
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Graph editor in virtual reality

Ivan Menshikov

Ing. Petr Pauš, Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Cílem práce je navrhnout a implementovat prototyp editoru a zobrazovače grafů ve 

virtuální realitě (VR) pomocí Unreal Enginu (UE). Prototyp by měl umět načíst a uložit grafy 

z externího souboru, měl by mít možnost přidávat, mazat a editovat uzly a hrany grafu. 

Prototyp optimalizujte pro rozsáhlejší grafy (tisíce uzlů).

1. Analyzujte možnosti využití VR v Unreal Enginu.

2. Anazylujte, jak implementovat grafy pomocí UE.

3. Pomocí technik softwarového inženýrství navrhněte prototyp aplikace včetně 

uživatelského rozhraní.

4. Prototyp implementujte.

5. Proveďte vhodné testy. 

Electronically approved by Ing. Michal Valenta, Ph.D. on 7 October 2022 in Prague.



Bachelor’s thesis

Graph editor in virtual reality

Ivan Menshikov

Department of Software Engineering
Supervisor: Ing. Petr Pauš, Ph.D.

January 5, 2023



Czech Technical University in Prague
Faculty of Information Technology
© 2022 Ivan Menshikov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Menshikov Ivan. Graph editor in virtual reality. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.



Contents

Acknowledgments viii

Declaration ix

Abstract x

List of abbreviations xi

Introduction 1

Goals 3

1 VR application development 4
1.1 Development and design challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Camera perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Control limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Unreal engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Development methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 OpenXR standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Graphs 10
2.1 Brief history and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Common representations in memory . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Incidence matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Edges enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Adjacency list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Assignment analysis 16
3.1 Work assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Agreed limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Added functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Requirements specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



Contents iii

4 Graph representation 24
4.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Visual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 External file schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Application architecture 28
5.1 Graph visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 User interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Overall composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Graph visualization: a naive approach 32
6.1 Actor system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Problems and performance issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Graph visualization: a procedural approach 36
7.1 Entity system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Graph rendering system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2.1 Approach description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.2 Two sections for all entities . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.3 Two sections for each graph . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.4 Chunked rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 User interaction with the application 48
8.1 Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 User representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.2.1 Pawn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2.2 Right controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.3 Left controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.3 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.4 Tool system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Implementation 58
9.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2 Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.3 User pawn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.4 Entity system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.5 Renderers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.6 Tool system and user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10 Results 72
10.1 User tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.2 Performance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.3 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Tools design 78
A.1 Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1.1 Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.1.2 Loading window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1.3 Result window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1.4 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2.1 Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Contents iv

A.2.2 Loading window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2.3 Result window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2.4 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3 Create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3.1 Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3.2 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.4 Edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4.1 Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4.2 Vertex window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4.3 Edge window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4.4 Graph window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.4.5 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.5 Manipulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.5.1 Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.5.2 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.6 Remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.6.1 Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.6.2 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B Graph generator 98

Contents of attached medium 103



List of Figures

1.1 Oculus Quest 2 headset [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Oculus Quest 2 controllers [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 OpenXR standard for solving XR fragmentation [10] . . . . . . . . . . . . . . . . 8

2.1 The Königsberg bridge problem [12] . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Graph representing the Königsberg bridge problem . . . . . . . . . . . . . . . . . 11
2.3 Digraph representing the potential solution to the Königsberg bridge problem . . 12
2.4 Graph used for analysis of graph representations in memory . . . . . . . . . . . . 12
2.5 Adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Incidence matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Edges enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Adjacency list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 3D Force-Directed Graph in VR [15] . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Use case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Graph representation domain model . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Sketch of the visual graph representation . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Application structure and process flow . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Structure of the module for visualizing graphs using the actor system . . . . . . . 34

7.1 Structure of the entity system module . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Example of square mesh composition [31] . . . . . . . . . . . . . . . . . . . . . . 40
7.3 Graph visualization: two sections for all entities . . . . . . . . . . . . . . . . . . . 42
7.4 Graph visualization: two sections for each graph . . . . . . . . . . . . . . . . . . 44
7.5 Dependence between chunk capacity and CPU and GPU load . . . . . . . . . . . 46
7.6 Collaboration of the entity system and the graph rendering system to represent

two graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.1 Structure and workflow of the VRPawn actor . . . . . . . . . . . . . . . . . . . . 49
8.2 The use of a laser to identify an entity . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3 Model of selection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.4 Teleportation using controller-based position indication . . . . . . . . . . . . . . 52
8.5 Attachment of the user interface to the left controller . . . . . . . . . . . . . . . . 53
8.6 User interface: overall structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.7 User interface: secondary tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.8 User interface: tools panel functioning . . . . . . . . . . . . . . . . . . . . . . . . 55
8.9 Structure and workflow of the tool system . . . . . . . . . . . . . . . . . . . . . . 57

v



9.1 Scene of the application. The Figure contains the appearance of the sky actor
outside its boundaries in the editor with brush wireframe view mode enabled
(top) and the view inside the boundaries of the actor from the user’s perspective
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.2 Defined input mappings for the application . . . . . . . . . . . . . . . . . . . . . 61
9.3 Hierarchy of components in the AVRPawn class . . . . . . . . . . . . . . . . . . . 62
9.4 Controllers representation from the user’s point of view (both grips are pressed) . 64
9.5 Material for vertex and edge providers . . . . . . . . . . . . . . . . . . . . . . . . 69
9.6 Visualized colorful graph with eight vertices and eight white edges . . . . . . . . 69
9.7 Visualized colorful graph with eight vertices and eight colored edges . . . . . . . 70
9.8 Visualized collision of the graph with eight vertices and eight edges . . . . . . . . 70
9.9 Menu in the designer window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10.1 Profiler window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.1 Import tool: main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Import tool: loading window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.3 Import tool: result window in the success state . . . . . . . . . . . . . . . . . . . 80
A.4 Import tool: result window in the error state . . . . . . . . . . . . . . . . . . . . 80
A.5 Import tool: process model diagram . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.6 Export tool: main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.7 Export tool: result window in the success state . . . . . . . . . . . . . . . . . . . 83
A.8 Export tool: process model diagram . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.9 Create tool: main window in vertex creation mode . . . . . . . . . . . . . . . . . 85
A.10 Create tool: main window in edge creation mode . . . . . . . . . . . . . . . . . . 86
A.11 Create tool: main window in graph creation mode . . . . . . . . . . . . . . . . . 86
A.12 Create tool: process model diagram . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.13 Edit tool: main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.14 Edit tool: edit vertex window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.15 Edit tool: edit edge window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.16 Edit tool: edit graph window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.17 Edit tool: process model diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.18 Manipulate tool: main window in movement mode . . . . . . . . . . . . . . . . . 92
A.19 Manipulate tool: main window in rotation mode . . . . . . . . . . . . . . . . . . 93
A.20 Manipulate tool: process model diagram . . . . . . . . . . . . . . . . . . . . . . . 94
A.21 Remove tool: main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.22 Remove tool: process model diagram . . . . . . . . . . . . . . . . . . . . . . . . . 97

List of Tables

10.1 Performance test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



List of Code Listings vii

List of Code Listings

4.1 JSON graph representation example . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.1 Example of teleportation implementation using left controller input mapping . . 63
9.2 Entity signature and identifier declarations . . . . . . . . . . . . . . . . . . . . . 65
9.3 Excerpt of the implementation of the entity system . . . . . . . . . . . . . . . . 67
9.4 Excerpt of the GraphRenderers class implementation . . . . . . . . . . . . . . . 68
B.1 Graph generator script code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



I would like to thank my supervisor, Ing. Petr Pauš, Ph.D., for the
guidance, encouragement, and advice he has provided. I am also
sincerely grateful to my family and friends for their support.

viii



Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46 (6) of
the Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including
any and all computer programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-profit purposes only,
in any way that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Prague on January 5, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ix



Abstract

Virtual reality technology can be used to represent and solve problems involving relationships
between objects in a more immersive and interactive way. This thesis presents the design and
development of a standalone VR software product that visualizes graphs and provides tools for
performing operations on them. The product, which targets the Oculus Quest 2 headset and
was built using Unreal Engine 4, allows users to examine, alter and interact with the graph in
a more intuitive manner. The system includes a procedural generation method for rendering
large graphs efficiently and various optimizations for high performance. A system of tools and
a user interface have also been implemented. Testing was conducted to ensure the product’s
functionality and performance, and it was demonstrated to be a practical tool for visualizing and
working with graphs in VR with potential applications in education and research.

Keywords graphical application, graph, virtual reality, Oculus Quest 2, Unreal Engine 4,
procedural mesh generation, user interface

Abstrakt

Technologii virtuálńı reality lze využ́ıt k zobrazeńı a řešeńı problémů týkaj́ıćıch se vztah̊u mezi
objekty, a to v́ıce pohlcuj́ıćım a interaktivńım zp̊usobem. Tato práce představuje návrh a vývoj
samostatného softwarového produktu pro VR, který vizualizuje grafy a poskytuje nástroje pro
prováděńı operaćı s nimi. Produkt, který je určen pro náhlavńı soupravu Oculus Quest 2 a
byl vytvořen pomoćı Unreal Engine 4, umožňuje uživatel̊um zkoumat, měnit a interagovat s
grafem intuitivněǰśım zp̊usobem. Systém obsahuje procedurálńı metodu generováńı pro efektivńı
vykreslováńı velkých graf̊u a r̊uzné optimalizace pro vysoký výkon. Implementován byl také
systém nástroj̊u a uživatelské rozhrańı. Bylo provedeno testováńı, které zajistilo funkčnost a
výkonnost produktu, a ukázalo se, že se jedná o praktický nástroj pro vizualizaci a práci s grafy
ve VR s potenciálńım využit́ım ve vzděláváńı a výzkumu.

Kĺıčová slova grafická aplikace, graf, virtuálńı realita, Oculus Quest 2, Unreal Engine 4,
procedurálńı generováńı, uživatelské rozhrańı

x



List of abbreviations

2D Two-dimensional
3D Three-dimensional

API Application programming interface
AR Augmented reality

CPU Central processing unit
FPS Frames per second

GPU Graphics processing unit
OS Operating system

RAM Random-access memory
UI User interface

UX User experience
VR Virtual reality
XR Extended reality

xi



Introduction

A graph can be both a visualization of an idea that comes to you and an expression of this
idea’s essence. When dealing with a particular type of problem, we sometimes need to describe
or represent some sort of relationship between objects. By treating these objects as vertices and
relationships between them as edges, we can solve a wide variety of problems using the entire
rich arsenal of graph theory algorithms: finding a path from one object to another, identifying
connected components, calculating shortest paths, and much more. Today, discrete mathematics
and graph theory are applied to our everyday lives and used in a lot of important and interesting
research and corporate applications: from network security to navigation applications, from
scheduling or delivery route problems to vaccine development, from digital image processing to
kidney donor matching, and far more.

During the solving of problems related to graph theory, we tend to draw vertices as points
on paper and connect them with lines denoting relations. We do, however, live in a 3D world,
and there are a huge number of cases where it is much clearer and more convenient to represent
a corresponding graph in 3D rather than in 2D. With the development of technology and the
appearance of computers in our lives, we have the ability to visualize graphs using various
websites and applications, which are mainly focused on 2D rendering. Compared to drawing on
paper, these solutions provide the ability to display much larger graphs as well as, not least, the
visualization of graph theory algorithms, which can be very helpful, for example, in education.
Nevertheless, regarding 3D visualization, such tools cannot boast the convenience of working
with graphs as well as the clarity of algorithms due to the fact that, in this case, all of our
perception is limited to the monitor, and all manipulation and interaction with objects is limited
to the keyboard and mouse.

From my point of view, a much more practical and convenient representation of graphs in
3D space can be achieved with the use of VR technology. It has been available for decades, but
it is only now that products based on it have become available and are in demand by ordinary
users. The main feature of VR is immersion, which means being immersed in a virtual 3D space
and being able to interact with some of its elements. This solution will allow users to see graphs
more clearly and conveniently and will also help them engage more deeply with the problem to
be solved. With more features and proposed tools, the same can be applied to the visualization
of graph theory algorithms.

Speaking of the above-mentioned education, VR has important advantages as a learning tool,
which can also be applied in the context of graph theory learning. The first is focus. In a
virtual world, users are not distracted by anything and are completely focused on exploring the
appropriate objects or events. Next, we have illustrativeness. VR allows you to explore objects
that are very difficult or impossible to see in real life, such as other planets or black holes, how
brain neurons work, the life of microorganisms, and much more. Participation and engagement
are also important to me as a student. Thanks to immersiveness, a student can not only read

1



Introduction 2

about events in, for example, a history book but also become a participant in those events.
With the help of VR and gamification, it is possible to make learning about laws, theorems, and
subjects more entertaining.

After discussion with the supervisor, Ing. Petr Pauš, Ph.D., the practical result of this work
can be demonstrated and used during the teaching of the Algorithms and Graphs course at the
Faculty of Information Technology (CTU).

This thesis’ structure is based on the software development life cycle process. The first to be
examined and analyzed will be general VR application development techniques, concepts, and
tools needed to complete the assignment, as well as the assignment itself. Assignment analysis
will consist of gathering and analyzing specifications as well as identifying use cases. This is
followed by the design and architectural engineering of the resulting application, where each
of its necessary parts will be examined in detail. Then the implementation part is presented.
Finally, the Results chapter describes both the results of testing the created system and the
conclusions of this work, along with ideas and plans for the future.



Goals

The main goal of this thesis is to apply the principles of software engineering to design, develop,
and test a complete standalone software product that can visualize graphs in VR and offers tools
for performing certain operations on such graphs. The resulting system should be able to accept
user requests for operations on a graph and, based on those requests, render and alter a relevant
graph in 3D space with the use of VR technology. Designing an alternative way to represent
graphs and interact with them is the essence of this goal.

One of the goals is to define a possible representation of a graph in 3D space. This graph
representation will allow users to change it and interact with it in a more understandable and
convenient way. It will also be designed in a way that makes it easy to save and retrieve from
an external file. The proposed representation of graphs stored in an external file will also be
presented in a human-readable form for users, which will also give them the ability to read and
edit the file outside the resulting application.

The next goal is to design a system that will serve as an environment to visualize the proposed
representation of graphs in VR and provide users with tools to work with them. To achieve
this, aspects of the development of VR applications will be considered and analyzed. These
considerations include user comfort, content optimization, and the limitations of VR platforms.

Another goal is to build the system so that it is capable of rendering and visualizing huge
graphs while simultaneously accepting and processing user queries without interruption. In
addition, a number of optimizations will be presented for all of the parts of the entire application
to achieve high system performance. Consequently, all these improvements will help the system
reach the level of performance it needs to render and process a number of very large graphs.

3



Chapter 1

VR application development

This chapter examines the use of VR technology in the development of applications, which is
capable of simulating vision and creating a 3D environment in which the user is immersed
while browsing or experiencing it. The first section discusses the key differences between the
development of classical desktop applications and the development of VR applications, as well
as the challenges that developers have to deal with. When it comes to developing video games
or graphical applications in general, a game engine can be a great framework to use as a basis.
One of the most popular game engines, Unreal Engine, is described in the second section. In
the third section, we talk about OpenXR, a standard for making XR applications, and how it
works with Unreal Engine.

1.1 Development and design challenges
The design of a VR application is very similar to the design of a graphical desktop application
because, in both cases, we are dealing with an interactive 3D experience. However, there are
several key differences that create serious challenges and problems that need to be overcome
during the development and design of VR applications. Due to immersiveness, which is the
most important feature of VR, developers need to pay special attention to the effect of presence,
non-linear narrative, non-nauseating movement, and graphic optimization.

1.1.1 Camera perspective
The camera perspective [1] in a 3D world is the first thing a developer will face when designing
a VR application. It should be determined before the start of development since its subsequent
change can substantially alter both the gameplay and the overall concept of the game being
developed. If we develop a 3D game for a classic desktop environment, we have quite a lot of
freedom in deciding where to place a camera that allows the user to see a virtual world. There are
choices for first-, second-, and third-person views, as well as top-down or isometric perspectives.
On the other hand, VR technology aims to gain a maximum sense of presence, which is achieved
with a headset device, an example of which is shown in Figure 1.1.

The headset is a standalone device that provides the ability to view and manipulate a virtual
world. It shows a separate image to each eye, which our brain combines, giving us the impression
that we are in the same 3D world as our real one. Some of the devices are equipped with camera
and sensor systems to detect a body in space, track hands, handle mixed reality operations, etc.
There are many VR headsets on the market, and the main manufacturers are HTC, Microsoft,
Oculus (acquired by Meta), and Sony.

4



Development and design challenges 5

Figure 1.1 Oculus Quest 2 headset [2]

As a result, the first-person view is favored for use in VR applications. This viewpoint is the
one that most successfully preserves the sensation of being in a virtual world. It also works well
for fast-paced games that rely on quick thinking, and it helps users experience unusual situations
and events by putting them in the shoes of the characters who must go through these events.

1.1.2 Performance
The next issue that could arise during the development of a VR application is performance
optimization. Due to the resource limitations of wearable devices and the high computational
cost of real-time rendering, VR applications often face performance bottlenecks, and performance
optimization plays an important role in VR software development.

There are two main categories of VR performance concerns: CPU and GPU issues. The
simulation logic, state management, and creation of the visual scene are typically handled by the
CPU. The GPU usually takes part in texture sampling and shading for the meshes in scenes.
It is critical to identify whether CPU or GPU load is to blame for a performance issue and to
optimize code accordingly. In general, the optimization of VR applications can be very different
from that of traditional software, as VR involves more elements to render in real-time, such as
3D graphics, animations, etc. Specifically, with VR, every frame must be drawn twice, once for
each eye. It means that every draw call is issued twice, every mesh is drawn twice, and every
texture is bound twice.

As a result, this kind of problem is one of the most complex and often requires a lot of time
and effort to solve. Unoptimized VR applications cause visual and orientational discomfiture for
many users, which subsequently leads to poor reviews and ratings.

1.1.3 Locomotion
The other problem is to find a solution or concept of movement in a virtual world, which is also
called the “VR locomotion problem.” [3] When developing a VR application, game designers
must solve the problem of moving through large virtual spaces that are larger than the space
available in the real world.

The Cybershoes or omnidirectional treadmills like Virtuix Omni, Kat Walk, and Infinadeck
are some of the solutions. Those are systems that keep the user in a spot while allowing him
to walk through infinitely sized VR environments. Such a system requires additional devices,
which are currently quite expensive and also take up available space. However, it removes any
spatial limitations, enabling free VR locomotion of arbitrary size or shape, and, speaking of the
immersiveness mentioned above, those are the best solutions to maintain presence in VR.



Unreal engine 6

Figure 1.2 Oculus Quest 2 controllers [2]

There are also numerous software solutions to this problem that make use of controllers,
an example of which is illustrated in Figure 1.2. Controllers are often already bundled with a
headset, so these solutions do not require any additional devices. In classic desktop games, the
user’s movement in space is traditionally realized via WASD or arrow keyboard keys. A similar
experience can be achieved with the use of thumbsticks on controllers, which is one of the simplest
solutions from an implementation point of view. However, this solution is commonly used as an
optional one due to the fact that it can cause discomfiture or nausea among some users. For
this reason, there is another type of movement that aims at the idea of teleportation, which
allows the user to move in a 3D scene without a sense of motion because of the instantaneous
movement. Despite the fact that it can quite significantly interfere with the sense of presence, it
is one of the most popular solutions.

1.1.4 Control limitations
Another thing that differs in the development of VR applications is that users have to use controls
only available on controllers, which are much smaller in number compared to normal keyboards.
Because of this, if an application needs to use more complex and sophisticated manipulation
elements, developers need to model and adjust them appropriately so that they can be used to
manipulate objects in a 3D world using VR controllers.

An example of a good control model is a text input request. When the user tries to enter text
in a VR application, a virtual keyboard should appear that they can interact with by pointing
controllers at its buttons. In this case, the use of a physical keyboard is a bad choice because
users have to remove and put on their headsets every time they want to see a keyboard.

1.2 Unreal engine
A game engine is a software development environment that can be used as a basis for creating
games or graphical applications in general. It is a great solution that can reduce the time and
complexity of development and focus on the idea itself. One of the most important factors in
game engines is the interoperability between the different game systems available. In essence,
they provide developers with a number of components and tools that allow them to create
their games faster and with less effort. The degree to which a tool assists developers varies,
depending on the engine. What will also be different is the compatibility of an engine with
various genres of games. For example, an engine that is perfect for creating first-person shooter



Unreal engine 7

games may not be optimal or suitable for creating strategy games at all. However, the most
popular modern game engines provide developers with almost all the tools they need and are
suitable for developing games of different genres. The main features that most game engines
provide are the physics engine, animation, 2D and 3D graphics rendering, collision detection,
artificial intelligence, sounds, networking, memory management, and user interface creation.

1.2.1 Brief overview
Unreal Engine [4] is a game engine developed and maintained by Epic Games. The first game
based on this engine was the first-person shooter Unreal, released in 1998. Although originally
designed for first-person shooters, it has been used in various genres of games over the years
and has been adopted by other industries, notably the film and television industries. The latest
version, Unreal Engine 5, was shipped in April 2022. One of the main goals of its creation was to
achieve exceptional photorealism comparable to real life [5]. Since its predecessor was released in
2014, Epic Games has rejected the idea of distributing the engine on a monthly subscription model
in favor of a royalty model for commercial use, meaning that Unreal Engine is completely free
for non-commercial use. Today, for commercial use, Epic waives their royalty margin for games
until developers have earned $1,000,000 in gross worldwide revenue under certain conditions, as
defined in the Unreal Engine End User License Agreement [6].

The engine is written in C++ and provides a high-performance, powerful, and voluminous
2D/3D application development toolkit for the majority of commonly used operating systems
and platforms, such as desktops, mobile devices, consoles, and VR. To simplify porting, the
engine uses a modular system of independent components and plugins. Plugins are collections
of code and data that developers can easily enable or disable on a per-project basis. Plugins
can add runtime gameplay functionality, add new or modify built-in engine features, create new
file types, etc. Many existing engine subsystems were designed to be extensible using plugins.
The engine supports various modern rendering systems (Direct3D, OpenGL, Pixomatic), sound
(EAX, OpenAL, DirectSound3D), speech recognition, voice synthesis, network modules, and a
wide variety of input devices.

1.2.2 Development methods
Among the main advantages of Unreal Engine are its versatility and accessibility. It can be used
by experienced developers and beginners who want to create a game for the first time. The
point is that the engine provides two methods to create gameplay elements: traditional C++
and Blueprints. Blueprints is the Unreal Engine’s visual scripting system [7]. Instead of writing
code line by line, developers can do everything visually: drag-and-drop nodes, set properties
in the interface, and connect them, with little programming knowledge required for a beginner.
The gameplay APIs and the framework classes are available for both systems and can be used
individually, but if combined appropriately, they allow for a more maintainable and extensible
application architecture. It is common for C++ programmers to add the base gameplay systems
that level designers can then build upon or use to create their own custom gameplay elements
for one level or the entire game.

Several essential aspects of the Balancing Blueprint and C++ [8] documentation can be
strongly emphasized. Development with Blueprints is usually faster because of its clarity, relative
ease of use, and intuitiveness. Also, storing data inside Blueprint classes is much simpler and
safer. On the other hand, C++ offers significantly faster runtime performance, broadly speaking,
because executing each individual node in a Blueprint is slower than executing a line of C++
code. Also, C++ has more engine functionality exposed to it, which allows users to interact
directly with the engine’s source code and tools.



OpenXR standard 8

1.3 OpenXR standard
Initially, VR application development was quite complex due to the need to support and handle
the many popular VR devices at the time. Today, thanks to XR fragmentation solutions with
cross-platform standardization and API interfaces, the process of developing game projects for
different XR platforms is significantly simplified. Developers do not need to use separation of
concerns and write a distinct module or separate code to support a particular device. It does
not even matter which VR headset or controllers you use during development, thanks to the
emulation of any input mapping using interaction profiles.

1.3.1 Outline
VR support in Unreal Engine has been available since version 4 in 2012. The first supported
device was the Oculus Rift DK1. Currently, the main standard for accessing and working with
XR in Unreal Engine is OpenXR [9], developed by Khronos Group and introduced in 2019. It
is also one of the most popular XR standards in general. It aims to provide developers with
a convenient way to create applications with the support of VR devices, and it simplifies VR
development by enabling developers to reach more platforms while reusing the same code. The
standard provides an API aimed at application developers targeting VR or AR hardware, as
depicted in Figure 1.3. With this standard, developers can create an immersive experience in
Unreal Engine that can run on any system that supports the OpenXR APIs. The following
platforms have released OpenXR runtimes and are currently supported in Unreal Engine: Steam
VR, Windows Mixed Reality, Oculus VR, Samsung Gear VR, and Google Daydream.

Figure 1.3 OpenXR standard for solving XR fragmentation [10]

The OpenXR runtime uses interaction profiles to support a variety of hardware controllers
and provide action bindings for whichever controller is connected. When emulating action or
axis controller mappings, the OpenXR runtime chooses controller bindings that closely match
the user’s controller. Because it provides this kind of cross-compatibility for developers, they
should only deal with bindings for controllers they can test with and plan to support in the game
being developed. Any bindings specified for a controller define the actions that are connected to
that controller.



OpenXR standard 9

1.3.2 Plugins
As mentioned in Section 1.2.1, Unreal Engine uses a modular system of independent plugins
and components. To start developing OpenXR projects, the OpenXR plugin [11] should first be
enabled. This plugin supports extension plugins so that functionality can be added to OpenXR
without relying on engine releases. The plugins currently available in Unreal Engine to extend
the OpenXR plugin include:

Oculus OpenXR — used to support Oculus headsets and their features. The plugin includes
essential resources and provides additional functionality for more advanced work with Oculus
devices.

XRVisualization — contains additional resources that can be used for headsets, controllers,
and hand mesh visualization. This plugin can recognize XR devices and, based on that, gives
the right resources and shows the right 3D model for the device that is currently being used.

OpenXRHandTracking — enables applications to locate the individual joints of hand tracking
inputs in real-time. It also provides functionality to render hands in XR experiences and
interact with virtual objects using hand joints. Data from sensors on the position of bones
are returned as structures with information about each element for further processing.

OpenXRMsftHandInteraction — defines a new interaction profile driven by directly tracked
hands for near- and far-field interactions. This plugin is often used to recognize certain
gestures. Due to the convenience of using interaction profiles, processed gestures can be
treated as one of the input sources.

OpenXREyeTracker — a plugin for getting eye gaze input from an eye tracker to enable eye
gaze interactions. An eye tracker is a sensory device that tracks the eyes and accurately
maps what the user is looking at. With this extension, an application can discover if the XR
runtime has access to an eye tracker, bind the eye gaze pose to the action system, determine
if the eye tracker is actively tracking users’ eyes, and use the eye gaze pose as an input signal
to build interactions.



Chapter 2

Graphs

This chapter introduces the concept of a graph, which is an essential part of this thesis. A
brief history of the origin of graphs and the terminology used in this thesis are described.
Existing solutions for representing graphs in computer memory are also analyzed for use in
the design part of this thesis.

2.1 Brief history and terminology
Gottfried Wilhelm Leibniz wrote in a letter to Christiaan Huygens:

“I am not content with algebra, in that it yields neither the shortest proofs nor the most
beautiful constructions of geometry. Consequently, in view of this I consider that we need
yet another kind of analysis, geometric or linear, which deals directly with position, just
as algebra deals with magnitude...”

The mathematician Leonhard Euler, referring to the geometry of position notion in this letter,
in an article on the solution of the famous Königsberg bridge problem [12], dated 1736, which is
shown in Figure 2.1, was the first to apply the ideas of graph theory to prove certain assumptions,
which makes him the father of graph theory who discovered a concept of a graph. In his work,
he did not use any graph theory terms, nor did he use drawings of graphs.

Figure 2.1 The Königsberg bridge problem [12]

At the beginning of the 20th century, the Hungarian mathematician Denes König was the first
to suggest calling configurations of nodes and connections “graphs” and to study their general
properties. The graph-theoretic definitions required for this work are presented [13].

10



Brief history and terminology 11

Figure 2.2 Graph representing the Königsberg bridge problem

▶ Definition 2.1. A graph G = (V, E) is a discrete structure consisting of two sets V and E:

The elements of V are called vertices (or nodes);

The elements of E are called edges, and each of them has a set of two vertices associated with
it.

V (G) denotes the set of vertices of the graph G, and E(G) denotes the set of edges. The
number of vertices |V (G)| and edges |E(G)| determine the order and size of the graph G. Typ-
ically, the vertices of a graph have labels represented by literals such as a, b, c, etc. or integers
such as 1, 2, 3, etc. An edge is denoted as (a, b) or ab or a, b where a and b are the vertices to
which the edge is connected. The vertices a and b are called the endpoints of the edge (a, b).

▶ Definition 2.2. A self-loop is an edge that joins a single endpoint to itself.

▶ Definition 2.3. A proper edge is an edge that joins two distinct vertices.

▶ Definition 2.4. A multi-edge is a collection of two or more edges with identical endpoints.

Most of the theoretical graph theory is concerned with simple graphs. This is in part because
many problems regarding general graphs can be reduced to problems about simple graphs.

▶ Definition 2.5. A simple graph is a graph that has no self-loops or multi-edges.

▶ Definition 2.6. A trivial graph is a graph consisting of one vertex and no edges.

▶ Definition 2.7. A null graph is a graph whose sets of vertices and edges are empty.

▶ Definition 2.8. A weighted graph is a graph in which a number is assigned to each edge.

Adding and removing vertices and edges from a graph are called primary operations because
they serve as the basis for other actions, called secondary operations.

▶ Definition 2.9. The operation of adding the vertex v to the graph G = (V, E), such that
v /∈ V , yields the new graph G ∪ {v} with the set of vertices V ∪ {v} and set of edges E.

▶ Definition 2.10. The operation of removing the vertex v from a graph G = (V, E) removes
not only the vertex v but also every edge along which v is an endpoint. G−v denotes the resulting
graph.

▶ Definition 2.11. The operation of adding the edge uv to the graph G = (V, E), joining the
vertices u and v ({u, v} ⊂ V ), yields the new graph G ∪ {uv} with the set of vertices V and set
of edges E ∪ {uv}.

▶ Definition 2.12. The operation of removing the edge uv from the graph G = (V, E) removes
only this edge. G − uv denotes the resulting graph.



Common representations in memory 12

Figure 2.3 Digraph representing the potential solution to the Königsberg bridge problem

An undirected graph has no orientation at its edges. In an undirected graph, an edge between
the vertices a and b is denoted by (a, b) or (b, a). The edges of a graph can be oriented, in which
case an arrow indicates the direction, as shown in Figure 2.3. Such graphs are called directed
graphs or digraphs. An edge (a, b) in such a graph indicates that this edge is directed from vertex
a to b which is shown by (a, b) ∈ E but does not mean that (b, a) ∈ E.

▶ Definition 2.13. A directed graph is a pair G = (V, E) comprising:

V , a set of vertices;

E ∈ {(x, y) | (x, y) ∈ V 2, x ̸= y}, a set of edges (also called directed edges) represented as
ordered pairs of vertices.

2.2 Common representations in memory
In the previous section, the terms and definitions of graph theory were introduced. In this
section, different representation techniques for an undirected graph in computer memory [13]
will be analyzed for further processing. The data structures that can be used and the complexity
of each method will be discussed.

There is no unambiguous standardized solution for storing graphs in computer memory.
However, there are different ways to optimally represent a graph, depending on the density of its
edges, the type of operations to be performed, and the ease of use. Later, a combination of the
following methods with additional improvements will be used to achieve more efficient results.

Figure 2.4 Graph used for analysis of graph representations in memory



Common representations in memory 13

For example, an undirected graph G = (V, E), |V | = 7, |E| = 5, as shown in Figure 2.4,
can be assumed. The set V consists of vertices {0, 1, 2, 3, 4, 5, 6}. The set E consists of edges
{(0, 1), (0, 3), (1, 3), (2, 3), (5, 6)}. The edges are also labeled a, b, c, d, e for convenience.

2.2.1 Adjacency matrix
This is the most common way to represent a graph, but it takes up the most memory. It
is appropriate for use if the number of edges approaches V 2. A two-dimensional matrix of
size |V | × |V | is used to store edges. If the vertices x and y are adjacent, the element at
[x, y], x ∈ V, y ∈ V equals 1, otherwise it equals 0. In the case of undirected graphs, the matrix
is symmetric with respect to the main diagonal, and the sum of each row and each column is
equal to the degree of the vertex.

Several improvements can be applied to reach slightly more efficient representations. In the
case of simple graphs, a boolean type with values true or false can be used instead of integer
numbers as matrix elements to save space. For a more advanced way, a bitfield of size |V | can
be used as a row of a matrix, where each bit denotes whether the vertices are adjacent. This
improvement makes it possible to get close to the information-theoretic lower bound for the
minimum number of bits needed to represent all n-vertex graphs [14].

Figure 2.5 Adjacency matrix

Space complexity: O(|V |2)

Edges iteration complexity: O(|V |2)

Complexity of iterating all vertices adjacent to one edge: O(|V |)

Complexity of verifying if two vertices are adjacent: O(1)

2.2.2 Incidence matrix
This graph representation is also memory-consuming. It is appropriate for use if the number of
edges is small. To store edges, a two-dimensional matrix of size |V | × |E| is used. Each column
of such a matrix has one edge with opposite vertices incident to this edge having values of 1,
otherwise having a value of 0. Thus, the sum of numbers in each column equals 2, and the sum
of numbers in a row equals the degree of a vertex.



Common representations in memory 14

Figure 2.6 Incidence matrix

Space complexity: O(|V | · |E|)

Edges iteration complexity: O(|V | · |E|) — even though each edge is stored in its own column,
all the numbers in the column must be checked to find out the vertices associated with it

Complexity of iterating all vertices adjacent to one edge: O(|V | · |E|)

Complexity of verifying if two vertices are adjacent: O(|E|) — it is sufficient to iterate over
the columns in order to find two 1s

2.2.3 Edges enumeration
By definition, a graph is a topological model that consists of a set of vertices and a set of edges
that connect them. Therefore, the “simplest” way to represent a graph is to define the set of
vertices and to enumerate the elements from the set of edges.

Usually, in this structure, the vertices are not stored separately. Only their quantity n is
specified, and they are numbered from 0 to n − 1 automatically. The vertices themselves are
stored in an array or set that enumerates the edges connecting the given vertices. To store
the color, weight, or other characteristics of the vertices, additional arrays can be used for each
criteria.

This is a very memory-efficient approach: each edge is stored once, whereas in all previous
alternatives, each edge is usually written twice. However, when searching for vertices in the
list of edges, it is necessary to perform two checks where both the first and second vertex are
compared.

Space complexity: O(|E|)

Edges iteration complexity: O(|E|)

Complexity of iterating all vertices adjacent to one edge: O(|E|)

Complexity of verifying if two vertices are adjacent: O(|E|)

The list of edges can be grouped by vertices, which speeds up the search for adjacent vertices.
Thus, another method can be obtained that is similar to this one but differs in the way the
elements are stored.



Common representations in memory 15

Figure 2.7 Edges enumeration

2.2.4 Adjacency list
This structure represents a collection of unordered lists. Each unordered list within an adjacency
list associates each vertex in a graph with a collection of its neighboring vertices. It is more
suitable for sparse graphs in which most pairs of vertices are not connected by edges. For this
type of graph, an adjacency list is significantly more space-efficient than the adjacency matrix.
The use of space in the adjacency list is proportional to the number of edges and vertices in
the graph, whereas for the adjacency matrix stored in this way, the space is proportional to the
square of the number of vertices.

The next significant difference between adjacency lists and matrices is the efficiency of their
operations. The neighbors of each vertex in the adjacency list can be efficiently enumerated in
time proportional to the degree of the vertex. In the adjacency matrix, this operation takes
time proportional to the number of vertices in the graph, which can be much higher than the
degree. On the other hand, the adjacency matrix lets us check in constant time whether or not
two vertices are adjacent.

Figure 2.8 Adjacency list

Space complexity: O(|V | + |E|)

Edges iteration complexity: O(|V | + |E|)

Complexity of iterating all vertices adjacent to one edge: O(|V |)

Complexity of verifying if two vertices are adjacent: O(|V |)



Chapter 3

Assignment analysis

This chapter aims to examine and analyze the assignment specifications of this thesis. The
first section describes the assignment and the clarifications that were used. The second section
presents an existing solution related to the assignment. The third section focuses on the
gathering and analysis of requirements. In the fourth section, the various use cases that were
identified are discussed.

3.1 Work assignment
The assignment, as it was formulated and translated into English, is:

The goal of this thesis is to design and implement a prototype of a graph editor and viewer
in Virtual Reality (VR) using Unreal Engine (UE). The prototype should be able to read
and save graphs from an external file and should be able to add, remove, and edit the
vertices and edges of a graph. It should also be optimized for large graphs (thousands of
vertices).

3.1.1 Agreed limitations
After a number of consultations with the thesis’s supervisor, Ing. Petr Pauš, Ph.D., and with
his subsequent approval, it was decided to make the following changes, or, to be more precise,
clarifications, to the specification of the assignment:

1. The prototype will be developed for desktop hardware and will only be supported on Windows
(64-bit) platforms.

2. The prototype will aim to support Oculus VR headsets and will be tested specifically on the
Oculus Quest 2 headset, shown in Figures 1.1 and 1.2.

3. Only trivial and simple finite labeled graphs and operations on them will be supported.

4. The prototype will be more focused on performance than on graphics quality.

These clarifications will serve as criteria that limit the scope and complexity of the practical
part of this thesis and will be taken into account in the upcoming requirements analysis.

16



Related work 17

3.1.2 Added functionality
It was also agreed that the resulting project would have the following features and improvements:

1. The prototype will allow users not only to edit a graph imported from an external file but
also to create a new graph.

2. In addition to the above graph operations, the prototype will also give users the option to
change the colors of the vertices.

3. The prototype will be capable of supporting weighted graphs.

4. Although the prototype is meant to work with Oculus VR, it had to be made so that it would
be easy to add support for other VR devices in the future.

3.2 Related work
Before analyzing the requirements, a detailed search of already existing solutions for this problem
was performed. An open-source project called 3D Force-Directed Graph in VR was discovered,
with the code available on GitHub [15] under the MIT license.

This project provides a web component to represent a graph data structure in VR. This web
component is written in JavaScript and can be used in web development projects by importing
it as a module. The web component is capable of displaying graphs imported from a JSON file.
The structure of JSON files used to store graphs is also specified in the GitHub repository. It
supports directed, undirected, colored, and weighted graphs. There is the ability to use custom
vertex geometry and detect vertex collisions. Asynchronous loading for larger graphs is also
provided.

However, this project is not a standalone application and allows for changing the loaded
graph only programmatically. This means that this functionality can only be implemented by
developers who use this module in their projects. During the development of my application,
this project inspired me. In particular, the JSON file structure used to store a graph and the
way this web component visually displays an imported graph, which is shown in Figure 3.1.

Figure 3.1 3D Force-Directed Graph in VR [15]



Requirements specification 18

3.3 Requirements specification
The requirements for the given specification need to be obtained and analyzed before continuing
with the direct design and development of an application that satisfies the criteria specified in
the assignment. During this phase, we will be able to specify the limits of the resulting system
as well as the constraints that will be placed upon it.

3.3.1 Functional requirements
Several functional requirements have been singled out for consideration following an in-depth
examination of the assignment specification. The criteria produced as a result account for all of
the goals of the assignment and provide all the functionality that is required to complete it. The
following is a comprehensive listing of all key functional requirements:

F1 – Graph visualization In addition to the basic requirements for graph operations, the
application must support the ability to render multiple graphs in a scene. Each graph in the
scene will be treated as a separate object with its own set of objects with which the user can
interact. The scene itself is represented by a large space. When the application starts, the
scene is empty, that is, no graph is located on it. The rendering of the graph will be redone
each time, depending on the operation that was performed on it.

F2 – User movement The graphs that are being shown can be placed in different regions of
the scene. The application must give users the ability to roam freely about the scene in
order to examine and interact with the individual graphs in a more comfortable way. Using
the controller, the movement will be accomplished by teleporting to a specified point. This
type of movement was chosen based on the analysis of the common available VR locomotion
systems, described in Section 1.1.3. It should also be allowed to rotate the user’s camera
with the controller to compensate for the fact that the user’s head can only turn in a certain
range.

F3 – Import graph The application will make it possible to add a graph to the scene by
reading its structure from an existing external file. The application will provide the user with
a list of all files that contain a graph structure. It will not check the entire disk for such files,
but only one specific folder is created to store files for import and export. This check will
not be automatic and continuous and will be performed after the user requests for the list
to be refreshed. Only files with the JSON extension will be shown, regardless of whether or
not they have a correct graph structure. All other files in the folder will be ignored. The
graph will be added to the scene only after the user has decided which file to import. A valid
graph structure must be present in such a file, and the application needs to ensure that the
file satisfies this condition before proceeding with the actual deserialization and visualization
of the object. This valid structure must contain at least one vertex. All vertex labels must be
unique in the scope of the parent graph, and all edges must connect only declared vertices.

F4 – Export graph The application will not only allow users to import graphs but also provide
the opportunity to save a graph located in the scene to an external file. The graph structure
that the user selects for export will not be altered and will be serialized in the exact same form
as presented in the scene. When imported after being exported, the graph should maintain
its original appearance. After the user selects the graph, it will always be exported to a new
file. This file must be created in a shared folder that serves the purpose of storing files related
to graph import and export. The folder should be next to the application’s executable file
and must be created in the event of an absence. In order to prevent name collisions with
other files in the output folder, the name of the new file will be generated pseudo-randomly.



Requirements specification 19

F5 – Create object Users will have the option to manually build graphs using the application.
To create a new graph, the user must initially set up the scene with at least one vertex. To
fulfill this objective, the ability to create vertices and edges will be made available. This
feature must be able to create not only new graphs but also new vertices and edges and add
those to existing graphs that are already present in the scene. The user will be able to choose
which graph receives the addition before it occurs. The definitions of the graph operations
defined in Section 2.1 will be followed in the process of adding objects to a graph. The default
settings will be applied to all newly created objects. Therefore, the vertices will be rendered
with a default color and labeled with an incremental value when they are added to the graph,
starting from 0. The process of adding vertices and edges will continue until the user decides
that the selected graph is done.

F6 – Edit object The application will provide the capability to alter the attributes of graphs
and their objects that are located in the scene. Depending on the object with which the
user chooses to work, different sets of editable properties will be presented to them. For the
graphs, it will be possible to change the color of all their vertices. For the edges, it will be
possible to change their weight. For the vertices, it will be possible to change their colors.
After a change is made to any of the properties, the result will immediately be applied to
the object that has been selected. It will be possible to undo the modifications that were
made and return the object to the state in which it was before the user made their choices.
The manipulation of graphs is another component of this requirement. It is necessary for
the application to include functionality that allows users to adjust the location of a specific
object in the scene.

F7 – Remove object It is possible to remove graphs and any items associated with them from
the scene. Only the objects chosen by the user will be removed. Also, the option to select an
entire graph should be available. All its vertices and edges will be selected after this action.
The removal of content will not be performed automatically, but rather only at the user’s
request by pressing the button in the UI. The definitions of the graph operations defined
in Section 2.1 will be followed in the process of removing objects from a graph. After the
removal of the final vertex of a graph, the graph itself will be eliminated likewise.

3.3.2 Non-functional requirements
In addition to gathering and examining functional requirements, non-functional requirements
were also included in the scope of the project. Such requirements specify criteria that can be
used to judge the operation of the system, rather than specific behaviors. The following is a
comprehensive listing of all key non-functional requirements:

NF1 – Portability The following 64-bit Windows operating systems will be supported by the
application: Windows 10, Windows 11. The connected Oculus Quest 2 VR device will be
used to interact with the application. It must also be easily scalable to support other VR
devices in the future.

NF2 – Performance The application needs to have good performance when visualizing larger
graphs to prevent users from experiencing simulation sickness. The system must be optimized
enough to visualize at least 2 graphs with 5,000 vertices and 5,000 edges each at the same
time and at least 10 graphs with 1,000 vertices and 1,000 edges each at the same time while
maintaining optimal performance. Optimal performance for Oculus Quest 2 targets a 90 FPS
rate, as provided in the VR and Simulation Sickness guideline [16]. This frame rate translates
to 1000/90 = 11.11 ms, which is the maximum time that it should take to render a frame.

NF3 – Usability Since the application is intended for VR, its design must take into account
the best practices to provide a positive user experience in VR, as described in Section 1.1.



Use cases 20

When using the application, users should not experience any negative health effects. The
user’s experience interacting with the application must be understandable, efficient, and easy
to recall.

3.4 Use cases
To provide a comprehensive specification of the functional requirements, various use cases and
scenarios of the application have been compiled. The constructed use case model is depicted in
Figure 3.2.

Figure 3.2 Use case diagram

The components of the model, as well as the scenarios for each use case, are outlined in the
following list.



Use cases 21

UC1 – Import graph Provides the ability for the user to add a graph by reading its structure
from an external file.

1. This scenario starts when the user makes the decision to import a graph from a file into
the scene in order to continue working with it.

2. The user is presented with a list of all accessible JSON files that are located in the shared
folder for import and export purposes. If the folder cannot be located, the system will
create it automatically.

3. The user chooses a file from the list that has been suggested. The system will deserialize
the object after reading the contents of the specified file.

4. If the process is successful, the system will visualize the newly read graph in the scene and
assign a distinct color to it so that it can be easily identified. In the event that the system
cannot read the specified file or successfully deserialize the object, an error message will
be displayed to the user in the UI.

5. The user confirms the result of the operation.
6. From Step 2, the scenario continues until the user decides not to import a new graph.

UC2 – Select object Provides the ability for the user to select an object to which they want
to apply operations subsequently. This use case is essentially a generalization of the following
three use cases: UC2.1 – Select graph, UC2.2 – Select vertex, and UC2.3 – Select
edge. The only thing that differentiates these use cases from the scenario described below is
the type of object that will be selected.

1. This scenario starts when the user makes the decision to select a specific object in the
scene to start working with it.

2. After pointing to the object they want to select in the scene, the user presses a button on
the controller to confirm the choice.

3. The system marks the object as selected and draws it again in a different, unique color for
identification.

UC3 – Export graph Provides the ability for the user to save a graph to an external file.

1. This scenario starts when the user decides to save the structure of a graph by exporting it
to an external file.

2. The user selects a desired graph in the scene (include UC2.1 – Select graph).
3. The system creates a new JSON file with a unique name and places it in the shared folder

for import and export purposes. The user-selected graph structure will be serialized and
exported to the new file.

4. If the process is successful, the system will display the path to the new file in the UI. If
the system cannot create the new file or serialize the chosen object, an error message will
show up in the UI.

5. The user confirms the result of the operation, and the system deselects the chosen graph.
6. From Step 2, the scenario continues until the user decides not to export a graph.

UC4 – Create graph Provides the ability for the user to build a new graph.

1. This scenario starts when the user makes the decision to create a new graph in the scene.
2. The system will create a new graph that is temporarily empty and will be marked as

selected automatically.
3. The user adds vertices to the selected graph (include UC5 – Add new vertex).



Use cases 22

UC5 – Add new vertex Provides the ability for the user to add a new vertex to a graph.

1. This scenario starts when the user makes the decision to add a new vertex to a graph.
2. The user selects the desired graph in the scene (include UC2.1 – Select graph).
3. The user receives a preview of the new vertex, which is attached relatively to the controller.

They will be able to move this preview, as well as push or pull it, to indicate the location
of the new vertex in a 3D space.

4. After the location has been indicated and confirmed through the use of the controller, the
system will create the new vertex that will be located in this position and add it to the
selected graph. The new vertex will be drawn in a default color, and its label will be
assigned a value next to the maximum vertex label in the graph.

5. The scenario continues from Step 3 until the user decides not to add the new vertex, at
which point the desired graph will be deselected.

UC6 – Add new edge Provides the ability for the user to add a new edge to a graph.

1. This scenario starts when the user makes the decision to add a new edge to a graph.
2. The user selects two vertices in the scene (include UC2.2 – Select vertex).
3. The system checks if the two selected vertices belong to the same graph and if there is no

existing edge that connects them. If these conditions are met, the system will create the
new edge that connects the two selected vertices.

4. The two desired vertices will be deselected, and the scenario will go back to Step 2 until
the user decides not to add the new edge.

UC7 – Rotate graph Provides the ability for the user to rotate a graph.

1. This scenario starts when the user makes the decision to rotate a specific graph.
2. The user selects the desired graph in the scene (include UC2.1 – Select graph).
3. Using the thumbstick on the controller, the user can tell the system to rotate the chosen

graph in a certain direction.
4. The scenario continues from Step 3 until the user decides not to rotate the desired graph,

at which point it will be deselected.

UC8 – Move object Provides the ability for the user to move an object.

1. This scenario starts when the user makes the decision to move a specific object.
2. The user selects the desired object in the scene (include UC2 – Select object).
3. The system updates the location of the selected object based on the movements of the

controller made by the user.
4. The scenario continues from Step 3 until the user decides not to move the desired object,

at which point it will be deselected.

UC9 – Edit object Provides the ability for the user to edit the properties of an object.

1. This scenario starts when the user makes the decision to edit the properties of a specific
object.

2. The user selects the desired object in the scene (include UC2 – Select object).
3. The user changes the required properties from a list of all the object properties that can

be modified. Any property change is immediately reflected by the system on the selected
object.



Use cases 23

4. The edited object will be saved if the user decides to apply the altered properties. If that
is not the case, the system will restore the object to the state it was in before the user
made their choices.

5. The scenario continues from Step 3 until the user decides not to edit the desired object,
at which point it will be deselected.

UC10 – Remove object Provides the ability for the user to remove objects.

1. This scenario starts when the user makes the decision to remove specific objects.
2. The user selects the desired objects in the scene (include UC2 – Select object).
3. After receiving confirmation from the user, the system will proceed to remove the objects

from the scene. If this does not occur, the system will deselect the desired objects.

UC11 – Move Provides the ability for the user to move to a specified location within the scene.

1. This scenario starts when the user enters the camera movement mode.
2. The user receives a preview of the teleportation point, which is relatively attached to the

controller. The user will be able to move this preview, as well as push or pull it, to indicate
the location of the teleportation point in a 3D space.

3. Once the user has chosen the location and confirmed it with the controller, the system will
teleport them there with a smooth screen fade effect to prevent feelings of sickness.

4. The scenario continues from Step 2 until the user leaves the camera movement mode.

UC12 – Rotate Provides the ability for the user to rotate in the selected direction.

1. This scenario starts when the user indicates and confirms the direction of rotation with
the thumbstick on the controller.

2. The system turns the user 45 degrees in the specified direction with a smooth screen fade
effect to prevent feelings of sickness.



Chapter 4

Graph representation

This chapter provides representations of the graph structure used in different aspects of the
application. The first section presents a compiled representation domain model, on the basis
of which the following representations will be designed. The second section aims at a visual
representation of 3D graphs within the scene. The third section discusses a designed schema
for an external file, describing the graph structure for importing and exporting.

4.1 Composition
When designing a graph representation that will be used in various aspects of the application,
it is vital to take into account all the characteristics and attributes that are associated with the
common graph structure and its components. A domain model was created based on the analysis
of the assignment and the requirements for the application in terms of the supported graph types
and classes. The model illustrates the structure of the general graph representation, as well as
its attributes, components, and relations between them. The domain model itself is shown in
Figure 4.1.

Figure 4.1 Graph representation domain model

The resulting structure consists of the graph structure itself, represented as a collection of
vertices and edges. The vertex and edge structures cannot exist independently of the parent
graph structure and will be removed if the parent is removed. A graph can have any number of

24



Visual 25

vertices and edges but must have at least one vertex. If a graph contains edges, each of them
must connect exactly two vertices of the same parent graph.

The graph structure has only the attribute “colorful,” which will be applied in conjunction
with the attribute “color” of the descendant vertices. These attributes are necessary for the
realization of colored graphs. The “colorful” attribute is used to enable and disable the colors of
all vertices in the graph, allowing the colors assigned to them to be preserved. The two attributes
of the vertex are “label” and “position,” which denote its label and position in the 3D scene,
respectively. The only attribute of the edge structure is “weight,” which is necessary for the
realization of weighted graphs.

4.2 Visual
Since the application will contain a graphical component, it is important to consider the design
of the visual graph representation. The design is based on the related work described in Section
3.2 and is carried out taking into account the convenience of the user when interacting with 3D
graphs. The resulting representation is described using an example of a graph depicted in the
model sketch in Figure 4.2.

Figure 4.2 Sketch of the visual graph representation

This example shows the graph G = ({0, 1, 2, 3}, {(0, 1), (0, 2)}). This graph is colored and its
vertices {0, 1, 2, 3} are assigned the colors purple, white, green, and orange, respectively. All of
the graph’s and its components’ attributes will not be shown on the model itself. Instead, they
will be shown in the UI, which will be described in Section 8.3.

For the visual aspect, the vertices of the graphs will be rendered as 1-order icospheres [17].
This model was chosen with a focus on performance to reduce the load on the GPU. It only has
42 vertices and 80 triangles, which is not a lot for a good approximation to a sphere. The edges
will be rendered as parallelepipeds connecting vertices of the graph. It allows users to interact
with edges and is also efficient for rendering since it has only 8 vertices and 12 triangles.



External file schema 26

4.3 External file schema
In order for the application to fulfill the functional requirements, it needs to be able to read
graphs from and write graphs to external files. To successfully achieve these requirements, it is
necessary to choose the right format for a file that will hold a 3D graph representation and to
design a file’s schema.

An external file will be in JSON format rather than binary in order to give users a legible
form of graph that can be altered outside of the application. This format provides the ability to
describe objects in a way that is easy for humans to understand while still being a lightweight
structure. The extensive adoption of the format across the industry also has an impact. As a
consequence of its widespread use, there are tools for interacting with this format included in
the frameworks and standard libraries of many contemporary programming languages.

To provide a foundation for consideration of the designed file schema, the example that
is supplied in Code Listing 4.1 will be used. This particular example relates to the graph
G = ({0, 1, 2, 3}, {(0, 1), (0, 2)}), the model for which was illustrated earlier in Figure 4.2.

Code Listing 4.1 JSON graph representation example

{
"colorful ": true ,
"vertices ": [

{
"label": 0,
"position ": "X=437.110 Y=225.097 Z=50.000" ,
"color": "#1 F00FF"

},
{

"label": 1,
"position ": "X=748.975 Y=345.263 Z=260.000"

},
{

"label": 2,
"position ": "X=504.859 Y= -437.557 Z=460.000" ,
"color": "#00 FF39"

},
{

"label": 3,
"position ": "X=969.929 Y= -452.031 Z=260.000" ,
"color": "# FF0500"

}
],
"edges": [

{
"from": 0,
"to": 1,
"weight ": 0.5

},
{

"from": 0,
"to": 2,
"weight ": 2.0

}
]

}



External file schema 27

The root of the schema is a single JSON object that represents the graph structure. This
is necessary because only one graph will be contained in one file, as discussed in the functional
requirements in Section 3.3.1. This object, along with any others that follow, are composed of
properties that represent key-value pairs. There is only one “vertices” property that is necessary
for this object. The “colorful” and “edges” properties are considered to be optional, which means
that they are not required to be presented in a file.

The optional “colorful” property accepts boolean values of true or false. In the example above,
the property is set to true, which will allow the application to render the vertices using the colors
that have been provided for them in the “color” property. If it was false or not specified, the
vertices would be shown in the standard white color, but they would keep the colors that were
set for them in case the value was later changed to true.

The “vertices” property is assigned a value consisting of an array of JSON objects that each
stand for one of the graph’s vertices. This property is required, which means that the array
must have the declaration of at least one vertex in order to contain a legitimate graph structure.
The “label” and “position” properties of the JSON vertex object are required, while the “color”
property is optional. The objects in the array can be specified in any order with any label value.
For the graph structure to be valid, the labels of the vertices must be unique in the scope of the
parent graph.

The mandatory “label” property is set as an integer number that denotes the label of a
vertex. This property is intended to be a convenient way to specify vertices when declaring
edges. Some consideration was also given to the potential for relative vertex identification. It
would be possible to use the indices of the vertices in the array rather than the labels. However,
this method is not convenient for the user because it would be necessary to manually count the
vertex index and, in the case of adding a vertex at the beginning or middle of the array, reassign
all specified edges.

The “position” is the next required property of a vertex. This property determines where the
vertex is located in the 3D scene. It possesses a string value in the format shown in Code Listing
4.1. This format was selected because of its compactness and ability to save space in a file. It is
also used internally in Unreal Engine when serializing and deserializing instances of the FVector
class, which is a representation of a vector in a 3D space composed of X, Y, and Z components
with floating point precision.

The “color” property gives the user the ability to customize the color of each individual vertex.
It has a string value that specifies the color using a hexadecimal encoding of the RGB color model.
This representation was selected for the same reasons as the position representation: to reduce
the size of the resulting file and to simplify the process of serializing and deserializing instances
of the FColor class in Unreal Engine, which stores a color with 8 bits of precision per channel.
This property is optional and may not be specified by the user in a file. As demonstrated by the
vertex with label 1 in Code Listing 4.1 and in Figure 4.2, if the “color” property for a vertex is
not set, the application will use white as the default color.

The “edges” property contains an array of JSON objects that represent undirected edges.
Since a valid graph structure may not contain edges, this property is optional and may not be
specified by the user or may have an empty array. The “from” and “to” properties of the edge
object are required, and their purpose is to identify related vertices on the basis of their labels.
This specification might also be used to denote directed edges in later versions of the application.
The objects in the array can be specified in any order and can contain any label values. However,
to be valid for the graph structure, undirected edges must be unique and contain valid labels,
which means that they must be declared at the vertices of the same graph.

The “weight” property stores a floating-point number that indicates the weight of a certain
edge. Additionally, it is not required, and the user only needs to provide it when they want to
deal with weighted graphs.



Chapter 5

Application architecture

This chapter superficially provides a general view of the resulting application architecture. In
its basic form, the design process of the application may essentially be split up into two parts.
The first section refers to the first part, which is related to the representation of graphs in
the scene and includes both their visualization and management. The second section refers
to the second part, which is concerned with the design of the user’s interaction with graphs,
involving the addition of new elements, the removal of existing ones, or the application of
various operations on them. The third section aims to describe the overall composition of the
system as well as the relationships between all its modules.

In this chapter, we will begin to dive deeper into the architectural design of the application itself.
All of the requirements, both functional and non-functional, that are outlined in Section 3.3, as
well as all of the use cases that are presented in Section 3.4, serve as the foundation for the whole
architectural design of the application. It is also important to note that the design was created
with the intention of providing structures and interfaces that may be easily and conveniently
used during subsequent implementation.

5.1 Graph visualization
Providing the user with a visual representation of 3D graphs is one of the most essential features
of the application. For this purpose, it is necessary to design a part of the system that will be
responsible for storing and processing graphs in memory and providing an accordant presentation
with which the user can subsequently interact. Since storing and accessing graph objects and
their visualization are themselves rather complex parts of the application, it was decided to use
separation of concerns to split these functionalities into corresponding modules. In this way,
two modules will be used to represent graphs within the application, providing a backend and a
frontend for them.

The graphs backend is the first module that will be considered. This module will introduce
an entity system that will manage graph objects and the attributes associated with those objects
in the computer memory during the time that the application is being used. It will also provide
a convenient interface for accessing certain objects in order to perform operations on them or
modify the attributes of those objects. The architecture of this module will be described in more
detail in Section 7.1.

The graphs frontend is the next module that needs to be contemplated. This module will
supply the application with a graph rendering system, the purpose of which will be to create,
redraw, and delete actors located in the scene that are responsible for rendering graph objects

28



User interaction 29

according to their attributes. This module will, in essence, be a visual reflection of the backend. It
will offer users an interactive layer of abstraction through which they can examine and interact
with entities themselves. The architecture of this module will be described in more detail in
Section 7.2.

5.2 User interaction
The next most significant feature of the application is the user’s ability to modify and interact
with objects that are present in the scene. According to the assignment requirements, the user’s
interaction with the application will be carried out through the use of connected VR devices.
The VR headset will act as both an input and an output device, while the controllers themselves
will function as input devices for the system. All features of the application that give the user
the ability to interact with the system and its elements will be realized in the third and final
module of the application, which will be described in more detail in Chapter 8.

This module will supply a number of actors that are tasked with the responsibility of providing
the user’s representation in the scene and communication with other components of the system.
When the user launches the application, Unreal Engine’s functionality will be used to link these
actors with the user’s connected VR devices. As soon as the devices are linked, the input will
be mapped, and the actors will simultaneously begin to get the device data. These data will
include the positions of the controllers in the world, the position of the headset, the buttons that
have been pressed, the degree to which triggers have been pressed, and so on. Because of this,
the actors will be able to visualize corresponding device models in the scene and notify another
component of the system about the user’s actions.

This component will be a tool system, which will also be realized in this module. It will consist
of a set of tools, each of which will be responsible for providing appropriate functionality regarding
operations and interactions with graphs. This system will, in essence, serve as a communication
provider between the user and the application. With the help of these tools, the user will be able
to designate exactly what operation they want to apply to a selected graph within the scene.
This system was chosen because it has the useful property of extensibility, which makes it much
easier to add a new functionality in the future simply by adding an appropriate tool for this.
The system itself will be designed as a component that, based on VR device data received from
user actors, will transfer commands to the graphs backend module. The commands that are
transmitted will be determined by a tool that the user currently uses.

The system will offer a total of six different tools to interact with the various types of objects
present in the scene. This toolset was designed according to the functional requirements outlined
in Section 3.3.1, and each functionality is reflected as a separate tool. Importing, exporting,
creating, altering attributes, manipulating regarding position in the scene, and removing from
the scene are the purposes that each of these serves. The functionality provided by a tool is
represented by a predetermined set of operations that make up the tool itself. When the user
“equips” a tool, they can choose a specific action and change the parameters that control that
action. All of this will be handled by the user through the corresponding UI.

Since the application is intended for VR, its design must take into account the best practices
for providing a positive user experience in VR. Due to the control limits described in Section
1.1.4, the user’s interaction with the application will be realized through the UI to create a good
control model. The UI will be designed as a component attached to the left controller. It will
appear to the user in the form of a frame that is made up of a series of tabs and windows. The
administration of the tool system will be moved to a separate main tab, the window of which
will provide a list of all the tools that can be used. Choosing one of the available tools will
command the system to activate that tool, and then the current tab will display the appropriate
window with the actions and configurations for the activated tool. After activation of a tool, all
user actions related both to the UI and to the interaction with graphs within the scene will be
addressed by the tool system to the active tool.



Overall composition 30

5.3 Overall composition
As a result, the application will have a modular architecture consisting of three communicating
and interconnected modules. To minimize the overall complexity of the system and to improve
extensibility and maintainability of the code, the architectural design of each module will be
based on the rule “low coupling, high cohesion.”

To provide a more simplified view of the overall composition of the system architecture, a
model was created based on the superficial descriptions of the modules proposed in Sections 5.1
and 5.2, respectively. This model describes the structure of the application and the relationships
between its modules. It was also created to understand the flow of internal processes for storage,
visualization, interaction, and graph processing. In this way, it shows the collaboration and
sequential communication of all modules of the application, which in the future will allow it to
fulfill all functional requirements and realize all possible use cases. For better illustration, the
model shows a structure containing three graphs. The model itself is shown in Figure 5.1 below.

Figure 5.1 Application structure and process flow



Overall composition 31

The scene will be the most important part of the application, at least from the user’s point
of view. In essence, it will be a workspace and a container for all components that have a visual
component or produce it in some way, thereby being the highest layer of abstraction for the
user. Since the entity system itself neither has visualization functionality nor is involved in its
creation, its existence will be taken out of the scene. Thus, the scene and the entity system will
make up the top layer of the application.

Two actors will be present in the scene. The first is a user representation that is responsible
for showing an image on the headset, processing data from the VR devices, and working with
the internal tool system. This actor will consist of many subcomponents. One of them is a
controller’s representation, which in essence will be a reflection of the real VR controllers of the
user in the virtual scene of the application. Its main task will be to detect interactions with
objects in the scene and send data to the tool system, which is the next important component
of the actor.

The following scenario of the process of interaction between controllers and objects in the
scene will be considered the primary one. Every frame, a laser will be emitted from the user’s
primary virtual controller, giving them the ability to select a desired object in the scene by
pointing at it. If the laser detects an object’s collision, the virtual controller will get its identifier
and notify the tool system accordingly. It is also worth noting that all input data received from
the real VR controllers will also be sent by their virtual representations to the tool system for
further processing and reaction by the tools to button presses, thumbstick movements, etc.

The tool system will take care of receiving interacting objects’ identifiers, their processing
depending on an active tool, and the overall management of all tools. Hereinafter, “active
tool” means a tool that the user has “equipped.” Activation of a tool allows the system to
redirect information about input data from controllers to it and to “filter” identifiers based on
its functionality. So, for example, if an active tool implies working only with graph vertices, the
system will not transfer an identifier of a whole graph or an edge when it is obtained. Based
on its settings, object’s identifier, and controller’s input data, an active tool will perform its
corresponding operation on the object.

This will be accomplished by querying the object’s data from a repository and changing
it accordingly. In the role of repository will be the entity system, responsible for storing and
managing all object data and supplying them based on received identifiers. After or during a
change to the object data, an active tool will give a command to a second actor in the scene
responsible for rendering objects based on the changes made to the entity system.

After receiving the command with the object identifier, the rendering system will request its
changed data from the entity system. On the basis of this, the system will redraw the object’s
geometry in the scene, taking into account its changed properties. It will also save the object’s
identifier in the geometry collision “metadata” so that it can be interacted with user controllers
in the future.



Chapter 6

Graph visualization: a naive
approach

This chapter is an introduction to the architectural design of graph visualization modules.
Its goal is to discuss the problems with a naive method to visualize and represent 3D graphs
within the scene, as opposed to the systems described in the next chapters. The first section
introduces Unreal Engine in a little more detail and discusses the actor system it provides. The
second section describes a method for rendering small-sized graphs using the internal actor
system. The third section discusses the problems with the proposed method when visualizing
larger graphs.

6.1 Actor system
To understand the reasons for the actions taken in the subsequent design, it is necessary to
understand the structure of Unreal Engine concerning the system of actors it offers.

Regardless of what exactly is provided in the scene, it should be a game object. A game
object can be thought of as anything within the scene that must either be drawn, updated, or
both updated and drawn on each frame. Despite the fact that it is referred to as a “game object,”
this does not automatically imply that it must be represented by a conventional object in the
object-oriented sense. Some games make use of standard objects, but the majority of them rely
on composition or other approaches that are significantly more difficult. The basic building block
in Unreal Engine that represents a game object is UObject.

UObject [18] is the base class for almost everything in Unreal Engine. From this class, the
vast majority of objects that are created in the world or just in memory are inherited, including
objects in the scene, components, different types for working with data, and others. Although
lighter than its descendant classes, the class itself is quite functional. For example, it contains
many useful events, such as changing the values of variables in the editor and the basic functions
for the network, which are not active by default. Also, one of its main features is working with the
garbage collector in Unreal Engine in a way that is approximately similar to how, for example, in
Java, the garbage collection system is implemented with the base class Object. Objects created
by UObject class exist only in memory and cannot be presented in the scene. For this purpose,
Unreal Engine has a number of object types called actors.

Their representative is AActor [19] class, which inherits from UObject and uses all its standard
functions. AActor is a type of UObject that is designed to play a role in the overall gameplay
experience. It is in charge of all high-level behaviors in a game, and it is the basis of every object
in the scene, including players, enemies, doors, walls, player start location, player camera, etc.

32



Method description 33

Actors can be manually placed in the scene by a level designer, or they can be created dynamically
during runtime via gameplay systems. They can also be destroyed explicitly through gameplay
code via C++ or Blueprints, or by the standard garbage collection mechanism when the level is
unloaded from memory. All objects that can be placed into a level extend from this class. Even
a class like GameMode, which is commonly used to specify game rules, is an actor, though it
does not have a “real” position in the world.

This is due to the fact that actors, despite being positioned within the scene, do not truly
have their own transform, which is a collection of location, rotation, and scale properties. Actors
are responsible not only for their own behaviors but also for the organization of a hierarchy
of actor components through the process of specialization and composition. Components are
essentially a specialized kind of object that can be attached to actors or other components and
used to share common behaviors, for example, with other actors. In Unreal Engine, it is possible
both to create your own components by inheriting from the corresponding component base class
and to use one from a large library of built-in components. For example, a USceneComponent
can be used to provide an actor with transformation in the scene, and a UStaticMeshComponent
allows a piece of geometry to be used as a sub-object for another actor.

Unreal Engine comes with a variety of different basic actors, all of which are descended from
the AActor base class and divided into types. For instance, among the types of gameplay actors
that can be highlighted is APlayerStart, which allows the location of the player’s spawn point to
be specified. However, the most important types of actors in the scope of this chapter are mesh
and geometry actors.

AStaticMeshActor [20] is one of the most widely used actors of this type. This actor is able
to display a corresponding mesh in the scene by making use of a 3D model that has been saved
in an asset file for the project as the basis for its work. It is also important to clarify that this
actor has its own transform and that the word “static” in its name refers to the fact that the
geometry of a displayed mesh cannot be modified in runtime. This actor also provides many
useful features when working with static meshes. Among these features are setup of sockets for
attaching to other actors or components, and, importantly, assignment of both simplified and
complex collisions.

Collisions are needed to detect or determine the exact position of the intersection or overlap
of an object with other objects. They are often used when working with the physics engine, but
they can also be useful in conjunction with traces. The point is that Unreal Engine allows to
get an instance of an object located in the scene when its collision intersects with one of several
possible trace types, including box trace, capsule trace, sphere trace, and, most importantly, line
trace. For example, it can be used to highlight objects in the game when the player is looking at
them: a line will be traced from the player’s camera in the forward direction every frame, and
when it intersects with a collision of an object, its color will change.

To apply a specific color to an object, AStaticMeshActor provides a material assignment
feature. A material is an asset that can be applied to a mesh to control its visual look. It defines
the type of surface an object is made of and gives the ability to adjust its color, emission, opacity,
and other properties. When thinking about a material on a high level, it is usually easier to think
of it as the “paint” that is applied to a mesh.

6.2 Method description
Taking into account the actor system in Unreal Engine, which was talked about in Section 6.1,
a naive method of visualizing graph objects in the scene can be designed. This method entails
creating an individual actor for each vertex and edge of graphs added to the scene, providing
visualization through a corresponding static mesh, and allowing interaction through a simple
and appropriate collision. Also, the standard implementations of AActor and AStaticMeshActor
in Unreal Engine can be extended to store attributes of vertices and edges in objects themselves
by applying the inheritance mechanism.



Method description 34

In this way, a separate application module can be created that would be responsible both
for storing graphs and their objects and for their visualization in the scene. Since a graph does
not have a visual part, but instead is just a container with references to objects of its vertices
and edges, it can be represented in the scene by an actor inherited from the AActor class. A
graph vertex could be represented by an actor that was inherited from the AStaticMeshActor
class and had all the necessary attributes for a vertex described in Section 4.1. An edge of a
graph could be represented in a similar way. The following model has been created in order to
better comprehend this structure, as illustrated in Figure 6.1.

Figure 6.1 Structure of the module for visualizing graphs using the actor system

This model is a highly simplified representation of a graph structure for visualization that
could be realized using the Unreal Engine functionality. It is based on the graph representation
domain model described in Section 4.1. Note that the “position” and “color” attributes have
been removed from the vertex structure because the first of them is already contained in the
inherited AStaticMeshActor class, and the second can be obtained from the associated material.
Since this approach involves creating a separate actor for each object in the scene, we will end
up with a rather large number of actors when importing or creating multiple graphs. Consider,
for example, a graph with 20 vertices and 5 edges. When importing this graph, 1 corresponding
graph actor will be created in the scene. Then, 20 more actors for each vertex and 5 actors for
each edge will be created and subsequently linked with the parent graph actor. In total, 26 actors
will be needed to represent this graph in the scene. A number of improvements to this method
can also be applied to significantly reduce the number of actors.



Problems and performance issues 35

For example, each vertex and edge can be represented not by a separate actor but by a
component, or, to be more precise, by the UStaticMeshComponent that would be attached to a
parent graph actor. In this way, the representation of this graph in the scene would be exactly
the same, but with only 1 actor with 25 subcomponents instead of 26 actors. This improvement
also prevents manually removing vertices and edges when removing their parent graph actor.
Since components cannot exist without an actor, they will be automatically deleted by Unreal
Engine when the actor is deleted.

Both of these methods are among the easiest ways to realize the representation of 3D graphs in
the scene with the functionality provided by Unreal Engine. They also fit the overall application
structure described in Chapter 5 and can be used in conjunction with the user interaction module.
However, in both cases, this approach has some disadvantages, which will be discussed in the
next section.

6.3 Problems and performance issues
The approach and one of its possible improvements proposed in Section 6.2 are, in essence,
simple to implement and perfectly suitable for the visualization of small graphs. However, when
it comes to graphs with 1,000 or more vertices and edges, when using this method, we can and
we will face performance issues. The point is how the static mesh actors and components are
actually rendered.

In the development of graphical applications, there is a term such as draw call. It stands
for CPU/GPU communication and tells how many objects are being drawn to the screen. In
essence, a draw call is the CPU activity that prepares drawing resources for the graphics card
and comprises all the information needed to inform the GPU about textures, states, shaders,
rendering objects, buffers, etc. For the CPU, it is quite “expensive” to translate all of the
information previously mentioned into GPU hardware commands.

Each actor and component in the scene produces 1 draw call per frame. What emerges from
this is that since a draw call is required for each different material, with a variety of unique
actors in the scene and multiple different materials, the number of draw calls raises accordingly.
Since CPU work takes time to translate this information into GPU hardware commands, we will
encounter performance issues when rendering a number of large graphs with a high number of
draw calls involved. So, for example, 10 graphs, each consisting of 1,000 vertices and edges, can
be represented as 20,010 actors or 10 actors and 20,000 components. Their rendering implies
20,000 draw calls. Moreover, since the application uses a VR headset for output, the number of
draw calls is multiplied by 2 (for each eye), as described in Section 1.1.2. This gives us a total
of 40,000 draw calls each and every frame. In practice, the number of renderings can be less
because the occlusion culling algorithm [21] can be applied to the visual objects in the scene.
It allows the system to not render objects that are not visible to the user, thereby providing
better performance. Nevertheless, one of the main goals to achieve the necessary effectiveness is
to reduce the number of draw calls.

It will also be a problem that it is very difficult to work with actors when performing parallel or
asynchronous tasks. For example, it is impossible to create actors in Unreal Engine on a separate
thread, which could be very useful for asynchronous object deserialization when importing a large
graph. This can be solved by using the deferred actor creation method, but this can significantly
increase the complexity of the code.

The complexity of the code is also affected by the architecture of the proposed method
itself. The problem is that this approach involves both the storage and visualization of objects.
As a consequence, this module will lack maintainability and extensibility. This leads to high
connectivity with the other module of the application and the complexity of fixing existing
functionality or adding new functionality.

All of the above problems, as well as many others, will be solved by using a procedural mesh
generation method, which will be described in the next chapter.



Chapter 7

Graph visualization: a procedural
approach

This chapter examines and describes the part of the application responsible for visualizing
graphs using procedural generation. Since object data cannot be stored in the geometry itself,
the first section describes the entity system designed to store data. The second section provides
the procedural rendering approach and the graph rendering system designed for it, along with
improvements to achieve the necessary efficiency in visualizing a variety of large graphs.

The typical way to show something is to render a mesh with a specific material. Unreal Engine
has a few built-in meshes of simple shapes, including a cube and a sphere. Other meshes can
be purchased, downloaded, or made yourself, and then imported into a project. All of them can
be represented in the scene by the corresponding actors or components, which were described in
Chapter 6. However, it is also possible to create a mesh on-demand at runtime via code. Such
meshes are known as procedural because they are generated via code using specific algorithms,
rather than being modeled by hand. This method will provide both an opportunity to merge
the geometry of objects in the scene, thereby minimizing the number of draw calls, and a huge
scope for ideas and improvements.

7.1 Entity system
In the overall design of the application, it was decided to use separation of concerns and split
the representation of graphs in the application into a backend and a frontend. First of all, this is
caused by the fact that, with the procedural approach, the geometry created in the scene does not
have the ability to store object data. The point is that, unlike the naive approach, which gave each
object its own actor in the scene that was in charge of storing and displaying data, the procedural
approach involves producing partial or whole geometry without having corresponding objects in
the scene. In addition, this partition into modules will allow the application architecture to use
separation of concerns, thereby allowing both object data modification and visualization of that
data to be performed separately. This will lead to a huge number of advantages, among which
the extensibility of the system and the possibility of parallelizing the work of its modules can be
mentioned.

Therefore, before proceeding with the graph rendering approach, it is necessary to design a
system capable of storing and managing object data for subsequent rendering. In addition to
storing data, this system must also provide a common and convenient interface for accessing
particular graphs, as well as the components of those graphs and their attributes.

36



Entity system 37

Numerous systems have already been designed and developed to perform this task. One of the
most popular is an Entity Component System [22]. It is an architecture that focuses on data and
separates data into components, identities into entities, and behavior into systems. In essence, it
treats every object in the world as a unique entity defined by properties it holds. Unfortunately,
Unreal Engine does not provide functionality for this system. Also, this system might be great for
developing more extensive games and applications, but its use for graph representation purposes
may be redundant. This is due to its complexity and the features it provides, many of which will
not be needed in our case and will only add overhead in terms of complexity and performance
of the resulting application. For these reasons, based on this system, we will design our own.

In this way, a separate module will be created in the application that provides the entity
system. The use of polymorphism has been initially considered as a way to store multiple types
of objects in a single container. Such a solution would allow us to identify all objects using a
single number, which is the index of an object in a container. However, this method implies the
allocation of each object on a heap and subsequent runtime type identification [23], which, with a
large number of objects, will significantly affect performance. With this method, we will also lose
the efficiency of iterating only the necessary object types, which will be useful for visualization.
For example, if we needed to iterate all vertices, we would have to iterate the entire container,
which, in addition to vertices, may store dozens of graph and thousands of edge objects.

Therefore, it was decided to split the storage area in the system into three containers. Each
of these containers will store objects of a corresponding type from all possible types of objects
in the application, that is, graphs, vertices, and edges. This solution will allow us to get rid of
the allocation of each object on a heap. This will also allow access to not only a specific object,
as in the case of a single container, but also to all objects of a certain type.

After the separation of the storage area, there were two questions: how exactly stored objects
would be organized in memory and how identifiers for accessing them would be produced. An
operation of accessing an object should have O(1) complexity and, preferably, be cache-friendly
for the CPU, because this operation will be one of the most frequent to be performed. So, for
example, when changing a graph position, the corresponding tool from the tool system in each
frame will access the graph object, get identifiers of all its vertices, then access the data of these
vertices by their identifiers, and change their positions accordingly. Initially, the possibility of
identifying vertices by their labels was considered. However, this method is not possible because
all objects in the application must be uniquely identified. Labels of vertices in a graph are unique
only within the scope of the graph itself, i.e., two graphs in the application can have vertices
with the same labels.

One of the simplest and cache-friendly data structure is contiguous array, which places objects
in memory one after another and provides access to them with O(1) complexity. In that case, the
object identifier could be a pair of two numbers, the first indicating the object type to determine
which of the three arrays to access, and the second being the actual index of the object in the
array. Using array data structures is quite possible and easy to implement, however, as long as
we do not have to deal with the removal of objects, which would lead to their fragmentation in
memory and the subsequent invalidation of their identifiers. In that case, it would be necessary
to access each object and update identifiers for other objects in their data, which would be
time-consuming with a large number of objects.

The resulting solution will be a data structure called sparse array [24]. This structure is
the opposite of the aforementioned regular array, which is inherently dense. The point is that
objects in a dense array are placed one after another without “gaps” in memory. When an object
is removed from the beginning or middle of an array, it shifts objects to the left, which can lead
to invalidation of identifiers. A sparse array, on the other hand, has the ability to have “gaps” in
memory. This means that when elements are removed from the beginning or the middle, there
will be no shifting at all, and an empty space is left which will be taken by new elements added
later. Unreal Engine’s implementation of a sparse array is provided by the TSparseArray [25]
class.



Entity system 38

Among the disadvantages of this realization is the higher memory consumption compared to
a dense array because it allocates memory for a whole range of indices. So, for example, to add
two objects in memory with indices 0 and 50, it will allocate memory for 50 elements. However,
this will not happen in our case since we assume the sequential addition of elements. This means
that a new element will be added to the first free position of the array, and if there is not one, it
will be added to the end. Even though a big “gap” can be left after removing a lot of elements
from the beginning or middle of an array, the implementation of TSparseArray allows for fast
iteration over objects. The internal implementation of TSparseArray stores elements in a regular
dynamic array, which implies the contiguousness of elements in memory. However, with high
fragmentation of elements, this contiguousness can be lost, which also leads to a loss of memory
cache friendliness. Despite this, maintaining object indices when removing their neighbors saves
us from manually updating them in the scope of all modules, which, compared to cache misses,
would be much more time-consuming.

Using this data structure will allow us to have O(1) complexity for all the operations we need.
These operations include adding elements to the first free position or to the end, accessing them,
and removing them from any place while preserving the validity of identifiers. Figure 7.1 below
shows a model of the entity system structure. As an example, the model shows the storage of 2
graphs, 6 vertices, and 4 edges.

Figure 7.1 Structure of the entity system module

The system will consist of three sparse arrays, each responsible for storing entities of the
corresponding type. Each entity is an instance of the corresponding class. Entities in the
application will be identified using an EntityId structure, which will consist of two elements: an
entity signature and an index. The signature is an abstraction for representing the type of entity
and can be used to identify both the type of class from which an entity is instantiated and the
sparse array in which an entity exists. The index is a number that only indicates where an entity
is located within the corresponding sparse array.

In addition to the entity storage structure itself, the class structures representing these entities
can also be seen in Figure 7.1. These structures were designed based on the common graph



Graph rendering system 39

representations in memory discussed in Section 2.2 and the graph representation domain model
described in Section 4.1. Similarly to the definition of a graph, its class will consist of two sets.
The first set stores identifiers of its vertices entities, and the second set stores identifiers of its
edges entities, respectively. This relationship is also represented in the reverse direction, that is,
each vertex entity will have an identifier of its parent graph, which is the same as in the case
of an edge entity. In addition, a vertex stores a set of identifiers of adjacent edges, and an edge
stores two identifiers of vertices that it connects.

With this structure, we have to correctly associate elements with each other when we add
new elements and correctly remove their identifiers when they are removed. However, in contrast
to this, Unreal Engine’s TSet [26] class, which is a hash set, allows for fast object iteration and
provides addition, deletion, and search operations with O(1) complexity.

As a result, this entity system structure will be relatively memory-consuming. Despite this,
it is designed so that the most frequent operations in the application regarding finding a desired
object, adding and removing objects, and iterating over all objects of a desired type would be as
fast as possible.

7.2 Graph rendering system
Using the procedural generation approach, we will be able to generate geometry for graphs in
fewer draw calls than in the case of the naive approach using the actor system. The point is that
with the naive approach described in Chapter 6, each entity in the scene would be represented
as an independent actor, which implies a direct proportionality between the number of actors in
the scene and the number of draw calls per frame.

Procedural generation, on the other hand, for rendering vertices and edges implies generating
meshes using algorithms in code instead of using corresponding models from assets, as in the
case of actors. This approach not only provides a huge variety of different ways to render and
the possibility to parallelize the rendering process, but also increases the scalability of the entire
system. Thus, adding functionality, for example, to draw directed edges implies only adding
geometry to the beginning or the end of the edge geometry. However, in the case of the actor
system, such an example would be much more difficult to implement. Either the model asset of
the edge actor would have to be replaced during runtime, or one or two additional actors would
have to be created and attached to the beginning and end of the edge actor.

Before proceeding with the design of the entity rendering module, we have to understand how
the geometry rendering process works and what data are passed within the draw call. Unreal
Engine provides a separate plugin for procedural generation with a corresponding component
[27] for this purpose. However, this component is experimental in engine version 4.27 and has
relatively high memory consumption and render thread CPU time. For these reasons, we will
use a more efficient component that comes with the open-source RuntimeMeshComponent [28]
plugin. The code for this plugin is available on GitHub [29] under the MIT license. Therefore,
the process of rendering geometry that follows will be related to the workflow of this component
and may be different in some places from common rendering pipelines in graphics applications.

3D models are nearly commonly represented using polygonal meshes [30] in computer graphics
applications. In its most basic form, a mesh is made up of a collection of vertices, polygons, and,
if desired, a variety of other vertex and polygonal properties. The complexity of a mesh can range
from minimal to extremely high depending on factors such as rendering quality, speed, resolution,
etc. Graphics and game developers employ a wide range of mesh processing algorithms for a
variety of applications, including creating, simplifying, smoothing, remapping, and transforming
meshes. A polygonal mesh is a set of vertices and polygonal elements that collectively define a
3D geometric shape. The simplest mesh representation thus consists of a vertex and a polygon
lists. Polygons are often defined in terms of triangular elements. Since triangles are always both
planar and convex, they can be conveniently used in several geometrical computations such as
point inclusion tests, area and normal calculations, and interpolation of vertex attributes.



Graph rendering system 40

The RuntimeMeshComponent sends information about the mesh’s vertices to the GPU using
a vertex buffer that has information about each vertex. An index buffer represents a list of
polygons that is laid out as a contiguous list of indices into the vertex buffer, three at a time,
representing the three points of a triangle. The front side of each polygon is shown by putting the
vertices in the normal direction of the outward face in counterclockwise order. The distinction
between the front and back faces of a polygon becomes important in lighting computations and
culling operations. For illustration, Figure 7.2 shows the vertex and index buffers for generating
a square.

Figure 7.2 Example of square mesh composition [31]

In addition to vertex positions, the vertex buffer also contains additional data, including
color, normal, and texture coordinates for each vertex. All of them are also created on the CPU
and are then brought to and processed by the GPU when generating meshes. Thus, vertex color
can and, in our case, will be used in the corresponding material to colorize graph vertex entities.
Vertex normals are used in lighting processing to properly render shadows on meshes. In our
case, they will not be used, since the system design carried out in Section 8.1 implies the use
of a non-directional light source, which allows us to avoid generating normals for the mesh and,
as a consequence, to get rid of shadows. This will improve the performance of both CPU and
GPU render threads. The use of texture coordinates will also be discarded since the graph visual
design does not imply texture mapping.

To organize geometry rendering and the use of materials, the plugin uses a partitioning system
into levels of detail [30] and sections. Thus, each component can have up to eight levels, and
each of them can be divided into sections with the corresponding materials. Although levels of
detail are very useful in reducing the complexity of geometry depending on how far away a mesh
is from the camera, this feature will not be used in the scope of this work. A section, in essence,
can be thought of as a rendering pipeline for a certain part of the geometry that has one assigned
material. This section system has the ability to work in parallel at the CPU level of rendering,
which was not possible when using the system of actors. Reasonable use of sections will entail a
huge performance gain in terms of both the number of draw calls and the effective parallelization
of rendering.



Graph rendering system 41

There are several types of collisions in the RuntimeMeshComponent plugin. In this work,
a complex type of collision will be used, the generation of which is similar to the geometry
generation for meshes. Compared to a simple collision, one of its limitations is its inability to be
used in the simulation of physics for an object, but we do not require it anyway. On the other
hand, a complex collision can be generated more efficiently. Most importantly, polygons of this
collision type have the ability to store indices of the geometry triangles they represent. This will
allow us to obtain an identifier of an entity by the intersection of the line trace with one of its
geometry triangles, which will be used as the basis for user interaction with entities in the scene.

Although complex collision is made from a triangular mesh, its generation performs in a
slightly different way. Its distinguishing feature from geometry is that it is not visible to the user
and no materials are applied to it. As a consequence, its creation and processing are done on
the CPU without being partitioned into levels of detail and sections, which makes it impossible
to parallelize the process of its generation. Despite this, specific optimizations will be applied to
reduce the number of collision calculations during the design of the tool system. So, for example,
in the case of changing the colors of graph vertices, recalculating their collisions is redundant
and will not happen because this operation does not change the geometry topology of a mesh.
Their lack of a visual component also saves us from generating colors, normals, and texture
coordinates.

7.2.1 Approach description
Now, we may proceed with the design of the system to visualize graph entities. In this way, a
separate module will be created that will produce the corresponding geometry in the scene based
on data stored in the entity system. It will reflect the entity system as a visual representation with
which the user can subsequently interact. The module will provide a graph rendering system actor
that will work in conjunction with the numerous instances of the URuntimeMeshComponent and
the URuntimeMeshProvider classes provided by the plugin.

The URuntimeMeshProvider deals with generating geometry and collisions on the CPU side
and then passing them to the assigned URuntimeMeshComponent, whose job is to transfer the
necessary data to the GPU to render geometry. This is done by copying the buffers into the
GPU memory [32] and then clearing them on the CPU side. In the case of collisions, its job is to
transfer the collision data to the physics engine, which will autonomously handle their processing,
baking, etc. A provider can consist of several sections. Even though sections are usually set up
for each material in a mesh, the fact that all graph vertices and edges will use the same material
allows us to use a section to render only a certain part of a geometry.

The essence of the approach is that each section will contain a certain number of entity
identifiers from the entity system. This allows us to distribute the number of sections relative
to the number of entities to draw, thus minimizing draw calls. One section produces 1 draw call
(2 for VR) per frame. This does not mean, however, that we should use a single section to draw
all graphs’ vertices and edges using only 1 draw call. When determining the number of sections
to draw, it is important to find and consider the balance between CPU and GPU load. With a
single section, the load on the GPU will be minimal, which is not the case with the CPU. This
will be especially noticeable when the user interacts with at least one of the objects in the scene.
The point is that any change to an entity that is rendered in a section causes all other entities in
that section to be redrawn. So, in the case of a single section for all entities, changing any object
will force a redraw of absolutely all the objects in the scene. With a large number of entities,
this would impose a huge and excessive load on the CPU.

There are a variety of possible ways to organize these components and objects, depending on
the required functionality and performance level. The following is a step-by-step look at how the
module’s architecture was designed, as well as improvements that were made to get the required
level of performance when rendering multiple large graphs.



Graph rendering system 42

7.2.2 Two sections for all entities
Initially, it was decided to split the process of rendering vertices and edges into two corresponding
sections. Such a solution will give us the possibility both to render the geometry for all types
of entities in parallel and to render only a certain type. Since collisions have no sections, the
structure that implies one provider with two sections entails generalizing their collisions. This
means that while only one type of entity can be redrawn, both types will have their collisions
recalculated once at least one of them is notified that it has been changed. For this reason, it
was decided to use two sections, but with two providers instead of one. Both providers will have
their own single section, so we have the possibility to redraw the geometry in parallel and to
recalculate collisions only for a certain type.

The model shown in Figure 7.3 shows the module structure with this partition. As an
example, the entity system stores 2 graphs. The first one consists of 3 vertices and 1 edge. The
second consists of 4 vertices and 3 edges. For the model to be compact, the contents of the entity
system have been hidden.

Figure 7.3 Graph visualization: two sections for all entities

The graph rendering system consists of two components and two providers assigned to them
for rendering vertices and edges, respectively. To render all vertices, the UVerticesRenderer
provider will be used in conjunction with the UVerticesRuntimeMeshComponent. Similarly, the
pair UEdgesRenderer and UEdgesRuntimeMeshComponent will be used to draw all the edges.

A provider’s job is to get a command to update the geometry or collisions of entities of its type.
After receiving the command, the provider reads the data of all entities of the same type and,
based on that data and the command, sends the generated data to the assigned component. The
component will then send the received data to the GPU memory in the case of geometry updates
or to the physics engine in the case of collision updates.

All graph vertices will appear in the scene as a “solid” geometry mesh with icospheres rendered
on the CPU and visualized by the GPU during the first draw call. Similarly, square cuboids for
the edges of graphs will be generated as a “solid” geometry mesh during the second draw call.
Thus, despite the fact that the entire mesh is essentially divided into two parts, the user will
perceive the mesh as a composition of vertices and edges presented as separate objects. As a
result, this representation matches the visual representation of a graph described in Section 4.2.



Graph rendering system 43

Due to the fact that there are two independent sections rendering each type of entity, we are
able to update geometry for either one type of entity or for both types simultaneously thanks to
section parallelization. Also, thanks to the separation into two providers, we have the ability to
update the collision for both entity types and for entities of a particular type. Despite the fact
that the number of draw calls will be equal to 2 (4 for VR), when rendering a large number of
entities, there will still be a large load on the CPU.

Consider a vertex color update as an example. In essence, this action means that only this
vertex needs to be redrawn with a new color. However, when a section is designed to render all
entities of the same type, this action will cause the geometry of all vertices to be redrawn, which
will be redundant and expensive for the CPU when the number of vertices is large.

The situation worsens when trying to manipulate the position of an edge. This action requires
redrawing not only the edge itself but also the vertices connected to it. As well as their collisions.
Although we are able to generate geometry for vertices and edges in parallel, this action requires
reading the data of all vertices and edges and then rendering them twice each (for geometry and
collisions). To minimize this CPU overhead when rendering multiple graphs, a solution described
in the next section was adopted.

7.2.3 Two sections for each graph
To reduce the CPU load, it was decided to go further and divide the architecture of the rendering
system in proportion to the number of graph entities. Thus, for each graph in the scene, there will
be an actor with the same two components and two providers for rendering vertices and edges.
The improvement is that each of these actors’ providers will only have to deal with rendering
the vertices and edges of one associated graph. So, if the user interacts with, say, one vertex of
a graph, then all the vertices of just this graph will be drawn again. As a result, the complexity
of both rendering geometry and calculating collisions will be reduced.

Complexity will not be limited by the total number of vertices and edges, as it was in the case
of two sections for all entities, but only by the number of vertices and edges in a corresponding
graph. This will reduce the load on the CPU but increase the load on the GPU due to the higher
number of draw calls. If for all entities in 2 sections we constantly had 2 draw calls (4 for VR),
now their number would be linear n · 2 (·2 for VR), where n is the number of graph entities and
2 denotes the vertices and edge providers. In this way, rendering 10 graphs with any number of
vertices and edges will produce 20 draw calls (40 for VR), which is a very acceptable load on
the GPU in this case. Also, note that when using this method, we will not lose the possibility of
parallelizing sections, since graphs in the scene are independent of each other.

This structure, in addition to improving the distribution of rendering resources among entities
within individual graphs, will provide a more unified interface between the graph rendering
system and the entity system. Since there is no limit on how many graphs can be loaded into the
application, when a graph is imported or created, a corresponding actor with two components
and providers will be created at runtime for its graph entity. In the same way, when a graph
entity is removed, the actor with all its components will also be removed. This leads to the fact
that the graph rendering system will depend directly on the sparse array where the graph entities
are stored. To unify the interfaces of the modules, the actors involved in drawing graph entities
can be arranged in a sparse array, similar to the method of storing entities in the entity system.

The main idea behind a more unified interface is that we can use the same identifier to access
graph entity data in the entity system and to send a command to a rendering actor of this graph
to update its visualization or collision. Likewise, to redraw vertices or edges, we can access a
graph renderer actor using an identifier of a parent graph included in vertex and edge entities
and send a command to a provider of an appropriate type. All of this will be possible because a
graph rendering actor is created, exists, and is removed along with the graph entity it represents
in the scene, which leads to identical populations of the sparse arrays in which they are stored
during runtime.



Graph rendering system 44

The model shown in Figure 7.4 shows the module structure with this partition. The entity
system contains the same 2 graphs, 7 vertices, and 4 edges as in the previous example. For the
model to be compact, the containment of vertex and edge entities in the entity system has been
hidden.

Figure 7.4 Graph visualization: two sections for each graph

In this model, we can see that the graph rendering system for this partitioning consists of
a single sparse array of UGraphRenderer actor instances. The number of instances equals the
number of graph entities in the entity system, and each instance has the same array index as
the graph entity it renders. Each instance of UGraphRenderer contains two providers and two
components, which were discussed in the previous section. They are still tasked with drawing all
vertices and edges. However, in this case, only all the vertices and edges of a graph entity that
their actor holder is related to.

This proposed structure allows for the recalculation of geometry and collisions for multiple
graphs and entity types, as well as for a specific type within a specific graph. In addition,
when interacting with multiple graphs at once, the types of modified entities will be rendered in
parallel. For example, removing an edge from graph entity 0 and a vertex from graph entity 1
will cause three sections to work. In the case of graph 0, the edge section within its actor will
be involved. In the case of graph 1, the vertex section within its actor will be involved. It will
also involve the edge section because, in this graph, any vertex is the endpoint of some edges.
According to the primary operations on graphs, described in Section 2.1, removing a vertex
implies removing all edges connected to it. Thanks to the structure of sections in the providers
and the plugin’s functioning, the work of these sections will occur in parallel.



Graph rendering system 45

For comparison, consider rendering 100 graphs, each with 100 vertices and 100 edges. In the
case of the previous method, where only two sections were considered, the number of draw calls
would have been 2 (4 for VR), and the complexity of rendering geometry or collisions during
interaction would have been 10,000, since interaction with a single entity would involve redrawing
all entities of the same type. With this structure, the number of draw calls would increase to
100 (200 for VR), and the complexity of rendering would significantly reduce to 100.

In summary, this partitioning contributes to more efficient load balancing between CPU and
GPU compared to the structure described in the last section. It implies a relatively small increase
in the number of draw calls but provides the ability to render only a graph whose components
have been altered. This structure is perfectly suitable for rendering numerous small graphs, such
as 100 graphs with 100 vertices and edges each, which implies rendering of 20,000 objects in total.
Nevertheless, when rendering the same number of objects but with a different number of graphs
and their topologies, we will still face performance problems on the CPU side. So, for example,
this structure will be ineffective for the visualization of a graph with 10,000 vertices and 10,000
edges, or for the visualization of 2 graphs, each with 5,000 vertices and 5,000 edges. The latter
is one of the non-functional requirements for the application described in Section 3.3.2.

The final and effective solution to be used in the resulting application will be the partitioning
described in the next section.

7.2.4 Chunked rendering
The solution, which in result will fulfill the non-functional requirement concerning the graph
visualization performance, will be the partitioning of the graph renderers into so-called “chunks.”
In the graph renderer, a chunk is a block that contains a certain number of vertex and edge
identifiers that it will be responsible for rendering. This solution is harder to implement because
each chunk will be an actor and must be created, stored, and deleted based on how many vertices
and edges are in a graph. However, its complexity is due to the fact that the design of this method
emphasizes efficiency in performing time-consuming tasks.

Less time-consuming tasks such as importing or removing a large number of objects from the
scene can be optimized by means of parallelization or asynchronization since they are performed
only by a user command, such as pressing a trigger. Real-time manipulation of objects is a
much more time-consuming task that involves changing the entity’s position data relative to
the position of the controller, recalculating the geometry, and rendering it afterwards. All of
these subtasks have to be handled on every frame. Looking ahead, this solution will provide the
necessary efficiency for this and many other tasks.

The point is that the relative complexity of the implementation is compensated by the ability
to arbitrarily balance the load on the CPU and GPU. The number of vertex and edge identifiers
in a chunk (hereinafter “chunk capacity”) governs this balance. The chunk capacity is inversely
proportional to the number of chunks in the graph and, consequently, inversely proportional to
the number of draw calls and directly proportional to the complexity of rendering geometry and
collisions. Thus, the smaller the chunk capacity, the more chunks will be created, resulting in
more draw calls on the GPU side but less complexity in rendering objects on the CPU side. If
the chunk capacity is too small, it will lead to the problem we had with the naive actor system
approach, which was discussed in Section 6.3. A chunk capacity that is too high will lead to the
situation with the 2-section approach for all vertices and edges, which was discussed in Section
7.2.2. This solution allows us to adjust this balance by changing just a number.

Speaking of efficiency, the complexity of rendering all entities of the same type in a chunk
with one draw call will be O(k), where k is the capacity of the chunk. The total number of
draw calls per frame will be

⌈
v
k

⌉
+

⌈
e
k

⌉
(·2 for VR), where v and e represent the total number

of vertices and edges in the scene. This expression has been obtained based on the fact that
each chunk will consist of 2 providers (for vertices and edges, respectively), and each of these
providers will render at most k entities of the corresponding type.



Graph rendering system 46

In this work, the capacity of a chunk will be fixed and set to provide the necessary efficiency
to visualize 10,000 vertices and 10,000 edges in VR. This number of components was derived
from one of the non-functional requirements described in Section 3.3.2. Figure 7.5 below shows
a graph showing the dependence of CPU and GPU load on the chunk’s capacity k.

Figure 7.5 Dependence between chunk capacity and CPU and GPU load

The black color represents the function y = k. This denotes the relationship between k and
the complexity of rendering all entities of the same type on the CPU side. The purple color
represents the function y = 2 · (

⌈ 10000
k

⌉
+

⌈ 10000
k

⌉
). This denotes the relationship between k and

the number of draw calls per frame when drawing 10,000 vertices and 10,000 edges on the GPU
side in VR.

The graph demonstrates that as k decreases, the less the load is on the CPU and the more
it is on the GPU. Correspondingly, the higher the k, the greater the load on the CPU and the
lower the load on the GPU. It can be established that the required rendering performance will
be achieved with an approximate equality of load between CPU and GPU. At k = 200, the
graph indicates that the CPU and the GPU will be loaded equally. Thus, the capacity of a
chunk will be fixed at 200, which assumes that a chunk renders at most 200 vertices and 200
edges. The rendering efficiency achieved by using this value will be tested during the application
performance testing phase provided in Section 10.2.

It should be noted that the data shown in the graph are only speculative, and the identification
of the load functions on the CPU and GPU was made without taking into account the load on
the CPU in the preparation of draw calls. This means that in practice, with a large number of
draw calls, a high load may be observed not only on the GPU side but also on the CPU side.

In addition to its high efficiency and many positive qualities inherited from the previous two
approaches, this solution also provides a number of possible ideas and improvements that could
be implemented in the future. Among them is the use of chunks with variable capacity, which
will allow the optimal load balance to be adjusted in runtime based on the number of vertices
and edges in the scene. Also, the number of draws can be reduced with the occlusion culling
algorithm. This will be possible due to the proper distribution of graph vertices and edges into
chunks. A chunk will form a bounding box consisting of vertices and edges that it renders, which
will later be used by the algorithm to draw only those chunks that are visible to the user. For



Graph rendering system 47

the algorithm to work efficiently, it is necessary to distribute entities into chunks so that each
chunk forms a bounding box as compactly as possible.

In this work, however, this algorithm will not necessarily be used in the most effective way,
and the graph vertices and edges will be distributed into chunks as they are added to the graph.
This will considerably simplify the process of creating new chunks and adding identifiers to them.

Summarizing all of the previously described aspects of graph rendering and entity systems,
the work of such a set of modules will enable the efficient addition, removal, processing, and
visualization of a large number of graphs with many vertices and edges.

Figure 7.6 shows a detailed model of how these modules work together. For clarity, the entity
system stores two graphs: G0 = ({0, 1, 2}, {(0, 1)}) and G1 = ({3, 4, 5, 6}, {(4, 5), (5, 6), (3, 6)}).
According to this, the graph rendering system has two graph renderers, each of which consists of
chunks. It is also worth noting that the capacity of the chunks in this example is 2, which implies
that each chunk is responsible for rendering at most 2 vertices and 2 edges of the corresponding
graph.

Figure 7.6 Collaboration of the entity system and the graph rendering system to represent two graphs



Chapter 8

User interaction with the
application

This chapter aims to describe the designed solution regarding the interaction of the user with
the application. The first section covers the design of the scene, which in essence will be a
workspace for the user. The second section describes the structure of the corresponding module
and its components. The third section aims at designing the user interface. The fourth section
discusses the designed tool system for working with graphs in the scene.

8.1 Scene
A graph, whether it was created locally or imported from an external file, must be visualized
within the application. Because it intends to make use of VR technology and the positions of
the graph’s vertices are established in 3D, the application will need to present the user with a
3D environment.

One of the most important concepts in game development is a game world. In Unreal Engine,
a world serves as a repository for all of the individual game levels that come together to form
the final game. It is also responsible for the streaming of levels and the generation of dynamic
game elements. A gaming area designed to contain and manage everything a player may see
and interact with, such as geometry, objects, particles, and so on, is commonly referred to as a
game level. In essence, the only game level of the application will be the 3D scene that has been
mentioned numerous times before.

The scene itself does not require architectural design, as its creation and deletion, as well
as the removal of all objects contained in it when closing the application, will be automatically
performed by the functionality of Unreal Engine. It is also important to note that, since the
specification of the assignment does not require the declaration of scene sizes or the management
of objects that are located outside its boundaries, Unreal Engine will also be responsible for
providing this functionality on its own internally. However, it is worth considering everything
about the visual representation of the scene itself.

As is the case with the X and Y components of the positions of the graph’s vertices, the Z
component is not constrained by anything. Consequently, the Z-axis of the scene in which graphs
will be located will not be bounded either, for example, by a ground. This indicates that it is
vital to provide an appropriate background for the scene in order to effectively immerse the user
in the application. To simulate that the user is located in an “unconstrained” environment in
which they can work with graphs, it was decided to use a space setting. Thus, the scene will be
presented as an empty space with a black background and images of stars on it.

48



User representation 49

In the process of designing the scene, lighting is also worth considering. It will be supplied by
a stationary diffused light source that will match the designed space environment and also have an
impact on the overall performance of the application. The fact is that by using this undirectional
type of lighting, we have the opportunity to completely eliminate rendering shadows at vertices
and edges of graphs. This will free up CPU and GPU resources, which will affect performance
in a better way.

8.2 User representation
A separate Player module will be provided to represent the user in the scene and provide all
possible functionality regarding working with a graph and moving around the scene. This module
will consist of a set of actors and components responsible for the corresponding tasks. It is
important to note that this module and all its components were designed based on the functional
and non-functional requirements specified in Section 3.3 and the use cases detailed in Section
3.4. Further in this chapter we will consider the most important components of the module,
which include their structures and workflow.

8.2.1 Pawn
One of the main components of this module is the VRPawn, inherited from the APawn actor
[33] provided by Unreal Engine. Its structure and workflow are shown below in Figure 8.1.

Figure 8.1 Structure and workflow of the VRPawn actor

This actor will be responsible for representing the user in the scene. This involves not only the
visual representation but also the interaction of the user with both the scene and the elements in
it. In essence, it will be the fundamental to which the other various components will be attached.
The core of its work will be the PlayerController actor [34], also provided by Unreal Engine.
Among the many PlayerController’s responsibilities are to accept both input from devices, and
commands to change the transformation of the user in the scene. So, for example, when it
receives a certain position or rotation, it is able to move or rotate the parent pawn in the scene
accordingly. This will make it possible to fulfill one of the functional requirements regarding user
teleportation and rotation.



User representation 50

Concerning the input data, PlayerController is able to receive information from input devices
and transform it into actions depending on the defined input mappings. In our case, the input
devices will be the VR helmet and the controllers of Oculus Quest 2. Therefore, the Oculus
OpenXR plugin will be used to process their inputs and transform them into specific actions,
as described in Section 1.3. As an example, suppose that we have a “RightTriggerPressed”
action defined in the input mappings whenever the trigger press factor of the right controller
is at its maximum value. For each frame, PlayerController will receive a current trigger press
coefficient from the real device. As soon as the coefficient reaches its maximum value, the
“RightTriggerPressed” action will be created and passed to the parent pawn, to which we are
subsequently able to react.

In addition to receiving input and creating actions, PlayerController also receives data about
the positions of the VR headset and controllers. Then, based on the source of these data, it
will send them to the following three components: CameraComponent, VRControllerLeft, and
VRControllerRight. It was decided to turn these objects into components (they will be inherited
from USceneComponent) for several reasons. First, it will improve the cohesion of their work.
Second, this structure makes it clear that neither the camera nor the controllers can exist without
a parent pawn, which makes sense. And third, most importantly, their positions and rotations
will be calculated relative to the pawn. Since the user can not only rotate his head and arms,
but also move around the room, the camera and the controllers will have their own position
and rotation in the scene. Moreover, their relativity will preserve their transformation during
teleportation or rotation of the parent pawn.

Unreal Engine’s CameraComponent [35] is a component that is in charge of representing the
user’s point of view within the application. In essence, this component in the scene will be a
reflection of the physical VR helmet, thereby being the user’s “eyes.” The user’s “hands” will
be the VRControllerLeft and VRControllerRight components. Thanks to the Oculus OpenXR
plugin, which was described in Section 1.3.2, they will appear in the scene as Oculus Quest 2
controller models, reflecting the user’s physical controllers. The design of these components and
a more detailed description of them will be provided in the next two sections. The tool system
associated with the right controller component will be presented later in Section 8.4.

It should also be noted that in the model shown in Figure 8.1, the connections between the
physical VR devices, the PlayerController component, and the camera and controller components
are bidirectional. This is because PlayerController is capable of not only receiving data from the
devices but also sending data. In fact, the physical headset as well as the controllers are both
input and output devices. Thus, the data containing the output image will be sent from the
CameraComponent to the physical headset through PlayerController. The output data for the
controllers can contain, for example, vibration, which can improve the user’s tactile sensations
and immersion in the application.

8.2.2 Right controller
The right controller will be considered the primary one, and thanks to it, the user will be able
to designate with which objects they want to interact. As demonstrated in Figure 8.2, this
will be accomplished by directing the laser to the appropriate object in the scene. Thus, every
frame a blue beam will be emitted from the front of the controller. Due to practical constraints,
the beam’s maximum length will be capped at 15,000 unreal units, which is equivalent to 150
meters. This length has been designated as “maximum” due to the beam’s ability to alter it. To
provide more immersiveness, the user should feel as though they are interacting with “physical”
objects in the scene. This requires that the beam do not go through anything it is directed
at. Simply put, the beam will “shoot” out as far as possible until it collides with the target, at
which point its length will be reduced to the distance between the controller and the target. The
implementation of the beam itself will not contain any internal logic since its task is essentially
just to be a visual representation of where and what the user’s controller is pointing at.



User representation 51

Figure 8.2 The use of a laser to identify an entity

In detail, the task of the controller will be to use Unreal Engine’s built-in features to produce
a line trace. The line-tracing process is represented by “shooting” out an invisible ray, which will
detect geometry between two points and, if geometry is hit, return hit result data. Both the beam
and its accompanying trace will be continuously and uniformly projected in the same direction
for each frame. To minimize potential mistakes when working with floating-point numbers when
the distance between the trace end and the object collision is exceedingly small, the trace length
will be constant and equal to the maximum beam length.

The hit result data contains a lot of useful information both about the tracing process and
about the collision of the object that collided with it. It includes an impact point, a reflection
normal, a collision triangle index, and much more. Only the information regarding the point of
impact, including the position in the 3D scene, will be essential in the scope of the controller’s
activity. It will be used to determine the distance between the controller and the object, allowing
the beam length to be adjusted accordingly.

In this way, the user will be able to designate the vertices and edges in the scene with which
they want to interact. However, this will not be enough to meet all functional requirements since
some use cases require interaction with the entire graph, and not just a single vertex or edge.
Since a graph entity itself does not have a visual representation, to solve this problem, it was
decided to design a so-called selection modes model, whose operation is shown in Figure 8.3.

Figure 8.3 Model of selection modes

This model will be activated by pressing and holding the controller’s grip and altered by tilting
the thumbstick left or right. It will consist of two modes: a vertex/edge and a graph. These
modes will be represented by a circular buffer and will be used to identify exactly with which type
of entity the user wants to interact. The default value will be “vertex/edge,” whereby pointing
the laser at a vertex or edge will cause that entity to be highlighted. When set to “graph,”
hovering the laser over a vertex or an edge will select all components of the parent graph of
that entity. This was designed with a bias toward the fact that when the user is pointing at a
component of a graph, it is impossible to uniquely identify what they want to interact with: a
component of a graph or the graph itself.



User representation 52

Also, the right controller will be used to interact with the UI, which will be described in
Section 8.3. This will be possible thanks to the data from the line trace, which also contains the
type of actor it collided with. By this type, we will be able to determine when the user interacts
with an entity mesh from a provider in the scene or with the UI itself, in which case the device
input data received by PlayerController will be redirected by the right controller to the UI.

In summary, it is important to note that the controller itself will not be engaged in retrieving
data about a hit entity from the entity system or highlighting entities in blue, as shown in Figures
8.2 and 8.3. This was mentioned and shown only for a more convenient and clear illustration of
its work. The controller’s tasks will only be to manage the laser, retrieve hit result data from
the line trace, and provide the ability to change the selection mode model that is attached to it.
All of these data will be sent to the tool system described in Section 8.4. Only then will the tool
system be able to use these data to actually work with entities and highlight them.

8.2.3 Left controller
The left controller will be considered the secondary one. Its main task is to provide functionality
regarding changing the user’s transformation in the scene. The controller thumbstick will be used
to rotate the user around their axis. Turning the stick to the left or right will turn the pawn in
the corresponding direction by 45 degrees, as indicated in one of the use cases. Before the actual
rotation, a fading effect will be applied to the camera to prevent the user from experiencing any
discomfort due to possible motion sickness. Additionally, a vibration of the controller will occur
in response to the user’s rotation.

In addition to rotating, the user will be able to teleport to the location indicated by the
controller for further exploration. A user-friendly method to indicate the desired teleportation
destination in a 3D space is essential to achieve this goal. This will be the movement of the
teleportation preview in relation to the controller. To put it simply, a sphere will be attached
to the end of the laser that is emitted from the controller and will serve as a pointer for where
the user will be teleported. This teleportation method is depicted in Figure 8.4 for simplicity of
comprehension.

Figure 8.4 Teleportation using controller-based position indication

In order to avoid distracting the user while they are using the application, the preview should
not be visible at all times. Thus, it will not be visible unless the user enters a movement state by
pressing and holding the controller grip. The movement state exposes the capacity to employ the
vertical deflection axis of the thumbstick, in addition to preserving the ability to rotate through
a horizontal deflection of the stick. By tilting the stick forward and backward, the user can
adjust the distance to the spot by pushing or pulling the preview. Pressing the trigger while the
controller is in the movement state will initiate the teleportation action, which, like the rotation
action, will be followed by the fading camera effect and the controller vibration.



User interface 53

The second, but no less important, functionality of the left controller is to be the “backbone”
to which the UI frame is attached. The UI frame and the left controller are components of the
system that provide visual representations. Thanks to this, we can take advantage of the Unreal
Engine functionality of attaching components to each other, which will allow us to get rid of
manually updating the frame position relative to the controller position. In this way, the frame
will always appear to the right of the controller, as shown below in Figure 8.5.

Figure 8.5 Attachment of the user interface to the left controller

It is important to note that the UI will be constantly visible to the user, and its presence in
Figure 8.4 has been hidden since the main focus has been on the preview of the teleportation.
The design of the UI itself will be provided in the next section.

8.3 User interface
One of the most important and integral parts of the application is the user interface. The UI
presented as a window attached to the left hand in the application could potentially provide
a unique and immersive way for users to interact with the application. This type of UI could
allow users to access and manipulate various features and functions of the application in a more
natural and intuitive way, as it would be similar to using their own hand to perform tasks.

It is important to consider common UI/UX principles when designing any user interface. In
the case of the UI presented in the VR application, it is important to consider both general UI/UX
principles and principles specific to VR. Some of the general principles to consider include:

Simplicity: Keep the interface simple and easy to understand, with clear and concise labels and
instructions.

Consistency: Use consistent design elements and patterns throughout the interface, such as
color, typography, and layout.

Clarity: Make sure the interface is easy to read and understand, with high contrast and legible
text.

Functionality: Ensure that the interface is functional and easy to use, with intuitive controls
and feedback.

User comfort: Consider the user’s comfort and ensure that the interface does not cause any
discomfort or motion sickness.



User interface 54

By following these principles, we will be able to create a UI that is intuitive, user-friendly,
and visually cohesive, and that does not distract the user from interacting with the graph objects
in the scene. This can help to enhance the overall user experience and ensure that the interface
is effective and enjoyable to use.

The structure of the designed UI will consist of three windows, as shown in Figure 8.6.

Figure 8.6 User interface: overall structure

The information window, located in the top right, is designed to provide the user with in-
formation about the entity to which their right controller is directed. This window is necessary
because it is technically more difficult to display information about an entity in the form of
an object within the scene. The contents of the window will change depending on the type of
entity to which the controller is directed. For example, if the controller is directed at a graph,
the window will display the number of vertices and edges in the graph, as well as whether it is
colorful or not. If the controller is directed at a vertex, the window will display the label and
color hex code of the vertex. If the controller is directed at an edge, the window will display the
labels of the vertices it connects and the value of its weight.

The keyboard window, located in the bottom right, is a type of interaction element that will
be used to enter a floating-point number. It was necessary due to the limitations of VR devices,
as described in Section 1.1.4. This window will typically be hidden, and will only be shown when
the user changes the weight of an edge in a graph.

The main window, located on the left, is the primary element of user interaction with both
the application and the tool system. It will consist of three tabs: tools, settings, and exit. The
settings and exit tabs are secondary, and their contents are shown in Figure 8.7.

Figure 8.7 User interface: secondary tabs



User interface 55

The settings tab, located on the left, consists of three checkboxes. The first checkbox, “Cam-
era Fade Animation,” is used to enable and disable the smooth camera fade animation when
rotating and teleporting the user. It will be enabled by default, but disabling it may be useful
for users with stronger vestibular apparatus to speed up movement through the scene without
the fade animation. The other two checkboxes, “FPS Stats” and “Unit Stats,” are provided
to display technical information about the application’s functioning, and are not necessary for
the average user. These checkboxes will be responsible for turning on/off the display of FPS
on the screen and information about the rendered geometry, including the number of polygons
on the screen and the number of draw calls. It is important to note that these settings will be
saved between launches and exits of the application, thanks to the corresponding Unreal Engine
functionality by using the internal configuration .ini files.

The exit tab, located on the right, serves to close the application. It’s panel is presented as
a confirmation window to ensure that the user is sure they want to close the application. The
“Yes” button immediately closes the application without preserving the work done in the scene.

The tools tab, shown in Figure 8.8, is considered to be the primary tab.

Figure 8.8 User interface: tools panel functioning

The tools panel in the main UI window is designed to work in conjunction with the tool
system and display all the tools available for use, as shown on the left. The panel will contain six
buttons, each representing a different tool. When the user clicks on one of these buttons, it will
set the corresponding tool in the tool system as “active.” After clicking the button, the panel
will change its contents to the active tool window, as shown on the right. Pressing the “Back”
button deactivates the tool and returns to the main tools panel.

The active tool window will provide various interaction items, such as buttons, lists, and
selectors, which the user can use to customize the functionality of the tool. The contents of the
active tool window will be directly related to the functionality provided by the tool. A detailed
description of the UI of each tool window, along with their workflows, is provided in Appendix
A for a more in-depth examination.

The tools panel itself will not contain any predefined tool buttons or their windows. Instead,
it will function as a placeholder for the corresponding windows and elements. This means that
the tool buttons for selecting the active tool will be added to the panel at runtime when the
application is started. This is done by accessing all the tools in the tool system and reading their
data, which includes the name of the tool and the icon that will be displayed for it. The data of
the tool itself will also contain a link to an asset with its pre-designed window. Thus, clicking on
one of the tools will cause the buttons of all the tools to be hidden and show the window with
the contents of the active tool.



Tool system 56

This structure is much more complex to implement than creating a predefined hierarchy of
windows in a single asset. However, it will significantly increase the extensibility of the system
and the convenience of adding new functionality. To add a new tool, it will be enough to
implement the tool itself, link it to the icon and its window asset, and add it to the tool system.
The panel will “automatically” display a button for the new tool and show its window when it
is activated by pressing the button. This allows the panel to be easily updated with new tools
as they are added to the tool system.

8.4 Tool system
The tool system is an integral part of the application, responsible for providing a range of
tools that the user can select and activate to perform various tasks and operations within the
virtual environment. The tool system serves as a conduit between the user and the application
functionality, receiving and processing data from the user’s actions and translating them into
appropriate commands for the entity system and the graph rendering system.

The tool system consists of many tools, each representing a different graph operation function-
ality. These tools include: import graph, export graph, create graph, edit attributes of entities,
manipulate positions of entities, and remove entities from the scene. The functionality of these
tools was defined during the definition of the functional requirements described in Section 3.3.1
and most of the application use cases described in Section 3.4.

Figure 8.9 shows the structure of the tool system as well as its operation and connection with
the right pawn controller and the entity and graph rendering systems.

To put it simply, the job of the tool system is to provide all the available tools on the UI and
allow the user to select one of them, thereby activating the tool. Once a tool is activated, all the
data received from the right pawn controller will be filtered and processed by the tool system
for the active tool. Based on this data and the functionality it provides, the active tool will send
appropriate commands to the entity system to change their data accordingly and request the
graph rendering system to redraw these entities to update their geometry in the scene according
to the altered data in the entity system.

Going into detail, the tool system will receive data from the right pawn controller every frame.
These data consist of physical controller input data, as well as hit result data, which contain
information about the geometry of the entity pointed to by the controller laser and the currently
set selection mode. Based on these data, the tool system can obtain the identifier of the entity
at which the user is pointing with the controller.

To ensure that the active tool is capable of performing the desired operation, each tool has
a definable set of entity types that it can work with. For example, a manipulator tool can work
with any type of entity, while the export tool only works with graph entities, since it is not
possible to export a single vertex or edge. The import tool does not work with any specific
entity, since all interaction with this tool is done through the user interface by selecting a file
from a list.

When the tool system obtains an entity identifier, it checks if the entity’s type is supported
by the active tool. If it is, the system passes the controller data and the entity identifier to the
active tool. In addition, it will also highlight this entity in the scene in blue. The highlight color
is used to visually indicate that the entity is being interacted with, as shown in Figures 8.2 and
8.3. Also, the information window will be updated so that it shows the information about the
selected entity.

The active tool processes the received data and sends appropriate commands to the entity
system and the graph rendering system to perform the desired operation. This may involve
changing the attributes or position of the entity, or removing it from the scene entirely. The
entity system and the graph rendering system are responsible for updating the data and geometry
of the entities in the scene according to the commands received from the active tool.



Tool system 57

Figure 8.9 Structure and workflow of the tool system

Each tool in the system is designed to be intuitive and easy to use, with clear and concise
labels and instructions. Tools are organized into a hierarchy, with all available tools being
grouped together. This organization helps to keep the interface organized and easy to navigate,
and allows the user to quickly and easily access the tools they need. A detailed description of
the UI of each tool window, along with their workflows, is provided in Appendix A for a more
in-depth examination.

It is also important to note that while no specific operation is being performed, the tool
system will simply highlight the selected entity in the scene to indicate that it is being viewed.
It means that even when no tool is active, the tool system will continue to process data from
the right pawn controller. This allows the user to view information about the selected entity in
the information window without the need to activate a specific tool. To facilitate this, the tool
system will not filter the entity type received as a result of data processing, and will accept any
entity type that is received.

As a result, this tool system was designed with extensibility in mind, making it easy to add
new functionality to the system in the future. By implementing new tools and adding them to
the tool system, it is possible to expand the range of operations that the application can perform.
This allows the application to remain flexible and adaptable as the needs of the user change over
time.



Chapter 9

Implementation

This chapter presents the implementation of a graph editing and viewing application in vir-
tual reality, including the implementation of the scene and user pawn, the visualization of
graphs, and the tool system and user interface. The scene and user pawn provide the virtual
environment for the application, while the graph visualization implements the rendering and
interaction with graph entities in the scene. The tool system and user interface enable the
user to perform various operations on the graphs, such as creating, deleting, and modifying
vertices and edges. The chapter also describes the challenges and solutions encountered during
the implementation process.

9.1 Preface
Prior to beginning the implementation process, it was critical to carefully consider which version
of Unreal Engine to use, as well as the desired development style and C++ version. After careful
consideration, it was decided to use Unreal Engine 4.27 for this work. This particular version
was chosen due to the fact that the author of this work has significantly more experience with
this version, as well as the fact that newer versions such as 5 and 5.1 include features (such as
Lumen and Nanite) that are not necessary for the scope of this project.

In addition to the game engine version, it was also necessary to decide on the C++ version
and development style to be used. It was decided to develop the application entirely in C++
without using the Blueprints visual scripting tool. This decision was made due to the advantages
of using C++ described in Section 1.2.2, including the ability to have all of the application logic
in one place as well as the ability to easily view and modify the code without having to open
the Unreal Engine editor. The version of C++ used for development was C++ 17, which is the
latest version officially supported in Unreal Engine 4.27.

The project structure was divided into two parts: logic and data. The logic of the application
was written in C++, while all of the application’s content, such as materials, static meshes, UI
layouts, and so on, was stored as assets in the Content folder of the project and could only be
opened and changed using the Unreal Engine editor. This separation was made to improve the
ease of working with content in the editor and maintain code cleanliness. By storing content in
the form of assets, it is possible to continue using pre-made assets, like UI layouts, and manipulate
them in the code. This approach allows for a more organized and efficient workflow.

To keep track of the development process and ensure that the code was organized and well-
maintained, the version control system Git was used. A remote repository was also created on
GitHub to store the code and make it easily accessible. This repository is available at: https:
//github.com/menshiva/graphs. The master branch contains the latest added functionality
and fixes, while other branches were created for each significant new feature or fix. These branches

58

https://github.com/menshiva/graphs
https://github.com/menshiva/graphs


Scene 59

were created from the master branch at the start of development for a particular feature and were
then merged back into the master branch once the feature had been implemented and manually
tested. To track progress, milestones were also defined before the implementation to mark the
completion of various parts of the application or significant fixes.

Each of these milestones represented a pre-release version of the application, and all of them
(including the final release version) were uploaded to the Releases section of the GitHub repos-
itory. This section allows users to download pre-built bundles of the application, including an
executable, and provides a way to review the development history of the project. All applications
releases are available at: https://github.com/menshiva/graphs/releases.

To begin the development process, an empty project was created from a blank template and
given the name Graphs as the working title for both the project and application. The project
was then configured for development on a 64-bit version of Windows, and various settings were
adjusted to optimize the project for VR use. The first step in the development process was to
create the foundation of the application: the scene.

9.2 Scene
The scene serves as a workspace for the user and an environment where various types of actors can
be created, including the user’s pawn. In this way, it was implemented as a Level asset containing
several predetermined actors to provide the visualization, which was described in Section 8.1.
This Level asset was selected in the project settings as the default, essentially making it the
starting point for the creation of actors when the application starts up. Among the predefined
actors are the following:

PlayerStart: an actor that allows to set the user’s spawn point when creating the scene.

SkyLight: a scene component that is a stationary source of diffused light.

SkySphere: an actor that represents a simulation of unbounded space.

To create an immersive environment for the user, a SkySphere actor was added to the scene.
This actor, as well as PlayerStart, is placed at the origin of the scene coordinate system. The
authors of the engine created this actor to allow developers to quickly create their own sky box,
which will be the background of the environment. The actor was copied from the Engine folder,
which contains pre-developed content that can be used by developers. It is based on a sphere
mesh with a material applied to it, which can be changed in the editor or during runtime to
control the appearance of the Sun, the height of the background ground, the brightness of the
stars, etc. All settings for this material are controlled through the SkySphere actor that uses it.

In this way, the copied SkySphere actor was brought into the scene and adjusted to enable
night mode, hide the moon and background ground, and increase the brightness of the stars.
The size of the mesh was also increased to 400 unreal units, which is a sufficiently large size
to prevent the user from getting ahead of the background. These modifications allowed for the
creation of an outer space environment around the user, as shown in Figure 9.1.

9.3 User pawn
After the scene was set up and ready for interaction, the next step was to implement a pawn that
would be responsible for handling input from the VR controllers and headset and displaying the
corresponding representation of the user in the scene. This required enabling the OpenXR and
Oculus OpenXR plugins. To do this, the project’s Plugins directory was opened, and both the
plugins were enabled. This allowed the project to use the Oculus VR runtime and the OpenXR
API, providing access to all the necessary functions to work with VR.

https://github.com/menshiva/graphs/releases


User pawn 60

Figure 9.1 Scene of the application. The Figure contains the appearance of the sky actor outside
its boundaries in the editor with brush wireframe view mode enabled (top) and the view inside the
boundaries of the actor from the user’s perspective (bottom).

Once the plugins were enabled, the next step was to create input mappings for controller
actions. This was done using the Unreal Engine Input System, which allows developers to define
input actions and axis mappings in a separate Action Mappings and Axis Mapping section in the
Input settings. Based on the user interactions with the application in Chapter 8, all actions that
could be taken to solve this problem were put together, including interactions with the control
elements of the controllers. These actions were named and assigned to the mapping groups:

Action: used to trigger events such as pressing, releasing, double clicking, etc.

Axis: used to trigger a binding event for each frame, as well as to output a floating-point
value set by specific keys, buttons, control sticks, or mouse inputs.

These defined mappings are shown in Figure 9.2 and will be referenced later in the code to
bind input events to gameplay logic.

After defining the necessary input actions and axis mappings, the next step was to implement
the pawn class and all of its components.



User pawn 61

Figure 9.2 Defined input mappings for the application

The AVRPawn class is the main pawn class in the application, responsible for representing
the user in the scene. It is inherited from the APawn class, which provides a lot of useful data
and functions for handling the pawn’s position and orientation, as well as input events through
the APlayerController class.

AVRPawn has several components attached to it, including a camera and two controller ob-
jects for the left and right hands. The camera is a UCameraComponent that is responsible for
rendering the view that the user sees on the VR headset. The controller objects are instances
of UVRControllerLeft and UVRControllerRight, which are inherited from the UVRController-
Base class. These controllers handle input events from the VR controllers and provide various
functions, such as vibrations and laser pointer functionality.

One of the important components of the UVRControllerBase is the MotionController compo-
nent, which is responsible for tracking the user’s hand movements and updating the position of
the VR controllers accordingly. The MotionController component is attached to the pawn’s root
component and receives input from the VR controllers through the PlayerController component.

In this way, the UVRControllerBase in the constructor gets information from the inheritors
about which controller they represent. Based on this information, it will be determined not
only to which of the sources the internal motion controller will be attached, but also the visual
representation of the attached controller. By default, Unreal Engine will try to load a static
mesh model that is compatible with the device that is driving the motion controller. This can
help make it easier and quicker to visualize the connected controller in the application.

In addition to MotionController, there will be another variation, MotionControllerAim. While
the regular motion controller was used to attach to the controller input source, which included
its position in the real world, and to visualize the VR controller mesh, the aim motion controller
will only be a socket for attaching other components.

The aim controller, unlike the regular one, is not located in the center of the VR controller
but near the trigger. Thanks to this, components such as the laser or selection mode can be
attached to it, and as a result, their position will be updated by the internal functionality of the



User pawn 62

Unreal Engine.
AVRPawn also has a USceneComponent called RootComponent, which serves as the root

component for all of the other components attached to the pawn. This allows for easier manip-
ulation of the position and orientation of the pawn as a whole.

The above hierarchy of actors and components can be displayed in a more convenient and
clear way in the Components tab of the Unreal Engine editor, as shown in Figure 9.3.

Figure 9.3 Hierarchy of components in the AVRPawn class

To make the pawn class the default pawn for the application, the project’s GameMode class
was updated to specify the AVRPawn as the default. This ensures that the pawn of AVRPawn
class will be spawned and controlled by the user when the application is run in VR mode.

After creating the component hierarchy, it was necessary to bind the input events to the
controllers. To do this, the SetupPlayerInputComponent function of the pawn ancestor was
overridden in the AVRPawn class. This function will be called as soon as the PlayerController
is assigned to the VR pawn instance, thereby defining the ideal moment to bind action and axis
mappings to the pawn functionality.

Since the mappings were defined mainly for controllers, it was decided to pass the respon-
sibility for binding a particular mapping to the appropriate controller. This means that when
the SetupPlayerInputComponent function is called in the pawn, it will call functions to bind
mappings for each of the controllers. Therefore, the left virtual controller will be responsible
for binding mappings only to the left real controller, and the right virtual controller will be
responsible for binding mappings only to the right real controller.

The following Code Listing 9.1 shows an example of code calling the mappings of the left
controller to implement teleportation. At the moment when the left controller’s grip is pressed,
a sphere preview appears, indicating the teleportation point. When the trigger is pressed, the
pawn is directly teleported to the position where the preview is located. For convenience, the
classes AVRPawn and UVRControllerLeft are provided on the single list.

Thus, the use of mappings and automatic controller visualization in this implementation will
bring high extensibility to the application in terms of adding support for new VR devices. For
example, to process input data and visualize controller meshes for new VR devices, all that is
required is to add the controls of the new controller to the appropriate action or axis mapping
group.

With all of AVRPawn components in place and all the input mappings bind and implemented,
the AVRPawn class can now be used as the pawn for the resulting application. The player will
be able to use the controllers to interact with the scene and the camera will render the scene
from the perspective of the player, as shown in Figure 9.4.



User pawn 63

Code Listing 9.1 Example of teleportation implementation using left controller input mapping

class AVRPawn final : public APawn {
public:

// receives a PlayerInputController as an argument , which is
// used for binding
virtual void SetupPlayerInputComponent(

UInputComponent *PIC
) override {

// pass input controller to both of the VR controllers
LeftVrController ->SetupInputBindings(PIC);
RightVrController ->SetupInputBindings(PIC);

}
private:

UVRControllerLeft *LeftVrController;
UVRControllerLeft *RightVrController;

}

class UVRControllerLeft final : public UVRControllerBase {
public:

// this function is declared in UVRControllerBase for taking
// the responsibility for binding a particular mapping to the
// appropriate controller
virtual void SetupInputBindings(UInputComponent *PIC) override {

// on grip pressed
BindAction(Pic , "LeftGrip", IE_Pressed , [this] {

// show the laser , ring , and sphere mesh
SetLaserActive(true);
TeleportRing ->Activate ();
TeleportRing ->SetVisibility(true);
TeleportPreviewMesh ->SetVisibility(true);
// additionaly , vibrate this controller
PlayActionHapticEffect ();

});

// on grip released
BindAction(Pic , "LeftGrip", IE_Released , [this] {

// hide the laser , ring , and sphere mesh
SetLaserActive(false );
TeleportRing ->Deactivate ();
TeleportRing ->SetVisibility(false);
TeleportPreviewMesh ->SetVisibility(false);

});

// on trigger pressed
BindAction(Pic , "LeftTrigger", IE_Pressed , [this] {

if (IsLaserActive ()) {
// teleports the parent pawn to the location of
// the preview , in world space
GetVrPawn()->Teleport(

TeleportPreviewMesh ->GetComponentLocation ()
);
// vibrate this controller
PlayActionHapticEffect ();

}
});

}
private:

UStaticMeshComponent *TeleportPreviewMesh;
UNiagaraComponent *TeleportRing;

}



Entity system 64

Figure 9.4 Controllers representation from the user’s point of view (both grips are pressed)

9.4 Entity system
After a successful implementation of the user pawn, it was time to start developing the graph
visualization in the scene. Since the designed architecture consisting of the backend and the
frontend implies that the frontend will be a visual reflection of the backend, it was decided to
start development with the graph backend, i.e., with the entity system.

To begin with, an entity signature was defined and created along with an entity identifier. The
signature is required to define the entity type and is represented in the code as an EntitySignature
enum with the underlying type of 8-bit unsigned integer. This enum contains values starting
from 0 for each of the possible entity types in the application, that is, vertex, edge, and graph.
The size value has also been declared. It represents the number of possible entity types, and is
also considered an invalid type.

The entity identifier was implemented as an EntityId class consisting of a pair of a 32-bit
unsigned integer and a signature value. The first field, “Index,” denotes the index of an entity
in one of the sparse arrays in the entity system. The second field, “Signature,” not only defines
the entity type but also forms a unique entity identifier along with the index within the scope of
the application. With the structure of the entity system as designed, it is impossible to create
a unique identifier without a signature. So, if vertex and edge entities have been added to their
respective sparse arrays, they will have an index of 0, which violates the uniqueness.

Their declaration in part is shown in Code Listing 9.2.
EntityId contains the NONE() function in addition to the constructor and unspecified func-

tions in the listing. It is a static function that returns a singleton specifically defined to denote
an invalid identifier. It will be used in cases such as indicating an error when an entity is created
or deserialized or to signify that the trace line of the right controller has not detected a collision
with any entity.

However, the main interest here are the Hash(EntityId) and Unhash(uint32 t) functions.
These functions are used to generate a hash value for a given EntityId, and to compute the
original EntityId that was used to generate the given hash, respectively. It was decided to choose
Cantor pairing and unpairing functions [36] as hash and dehash functions. Since EntityId is a
unique pair of two numbers, this function can be used to encode them into a single number. The
decision was made based on several features of this function:



Entity system 65

Code Listing 9.2 Entity signature and identifier declarations

// ---------------- EntityId .h ----------------
enum EntitySignature : uint8_t {

VERTEX = 0,
EDGE ,
GRAPH ,
SIZE

};

struct EntityId {
static EntityId NONE() {

static EntityId NoneId(-1, SIZE);
return NoneId;

}

EntityId(
const uint32_t Index ,
const EntitySignature Signature

) : Index(Index), Signature(Signature) {}

static uint32 Hash(const EntityId Id) {
return Utils :: CantorPair(Id.Index , Id.Signature );

}

static EntityId Unhash(const uint32 Hash) {
const auto [Index , Signature] = Utils :: CantorUnpair(Hash);
return EntityId(

Index ,
static_cast <EntitySignature >( Signature)

);
}

private:
uint32_t Index;
EntitySignature Signature;

};

// ---------------- Utils.h ----------------
constexpr static uint32_t CantorPair(

const uint32_t X,
const uint32_t Y

) {
return (X + Y) * (X + Y + 1) / 2 + Y;

}

static std::pair <uint32_t , uint32_t > CantorUnpair(
const uint32_t Val

) {
// Calculate the value of the upper bound of the
// pair of integers
const auto T = static_cast <uint32_t >(

floorf (-1.0f + sqrtf (1.0f + 8.0f * Val)) / 2.0f
);
// Calculate and return the pair of integers
return {

T * (T + 3) / 2 - Val ,
Val - T * (T + 1) / 2

};
}



Renderers 66

1. One-to-one correspondence: The Cantor pairing function creates a one-to-one correspondence
between pairs of integers and integers. This means that every pair of integers maps to a
unique integer and every integer maps back to a unique pair of integers. It will be useful
when creating a hash or dehash.

2. Compact representation: The Cantor pairing function represents pairs of integers using a
single integer. This can be useful when it is necessary to store or transmit pairs of integers
and to use a compact representation. Specifically, it will be useful when storing the EntityId
in collision metadata in the scene. This will allow the identifier to be stored despite the fact
that the metadata only supports storing a single number.

3. Easy to implement: The Cantor pairing function is relatively simple to implement, as it only
involves a few arithmetic operations. This makes it easy to use in a wide range of applications.

Next came the implementation of the entity types themselves. In the big picture, their imple-
mentation is no different from what was described when designing the entity system in Section
7.1. However, it is worth clarifying that such fields as bool IsHit and FColor OverrideColor were
added to the vertices and edges entities.

The IsHit flag has been added so that when rendering their geometry, it is possible to deter-
mine if an entity has been hit by a right controller trace and to render a color specifically defined
as the selection color. In the case of vertices, it would help to keep the color defined by the user
in the Color field. In the case of edges, this was done for code consistency.

The OverrideColor field in both entity types is intended to specify a secondary color. This
will be used, for example, in the remove tool, when selecting an entity by the right controller
trigger marks it red as the one to be removed. In the case of vertices, it will also help to keep
the user-defined color.

Speaking of the implementation of the entity system, it was implemented as a singleton class
storing three sparse arrays, one for each of the possible entity types. A small snippet of its
implementation is shown in Code Listing 9.3. As can be seen, this implementation uses the
template specialization of the private GetStorage methods. This gets rid of a lot of condition
checks in each of the public methods of the system, greatly improving the clarity and readability
of the code. Also, it eliminated the need to provide a base class for all types of entities and got
rid of runtime type information and completely eliminate the use of dynamic cast.

9.5 Renderers
Before starting to develop the graph renderer, the RuntimeMeshComponent plugin repository
was cloned [29] and added to the project as a submodule. By adding this plugin to the Build.cs
file of the main graph application module, the plugin was successfully integrated into Unreal
Engine.

First, the URendererBase class was created. This class is a base class for vertex and edge
providers. It inherits from the URuntimeMeshProvider provided by the plugin and generalizes
the provider logic for the vertex and edge renderers. This was done with the bias that each
URuntimeMeshProvider must be properly configured, i.e. its section must be created, a section
must be assigned material, each section must have parameters configured, and so on. Since the
difference between vertex and edge providers is only in the mesh and collisions they generate, all
the common logic of the two providers is covered in the base class to avoid code duplication.

In the base class, the overridden function Initialize reads an asset with material for a section,
creates a single section, and then configures it. For example, the visibility flag will be set to true
and the flag responsible for casting shadows using mesh normals will be set to false. Besides
that, the class also calculates the bounding box of the generated geometry to apply levels of
detail and an occlusion culling algorithm. In our case, one level of detail will be used, and the
occlusion culling algorithm will be applied to the entire graph.



Renderers 67

Code Listing 9.3 Excerpt of the implementation of the entity system

class ES {
public:

template <typename EntityType >
using StorageImpl = TSparseArray <EntityType >;

private:
static ES &GetInstance () {

static ES Singleton;
return Singleton;

}

template <typename EntityType >
StorageImpl <EntityType > &GetStorage () {

UE_LOG(LogTemp , Fatal , TEXT("Undefined␣type!"));
return StorageImpl <EntityType >();

}

template <>
StorageImpl <VertexEntity > &GetStorage <VertexEntity >() {

return Vertices;
}

template <>
StorageImpl <EdgeEntity > &GetStorage <EdgeEntity >() {

return Edges;
}

template <>
StorageImpl <GraphEntity > &GetStorage <GraphEntity >() {

return Graphs;
}

StorageImpl <VertexEntity > Vertices;
StorageImpl <EdgeEntity > Edges;
StorageImpl <GraphEntity > Graphs;

};



Renderers 68

The ChunkRenderer class is basically a place to store identifiers for a certain number of enti-
ties. It has two providers, one for vertices and one for edges, that are in charge of rendering those
entities. The GraphRenderers class is the storage for ChunkRenderers. Suppose a vertex needs
to be redrawn. The instance of the GraphRenderers class receives the command to redraw the
entity and its identifier. Then it searches for which ChunkRenderer is responsible for rendering
the vertex with the received identifier.

This flow should be optimized as much as possible because this sequence of actions, when
using, for example, the manipulator tool, will be called every frame. Code Listing 9.4 shows the
excerpt of the internal implementation of the GraphRenderer class.

Code Listing 9.4 Excerpt of the GraphRenderers class implementation

class AGraphsRenderers final : public AActor {
private:

UPROPERTY ()
TSet <AGraphChunkRenderer*> AllChunks;

TSparseArray <TSet <AGraphChunkRenderer*>> GraphsChunks;
TSparseArray <AGraphChunkRenderer*> VerticesChunksLookup;
TSparseArray <AGraphChunkRenderer*> EdgesChunksLookup;

};

Considering this implementation, it can be seen why the graph visualization frontend has
been referred to as a reflection of the backend several times within this paper. Its structure also
consists of three sparse arrays. However, in this class, they store references to created chunk
renderers. This solution does not save memory, but it allows for the identification of a chunk
responsible for rendering an entity with complexity O(1). It is also important to note that using
TSet to store all the created chunks is due to the fact that each chunk is an actor. TSparseArray
does not have the ability to work with the garbage collector, in contrast to TSet.

So, for example, when adding a new vertex to a graph, all the chunks will be enumer-
ated. When a free chunk is found or created, this vertex will be added to it. Then in Ver-
ticesChunksLookup using the index of the vertex identifier, the link to the chunk responsible for
its rendering will be added.

The next important task for the URendererBase class is to lock and unlock the critical section.
Since the generation of each section is asynchronous, the main application thread can change
entity data while being read by providers to generate meshes. For this, a critical section and
structure called RenderData have been defined. This structure is the same for both vertex and
edge providers. It contains three arrays for identifiers, positions, and colors of entities for which
a mesh or collision must be generated.

The ChunkRenderer will be involved in the generation of RenderData for the corresponding
provider when requested to render any type of entities. This action takes place on the main thread
and will not affect the read-write race condition. After the data for rendering is generated, it
is moved and saved in the provider to be rendered. And it is at this phase that the critical
section must be locked because while the data is being moved, the asynchronous rendering of
the previous data by the provider may occur.

Regarding the procedural generation process, a single material, shown in Figure 9.5, was used
for both vertex and edge sections. This material is extremely simple and does nothing but return
the color received as input.

The provider receives a render command from the chunk, along with render data, as part of
the process. Render data for vertices include their positions (vertex centers) and colors. The
vertex provider goes through all the positions in the render data and, in their place, generates
first-order icosphere geometry vertices and indexes, along with a color for each geometry vertex.
The icosphere is generated by copying a predefined pair of vertex and index arrays. These arrays



Renderers 69

Figure 9.5 Material for vertex and edge providers

were manually generated using an algorithm [37] and hardcoded inside the vertex provider. After
copying the icosphere, all the vertices of its geometry are moved to the position of the graph
vertex.

The vertex collisions are generated in a similar way, but without color and with a zero-order
icosphere. In addition, each collision triangle of one entity stores its identifier using the Cantor
pairing function. This is necessary so that when the right controller traces, it is possible to
retrieve the entity identifier from the triangle.

For the edge provider, its mesh generation is slightly different from that of the icosphere.
Since an edge is rotated, it is generated in runtime by rotating the vector and saving positions.
Thus, one face of the edge will be generated. Its positions will be moved to the first vertex to
which the edge connects, scaled by the defined value, and then this face will be copied and moved
to the second vertex to which the edge connects.

Therefore, with the correct layout of chunks, renderers, and providers and the correct imple-
mentation of locking and unlocking the critical section and the procedural generation algorithm,
the first result was obtained, as shown in Figure 9.6. This figure shows the graph with eight
vertices and eight edges, which was used in manual testing during the development.

Figure 9.6 Visualized colorful graph with eight vertices and eight white edges



Renderers 70

As can be seen, the edges of this graph are drawn in white. This is because the edges do not
have their own specific color. Despite this, thanks to the procedural generation method, there
is quite a lot of flexibility in controlling single vertices, indices, and geometry colors. Since the
color in the material is assigned to each geometry vertex, when generating graph edges, the color
of the first graph vertex can be applied to the first face geometry vertices, and to the second face
geometry vertices, the color of the second graph vertex, respectively. This will result in smooth
interpolation of the edge color from the first vertex of the graph to the second vertex, as can be
seen in Figure 9.7.

Figure 9.7 Visualized colorful graph with eight vertices and eight colored edges

Although such functionality is not a functional requirement for the application, this feature
was demonstrated to the thesis supervisor, Ing. Petr Pauš, Ph.D., and subsequently approved.

In addition, by disabling mesh generation and activating the pxvis collision console command,
the generated collision can be examined in detail. As can be seen in Figure 9.8, it resembles the
mesh itself from afar, despite the fact that much fewer geometry vertices and indices are involved
in its generation.

Figure 9.8 Visualized collision of the graph with eight vertices and eight edges



Tool system and user interface 71

9.6 Tool system and user interface
Based on the UI design done in Section 8.3, the UWidgetComponent was attached to the left
controller. This class provides a surface in the 3D environment on which to render widgets
normally rendered on the screen. Because of this, making a UI for VR with WidgetBlueprint
assets will not be any different from making a regular UI.

In this way, using the Unreal Motion Graphics UI Designer (hereafter UMG), the menu asset
was created as shown in Figure 9.9. It is essentially the foundation for laying out all the other
UI assets. It was decided to make the entire UI in a dark style to give more resemblance to the
designed space.

Figure 9.9 Menu in the designer window

It is worth noting the strengths and weaknesses of UMG. One of the strengths of UMG is
the ability to inherit widgets. Due to this feature, a separation of the UI logic in C++ code and
the visual part in the widget asset has been implemented.

It works by creating a new class in the code inherited from UUserWidget. Then some func-
tionality can be added to this class. In UMG, a new widget must be created and inherited from
the class created in the code. After that, it is possible to use logic written in C++ inside the
widget. Moreover, once any widget is declared in an ancestor class field and given a name, the
widget of the same type with the same name in the descendant widget will be related to each
other. Thus, it is sufficient to change some properties of the widget in the code, and then these
changes will be automatically reflected in the descendant widget as well. This feature is widely
used in the practical part of the work.

Among the weaknesses of UMG is its quite limited library of pre-made widgets. Therefore, to
provide the necessary elements of interaction with the UI in a homogeneous style, the following
widgets were created: a text button, an icon button, a tool button, a checkbox, a list item for
an import tool, and an option selector. The developed widgets were used throughout the entire
UI of the application, providing the necessary interaction elements in a uniform style.

As for the tool system, it was implemented based on the design provided in Section 8.4.
Each tool was implemented based on the application requirements listed in Section 3.3.1 and the
design in Appendix A. In addition, it should be noted that the RapidJSON [38] library was used
in the implementation of import and export tools to work with JSON objects.



Chapter 10

Results

This chapter presents the findings from user testing and the performance measurements of the
resulting application. The user tests were conducted to assess the usability and user experience
of the application, while the performance measurements evaluated the application’s ability to
handle a specified number of objects in the scene. The chapter concludes with a summary
of the work and suggestions for potential improvements and new functionality that could be
implemented in the future.

Before providing information about the user tests, it is also worth noting that some form of
testing was also carried out throughout the development of the application. Thus, during the
development of each of the main parts of the application, its functionality was tested and verified
to see if it fulfilled certain functional and non-functional requirements or was somehow involved in
their fulfillment. In addition, during development, a large number of different assert macros (the
equivalent in Unreal Engine is a check macro) were written into the code. This greatly helped to
detect and diagnose unexpected or invalid runtime conditions during development and determine
if the flow of the implemented functionality worked as originally conceived and described in the
design phase.

10.1 User tests
Conducting user tests is an important step in the development of any application. It allows
developers to gather valuable feedback from users and identify any problems or issues that may
exist in the application. The goal of conducting user tests within the scope of the work was to
verify the functionality of the application and identify any issues or difficulties users may have
while using the application and to gather feedback on the overall user experience.

A total of 4 participants were recruited for the user tests. The test participants were divided
into two groups: experienced and inexperienced. The experienced group consisted of individuals
who had previously worked with VR and had some experience with it. The inexperienced group
consisted of individuals who had never worked with VR before and who were trying it for the
first time.

The tests were conducted 2 days a week apart. The first day was spent familiarizing inexpe-
rienced users with VR, working in it, and using the Oculus Quest 2 headset. This was followed
by an introduction to the functionality of the developed application for both experienced and
inexperienced participants, during which the users were observed as they interacted with the ap-
plication and recorded any problems or difficulties they encountered. Participants were asked to
complete a series of tasks using the resulting application, such as creating and importing graphs

72



User tests 73

as well as viewing and interacting with existing graphs. The test scenarios on the first day for
both groups were the same and consisted of the following tasks:

1. Create a graph using the create tool and add vertices and edges to it.

2. Edit the properties of the created graph and its components using the edit tool.

3. Move/rotate the created graph using the manipulation tool.

4. Export the graph using the export tool.

5. Remove some of the vertices and/or edges and then the entire graph using the remove tool.

6. Import the previously exported graph using the import tool and ensure that it has the same
structure as before the removal.

The testing conducted on the second day aimed to test the application’s ability to recover the
graph work done on the first day. It also included a series of tests during which an observation
of the behavior of the participants was made. The test scenarios on the second day consisted of
the following tasks:

1. Import the graph created and exported on the first day and make sure that its representation
is identical to that on the first day.

2. Take the headset off, minimize the application, and change the structure and/or properties
in the JSON file of the graph just imported.

3. Import a new graph from the modified file and make sure that the application correctly
reflected the changes made or correctly pointed out the JSON file structure error.

4. All from the first day’s test scenario.

As can be seen, the tests performed 2 days a week apart differ from each other only in some
aspects and could have been performed in one day. However, it is important to clarify that this
division of the testing process was carried out using a gap of one week to test ease of learning
of the participants on the first day regarding work with the resulting application, as the second
day of familiarization with the functionality was not carried out.

The observations made on the participants while using the application consisted of testing
two main aspects: functionality and usability. The first aspect covers the main functionality
of the application, such as creating and editing graphs, working with external files, interacting
with graphs, and viewing graphs in VR. The goal of the second aspect was to assess the overall
usability of the application and identify any issues or problems that users might encounter while
using it. The time it took the participants to complete each task was recorded, as well as any
problems or difficulties they encountered while performing the tasks. Users have also been asked
to provide verbal feedback on their experience using the application, as well as any suggestions
they had for improvement.

Overall, the user testing process was a success. All participants were able to complete
the tasks assigned to them using the application without any major issues on both the first
and second days of testing. The results of the user tests showed that both experienced and
inexperienced users were able to complete the tasks in a relatively short amount of time and
without encountering any major problems or difficulties. The experienced users were able to
complete the tasks slightly faster than the inexperienced users, which was expected, as they had
some prior experience with VR. However, the difference in the time it took for both groups to
complete the tasks was not significant.

The results of the observation with respect to the functional aspect of the application were
positive. The user satisfaction survey showed that all users were satisfied with the application’s



Performance tests 74

functionality and found it very useful, especially in the field of education. The results of the
observation regarding the usability aspect were also generally positive. Users reported that they
found the application easy to use and that they did not encounter any significant usability or
performance problems while using it.

However, a few areas for improvement were identified based on user feedback. Some partici-
pants did experience minor usability issues while using the application. Among these are:

1. Difficulties in distinguishing between the color defined to indicate the highlighted entities and
the color specified by the user himself. This happens only in some rare cases, such as when
the color of the vertex approximates the blue color of the selection.

2. The relative difficulty in getting used to switching selection modes on the right controller. All
participants were able to adjust to this solution, and their user experience improved over the
course of the testing, particularly on the second day. Nevertheless, on first use, users found
the solution relatively difficult to get used to.

3. The information window on the left controller is not in the most convenient location. This
was noted in cases where the participant was pointing the right controller at an entity to
examine its data. To do this, they had to use both hands, aim at an entity with the right
controller, and pay attention to the information window on the left controller while doing so.
The majority of participants noted that this solution was “not the most comfortable.”

All comments, suggestions for improvements, and new functionality additions received during
the participant survey were noted, addressed, and will be resolved in future iterations of the
application. These problems, along with ideas to improve the application, will also be discussed
in Section 10.3.

In conclusion, the user testing of the resulting application showed that the application is
generally easy to use and that it fulfills all of its functional and non-functional usability require-
ments. Users found the application to be intuitive and easy to understand and did not experience
significant issues or problems while using it.

10.2 Performance tests
Performance tests are used to measure the performance of the entire application or component.
These tests can help identify bottlenecks, optimize performance, and ensure that the system
or component can handle expected workloads. As part of this work, performance tests were
conducted to ensure that the application meets one of the non-functional requirements to visualize
at least 2 graphs with 5,000 vertices and 5,000 edges each at the same time and at least 10 graphs
with 1,000 vertices and 1,000 edges each at the same time while maintaining 90 FPS.

The testing was performed using the Stats system [39] in Unreal Engine to capture session
statistics while rendering several graphs of different sizes and manipulating them. The results of
each of the sessions were analyzed in the Profiler window in the engine editor. Figure 10.1 shows
an example of what the results of a session capture look like. The window displays a lot of useful
information, including a graph view where the load on the game and render threads throughout
the session can be observed, as well as an FPS histogram.

Before testing, the application was built in the “Development Editor Win64” configuration
and run. Testing was carried out as follows. After the application was launched, the Stat
StartFile console command was used to start collecting statistics. Next, graphs of the same
size were sequentially imported into the scene until no performance problems were detected.
Immediately after each graph was imported, a manipulator tool was applied to it. It was chosen
because it is the tool that involves changing the graph entity data and redrawing it each frame,
which was an excellent test of the application’s ability to redraw a graph while interacting with
it.



Performance tests 75

Figure 10.1 Profiler window

If performance problems were detected, the session recording was end with Stat StopFile
command, and the application was closed. Then a new session was started during which graph
visualization testing of larger graphs was conducted. This was repeated for all generated graphs.
In general, these tests were aimed at determining the maximum number of graphs of the same
size that can be displayed simultaneously in the scene while maintaining 90 FPS.

To generate large graphs, a small script was written in Python. The code for this script is
provided in Appendix B. Graphs with the following numbers of vertices and edges were generated
for testing:

1,000 vertices and 1,000 edges

5,000 vertices and 5,000 edges

10,000 vertices and 10,000 edges

15,000 vertices and 15,000 edges



Performance tests 76

The Oculus Quest 2, VR headset with the following specifications, was used for testing:
CPU: Qualcomm® Snapdragon XR2

GPU: Qualcomm® Adreno™ 650

RAM: 6 GB
To be more informative during testing, the maximum refresh rate of the headset was set to

120 Hz.
The testing was conducted on an HP OMEN GT13 personal computer and a Lenovo Legion

7 laptop. Personal computer configuration:
CPU: Intel® Core™ i7-10700K CPU @ 3.80GHz 3.70 GHz

GPU: NVIDIA GeForce RTX™ 3070

RAM: 32 GB

OS: Windows 11 Home, x64, 22H2 22621.963
Laptop configuration:
CPU: AMD Ryzen™ 7 5800H

GPU: NVIDIA GeForce RTX™ 3060 Laptop

RAM: 40 GB

OS: Windows 10 Pro, x64, 22H2 19045.2364
The test results are presented in Table 10.1.

Table 10.1 Performance test results

Graph Personal computer:
maximum quantity

Personal computer:
commentary

Laptop:
maximum quantity Laptop: commentary

1,000 vertices
1,000 edges > 50

120 FPS stable;
only from graph
52 dropped to

110 FPS

24
at 24th graph

FPS drops from
120 to 70-80

5,000 vertices
5,000 edges 7

rare drops to
90 FPS from
5th graph;

from 7th graph
stable 60 FPS

4

varies between
90-120 FPS;
at 4th graph
FPS drops to

60-70

10,000 vertices
10,000 edges 4

rare drops to
60 FPS when

manipulating 4th
graph

2
2nd graph

manipulation
occurs at 60 FPS

15,000 vertices
15,000 edges 2

stable 60 FPS
when

manipulating 2nd
graph

1 rare drops to
50-60 FPS

Based on this data, it can be noted that the application not only fulfills the non-functional
requirement for performance but is also able to render much more graphs than specified of even
larger size. It is also worth noting that the data was obtained during testing of the Development
Editor version of the application. In the Shipping version of the application for release, the result
may be even better.



Conclusion and future work 77

10.3 Conclusion and future work
Although the application has already achieved a high and required level of functionality and
performance, there are still many areas for further improvement and development. The fol-
lowing list presents with a potential future work directions for this application, including fixes,
improvements and new features:

1. Dynamic chunk size

2. Distribution of entities by chunk, taking into account the effectiveness of occlusion culling

3. Several levels of detail for the geometry

4. Support for directed and mixed graphs

5. Handle self-loops in graphs

6. Make the entity highlighting with the glow

7. Allow the information window to float

8. Support for various VR devices

9. Visualization of graph theory algorithms

In conclusion, the goal of this thesis was to design, develop, and test a standalone software
product that can visualize graphs in VR and offers tools for performing certain operations on
such graphs. To achieve this goal, various aspects of VR application development and graph
representation were analyzed and considered.

The system was designed to represent graphs in 3D space and provide users with tools to
work with them in a VR environment. The design of the system considered user comfort, content
optimization, and the limitations of VR platforms. Additionally, the system was designed to be
able to render and visualize huge graphs while simultaneously accepting and processing user
queries without interruption.

The proposed representation of graphs was designed to be easily editable and manipulable
in VR, as well as being easy to save and retrieve from an external file. The resulting system is
able to accept user requests for operations on a graph and, based on those requests, render and
alter a relevant graph in 3D space with the use of VR technology. The system was designed to
provide an alternative way to represent and interact with graphs, making it more convenient and
understandable for users.

Several optimizations for the entire application were presented to achieve high system per-
formance. With these improvements, the system was able to reach and go beyond the level of
performance needed to draw and process a number of very large graphs.

Through the development and testing process, it was demonstrated that the resulting system
is able to effectively visualize and manipulate graphs in VR, providing users with a new and
convenient way to work with them. It is believed that the resulting system has the potential to
be a useful tool in a variety of fields, including education and research, where the visualization
and manipulation of graphs is important.

Overall, the successful completion of this project demonstrates the feasibility of using VR
technology to represent and interact with graphs in a more intuitive and engaging way. It is
hoped that the resulting system will make a valuable contribution and be of use to a wide range
of users.



Appendix A

Tools design

This document contains a detailed description of the functionality and operation of all the tools
provided in the application. Each tool is carefully designed to meet the functional requirements
of the application and the use cases defined in the analysis phase in Chapter 3, ensuring that
they are easy to use and effective in performing their intended tasks.

The design of each tool includes a full description of its functionality and operation, as well as
the design of its user interface and a process diagram. This information is essential to understand
how each tool works and how it can be used to achieve the desired results.

A.1 Import
The import tool is an important part of the application, as it allows the user to bring graph
structures from external files into the virtual environment for further manipulation and interac-
tion. The tool is designed to be user-friendly and easy to use, providing a simple and intuitive
way for the user to select a file from the shared folder and import a graph into the scene with
which they can begin to work.

A.1.1 Main window
Figure A.1 shows the main window of the import tool, which contains a list of all available JSON
files located in the shared folder for import and export purposes. This window is presented to
the user when the import tool is activated and allows the user to select a file to import. The list
is presented in a scrollable container and displays the name of each file. The user can select a
file by clicking on its name in the list.

The main window is designed to be intuitive and easy to use, with a clear layout that makes
it easy for the user to find and select a file to import. It is also designed to be responsive and
dynamic, with the ability to refresh the list of available files at any time. This ensures that the
user always has the most up-to-date information about the files available for import, making it
easy to keep track of new and modified files.

78



Import 79

Figure A.1 Import tool: main window

A.1.2 Loading window
The loading window of the import tool, shown in Figure A.2, is presented to the user when the
tool is reading the contents of the selected file and attempting to deserialize the object. This
window is designed to provide the user with visual feedback that the tool is still working, as the
import process may take some time, especially for larger graphs.

The loading window consists of a single element, an infinite progress bar, which is displayed
in the center of the window. This progress bar is designed to rotate continuously, intending to
keep the user informed and provide a sense of progress.

Figure A.2 Import tool: loading window

A.1.3 Result window
The result window of the import tool is presented to the user after the tool has finished processing
the selected file and attempting to deserialize the object. This window is designed to provide the
user with information about the result of the import process, as well as the option to confirm



Import 80

the result and return to the main window with the list. The result window can be in one of two
states: a success state or an error state.

If the graph has been successfully imported without any problems, it will be immediately
drawn in the scene and the window will display a message indicating that the import was suc-
cessful, along with a green OK button that the user can click to confirm the result and close the
window. The result window in the success state is shown in Figure A.3.

Figure A.3 Import tool: result window in the success state

If there was an error during the import process, the window will display a message indicating
that an error occurred, along with a description of the error and a red OK button that the user
can click to confirm the result and close the window. The result window in the error state is
shown in Figure A.4.

Figure A.4 Import tool: result window in the error state

A.1.4 Process model
The business process model illustrated in Figure A.5 shows the functioning of the import tool
and steps involved in the process of importing a graph into the virtual environment.



Im
port

81

Figure A.5 Import tool: process model diagram



Export 82

A.2 Export
The export tool is a feature that allows users to save the structure of a graph from the virtual
environment to an external file. It allows users to save their work and make it possible to reuse
it later, which is especially useful when working on large or complex graphs that take a lot of
time to build. With this tool, users can save their progress and come back to it at a later time
without having to recreate the entire graph from scratch.

Despite the fact that the export tool’s functionality is diametrically opposed to that of the
import tool, their sets of windows are identical, and their contents differ only in a few places.

A.2.1 Main window
Figure A.6 shows the main window of the export tool, which is used only to prompt the user to
select a graph in the scene that they wish to export. It does not display a list of files like the
main window of the import tool, as the export process always creates a new file with a randomly
generated name in the shared folder for import and export. In order to select a graph, the user
will use their right controller to point at the desired graph and press the trigger to confirm the
selection.

Figure A.6 Export tool: main window

A.2.2 Loading window
The loading window of the export tool is identical to the loading window of the import tool,
which was described in Section A.1.2.

A.2.3 Result window
The result window of the export tool is displayed to the user after the export process has been
completed. It is used to inform the user of the outcome of the process and provide any additional
information necessary. Depending on whether or not the export was successful, the result window
will be displayed in one of two states.

If the export was successful, the window will show the result message and the OK button to
confirm the result. It will also display the name of the file that was generated and in which the
serialized structure was written. This information is provided to allow the user to easily locate



Export 83

the file for future use or reference. The result window in the success state is shown in Figure
A.7.

Figure A.7 Export tool: result window in the success state

If the export was not successful, the window will show “Error” and a description of the error
that occurred. The structure of the window in the error state will be the same as that of the
import tool provided in Figure A.4.

A.2.4 Process model
The following business process model provided in Figure A.8 outlines the process of how the
export tool functions within the application, from the activation of the tool and the initiation of
the export process by the user to the final confirmation of the result.



E
xport

84

Figure A.8 Export tool: process model diagram



Create 85

A.3 Create
The create tool is designed to allow users to manually build graphs in the application. It offers
three distinct modes of operation, each of which is intended for creating a specific type of entity.

A.3.1 Main window
The create tool’s user interface consists of a single main window. Its main part is a circular
selector, which allows users to choose the type of entity they want to create. There are three
options available: vertex, edge, and graph.

In vertex creation mode, shown in Figure A.9, the user is prompted to choose a graph in the
scene to which they want to add a new vertex (left). After the selection is done, the user will be
prompted to specify the position in the scene for a new vertex (right). This will be done with a
vertex preview attached to the laser of the right controller, which the user can move. Clicking
on the trigger of the right controller will create a vertex at the desired position and add it to
the selected graph. This action can be performed until the user changes the current mode or
deselects the graph. For this purpose, a Deselect button is provided on the window, clicking on
which will cause the graph to be deselected.

Figure A.9 Create tool: main window in vertex creation mode

In edge creation mode, shown in Figure A.10, the user is prompted to select a first vertex
of a future edge in the scene (left). After the selection is done, the user will be prompted to
select a second vertex (right). After the first vertex is selected, the window will also show a
Deselect button to reset the edge creation. This mode, however, implies the validity check of
the edge. So, the edge cannot connect two vertices that are already connected and the two
selected vertices must be from the same graph. After user selection of a second vertex and
successful validation, the graph will be redrawn taking into account the new edge. In the event
of unsuccessful validation, the second vertex selection will be reset.

In graph creation mode, shown in Figure A.11, the user is prompted to specify the position
in the scene for the first vertex of a new graph. As in the case of vertex creation mode, this will
be done using the provided vertex preview attached to the laser of the right controller. Once the
position is chosen, the tool will create an empty graph entity and add it a new vertex placed at
the specified position. The newly created graph will then be automatically selected, and the tool
will switch to the vertex creation mode so that the user can immediately start adding additional
vertices to the graph.



Create 86

Figure A.10 Create tool: main window in edge creation mode

Figure A.11 Create tool: main window in graph creation mode

A.3.2 Process model
The following business process model provided in Figure A.12 represents the process of the create
tool functioning. The model shows the steps involved in each mode of the create tool, including
the creation and addition of new entities to a graph, the user’s actions, and the tool’s responses.



C
reate

87

Figure A.12 Create tool: process model diagram



Edit 88

A.4 Edit
The edit tool is an application feature that allows users to alter the attributes of graph, vertex,
and edge entities in the scene. When using the edit tool, the user first uses the right controller to
select an entity in the scene. The user interface of the edit tool will consist of a series of windows,
depending on the type of object selected. All of the three windows will contain a list of all the
object’s editable properties, which the user can modify as needed. In all three windows, changes
made to the properties of an object are immediately applied and can be saved or discarded using
the Save and Cancel buttons.

A.4.1 Main window
Thus, when the tool is activated, the main window will be displayed with a prompt to select an
entity in the scene. The design of this window is shown in Figure A.13.

Figure A.13 Edit tool: main window

A.4.2 Vertex window
For a vertex object, the edit vertex window is displayed. Depending on whether the parent graph
is colorful or not, this window will display either a prompt that the parent graph is not colorful
or a field to change the color of the vertex, which is shown in Figure A.14.

The field consists of a number of buttons, each of which displays a preview of a pre-defined
color. By pressing the button, the color is applied immediately to the selected vertex. In addition,
the field also has a button for applying a randomly generated color to the vertex. It is worth
noting that such a solution to change the vertex color by using buttons with predefined colors
was adopted in accordance with the fact that Unreal Engine does not provide any built-in widget
to change colors, such as a color picker.

A.4.3 Edge window
For an edge object, the edit edge window shown in Figure A.15 is displayed. It contains only the
field for changing the weight of the selected edge. When this window is displayed, the field will
be pre-filled with the current value of the selected entity’s weight. Focusing on this edit field will
display a virtual numeric keypad window for entering a floating point number.



Edit 89

Figure A.14 Edit tool: edit vertex window

Figure A.15 Edit tool: edit edge window

A.4.4 Graph window
The edit graph window shown in Figure A.16 will be displayed if the graph entity is selected. It
allows users to change the colorful property of the selected graph through a tick button. If the
colorful property is set to true, this window expands to provide more options to change the color
of all vertices in the graph. This includes a field similar to the one contained in the edit vertex
window, with buttons for applying a predefined or randomly generated color. In this window,
however, a predefined color will be applied not to one vertex, as it was in the case of the edit
vertex window, but to all vertices in the selected graph. This feature was specifically designed
for the user’s convenience by applying a single color to all of the graph’s vertices.



Edit 90

Figure A.16 Edit tool: edit graph window

A.4.5 Process model
The following business process model provided in Figure A.17 represents the functionality of the
edit tool. It consists of three different activity flows, one for each of the possible entity types that
can be edited: vertex, graph, and edge. Each activity flow will follow the same basic logic, with
the user first selecting an entity and then making changes to its properties using the tool’s user
interface. The flow will then branch based on whether the user decides to save their changes or
cancel them, with the former resulting in the changes being applied to the entity and the latter
resulting in the entity being restored to its previous state.



E
dit

91

Figure A.17 Edit tool: process model diagram



Manipulate 92

A.5 Manipulate
The manipulation tool is designed to enable users to interactively manipulate objects in the scene.
With this tool, users can move objects around in the 3D space or rotate graphs around their
centers. The tool provides a user interface that allows users to select the desired manipulation
mode and interact with the objects using the right controller. The tool updates the positions
and orientations of the manipulated objects in real-time, ensuring that their connections and
representations are correctly updated.

A.5.1 Main window
The user interface of the manipulation tool consists of a main window with a circular selector
and a prompt for the user. The selector allows the user to choose between two manipulation
modes: movement and rotation.

In movement mode, users can move entities in the scene by selecting them and using the right
controller to control the position of the selected entity. The user interface with the use of this
mode is shown in Figure A.18. When this mode is activated, the user is prompted to select an
entity in the scene. Once the entity is selected and the controller’s trigger is pressed, the position
of the entity will change every frame based on the movement of the right controller. The selected
entity can also be moved closer or farther away using the thumbstick on the controller.

Figure A.18 Manipulate tool: main window in movement mode

Thus, moving a vertex will cause its position to be changed. It is important to note that
when the position of a vertex is changed, not only is its position updated, but the vertex and
any associated edges are also redrawn to correctly render their connection. Moving an edge will
also cause the positions of any vertices it connects to be changed. Moving a whole graph will
change the positions of all its vertices.

In rotation mode, users can rotate the selected graph by moving the thumbstick on the right
controller. The user interface with the use of this mode is shown in Figure A.19. When this mode
is activated, the user is prompted to select a graph entity in the scene. Once a graph is selected,
its center is calculated on the basis of the average position of all its vertices. The user can then
use the thumbstick on the controller to rotate the graph around the Y-axis or the Z-axis, with
the base of the rotation at the calculated center of the graph. Moving the thumbstick forward
or backward will rotate the graph around the Y-axis, while moving it left or right will rotate it
around the Z-axis.



Manipulate 93

Figure A.19 Manipulate tool: main window in rotation mode

A.5.2 Process model
The following business process model provided in Figure A.20 will provide a concise overview of
the functionality of the manipulate tool. It will provide a visual representation of the different
processes involved in manipulating objects in the scene. This includes the selection of a compo-
nent or graph and the manipulation of its position or rotation. The model will also show the
different paths that the process can take depending on the user’s actions and the results of the
manipulation.



M
anipulate

94

Figure A.20 Manipulate tool: process model diagram



Remove 95

A.6 Remove
The remove tool is an essential component of the application, allowing users to delete unwanted
objects from their scene. With the remove tool, users can selectively remove vertices, edges, or
entire graphs from the scene, ensuring that their visualizations remain clear and organized. The
remove tool’s user interface is designed for simplicity and ease of use, with a clear prompt for
selecting objects and straightforward remove and deselect buttons for confirming or canceling
deletion actions.

A.6.1 Main window
The user interface of the remove tool, shown in Figure A.21, consists of a single window that
prompts the user to select the object they want to delete. The window also contains two buttons:
Deselect and Remove. These buttons are initially inactive until at least one object is selected.

Figure A.21 Remove tool: main window

To delete an object, the user first selects it by pointing the laser right controller at the object
and pressing the trigger button. The selected object will be highlighted in red to indicate that
it has been selected. The user can select multiple objects at once by continuing to select them
with the controller, or they can deselect an individual entity by re-selecting it. Once all desired
objects are selected, the user can either deselect them by clicking on the Deselect button, or
confirm the deletion of the selected objects by clicking on the Remove button.

Deleting a vertex will also delete any edges connected to it. If the deleted vertex is the last
one in a graph, the graph entity will also be deleted. Deleting an edge will only delete its entity.
Deleting an entire graph will delete its entity as well as the entities of all its vertices and edges.

The remove tool is designed to be user-friendly, allowing users to select and delete multiple
objects at once using the selection modes on the right controller. For example, if a scene contains
a graph with many vertices and edges, and the user only wants to keep a few of them, they can
switch to graph selection mode on the right controller and select the entire graph. They can then
switch back to vertex/edge selection mode and unselect the vertices they want to keep. This
allows the user to easily delete the objects they do not need while keeping the ones they do.



Remove 96

A.6.2 Process model
In order to better understand the functionality of the remove tool, it is helpful to visualize its
process through a business process model, which is provided in Figure A.22. This model will
outline the steps involved in selecting and removing entities from the scene, as well as provide a
clear overview of the tool’s capabilities and limitations.



R
em

ove
97

Figure A.22 Remove tool: process model diagram



Appendix B

Graph generator

This document provides the code for the script used to generate JSON files with graphs of given
sizes. The script was written in Python during the testing phase of the application. The script
code is shown in Code Listing B.1.

It uses the NumPy and json modules. The number of vertices required for generation is
set in the “vertices num” variable. The number of edges is set in the “edges num” variable.
To limit random positions of vertices, a bounding box with extent, configurable in the variable
“vertices coordinates max,” is used.

98



99

Code Listing B.1 Graph generator script code

import numpy as np
import json

def main ():
vertices_num = 30000
edges_num = 30000
# maximum bounding box extent in which vertices
# will be located
vertices_coordinates_max = 6000

vertices = []
# generate vertices positions within the box with
# size vertices_coordinates_max
vertices_coordinates = (2 * np.random.rand(vertices_num , 3) - 1)\

* vertices_coordinates_max
for i in range(vertices_num ):

coordinate = vertices_coordinates[i]
x, y, z = float("{:.3f}".format(coordinate [0])) ,\

float("{:.3f}".format(coordinate [1])) ,\
float("{:.3f}".format(coordinate [2]))

vertex_dict = {
"label": i,
"position": f"X={x}␣Y={y}␣Z={z}"

}
vertices.append(vertex_dict)

edges = []
vertices_indices_set = set()
for i in range(edges_num ):

ids = np.random.randint(0, vertices_num , size =2)
ids_tup = (ids[0], ids [1])
# generate a random edge until it becomes unique
while (ids[0] == ids [1]) or (ids_tup in vertices_indices_set )\

or ((ids[1], ids [0]) in vertices_indices_set ):
ids = np.random.randint(0, vertices_num , size =2)
ids_tup = (ids[0], ids [1])

vertices_indices_set.add(ids_tup)
edge_dict = {

"from": int(ids_tup [0]),
"to": int(ids_tup [1])

}
edges.append(edge_dict)

graph_dict = {
"vertices": vertices ,
"edges": edges

}

json_object = json.dumps(graph_dict , indent=’\t’)
out_file = f"Test_{vertices_num}_Vertices_{edges_num}_Edges.json"
with open(out_file , "w") as outfile:

outfile.write(json_object)

if __name__ == ’__main__ ’:
main()



Bibliography

1. GORISSE, Geoffrey; CHRISTMANN, Olivier; AMATO, Etienne Armand; RICHIR, Simon.
First- and Third-Person Perspectives in Immersive Virtual Environments: Presence and
Performance Analysis of Embodied Users. Frontiers in Robotics and AI. 2017, vol. 4. issn
2296-9144. Available from doi: 10.3389/frobt.2017.00033.

2. Oculus Quest 2: Full Specification [online]. VRcompare [visited on 2022-12-12]. Available
from: https://vr-compare.com/headset/oculusquest2.

3. CHERNI, Heni; MÉTAYER, Natacha; SOULIMAN, Nicolas. Literature review of loco-
motion techniques in virtual reality. International Journal of Virtual Reality. 2020, vol. 20.
Available also from: https://www.researchgate.net/publication/340250772_Literature_
review_of_locomotion_techniques_in_virtual_reality.

4. Unreal Engine [online]. Epic Games [visited on 2022-12-12]. Available from: https://www.
unrealengine.com/en-US.

5. UE5 etchū-daimon station [online]. subjectn [visited on 2022-12-12]. Available from: https:
//www.youtube.com/watch?v=2paNFnw1wRs&ab_channel=subjectn.

6. Unreal Engine End User License Agreement [online]. Epic Games [visited on 2022-12-12].
Available from: https://www.unrealengine.com/en-US/eula/unreal.

7. Overview of Blueprints Visual Scripting [online]. Epic Games [visited on 2022-12-12]. Avail-
able from: https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/
Blueprints/Overview.

8. Balancing Blueprint and C++ [online]. Epic Games [visited on 2022-12-12]. Available from:
https : / / docs . unrealengine . com / 4 . 27 / en - US / Resources / SampleGames / ARPG /
BalancingBlueprintAndCPP.

9. OpenXR - High-performance access to AR and VR [online]. Khronos Group [visited on
2022-12-12]. Available from: https://www.khronos.org/openxr.

10. INSKO, Brent. Standardizing All the Realities: A Look at OpenXR [Paper presented at
the Khronos BOFs conference, Los Angeles California]. 2019. [visited on 2022-12-12]. Avail-
able from: https://www.khronos.org/assets/uploads/developers/library/2019-
siggraph/OpenXR-BOF-SIGGRAPH-Jul19.pdf.

11. OpenXR Plugin [online]. Epic Games [visited on 2022-12-12]. Available from: https://
docs.unrealengine.com/4.27/en-US/SharingAndReleasing/XRDevelopment/OpenXR.

12. FLEISCHNER, H. Eulerian Graphs and Related Topics. Elsevier Science, 1991. ISSN. isbn
9780080867908. Available also from: https://books.google.cz/books?id=cDktskC2vQcC.

100

https://doi.org/10.3389/frobt.2017.00033
https://vr-compare.com/headset/oculusquest2
https://www.researchgate.net/publication/340250772_Literature_review_of_locomotion_techniques_in_virtual_reality
https://www.researchgate.net/publication/340250772_Literature_review_of_locomotion_techniques_in_virtual_reality
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://www.youtube.com/watch?v=2paNFnw1wRs&ab_channel=subjectn
https://www.youtube.com/watch?v=2paNFnw1wRs&ab_channel=subjectn
https://www.unrealengine.com/en-US/eula/unreal
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/Overview
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/Overview
https://docs.unrealengine.com/4.27/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP
https://docs.unrealengine.com/4.27/en-US/Resources/SampleGames/ARPG/BalancingBlueprintAndCPP
https://www.khronos.org/openxr
https://www.khronos.org/assets/uploads/developers/library/2019-siggraph/OpenXR-BOF-SIGGRAPH-Jul19.pdf
https://www.khronos.org/assets/uploads/developers/library/2019-siggraph/OpenXR-BOF-SIGGRAPH-Jul19.pdf
https://docs.unrealengine.com/4.27/en-US/SharingAndReleasing/XRDevelopment/OpenXR
https://docs.unrealengine.com/4.27/en-US/SharingAndReleasing/XRDevelopment/OpenXR
https://books.google.cz/books?id=cDktskC2vQcC


Bibliography 101

13. GROSS, J.L.; YELLEN, J.; ZHANG, P. Handbook of Graph Theory. CRC Press LLC,
2017. Discrete Mathematics and Its Applications. isbn 9781138199668. Available also from:
https://books.google.cz/books?id=vc5RvgAACAAJ.

14. TURÁN, György. On the succinct representation of graphs. Discrete Applied Mathematics.
1984. issn 0166-218X. Available from doi: https://doi.org/10.1016/0166-218X(84)
90126-4.

15. ASTURIANO, Vasco. 3D Force-Directed Graph in VR [online]. [visited on 2022-12-12].
Available from: https://github.com/vasturiano/3d-force-graph-vr.

16. VR and Simulation Sickness [online]. Epic Games [visited on 2022-12-12]. Available from:
https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopment/
VR/DevelopVR/ContentSetup/#vrandsimulationsickness.

17. POPKO, E.S.; KITRICK, C.J. Divided Spheres: Geodesics and the Orderly Subdivision of
the Sphere. CRC Press, 2021. isbn 9781000412437. Available also from: https://books.
google.cz/books?id=Mmc1EAAAQBAJ.

18. Unreal Engine: Objects [online]. Epic Games [visited on 2022-12-12]. Available from: https:
//docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/
UnrealArchitecture/Objects.

19. Unreal Engine: Actor System [online]. Epic Games [visited on 2022-12-12]. Available from:
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/
UnrealArchitecture/Actors.

20. Unreal Engine: Static Mesh Actors [online]. Epic Games [visited on 2022-12-12]. Available
from: https://docs.unrealengine.com/4.27/en-US/Basics/Actors/StaticMeshActor.

21. Efficient Occlusion Culling [online]. Nvidia [visited on 2022-12-12]. Available from: https:
//developer.nvidia.com/gpugems/gpugems/part-v-performance-and-practicalities/
chapter-29-efficient-occlusion-culling.

22. PUPIUS, R. SFML Game Development By Example. Packt Publishing, 2015. isbn 9781785283000.
Available also from: https://books.google.cz/books?id=_zjlCwAAQBAJ.

23. LIPPMAN, S.B.; LAJOIE, J.; MOO, B.E. C++ Primer: 5th Edition. Addison-Wesley,
2012. isbn 9780321714114. Available also from: https://books.google.cz/books?id=
a4YPBQAAQBAJ.

24. TEWARSON, Reginald P. Sparse Matrices. Elsevier Science, 1973. ISSN. isbn 9780080956084.
Available also from: https://books.google.cz/books?id=aU2fYX_TbZ8C.

25. Unreal Engine: TSparseArray documentation [online]. Epic Games [visited on 2022-12-12].
Available from: https://docs.unrealengine.com/4.27/en-US/API/Runtime/Core/
Containers/TSparseArray.

26. Unreal Engine: TSet documentation [online]. Epic Games [visited on 2022-12-12]. Available
from: https://docs.unrealengine.com/4.27/en- US/ProgrammingAndScripting/
ProgrammingWithCPP/UnrealArchitecture/TSet.

27. Unreal Engine: Procedural Mesh Component documentation [online]. Epic Games [visited
on 2022-12-12]. Available from: https://docs.unrealengine.com/4.27/en-US/API/
Plugins/ProceduralMeshComponent/UProceduralMeshComponent.

28. Runtime Mesh Component [online]. Koderz [visited on 2022-12-12]. Available from: https:
//runtimemesh.koderz.io/.

29. Runtime Mesh Component: GitHub [online]. Koderz [visited on 2022-12-12]. Available from:
https://github.com/TriAxis-Games/RuntimeMeshComponent.

https://books.google.cz/books?id=vc5RvgAACAAJ
https://doi.org/https://doi.org/10.1016/0166-218X(84)90126-4
https://doi.org/https://doi.org/10.1016/0166-218X(84)90126-4
https://github.com/vasturiano/3d-force-graph-vr
https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopment/VR/DevelopVR/ContentSetup/#vrandsimulationsickness
https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopment/VR/DevelopVR/ContentSetup/#vrandsimulationsickness
https://books.google.cz/books?id=Mmc1EAAAQBAJ
https://books.google.cz/books?id=Mmc1EAAAQBAJ
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Objects
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Objects
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Objects
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Actors
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Actors
https://docs.unrealengine.com/4.27/en-US/Basics/Actors/StaticMeshActor
https://developer.nvidia.com/gpugems/gpugems/part-v-performance-and-practicalities/chapter-29-efficient-occlusion-culling
https://developer.nvidia.com/gpugems/gpugems/part-v-performance-and-practicalities/chapter-29-efficient-occlusion-culling
https://developer.nvidia.com/gpugems/gpugems/part-v-performance-and-practicalities/chapter-29-efficient-occlusion-culling
https://books.google.cz/books?id=_zjlCwAAQBAJ
https://books.google.cz/books?id=a4YPBQAAQBAJ
https://books.google.cz/books?id=a4YPBQAAQBAJ
https://books.google.cz/books?id=aU2fYX_TbZ8C
https://docs.unrealengine.com/4.27/en-US/API/Runtime/Core/Containers/TSparseArray
https://docs.unrealengine.com/4.27/en-US/API/Runtime/Core/Containers/TSparseArray
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/TSet
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/TSet
https://docs.unrealengine.com/4.27/en-US/API/Plugins/ProceduralMeshComponent/UProceduralMeshComponent
https://docs.unrealengine.com/4.27/en-US/API/Plugins/ProceduralMeshComponent/UProceduralMeshComponent
https://runtimemesh.koderz.io/
https://runtimemesh.koderz.io/
https://github.com/TriAxis-Games/RuntimeMeshComponent


Bibliography 102

30. LUEBKE, D.; REDDY, M.; COHEN, J.D.; VARSHNEY, A.; WATSON, B.; HUEBNER,
R. Level of Detail for 3D Graphics. Elsevier Science, 2003. Morgan Kaufmann series in com-
puter graphics and geometric modeling. isbn 9781558608382. Available also from: https:
//books.google.cz/books?id=M-gl4aoxQfIC.

31. Runtime Mesh Component: Quick start [online]. Koderz [visited on 2022-12-12]. Available
from: https://runtimemesh.koderz.io/start.html.

32. GILLIS, Alexander S. VRAM (video RAM). TechTarget [online]. 2021 [visited on 2022-12-
12]. Available from: https://www.techtarget.com/searchstorage/definition/video-
RAM.

33. Unreal Engine: Pawn documentation [online]. Epic Games [visited on 2022-12-12]. Available
from: https : / / docs . unrealengine . com / 4 . 27 / en - US / InteractiveExperiences /
Framework/Pawn.

34. Unreal Engine: Player Controller documentation [online]. Epic Games [visited on 2022-12-
12]. Available from: https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/
Framework/Controller/PlayerController.

35. Unreal Engine: Camera documentation [online]. Epic Games [visited on 2022-12-12]. Avail-
able from: https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/
Framework/Camera.

36. PIGEON, Steven. Pairing Function [online]. [visited on 2022-12-12]. Available from: https:
//mathworld.wolfram.com/PairingFunction.html.

37. KAHLER, Andreas. Creating an icosphere mesh in code [online]. [visited on 2022-12-12].
Available from: http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-
in-code.html.

38. THL A29 LIMITED, a Tencent company; YIP, Milo. RapidJSON library [online]. [visited
on 2022-12-12]. Available from: https://rapidjson.org.

39. Unreal Engine: Stats system overview [online]. Epic Games [visited on 2022-12-12]. Available
from: https : / / docs . unrealengine . com / 4 . 27 / en - US / TestingAndOptimization /
PerformanceAndProfiling/StatCommands/StatsSystemOverview.

https://books.google.cz/books?id=M-gl4aoxQfIC
https://books.google.cz/books?id=M-gl4aoxQfIC
https://runtimemesh.koderz.io/start.html
https://www.techtarget.com/searchstorage/definition/video-RAM
https://www.techtarget.com/searchstorage/definition/video-RAM
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Framework/Pawn
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Framework/Pawn
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Framework/Controller/PlayerController
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Framework/Controller/PlayerController
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Framework/Camera
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Framework/Camera
https://mathworld.wolfram.com/PairingFunction.html
https://mathworld.wolfram.com/PairingFunction.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
https://rapidjson.org
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/PerformanceAndProfiling/StatCommands/StatsSystemOverview
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/PerformanceAndProfiling/StatCommands/StatsSystemOverview


Contents of attached medium

readme.txt........................................a brief description of medium contents
src

impl..............................................source codes of the implementation
thesis.................................................. source of the thesis in LATEX
exec

Engine ............................ engine libraries and an installer for prerequisites
Export.......................directory for import and export of external graph files
Extra......................................................graph generator script
Graphs ................................... compiled and packaged application build
Graphs.exe.............................................application executable file

text .................................................................. text of the thesis
thesis.pdf.................................................text of the thesis in PDF

103


	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Goals
	VR application development
	Development and design challenges
	Camera perspective
	Performance
	Locomotion
	Control limitations

	Unreal engine
	Brief overview
	Development methods

	OpenXR standard
	Outline
	Plugins


	Graphs
	Brief history and terminology
	Common representations in memory
	Adjacency matrix
	Incidence matrix
	Edges enumeration
	Adjacency list


	Assignment analysis
	Work assignment
	Agreed limitations
	Added functionality

	Related work
	Requirements specification
	Functional requirements
	Non-functional requirements

	Use cases

	Graph representation
	Composition
	Visual
	External file schema

	Application architecture
	Graph visualization
	User interaction
	Overall composition

	Graph visualization: a naive approach
	Actor system
	Method description
	Problems and performance issues

	Graph visualization: a procedural approach
	Entity system
	Graph rendering system
	Approach description
	Two sections for all entities
	Two sections for each graph
	Chunked rendering


	User interaction with the application
	Scene
	User representation
	Pawn
	Right controller
	Left controller

	User interface
	Tool system

	Implementation
	Preface
	Scene
	User pawn
	Entity system
	Renderers
	Tool system and user interface

	Results
	User tests
	Performance tests
	Conclusion and future work

	Tools design
	Import
	Main window
	Loading window
	Result window
	Process model

	Export
	Main window
	Loading window
	Result window
	Process model

	Create
	Main window
	Process model

	Edit
	Main window
	Vertex window
	Edge window
	Graph window
	Process model

	Manipulate
	Main window
	Process model

	Remove
	Main window
	Process model


	Graph generator
	Contents of attached medium

