
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Design and prototype implementation of data flow analysis of

jobs in Matillion ETL for the Manta project

Illia Krauchenia

Ing. Michal Valenta, Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

The aim of this work is to design and implement a prototype of a functional module that

performs syntactic and semantic analysis of tasks in the cloud tool Matillion ETL, and

then uses its result for data flow analysis and generation of a graph that represents data

flows. The design and implementation will ensure a seamless connection of the module

to the Manta project.

Follow these steps:

 1. Learn about the Manta project and Matillion ETL.

 2. Design a module in the Manta project for Matillion ETL task processing. Use the

existing project infrastructure.

 3. Implement the prototype, properly document it, and test it.

Electronically approved by Ing. Michal Valenta, Ph.D. on 2 May 2022 in Prague.

Bachelor’s thesis

DESIGN AND
PROTOTYPE
IMPLEMENTATION
OF DATA FLOW
ANALYSIS OF JOBS
IN MATILLION ETL
FOR THE MANTA
PROJECT

Illia Krauchenia

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.
December 17, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Illia Krauchenia. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Krauchenia Illia. Design and Prototype Implementation of Data Flow Analysis of
Jobs in Matillion ETL for the Manta Project. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2023.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis goals . 1
1.3 Thesis structure . 2

2 Basic concepts and technologies 3
2.1 Data lineage . 3
2.2 Manta . 3

2.2.1 Manta Flow . 4
2.2.2 Data flow graph . 4

2.3 Data warehouse . 7
2.3.1 Snowflake . 7

2.4 ETL and ELT . 7
2.4.1 Matillion ETL . 8

2.5 SQL . 9
2.6 Metadata . 9
2.7 Java . 9

2.7.1 Javadoc . 10
2.8 IDE . 10
2.9 Apache Maven . 10
2.10 Spring . 10

2.10.1 Dependency injection . 10
2.11 JUnit . 11
2.12 JSON . 11

2.12.1 Jackson Streaming API . 11
2.12.2 ObjectMapper . 11

2.13 Git . 11
2.14 Jenkins . 12
2.15 SonarQube . 12

3 Analysis 13
3.1 Matillion ETL . 13

3.1.1 Key elements . 13
3.1.2 Metadata export . 16

3.2 Matillion scanner requirements . 19
3.2.1 Functional requirements . 19

iii

iv Contents

3.2.2 Non-functional requirements . 20

4 Matillion scanner design 21
4.1 Connector module . 21

4.1.1 Manual input directory structure . 22
4.1.2 Manual input files splitting . 22
4.1.3 Module structure . 23

4.2 Data Flow Generator module . 26
4.2.1 Data flow graph nodes structure . 26
4.2.2 Data flow analysis and graph generation 27

5 Matillion scanner prototype implementation 29
5.1 Connector module . 29
5.2 Data Flow Generator module . 33

6 Matillion scanner prototype testing 37
6.1 Connector module . 37
6.2 Data Flow Generator module . 39
6.3 Data flow visualization . 39

7 Conclusion 41

A More Matillion ETL data flow visualization examples 43

Contents of enclosed media 51

List of Figures

2.1 Manta Flow architecture [6] . 5
2.2 Data flow graph example in Manta Flow [8] . 6
2.3 ELT process [14] . 8

3.1 Matillion ETL user interface . 14
3.2 Matillion ETL export menu . 17
3.3 Matillion ETL manual export file root structure 18
3.4 Matillion ETL manual export file component property structure 18

4.1 Dependency diagram of the Matillion scanner modules 21
4.2 Manual input directory structure . 22
4.3 Structure of the temporary directory for split manual input files 22
4.4 Class diagram in the manta-connector-matillion-model submodule 25
4.5 Data flow graph nodes structure . 26
4.6 Sequence diagram for the Data Flow Generator module 27

6.1 Result data flow graph example . 39

A.1 Matillion ETL data flow visualization example No. 1 44
A.2 Matillion ETL data flow visualization example No. 2 45
A.3 Matillion ETL data flow visualization example No. 3 46

List of code listings

1 The extract method in the ManualInputExtractor class 30
2 The readEnvironmentContent method in the AbstractJsonSplitter class . . . 31
3 The writeToEnvironmentFile method in the OutputFileWriter class 31
4 The read method in the JsonJobReader class . 32
5 The buildJobNode method in the MatillionGraphHelper class 33
6 The analyze method in the ConvertTypeComponentAnalyzer class 34
7 The resolveAllScalarVariables method in the VariablesResolver class . . . 35
8 The createSnowflakePlatformConnection method in the DatabaseConnector

class . 35
9 The extractTest method in the ManualInputExtractorTest class 38
10 The jsonSuccessTest method in the ManualInputFileHolderTest class 38
11 The compareExpectedGraphToActual method in the DataflowEqualityTest class 39

v

Here I would like to express gratitude to Ing. Michal Valenta, Ph.D.
for great assistance and Ing. Petr Košvanec for valuable advice and
guidance during the writing of this thesis and work at Manta.
I am also incredibly grateful to my family, friends, and all the other
people who have supported me in any way throughout my studies.

vi

Declaration

Hereby declare that I have authored this thesis independently, and that all sources used are de-
clared in accordance with the “Metodický pokyn o etické př́ıpravě vysokoškolských závěrečných
praćı”.

I acknowledge that my thesis (work) is subject to the rights and obligations arising
from Act No. 121/2000 Coll., on Copyright and Rights Related to Copyright and on Amend-
ments to Certain Laws (the Copyright Act), as amended, (hereinafter as the ”Copyright Act”),
in particular § 35, and § 60 of the Copyright Act governing the school work.

With respect to the computer programs that are part of my thesis (work) and with respect
to all documentation related to the computer programs (”software”), in accordance with Ar-
ticle 2373 of the Act No. 89/2012 Coll., the Civil Code, I hereby grant a nonexclusive and
irrevocable authorization (license) to use this software, to any and all persons that wish to use
the software. Such persons are entitled to use the software in any way without any limitations
(including use for-profit purposes). This license is not limited in terms of time, location and
quantity, is granted free of charge, and also covers the right to alter or modify the software,
combine it with another work, and/or include the software in a collective work.

In Prague on December 17, 2022 .

vii

Abstract

This work aims to design and implement a prototype of a functional module that performs
analysis of data flows in the cloud tool Matillion ETL. The input for the analysis is the meta-
data describing the tool elements. Based on the analysis, the implemented prototype generates
a graph that visualizes data flows. The design and implementation ensure a seamless connec-
tion of the prototype to the data lineage platform called Manta. The first part of the work
represents a general analysis of Matillion ETL, its key elements, ways to export metadata,
as well as the analysis of its format and structure. The work then continues with the design
and implementation parts of the functional module prototype and ends with the evaluation
and testing of its correct functionality. Examples of the resulting data flow graphs generated
by the prototype can be found in the appendix.

Keywords module prototype, data lineage, data flow analysis and visualization, metadata,
Matillion ETL, data warehouse, Manta, Java

Abstrakt

Tato práce si klade za ćıl navrhnout a implementovat prototyp funkčńıho modulu, který provád́ı
analýzu datových tok̊u v cloudovém nástroji Matillion ETL. Vstupem pro analýzu jsou meta-
data, popisuj́ıćı elementy nástroje. Na základě analýzy implementovaný prototyp generuje graf,
který vizualizuje datové toky. Návrh a implementace zajǐst’uj́ı bezproblémové připojeńı pro-
totypu k platformě data lineage zvané Manta. Prvńı část práce představuje obecnou analýzu
Matillion ETL, jeho kĺıčových prvk̊u, zp̊usob̊u exportu metadat, a také analýzu jejich formátu
a struktury. Práce pak pokračuje částmi návrhu a implementace prototypu funkčńıho modulu
a konč́ı vyhodnoceńım a testováńım jeho správné funkčnosti. Ukázky výsledných graf̊u datových
tok̊u vygenerovaných prototypem lze nalézt v př́ıloze.

Kĺıčová slova prototyp modulu, datová linie, analýza a vizualizace datových tok̊u, metadata,
Matillion ETL, datový sklad, Manta, Java

viii

List of abbreviations

ETL Extract, Transform, Load
ELT Extract, Load, Transform

UI User Interface
SQL Structured Query Language

JSON JavaScript Object Notation
API Application Programming Interface

ix

x List of abbreviations

Chapter 1

Introduction

This chapter introduces the motivation that influenced the choice of the topic of this thesis
by its author, as well as the goals and chapter structure of this work.

1.1 Motivation

“The world of data is almost unrecognizable even from as little as five years ago. In reality,
most organizations today understand the value of storing and managing their data to optimize
their performance and to remain competitive in their market space. We all recognize that better
information leads to better decisions, and an effective data solution, along with a new data
“culture” makes this possible. Most businesses have no shortage of data, but organizing that
data for easy access and new insights is a challenge that requires more than just data storage
in a warehouse.” [1]

So what helps companies organize, manage, and analyze their data effectively nowadays?
The answer is quite simple: there are various tools for this, such as Matillion ETL. This tool
helps to gather data coming from different sources, transform it into the desired format, and put
it in target repositories, making it ready for further use in business intelligence.

Nevertheless, often when working with Matillion ETL, as well as with other similar tools,
the end user is also interested in information about the origin of data and the history of its trans-
formations on the way to the target storage. The solution to this issue is provided by the Manta
software, which is able to analyze data flows in various technologies working with data, including
ETL tools, and construct a graph representing these flows.

Currently, Manta does not support the Matillion ETL technology, which is why it was chosen
as the topic for this thesis. Another reason that influenced the choice of this topic by the author
is the opportunity to work on the module, studying the Manta infrastructure and gaining real
work experience.

1.2 Thesis goals

The main goal of this thesis is to design and implement a prototype of a functional mod-
ule for the Manta project, which performs analysis of data flows in the Matillion ETL tool.
Based on the analysis, the prototype must be able to generate a graph that visualizes data flows
from their source locations to the destinations. The subgoals of the thesis are qualitative test-
ing of the prototype and documentation of its source code. The goals of individual chapters
of the thesis are presented in the next section.

1

2 Introduction

1.3 Thesis structure
Starting with the next, the thesis is divided into the following chapters:

2. “Basic concepts and technologies” – describes the main concepts and technologies used
within this work.

3. “Analysis” – serves to present a general analysis of Matillion ETL, its key elements, ways
to export metadata, as well as the analysis of its format and structure.

4. “Matillion scanner design” – introduces the design of the module prototype. All the key
algorithms and mechanisms can be found in this chapter.

5. “Matillion scanner prototype implementation” – based on the previous chapter,
presents the implementation of the prototype, mainly focusing on the essential parts.

6. “Matillion scanner prototype testing” – shows the way of testing the implemented
solution.

7. “Conclusion” – serves to sum up the results of the work and evaluate the achievement
of the set goals.

In the appendix “More Matillion ETL data flow visualization examples” the reader
can find examples of data flow graphs, generated by the implemented prototype and not included
in the main part of the work.

Chapter 2

Basic concepts and technologies

This chapter is intended to describe all the essential concepts necessary to understand the an-
alytical and practical parts of the work, as well as the technologies used to implement the pro-
totype. The chapter begins with a description of the concept of data lineage and introduces
the Manta software and its most significant concepts. Then the chapter proceeds to describe
the concept of a data warehouse, also mentioning Snowflake, and ETL, ELT tools, and fo-
cuses on one of them, Matillion ETL, which the implemented prototype will be closely re-
lated to. The chapter also contains descriptions of the SQL language, the concept of meta-
data, the Java programming language and its Spring framework, an overview of the JSON
data format and tools for processing it, and other valuable technologies used within this work.

2.1 Data lineage

“Data lineage uncovers the life cycle of data – it aims to show the complete data flow1, from start
to finish. Data lineage is the process of understanding, recording, and visualizing data as it flows
from data sources to consumption. This includes all transformations the data underwent along
the way – how the data was transformed, what changed, and why.” [3]

Some of the benefits of the data lineage process for various companies or other users may be,
for example, the ability to track, analyze, and control the processes of the data they work with.
This allows them to make changes to their systems, migrate them, and predict the consequences
with more confidence and less risk. This also facilitates the process of finding and correcting
possible errors in systems, which, for example, may be associated with data breaches.

One of the tools that provide data lineage visualization is Manta.

2.2 Manta
Manta is a lineage platform allowing information users and system administrators to visualize
the entire flow of data through corporate information systems – where it flows, what happens
to it, and why. Based on the obtained metadata2, the tool can visualize individual data flows. [5]

Manta currently supports a large number of connections, metadata extractions, and fur-
ther data lineage construction from various tools and technologies working with data, such as

1Within this work, the data flow concept will mean “the movement of data through a system comprised
of software, hardware or a combination of both.” [2]

2The concept of metadata can be understood as data that provide information about other data [4]. This term
will be explained in the relevant “Metadata” section later.

3

4 Basic concepts and technologies

databases, ETL and reporting tools, programming languages, and others. These processes
are performed by scanners designed for a specific tool or technology.

2.2.1 Manta Flow
Manta Flow software is Manta’s flagship product, enabling metadata extraction and analysis
using the technology-specific scanners mentioned above. Scanners convert the received metadata
into an internal model and then use it to generate a data flow graph used for data lineage
visualization.

“Manta Flow is made up of three major components:

Manta Flow CLI – Java command-line application that extracts all scripts from source
databases and repositories, analyzes them, sends all gathered metadata to the Manta Flow
Server, and optionally, processes and uploads the generated export to a target metadata
database.

Manta Flow Server – Java server application that stores all gathered metadata in its meta-
data repository, transforms it to a format suitable for import to a target metadata database,
and provides it to its visualization or third-party applications via API.

Manta Admin UI (runs on the Manta Flow Service Utility application server) – Java server
application providing a graphical and programming interface for the installation, configura-
tion, updating, and overall maintenance of Manta Flow.” [6]

Figure 2.1 illustrates the Manta Flow architecture, its components, and interactions with
third-party resources [6]. As will be seen later, the modules of the prototype implemented
in this work will perfectly fit into this architecture.

2.2.2 Data flow graph
The end result of the data flow analysis performed by the scanner is a directed graph that
describes these data flows and consists of a set of vertices connected by directed edges. Manta
distinguishes several types of vertices and edges, but only a subset of them, described below,
will be emphasized in this work. [7]

Vertex types:

Resource – indicates a certain technology that is familiar to Manta. For example
Snowflake, Talend, Excel, etc.
Node – represents a concrete object participating in the data flow. The characteristic
parameter of this object is “nodeType”, which specifies its particular subtype and serves
to distinguish it from other nodes of the same resource. Examples: database column,
script, technology-specific object, etc.
Attribute – means additional information that can be attached to a vertex of type node.
This can include, for example, an absolute path to a file on disk, a value indicator, an ap-
plied expression, etc. [7]

Edge types:

DirectFlow – directed edge connecting two vertices of type node and representing the di-
rect flow of data from the source to the destination node.
FilterFlow – directed edge connecting two vertices of type node and representing the in-
direct flow of data from the source to the destination node. The indirect data flow may ap-
pear, for example, after applying various expressions or conditions. [7]

Manta 5

Figure 2.1 Manta Flow architecture [6]

6 Basic concepts and technologies

Figure 2.2 Data flow graph example in Manta Flow [8]

Data warehouse 7

An example of the data flow graph can be seen in Figure 2.2 [8]. This example illustrates
the column flow within specific objects of the Teradata technology from a data source on the left
to a data destination on the right. Different elements of the graph can be colored differently
depending on their characteristics, which helps the user to navigate more easily and quickly.
The user can also select specific elements (highlighted in yellow in the example) and view their
flow history (highlighted in blue).

2.3 Data warehouse
A data warehouse, [...] is a system that aggregates data from different sources into a single,
central, consistent data store to support data analysis, data mining, artificial intelligence (AI),
and machine learning. A data warehouse system enables an organization to run powerful analytics
on huge volumes (petabytes) of historical data in ways that a standard database cannot. [9]

Cloud data warehouses (CDW), which store data in the cloud, deserve special mention.
The “cloud” are servers that can be accessed over the Internet, and the data is stored on machines
that are spread across the world. It allows organisations to provide applications that can be
accessed by multiple people, globally. [10]

The complex process, without which data warehousing would be difficult, if not impossible,
that brings the data together and makes it usable, is called ETL. This process will be explained
in a bit, but for now, one particular data warehouse needs to be introduced in more detail.

2.3.1 Snowflake
Snowflake is one of the most popular cloud data warehouses. In this work, it will be mentioned
a number of times, therefore, for a better understanding, it requires a separate description.

Designed with a patented new architecture to handle all aspects of data and analytics,
Snowflake combines high performance, high concurrency, simplicity, and affordability at levels
not possible with other data warehouses. [11]

“Snowflake physically separates but logically integrates storage, compute, and services (like
metadata and user management). Because each one of these components is separate, they
can be expanded and contracted independently, enabling Snowflake to be more responsive and
adaptable.” [11]

2.4 ETL and ELT
“ETL, which stands for “extract, transform, load,” are the three processes that, in combination,
move data from one database, multiple databases, or other sources to a unified repository –
typically a data warehouse. It enables data analysis to provide actionable business information,
effectively preparing data for analysis and business intelligence processes.” [12]

For a better understanding, it is worth looking at these processes more closely.

Extract – the phase during which the raw data is pulled from one or multiple structured or
unstructured sources to a staging area. These sources can be, for example, a database, flat file,
API, email, or others. Extracted data may also be in several formats, such as relational
database table(s), XML, JSON, etc.

Transform – the phase when the raw data in the staging area might undergo various transfor-
mations to match the needs of an organization or other requirements. This phase may include
filtering, cleansing, sorting, merging, and many other changes.

Load – the last phase, in which the transformed business-ready data is moved from the staging
area into a target data storage, becoming available for further analysis or other processing.

8 Basic concepts and technologies

Figure 2.3 ELT process [14]

ETL has been around for a while, however, with cloud data warehouses coming into the pic-
ture, ELT (extract, load, transform) has emerged as the newer approach. “The most obvious
difference between ETL and ELT is the difference in order of operations. ELT copies or exports
the data from the source locations, but instead of loading it to a staging area for transforma-
tion, it loads the raw data directly to the target data store to be transformed as needed.” [13]
ELT uses powerful data destination capabilities for the data transformations, also eliminating
the need for its staging. ELT process diagram can be seen in Figure 2.3 [14].

Comparing the ETL and ELT processes is beyond the scope of this work, but it is worth
noting that they both have their advantages and disadvantages and serve the same purpose,
having a different implementation. The end user must determine which process is more profitable
to use in a particular case.

In the past, organizations had to write their own code for these processes. Fortunately, there
are now many open source, commercial, and cloud tools and services to choose from. One of them
is Matillion ETL.

2.4.1 Matillion ETL
Matillion ETL is an ETL/ELT close source tool built specifically for cloud database plat-
forms including Amazon Redshift, Google BigQuery, Snowflake, Microsoft Azure Synapse, and
Delta Lake. It is a modern, browser-based UI, with powerful, push-down ETL/ELT function-
ality. [15] Although modern solutions are rapidly moving to ELT, “ETL” remains the common
name for all such processes, which is why Matillion uses this designation.

As already mentioned, Matillion supports several cloud data warehouses, however, this work
will be aimed only at the instance of the tool designated to use Snowflake as a target storage.
The reason for this is the instance of the tool provided by the vendor, limited only to Snowflake.
Nevertheless, the work will include laying the foundation for expansion and working with other
warehouses in the future.

The Matillion team unveils a major release of Matillion ETL roughly once every eight weeks,
and an interim release roughly once every two weeks, where required, to bring pivotal new features
and improvements to the customers and to fix bugs where and when they arise. In this work,
version 1.64.10 of the tool released on July 25, 2022, will be used, however, all newer versions
should be compatible. [16]

SQL 9

For clarity, it should be mentioned that the prototype of the functional module that will be
implemented in this work, in the context of the Manta project, will be called the Matillion scan-
ner prototype.

All key elements in Matillion ETL will be introduced in detail later in the relevant “Analysis”
chapter section.

2.5 SQL
“Structured query language (SQL) is a programming language for storing and processing informa-
tion in a relational database. A relational database stores information in tabular form, with rows
and columns representing different data attributes and the various relationships between the data
values. You can use SQL statements to store, update, remove, search, and retrieve information
from the database. You can also use SQL to maintain and optimize database performance.” [17]

In the context of this work, SQL language will be used when working with Snowflake. Al-
though Snowflake has its own specific SQL dialect, it supports all of the most frequently used
operations.

2.6 Metadata
“Metadata is often simply described as data about data. A variety of definitions exist, and a sim-
ple Google search reveals many resources out there which describe in detail the nuts and bolts
of metadata in different fields.” [4] In this work, a more specific definition of metadata will be
set as data that describes other data, their structure and characteristics, but not their content.
For example, in the context of relational databases, information about schemas, tables, columns,
but not about individual rows with content, will be considered metadata. Also worth mentioning
is the context of ETL and ELT tools, which often provide metadata about the changes and trans-
formations of the data they work with. The last mentioned context will play a very significant role
in this work, when a lineage will be built based on the metadata obtained from Matillion ETL.

2.7 Java
The heart of the tech stack used during the implementation phase of this work is Java, “a widely
used object-oriented3 programming language and software platform that runs on billions of de-
vices, including notebook computers, mobile devices, gaming consoles, medical devices and many
others. The rules and syntax of Java are based on the C and C++ languages.

One major advantage of developing software with Java is its portability.” [19] It is achieved by
the fact that the Java compiler does not produce executable code, but the so-called bytecode –
a highly optimized set of instructions designed to be executed in the Java runtime system,
called Java Virtual Machine (JVM). The pure bytecode can then be executed on any system
which supports JVM. [20]

Since its inception and until now, the language has been developing quite dynamically and
has many versions. The last long-term support version (LTS) is Java 17, released in Septem-
ber 2021. [21] In this work, however, the LTS Java 11 version will be used, since the Manta project
compiles and runs on it.

3“Object-oriented programming (OOP) is a programming paradigm based on the concept of “objects”, which
can contain data and code: data in the form of fields (often known as attributes or properties), and code, in the
form of procedures (often known as methods).” [18]

10 Basic concepts and technologies

2.7.1 Javadoc
Javadoc is the most common and convenient tool for generating documentation from Java source
code [22]. It will be used to document the module prototype code. The tool generates docu-
mentation by parsing special comments related to a particular element of the language, such as
a class, method, attribute, etc.

2.8 IDE
An integrated development environment (IDE) is software for building applications that combines
common developer tools into a single graphical user interface. An IDE usually consists of at least
a source code editor, build automation tools, and a debugger, and may also include an integrated
version control system, compiler, interpreter, and other tools. [23]

IntelliJ IDEA is an IDE for JVM languages designed to maximize developers productiv-
ity. It does the routine and repetitive tasks for them by providing clever code completion,
static code analysis, refactorings, and has many other useful features. [24] This IDE was chosen
for development of the module prototype based on the author’s previous experience with it and
its convenience.

2.9 Apache Maven
Apache Maven is a powerful project management software widely used in Java development
that is based on POM (project object model). POM is the fundamental unit of work in Maven.
It is an XML file that contains information about the project, its default values, and configuration
details for building it. [25]

Maven will ease the process of building the implemented module prototype project by au-
tomating it, performing dependency management, and loading the required libraries.

2.10 Spring
Spring is the most popular open source framework for enterprise Java. Developers all over
the world use Spring to create reliable, high-quality, and easily testable code. The framework
is divided into a number of separate modules, and one of them, called Core module, provides
key parts of the framework including Dependency injection. [26]

2.10.1 Dependency injection
Dependency Injection (DI) is a design pattern and a fundamental aspect of the Spring framework,
through which the Spring mechanism, called IoC4 Container, “injects” objects into other objects
or “dependencies”, and makes them ready for use. Simply put, this allows objects to be loosely
coupled and moves the responsibility of managing them onto the container. [28]

In fact, Spring has a special name for the objects mentioned above. It calls them Beans5.
Spring provides several DI configuration techniques, and it is important to mention that

during the implementation part of this work, XML-based beans configuration will be used be-
cause of the general approach in Manta scanners.

4Inversion of control (IoC) is a design principle which helps to invert the control of object creation [27].
Dependency Injection implements this principle.

5Any standard Java plain class can be a Spring Bean if it is configured to be initialized via container by pro-
viding configuration metadata information. [28]

JUnit 11

2.11 JUnit

“JUnit is a unit testing6 open-source framework for the Java programming language. Java devel-
opers use this framework to write and execute automated tests. In Java, there are test cases that
have to be re-executed every time a new code is added. This is done to make sure that nothing
in the code is broken.” [29]

The latest version of this framework called JUnit 5 will be used to increase the reliability
of the Matillion scanner.

2.12 JSON
“JSON, or JavaScript Object Notation, is a format used to represent data. It was introduced
in the early 2000s as part of JavaScript and gradually expanded to become the most common
medium for describing and exchanging text-based data. Today, JSON is the universal standard
of data exchange. It is found in every area of programming, including front-end and server-side
development, systems, middleware, and databases.” [30]

As will be seen later, the metadata that the scanner will work with will be in the JSON for-
mat, so it is necessary to get acquainted with the tools for working with it effectively in Java,
such as the Jackson Streaming API and ObjectMapper.

2.12.1 Jackson Streaming API
The Jackson Streaming API processes JSON content as discrete events, therefore it allows
to parse huge JSON documents without loading their whole content into memory at once.
It is the most efficient way to process JSON data and has the lowest memory and process-
ing overhead, but it comes with a cost: is not the most convenient way to process JSON.
The code that comes out of working with the API is verbose, repetitive, and tedious to write.
However, in combination with another tool called ObjectMapper, working with the API becomes
much more enjoyable. [31]

2.12.2 ObjectMapper
The ObjectMapper class provided by the Jackson library is the simplest way to parse JSON
with Jackson. It can parse JSON from a string, stream, or file and create a Java object or
object graph representing the parsed JSON. Parsing JSON into Java objects is also known as de-
serializing Java objects from JSON. [32]

2.13 Git
Git is an open source, distributed, and the most commonly used version control system that
keeps track of changes made to files, so any record of what has been done to them is avail-
able, as well as reverting to a specific version. Git also makes collaboration easier, allowing
changes by multiple people to all be merged into one source. A complete copy of all project
files and the entire revision history are located locally on each user’s computer in a place called
Git repository. [33]

6Unit testing can be understood as testing small parts of code, or units, such as, for example, individual
class methods.

12 Basic concepts and technologies

2.14 Jenkins
Jenkins is an open-source automation tool built for continuous integration purposes. It is used
to build and test software projects continuously, making it easier for developers to integrate
changes into a project and making it easier for users to obtain a fresh build. It also allows
continuous software delivery by integrating with a large number of testing and deployment tech-
nologies. [34]

2.15 SonarQube
SonarQube is an open-source platform for continuous inspection of code quality. It performs au-
tomatic reviews with static analysis of code to detect bugs, code smells, vulnerabilities, code du-
plication, and many others flaws in numerous programming languages, including Java. [35]

Chapter 3

Analysis

In this chapter, the analysis of the Matillion ETL tool will be made, mainly focusing on its
key elements involved in data flow, as well as the way metadata can be exported from the tool
and its characteristics. Further, the chapter will introduce the functional and non-functional
requirements for the Matillion scanner prototype that will be implemented.

3.1 Matillion ETL

The information in this section is based on the official Matillion ETL documentation [36].
Matillion ETL is purpose-built for such cloud database platforms as Snowflake, Amazon Red-

shift, Google BigQuery, Microsoft Azure Synapse, and Delta Lake. Although each of these
products contains specific features and functionalities for the analytics platform they support,
users interact with Matillion ETL in the same way. Despite the ETL abbreviation in the name,
Matillion is an ELT tool, which means that the data loading process precedes its transformation.

In order to have a better idea of the instrument, its browser-based user interface is presented
in Figure 3.1.

3.1.1 Key elements
Matillion ETL has several key elements that the user mainly interacts with and that play an im-
portant role in the data flow. Let’s look at the description of each of them separately.

3.1.1.1 Project

To get started in Matillion ETL, the user must first create a project. A project is a logical
grouping of configuration settings and resources, such as jobs. To create a project, the user
must specify its name and the name of the project group to which it will belong. Thus, projects
are logically grouped into project groups. Next, each new project will be assigned a version
named “default”. Subsequently, the user can create other versions as the project changes. Ver-
sioning supports many use cases, but perhaps the most salient is to be able to capture devel-
opment at a point in time to designate as “live”, “production”, etc. Also, this feature allows
to make changes to the project without fear of breaking it, since it is always possible to revert
to an older version.

13

14 Analysis

Figure 3.1 Matillion ETL user interface

Matillion ETL 15

3.1.1.2 Environment
An environment in Matillion ETL describes which sets of target cloud database platform cre-
dentials to use for a connection. Multiple environments can be configured at the project level,
meaning different users can use different environments in the same project. When a user runs
a job, it runs within the environment currently in use by that user.

3.1.1.3 Job
Jobs are Matillion ETL’s main way of designing, organising, and executing workflows. The most
common usage of Matillion ETL is to build strings of configured components inside a job and
then run that job to accomplish a desired task, such as extracting, loading, or transforming data.
Each job belongs to a specific version of the project and is located in a particular project job
folder.

There are two main flavours of jobs:

Orchestration – primarily concerned with DDL1 statements (especially creating, dropping,
and altering resources), extracting data from external sources, and loading them to the target
cloud platform.

Transformation – used for transforming data that already exists in the target warehouse ta-
bles, getting it ready for analysis. This includes filtering data, changing data types, removing
rows, and many other transformations.

It is worth mentioning that Matillion ETL has a special feature called “Shared Jobs” that
allows users to embed jobs into each other as components. Working with this feature is out
of the scope of this thesis due to its complexity.

3.1.1.4 Component
Each component is named according to its particular function: from moving data into file storage
to performing custom calculations on table columns. The area in which components are laid out
within a job is called the canvas. Components come in two types, depending on the type of its par-
ent job: orchestration and transformation. Each component has a unique set of user-configurable
properties that effect its function, such as connection string, source column names, filter con-
dition, column mapping, and many more. Changes made to these properties will not affect
the properties of any other component, even components of the same type. It should also
be noted that the configurable properties for the same component type may vary for different
target platforms of Matillion ETL.

Matillion ETL currently supports more than 150 components and its developers often add new
ones in updates, depending on the needs of customers. It should be clarified that the components
have a different usage frequency. The list of the most frequently used components includes
“Database Query”, “Join”, “Table Input”, “Filter”, “Rename”, and some other components.
The Matillion scanner prototype will not support all the components as it would be very time
consuming and out of the scope of this work, but only some, including those mentioned above.

3.1.1.5 Connector
Components should be linked to one another in the order in which they will need to be exe-
cuted. This is achieved using so-called connectors. Depending on its type, the source component
can be connected to the target component(s) 1:1 or 1:N (using multiple output connectors).

1A data definition language (DDL) is a language used to create and modify the structure of objects
in a database. These database objects include views, schemas, tables, indexes, etc. [37]

16 Analysis

There are several types of orchestration component connectors, such as, for example, success-
ful, unsuccessful, unconditional, and others. Depending on the source orchestration component
execution result, the appropriate connector type will be selected to continue the data flow.
Transformation components, in turn, have only one unnamed type of connectors.

3.1.1.6 Variable
Matillion ETL supports several types of variables that can be used in all sorts of properties and
expressions to allow the user to pass and centralize configuration:

Job variables – name-value pairs that are defined within the scope of a single job and can-
not be used outside of it, that is, in other jobs. These variables will override any environment
variables of the same name within that specific job.

Grid variables – a special type of job variables. Represent two-dimensional arrays that
hold scalar values in named columns. These variables can be used in many places where lists
of data need to be passed around.

Environment variables – name-value pairs, which have global scope and can be used
everywhere, unlike job variables. Environment variable values are defined for each project
environment separately.

When using job and environment variables, their declaration must have the following format:
${<variable_name>}. For instance, if the user wants to use the job variable named “path”, it
must be entered as follows: ${path}. Grid variables are applied through the user interface using
the “Use Grid Variable” option in some properties configuration.

3.1.2 Metadata export
Project information, such as its jobs, environments, and variables, can be exported from one
Matillion ETL instance to be imported into another, for example, for the migration or sharing
purposes. However, for the Matillion scanner, this function can be used as an excellent source
of metadata.

One way of accomplishing the export is through the Matillion ETL API, which provides
several endpoints for this. The advantage of this method is that the export will be done auto-
matically, however, for this the user will have to go through a series of configurations related
to providing credentials to create a connection to the Matillion ETL server and specifying the tar-
get projects elements to be exported. The responses from the API come in JSON format.

The tool also provides a second export method with its user interface. The Figure 3.2 shows
a special menu for exporting jobs, environments, and variables belonging to a particular tool
instance project. It allows the user to export them as a single file, which can later be trans-
ferred to the Matillion scanner for data flow analysis. This manual export method has a num-
ber of disadvantages, such as, for example, shifting the responsibility for exporting metadata
to the user, who will also be forced to work with the file system. On the other hand, this
method allows the user to describe the scanner exactly what needs to be analyzed and pro-
vide everything necessary for this. From the implementation point of view, the manual export
method is more profitable, because working on it will take less time than working on the export
method via the API, which will allow investing more time and focusing on the implementation
of data flow analysis. That is why, within this work, the Matillion scanner prototype will only
support the manual export method. Nevertheless, the prototype will be aimed at adding API
export support in the future and will contain a good basis for this. The only question that
needs to be answered is: does the manual export metadata contain enough information to track
the data lineage?

Matillion ETL 17

Figure 3.2 Matillion ETL export menu

3.1.2.1 Manual export files format and structure
Manual export files have JSON format. Although the structure of these files was created and
intended for internal use in Matillion ETL, they are suitable for achieving the goals of this work.
It is worth mentioning once again that each export file belongs to some project and describes its
elements.

An example of the root structure of each file can be seen in Figure 3.3. This structure
represents an object containing the following elements:

1. dbEnvironment – name of the cloud storage dedicated to the given Matillion ETL instance.

2. version – Matillion ETL instance version.

3. jobsTree – a special object that stores basic information about exported jobs, namely their
identifiers, names, types, descriptions, and internal project folders where these jobs are lo-
cated.

4. orchestrationJobs – a list of exported orchestration job objects, where each object contains
detailed information about the job, namely its identifier, components, connectors of different
types, variables, and other elements not related to the data flow.

5. transformationJobs – a list of exported transformation job objects, having a similar struc-
ture as the previous orchestration job objects list, except that each transformation job object
contains only one type of connectors.

6. variables – a list of exported environment variable definition objects. Each object stores
complete information about the variable, such as, for example, its name and type.

7. environments – a list of exported environment objects. Each object stores information about
the environment, namely its name, connection credentials, and the values of environment
variables relevant to this environment.

18 Analysis

Figure 3.3 Matillion ETL manual export file root structure

Figure 3.4 Matillion ETL manual export file component property structure

Matillion scanner requirements 19

Digging deeper into the structure of the export files, it can be seen that they contain detailed
information about each job component, including all of its user-configurable properties. Fig-
ure 3.4 shows an example of the property structure of a component that executes an SQL query
entered by the user.

From what was written above, it can be summed up that manual export files provide enough
information needed to track the data lineage. The Matillion scanner will have to be able to load,
parse them, and store all the information needed for the data flow analysis in an internal repre-
sentation. However, there are also several important issues that need to be addressed, namely:

The size of individual manual export files can be gigantic (hundreds of megabytes), so when
they are loaded, there may not be enough memory.

The project group name, project name, and project version name parameters are missing
in the export files. It is not possible to determine which version of a project the exported
jobs in the files belong to.

Incorrectly configured jobs, their component properties, environments, and other elements
may still be successfully exported for data flow analysis.

3.2 Matillion scanner requirements
For a better understanding of the scanner’s capabilities, it is necessary to define the requirements
for it and divide them into functional and non-functional types.

3.2.1 Functional requirements
Functional requirements define what precisely a software must be able to do and how a system
must respond to inputs. They define the software’s goals, meaning that the software will not work
if these requirements are not met. [38] The following functional requirements have been estab-
lished for the Matillion scanner:

F1: The scanner will be able to efficiently load JSON files manually exported from Matil-
lion ETL by the user, who must place them in a special folder structure expected by the scan-
ner.

F2: The scanner will extract the necessary metadata from the provided files and convert it
into an internal convenient model.

F3: Based on the extracted metadata, the scanner will perform data flow analysis and graph
generation.

F4: The scanner will support analysis of all major tool elements, including both orchestration
and transformation Matillion ETL jobs. In the context of a Matillion ETL project, each job
provided by the user will be analyzed within each provided Matillion ETL environment.
As mentioned earlier, at the moment the analysis will only be supported for at least ten
of the most frequently used Matillion ETL components and with Snowflake as the target
platform.

F5: The generated data flow graph will have a rational nodes structure that describes the an-
alyzed elements and their relationships. The graph nodes will contain all relevant character-
istics and attributes.

F6: The scanner will be able to work with incorrectly configured tool elements, filling in
a possibly missing lineage using a special deduction mechanism, which will be presented
in the next chapter.

F7: In case of any error or other illegal state, the scanner will log a meaningful message.

20 Analysis

3.2.2 Non-functional requirements
Non-functional requirements are the constraints or the requirements, such as scalability, main-
tainability, performance, portability, security, reliability, and many others, imposed on a system.
They specify the quality attribute of the software. [39] The Matillion scanner should satisfy
the following non-functional requirements:

N1: The scanner will be easily extensible to add new functionality that was beyond the scope
of this work, namely support for the remaining Matillion ETL target cloud database plat-
forms (Amazon Redshift, Google BigQuery, Microsoft Azure Synapse, and Delta Lake), meta-
data extraction via the Matillion ETL API, support for all remaining relevant components
of the tool.

N2: The scanner will be seamlessly connected to the Manta project, so it must follow the mod-
ule structure common to Manta scanners, as well as Manta naming conversions. The scanner
will use common technologies developed or used by Manta, and only third-party libraries
approved for use by Manta.

N3: Metadata extraction, data flow analysis, and graph generation processes must be per-
formed by the scanner in a reasonable amount of time, with a limit of five seconds per one
Matillion ETL job analyzed within one tool environment.

N4: The scanner code will be well readable, all its essential public and protected class methods
must be properly documented using Javadoc.

N5: The scanner must be qualitatively tested using various types of tests, including unit, in-
tegration, functional, and end-to-end. SonarQube tool should be used to evaluate the quality
of the written code.

Chapter 4

Matillion scanner design

In this chapter, the design of the Matillion scanner will be introduced, focusing on the two
essential modules that it consists of. The relationships and logic of these modules and their
submodules, as well as the main algorithms and mechanisms of the scanner can be found here.

Integration with the Manta project implies that the Matillion scanner design should follow
the module structure common to other Manta scanners. Therefore, the scanner will consist
of two main modules called Connector and Data Flow Generator. The dependency diagram
of these modules and their submodules is shown in Figure 4.1. The result of their joint and
coordinated work will be a graph representing data flows in Matillion ETL.

4.1 Connector module
The Connector module will serve to load the input JSON files, extract the necessary metadata
from them, and transform this metadata into an internal model that the Data Flow Generator
module1 will work with.

Before talking about the structure of this module and the functionality of its submodules, it
is necessary to familiarize yourself with the strategy for working with input files.

Figure 4.1 Dependency diagram of the Matillion scanner modules

1The Data Flow Generator module will provide data flow analysis and graph generation. It will be introduced
later in a separate section of this chapter.

21

22 Matillion scanner design

Figure 4.2 Manual input directory structure

Figure 4.3 Structure of the temporary directory for split manual input files

4.1.1 Manual input directory structure
After manually exporting JSON files from Matillion ETL, the user will need to transfer them
to the scanner. At this stage, the problem mentioned above, related to the absence of project
group name, project name, and project version name parameters in the export files, can be solved.

To do this, the user will have to place the files in the directory structure shown in Figure 4.2.
As can be seen from the figure, the user will need to create three directories, each of which will be
placed in the previous one. The directory names will match the missing parameters. The ex-
ported file with metadata will be placed in the last directory, allowing the scanner to determine
which version of the project the exported jobs in the file belong to. This structure will also
allow the scanner to perform data flow analysis of all jobs available in the user’s Matillion ETL
instance.

Another problem, also mentioned above, related to the extremely large size of individual
manual export files, still remains. The next section is devoted to its solution.

4.1.2 Manual input files splitting
The size of the exported metadata in a single input file cannot be controlled, so there is no
guarantee that the user’s environment has enough memory to process it. The solution to this
could be to split the files into smaller ones and use them as a metadata source for the scanner.

To achieve this, each export file must be divided into logical independent units that can be
used as separate inputs for data flow analysis, such as jobs. Each job JSON object located
in the source export file will now represent a single file named after the contained job and placed
in a specially created temporary directory structure that extends the previous one, as shown
in Figure 4.3. The lists of exported environment and environment variable JSON objects will
now also be separate files with fixed names.

Connector module 23

4.1.3 Module structure
The Connector module will consist of four submodules, following the common design of other
Manta scanners. All of them will be introduced in separate sections below, in order of how
the Matillion scanner will work with the inputs.

4.1.3.1 Extractor submodule

Within this work, the manta-connector-matillion-extractor submodule, or simply Extrac-
tor, will serve to load manually exported files, split them into smaller parts, and save them
in a created temporary directory for later use. The design of this submodule, however, should
consider adding support for metadata extraction via the Matillion API in the future, in which
the received response will be processed in the same way as manual input, that is, split into smaller
parts and stored in a similar temporary directory structure. For this, two interfaces named
IExtractor and ISplitter were created.

IExtractor declares only one method called extract, which performs the extraction and
runs the splitting of the extracted data, the type of which depends on the type of extraction. This
method must be overridden in classes that implement this interface, such as
ManualInputExtractor and ApiExtractor. The first class is used to “extract” manual in-
put files, meaning reading them and passing to an instances of ManualInputFileHolder, each
of which stores the input file in form of java.io.File object and other supporting information,
such as project group name, project name, and project version name received from the input file
path. The extract method in ApiExtractor has been left unimplemented, but will be used for
the connection to the Matillion API and extraction through it in future versions of the scanner.

Each ManualInputFileHolder object is then passed for splitting to a concrete class that
implements ISplitter interface, named ManualInputJsonSplitter. This class overrides a sin-
gle method defined in ISplitter called split, which takes the extracted data as a parame-
ter, splits it, and continuously saves the ready split parts of it in a created temporary direc-
tory. The class uses a combination of the Jackson Streaming API and ObjectMapper to parse
JSON, which ensures efficient iteration over the contents of each input file. Another class named
ApiJsonSplitter that implements ISplitter interface will later be used in the same way to
split the JSON content of the API response.

4.1.3.2 Reader submodule

Split files containing the necessary metadata will be read in the manta-connector-matillion
submodule. The main class involved in this process is called MatillionInputReader. Manta
expects this class to extend AbstractFileInputReader, which is the common parent for classes
that provide reading of primary input files in various Manta scanners. To extend this class,
MatillionInputReader must implement its abstract method called readFile. Manta calls this
method in a loop, passing each primary input file as a parameter to it. As mentioned earlier,
for the Matillion scanner, this input file will be the job file that appeared in the temporary
directory after the splitting process. The scanner reads the given job file, as well as the rel-
evant files with environments and environment variables definition metadata in the specified
overridden method, using instances of the created JsonJobReader, JsonEnvironmentsReader,
and JsonEnvironmentVariablesDefinitionReader classes. These classes use the combination
of the Jackson Streaming API and ObjectMapper again to parse JSON content and convert it
into an internal model. After that, the readFile method returns a scanner-specific object repre-
senting a single input for data flow analysis, whose class, in case of the Matillion scanner, must
implement the IDataflowInput interface, which will be discussed in more detail in the next
section.

24 Matillion scanner design

4.1.3.3 Model submodule

The manta-connector-matillion-model submodule will be intended to declare the internal
representation of the metadata received by the scanner. For this, a special structure of Java
interfaces and enumerations was created. Its most important elements can be seen in the class
diagram shown in Figure 4.4. The concrete classes that implement these interfaces will be located
in another submodule, which will be discussed in the next section. Such logic distribution allows
to separate the processes of filling the internal model with metadata from working with it during
the data flow analysis.

As already mentioned, the single input for data flow analysis in the Matillion scanner is an ob-
ject whose class implements the IDataflowInput interface. This object stores a single job,
as well as a list of environments within which this job will be analyzed. The object also stores
the project group name, project name, and project version name values, needed to create the cor-
rect node structure of the generated data flow graph.

The IJob interface declares methods that provide access to various properties of a job, such as
its internal identifier, type, variables, and the components and their connectors contained in it.
Two interfaces named IOrchestrationJob and ITransformationJob extend IJob and represent
concrete jobs types.

Each component type has its own interface that provides access to its unique set of user-
configurable properties, as well as common properties for all types of components. Although
the configurable properties for the same component type may vary across different Matillion ETL
target platforms, the component interface will contain methods to retrieve all possible proper-
ties, so that only the relevant ones can be used. The IUnknownOrchestrationComponent and
IUnknownTransformationComponent interfaces, which do not provide access to any unique prop-
erties, were created for unsupported components. In the future, when adding support for a new
component, its special interface will be added. The IDatabaseConnectiveComponent interface
was added in order to separate such components that work with databases (for example, extract
data from them). During the data flow analysis, such components will need to be approached
separately, which will be discussed later in the relevant “Connection to databases” section.

The interfaces IOrchestrationJob, ITransformationJob, IOrchestrationComponent, and
ITransformationComponent may seem superfluous, but several properties can be obtained
through them that are not currently used, but might be needed in the future in further de-
velopment of the scanner. Also, there is still a possibility that the structure of the exported
metadata may change with the latest versions of the Matillion ETL, or new properties will be
added that can later be obtained through these interfaces and used during the data flow analysis
performed by the scanner.

The IEnvironment interface declares methods that provide credentials needed by the scan-
ner to connect to the target cloud storage that the user’s Matillion ETL instance is work-
ing with, as well as environment variables with values specific to this environment. As al-
ready known, the implemented prototype will only work with Snowflake environments, using
ISnowflakeEnvironment, but in the future it will be possible to add new interfaces for other
cloud platforms.

4.1.3.4 Resolver submodule

The Java classes located in the manta-connector-matillion-resolver submodule will imple-
ment the interfaces of the Model submodule. Objects of most of these classes will be instan-
tiated by the ObjectMapper instance in the Reader submodule’s readFile method mentioned
earlier. This means that the ObjectMapper will transform the JSON content of the input files
into concrete Java objects. To make this possible, the class of the created object must declare
attributes with names and types identical to the JSON fields mapped in them, or use the special
@JsonProperty Java annotation.

Connector module 25

Figure 4.4 Class diagram in the manta-connector-matillion-model submodule

26 Matillion scanner design

Figure 4.5 Data flow graph nodes structure

4.2 Data Flow Generator module

The purpose of the Data Flow Generator module will be to perform data flow analysis of input
metadata represented by the internal model. The module will work with interfaces declared
in the Connector Model submodule, without dealing with their concrete implementations, which
creates a high level of abstraction and makes the processes of filling the model and working
with it independent of each other. Based on the analysis, the result data flow graph will be
generated in this module.

Before studying the key algorithms of the module, it is necessary to familiarize yourself
with the structure of graph nodes, which is the subject of the next section.

4.2.1 Data flow graph nodes structure
The nodes structure of the generated data flow graph is specific to each Manta scanner, since
each of them works with different key objects. The structure created for the Matillion scanner
can be seen in Figure 4.5. Each node has a type and is characterized by the name of the object
it represents, and may have a corresponding set of attributes that describe that object.

The three root nodes generated by the Matillion scanner represent, respectively, a group
of projects, a project that belongs to this group, and its version. Next comes the environment
node, which describes the environment, within which the job was analyzed. The environment
node has an attribute indicating the type of target platform inherent in this environment, for ex-
ample, “Snowflake”. A job also has its own node, which is preceded by a hierarchy of nodes repre-
senting the internal folder structure of the tool in which the given job is located. The component
node has many attributes that basically describe the configurable properties of that component.
At the end of the hierarchy are nodes that describe the individual columns that the corresponding
component works with. These columns could have been created in this component, or extracted
from some data source and passed to this component by the previous ones. To group all column
nodes, the parent node with the constant name columns_schema was created.

As a result, such a structure of nodes is able to describe all the key elements in Matillion and
their relationship in the context of scanner analysis.

Data Flow Generator module 27

Figure 4.6 Sequence diagram for the Data Flow Generator module

4.2.2 Data flow analysis and graph generation
Data flow analysis of a single job that was passed through the IDataflowInput interface starts
an object of the JobAnalyzer class via the method called runAnalysis, which can be seen
in the sequence diagram in Figure 4.6. Job analysis consists in analyzing its individual compo-
nents and studying the flow of columns within them. The problem is that the received metadata
about each component does not contain information about all the columns flowing through it,
but only about those that the component somehow works with (for example, creates or modi-
fies them). Therefore, the components should be analyzed in topological order, passing known
columns to each other. This process has been named “columns propagation”.

Objects of classes that extend the abstract class AbstractComponentAnalyzer are responsible
for analyzing components of concrete types, since analysis is always type-specific. For example,
JoinComponentAnalyzer analyzes components of type “Join”, etc. Analyzers examine the in-
fluence of their components on the columns flowing through them, and based on this gradually
generate a data flow graph. For easier graph manipulation, the MatillionGraphHelper instance
is used, which has a variety of methods that allows to create and connect nodes. It is also

28 Matillion scanner design

necessary to keep in mind the variables of several types that can be used in the components
configuration. The VariablesResolver instance serves to resolve them.

The results of component analysis are stored in objects of class ComponentAnalysisResult.
They contain information about the component columns, whether the analysis was successful,
and other related values. Columns propagation works by passing the analysis results of previous
components to the analyzers of the following ones.

4.2.2.1 Columns expansion
As mentioned earlier, there is a problem with incorrectly configured jobs, their component prop-
erties, environments, and other elements passed for data flow analysis. The columns expansion
mechanism is intended to solve this problem.

The mechanism starts after the columns propagation phase, when all the information that
could be obtained from the input metadata has been processed, and based on this, a data flow
graph has been generated. At the same time, the results of the analysis of all components were
returned, containing the statuses of whether they were successful. The analysis of a compo-
nent is considered unsuccessful if its analyzer noticed its incorrect configuration, or the analysis
of the previous component was unsuccessful. If so, this means that there is a possibility that
part of the lineage is missing from the data flow graph.

Unlike the propagation mechanism, the expansion mechanism starts from the last component
in the topological sort and ends with the first one. It works with columnExpansionMappings
saved in every unsuccessfully analyzed component result. These mappings are processed by con-
crete component analyzers and contain information about the columns to be expanded, namely
the names of their graph nodes to be created and the already existing nodes to which they should
be connected.

As a result of this “deduction”, the output graph is filled with possibly missing nodes.

4.2.2.2 Connection to databases
The last step in data flow analysis, which goes after creating all possible columns, is connecting
to databases and creating their special nodes in the data flow graph. This is achieved by call-
ing the connect method of the database connective component analyzers, which, in turn, call
the methods of the internal Manta tool called DataflowQueryService. This tool is able to cre-
ate nodes for columns that come from databases based on the provided connection properties,
SQL query, or other parameters known to the scanner from the input metadata. After the nodes
are created, the scanner can ask the tool to merge them with the output graph.

Chapter 5

Matillion scanner prototype
implementation

The purpose of this chapter is to present the implementation of the Matillion scanner prototype
based on the design discussed in the previous chapter. Due to the huge amount of source
code, the focus will be on only the essential and most interesting parts of the Connector and
Data Flow Generator modules.

5.1 Connector module

As already known, the first step when working with manually provided JSON files is to load
(“extract”) them from the input directory, split into smaller parts, and store them in a temporary
directory, which is done in the Extractor submodule.

Extraction of the input files is done within the extract method of the ManualInputExtractor
class object, as shown in Listing 1. The method creates an instance of the ManualInputReader
class, which is responsible for loading files from the input directory. This class extends the Manta’s
AbstractFileInputReader, which declares methods for input files processing, such as canRead
and read. For them to work correctly for the purposes of the Matillion scanner,
the ManualInputReader takes the path to the input directory as a constructor parameter and
specifies the characteristics of the files of this directory that should be read, such as their extension
type being JSON. Each input file (its java.io.File representation) is then stored in an instance
of ManualInputFileHolder that gets the necessary supporting information from the file path and
throws the WrongManualInputFilePathException in case of incorrect file placement by the user.

The input file processing is then continues in the split phase. An example of the split can be
found in Listing 2 that introduces the readEnvironmentContent method
of the AbstractJsonSplitter class. This method was created in order to provide the split-
ting of the variables and environments lists of JSON objects of the input file into sepa-
rate files called environmentVariablesDefinition.json and environments.json respectively.
The method works with JsonParser and JsonGenerator instances from the Jackson Stream-
ing API, which are respectively used to iterate over the JSON content and copy and write it
to the ByteArrayOutputStream. Splitting of the jobs JSON content in general works in a simi-
lar way, but with some additional functionality not relevant to this section.

Finally, the split parts are written to the output files in a temporary directory, an example
of which can be seen in Listing 3. Note that this step may fail in case of any error related
to working with the file system, such as, for example, access denial or a file that already exists
in the desired path.

29

30 Matillion scanner prototype implementation

@Override
public boolean extract(SupportedPlatformType platformType, OutputFileWriter outputFileWriter) {

LOGGER.info("Start of manual input extraction.");

boolean isExtracted = false;
try (ManualInputReader inputReader = new ManualInputReader(inputDirectory)) {

File currentInputFile = null;
while (inputReader.canRead()) {

try {
currentInputFile = inputReader.read();
ManualInputFileHolder inputFileHolder =

new ManualInputFileHolder(currentInputFile, serverName);
LOGGER.info(

"Start of manual input file extraction: [{}].",
inputFileHolder.getFilePath()

);
if (!isExtracted) {

isExtracted = runSplit(platformType, inputFileHolder, outputFileWriter);
continue;

}
runSplit(platformType, inputFileHolder, outputFileWriter);

} catch (IOException | IllegalStateException e) {
LOGGER.log(Categories

.extractionErrors()

.failedToExtractManualInputFile()

.filePath(inputReader.getInputName())

.catching(e)
);

} catch (WrongManualInputFilePathException e) {
LOGGER.log(Categories

.extractionErrors()

.wrongManualInputFilePath()

.filePath(currentInputFile.getPath())
);

}
}

}
return isExtracted;

}

Code listing 1 The extract method in the ManualInputExtractor class

Connector module 31

private void readEnvironmentContent(JsonParser jsonParser,
OutputFileWriter outputFileWriter,
String projectGroupName,
String projectName,
String projectVersionName,
String outputEnvironmentFileName) throws IOException {

// Check that the cursor points to the JSON start array "[" token
if (jsonParser.getCurrentToken() != JsonToken.START_ARRAY) {

throw new IllegalStateException();
}

ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
try (JsonGenerator jsonGenerator = createJsonGenerator(byteArrayOutputStream)) {

jsonGenerator.copyCurrentEvent(jsonParser);
while (jsonParser.nextToken() != JsonToken.END_ARRAY) {

if (jsonParser.getCurrentToken() != JsonToken.START_OBJECT) {
throw new IllegalStateException();

}
copySingleObject(jsonParser, jsonGenerator);

}
jsonGenerator.copyCurrentEvent(jsonParser);

}

// In order not to create an environment file with empty content "[]"
if (byteArrayOutputStream.size() != 2) {

outputFileWriter.writeToEnvironmentFile(
projectGroupName,
projectName,
projectVersionName,
outputEnvironmentFileName,
SupportedFileExtension.JSON,
byteArrayOutputStream

);
}

}

Code listing 2 The readEnvironmentContent method in the AbstractJsonSplitter class

public void writeToEnvironmentFile(String projectGroupName,
String projectName,
String projectVersionName,
String fileName,
SupportedFileExtension fileExtension,
ByteArrayOutputStream byteArrayOutputStream) {

Optional<File> optionalEnvironmentFile = createFile(
Path.of(

outputDirectory.getAbsolutePath(),
FileNames.GROUPS_DIRECTORY_NAME,
projectGroupName,
projectName,
projectVersionName,
fileName + fileExtension.getName()

)
);
optionalEnvironmentFile.ifPresent(file -> writeToFile(file, byteArrayOutputStream));

}

Code listing 3 The writeToEnvironmentFile method in the OutputFileWriter class

32 Matillion scanner prototype implementation

@Override
public IJob<? extends IComponent> read(File jobFile) throws IOException {

try (JsonParser jsonParser = createJsonParser(jobFile)) {

// Check that the next token the cursor points to is the JSON start object "{"
if (jsonParser.nextToken() != JsonToken.START_OBJECT) {

throw new IllegalStateException();
}

JobType jobType = getJobType(jobFile.getParentFile().getName());
switch (jobType) {

case ORCHESTRATION:
return getObjectMapper().readValue(jsonParser, OrchestrationJob.class);

case TRANSFORMATION:
return getObjectMapper().readValue(jsonParser, TransformationJob.class);

default:
throw new IllegalArgumentException(

String.format("Unknown job type: [%s].", jobType)
);

}

} catch (IllegalStateException | JsonMappingException e) {
LOGGER.log(Categories

.inputStructureErrors()

.wrongJobFileJsonStructure()

.filePath(jobFile.getPath())

.catching(e)
);
throw e;

} catch (IOException e) {
LOGGER.log(CommonErrors

.IOErrors()

.cannotReadFile()

.file(jobFile.getPath())

.catching(e)
);
throw e;

}
}

Code listing 4 The read method in the JsonJobReader class

Listing 4 presents the read method of the JsonJobReader class, located in the Reader sub-
module. The method takes the job JSON file that appeared in the temporary directory after
the split process, represented by an instance of java.io.File, and returns the internal ob-
ject representation of this job. To do this, the readValues method of the ObjectMapper class
is called, which is able to work with Jackon’s JsonParser that provides access to the JSON con-
tent of the job file. However, this method must know exactly the desired class of the object being
created, and takes this information as its second argument.

The Resolver submodule contains basically only plain Java classes that implement the inter-
faces declared in the Model submodule. These classes are primarily instantiated
by the ObjectMapper instance in the Reader submodule, that is why they contain attributes
whose names match the JSON fields in the input files or are marked with the @JsonProperty
Java annotation. The last important thing to say is that the internal model cannot be changed
after it has been created, that is, the interfaces in Model do not provide any setter method that
can be used during data flow analysis, and the return values of its getter methods are immutable.

Data Flow Generator module 33

public Node buildJobNode(IJob<? extends IComponent> job, Node parentNode) {

Node parentJobFolderNode = parentNode;
for (String jobFolder : job.getPath()) {

parentJobFolderNode = addNode(jobFolder, NodeType.MATILLION_JOB_FOLDER, parentJobFolderNode);
}
Node jobNode = addNode(job.getName(), job.getNodeType(), parentJobFolderNode);
if (StringUtils.isNotBlank(job.getDescription())) {

jobNode.addAttribute(NodeAttributesNames.DESCRIPTION, job.getDescription());
}
return jobNode;

}

Code listing 5 The buildJobNode method in the MatillionGraphHelper class

5.2 Data Flow Generator module
One of the most significant classes in the Data Flow Generator module is called
MatillionGraphHelper. An object of this class manipulates the output flow graph using various
methods for creating and connecting nodes. The class extends AbstractGraphHelper provided
by Manta. The method used to create a structure of nodes, relevant to the analyzed job, can be
seen in Listing 5. Each graph node can be created via the inherited addNode method that takes
the name of the node to be created, its type, and a reference to the parent node as arguments.
After that, if necessary, numerous attributes can be added to the created node object using its
addAttribute method, to which the attribute name and value must be passed. The last two
inherited methods of the MatillionGraphHelper class, which should be introduced in this sec-
tion, are called addDirectFlow and addFilterFlow. These methods take the source and target
nodes as arguments and connect them using the corresponding edge type.

The core data flow analysis logic resides in component analyzers. Listing 6 introduces
the analyze method of the ConvertTypeComponentAnalyzer as an example. The “Convert Type”
component does nothing else but convert type of columns flowing through it. This means that
the appropriate attribute should be added to the node of column whose type has changed. Be-
sides, the column nodes of the preceding components should be copied into the columns schema
relevant to the component being analyzed and connected with edges of direct flow type.

During analysis, the component analyzer collects the names of columns that may be expanded.
As already mentioned in 4.2.2, the received metadata about each component does not contain
information about all the columns flowing through it, but only about those that the compo-
nent somehow works with. That is why the IConvertTypeComponent interface provides only
a single method that enables to get all the columns whose type has changed, along with the cor-
responding type conversion in form of a string, suitable to be added as an attribute of the col-
umn node. In the given example, if the analyzer has not found the name of such column
using columns propagation, it marks this column name as a candidate for expansion and fills
the columnExpansionMappings if the analysis result of the given component was not successful.

It is important to mention that component analyzers make extensive use
of the VariablesResolver instance to resolve variables of different types. Its method called
resolveAllScalarVariables is shown in Listing 7 as an example. The method takes a string
with scalar variable declarations as a parameter and returns the same string, but with the dec-
larations replaced by their actual values.

Another important thing to introduce is the way to connect to databases in database connec-
tive component analyzers. They all use an instance of a helper class named DatabaseConnector,
which works directly with DataflowQueryService and has many methods for processing database
nodes. However, to establish a connection, the analyzer must first create an instance of a class
that implements the Connection interface using known credentials, as shown in Listing 8.

34 Matillion scanner prototype implementation

@Override
protected ComponentAnalysisResult<IConvertTypeComponent> analyze(

IConvertTypeComponent component,
Node componentNode,
IEnvironment environment,
List<ComponentAnalysisResult<? extends IComponent>> previousComponentAnalysisResults,
VariablesResolver variablesResolver,
MatillionGraphHelper graphHelper

) {
Node columnsSchemaNode = graphHelper.buildColumnsSchemaNode(componentNode);
ComponentAnalysisResult<IConvertTypeComponent> result = createEmptyAnalysisResult(

component,
componentNode,
previousComponentAnalysisResults,
1,
columnsSchemaNode,
variablesResolver

);

Map<String, String> columnTypeConversionsByColumnName =
getColumnTypeConversionsByColumnName(

component.getColumnTypeConversionsHolder(), variablesResolver
);

Set<String> possibleColumnNamesToExpand =
new HashSet<>(columnTypeConversionsByColumnName.keySet());

for (ComponentAnalysisResult<? extends IComponent> previousComponentAnalysisResult :
previousComponentAnalysisResults) {

if (!previousComponentAnalysisResult.isSuccess()) {
result.setIsSuccess(false);

}
for (Node sourceColumnNode : previousComponentAnalysisResult.getColumnNodes()) {

Node columnNode = graphHelper.copyAndConnectSourceColumnNode(
sourceColumnNode,
columnsSchemaNode,
TransformationClassification.NON_TRANSFORMING

);
String columnName = columnNode.getName();
if (columnTypeConversionsByColumnName.containsKey(columnName)) {

columnNode.addAttribute(
NodeAttributesNames.TYPE_CONVERSION,
columnTypeConversionsByColumnName.get(columnName)

);
possibleColumnNamesToExpand.remove(columnName);

}
result.addColumnNode(columnNode);

}
}

processPossibleColumnExpansionMappings(
possibleColumnNamesToExpand, columnsSchemaNode, result, graphHelper

);

checkEmptyColumnNodes(result);
return result;

}

Code listing 6 The analyze method in the ConvertTypeComponentAnalyzer class

Data Flow Generator module 35

public String resolveAllScalarVariables(String stringWithScalarVariableDeclarations,
int componentId,
String componentName) {

// Scalar variable declaration must be in the ${variableName} format
// with certain additional rules
Matcher matcher = Pattern.compile("\\$\\{([A-Za-z_$][A-Za-z0-9_$]*)}")

.matcher(stringWithScalarVariableDeclarations);
StringBuilder stringBuilder = new StringBuilder();
while (matcher.find()) {

String scalarVariableName = matcher.group(1);
Optional<String> optionalScalarVariableValue =

getScalarVariableValue(scalarVariableName, componentId, componentName);
if (optionalScalarVariableValue.isPresent()) {

matcher.appendReplacement(stringBuilder, optionalScalarVariableValue.get());
}
else {

LOGGER.log(Categories
.variableResolvingErrors()
.failedToResolveScalarVariable()
.scalarVariableName(scalarVariableName)

);
}

}
matcher.appendTail(stringBuilder);
return stringBuilder.toString();

}

Code listing 7 The resolveAllScalarVariables method in the VariablesResolver class

public Connection createSnowflakePlatformConnection(String accountLocatorName,
String warehouseName,
String databaseName,
String schemaName,
String username) {

String serverName = Objects.nonNull(accountLocatorName) && Objects.nonNull(warehouseName) ?
String.format(

"jdbc:snowflake://%s.snowflakecomputing.com/?warehouse=%s",
accountLocatorName,
warehouseName

) : null;
return new ConnectionImpl(

getPlatformTypeName(SupportedPlatformType.SNOWFLAKE),
accountLocatorName,
serverName,
databaseName,
schemaName,
username

);
}

Code listing 8 The createSnowflakePlatformConnection method in the DatabaseConnector class

36 Matillion scanner prototype implementation

Chapter 6

Matillion scanner prototype
testing

In this chapter, the way of testing the implemented Matillion scanner prototype will be in-
troduced, mainly focusing on key test cases. The chapter first presents automated tests
of the Connector and Data Flow Generator modules, and then continues with result data flow
visualization examples.

6.1 Connector module

To present the Connector module automated JUnit tests, it is better to start with those that
are located in the Extractor submodule, which handles manual input files. Listing 9 shows
a test that covers the entire process of “extracting” files, that is, reading, splitting, and sav-
ing parts of it to the output temporary directory. The test first calls the extract method
of the ManualInputExtractor, which performs the mentioned steps using predefined manual in-
put and temporary output directory paths. After that, the test compares the pre-filled expected
output temporary directory with the actual one that appeared during the extraction process,
iterating over each file and its contents.

Another noteworthy test of the Extractor submodule is shown in Listing 10. This test checks
the correctness of the ManualInputFileHolder class logic by asserting the expected attribute
values of its object. The test class, however, also has another methods that mainly check
for WrongManualInputFilePathException to be thrown if the input file is not placed correctly
by the user.

The tests located in the Reader submodule serve to verify the correct reading of split files and
filling in the internal model in the Resolver submodule. For example, the JsonJobReaderTest
class contains methods for testing the read method of the JsonJobReader class by calling it and
asserting the expected properties of read jobs of both orchestration and transformation types.
The JsonEnvironmentsReaderTest and JsonEnvironmentVariablesDefinitionReaderTest
tests work similarly. Special mention deserves a large number of component tests located along
the path src/test/java/eu/profinit/manta/connector/matillion/component. These tests
were created for each component type separately in order to verify their resolved unique proper-
ties.

To summarize, the Connector module was tested with a total of 40 passed unit tests.

37

38 Matillion scanner prototype testing

@Test
void extractTest() {

LOGGER.debug("Extracting manual input files.");
manualInputExtractor.extract(platformType, outputFileWriter);

Path expectedOutputDirectory = Path.of(System.getProperty("user.dir"))
.resolve("src/test/resources/expected/output/" + serverName);

try {
Files.walkFileTree(expectedOutputDirectory, new SimpleFileVisitor<>() {

@Override
public FileVisitResult visitFile(Path expectedFilePath,

BasicFileAttributes attrs)
throws IOException {

if (!Files.isDirectory(expectedFilePath)) {
assertTrue(expectedFileTest(expectedFilePath));

}
return FileVisitResult.CONTINUE;

}
});

} catch (IOException e) {
fail(e);

}
}

Code listing 9 The extractTest method in the ManualInputExtractorTest class

@Test
void jsonSuccessTest() {

try {
File inputFile = new File("server/group/project/version/export.json");
ManualInputFileHolder manualInputFileHolder =

new ManualInputFileHolder(inputFile, "server");

assertEquals(inputFile, manualInputFileHolder.getFile());
assertEquals("export.json", manualInputFileHolder.getFileName());
assertEquals(

SupportedFileExtension.JSON, manualInputFileHolder.getFileExtension()
);
assertEquals("group", manualInputFileHolder.getProjectGroupName());
assertEquals("project", manualInputFileHolder.getProjectName());
assertEquals("version", manualInputFileHolder.getProjectVersionName());

} catch (WrongManualInputFilePathException e) {
fail(e);

}
}

Code listing 10 The jsonSuccessTest method in the ManualInputFileHolderTest class

Data Flow Generator module 39

@ParameterizedTest(name = "{index}: sourceFile: {0}")
@MethodSource("collectResolvedDataFlowInputs")
void compareExpectedGraphToActual(Path expectedGraphFilePath,

IDataflowInput dataFlowInput) throws IOException {

Graph outputGraph = new GraphImpl(null);
dataFlowTask.execute(dataFlowInput, outputGraph);
GraphEqualityUtil.checkGraphsEqual(

outputGraph, getExpectedGraphFile(expectedGraphFilePath), TestMode.COMPARE
);

}

Code listing 11 The compareExpectedGraphToActual method in the DataflowEqualityTest class

Figure 6.1 Result data flow graph example

6.2 Data Flow Generator module
The Data Flow Generator module is mainly tested using the common Manta utility for testing
the output data flow graph named GraphEqualityUtil. The utility provides a single method
called checkGraphsEqual that takes the generated output graph as the first argument, writes it
to a plain file of a special format, and possibly compares this file with the expected graph file
passed as the second argument. The use of this utility can be seen in Listing 11, which shows
a method that executes data flow analysis and is called several times with different data flow
inputs. In general, this way of testing allows to add as many data flow inputs as necessary,
covering each analysis case.

The module also contains the VariablesResolverTest class, which verifies that variables
of each type are resolved correctly, primarily by mocking their properties.

The Data Flow Generator module was tested using 29 unit tests in total.

6.3 Data flow visualization
The essential test, which shows that the scanner prototype actually works and is successfully
integrated into the Manta project, is the simple resulting visualization example presented above
in Figure 6.1. Note that more such examples can be found below in the appendix named
“More Matillion ETL data flow visualization examples”.

40 Matillion scanner prototype testing

Chapter 7

Conclusion

The main goal of this thesis was to design and implement a prototype of a functional module
for the Manta project, which performs analysis of data flows in the Matillion ETL tool based on
exported metadata describing tool elements. After analysis, the implemented prototype generates
a graph that visualizes these data flows. To achieve this goal, the thesis was divided into several
logical parts that were preceded by a description of the basic concepts and technologies that
the work operates on.

The first part (chapter “Analysis”) was devoted to the analysis of Matillion ETL, getting
acquainted with its key elements and ways to export metadata, as well as its characteristics.
Within this part were also defined the requirements for the implemented prototype and the func-
tionality it should support.

In the second part (chapter “Matillion scanner design”), the design of the solution was pre-
sented, which included a description of the two modules of the implemented prototype and
key algorithms for metadata processing, data flow analysis, and graph generation. The design
was made based on the previous analysis and ensures a seamless connection of the implemented
module to the Manta project, following its existing infrastructure.

The third part (chapters “Matillion scanner prototype implementation” and “Matillion scan-
ner prototype testing”) introduced the implementation of the prototype based on its design and
the way of testing it. The result module was also qualitatively documented using Javadoc,
fulfilling the subgoals of this thesis.

As expected, the current state of the prototype does not allow it to be released as part
of the Manta software due to its limited functionality. However, in the course of working on this
thesis, a good foundation was created that makes the prototype easily extensible.

41

42 Conclusion

Appendix A

More Matillion ETL data flow
visualization examples

43

44 More Matillion ETL data flow visualization examples

Figure A.1 Matillion ETL data flow visualization example No. 1

45

Figure A.2 Matillion ETL data flow visualization example No. 2

46 More Matillion ETL data flow visualization examples

Figure A.3 Matillion ETL data flow visualization example No. 3

Bibliography

1. PETERMAN, Mark. What is ETL and why do I need it? [online]. [N.d.]. [visited on 2022-
11-25]. Available from: https://blog.csgsolutions.com/what-is-etl.

2. What is Dataflow? [online]. techopedia, 2017 [visited on 2022-11-22]. Available from: https:
//www.techopedia.com/definition/6743/dataflow.

3. What is Data Lineage? [online]. imperva, 2022 [visited on 2022-11-22]. Available from:
https://www.imperva.com/learn/data-security/data-lineage/.

4. REESE, Eric. All You Need to Know About Metadata [online]. opendatasoft, 2020 [visited
on 2022-11-22]. Available from: https://www.opendatasoft.com/en/blog/all- you-
need-to-know-about-metadata.

5. Manta (firma) [online]. Wikimedia Foundation, 2021 [visited on 2022-11-22]. Available from:
https://cs.wikipedia.org/wiki/MANTA_(firma).

6. HERMANN, Lukáš; ULRYCH, Jan; MORAVEC, Jakub; HOLLINGER, Rebecca. Manta
Flow Architecture [online]. Manta Confluence (internal documentation), 2022 [visited on
2022-11-22]. Available from: https://mantatools.atlassian.net/wiki/spaces/MTKB/
pages/70230122/MANTA+Flow+Architecture.

7. KOŠVANEC, Petr. Analýza datových tok̊u v reportovaćıch nástroj́ıch. 2019. MA thesis.
Faculty of Information Technology, Czech Technical University in Prague.

8. Data Lineage Done Right [online]. 2022. [visited on 2022-11-22]. Available from: https:
//getmanta.com/.

9. What is a Data Warehouse? [online]. IBM, 2020 [visited on 2022-11-23]. Available from:
https://www.ibm.com/cloud/learn/data-warehouse.

10. Cloud data warehouses [online]. [N.d.]. [visited on 2022-11-23]. Available from: https://
documentation.matillion.com/docs/2852129.

11. What is a Data Warehouse? [online]. 2022. [visited on 2022-11-23]. Available from: https:
//www.snowflake.com/data-cloud-glossary/data-warehousing/.

12. What is ETL (Extract, Transform, Load)? [online]. [N.d.]. [visited on 2022-11-23]. Available
from: https://www.snowflake.com/guides/what-etl.

13. What is ETL (Extract, Transform, Load)? [online]. IBM, 2020 [visited on 2022-11-23].
Available from: https://www.ibm.com/cloud/learn/etl.

14. RANAWAKA, Malsha. ETL vs ELT: The Difference is in the How [online]. Panoply, 2022
[visited on 2022-11-23]. Available from: https://blog.panoply.io/etl-vs-elt-the-
difference-is-in-the-how.

47

https://blog.csgsolutions.com/what-is-etl
https://www.techopedia.com/definition/6743/dataflow
https://www.techopedia.com/definition/6743/dataflow
https://www.imperva.com/learn/data-security/data-lineage/
https://www.opendatasoft.com/en/blog/all-you-need-to-know-about-metadata
https://www.opendatasoft.com/en/blog/all-you-need-to-know-about-metadata
https://cs.wikipedia.org/wiki/MANTA_(firma)
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/70230122/MANTA+Flow+Architecture
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/70230122/MANTA+Flow+Architecture
https://getmanta.com/
https://getmanta.com/
https://www.ibm.com/cloud/learn/data-warehouse
https://documentation.matillion.com/docs/2852129
https://documentation.matillion.com/docs/2852129
https://www.snowflake.com/data-cloud-glossary/data-warehousing/
https://www.snowflake.com/data-cloud-glossary/data-warehousing/
https://www.snowflake.com/guides/what-etl
https://www.ibm.com/cloud/learn/etl
https://blog.panoply.io/etl-vs-elt-the-difference-is-in-the-how
https://blog.panoply.io/etl-vs-elt-the-difference-is-in-the-how

48 Bibliography

15. Matillion ETL Product Overview [online]. [N.d.]. [visited on 2022-11-23]. Available from:
https://documentation.matillion.com/docs/1975061.

16. Matillion ETL Releases Overview [online]. [N.d.]. [visited on 2022-11-23]. Available from:
https://documentation.matillion.com/docs/1799483.

17. What is SQL? [online]. Amazon, [n.d.] [visited on 2022-11-23]. Available from: https :
//aws.amazon.com/what-is/sql/.

18. Object-oriented programming [online]. Wikimedia Foundation, 2022 [visited on 2022-11-23].
Available from: https://en.wikipedia.org/wiki/Object-oriented_programming.

19. What is Java? [online]. IBM, 2019 [visited on 2022-11-23]. Available from: https://www.
ibm.com/cloud/learn/java-explained.

20. SCHILDT, Herbert. Java’s Magic: The Bytecode. In: Java: The complete Reference. Eleventh.
McGraw-Hill Education, 2019. isbn 978-1-26-044024-9.

21. Java version history [online]. Wikimedia Foundation, 2022 [visited on 2022-11-23]. Available
from: https://en.wikipedia.org/wiki/Java_version_history.

22. Javadoc [online]. Wikimedia Foundation, 2022 [visited on 2022-11-23]. Available from: https:
//en.wikipedia.org/wiki/Javadoc.

23. What is an IDE? [online]. 2019. [visited on 2022-11-24]. Available from: https://www.
redhat.com/en/topics/middleware/what-is-ide.

24. IntelliJ IDEA overview [online]. 2022. [visited on 2022-11-24]. Available from: https://
www.jetbrains.com/help/idea/discover-intellij-idea.html.

25. PORTER, Brett; ZYL, Jason van; LAMY, Olivier. Welcome to Apache Maven [online].
2022. [visited on 2022-11-24]. Available from: https://maven.apache.org/.

26. PANKAJ. Spring Framework [online]. DigitalOcean, 2022 [visited on 2022-11-24]. Available
from: https://www.digitalocean.com/community/tutorials/spring-framework.

27. Difference between IOC and Dependency Injection in Spring. [online]. 2020. [visited on 2022-
11-24]. Available from: https://www.tutorialspoint.com/difference-between-ioc-
and-dependency-injection-in-spring.

28. BAELDUNG. Spring Dependency Injection [online]. 2022. [visited on 2022-11-24]. Available
from: https://www.baeldung.com/spring-dependency-injection.

29. GABA, Ishan. What Is JUnit: An Overview of the Best Java Testing Framework [online].
Simplilearn, 2022 [visited on 2022-11-24]. Available from: https://www.simplilearn.com/
tutorials/java-tutorial/what-is-junit.

30. TYSON, Matthew. What is JSON? The Universal Data Format [online]. InfoWorld, 2022
[visited on 2022-11-24]. Available from: https://www.infoworld.com/article/3222851/
what-is-json-a-better-format-for-data-exchange.html.

31. MOLIN, Cassio Mazzochi. Combining the Jackson Streaming API with ObjectMapper for
Parsing JSON [online]. 2019. [visited on 2022-11-24]. Available from: https://cassiomolin.
com / 2019 / 08 / 19 / combining - jackson - streaming - api - with - objectmapper - for -
parsing-json/.

32. JENKOV, Jakob. Jackson ObjectMapper [online]. 2019. [visited on 2022-11-24]. Available
from: https://jenkov.com/tutorials/java-json/jackson-objectmapper.html.

33. What is Git and Why Should You Use it? [online]. 2022. [visited on 2022-11-24]. Available
from: https://www.nobledesktop.com/learn/git/what-is-git.

34. What is Jenkins? [online]. 2022. [visited on 2022-11-24]. Available from: https://www.
edureka.co/blog/what-is-jenkins/.

https://documentation.matillion.com/docs/1975061
https://documentation.matillion.com/docs/1799483
https://aws.amazon.com/what-is/sql/
https://aws.amazon.com/what-is/sql/
https://en.wikipedia.org/wiki/Object-oriented_programming
https://www.ibm.com/cloud/learn/java-explained
https://www.ibm.com/cloud/learn/java-explained
https://en.wikipedia.org/wiki/Java_version_history
https://en.wikipedia.org/wiki/Javadoc
https://en.wikipedia.org/wiki/Javadoc
https://www.redhat.com/en/topics/middleware/what-is-ide
https://www.redhat.com/en/topics/middleware/what-is-ide
https://www.jetbrains.com/help/idea/discover-intellij-idea.html
https://www.jetbrains.com/help/idea/discover-intellij-idea.html
https://maven.apache.org/
https://www.digitalocean.com/community/tutorials/spring-framework
https://www.tutorialspoint.com/difference-between-ioc-and-dependency-injection-in-spring
https://www.tutorialspoint.com/difference-between-ioc-and-dependency-injection-in-spring
https://www.baeldung.com/spring-dependency-injection
https://www.simplilearn.com/tutorials/java-tutorial/what-is-junit
https://www.simplilearn.com/tutorials/java-tutorial/what-is-junit
https://www.infoworld.com/article/3222851/what-is-json-a-better-format-for-data-exchange.html
https://www.infoworld.com/article/3222851/what-is-json-a-better-format-for-data-exchange.html
https://cassiomolin.com/2019/08/19/combining-jackson-streaming-api-with-objectmapper-for-parsing-json/
https://cassiomolin.com/2019/08/19/combining-jackson-streaming-api-with-objectmapper-for-parsing-json/
https://cassiomolin.com/2019/08/19/combining-jackson-streaming-api-with-objectmapper-for-parsing-json/
https://jenkov.com/tutorials/java-json/jackson-objectmapper.html
https://www.nobledesktop.com/learn/git/what-is-git
https://www.edureka.co/blog/what-is-jenkins/
https://www.edureka.co/blog/what-is-jenkins/

Bibliography 49

35. SonarQube [online]. Wikimedia Foundation, 2022 [visited on 2022-11-24]. Available from:
https://en.wikipedia.org/wiki/SonarQube.

36. Matillion ETL Documentation [online]. [N.d.]. [visited on 2022-11-24]. Available from: https:
//documentation.matillion.com/docs.

37. What is Data Definition Language (DDL)? [online]. 2022. [visited on 2022-11-24]. Available
from: https://www.techopedia.com/definition/1175/data-definition-language-
ddl.

38. KOMPANIETS, Anastasia. Functional vs. Non-Functional Requirements: Why Are Both
Important? [online]. [N.d.]. [visited on 2022-11-24]. Available from: https://www.uptech.
team/blog/functional-vs-non-functional-requirements.

39. Non-functional Requirements in Software Engineering [online]. 2022. [visited on 2022-11-
24]. Available from: https://www.geeksforgeeks.org/non-functional-requirements-
in-software-engineering/.

https://en.wikipedia.org/wiki/SonarQube
https://documentation.matillion.com/docs
https://documentation.matillion.com/docs
https://www.techopedia.com/definition/1175/data-definition-language-ddl
https://www.techopedia.com/definition/1175/data-definition-language-ddl
https://www.uptech.team/blog/functional-vs-non-functional-requirements
https://www.uptech.team/blog/functional-vs-non-functional-requirements
https://www.geeksforgeeks.org/non-functional-requirements-in-software-engineering/
https://www.geeksforgeeks.org/non-functional-requirements-in-software-engineering/

50 Bibliography

Contents of enclosed media

readme.txt.......................................a brief description of the media content
src. ... the source codes of the work

impl.....................................the directory of implementation source codes
thesis................................ the directory of LATEX source codes of the work

text ... the text of the work
thesis.pdf...................................the text of the work in the PDF format

51

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Motivation
	Thesis goals
	Thesis structure

	Basic concepts and technologies
	Data lineage
	Manta
	Manta Flow
	Data flow graph

	Data warehouse
	Snowflake

	ETL and ELT
	Matillion ETL

	SQL
	Metadata
	Java
	Javadoc

	IDE
	Apache Maven
	Spring
	Dependency injection

	JUnit
	JSON
	Jackson Streaming API
	ObjectMapper

	Git
	Jenkins
	SonarQube

	Analysis
	Matillion ETL
	Key elements
	Metadata export

	Matillion scanner requirements
	Functional requirements
	Non-functional requirements

	Matillion scanner design
	Connector module
	Manual input directory structure
	Manual input files splitting
	Module structure

	Data Flow Generator module
	Data flow graph nodes structure
	Data flow analysis and graph generation

	Matillion scanner prototype implementation
	Connector module
	Data Flow Generator module

	Matillion scanner prototype testing
	Connector module
	Data Flow Generator module
	Data flow visualization

	Conclusion
	More Matillion ETL data flow visualization examples
	Contents of enclosed media

