . . , j} is even, Eq (3.2.46)
|1〉j − if the number of occupied orbitals with indices {0, 1, . . . , j} is odd. Eq (3.2.47)

This can be described for a fermionic state |φ0φ1 . . . φn〉 and qubit register state |p0p1 . . . pn〉 using
modular summation

pi =
∑

j≤i
φj (mod 2) =

∑

j

[
πn
]
ij
φj (mod 2)⇐⇒ |p〉 = |πn(φ)〉 (mod 2), Eq (3.2.48)

where [πn]ij is an element of n× n matrix

πn =




1 0 · · · 0
1 1 · · · 0
...

...
1 1 · · · 1



. Eq (3.2.49)

From the definition follows that the occupation of orbital j appears as parity change, i.e. |0〉j−1 → |1〉j
or |1〉j−1 → |0〉j . This simplifies the encoding of the fermionic operators. For an isolated fermionic

42

.. 3.2. Components of VQE

operator trivially follows the desired form of encoding.

a†j → |01〉〈00|j−1,j − |10〉〈11|j−1,j = Zj−1 ⊗Xj − iYj
2 ,

aj → |00〉〈01|j−1,j − |11〉〈10|j−1,j = Zj−1 ⊗Xj + iYj
2

Eq (3.2.50)

For more qubits the idea has to be “fixed” by flipping the |p〉 register accordingly by adding the X
string Xj+1 ⊗ · · · ⊗Xn−1.
Definition 3.10 (Parity encoding of the fermionic operators). For the parity encoding method we define
the fermionic operator representation as

aj/a
†
j →

Zj−1 ⊗Xj ± iYj
2 ⊗Xj+1 ⊗ · · · ⊗Xn−1 Eq (3.2.51)

The formulas Eq (3.2.51) lead to same results as for Jordan-Wigner mapping: WP = O(N), NP =
O(N4).

Bravyi-Kitaev encoding

The last method reviewed in this project was presented in [46] and was further describe for the relevant
electron problem in [49]. The foundation of the transformation is the use of βy blocks with similar role
to πn matrix Eq (3.2.49). The indices y = 2x and blocks have size of β2x is 2x × 2x and are defined
recursively. Naturally the size of final block is N ×N . Thus, recursion stop when x ≥ log2(N) and the
additional rows and columns can be discarded. The recursion ca be described as

β1 :=
[
1
]
, β2x :=

(
β2x−1 O
M β2x−1

)

O :=
(

0 0
0 0

)

2x−1×2x−1

, M :=




0 0 0
0 0 0
1 1 1




2x−1×2x−1

Eq (3.2.52)

The resulting matrix for x = 3 is

β8 =




1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1




Eq (3.2.53)

By comparison to the methods 3.2.2 and 3.2.2 it can be seen the j-th qubit in register can hold two
types of information base on the index:

. for j even: occupancy

43

3. Variational quantum eigensolver
. for j odd: occupancy and parity

and the parity information has two formats

. for j 6= 2k − 1: parity of orbitals with indices < j in the block. for j = 2k − 1: parity of orbitals with indices ≤ j in the entire set.

Based on this the qubits in the register are divided into four sets, for each the fermionic operator
are encoded differently. With this definition we can proceed to the fermionic operator mapping for

Name of the set Information Indices/Set Comment
Update U(j) Parity of orbital j Odd Qubits that need to be up-

dated, corresponds to jth col-
umn in βy excluding qubit j

Parity P (j) Parity, fermionic sign Even and Odd Parity of orbitals with indices
in < j.

Flip F (j) pj is equal/opposite of φj F (j) ⊂ P (j) F (j) = ∅, if j is even.
Remainder R(j) Other R(j) = P (j) \ F (j)

Table 3.2: Groups of qubits in Bravyi-Kitaev encoding, [6, 49]

individual groups of qubits.

.Occupancy qubits (j is even): For this group of qubits the form of operators follows from the
principles of Jordan-Wigner encoding. It can be seen that qubits with indices > j which are
affected, that is the U(j) set, need to be flipped using X gates. The sign is determined by the
qubits with preceding indices, i.e. the P (j) set, by Z gates.

a†j → ZP (j) ⊗ |1〉〈0|j ⊗XU(j) = 1
2ZP (j) ⊗ (Xj − iYj)⊗XU(j) Eq (3.2.54)

aj → ZP (j) ⊗ |0〉〈1|j ⊗XU(j) = 1
2ZP (j) ⊗ (Xj + iYj)⊗XU(j) Eq (3.2.55). Parity qubits6 (j is odd): The encoding of the operators has to account for the meaning of the

qubits, e.g. a creation operator can change |1〉 to |0〉 depending on parity for indices < j. For
example if parity 1 for indices < j and qubits j is |0〉, then orbital j is occupied when parity flips.
The two possible cases are. number of |1〉 in F (j) is even - qubits j is equal to jth orbital occupancy,. number of |1〉 in F (j) is odd - qubits j is opposite to jth orbital occupancy.

This problem is solved by defining two projectors onto both states of F (j)

EF (j) = 1
2
(
I⊗N + ZF (j)

)
Projector onto even states of F (j) Eq (3.2.56)

OF (j) = 1
2
(
I⊗N − ZF (j)

)
Projector onto odd states of F (j) Eq (3.2.57)

Eq (3.2.58)
6This name of group does not refer to parity set P (j) form table 3.2

44

.. 3.2. Components of VQE

Following the procedure described in [6], for isolated qubits we get encoding

a†j → EF (j) ⊗ |1〉〈0|j +OF (j) ⊗ |0〉〈1|j =
Xj − iZF (j) ⊗ Yj

2 Eq (3.2.59)

aj → EF (j) ⊗ |0〉〈1|j +OF (j) ⊗ |1〉〈0|j =
Xj + iZF (j) ⊗ Yj

2 Eq (3.2.60)

The following correction by adding flips by X and sign by Z gates, is simplified by the trivial identity
Z2 = 1, from which follows that ZF (j) ⊗ ZP (j) = ZP (j)\F (j) = ZR(j). Hence, we get the encoding

a†j →
ZP (j) ⊗Xj ⊗XU(j) − iZR(j) ⊗ Yj ⊗ ZXU(j)

2 Eq (3.2.61)

aj →
ZP (j) ⊗Xj ⊗XU(j) + iZR(j) ⊗ Yj ⊗ ZXU(j)

2 Eq (3.2.62)

To conclude the topic of Hamiltonian construction we add the following figure which summarizes the
process.

45

3. Variational quantum eigensolver

Model selection, e.g. ab initio molec-
ular Hamiltonian and approxi-
mations H = Te + Vne + Vee

Plug in from approximations H =
−∑i

1
2∇2

i −
∑
i,k

Zk
|ri−Rk| + 1

2
∑
i 6=j

1
|ri−rj |

Choice of basis functions, e.g. com-
binations of Gaussian functions

Slanter determinant, Fock space
and occupation number verc-

tors, reexpression of Hamiltonian:
H =

∑m
i=1
∑n
p,q=1 hpq

∣∣∣φ(i)
p

〉〈
φ

(i)
q

∣∣∣ +
1
2
∑m
i 6=j
∑n
p,q,r,s=1 hpqrs

∣∣∣φ(i)
p φ

(j)
q

〉〈
φ

(i)
r φ

(j)
s

∣∣∣

Antisymmetrization transfor-
mations, e.g. |r1 . . . rη〉 →∑

σ∈Sη (−1)π(σ) |σ(r1, . . . , rη)〉

Translation of basis
∣∣∣φ(i)
p

〉〈
φ

(i)
q

∣∣∣
to |0〉〈0| , |0〉〈1| , |1〉〈0| , |1〉〈1|

Reexpression of Hamiltonian us-
ing fermionic operators ap/a†p:

H =
∑
pq hpqa

†
paq + 1

2hpqrs
∑
pqrs a

†
pa
†
qaras

Translation of fermionic operators
to spin operators through encoding,
e.g. Jordan-Wigner encoding: a†p =(∏
m<p σ

Z
m

)
σ+
p , ap =

(∏
m<p σ

Z
m

)
σ−p

Figure 3.3: Schematic of the process of VQE Hamiltonian construction described in 3.2.1, where the blocks
with green () background are common and the blocks inside cyan () region are the first quantization
method and blocks inside red () region are the second quantization.

46

.. 3.2. Components of VQE

3.2.3 Measurement optimizations

The measurement in VQE can be performed in various ways, which influence overall performance of
algorithm. The objective of decreasing the number of needed circuit repetitions7 gives rise to so-called
measurement strategies. The strategies lower the number of repetition by the following groups of
methods[6]..1. Weighting of the number measurement for operators..2. Searching commuting groups of operators inside the Pauli string and finding measurement basis for

simultaneous measurement of the groups, before the measurement the groups have to be rotated
into the selected basis..3. Using interference

Weighting methods

The principle of the method follows from observing, how number of shots scales. For a quantum circuit
as a sampling experiment we have the standard error

ε = σ√
S
, Eq (3.2.63)

where σ denotes the population standard deviation and S stands for the sample size, i.e. number of
shots. From this follows that in general case O(1

/
ε2) shots are required for precision of ε of expectation

value of an operator. This simple case is modified for Pauli strings.

Now consider a system with NP Pauli strings, where the Pauli string Pa has Pauli weight wa defined
in 1.5. In [38] it was shown that the optimal distribution of measurements among Pauli strings satisfies

S ≤
(∑NP

a wa
ε

)
, S = O

(
N4

ε2

)
. Eq (3.2.64)

To derive the method, the formula for standard error is rewritten using variance for Pauli strings Pa.
The variance for a Pauli string can be simplified, because for Pauli string Pa we have P 2

a = I,

Var(Pa) = 〈Ψ|P 2
a |Ψ〉 − 〈Ψ|Pa|Ψ〉2 = 1− 〈Ψ|Pa|Ψ〉2 ≤ 1 Eq (3.2.65)

Now we consider that we make a different number of measurements for individual Pauli strings. Thus,
we have formula

ε =

√√√√
NP∑

a=1

w2
aVar(Pa)
Sa

=

√√√√
NP∑

a

w2
a

1− 〈Ψ|Pa|Ψ〉2
Sa

, Eq (3.2.66)

where Sa is defined as the number of shots used for measurement expectation value of Pa. From this
follows that S =

∑

a

Sa. The formula can be simplified further for uniformly distributed measurements,

7Sometimes referred to as shots [6]

47

3. Variational quantum eigensolver
i.e. Sa = S/NP .

S = Np

Np∑

a=1

w2
aVar(Pa)
ε2

. Eq (3.2.67)

From this easily follows that for Pauli weights, such that 1/wa is proportional to
√

Var(Pa), we get
the minimal number of shots S.

Instead of setting the same number of shots for all operators, the distribution of repetitions may
favour the operators with greater impact on variance. In case the number of shots is not strictly limited
we consider the number of repetitions proportional to the weight. From Eq (3.2.66) it can be seen that,
if Var(Pa) ≈ V,∀a this setting decreases total variance. The optimal distributions of repetitions is
Sa ∝ wa

√
Var(Pa) or in some case more simplistically Sa ∝ wa. For cases with highly limited number

of shots, it is suggested to use random measurements with probabilities proportional to wa
√

Var(Pa).[6]

Truncation

Another method used to increase speed up calculations is the truncation of terms with the least impact
on the result. Since the calculation is based on sum of weighted Pauli strings, it can be seen that in
order to quantify the significance of terms of the sum, the following trivial inequality can be used

| 〈Ψ|waPa|Ψ〉| ≤ wa. Eq (3.2.68)

Next we define

sk :=
k∑

a=1
wa, k ≤ NP ; wa ≤ wa+1. Eq (3.2.69)

Finally, by choosing a constant C ∈ [0, 1), we now omit terms with indices > l in Eq (3.2.67), where l
satisfies sl < C · ε. For this method it was shown that the total number of shot is then

S = (NP − l)
NP∑

a=l+1

w2
aVar(Pa)

(1− C2)ε2 Eq (3.2.70)

Pauli string grouping

The theory of Pauli string grouping is extensive and in this project only its basics will be outlined.
The basic idea of this method is the fact that by measuring a Pauli string

Pa = σp(a,1) ⊗ σp(a,2) ⊗ . . . σp(a,N−1) ⊗ σp(a,N)⊗, p(k, i) ∈ {I,X, Y, Z} Eq (3.2.71)

we gain information about other string, e.g. Pb, which has some same elements, for example p(a, j) =
p(b, j). These elements are referred to as overlapping Pauli elements. In order to use this overlap
we must simultaneously diagonalize a set of Pauli strings, which forms an Abelian group, by unitary
rotations of measurement basis. Thus, the number of terms that need to be measured is reduced through
the joint measurement of the qubits register for the whole Abelian group. This joint measurement

48

.. 3.2. Components of VQE

gives information about multiple Pauli operators simultaneously. The general prescription from the
method starts with finding the generators of the Abelian group, these we denote {τi} and follows by
finding a unitary U which satisfies

UτiU
† = Zq(i), Eq (3.2.72)

where q(i) is a map from a generator index i to a qubits in register8. From the equation Eq (3.2.72)
follows that the expectation value of τi can be found by measuring value for Zq(i). The same approach
can be applied to the whole Abelian group, where U is applied to the group and all generators are
then measured by measuring σZ . One implementation is the Qubit-wise commutativity (QWC). We
define as a set where the Pauli operators with same indices commute in all Pauli strings of the set. For
example strings XI, IZ and XZ form a QWC. For the QWC implementation we have single qubit
UQWC := U

Z = RY

(
−π2

)†
XRY

(
−π2

)
, Z = RX

(
π

2

)†
Y RX

(
π

2

)
Eq (3.2.73)

To conclude this section we mention there are more complex methods such as General Commutativity
(GC), which have more complicated unitaries. Their advantage is greater reduction of the number of
terms to measure, e.g. GC can for the ab initio molecular Hamiltonian reduce the number of terms
from O(N4) to O(N3).[6]

3.2.4 Ansatz

The next essential part of a VQE is the ansatz. This term refers to the structure of the parametrized
quantum circuit, which prepares the trial state, i.e. a model of the trial wavefunction. The prepared
state is the used to measure the Hamiltonian as illustrated in diagram 3.1. During the VQE optimization
loop the trial wavefunction takes form of the optimal wavefunction. There are a number of possible
ansatze and the selection has to be made according to the solved problem. There exist metrics which are
used to characterize the ansatz constructions. The most frequent are the expressibility and trainability.
The former quantifies the uniformity of ansatz span across the unitary space. The rigorous definition
uses the distance between the distribution of unitaries generated by ansatz and maximally uniform
distribution, which is measured using the Haar measure. The latter stand for the quantified ability to
find optimal parameter set to reach the optimal wavefunction through the iterative optimization with
respect to expectation values of the problem Hamiltonian and the required time.[50]

A typical problem of VQE which has to be addressed in the ansatz is the barren plateau problem.
The term stands for the situation in which the gradient, used for the selection of new set of parameters
for new iteration, is vanishing. In this situation the cost function is effectively constant. The barren
plateau is usually restricted to cases, when the gradient vanishes exponentially, because this leads to
exponential increase of needed time, e.g. polynomial time vanishing is still considered trainable. This
problem is not limited to VQE, it is present for the whole VQA category of algorithms. The problem
can be visualized using an equivalent problem of narrow gorges. The term narrow gorge refers to
situation, when a local minimum contracts exponentially with growing number of qubits of the model.

For a single parameter model the narrow gorge problem is illustrated in the figure 3.4, the minimum
is increasingly difficult to find as the graph “gorge” becomes increasingly narrow. More rigorously,

8Z was used to represent the operator σZ to avoid confusing indices

49

3. Variational quantum eigensolver

−π −π2
0 π

2
π

0

1

θ

〈H
〉(
θ)

−π −π2
0 π

2
π

0

1

θ

〈H
〉(
θ)

Figure 3.4: Comparison of an example expectation value 〈H〉 (θ) with one parameter θ for the cases when
the barren plateau does not occur (subfigure on the left) and for baren plateau occuring (subfigure on the
right), inspired by [51]

consider VQE problem, for which the expectation value for problem Hamiltonian plays role of a cost
function9

E(θ) = 〈Ψ(θ)|H|Ψ(θ)〉 , Eq (3.2.74)

where |Ψ(θ)〉 denotes the parametrized wave function. The barren plateau occurs for E(θ), if and only
if

∀θi ∈ θ, ∀ε > 0, ∃b > 1, Prb (|∂θiE(θ)| ≥ ε) ≤ O
(1
bN

)
. Eq (3.2.75)

This equation Eq (3.2.75) can be seen as a consequence of the Chebychev’s inequality[4].

There are many causes10 of the barren plateau problem. It can be shown that the problem occurs
more often with increase of system size or growth of the expressibility of ansatz11[50]. The cost function
also impacts the likelihood of barren plateau, specifically the locality of the cost function. More local
cost functions, based on local observables are more resilient to the problem[51]. Other major factors
which play role in the barren plateau are the noise and the degree of trial function entanglement[6].
From the barren plateau problem causes which are listed above follows that some of the most accessible
means to avoid it are the use of less expressive ansatze and use of local encoding with lower Pauli
weights.

Hardware-efficient ansatz

In order to give a complete picture of the ansatz topic in VQE, we give examples of some important
classes of ansatze. First example of a VQE ansatz is the hardware-efficient ansatz (HEA), a type of
fixed structure ansatz. The significance of HEA lies in its simplicity, which enables HEA to be modified
for the particular quantum computer.
Definition 3.11 (Hardware efficient ansatz (HEA)). [6] We define the HEA ansatz as fixed structure
ansatz constructed by repeating blocks of interweaved single qubit rotations gates controlled by

9Thus, it is to be minimized.
10The causes are in some literature referred to as drivers of the problem.
11The trainability and expressibility properties of the ansatz are related inversely[50].

50

.. 3.2. Components of VQE

parameters and “ladders” of entangling gates. Hence the trial state can be represented as

|Ψ(θ)〉 =
(

d∏

i=1
(UROT(θi)× UENT)

)
× UROT(θd+1) |ΨINIT〉 , UROT(θi) :=

N,P∏

q,p

Rqp(θ
pq
i), Eq (3.2.76)

where q ∈ {0, 1, . . . , N} indices are the qubit addresses in the register and p ∈ {x, y, z} set the axis of
rotation12. A basic example of a HEA block with Rx and Ry rotations and UENT = CNOT for N = 2
can be seen on figure 3.5.

|q1〉 Rx(θi) Ry(θj)

|q2〉 Rx(θp) Ry(θq)

|q3〉 Rx(θm) Ry(θn)

Figure 3.5: A basic example of a HEA block with Rx and Ry rotations and UENT = CNOT for N = 2, i.e. for
three qubits, inspired by [6]

From the definition follows that the HEA is organized into L layers. Hence, the circuit depth is
O(L) and the number of parameters is O(N · L). The problem of HEA in order to guarantee success,
it has to span over large part of the studied Hilbert space. In the worst case the number of layers L
scales exponentially to cover the entire Hilbert space. From this follows that HEA is prone to barren
plateaus.[6]

Unitary Coupled Cluster Ansatz (UCC)

The Unitary Coupled Cluster ansatz originates from quantum chemistry and nuclear physics. Partially
thanks to the initial article describing VQE[29], where this ansatz was applied, the development of
UCC for VQE lead to this ansatz being the currently most widely researched ansatz for the VQE and
related algorithms. Since its formulation the method was developed further into multiple extensions
for different problems. The unitary form of UCC suitable form quantum computation was derived
from the Coupled Cluster ansatz used in classical quantum chemistry.[38]

To introduce the working of the ansatz, consider a reference state of an N qubit system |ΨREF〉, for
example |ΨREF〉 = |0〉 = |0 . . . 0〉. This state plays role of a starting point from which the Hilbert space
is gradually explored via change of parameters. The set of states which are explored is limited in sense
of Hamming distance (defined in 1.4) reachable through “bit flips”. This related method is referred to
as configuration interaction and may be written as

|ΨCI(θ)〉 =
∑

p

θpσ
+
p |ΨREF〉 , θp ∈ C, Eq (3.2.77)

where σ+
p were defined in Eq (3.2.45). The concept of configuration interaction is extended by the

coupled cluster, where the spin-flip serves as a generator used to explore the Hilbert space from well
12The × symbol here stands for the successively applied gates not the thezor product ⊗

51

3. Variational quantum eigensolver
defines state with all spins aligned - |ΨREF〉 = |0〉. For example the restriction to a space of single
spin-flip states can be expressed as

|ΨCC1(θ)〉 = exp
(∑

p

θp
(
σ+
p − σ−p

))
|ΨREF〉 . Eq (3.2.78)

The portion of explorable space is increased by introducing more bit flips. The pitfall of this approach
are the situations when the reference state |ΨREF〉 is result of some procedure, which may give a state
such as ΨREF = |+ · · ·+〉 , |+〉 = (|0〉+ |1〉)

/√
2. For such reference state the flipping leads only to

the same state. The main problem of coupled cluster follows from its description in fermionic operators

T (t) :=
k∑

i=1
Ti(t), Eq (3.2.79)

T1(t) :=
∑

i,a

tai a
†
aai, Eq (3.2.80)

T2(t) :=
∑

i,j,a,b

tabij a
†
aa
†
bajai Eq (3.2.81)

For the fermionic operator notation the coupled cluster takes form

|ΨCC〉 = exp(T) |ΨREF〉 , Eq (3.2.82)

from which it can be seen that the issue of coupled cluster is that the exp(T) operator is not unitary, thus
it can hardly be implemented on a quantum computer. A solution of this issue follows from the fact that
T is antihermitean (T † = −T), thus its exponential is unitary (exp(T) exp

(
T †
)

= exp(T) exp(−T) = I).
The UCC replaces the operator exp(T) with a unitary operator exp

(
T − T †

)
, because T −T † is, again,

antihermitean. First we will return to the original notation. Using the fact that σ+, σ−, σZ , I can serve
as a base from which the Pauli operator can be expressed, we may move onto more general unitary
coupled cluster ansatz.

i
(
σ+
p + σ−p

)
=iσxp

(
0 i
i 0

)

p

= iσ1
p Eq (3.2.83)

(
σ+
p − σ−p

)
=iσyp

(
0 1
−1 0

)

p

= iσ2
p Eq (3.2.84)

iσzp

(
i 0
0 i

)

p

= iσ3
p Eq (3.2.85)

The UCC builds upon the idea of cluster operators, which serve as generators.
Definition 3.12 (unitary Coupled Cluster operator). [38, 52, 6] For the UCC we define the cluster
operator as a generator used for the exploration of Hilbert space starting from the reference state A
first order cluster operator may be written as

T1(θ) = i
∑

p,α

θαp σ
α
p , Eq (3.2.86)

where θαp ∈ R and p are qubit addresses and α ∈ {X,Y, Z}. The general cluster operator then takes
form

Tk(θ) = i
∑

p,α

θαp σ
α
p , Eq (3.2.87)

where σαp denotes σα1
p1 σ

α2
p2 . . . σ

αk
pk

and θαp stand for the tensor that holds the variational parameters.
Thus, a full cluster operator up to order k is defined by formula

T (k)(θ) =
k∑

i=1
Ti(θ) Eq (3.2.88)

52

.. 3.2. Components of VQE

From the general coupled cluster operator and the reference (state) |ΨREF〉 arises the UCC state of
order k. ∣∣∣Ψ(k)

CC

〉
= exp

(
T (k)(θ)

)
|ΨREF〉 Eq (3.2.89)

The set of possible actions which can be performed using Eq (3.2.89) are all unitary transformations
on k qubits which preserve the global phase, i.e. SU(2k). This representation has a total of O

(
(3N)k

)

real parameters.

A common setting of k is k = 2, as for such value the number of parameters grows only quadratically
with number of qubits. The implementation of the exp

(
T (k)(θ)

)
, uses the technique of Trotterization13.

Using the first order in a Trotter factorization for k = 2 with Trotter number N we get

|Ψcc(θ)〉 =
(∏

p1,p2,α1,α2

exp
(
i
θα1α2
p1p2

N
σα1α2
p1p2

))N |ΨREF〉 . Eq (3.2.90)

Firstly, from the Trotterization Eq (3.2.90) follows that k = 2 is enough to perform arbitrary 1 or 2
qubits gates. Secondly, it is worth noting that the approximative formula Eq (3.2.90) may also be
considered an alternative definition of UCC 3.12.

To see how the UCC can be implemented for the problems related to quantum chemistry such as
work with electronic orbitals, it is necessary to rewrite the UCC formalism again into the notation of
fermionic operators. For the coupled cluster we have

|ΨREF〉 =
∏

i

a†i |vac〉 Eq (3.2.91)

|Ψ〉 = exp
(
t− t†

)
|ΨREF〉 Eq (3.2.92)

T (1)(t) =
∑

i1,p1

ti1p1(a†i1ap1 − a†p1ai1) Eq (3.2.93)

T (2)(t) =
∑

i1,i2,p1,p2

ti1i2p1p2(a†i1ap1a
†
i2
ap2 − a†p2ai2a

†
p1ai1) Eq (3.2.94)

From the fermionic UCC we can get the formulas similar to Eq (3.2.78) and even Eq (3.2.90) via
grouping of the excitation terms in T with their conjugated counterparts from T † into τ .

U(t) := exp
(∑

j

tj(τj − τ †j)
)

Eq (3.2.95)

U(t) ≈ UTrotter(t) =
(∏

j

exp
(tj
N

(τj − τ †j)
))N

Eq (3.2.96)

(τj − τ †j) Encoding= i
∑

k

Pk,j Eq (3.2.97)

Eq (3.2.98)

Where using N = 1 in Trotterization we get more general form the original formula Eq (3.2.89):
U1(t) =

∏

j,k

exp(itjPj,k).

Comparing the UCC and HEA ansatze, we can see the obvious advantage of UCC in the number
of parameters O(N3)14, whereas HEA has O(N · L) parameters. From this follows that UCC has

13To be specific, the Suzuki trotter factorization is used for the exponential. [52]
14The number of parameters varies between UCC and its modifications, some of them have only O(kN2) parameters.[6]

53

3. Variational quantum eigensolver
better control over the ansatz span on the Hilbert space. UCC can also provide parametrization of an
arbitrary electronic wavefunction. It can also be shown that it is more efficient than HEA for certain
tasks. The main issue of UCC follows from the overhead of exponential operator implementation, only
the number of CNOT gates used in exponential of Pauli strings for double excitation has scaling of
O
(
(2N4) · (q − 1)

)
, where q denotes the average Pauli weight of a string. This of course leads to large

circuit depth, which is even bigger isssue for the NISQ devices.[6]

3.2.5 Optimization of the ansatz parameters

As it was mentioned in the Section 3.1.1, before the loop 3.1 starts anew, the parameters of the ansatz
defining the trial functions need to be updated. For each optimization loop, several measurements of
the Hamiltonian expectation value need to be made. That is the computation of the update consists
of two steps, computation of gradient for current iteration and optimization itself. The choice of the
optimization method influences the number of such measurements as well as the number of iterations
the VQE stack needs before converging and lastly it has impact on the resilience of VQE stack to
problem specific issues such as the already mentioned barren plateau problem 3.2.4. In contrast to
classic optimization the optimization in context of VQA has to overcome the noise present on NISQ
devices, which can act against convergence of optimization, as well as precision limited by the number
of shots performed between iterations and finally problematic landscape of expectation value, e.g.
barren plateau.

To introduce the methods of optimization used for VQAs it is suitable to start with notation
which extends the notation used in chapter 2 with reference to publication [6]. The vector O(θ) =(
O1(θ(1)), O2(θ(2)), . . . , Oa(θ(a))

)
stand for the set of observables from which the objective function is

composed of, a ∈ N is the number of these observables. Next we define C, a function mapping the
observables to the objective function, for this section, it can be thought as

C(X) =
∑

i

ciXi; ci ∈ R, ∀i. Eq (3.2.99)

The parametric objective function F (θ) is then given as the expectation value of C(O). For the
observables we have expectation values defined as

〈
Ok(θ(k))

〉
= 〈Ψ0|U (k)†(θ(k))M (k)U (k)(θ(k))|Ψ0〉 , Eq (3.2.100)

where |Ψ0〉 is the initial state,M (k) represents a Hermitian measurement operator, and finally U (k)(θ(k))
is the chosen variational ansatz with parameters θ(k)

U (k)(θ(k)) =
∏

j

U
(k)
j (θ(k)

j), U
(k)
j = exp

(
iθ(k)
j

)
P

(k)
j , Eq (3.2.101)

were P (k)
j is Hermitian, e.g. tensor product of Pauli matrices.

Finding the gradient

In order to find the value of gradient multiple method can be applied. The first is the Finite Difference
Stochastic Approximation(FDSA), which uses difference between two function points to approximate

54

.. 3.2. Components of VQE

the gradient. This method can be described by formula

(
g(θt)

)
j

:= F (θ + ctej)− F (θ − ctej)
2ct

, Eq (3.2.102)

where
(
g(θt)

)
j
represents j-th component of gradient (approximation) at θt and ej denotes a basis unit

vector of the unit and cj is the constant that scales the step15. This method needs only one measurement.
Another method that can be used is the Simultaneous Perturbation Stochastic Approximation(SPSA)16,
which differs from FDSA by allowing different from unitary basis vector steps:

(
g(θt)

)
t

:= F (θ + ct∆t)− F (θ − ct∆j)
2ct(∆t)j

, Eq (3.2.103)

where ∆t denotes a random perturbation.

Alternatively to the stochastic approximation methods, there exist means of calculation the gradient
of measurement of observables using the quantum resources directly[53]. Using the slightly simplified
notation from preceding paragraphs 3.2.5.

∂ 〈Ok(θ)〉
∂θj

= 2 Im
(
〈Ψ0|V j†

k (θ)M (k)U(θ)|Ψ0〉
)
, Eq (3.2.104)

V j
k (θ) = exp

(
iθNkP

Nk
k

)
. . . exp

(
iθjP jk

)
P jk exp

(
iθj−1P

j−1
k

)
. . . exp

(
iθ1P

1
k

)
Eq (3.2.105)

The simplest way to implement V j†
k (θ)M (k)U(θ) is the use of an ancillary qubit17.[53] The ancillary

qubit is prepared into |+〉 = (|0〉+ |1〉)
/√

2 giving state

|Ψ〉 = |0〉+ |1〉√
2
⊗ |Ψ0〉 Eq (3.2.106)

Next the controlled Pj gate is applied with control ancillary qubit (controlled 1) and the rest of unitary
is applied with control 0. In the following step the measurement operator is applied again with control
on ancillary qubit (control 1). The resulting state is

|Ψ〉 = 1√
2

(
|0〉 ⊗ U(θ) |Ψ0〉+ |1〉 ⊗M (k)V j

k |Ψ0〉
)

Eq (3.2.107)

Last step before measurement, of course in the appropriate basis, is the application of second Hadamard
gate. Hence, Im

(
〈Ψ0|V j†

k (θ)M (k)U(θ)|Ψ0〉
)
is now in the ancillary qubits encoded in Y basis and

can be measured using appropriate basis change. The process can be summarized into a fairly simple
circuit, as seen on figure.

Gradient based optimization methods

The gradient calculation methods are key component in the optimization methods, so-called optimizers
used to update the parameters between iterations. The optimizers can be divided into first order and

15Hence, it has to decrease among iterations
16The term Simultaneous Perturbation Stochastic Approximation also refers to a an optimization method which is

based on the same random perturbations as this methos of gradient calculation. This method later mentioned in the
Chapter 5

17This approach is in some literature referred to as direct analytical gradient measurement

55

3. Variational quantum eigensolver

.

discarted

|0〉 H H S† H

|Ψ〉 U1 Uj−1 Pj Uj UN Mk

Figure 3.6: Circuit encoding the Im
(
〈Ψ0|V j†

k (θ)M (k)U(θ)|Ψ0〉
)
, for the direct analytical gradient mea-

surement, inspired by [6]

second order optimizers. The former use only the first partial derivatives, whereas the latter utilize
the second derivatives as well. The optimizer algorithms can be described using the same steps as the
classical optimizers used for the deep learning purposes.[6, 54] An example of first order optimizers is
the simple gradient descent, based on the gradient descent method, which dates to 19th century and is
associated with mathematician Augustin-Louis Cauchy. Its basic idea is as simple as always taking
a step in the opposite direction of the gradient with the step size determined by the absolute value
of gradient and a preset constant parameter η, which is called learning rate. Thus, using the classic
pseudocode notation18, we have There are numerous stochastic optimization algorithms which improve

Algorithm 2: Simple gradient descent, inspired by [54]
Data: learning rate η ∈ R, objective function F , point θt
Result: Optimimal parameter set θo
begin

while Not converged do
gt ← g(θt) /* Evaluate gradient */
θt+1 ← θt − η · gt

upon the basic gradient descent idea. Some of the more significant and recent are the RMSProp
and the Adam optimizer[55]. The former modifies the gradient by division by square root of moving
average as can be seen from algorithm below. Note that the ε constant prevents the division by zero,

Algorithm 3: RMSProp optimizer method, inspired by [55]
Data: learning rate η ∈ R, moving average paramater γ ∈ (0; 1), small constant ε ∈ (0; 1),

bjective function F , point θt
Result: Optimimal parameter set θo
begin

while Not converged do
gt ← g(θt) /* Evaluate gradient */
E[g2]t ← γE[g2]t−1 + (1− γ)g2

t

θt+1 ← θt −
η√

Et + ε
gt

its value can be as small as 10−8. The latter extends the RMSProp optimizer further by use of the
moving square on both the gradient and its square. This approach requires a bias correction. In the
introduction of this section we have mentioned the second order optimizers. A good example of a such
method is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm Below is a schematic description
of the algorithm, its components such as the line search and matrix equation solution are out of the
project scope. The algorithm is based on the approximation of the objective function Hessian, so new
variables need to be defined. To conclude this section we mention there are also analytical method

18Unlike in equations in the algorithms, the convention of variable being set value is denoted as variable← value.

56

.. 3.2. Components of VQE

Algorithm 4: Adam optimizer method, inspired by [55]
Data: Learning rate η ∈ R, moving average parameter for gradients β1 ∈ (0; 1), moving average

parameter for squared gradients β2 ∈ (0; 1), small constant ε ∈ (0; 1), objective function
F , point θt

Result: Optimal parameter set θo
begin

while Not converged do
gt ← g(θt) /* Evaluate gradient */
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− γ)g2

t

m′t ←
mt

1− (β1)t
v′t ←

vt
1− (β2)t

θt+1 ← θt −
η√
v′t + ε

m′t

Algorithm 5: BFGS second order optimizer, [6]
Data: Initial parameters θ0, initial Hessian approximate B0, objective function F (θ)
Result: Optimal parameter set θo
begin

if B0 not set then
Calculate B0 from θ0

while Not converged do
pk ← Solve

(
Bkpk = −∇F (θk)

)
/* Find the descent direction */

αk ← argmin
(
F (θk + αk−1pk)

)
/* Perform line search */

sk ← αkpk
θk+1 ← +sk /* Parameter update */
yk ← ∇F (θk+1)−∇F (θk)

Bk+1 ← Bk + yky
T
k

yTk sk
− Bksks

T
kB

T
k

sTkBksk

of optimization available. Example of such methods is the Jaccobi diagonalization and Anderson
acceleration[56]. This type of method has the advantage of lower dependence on the gradient, giving
them resilience to barren plateau problem, while creating greater computational overhead.

3.2.6 Suppression of errors and noise

An important topic for the VQAs applied on NISQ devices is the reduction of impact of present noise
and overall error mitigation. This broad topic is completely out of the project scope, so we will restrict
ourselves to reference to literature, which discusses the problem in greater depth. The problem of error
mitigation is discussed in general in [4]. A recent example of a publication exploring this problem is
the tech report [6].

57

58

Chapter 4

Quantum programming tools

While the quantum computers of current NISQ era are in general far from being practical in terms
of general problem-solving, the development of quantum computers working with dozens of physical
qubits and the rise in quantum algorithm research in recent years led to great demand for tools that
could be used to program and simulate such a computer[7]. The set of tasks that need top be addressed
can be formulated in the following way:

.High level programming language: To describe the quantum programs, there first needs to be
a programming language, capable of modelling the qubits, quantum operations, measurements etc.
The creation of such language is preceded by choice of the programming paradigm and the other
parameters for such language. The high level language takes advantage of the simpler notation of
more complex operations. The code programmed in the high level language may need to be first
translated into low level language to be executed on quantum hardware1.. Low level language: The low level language is not an indispensable thing in quantum computation,
because the high level language could be implemented directly. Nevertheless, in the current quantum
technologies it plays essential role of intermediate representation of the quantum instructions, that
are to be executed on the quantum hardware..Quantum simulator: During the development of quantum programs and algorithms testing it
preferable to have access to means of experimenting without need for real quantum hardware. A
quantum simulator offers numerical simulation facilities which serve this exact purpose..Quantum algorithms: For classical programming it is essential to have means of compiling
algorithms and more complicated programs into packages or libraries, which can be further
distributed, so they might be reused. The same problem should be addressed for quantum
computing likewise.

In this chapter we provide a brief review of the tools that are currently available to perform the tasks
listed above.

1This is the case of the Qiskit library mentioned later in this chapter.

59

4. Quantum programming tools.....................................
4.1 Early quantum programming

In the 1990s the situation in quantum programming was in similar to early classical programming.
The studied programs were mostly described using the pseudocode, i.e. a human-readable of lists of
instructions for abstract hardware, that cannot be directly executed on any real hardware. The quantum
pseudocode was formalized for the first time by a convention in 1996[57]. The imperative pseudocode
with its formalism for describing low level operations and QRAM2 became an inspiration for the class
of imperative quantum programming languages. In the same year 1996 another approach quantum
programming was presented in the publication [59]. The alternative to the imperative pseudocode is
the functional lambda calculus. The quantum lambda calculus continues its development to this day
and although it remains a description of quantum programs, rather than being used as a programming
language, although there exists implementation in Scheme language. The lambada calculus in context
of both classic and quantum computing can be considered a basis for the functional programming
languages.

4.2 Quantum programming languages and SDKs

In the last twenty years the number of quantum computing languages raised significantly3. It should be
mentioned that most of the quantum programming tools today are developed as open source software
and proprietary components remain mostly in the domain of hardware specific software and components.
In this section only the most significant projects will be listed.[60, 61]

4.2.1 Quantum instruction sets

The instructions sets are used in order to translate the high level algorithms often written using high
level (quantum) programming languages. The instruction have the role of low level programming
languages and are often hardware-specific. Some of the more widely known are

. cQASM: Common QASM is a quantum assembly language, which is hardware-agnostic, i.e. it
offers possibility of information exchange between quantum compilation tools and the simulator
software..Quil: Quil is a instruction set architecture with shared memory architecture, where the memory
is accessible to quantum and classical component. Associated with Common Lisp.

2It needs to be emaphsized that the QRAM is rather a model of quantum computation rather than a quantum Random
Access Memory, as the term could suggest. This concept is based on a quantum register of qubits on which gates are
applied similarly to the circuit model, but the QRAM model explicitly accounts for the classical computer which is
controling the quantum apparatus.[58]

3At the time of writing there is no comprehensive list of quantum programming languages. Nonetheless, there are
fourteen major languages listed on the relevant Wikipedia page[60], excluding the low level instruction sets and quantum
SDKs.

60

..............................4.2. Quantum programming languages and SDKs

.OpenQASM: OpenQASM is part of Qiskit, it is based on circuit representation of programs. Its
design is based on conventional hardware description languages. It was first described in 2017
paper[62].

4.2.2 Quantum programming languages

Apart from low level programming languages, which are used to run software “close” to the actual
quantum hardware, there exist high level quantum programming languages, in this context they will
be referred to only as quantum programming languages. These languages can also be regarded as
meta-programming languages because they are not executed on the quantum hardware itself. The
following subsections present a short list of major quantum programming languages sorted by their
programming paradigm.

Imperative languages

In this list of imperative quantum programming languages we have excluded the low level languages,
pseudocode and the quantum programming languages, that have form a library for a conventional
programming language.

.QCL: Quantum Computation Language can be considered as one of the first implemented
languages. It was introduced in 2017 paper. It is conceptually based on C programming language..Q#: Q Sharp is a full-stack programming language for the Quantum Development Kit created by
Microsoft. It has syntax inspired by C Sharp..Q language: Historically the Q language was the second implemented quantum programming
language. It is implemented as and extension of C++ programming language.. Silq: Silq is one of the most recent languages, it was introduced in 2020. It is written as a
high-level programming languages with complex features such as automatic uncomputation.

Functional languages

The functional languages are often praised for their closeness to lambda calculus concepts, which makes
them more suitable for study of programming concepts in both conventional and quantum programming.
The list below does not include the quantum lambda calculus and its various implementations to avoid
confusion with separate programming languages based on more traditional approaches to functional
programming.

61

4. Quantum programming tools.....................................
.QML: QML stands for Quantum Meta Language4. It is heavily inspired by Haskell conventional

programming language. The semantics of the language is based on quantum circuit representation
of quantum programs.. LIQUi| >5: This language is built as an extension of the F# conventional language and offers
facilities such as simulators and variety of algorithms..Quipper: Quipper language is an extension of the conventional Haskell. Some of its functionality,
e.g. simulators, are implemented as Haskell libraries.

4.2.3 Quantum SDKs by developer

The situation with quantum programming languages, in which the programming languages depend
on multitude of tools, for example simulator, quantum hardware interfaces and libraries of quantum
algorithms and functions, led to the creation of Software Development Kits (SDK), i.e. collections
of tools related to quantum programming. The development of a quantum programming SDK or its
analogy is a complex and expensive enterprise, so it is not surprising the most advanced projects are
developed by large IT companies and quantum computing firms.

Developer Project Comment
IBM Qiskit Python library, based on OpenQASM circuit

representation, offers simulators and hard-
ware (local or cloud)

Microsoft Quantum Development Kit full-stack Q# language, part of .NET
framework, only simulations available

Google Cirq Python cirq libraries, simulators and
hardware internally at Google

Riggeti
Computing

Forest Python pyquil library translated to quil
instructions, Grove library for optimiza-
tion tasks

D-Wave Ocean tools for D-Wave hardware programming,
Ising model and QUBO problems, QMASM
low level language

Xanadu
Quantum

Strawberry Fields Python library and simulators, used for
Xanadu’s quantum photonic hardware,
Blackbird instructions set

Xanadu
Quantum

Pennylane Python library and simulators, used for
quantum devices by other developers

Budapest
Quantum
Computing
Group

Piquasso Programmed as a Python library, includes
multiple simulators, specialised in photonic
quantum computing

Table 4.1: Major quantum SDKs and their developers. Information taken from documentation of respective
SDKs[63, 64, 65, 66, 67, 68, 69, 70]

4Not to be confused with Qt Modelling language and Quantum Machine Learning which share common abbreviation
QML.

5The name of language is pronounced as liquid.

62

..............................4.2. Quantum programming languages and SDKs

The quantum SDKs by IBM and Google deserve special attention, as they are associated with most
advanced quantum hardware, and they are also involved in quantum programming education.

4.2.4 Qiskit

Qiskit, is an acronym for Quantum Information Science Kit, referring to a quantum SDK developed by
IBM, namely the IBM Research department, under open source MIT licence. It was initially released
in 2017 along with the OpenQASM instruction set mentioned in Section 4.2.1. The Qiskit is often
regarded as the most full-featured quantum SDK today. [63, 71, 72]

The SDK includes tools for creation of quantum programs, which are represented by quantum circuits,
simulation of quantum circuits and tools for quantum program execution on local or remote quantum
hardware. The remote hardware is primarily accessed through IBM cloud computing service named
IBM Quantum Experience, which gives user possibility to send the quantum programs for execution
to multiple quantum devices across the globe. It should be emphasized that although the Qiskit is
hardware-agnostic in concept6, it currently supports only the devices based on superconducting qubits
and trapped ions.

To run the quantum programs on hardware the programs are first translated from Python to the
machine code level OpenQASM, which is then executed. The SDK allows user to work with OpenQASM
directly, making the Qiskit suitable for low level programming. The OpenQASM is used not only for
physical devices, in Qiskit it also plays role of programming language for the simulators.

Qiskit is built upon conventional Python3 language using libraries of the same name, which are
loaded as necessary. The Python base gives Qiskit advantage of readable and easy to understand syntax,
that is familiar to many programmers and also gives access to numerous data science and computer
science tools that are available for Python, for example we mention NumPy, Pandas, Matplotlib.
The Python integration is especially significant in context of interaction of user with Qiskit and
installation. The official documentation suggests installation using the Anaconda Python distribution
into an environment that is separated from the rest of operating system programs and libraries. This
ensures the compatibility of all Python packages which are involved in work with Qiskit. Although
the Qiskit code can be executed as an ordinary Python code, it is recommended to use the Jupyter
Notebook. Jupyter Notebook7 is a software used to work with interactive notebook documents can
contain executable code, formatted Markdown and HTML text and images. The Notebook enables
interactive work with code in Python and other computing languages similar to REPL functionality.
The Jupyter Notebooks are used in the official Qiskit tutorials and in various educational programs
associated with quantum computing and Qiskit, such as the courses and workshops by the QWorld
organization.

The Qiskit is organized into multiple components which are listed below along with their functions
to give a better idea about the structure of the software.

6Thanks to the universal quantum computation model of quantum circuits.
7Jupyter Notebook is built upon more extensive Jupyter project, which is a collection of standards, services and tools

for interactive computing.

63

4. Quantum programming tools.....................................
.Qiskit Terra: Contains the basic components, which create the quantum circuits and also

performs the construction of the quantum gates of the circuits. Other components provide
optimization and execution of code locally or remotely..Qiskit Aer: Provides quantum computing simulators and their infrastructure. Also contains
realistic noise models..Qiskit Ignis: Now deprecated component for work with noise and error correction. Superseded
by Qiskit Experiments..Qiskit Aqua: Now also deprecated component consisting of diverse tools and algorithms. Now
replaced with Qiskit Optimization, Qiskit Finance, Qiskit Machine Learning and Qiskit
Nature

In context of the two algorithms discussed in this project, it should be mentioned that thanks to the
schematic nature of VQE and QAOA, both algorithms were implemented in the libraries of Qiskit.
These implementations can be though of as basis which needs to be equipped with an optimizer and
a quantum circuit defining the ansatz. Such classes can save time in certain situations, however use
of such preprogrammed construct obscures the working of the algorithm and makes unsuitable for
low-level research and education purposes.

To conclude the subsection about the Qiskit SDK we give a simple example of a quantum circuit,
which performs the superdense coding with Qiskit code that performs the circuit and draws the image
of circuit on figure.

Listing 4.1: Superdense coding algorithm circuit in Qiskit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute,

Aer
Alice has bits to be encoded:
AbitA=False
AbitB=True
Bob reads the measurement output
initialise circuit and registers
q = QuantumRegister(2,"qr")
c = ClassicalRegister(2,"cr")
qc = QuantumCircuit(q,c)
Actual circuit
qc.h(q[0])
qc.cx(q[0],q[1])
#qc.z(q[0])
#qc.x(q[1])
Use of Python conditionals
if AbitA:

qc.x(q[0])

if AbitB:
qc.z(q[0])

#qc.z(q[0])
#qc.x(q[1])
qc.cx(q[0],q[1])

64

..............................4.2. Quantum programming languages and SDKs

qc.h(q[0])
Measurements
qc.measure(0,0)
qc.measure(1,1)
Execution of the circuit on simulator and output
job = execute(qc,Aer.get_backend(’qasm_simulator’),shots=1024)
counts = job.result().get_counts(qc)
tmp=tuple(list(counts.items())[0][0])
print(counts)
Drawing the circuit using Mathplotlib library
qc.draw(output=’mpl’)

Figure 4.1: A quantum circuit diagram generated from qiskit code using matplotlib from code in listing 4.1

Projects associated with Qiskit

The information on the Qiskit SDK would not be complete without mentioning some of the projects
which are closely linked with the SDK. The Qiskit has the advantage of the possibility of accessing
the physical quantum hardware in the IBM Quantum project via the IBM Cloud. This way the code
produced using the Qiskit can be tested with real noise and real limitations of currect NISQ quantum
computers, e.g. limited set of quantum gates or virtual gates.

Another project worth mentioning is the currently developed Qiskit Metal, which is a software
that can be used for quantum hardware prototyping and simulations. The software is meant to be
compatible with the Qiskit SDK, so the developed circuits can be tested on the modeled hardware.

4.2.5 Cirq

Another quantum SDK which gained popularity in the recent years is the Cirq SDK developed by
Google AI Quantum Team. Cirq, similarly to Qiskit, is constructed as a Python library, so the code
can use the features of a modern programming language. Cirq SDK offers most of the features that

65

4. Quantum programming tools.....................................
Qiskit has, such as work with quantum circuits, quantum gates and simulations. Currently the SDK
does not have the functionality that would enable access to public physical quantum computers.

To give a better illustration of the Cirq SDK and the syntax of programming using its library, a
code in Cirq analogical in terms of functionality to 4.1 is listed below.

Listing 4.2: Superdense coding algorithm circuit in Cirq
import cirq
from cirq import H, X, Y, Z, CX, measure
Alice has bits to be encoded:
AbitA=False
AbitB=True
Bob reads the measurement output
initialise circuit and registers
q = cirq.LineQubit.range(2)
qc = cirq.Circuit()
Actual circuit
qc.append(H(q[0]))
qc.append(CX(q[0], q[1]))
Use of Python conditionals
if AbitA:

qc.append(X(q[0]))

if AbitB:
qc.append(Z(q[0]))

qc.append(CX(q[0], q[1]))
qc.append(H(q[0]))
Measurements
qc.append(measure(*q, key=’result’))
Execution of the circuit on simulator and output
s = cirq.Simulator()
samples=s.run(qc, repetitions=1024)
print(qc)
print(samples.histogram(key=’result’,fold_func=bitstring))

66

Chapter 5

Algorithm implementation and application

This chapter is dedicated to the practical implementation of the QAOA and VQE algorithms. The
necessary theory of quantum circuits and the studied algorithms were introduced in the first three
chapters (1, 2, 3). The implementations presented here will be restricted to the Qiskit SDK and
associated tool which were listed in the Chapter 4. Below are given multiple examples, which illustrate
both simple and more complex implementations. Finally, few observations are made about the
behaviour of the algorithms for different settings of the implemented circuits. Complete source code of
the implementations is available on the Gitlab repository of the project1. It should be noted that all
implementations utilize the noisy qasm_simulator from Qiskit SDK. The complete tabular data can
be found on the project Gitlab repository.

5.1 Basic implementations

This section is dedicated to presenting the algorithms applied to rather simple problems. Although the
algorithms for such settings do not have much practical use, nor they can reach quantum advantage,
the examples are useful illustration of the algorithms and the used programming tools.

5.1.1 QAOA: Basic implementation

As we have shown in the Section 2.3, the QAOA can be easily implemented for objective functions based
on boolean functions 2.1. The first problem that will be demonstrated with QAOA is the MaxCut,
that was discussed in Section 2.3.1. To keep the problem easy to imagine, the partitioned graph is
a simple four vertex graph displayed on figure 5.1. For this problem we have already derived the
objective function Eq (2.3.13) and the problem Hamiltonian Eq (2.3.14) which follows from it. The
problem unitary has form exp(−iγHP), which can be simplified ignoring the global phase introduces

1A link to the repository can be found in the Appendix

67

5. Algorithm implementation and application

Figure 5.1: A simple graph with four vertices, on which the QAOA for MaxCut is demonstrated below.

by the identity matrices and only considering the effect of ZuZv terms. This leads to the question of
implementing the unitary exp(−iγZuZv), which is refered to as RZZ gate. A simple matrix calculation
can prove that the RZZ gate can be decomposed according to the following figure 5.2. Thus, we can

RZZ =
Rz

Figure 5.2: Circuit realizing the RZZ gate using one Rz gate and two CNOT gates

write the circuit for depth (p = 1) as depicted in figure 5.32. An important component of QAOA

0
1

2
0

|q0〉 H Rz(γ) Rx(β)

|q1〉 H Rz(γ) Rx(β)

|q2〉 H Rz(γ) Rx(β)

|q3〉 H Rz(γ) Rx(β)

(creg)

Figure 5.3: Depth 1 QAOA circuit for MaxCut

algorithm cannot be seen on the circuit diagram 5.3, the optimizer. In the Chapter 3, namely in
Section 3.2.5, we have outlined the principles of multiple optimizers. For such a simple graph we
can safely assume the gradient base optimizers can be applied. In order to make the examples more
illustrative, the first order optimizers for simple gradient descent, gradient descent with scheduled
learning rate3 and RMSProp were implied from without use of dedicated package. The excerpts from
the source code illustrating the optimizers are listed below. All the mentioned optimizers rely on
gradient computation to make the implementation as simple as possible, the FDSA algorithms for
gradient computation was chosen and implemented from scratch.

2The circuit for this implementation was programmed in Qiskit, so in order to keep the description of circuit concise,
we have used the convention of measurement depiction used by Qiskit in the diagram above 5.3. As can be easily seen
this way of depicting the sequential measurements is ill-suited for printed publication with limited horizontal space, for
this reason in the following circuit the measurements will be symbolized by an indexed meter as in the previous chapters.

3The learning rate is unlike for simple gradient descent decreased between the iterations in order to avoid “stepping”
over the minimum.

68

....................................... 5.1. Basic implementations

Listing 5.1: Basic implementation of Simple Gradient Descent optimizer described in 2
def gradient_descent(GRADIENT_FUN, INITIAL, ETA, MAX_ITER=100, EPSILON=1e-03):

vector = np.array(INITIAL)
learning_rate = ETA
step = 0.1
loops = 0
for i in range(0, MAX_ITER):

GRAD = GRADIENT_FUN(vector, step)
diff = - learning_rate * np.array(GRAD)
if np.all(np.abs(diff) <= EPSILON):

break
vector += diff
for index in range(0, len(vector)):

if np.abs(vector[index]) > 3.15/2:
vector[index] /= 2

step /= 1.02
loops += 1

return vector.tolist(), loops

Listing 5.2: Basic implementation of Scheduled Gradient Descent optimizer used in this project
def gradient_descent_scheduled(GRADIENT_FUN,INITIAL,ETA,MAX_ITER=100,EPSILON=1e-03)

:
vector = np.array(INITIAL)
learning_rate = ETA
step = 0.2
loops = 0
for i in range(0, MAX_ITER):

GRAD = GRADIENT_FUN(vector, step=step)
diff = - learning_rate * np.array(GRAD)
if np.all(np.abs(diff) <= EPSILON):

break
vector += diff
for index in range(0, len(vector)):

if np.abs(vector[index]) > 3.15/2:
vector[index] /= 2

step = 2/(step+10)
learning_rate = 1/(learning_rate+20)
loops += 1

return vector.tolist(), loops

Listing 5.3: Basic implementation of RMSProp optimizer discussed in 3
def RMSProp(GRADIENT_FUN, INITIAL, ETA, GAM, MAX_ITER=100, EPSILON=1e-03):

vector = np.array(INITIAL)
learning_rate = ETA
avg_par = GAM
step = 0.1
loops = 0
e_small = 0.001
LEN = len(INITIAL)
E = []
for j in range(0,LEN):

69

5. Algorithm implementation and application
E.append(0)

for i in range(0, MAX_ITER):
GRAD = GRADIENT_FUN(vector, step)
diff = []
for j in range(0, LEN):

E[j] = avg_par * E[j] + (1-avg_par)*(GRAD[j]**2)
diff.append(- (learning_rate/(np.sqrt(E[j])+e_small)) * GRAD[j])

if np.all(np.abs(diff) <= EPSILON):
break

vector += diff
for index in range(0, len(vector)):

if np.abs(vector[index]) > 3.15/2:
vector[index] /= 2

step = (np.array(diff).sum()/LEN)/2
loops += 1

return vector.tolist(), loops

Listing 5.4: Basic implementation of FDSA finite difference gradient method from Eq (3.2.102)
def gradient(point, step, obj_fun):

grad = []
for j in range(0,len(point)):

point_plus = point
point_minus = point
point_plus[j] += step
point_minus[j] -= step
plus = (obj_fun(point_plus))
minus = (obj_fun(point_minus))
grad.append((plus-minus)/(2*step))

return grad

Recall that for the simple gradient computation FDSA depends on the prescription of the step which
is taken during computation in the cardinal directions. The application of gradient descent, even for
such a simple problem, showed clearly the problems of the most basic method. The simple gradient
descent is highly sensitive to the setting of the parameters, for our implementation that is the learning
rate η and the prescription of the step decrease.

During the test the circuit was first optimized using the selected optimizer and then circuit was
measured with parameters (β, γ) set to the optimizer result for the solution readout. All optimizers
have eventually reached correct solution. The experiments with the number of shots used to compute
the gradient have shown that the gradient descent methods are more susceptible to low precision of
the gradient, because for a hundred shots, the method often did not converge at all. In that case
the optimizers were stopped by the set maximum number of iterations (set to 100) rather that the
convergence. Even in these cases the optimizers have reached results good enough for reading the
solution, although it is obvious that for a more complex task the solution would be lost. The RMSProp
optimizer, which utilizes concept of momentum, that is used to scale the gradient before calculating
new position, has proven itself more resilient to gradient errors and reached the correct result for a
hundred shots.

In order to give a different perspective of the problem solution, a gradient-free optimizer was also

70

....................................... 5.1. Basic implementations

tested for the problem. The chosen optimizer is the COBYLA method implemented in the scipy
package as a minimization method. This optimizer obviously does not rely on the use of the gradient
computation function, but its performance was measured via the number of iterations it needed to
converge, i.e. effectively the number of circuit executions. COBYLA, thanks to its implementation is
the most resilient method in terms of parameter changes, but the number of runs it needs to reach
solution may be comparable to gradient method. It is also worth noting that this method is based on
linear approximations, so it may fail for some problems with complicated parameter landscape. To

Figure 5.4: The histograms of measurement result of the depth 1 QAOA for MaxCut for optimizers (ordered
from left to right): Simple Gradient Descent, Scheduled Gradient Descent, RMSProp, COBYLA

Figure 5.5: The partitions of the simple graph, that solve the MaxCut problem, coloured according to the
solution bitstrings produced by the algorithm

analyse the performance of the optimizers of this example problem one hundred repeated runs of the
optimizers with required high precision were performed and logged the number of cycles necessary to
converge with set precision. In order to perform comparison of the selected methods the number of

71

5. Algorithm implementation and application
shots was set to 300 equally. The average number of iterations are listed in the following table 5.1.

Method 0.01 0.02 0.03 0.04 0.05
Simple GD 27.05 19.55 17.05 11.20 10.00

Scheduled GD 16.95 12.60 8.50 7.85 7.60
COBYLA 18.30 17.05 14.55 14.20 13.95
RMSProp 17.80 11.20 10.75 9.70 6.15

Table 5.1: Average number of iterations needed to reach convergence with tolerance set to value in top row
using 300 shots for the chosen optimizers listed in the first column

5.1.2 VQE: Basic implementation

The application of VQE in quantum chemistry context is beyond the scope of basic examples. For this
reason we will consider the problem of finding the eigenvalue of chosen matrix.

M =




0 0 −0.5
0 0.75 −0.5
−0.5 −0.5 −0.25


 , λ1 = −0.75, λ2 = 0.25, λ3 = 1 Eq (5.1.1)

To solve this problem, the simplified VQE was used, by this it is meant that for this problem there is
no need for complicated choice of base or encoding. Nevertheless, all basic components are present and
the principle of VQE can be easily seen in action. To link this demonstration to previously explained
theory, we emphasize that this implementation relies upon the HEA ansatz, which was introduced
in definition 3.11, and the RMSProp optimizer4, presented in 3. For comparison we have included a
non-gradient optimizer, the COBYLA method from the scipy python package. This problem also
illustrates one complicated aspect of VQE, in order to work with the given Hamiltonian, e.g. matrix M
from Eq (5.1.1), it first needs to be converted into a sum of Pauli strings which can then be implemented
on the circuit. This conversion process for studied settings was already outlined in Chapter 3. For an
“random” matrix such as M this process can be difficult. Another problem is linked with the form of
Hamiltonian. The sum of Pauli strings contains coefficients for all summands and as such they cannot
be implemented directly in the circuit, because the gates would lose the unitarity. Computation of the
overall expectation value accounting for all coefficients is done through circuit analysis and weighting
of the results, which follows from the rules of tensor product and the description of measurement in
quantum physics. A sufficiently general implementation of an algorithm is beyond the scope of this
project. For these reasons the following implementations use the tools that are provided by the Qiskit.

With this knowledge we can now proceed to present the details of the implementation. The new
functions are the HEA block constructing function, which adds a simple HEA block to the circuit of
arbitrary size upon call. The next new function is the VQE running function which is called to perform
whole quantum routine of VQE with set parameters and return the computer expectation value. The
computation of expectation value is based on successive repetitions of the circuit and measurement.
This means that one call of VQE running functions is equivalent to number of circuit executions set
by the parameter shots. To illustrate the working of our algorithm implementation we include the
following excerpts from the source code.

4Other optimizers and their results can be reviewed in the Jupyter notebooks which can be found on the project Gitlab
repository.

72

....................................... 5.1. Basic implementations

Listing 5.5: The function constructing the HEA ansatz in the circuit, based on figure 3.5
def add_HEA(parameters, circuit):

p = int(len(parameters)/2)
beta = parameters[:p]
gamma = parameters[p:]
for it in range(0,len(beta)):

circuit.rx(beta[it], it)
for it in range(0,len(gamma)):

circuit.ry(gamma[it], it)
for i in range(0,len(beta)-1):

circuit.cx(i, i+1)

Listing 5.6: The function used to perform a VQE circuit for a given Hamiltonian
def run_vqe(parameters, layers, hamiltonian_op, shots):

NQUBITS = int(len(parameters)/2)
Create quantum circuit
QC = QuantumCircuit(NQUBITS)
add_HEA(parameters,QC)
backend=Aer.get_backend(’aer_simulator’, device=’gpu’)
exp_converter = ExpectationFactory.build(hamiltonian_op, backend)
measurable_expression = ~StateFn(hamiltonian_op) @ StateFn(QC)
expect_op = exp_converter.convert(measurable_expression)
sampled_op = CircuitSampler(backend).convert(expect_op)
expectation_value = sampled_op.eval().real
return expectation_value

Listing 5.7: Example of the use of RMSProp optimizer to find eigenvalues using VQE
GRAD = get_gradient_vqe(1, H_op, 300)
result3, num_loops = RMSProp(GRAD, [1.0,1.0,1.0,1.0], 0.29, 0.2 , 200, EPSILON=0.1)

print(’Result␣parameters’, result3)
print(’Number␣of␣gradient␣calls’, num_loops)
print(’Ground␣state␣approximation:␣’, run_vqe(result3,1, H_op, 400))

The results for the RMSProp and COBYLA optimizers are summarized in the following figures.

73

5. Algorithm implementation and application

200 300 400 500 600 700 800 900 1000
Shots

−0.75

−0.70

−0.65

−0.60

−0.55

−0.50
Ei

ge
nv

al
ue

ap
pr

ox
im

at
io

n

200 300 400 500 600 700 800 900 1000
Shots

40

50

60

70

80

90

Ev
al

ua
tio

ns

Figure 5.6: The figure on the left shows the graph of the approximations of eigenvalue found using the
RMSProp optimizer. The figure on the right gives the respective number of iterations needed for convergence

200 300 400 500 600 700 800 900 1000
Shots

−0.76

−0.74

−0.72

−0.70

−0.68

−0.66

−0.64

Ei
ge

nv
al

ue
ap

pr
ox

im
at

io
n

200 300 400 500 600 700 800 900 1000
Shots

46

47

48

49

50

51

52

53

Ev
al

ua
tio

ns

Figure 5.7: The figure on the left shows the graph of the approximations of eigenvalue found using the
COBYLA optimizer. The figure on the right gives the respective number of iterations needed for convergence

Qiskit built-in implementations

Both QAOA and VQE have since their discovery reached recognition as perspective quantum algorithms
that may even reach quantum supremacy in certain situations[73, 74]. It is not surprising that an
extensive SDK such as Qiskit includes its own implementation of the algorithms. The implementations
QAOA and VQE are a part of qiskit.algorithms module, and they represent an algorithms template,
which is completed by adding an ansatz and an optimizer5. Such implementations have the advantage
of using complex Python code create robust algorithm, which does not suffer many problems, which are
present in our simple implementation, such as initial point handling. The main disadvantages of the
built-in algorithms are the extensive code, which obscures the inner working of the algorithm, and the
dependency on optimizers, which need to fullfill strict requirements, making it unnecessarily demanding
to experiment with new optimizer code or use code from external library. The optimizers offered by
Qiskit include the GradientDescent6, SPSA and COBYLA. An example of use of built-in VQE with the
HEA block used in our VQE example can be found below.

Listing 5.8: Example of use of Qiskit built-in implementation of VQE (using SPSA optimizer) with the
detailed HEA block construction
p = ParameterVector(’p’, 4)

5In case of VQE is it important to choose the expectation value convertor, as this choice impacts the presence of noise
in the calculation.

6It is worh noting that this gradient descent does not keep the learning rate η constant. This maked this optimizer
similar to scheduled gradient descent with multiple improvements, which may not be desired by the user.

74

.. 5.2. Applications
hamiltonian_op = H_op
shots = 300
NQUBITS = 2
Create quantum circuit
QC = QuantumCircuit(NQUBITS)
for it in range(0,2):

QC.rx(p[it], it)
for it in range(0,2):

QC.ry(p[it+2], it)
QC.cx(0, 1)
QC.draw()

qinstance = QuantumInstance(backend, shots = 400, seed_simulator=2)
vqe = VQE(ansatz=QC, initial_point = [1.0, 1.0, 1.0, 1.0], optimizer=SPSA(),\

quantum_instance=qinstance)
result = vqe.compute_minimum_eigenvalue(H_op)
print(result)

For more detailed examples of use of built-in VQE in context of the problems above refer to the project
Jupyter notebooks7.

5.2 Applications

In this final section of the work we present a practical non-trivial problem for each studied algorithm and
present its solution along with analysis of the implementation and its performance. The problem were
chosen to be related to previously mentioned topics, so the these implementations can be considered to
be their direct extension. The code from the previous section 5.1, will be partially reused, in to avoid
repetition of essentially same code, only the relevant code excerpt will be referenced.

5.2.1 QAOA application

Relevant problem

The QAOA is as a combinatorial algorithm has a wide range of potential application. Only for the
MaxCut combinatorial problem, which we have already mentioned, exist a variety of problems that
can be mapped to it, including machine scheduling, QUBO problems, image recognition, etc.[75]. One
such problems is the clustering method for unsupervised machine learning8.

7Which can be found at the project repository linked in the Appendix.
8The term is in detail explained in [76]

75

5. Algorithm implementation and application
Definition 5.1. The term clustering, sometimes referred to as cluster analysis, stands for the task of
grouping the elements of a (training) set into groups, so that object which share a group are similar to
each other.[76]

The notion of similarity here may refer to various characteristics. In this project we will consider
sets of k-dimesional vectors (points), for this reason the only considered characteristic is the relative
distance of the elements in space. This application is heavily inspired by the paper [23], where the idea
of using QAOA for clustering. To be specific in this section, similarly to the paper we will consider only
bi-clustering, i.e. the elements will be categorized into only two groups. The following algorithm puts
the clustering into context of MaxCut Now we can address the question, how much does the previously

Algorithm 6: MaxCut bi-clustering algorithm, inspired by [75]
Data: Dataset S ⊂ Rn = {pi|i ∈ N̂}, metric ρ(·, ·)
Result: Grouping of elements of S into S1 and S2
begin

for (i, j) in N̂ ⊗ N̂ do
Cij ← ρ()

HP ← Encode(Objectivefunction,weightmatrixC)
bitstring ← QAOA(HP)
for i in N̂ do

if bitstring[i] == 1 then
S1.append(pi)

else
S2.append(pi)

implemented MaxCut on graph and bi-clustering have in common. The answer follows from observing
the differences of the problems. The main differences are the presence of imaginary line connecting
every point, now taken as a vertex, with every other point, and the fact that the lines have various
lengths. The problem can be seen as 2 MaxCut on graph with weighted edges, where weight stands for
the distance. The first difference can be implemented easily. The second difference means that the
objective value calculator and in consequence the expectation value calculator need to be modified.
Weighting also affects the problem Hamiltonian which now takes form

HP =
∑

〈u,v〉
w〈u,v〉

1
2(1− ZuZv), Eq (5.2.1)

where w〈u,v〉 represents the weight. This change does not have a large impact on the implementation,
since the effect of identities is ignored and the multiplication of ZuZv by weight only changes the values
of the optimal parameters.

Before the algorithms can be applied, the dataset is randomly generated. This work only studies the
problem for S ∈ R2. The figure below shows the used dataset. In order to check the QAOA result we
also generate the correct solution using brute force approach.

76

.. 5.2. Applications

4 6 8 10 12 14 16 18 20
X

−10

−8

−6

−4

−2

0

2

4

Y

Figure 5.8: Randomly generated dataset, that is to be grouped by bi-clustering through QAOA

Applications of algorithm

To implement the algorithm, the code for simple QAOA was adapted to be in order with the algorithm
on figure 6, by changing the expectation value calculation and the QAOA constructing function. For
this problem the depth 2 QAOA was used, this means that the used circuit has two layers and four
parameters instead of two. The main reason for this was the need for high precision of parameters for
the depth one QAOA, which lead to unnecessary amount of shots needed for solution. The first step
is to compute the weight matrix, containing the distances between points, which is then used by the
expectation value calculator9. The rest of the code, apart from addition of result string picker, remains
the same.

Analysis of application

In this subsection we briefly review our results of the implementation of QAOA for bi-clustering of
dataset. First let us emphasize that by setting the parameters of the optimizers accordingly, the correct
result was reached for both project original RMSProp optimizer and for the scipy package COBYLA
optimizer. To study the behaviour of problem solution, the solving procedure was repeated for various
number of shots, as this parameter together with the number of algorithms iterations is key for the
need resource of the algorithms.

9Note that for this implementation, the classical expectation value calculation is not used, instead a “calculator”
function is used, which returns a value that can be used to approximate the expectation value

77

5. Algorithm implementation and application

0 2000 4000 6000 8000
Shots

−33.00

−32.75

−32.50

−32.25

−32.00

−31.75

−31.50

−31.25

−31.00

Ex
pe

ct
at

io
n

va
lu

e

2000 4000 6000 8000
Shots

112

114

116

118

120

Ev
al

ua
tio

ns
Figure 5.9: The figure on the left shows the chart of expectation value approximation found using the
COBYLA optimizer. The figure on the right gives the respective number of iterations needed for convergence

0 2000 4000 6000 8000
Shots

−34.2

−34.0

−33.8

−33.6

−33.4

−33.2

−33.0

−32.8

Ex
pe

ct
at

io
n

va
lu

e

2000 4000 6000 8000
Shots

160

180

200

220

240

260

280

300

Ev
al

ua
tio

ns

Figure 5.10: The figure on the left shows the chart of expectation value approximation found using
the RMSProp optimizer. The figure on the right gives the respective number of iterations needed for
convergence

78

Chapter 6

Conclusion

This project aims to give a comprehensive and complete overview of the topic of elementary programming
of quantum computers and recent quantum algorithms. Particularly this work focuses on the Quantum
Approximate Optimization Algorithm (QAOA) and the Variational Quantum Eigensolver (VQE).

The first chapter gives a transparent introduction to the topic of quantum algorithms by explaining
the basic terminology, theoretical concepts and methods. In this chapter are also summarized few
identities important in context of quantum programming. The quantum circuit formalism is illustrated
using a short list of most important quantum gates, including the multiqubit gates. The matrix forms of
gates are also given in this chapter. The last part of the chapter opens the topic of quantum algorithms,
by explaining their importance and the outlining the characteristics of the studied algorithms.

The following chapter is completely dedicated to QAOA algorithm. The beginning introduces the
combinatorial problems and approximations linked to QAOA. The first section gives an extensive list of
definitions of terms that are linked to QAOA and finally giving the rigorous definition of the algorithms
itself. The definitions are complemented by schematics of the algorithms and a number of equations.
The properties of QAOA are studied in the next sections. Basic data are given on the general QAOA,
and more extensive overview of properties is given for fixed depth QAOA. Particularly the fixed depth
QAOA is studied in context of the MaxCut problem, which is defined and explained in depth in this
chapter, and the problems which can be described by a Boolean objective functions. Few theorems for
these objective functions and their representation by a problem Hamiltonian are presented and proven.
The properties of fixed depth QAOA are shown and proven for graphs of bound degree and using the
technique of Pauli Solver. The chapter ends with a short overview of algorithms related to QAOA.

In the third chapter the VQE is presented. The terms defining the problem are given in the beginning
along with a brief description of the algorithm and its steps. The second more extensive section
describes the individual components of VQE. First the preparatory steps, such as the choice of basis
according to application, needed to build a working VQE implementation are explained. Next the
Hamiltonian and its construction are shown in detail. The following section present the problems of
operator encoding and multiple solutions, methods of VQE optimization and the question of ansatz
choice and parametrization. The chapter is closed by an overview of optimization methods that can be
used in the optimization parameters during the algorithms loop.

79

6. Conclusion...
The fourth chapter reviews the currently available quantum programming tools, including the low

level quantum instruction sets, quantum programming languages and finally the quantum software
development kits (SDK). The SDKs are compared in a transparent table listing their features. The
focus is on the Python based Qiskit SDK by IBM Research which is one of the most feature-complete
SDKs available. Next the components of Qiskit are explained. The chapter ends with an example of a
Qiskit code and the quantum circuit generated using the code.

The final fifth chapter deals with implementation of the algorithms, first on two basic problems and two
more practical problems. The solutions of the problems are reached using the simple implementations
of the algorithms written for the project and also for comparison are included solutions using the Qiskit
built-in implementations. The implementations rely on the optimizers which are coded according to
their respective definitions in the third chapter. The project original code is available for review on the
project online repository linke in the appendix.

80

Appendix A

Additional information

A.1 Acronyms

This part of appendix contains comprehensive list of acronyms used in the project and their meaning.

QAOA Quantum Approximate Optimization Algorithm
or Quantum Alternating Operator Ansatz

VQA Variationa Quantum Algorithm
VQE Variationa Quantum Eigensolver
CC Coupled Cluster
UCC Unitary Coupled Cluster
HEA Hardware Efficient Ansatz
QAA Quantum Adiabatic Algorithm
NISQ Noisy Intermediate-Scale Quantum (devices)
SPSA Simultaneous Perturbation Stochastic Approxi-

mation
FDSA Finite Difference Stochastic Approximation

RMSProp Root Mean Square Propagation
Adam Adaptive Moment Estimation (stochastic approx-

imation method)
BFGS Broyden–Fletcher–Goldfarb–Shanno (algorithm)
QRAM Quantum Random Access Memory
QUBO Quadratic unconstrained binary optimization
QASM Quantum Assembly Language
QML Quantum Meta Language
SDK Software Development Kit
REPL Read-eval-print loop

81

A. Additional information..
Source code

Due to the extent of used code in this project, a decision was made to omit the full source code from
the text of the work. In order to keep the code available, it was uploaded to Gitlab repository. Below
a hyperlink and a QR code is presented which lead to the this repository.
Link to project repository: https://gitlab.com/fjfi_studies/bc_project

Figure A.1: QR code leading to the project repository

82

https://gitlab.com/fjfi_studies/bc_project

Appendix B

Bibliography

1. FEYNMAN, Richard P. Simulating physics with computers. Int. j. Theor. phys. 1982, vol. 21, no.
6/7.

2. RIEFFEL, Eleanor; POLAK, Wolfgang. Quantum computing: a gentle introduction. Cambridge,
Mass: The MIT Press, 2011. Scientific and engineering computation. isbn 9780262015066. OCLC:
ocn641998800.

3. HIDARY, Jack D. A Brief History of Quantum Computing. In: Quantum Computing: An Applied
Approach. Cham: Springer International Publishing, 2019, pp. 11–16. isbn 978-3-030-23922-0.
Available from doi: 10.1007/978-3-030-23922-0_2.

4. NIELSEN, Michael A.; CHUANG, Isaac L. Quantum computation and quantum information. 10th
anniversary ed. Cambridge ; New York: Cambridge University Press, 2010. isbn 9781107002173.

5. BERRY, Dominic W.; KIEFEROVÁ, Mária; SCHERER, Artur, et al. Improved techniques for
preparing eigenstates of fermionic Hamiltonians. npj Quantum Information [online]. 2018, vol. 4,
no. 1, pp. 1–7 [visited on 2022-05-29]. issn 2056-6387. Available from doi: 10.1038/s41534-018-
0071-5.

6. TILLY, Jules; CHEN, Hongxiang; CAO, Shuxiang, et al. The Variational Quantum Eigensolver:
a review of methods and best practices [online]. 2021-11 [visited on 2022-05-13]. Tech. rep. arXiv.
Available from doi: 10.48550/arXiv.2111.05176. arXiv:2111.05176 [quant-ph] type: article.

7. PRESKILL, John. Quantum Computing in the NISQ era and beyond. Quantum [online]. 2018,
vol. 2, p. 79 [visited on 2022-05-14]. Available from doi: 10.22331/q-2018-08-06-79.

8. ARUTE, Frank; ARYA, Kunal; BABBUSH, Ryan, et al. Quantum supremacy using a pro-
grammable superconducting processor. Nature [online]. 2019, vol. 574, no. 7779, pp. 505–510
[visited on 2022-05-14]. issn 1476-4687. Available from doi: 10.1038/s41586-019-1666-5.

9. WU, Yulin; BAO, Wan-Su; CAO, Sirui, et al. Strong Quantum Computational Advantage Using
a Superconducting Quantum Processor. Physical Review Letters [online]. 2021, vol. 127, no. 18,
p. 180501 [visited on 2022-05-14]. Available from doi: 10.1103/PhysRevLett.127.180501.

10. KRUSE, Regina; HAMILTON, Craig S.; SANSONI, Linda, et al. Detailed study of Gaussian
boson sampling. Physical Review A [online]. 2019, vol. 100, no. 3, p. 032326 [visited on 2022-07-04].
Available from doi: 10.1103/PhysRevA.100.032326.

83

https://doi.org/10.1007/978-3-030-23922-0_2
https://doi.org/10.1038/s41534-018-0071-5
https://doi.org/10.1038/s41534-018-0071-5
https://doi.org/10.48550/arXiv.2111.05176
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevA.100.032326

B. Bibliography..
11. PRESKILL, John. Quantum computing and the entanglement frontier [online]. 2012-11 [visited on

2022-05-14]. Tech. rep. arXiv. Available from doi: 10.48550/arXiv.1203.5813. arXiv:1203.5813
[cond-mat, physics:quant-ph] type: article.

12. CEREZO, M.; ARRASMITH, Andrew; BABBUSH, Ryan, et al. Variational quantum algorithms.
Nature Reviews Physics. 2021, vol. 3, no. 9, pp. 625–644. Available from doi: 10.1038/s42254-
021-00348-9.

13. CHOI, Jaeho; KIM, Joongheon. A Tutorial on Quantum Approximate Optimization Algorithm
(QAOA): Fundamentals and Applications. In: 2019 International Conference on Information
and Communication Technology Convergence (ICTC). 2019, pp. 138–142. Available from doi:
10.1109/ICTC46691.2019.8939749.

14. MCCLEAN, Jarrod R.; HARRIGAN, Matthew P.; MOHSENI, Masoud, et al. Low-Depth
Mechanisms for Quantum Optimization. PRX Quantum. 2021, vol. 2, p. 030312. Available from
doi: 10.1103/PRXQuantum.2.030312.

15. AUSIELLO, Giorgio; MARCHETTI-SPACCAMELA, Alberto; CRESCENZI, Pierluigi, et al.
Complexity and Approximation. Springer Berlin Heidelberg, 1999. Available from doi: 10.1007/
978-3-642-58412-1.

16. FARHI, Edward; GOLDSTONE, Jeffrey; GUTMANN, Sam. A Quantum Approximate Optimiza-
tion Algorithm. 2014. Available from arXiv: 1411.4028 [quant-ph].

17. PILLAI, S.U.; SUEL, T.; CHA, Seunghun. The Perron-Frobenius theorem: some of its applications.
IEEE Signal Processing Magazine. 2005, vol. 22, no. 2, pp. 62–75. issn 1558-0792. Available from
doi: 10.1109/MSP.2005.1406483.

18. NINIO, F. A simple proof of the Perron-Frobenius theorem for positive symmetric matrices.
Journal of Physics A: Mathematical and General [online]. 1976, vol. 9, no. 8, pp. 1281–1282
[visited on 2022-05-15]. issn 0305-4470. Available from doi: 10.1088/0305-4470/9/8/017.

19. HADFIELD, Stuart. Quantum Algorithms for Scientific Computing and Approximate Optimization.
2018. Available from arXiv: 1805.03265 [quant-ph].

20. KAO, Ming-Yang (ed.). Encyclopedia of algorithms. Second edition. New York, NY: Springer
Reference, 2016. isbn 9781493928637 9781493928651.

21. BARAHONA, Francisco; GRÖTSCHEL, Martin; JÜNGER, Michael, et al. An Application of
Combinatorial Optimization to Statistical Physics and Circuit Layout Design. Operations Research.
1988, vol. 36, no. 3, pp. 493–513. Available from doi: 10.1287/opre.36.3.493.

22. M. R. GAREY, D. S. Johnson. Computers and Intractability: A Guide to the Theory of Np-
Completeness. W H FREEMAN WORTH PUB 3PL, 1979. isbn 0716710455. Available also from:
https://www.ebook.de/de/product/3637119/m_r_garey_d_s_johnson_computers_and_
intractability_a_guide_to_the_theory_of_np_completeness.html.

23. CLINTON, Laura; BAUSCH, Johannes; CUBITT, Toby. Hamiltonian Simulation Algorithms for
Near-Term Quantum Hardware. Nature Communications [online]. 2021, vol. 12, no. 1, p. 4989
[visited on 2022-06-02]. issn 2041-1723. Available from doi: 10.1038/s41467-021-25196-0.
arXiv:2003.06886 [quant-ph].

24. PAREKH, Ojas D.; RYAN-ANDERSON, Ciaran; GHARIBIAN, Sevag. Quantum Optimization
and Approximation Algorithms. [Online]. 2019-01 [visited on 2022-05-14]. Tech. rep. Available
from doi: 10.2172/1492737.

25. FARHI, Edward; GOLDSTONE, Jeffrey; GUTMANN, Sam. A Quantum Approximate Optimiza-
tion Algorithm Applied to a Bounded Occurrence Constraint Problem [online]. 2015-06 [visited on
2022-05-17]. Tech. rep. arXiv. Available from doi: 10.48550/arXiv.1412.6062. arXiv:1412.6062
[quant-ph] type: article.

84

https://doi.org/10.48550/arXiv.1203.5813
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1109/ICTC46691.2019.8939749
https://doi.org/10.1103/PRXQuantum.2.030312
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-642-58412-1
https://arxiv.org/abs/1411.4028
https://doi.org/10.1109/MSP.2005.1406483
https://doi.org/10.1088/0305-4470/9/8/017
https://arxiv.org/abs/1805.03265
https://doi.org/10.1287/opre.36.3.493
https://www.ebook.de/de/product/3637119/m_r_garey_d_s_johnson_computers_and_intractability_a_guide_to_the_theory_of_np_completeness.html
https://www.ebook.de/de/product/3637119/m_r_garey_d_s_johnson_computers_and_intractability_a_guide_to_the_theory_of_np_completeness.html
https://doi.org/10.1038/s41467-021-25196-0
https://doi.org/10.2172/1492737
https://doi.org/10.48550/arXiv.1412.6062

.. B. Bibliography

26. FARHI, Edward; GOLDSTONE, Jeffrey; GUTMANN, Sam, et al. Quantum Computation by
Adiabatic Evolution. 2000. Available from arXiv: quant-ph/0001106 [quant-ph].

27. FARHI, Edward; GOLDSTONE, Jeffrey; GUTMANN, Sam. Quantum Adiabatic Evolution Algo-
rithms versus Simulated Annealing. 2002. Available from arXiv: quant-ph/0201031 [quant-ph].

28. HADFIELD, Stuart; WANG, Zhihui; O’GORMAN, Bryan, et al. From the Quantum Approximate
Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms. 2019, vol. 12,
no. 2. issn 1999-4893. Available from doi: 10.3390/a12020034.

29. PERUZZO, Alberto; MCCLEAN, Jarrod; SHADBOLT, Peter, et al. A variational eigenvalue
solver on a photonic quantum processor. Nature Communications. 2014, vol. 5, no. 1, p. 4213.
issn 2041-1723. Available from doi: 10.1038/ncomms5213.

30. HEIFETZ, Alexander (ed.). Quantum Mechanics in Drug Discovery. Springer US, 2020. isbn
978-1-0716-0281-2. Available from doi: 10.1007/978-1-0716-0282-9.

31. CONTINENTINO, Mucio Amado. Key Methods and Concepts in Condensed Matter Physics.
Institute of Physics Publishing, 2021. Available also from: https://www.ebook.de/de/product/
40701199/mucio_amado_continentino_key_methods_and_concepts_in_condensed_matter_
physics.html.

32. LORDI, Vincenzo; NICHOL, John M. Advances and opportunities in materials science for
scalable quantum computing. MRS Bulletin. 2021, vol. 46, no. 7, pp. 589–595. Available from
doi: 10.1557/s43577-021-00133-0.

33. CAO, Y.; ROMERO, J.; ASPURU-GUZIK, A. Potential of quantum computing for drug discovery.
IBM Journal of Research and Development. 2018, vol. 62, no. 6, 6:1–6:20. Available from doi:
10.1147/jrd.2018.2888987.

34. MICELI, Raffaele; MCGUIGAN, Michael. Effective matrix model for nuclear physics on a quantum
computer. In: 2019 New York Scientific Data Summit (NYSDS). IEEE, 2019. Available from doi:
10.1109/nysds.2019.8909693.

35. ARFKEN, George B. Mathematical Methods for Physicists. Elsevier Science & Techn., 2013. isbn
9781483277820. Available also from: https://www.ebook.de/de/product/23273197/george_
b_arfken_mathematical_methods_for_physicists.html.

36. YSERENTANT, Harry. A Short Theory of the Rayleigh–Ritz Method. Computational Methods
in Applied Mathematics. 2013, vol. 13, no. 4, pp. 495–502. Available from doi: 10.1515/cmam-
2013-0013.

37. LLOYD N. TREFETHEN, David Bau I. I. I. Numerical Linear Algebra. CAMBRIDGE, 1997.
isbn 0898713617. Available also from: https://www.ebook.de/de/product/6906297/lloyd_n_
trefethen_david_bau_iii_numerical_linear_algebra.html.

38. MCCLEAN, Jarrod R.; ROMERO, Jonathan; BABBUSH, Ryan, et al. The theory of variational
hybrid quantum-classical algorithms. New Journal of Physics [online]. 2016, vol. 18, no. 2, p. 023023
[visited on 2022-05-06]. issn 1367-2630. Available from doi: 10.1088/1367-2630/18/2/023023.

39. SZABO, Attila; OSTLUND, Neil. Modern quantum chemistry. Dover Publications, 2012. Available
also from: https://www.ebook.de/de/product/21951617/attila_szabo_neil_s_ostlund_
modern_quantum_chemistry.html.

40. LEE, Joonho; HUGGINS, William J.; HEAD-GORDON, Martin, et al. Generalized Unitary
Coupled Cluster Wave functions for Quantum Computation. Journal of Chemical Theory and
Computation [online]. 2019, vol. 15, no. 1, pp. 311–324 [visited on 2022-05-27]. issn 1549-9618.
Available from doi: 10.1021/acs.jctc.8b01004.

85

https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0201031
https://doi.org/10.3390/a12020034
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1007/978-1-0716-0282-9
https://www.ebook.de/de/product/40701199/mucio_amado_continentino_key_methods_and_concepts_in_condensed_matter_physics.html
https://www.ebook.de/de/product/40701199/mucio_amado_continentino_key_methods_and_concepts_in_condensed_matter_physics.html
https://www.ebook.de/de/product/40701199/mucio_amado_continentino_key_methods_and_concepts_in_condensed_matter_physics.html
https://doi.org/10.1557/s43577-021-00133-0
https://doi.org/10.1147/jrd.2018.2888987
https://doi.org/10.1109/nysds.2019.8909693
https://www.ebook.de/de/product/23273197/george_b_arfken_mathematical_methods_for_physicists.html
https://www.ebook.de/de/product/23273197/george_b_arfken_mathematical_methods_for_physicists.html
https://doi.org/10.1515/cmam-2013-0013
https://doi.org/10.1515/cmam-2013-0013
https://www.ebook.de/de/product/6906297/lloyd_n_trefethen_david_bau_iii_numerical_linear_algebra.html
https://www.ebook.de/de/product/6906297/lloyd_n_trefethen_david_bau_iii_numerical_linear_algebra.html
https://doi.org/10.1088/1367-2630/18/2/023023
https://www.ebook.de/de/product/21951617/attila_szabo_neil_s_ostlund_modern_quantum_chemistry.html
https://www.ebook.de/de/product/21951617/attila_szabo_neil_s_ostlund_modern_quantum_chemistry.html
https://doi.org/10.1021/acs.jctc.8b01004

B. Bibliography..
41. HELGAKER, Trygve; OLSEN, Jeppe; JORGENSEN, Poul. Molecular Electronic-Structure

Theory. Wiley-Blackwell, 2013. isbn 1118531477. Available also from: https://www.ebook.
de/de/product/19812715/trygve_helgaker_jeppe_olsen_poul_jorgensen_molecular_
electronic_structure_theory.html.

42. MCARDLE, Sam; ENDO, Suguru; ASPURU-GUZIK, Alán, et al. Quantum computational
chemistry. Reviews of Modern Physics. 2020, vol. 92, no. 1, p. 015003. Available from doi:
10.1103/revmodphys.92.015003.

43. JENSEN, Frank. Introduction to Computational Chemistry. John Wiley & Sons, 2016. Available
also from: https://www.ebook.de/de/product/28368245/frank_jensen_introduction_to_
computational_chemistry.html.

44. ABRAMS, Daniel S.; LLOYD, Seth. Simulation of Many-Body Fermi Systems on a Universal
Quantum Computer. Physical Review Letters [online]. 1997, vol. 79, no. 13, pp. 2586–2589 [visited
on 2022-05-29]. Available from doi: 10.1103/PhysRevLett.79.2586.

45. MOLL, Nikolaj; BARKOUTSOS, Panagiotis; BISHOP, Lev S., et al. Quantum optimization
using variational algorithms on near-term quantum devices. Quantum Science and Technology
[online]. 2018, vol. 3, no. 3, p. 030503 [visited on 2022-05-31]. issn 2058-9565. Available from doi:
10.1088/2058-9565/aab822.

46. BRAVYI, Sergey; GAMBETTA, Jay M.; MEZZACAPO, Antonio, et al. Tapering off qubits
to simulate fermionic Hamiltonians [online]. 2017-01 [visited on 2022-06-02]. Tech. rep. arXiv.
Available from doi: 10.48550/arXiv.1701.08213. arXiv:1701.08213 [quant-ph] version: 1 type:
article.

47. AKSHAY, V.; PHILATHONG, H.; MORALES, M. E. S., et al. Reachability Deficits in Quantum
Approximate Optimization. Physical Review Letters [online]. 2020, vol. 124, no. 9, p. 090504 [visited
on 2022-05-03]. issn 0031-9007, issn 1079-7114. Available from doi: 10.1103/PhysRevLett.124.
090504. arXiv: 1906.11259.

48. YORDANOV, Yordan S.; ARMAOS, V.; BARNES, Crispin H. W., et al. Qubit-excitation-based
adaptive variational quantum eigensolver. Communications Physics [online]. 2021, vol. 4, no. 1,
p. 228 [visited on 2022-06-03]. issn 2399-3650. Available from doi: 10.1038/s42005-021-00730-0.
arXiv:2011.10540 [quant-ph].

49. SEELEY, Jacob T.; RICHARD, Martin J.; LOVE, Peter J. The Bravyi-Kitaev transformation
for quantum computation of electronic structure. The Journal of Chemical Physics [online].
2012, vol. 137, no. 22, p. 224109 [visited on 2022-06-03]. issn 0021-9606. Available from doi:
10.1063/1.4768229.

50. HOLMES, Zoë; SHARMA, Kunal; CEREZO, M., et al. Connecting ansatz expressibility to
gradient magnitudes and barren plateaus. PRX Quantum [online]. 2022, vol. 3, no. 1, p. 010313
[visited on 2022-06-05]. issn 2691-3399. Available from doi: 10.1103/PRXQuantum.3.010313.
arXiv:2101.02138 [quant-ph, stat].

51. CEREZO, M.; SONE, Akira; VOLKOFF, Tyler, et al. Cost function dependent barren plateaus
in shallow parametrized quantum circuits. Nature Communications [online]. 2021, vol. 12, no.
1, p. 1791 [visited on 2022-06-02]. issn 2041-1723. Available from doi: 10.1038/s41467-021-
21728-w.

52. ANAND, Abhinav; SCHLEICH, Philipp; ALPERIN-LEA, Sumner, et al. A Quantum Computing
View on Unitary Coupled Cluster Theory. Chemical Society Reviews [online]. 2022, vol. 51, no.
5, pp. 1659–1684 [visited on 2022-06-06]. issn 0306-0012, issn 1460-4744. Available from doi:
10.1039/D1CS00932J. arXiv:2109.15176 [physics, physics:quant-ph].

86

https://www.ebook.de/de/product/19812715/trygve_helgaker_jeppe_olsen_poul_jorgensen_molecular_electronic_structure_theory.html
https://www.ebook.de/de/product/19812715/trygve_helgaker_jeppe_olsen_poul_jorgensen_molecular_electronic_structure_theory.html
https://www.ebook.de/de/product/19812715/trygve_helgaker_jeppe_olsen_poul_jorgensen_molecular_electronic_structure_theory.html
https://doi.org/10.1103/revmodphys.92.015003
https://www.ebook.de/de/product/28368245/frank_jensen_introduction_to_computational_chemistry.html
https://www.ebook.de/de/product/28368245/frank_jensen_introduction_to_computational_chemistry.html
https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.48550/arXiv.1701.08213
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1038/s42005-021-00730-0
https://doi.org/10.1063/1.4768229
https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1039/D1CS00932J

.. B. Bibliography

53. SCHULD, Maria; BERGHOLM, Ville; GOGOLIN, Christian, et al. Evaluating analytic gradients
on quantum hardware. Physical Review A [online]. 2019, vol. 99, no. 3, p. 032331 [visited on
2022-06-08]. issn 2469-9926, issn 2469-9934. Available from doi: 10.1103/PhysRevA.99.032331.
arXiv:1811.11184 [quant-ph].

54. POLYAK, Boris T. Introduction to Optimization. New York : Optimization Software, Inc., 1987.
55. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic Optimization [online]. 2017-

01 [visited on 2022-06-09]. Tech. rep. arXiv. Available from doi: 10.48550/arXiv.1412.6980.
arXiv:1412.6980 [cs] type: article.

56. PARRISH, Robert M.; IOSUE, Joseph T.; OZAETA, Asier, et al. A Jacobi Diagonalization and
Anderson Acceleration Algorithm For Variational Quantum Algorithm Parameter Optimization
[online]. 2019-04 [visited on 2022-06-09]. Tech. rep. arXiv. Available from doi: 10.48550/arXiv.
1904.03206. arXiv:1904.03206 [quant-ph] type: article.

57. KNILL, E. Conventions for quantum pseudocode. 1996. Available from doi: 10.2172/366453.
58. SELINGER, Peter. A Brief Survey of Quantum Programming Languages. In: Functional and

Logic Programming. Springer Berlin Heidelberg, 2004, pp. 1–6. Available from doi: 10.1007/978-
3-540-24754-8_1.

59. MAYMIN, Philip. Extending the Lambda Calculus to Express Randomized and Quantumized
Algorithms [online]. 1997-01 [visited on 2022-06-11]. Tech. rep. arXiv. Available from doi: 10.
48550/arXiv.quant-ph/9612052. arXiv:quant-ph/9612052 type: article.

60. WIKIPEDIA CONTRIBUTORS. Quantum programming — Wikipedia, The Free Encyclopedia.
2022. Available also from: https://en.wikipedia.org/w/index.php?title=Quantum_
programming&oldid=1083094034. [Online; accessed 11-June-2022].

61. HEIM, Bettina; SOEKEN, Mathias; MARSHALL, Sarah, et al. Quantum programming languages.
Nature Reviews Physics. 2020, vol. 2, no. 12, pp. 709–722. Available from doi: 10.1038/s42254-
020-00245-7.

62. CROSS, Andrew W.; BISHOP, Lev S.; SMOLIN, John A., et al. Open Quantum Assembly
Language [online]. 2017-07 [visited on 2022-06-11]. Tech. rep. arXiv. Available from doi: 10.
48550/arXiv.1707.03429. arXiv:1707.03429 [quant-ph] type: article.

63. IBM RESEARCH. Qiskit [online]. [N.d.] [visited on 2022-07-01]. Available from: https://github.
com/Qiskit.

64. Piquasso [online]. 2022 [visited on 2022-07-04]. Available from: https://github.com/Budapest-
Quantum-Computing-Group/piquasso. original-date: 2021-05-08T09:51:19Z.

65. PyQuil: Quantum programming in Python [online]. 2022 [visited on 2022-07-04]. Available from:
https://github.com/rigetti/pyquil. original-date: 2017-01-09T21:30:22Z.

66. quantumlib/Cirq [online]. 2022 [visited on 2022-07-04]. Available from: https://github.com/
quantumlib/Cirq. original-date: 2017-12-14T23:41:49Z.

67. dwavesystems/dwave-ocean-sdk [online]. 2022 [visited on 2022-07-04]. Available from: https:
//github.com/dwavesystems/dwave-ocean-sdk. original-date: 2017-11-21T19:24:37Z.

68. XanaduAI/strawberryfields [online]. 2022 [visited on 2022-07-04]. Available from: https://github.
com/XanaduAI/strawberryfields. original-date: 2018-03-26T14:38:39Z.

69. PennyLaneAI/pennylane [online]. 2022 [visited on 2022-07-04]. Available from: https://github.
com/PennyLaneAI/pennylane. original-date: 2018-04-17T16:45:42Z.

70. Microsoft Quantum Development Kit Samples [online]. 2022 [visited on 2022-07-04]. Available
from: https://github.com/microsoft/Quantum. original-date: 2017-11-08T23:24:33Z.

87

https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1904.03206
https://doi.org/10.48550/arXiv.1904.03206
https://doi.org/10.2172/366453
https://doi.org/10.1007/978-3-540-24754-8_1
https://doi.org/10.1007/978-3-540-24754-8_1
https://doi.org/10.48550/arXiv.quant-ph/9612052
https://doi.org/10.48550/arXiv.quant-ph/9612052
https://en.wikipedia.org/w/index.php?title=Quantum_programming&oldid=1083094034
https://en.wikipedia.org/w/index.php?title=Quantum_programming&oldid=1083094034
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.48550/arXiv.1707.03429
https://github.com/Qiskit
https://github.com/Qiskit
https://github.com/Budapest-Quantum-Computing-Group/piquasso
https://github.com/Budapest-Quantum-Computing-Group/piquasso
https://github.com/rigetti/pyquil
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/XanaduAI/strawberryfields
https://github.com/XanaduAI/strawberryfields
https://github.com/PennyLaneAI/pennylane
https://github.com/PennyLaneAI/pennylane
https://github.com/microsoft/Quantum

B. Bibliography..
71. WIKIPEDIA CONTRIBUTORS. Qiskit — Wikipedia, The Free Encyclopedia. 2022. Available

also from: https://en.wikipedia.org/w/index.php?title=Qiskit&oldid=1085866294.
[Online; accessed 11-June-2022].

72. WILLE, Robert; VAN METER, Rod; NAVEH, Yehuda. IBM’s Qiskit Tool Chain: Working with
and Developing for Real Quantum Computers. In: 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2019, pp. 1234–1240. issn 1558-1101. Available from doi:
10.23919/DATE.2019.8715261. ISSN: 1558-1101.

73. FARHI, Edward; HARROW, Aram W. Quantum Supremacy through the Quantum Approximate
Optimization Algorithm. arXiv:1602.07674 [quant-ph] [online]. 2019 [visited on 2022-05-03].
Available from: http://arxiv.org/abs/1602.07674. arXiv: 1602.07674.

74. DALZELL, Alexander M.; HARROW, Aram W.; KOH, Dax Enshan, et al. How many qubits are
needed for quantum computational supremacy? Quantum. 2020, vol. 4, p. 264. issn 2521-327X.
Available from doi: 10.22331/q-2020-05-11-264.

75. OTTERBACH, J. S.; MANENTI, R.; ALIDOUST, N., et al. Unsupervised Machine Learning on
a Hybrid Quantum Computer [online]. 2017-12 [visited on 2022-06-19]. Tech. rep. arXiv. Available
from: http://arxiv.org/abs/1712.05771. arXiv:1712.05771 [quant-ph] type: article.

76. GOODFELLOW, Ian; BENGIO, Joshua; COURVILLE, Aaron. Deep Learning. MIT Press Ltd,
2016. isbn 0262035618. Available also from: https://www.ebook.de/de/product/26337726/
ian_goodfellow_joshua_bengio_aaron_courville_deep_learning.html.

77. MERRIS, Russell. Laplacian matrices of graphs: a survey. Linear Algebra and its Applications
[online]. 1994, vol. 197-198, pp. 143–176 [visited on 2022-05-08]. issn 0024-3795. Available from
doi: 10.1016/0024-3795(94)90486-3.

78. ZHOU, Leo; WANG, Sheng-Tao; CHOI, Soonwon, et al. Quantum Approximate Optimization
Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices. Phys. Rev. X.
2020, vol. 10, p. 021067. Available from doi: 10.1103/PhysRevX.10.021067.

79. BENNETT, Charles H.; BERNSTEIN, Ethan; BRASSARD, Gilles, et al. Strengths and Weak-
nesses of Quantum Computing. SIAM Journal on Computing [online]. 1997, vol. 26, no. 5,
pp. 1510–1523 [visited on 2022-04-25]. issn 0097-5397, issn 1095-7111. Available from doi:
10.1137/S0097539796300933. arXiv: quant-ph/9701001.

80. YANG, Zhi-Cheng; RAHMANI, Armin; SHABANI, Alireza, et al. Optimizing Variational Quan-
tum Algorithms Using Pontryagin’s Minimum Principle. Physical Review X [online]. 2017, vol. 7,
no. 2, p. 021027 [visited on 2022-04-25]. Available from doi: 10.1103/PhysRevX.7.021027.

81. VERDON, Guillaume; PYE, Jason; BROUGHTON, Michael. A Universal Training Algorithm
for Quantum Deep Learning. arXiv:1806.09729 [quant-ph] [online]. 2018 [visited on 2022-04-25].
Available from: http://arxiv.org/abs/1806.09729. arXiv: 1806.09729.

82. ARORA, Sanjeev; LUND, Carsten; MOTWANI, Rajeev, et al. Proof verification and the hardness
of approximation problems. Journal of the ACM [online]. 1998, vol. 45, no. 3, pp. 501–555 [visited
on 2022-05-03]. issn 0004-5411. Available from doi: 10.1145/278298.278306.

83. GOEMANS, Michel X.; WILLIAMSON, David P. Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. Journal of the ACM [online].
1995, vol. 42, no. 6, pp. 1115–1145 [visited on 2022-05-03]. issn 0004-5411. Available from doi:
10.1145/227683.227684.

84. CROSSON, Elizabeth; FARHI, Edward; LIN, Cedric Yen-Yu, et al. Different Strategies for
Optimization Using the Quantum Adiabatic Algorithm. arXiv:1401.7320 [quant-ph] [online]. 2014
[visited on 2022-05-03]. Available from: http://arxiv.org/abs/1401.7320. arXiv: 1401.7320.

85. NANNICINI, Giacomo. Performance of hybrid quantum-classical variational heuristics for com-
binatorial optimization. Physical Review E [online]. 2019, vol. 99, no. 1, p. 013304 [visited on
2022-05-06]. Available from doi: 10.1103/PhysRevE.99.013304.

88

https://en.wikipedia.org/w/index.php?title=Qiskit&oldid=1085866294
https://doi.org/10.23919/DATE.2019.8715261
http://arxiv.org/abs/1602.07674
https://doi.org/10.22331/q-2020-05-11-264
http://arxiv.org/abs/1712.05771
https://www.ebook.de/de/product/26337726/ian_goodfellow_joshua_bengio_aaron_courville_deep_learning.html
https://www.ebook.de/de/product/26337726/ian_goodfellow_joshua_bengio_aaron_courville_deep_learning.html
https://doi.org/10.1016/0024-3795(94)90486-3
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1103/PhysRevX.7.021027
http://arxiv.org/abs/1806.09729
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/227683.227684
http://arxiv.org/abs/1401.7320
https://doi.org/10.1103/PhysRevE.99.013304

.. B. Bibliography

86. CAO, Yudong; ROMERO, Jonathan; OLSON, Jonathan P., et al. Quantum Chemistry in the Age
of Quantum Computing. Chemical Reviews. 2019, vol. 119, no. 19, pp. 10856–10915. Available
from doi: 10.1021/acs.chemrev.8b00803.

87. BHARTI, Kishor; CERVERA-LIERTA, Alba; KYAW, Thi Ha, et al. Noisy intermediate-scale
quantum (NISQ) algorithms. Reviews of Modern Physics [online]. 2022, vol. 94, no. 1, p. 015004
[visited on 2022-05-19]. issn 0034-6861, issn 1539-0756. Available from doi: 10.1103/RevModPhys.
94.015004. arXiv:2101.08448 [cond-mat, physics:quant-ph].

88. TAKAGI, Ryuji; ENDO, Suguru; MINAGAWA, Shintaro, et al. Fundamental limits of quantum
error mitigation [online]. 2022-03 [visited on 2022-05-19]. Tech. rep. arXiv. Available from doi:
10.48550/arXiv.2109.04457. arXiv:2109.04457 [quant-ph] version: 2 type: article.

89. BITTEL, Lennart; KLIESCH, Martin. Training variational quantum algorithms is NP-hard.
Physical Review Letters [online]. 2021, vol. 127, no. 12, p. 120502 [visited on 2022-05-19]. issn 0031-
9007, issn 1079-7114. Available from doi: 10.1103/PhysRevLett.127.120502. arXiv:2101.07267
[quant-ph].

90. GONTHIER, Jérôme F.; RADIN, Maxwell D.; BUDA, Corneliu, et al. Identifying challenges
towards practical quantum advantage through resource estimation: the measurement roadblock in
the variational quantum eigensolver [online]. 2020-12 [visited on 2022-05-19]. Tech. rep. arXiv.
Available from doi: 10.48550/arXiv.2012.04001. arXiv:2012.04001 [quant-ph] version: 1 type:
article.

91. ELFVING, V. E.; BROER, B. W.; WEBBER, M., et al. How will quantum computers pro-
vide an industrially relevant computational advantage in quantum chemistry? [Online]. 2020-09
[visited on 2022-05-20]. Tech. rep. arXiv. Available from doi: 10.48550/arXiv.2009.12472.
arXiv:2009.12472 [physics, physics:quant-ph] type: article.

92. STEUDTNER, Mark; WEHNER, Stephanie. Fermion-to-qubit mappings with varying resource
requirements for quantum simulation. New Journal of Physics [online]. 2018, vol. 20, no. 6,
p. 063010 [visited on 2022-06-02]. issn 1367-2630. Available from doi: 10.1088/1367-2630/
aac54f.

93. BRAVYI, Sergey B.; KITAEV, Alexei Yu. Fermionic Quantum Computation. Annals of Physics
[online]. 2002, vol. 298, no. 1, pp. 210–226 [visited on 2022-06-03]. issn 0003-4916. Available from
doi: 10.1006/aphy.2002.6254.

89

https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.48550/arXiv.2109.04457
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.48550/arXiv.2012.04001
https://doi.org/10.48550/arXiv.2009.12472
https://doi.org/10.1088/1367-2630/aac54f
https://doi.org/10.1088/1367-2630/aac54f
https://doi.org/10.1006/aphy.2002.6254

	Introduction
	Basic concepts
	Qubits and qubit registers
	Quantum circuits and gates

	Quantum algorithms

	Quantum approximate optimization algorithm
	General QAOA algorithm
	The properties of the general QAOA
	QAOA for fixed p
	MaxCut for graphs with bound degree
	Alternative approach to HP simplification using Pauli Solver

	Algorithms related to QAOA

	Variational quantum eigensolver
	Description of VQE
	VQE steps outline

	Components of VQE
	Hamiltonian
	Encoding of fermionic operators
	Measurement optimizations
	Ansatz
	Optimization of the ansatz parameters
	Suppression of errors and noise

	Quantum programming tools
	Early quantum programming
	Quantum programming languages and SDKs
	Quantum instruction sets
	Quantum programming languages
	Quantum SDKs by developer
	Qiskit
	Cirq

	Algorithm implementation and application
	Basic implementations
	QAOA: Basic implementation
	VQE: Basic implementation

	Applications
	QAOA application

	Conclusion
	Additional information
	Acronyms
	Source code

	Bibliography

