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Abstrakt

Popularita grafových neurónových sietí rastie, pretože tradičné prístupy stro-
jového učenia nedokážu pracovať s komplexnými neeuklidovskými údajmi,
ako sú grafy. Táto práca uvádza vzťahy, ktoré možno modelovať v banko-
vom prostredí. Vybrali sme jeden, na ktorý sa zameriavame – zdieľanie do-
mácnosti. V praktickej časti poskytujeme komplexný prístup, ktorý vychádza
z predchádzajúceho moderného výskumu učenia z podgrafov, embeddingov
a atribútov na predpovedanie hrán. Poskytujeme spôsob, ako do pôvodného
konceptu začleniť hranové atribúty, ktoré získavame z transakčných údajov.
Vytvorený model sa následne používa na rozšírenie siete domácností o hrany,
ktoré neboli zistené pomocou predchádzajúceho heuristického prístupu.

Kľúčové slová grafové neurónové siete, predikcia hrán, SEAL, hranové atri-
búty
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Abstract

The popularity of Graph Neural Networks is on the rise, as traditional ma-
chine learning approaches cannot work with complex non-Euclidean data such
as graphs. This thesis provides relationships that can be modeled in a bank-
ing environment. We picked one we focus on – sharing a household. In the
practical part, we provide an end-to-end approach that builds on previous
state-of-the-art research of learning from Subgraphs, Embeddings, and At-
tributes for Link prediction (SEAL). We provide a way of incorporating edge
features we extract from transactional data into the original framework. The
built model is then used to enhance the household network with links that
were not detected with the previous heuristic approach.

Keywords graph neural network, link prediction, SEAL, edge features
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Introduction

Knowing the customer in an institution such as a bank is a core business
need. To know the customers better and extract the underlying information
from the available data is the key to a successful business and competitive
advantage.

Traditional machine learning approaches help us meet this need and pro-
vide more information to our business partners. These techniques are widely
spread and accepted in the banking sector. Many internal processes, like credit
scoring or prediction of default, would be nearly impossible without them,
whether we talk about classic logistic regression or more advanced approaches
such as gradient boosting.

However, these techniques have limitations when we want to mine com-
plex non-Euclidean data, such as graphs. Social networks are, by definition,
structured as a graph, and applying traditional machine learning algorithms
to them would be troublesome, if not impossible. Our need to work with and
data-mine such information materialized in looking for plausible algorithms
capable of this profound task.

This thesis starts with an introduction to transactional data and informa-
tion we can use from them as features that could serve as an input to our
model. We then look at the types of relationships we can extract from the
transactional data. Out of them, we have chosen one type of relationship –
sharing a household – that we want to analyze further and model with a neural
network in the practical part of this thesis. We also introduce some known
techniques capable of working with graph-like data. We have chosen one that
suits our case the best and also because we could implement the use of our
transactional features to it.

In the practical part, we provide an end-to-end walk-through of under-
standing this business use case, graph-like data preprocessing, and modeling,
followed by an evaluation. We provide the results of this machine learning
pipeline on the out-of-sample data. The model we produce is then used in the
evaluation phase, where the whole pipeline is re-used, and we produce predic-
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Introduction

tions on data without the ground truth label to identify new links between
clients. We incorporate these newly identified links with the old heuristic algo-
rithm outputs and report the change in counts of the households respectively
to their sizes.

The author wrote this thesis as part of his work placement at Česká
spořitelna, a.s..
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Goals

One of the theoretical goals of this thesis is to understand the specifics of
transactional data. This data cannot be used directly as the volume of trans-
actions increases daily by hundreds of thousands. The goal is to find a way
of aggregating these data and using them as predictive features for a machine
learning approach.

However, the theme of relations and social networks induces a use of non-
Euclidean graph-like data that cannot be fed into traditional machine learning
algorithms. The goal is to research and propose algorithms that would be
capable of using graph-like data. The main objective is to implement such
a method and verify it on real-world banking data in the environment of
Česká spořitelna, a.s..
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Chapter 1
Transactional data

The banking transactions are produced by various subsystems that first must
carefully process them. Outputs from these systems are further processed and
stored in raw format in the data lake. Then, these raw data are processed in
an overnight batch and stored in the bank’s normalized data warehouse. This
makes the data warehouse the only place of the ground truth. We access this
data and provide supplementary analyses and enhancement by new columns.

Some of these newly produced columns are also part of the inputs to our
algorithm. They are primarily outputs of heuristic algorithms, which are well
defined and continually evaluated for quality.

The table of transactions is the fastest-growing part of any banking data
warehouse system. It also holds the most information about the underlying
behavior of its clients. However, extracting this behavior – in the case of this
thesis, their relationships graph – solely from transactional data is unattain-
able. One of the challenges would be the size of the data. In the bank environ-
ment, there are billions of transactions in the table. The volume of the data
is in the hundreds of gigabytes. Another challenge would be a missing linkage
of relationships between the clients. As in many data mining challenges, the
real power is in data aggregation. Considering we want to model client-client
relationships, we need to aggregate these client-client interactions from the
transactional data.

In this chapter, we will talk about the nature of transactional data and
their utilization in the analytical and data mining framework used in this
thesis. We will mainly focus on the components of the transaction that would
be beneficial to use as features to train the neural network.

1.1 Time component
The first interesting part of any transaction is its time component. There
is not much information we can extract from the date and time contained in

5



1. Transactional data

the timestamp of a particular transaction.
Considering the aggregation over the two clients between whom the trans-

action is realized, we can compute various informative features.

Transaction Frequency With a distinct count over the dates in which trans-
actions were realized between two clients divided by the size of the time
window – in days – we can obtain a real number between 0 and 1 that
signals the frequency in the monitored time window.

Section of the day Utilizing the time unit of the timestamp, we can deter-
mine the section of the day the transactions were realized, e.g., before
noon, afternoon, or evening. Counting over these sections would get
us a number of the transactions in each section of the client-client rela-
tionship.

Regularity We can obtain the regularity of a transaction from two sources.
The first one is obvious – when a client sets up a standing order. In the
case of features, we can track how many of them clients set up between
each other. This information is accessible in our data warehouse. The
second one is trickier and consists of a separate algorithm that computes
a similarity (time and amount) measure between two transactions on,
e.g., a weekly or monthly basis. After setting up a cutoff value that
we define as sufficient, we can proclaim these transactions as regular.
However, we decided this algorithm is out of the scope of this thesis and
can serve as future development.

POS co-payments Considering the account transactions and card payments,
it could be possible to track if some clients paid at the same point of sale
(POS) in short succession. This sounds promising in theory and not that
hard to implement – with enough computing power – but it has some
problems. Not every POS is connected to the internet and processes
the payments online. Some of them handle transactions in batch, and
the time component of timestamps is the same for transactions made in
different parts of the day, or even all transactions made in one day have
the same timestamp. We decided not to use this information. Carefully
handling this issue will be a part of future development.

1.2 Amount component
The second principal component of a transaction is the amount. The volume
of the transactions in some time window can tell us only so much. We can
also incorporate other statistics, such as mean, median, standard deviation,
or maximum and minimum.

It might make a difference if there was one transaction of an enormous
amount or more in smaller volumes. Therefore, we can provide the algorithm

6



1.3. Open-text field component

features representing a volume ranges – bins – and count the number of trans-
actions that belong to these bins, e.g., 0-500, 501-1000, . . .

We can also incorporate a feature representing the roundness of the amount.
We can track how many transactions in the time window were rounded up to,
for example, hundreds.

1.3 Open-text field component
The third central part of every transaction are the transactional notes that
– unlike the time and amount components – might not be available for every
one of them. With every transaction made, there is a possibility to fill open-
text fields. These boxes consist mainly of transaction note for the sender or
receiver.

These notes can be processed for a piece of additional information that
we can use as features for the algorithm. For example, if a transaction has
a note “cinema”, we categorize it with a label “culture”. This algorithm for
categorizing transactions based on transaction notes is out of the scope of this
thesis. The algorithm exists, and we only consume the number of transactions
belonging to the categories over the provided time window as features.

7





Chapter 2
Social networks

In this chapter, we would like to talk about social networks and connections of
the client that they provide themselves or that we can obtain by data mining.

“A social network is a set of actors, or other entities, and a set or sets of
relations defined on them.” [3]

The authors of [4] say these relationships can be binary or valued. “Al-
ice follows Bob on Twitter” is a binary relationship, while “Bob liked three
tweets of Alice” is a valued relationship. The links can also be symmetric or
asymmetric – Facebook friendship needs mutual confirmation, which makes it
symmetric, while in the real world, this friendship could be one-sided.

Some types of relationships can also have a unique property of transitivity.
For example, if Alice is an ancestor of Bob and we have other information that
Bob is the ancestor of Eve, we also need to consider that Alice is the ancestor
of Eve. The property of transitivity can be expressed with the graph theory
language: every graph component needs to be fully connected.

In the context of this thesis, the actors are clients – represented as nodes.
Relations – represented as edges – are certain relationships between two clients.
The primary relationship of this thesis – that we predict in the practical part
– is sharing a household. Nonetheless, we provide other relationship types
that could be extracted and modeled in future development.

2.1 Household

We define a household as group of people living at the same address that
share the same surname or that share a bank product. An address is not
a unique representation of a household, as one address can have more than
one household – the smallest granularity of an address clients provide in the
Czech Republic is a house number. The household relationship is binary,
symmetric, and transitive.

9



2. Social networks

Without the application of any sophisticated algorithm, the naive house-
holds, with a unique identifier representation, are created by grouping the
people at the same contact/permanent address with the same surname or
a shared bank product. Detected households then serve as training, valida-
tion, and testing set for a graph neural network in the practical part explained
in chapter 4.

2.2 Family
In some cases, the family relationship could be the same as a household, but
it is not a rule. It is also a binary, symmetric and transitive relationship.

We get part of the information from clients themselves. When a parent
comes to set up an account for their children, this information is stored in
our data warehouse. This is because the parent needs to be a co-owner of
their underage children’s account. We also store the information of co-owning
a checking account between husband and wife, if they decide to set up this
type of account.

A somewhat reliable source of family relationships could also be found in
transactional notes and personalized names of senders/receivers – (grand)parents,
siblings, . . . If a person sends a transaction with a note containing “for mom”,
or “father” we detect this information and store it in our data warehouse.
Notes containing phrases like “pocket money”, or “allowance” signal a parent-
children relationship.

2.3 Tenant
The tenant-renter relationship can be obtained mainly from transaction data
utilizing the algorithm mentioned above to mine the transactional notes. This
relationship can provide additional information to the household relationship
as the housing unit can have more tenants that do not make transactions
with each other but send rent to the same person. This relationship is binary,
asymmetric, and non-transitive.

2.4 Coworkers
If we can detect the client’s salary through transactional data mining, it could
help us detect a coworker relationship between two clients. Usually, these
two individuals would receive their salary from the same account. We would
first detect the employer-employee relationship and then deduce the coworker
relationship.

Further analysis, e.g., POS co-payments, from section 1.1, could strengthen
this relationship, as the immediate coworkers might pay for lunch shortly after
each other, see example in table 2.1.

10



2.5. Acquaintances

client_id pos_id timestamp amount
1 100 20-04-2022 11:48:52 170
2 100 20-04-2022 11:50:02 180
3 200 20-04-2022 11:51:10 175

Table 2.1: Table of possible POS co-payments

This relationship is binary, symmetric, and usually, it is also transitive.
There might be some cases if an individual has more sources of income – jobs
– where he can have more than one distinct group of coworkers.

2.5 Acquaintances
In some way, we can consider this type of relationship as default – meaning
that if two clients do not have any of the above relationships, we can proclaim
them as acquaintances if they follow some rules.

Co-payments, mentioned in section 1.1, of two individuals, can be one data
source of this information. Repetitive small transactions – paying a restau-
rant bill or movie tickets – can also signal that these individuals share some
social interactions. This relationship is binary. In a real-world application, it
is usually asymmetric and non-transitive.
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Chapter 3
Representation learning on

network data

This machine learning subfield, known as Graph Representation Learning [5],
emerged since traditional tabular data cannot provide any more predictive
strength, even when used with state-of-the-art algorithms.

However, using complex graph-like data introduces a challenge, as the
data is generally unstructured. Researchers have introduced various methods
to tackle this problem in the past years, as one can not directly apply the
classic machine learning algorithms to this high-dimensional, non-Euclidean
data. The typical property of the various methods we will discuss in the
subsections below is that they extract the underlying graph structure of the
tabular data to yield higher predictive strength.

3.1 Feature engineering
As in any machine learning project, data preparation and feature extrac-
tion is the most time-consuming and necessary step of the process, known
as CRISP-DM (Cross-industry standard process for data mining).

In addition to the standard tabular features, we can transform raw graph
data into a row-based format, using aggregations of the nodes’ neighborhoods
features or their statistics within the graph [6].

These aggregations and statistics can include:

• Degree of centrality – number of edges that a node x has [7]

• Number of triads – number of distinct induced subgraphs of order 3 [8]
that node x is part of

• rooted PageRank algorithm – “computes a stationary distribution of
a random walker starting in node x, who iteratively moves to a random
neighbor with probability α or returns with probability 1 − α” [9]

13



3. Representation learning on network data

3.2 Network embeddings
Network embedding is an unsupervised learning method trying to learn a Eu-
clidean representation of the network in a lower dimension.

The network is represented by an undirected graph G(V, E), where V
is a set of nodes and E ⊆ V × V is a set of edges.

A node embedding is then a function f : V 7→ Rd, where d ≥ 1 is the
dimensionality of the node embedding [11]. The most used network embed-
ding method is Node2vec [12]. This method learns a mapping – function f
– of nodes to a low-dimensional space that maximizes the likelihood of pre-
serving network neighborhoods of the nodes in a latent feature space. The
optimization is done by stochastic gradient descent on a graph-based objective
function. One of the key features of Node2vec is the use of biased random
walks, yielding a trade-off among two basic search methods: breadth-first
search (BFS) and depth-first search (DFS) [6].

3.3 Geometric Deep Learning (GDL)
Graph data is structured in a way that can vary significantly from network
to network and even node to node of the same network. A graph’s support
domain is not a uniformly discretized Euclidean space. Therefore the convo-
lution operator – used for signal processing of images or sound – cannot be
applied directly to graph-structured data [6].

With this in mind, researchers tried to tackle this issue with Geometric
Deep Learning (GDL), a general term for techniques attempting to general-
ize deep neural models to this non-Euclidean domain [13]. GDL techniques
include mainly the use of autoencoders, convolutional and recurrent networks.

3.3.1 Graph Convolutional Networks (GCN)
This type of neural network generalizes the convolution operation so that it
can be used with graph-structured data. Using a notation from [14] GCN
works on undirected subgraph G = (X, E), extracted around a particular
node, which we aim to classify, where:

• X – a node feature matrix of size N × dx, where N is the number of
nodes, dx is the dimension of the node feature vector

• E – a tensor of edge vector representations of size N × N × de, where de

is the dimension of edge feature vector

Edges may not have any features, hence the majority of existing graph
neural network models perform only a weighted aggregation of node features
of the neighbors [14]. In the case of GCN, the aggregation of the features in
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3.4. Link prediction

the neighborhood is normalized by the number of nodes in it, which is, using
notation from [14], defined as:

x̂i = σ

 1
|Ni|

∑
j∈Ni

xjW

 , i = 1, . . . , N,

where (x1, . . . , xN ) are node embedding vectors before the convolution opera-
tion and (x̂1, . . . , x̂N ) are their projection after the convolution. W is a matrix
of trainable weights, Ni is a set of immediate neighbors of node i and σ is an
activation function (for example Rectified Linear Unit). In [14], they also say
that this expression implies that all the neighbors have an equal influence on
the chosen node, which is, in most applications, not precisely true.

3.3.2 Graph autoencoders (GAEs)
Autoencoder is an unsupervised method that, in this particular modification,
allows obtaining a low dimensional representation of the graph network. Its
objective is to reconstruct the original graph structure from the encoded em-
bedding, serving as the low dimensional bottleneck of the original network
[6].

In [15], they are using the aforementioned GCN as a building block of the
GAE, and with their notation, the embedding matrix Z (encoder) and the
reconstructed adjacency matrix Â are calculated as:

Z = GCN (X, A) ,

Â = σ (ZZ⊺)

The activation function σ used here is the logistic sigmoid function.

3.4 Link prediction
We can use link prediction as a tool to predict the probability of two nodes
from the network forming a connection - edge.

There are various methods to solve this task. Simple yet effective heuristic
baseline can be done with extracted features from section 3.1. To compute
these heuristics, various sizes of neighborhood are needed. In [9] they de-
fine “h-order heuristic” as a heuristic which requires knowing up to h-hop
neighborhood of the target node. The enclosing subgraph which describes the
h-hop neighborhood of given nodes x, y ∈ V is defined as a subgraph Gh

x,y

induced from G by the set of nodes {i | d (i, x) ≤ h or d (i, y) ≤ h}. Where
the function d is the shortest path between two nodes.

For example, common neighbors and the Adamic-Adar index can be classi-
fied as first-order and second-order heuristics, respectively. In [9], the heuris-
tics that require knowing the entire network are called high-order heuristics.
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3. Representation learning on network data

For example, rooted PageRank and SimRank are some of those, and they have
much better performance. However, too big a subgraph leads to extreme time
and memory consumption.

The most significant contribution of [9] is that they show we do not need
a large h to learn these high-order features. They have proven that under mild
conditions, most high-order heuristics can be effectively approximated from
an h-hop enclosing subgraph, where the approximation error decreases at least
exponentially with h. This finding enables us to accurately calculate first and
second-order heuristics and approximate various high-order heuristics using
small enclosing subgraphs around the given link.

3.4.1 Link prediction framework
To tackle the link prediction task, [9] came up with a SEAL (learning from
Subgraphs, Embeddings and Attributes for Link prediction) framework. It
has three steps:

1. Enclosing subgraph extraction

2. Node information matrix construction

3. GNN (Graph neural network) learning

As previously mentioned in section 3.3, a GNN typically works on a sub-
graph generally defined in the form of (A, X), where X is the node feature
matrix, and A is the adjacency matrix defined as:

• Ai,j = 1 if (i, j) ∈ E

• Ai,j = 0 otherwise

The right way of constructing the matrix X is crucial for the successful
training of the GNN for link prediction. In the following subsections, we will
describe the construction of this matrix shown by [9] with the added possibility
of also including edge features, which were not a part of the original framework.
The matrix includes node labels, node embeddings, and explicit node features.
It will be still of size N × dx, where dx = l + e + f + r is the combined length
of the feature vectors, where l is the length of the node’s label vector, e is the
length of the node’s embedding vector, f is the length of the node’s feature
vector, and r is the length of the node’s edge feature vector, see figure 3.1 for
matrix representation.

3.4.1.1 Node labeling

The artificial component of X is a node label. The idea of this label is to
signify the role of a node in an enclosing subgraph. In [9], they defined it in
a way that:
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3.4. Link prediction


nl1,1 · · · nl1,l ne1,1 · · · ne1,e nf 1,1 · · · nf 1,f ef 1,1 · · · ef 1,r

nl2,1 . . . nl2,l ne2,1 . . . ne2,e nf 2,1 . . . nf 2,f ef 2,1 . . . ef 2,r
... . . . ...

... . . . ...
... . . . ...

... . . . ...
nlN,1 . . . nlN,l neN,1 . . . neN,e nf N,1 . . . nf N,f ef N,1 . . . ef N,r



Figure 3.1: The conctruction of the matrix X

1. Center nodes are the target nodes, where we predict the occurrence of
a link

2. Nodes with various positions relative to the center have different impor-
tance to the link

Without such labels, GNN would not be able to tell where the target nodes
between which the existence of a link should be predicted are. In [9] they
came up with a labeling function fl : V 7→ N which assigns an integer label
fl(i) to every node i in the enclosing subgraph. Two target nodes x and y are
always labeled with “1”. For every other combination of nodes in the enclosing
subgraph they propose a “Double-Radius Node Labeling” (DRNL) function
as

fl(i) = 1 + min(dx, dy) +
⌊

d

2

⌋
[
⌊

d

2

⌋
+ (d%2) − 1],

where d := dx + dy,
⌊

d
2

⌋
is the integer quotient, (d%2) is the remainder of d

divided by 2, dx := d(i, x), dy := d(i, y) is the distance between nodes i and
x,y respectively, prohibiting the usage of the (x, y) edge. With this restriction
some nodes i can be unreachable from x or y, resulting in d(i, x) = ∞ or
d(i, y) = ∞. In such a case, they are assigned a “0” label.

After obtaining the label values, they are transformed into a one-hot en-
coded vector representation, from which we construct the matrix X.

3.4.1.2 Latent features

The authors of [9] say generating the latent features (node embeddings) is non-
trivial. They came up with a trick called “negative injection”. Presume that
we are given the observed network G = (V, E), a set of positive training links
Ep ⊆ E and a set of negative links En ∩E = ∅. The reason for this trick is po-
tential data leakage. If we directly generate node embeddings on G, they will
record the link existence information of the training links. Authors claim that
this would result in bad generalization performance. The trick lies in tempo-
rally adding En into E and generate the embeddings on G′ = (V, E ∪ En).
We talk more about generating En in section 4.3.1. The node embeddings are
then placed to the corresponding block in matrix X.
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3. Representation learning on network data

3.4.1.3 Explicit Features

There is no distinctive way of treating the explicit node features compared to
other data pre-processing for fitting any neural network. These features are
placed to the corresponding block in matrix X.

3.4.1.4 Edge features

There is no mention in [9] of how to incorporate edge features into their
framework, as the datasets used for experiments in this paper did not have
any of this additional information.

However, considering banking data, there is always a possibility of con-
structing a graph based on transaction interaction between the clients. Edges
in this graph would have aggregated features about client-client transaction
interaction.

We assume that in the case of predicting client relationships, it makes
sense to add these transaction interaction features to the matrix X, and the
whole learning framework can stay the same. As the nodes in the enclosed
subgraph are structurally labeled, explained in section 3.4.1.1, we can append
aggregations – e.g., mean, standard deviation, minimum, maximum – of the
transaction interactions and other additional client-client features grouped by
these structural labels.
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Chapter 4
Analysis and implementation

This chapter will provide an analysis and implementation overview of the
primary use case of this thesis – the use of a graph neural network to detect
and predict a household relationship between two individuals, defined in 2.1.
In the previous chapter 3.4.1, we introduced a theoretical background to the
algorithms suited for this task. In this chapter, we would like to present
the combined approach that would eventually provide us with an end-to-end
solution to this task.

This chapter will follow a Cross Industry Standard Process for Data Mining
4.1 describing all its parts in the context of this thesis.

Figure 4.1: A CRISP-DM diagram [1]
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4. Analysis and implementation

4.1 Business understanding
“The Business Understanding phase focuses on understanding the objectives
of the project.” [16] The users, in this case, are internal bank employees that
will consume the information about households. The main objective of this
algorithm is to provide a prediction of the relationship existence between two
clients.

“The science of Social Network Analysis (SNA) boils down to one central
concept – our relationships, taken together, define who we are and how we
act.” [4] This is why knowing your customer – and his relations to others –
is beneficial for both the institution and the clients.

Possessing this information might make a difference in providing a service
– e.g., taking up a loan – or its rejection. It would also benefit the customer
care processes by maintaining better financial advisory to the clients. Imagine
we would detect a new family of three – two parents and a child. We notice
that one of the guardians does not have life insurance set up – this means that
the financial health of this household might be at risk.

These and other similar uses are in demand, and they would be nearly
impossible to handle without a reliable and robust source of knowledge.

As of now, without this extended algorithm, around 68% – see 4.1, of
identified households, are consisting only of a single resident. In many cases,
it might be right – clients really live in the household alone, or they are the
only resident of the household that is a client of our bank (as we are not able
to detect clients of other banks). However, the percentage seems suspiciously
high. It is expected that the algorithm would help us to merge part of the
single-person households into existing ones or merge some of them together.

The fundamental property of this algorithm needs to be a low amount
of false positives. In our context, it means a low amount of links should be
incorrectly predicted as existing if the ground truth says they are not. This
metric is critical to the business, and the adoption of this algorithm relies on
this. The users would be afraid to utilize the outputs of this algorithm if there
were a high percentage of false positives.

4.2 Data understanding
4.2.1 Data sources
The primary source of data will be clients and their addresses. The success of
this algorithm depends on the reliable source of clients’ addresses. All places
of residency are paired with a unique identifier to provide a comfortable way
for data manipulations. Multiple individuals can share the same location
identifier but do not have to share the same household. Clients are divided
into households – each by sharing the same location key while also having the
same surname or sharing a bank product – e.g., checking account or loan.
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4.2. Data understanding

The first obstacle to tackle is a feminine variation of a surname and its
pairing with the masculine version. This can be solved by generating all
possible versions of a feminine surname from its masculine version and looking
for an intersection of these two sets. Luckily, a reasonable set of rules could
be obtained from the institute of Czech language at the Academy of Sciences
of the Czech Republic [17]. This algorithm is not in the scope of this thesis,
but the author worked on its implementation within the work placement.

Another problem might arise if there are more people with a commonly
used surname living at the same address and not sharing a household. Ana-
lyzing the data, we decided to ignore this case as there were only a few cases
like this.

The output data of these transformations are tuples containing two unique
client identifiers, signaling that these two clients share a household.

Another source of data, intended mainly for edge features, we introduced
in section 3.4.1.4, is a set of transactions. These vectors are aggregated by
the unique client identifiers – each transaction contains two, the sender and
receiver – so the edge features are created as:

• # transactions

• # transactions rounded to hundreds

• # transactions with a transactional note

• # transactions for every transaction category

• # transactions for each volume range, defined in section 1.2

• # standing orders

• transaction frequency, defined in section 1.1

• summed volume of transactions

• summed volume of standing orders

• ratio of transacastions and standing orders volume

The output table contains the combination of two unique client ids and spec-
ified edge features. Utilizing this table, we can generate simple visualizations
of any household, see figure.

4.2.2 Examples and statistics
To obtain the households, we applied the algorithm that utilizes the definition
from section 2.1. We were able to find over two million of them, see table 4.1.
Most of them – over 68% – were detected as single-person households.
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4. Analysis and implementation

# representatives # households % of total
1 2 052 979 68.682%
2 635 905 21.274%
3 200 366 6.703%
4 77 949 2.608%
5 16 529 0.553%
6 4 046 0.135%
7 922 0.031%
8 254 0.009%
9 78 0.003%

10 and more 63 0.002%
Total households 2 989 091
Total clients 4 354 188

Table 4.1: Table of identified households and their size

While in many cases, it might be true that some of the clients really do
not share a household with any other person, or the other individuals are not
our clients, and we do not possess any information about them, this number
is suspiciously high.

On the other hand, large households – above six residents – are repre-
sented in small numbers, which is good, as these household sizes are not
common in our region. We deep-dived into the outliers, and they were identi-
fied mainly as cases of two-generation houses, Vietnamese communities, and
nursing homes.

4.3 Data preparation
Often overlooked in favor of the overall outcome, data preparation is the key
part of any machine learning pipeline. We learned that it is even more true
when dealing with complex graph-like data. We provide an example input data
in table 4.2 and figure 4.3 as its graph representation. In table 4.2 we denote

Figure 4.2: Household of size 3
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4.3. Data preparation

x y location_key
1 2 100
2 3 100
4 4 100
5 6 100
5 7 100
6 7 100
8 9 200
8 10 200
9 10 200
11 11 200

Table 4.2: Example table input data

the nodes, between which the edge exist, as x and y. This edge is undirected.

4.3.1 Data preprocessing
In the case of this thesis, the preprocessing takes part in five steps:

• Selecting the data

• Completing the graph to fully connected components

• Generating negative samples

• Checking the graph is made of fully connected components

• Add reversed edges

The first step is to filter data by its relevance to the training. For our
case, we only select nodes and all their edges if they are part of a subgraph
with two or more nodes. Using the example data, that means nodes 4 and 11
would be excluded entirely from the training dataset.

Completing the graph, so its components are fully connected graphs is not
a condition for all graph neural network algorithms. This requirement has
arisen from the modeled data itself. As we mentioned in section 2.1 about
the household relationship, it would not make much sense if we were to use
the raw output data from the household detection algorithm – with missing
links – when the nature of this relationship is transitive. Demonstrating on
the example data, an edge would be added between nodes 1 and 3.

Although libraries such as PyTorch are ready to help with the complex
task of generating the negative samples for graph neural network datasets, for
this case, we had to re-implement them ourselves.

This is because the library function would generate a negative link between
two random nodes where the link is not observed. Usually, that would be
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4. Analysis and implementation

Figure 4.3: Example input data as graphs

x y edge_label
1 2 1
1 3 1
2 3 1
5 6 1
5 7 1
6 7 1
1 5 0
1 6 0
1 7 0

x y edge_label
2 5 0
2 6 0
2 7 0
3 5 0
3 6 0
3 7 0
8 9 1
8 10 1
9 10 1

Table 4.3: Example output after preprocessing

sufficient and expected. In this use case, we only want to generate negative
links between the nodes that share the same location key. This is because
of our definition of household from section 2.1. Therefore, after applying all
previous preprocessing steps, the negative links – with label 0 – are generated
between all nodes with the same location key where the link does not exist.

We provide a code example for steps 1, 2, and 3 4.1. After all these steps,
the output would look like a table 4.3. The graph we work with has undirected
edges, so the ones with opposite directions are added but not shown to spare
space and the reader.
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4.3.2 Train, validation, test split
After the preprocessing tasks are done, we can get into a train-test split. As we
use the SEAL link prediction framework, described in section 3.4.1, we need
to do some further preprocessing as part of the split.

As the first step, all provided edges are assigned to some of the train, val-
idation, and test subsets. In the original source code provided in [18] GitHub
repository as an example they are using a Python implementation of:

torch_geometric.transforms.RandomLinkSplit

– from the same repository – to handle the job. Part of this class also
handles the generation of negative samples.

As we generated our negative samples earlier to suit our case, we already
differ in this first step. We had to tweak this class to split positive labeled
edges and our negative samples so that the following steps contain the label
information. It was not possible with the previous implementation.

After a successful split the algorithm continues for each edge in every data
subset in this way:

• obtain k-hop subgraph

• remove target link from subgraph

• remove edges so either one of the nodes from target link is of degree 0

• obtain graph embedding

• calculate node labeling

• extract edge features

The k-hop subgraph is a graph that includes the two nodes of the predicted
edge and their neighbors as an induced subgraph in the distance of k. This
subgraph is obtained by function torch_geometric.utils.k_hop_subgraph
implemented in [18]. The inputs are the nodes of the target link, the number of
hops, and all edges in the data subset. For the number of hops, we have chosen
2. Using just a 1-hop neighborhood would be too trivial, and it would lead to
losing some information, as the connected components of which the induced
subgraphs are obtained are not fully connected anymore. This function also
provides relabeling of the input nodes, so the neural network would not overfit
to indices. This means the nodes are given labels from 1 to N , where N is the
number of nodes in this subgraph.

The next step is removing the target link from this induced subgraph for
the obvious reasons – we want to predict this linkage.

In our use case, we found the next step very important, and it is directly
connected to the way how the network will be used. As all edges are divided
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into the train, validation, and test subsets, it is not a rule that the k-hop
neighborhood is a fully connected component anymore – and it is not because
we removed the target link in the previous step. This extraction can lead to
the data leakage we had to handle.

(a) Example 1 (b) Example 2

Figure 4.4: Potential data leakage

In figure 4.4 we can see two examples of a k-hop surrounding for predicting
the linkage between nodes 1 and 4 – a dashed line means this edge does not
exist, but we want to predict it. As the input data might be (almost) fully
connected subgraph, we could encounter some data leakage. The transitivity
assumption of this relationship still holds, and we had to find a way around
it. Modeling these cases and predicting the linkage between nodes 1 and 4
would be, in fact, pointless when there is already a link that connects them
to other nodes. We found a way how to solve this problem – remove some
edges. We remove links in such a way that the subgraph should consist of two
components, where one of the components has only one node of degree 0.

We first look at which one of the nodes from the target link has the lowest
degree – to minimize the number of removed edges. If both have the same
degree, we choose the node randomly. Then we remove edges that contain this
node. However, this might leave us with more than two components in the
subgraph. That is why we might add some edges, so the subgraph consists
only of two components, each containing one of the nodes that are part of the
target link. This removal and addition of edges apply to all possible cases.

In the case of figure 4.4 – example 1 – it would mean that the edge between
2 and 4 would be removed. In the case of example 2, the edge between 2 and 4
could also be removed, the edge between 4 and 5 should then also be removed,
and node 5 would be randomly connected with any of the nodes 1, 2, or 3.
Example 2 could also be solved by removing edges between nodes 1, 2, and 1,
3 and then randomly connecting node 3 to any of the nodes 2, 4, or 5.

We are using node2vec described and implemented in [12] to obtain the
feature representation of the subgraph. The input is a graph representation of
the subgraph we generate embeddings for. All edges of this subgraph have the
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same weight. This algorithm has two main hyper-parameters – the number of
walks per node that we set to 3 and the number of nodes in each walk which
we set to 30. Default values are 10 and 80, respectively. We used fewer walks
per node with a lower amount of nodes per walk to save computing time for
obtaining the corpus. We experimented with various hyperparameter settings,
and these were found the best. The implementation from [12] continues with
creating a word2vec model implemented in [19]. This model is fed with ran-
dom walks, and a window – the maximum distance between the current and
predicted word within a sentence – is set to 10. The output of this model
is a continuous feature embedding of length 64 for each node in the subgraph,
see code example 4.2.

In the next stage, we compute node labeling for each subgraph. As men-
tioned in the section 3.4.1.1, the idea of this label is to signify the role of
a node in an enclosing subgraph. In [9] they defined it such as:

1. Center nodes are the target nodes, where we predict the occurrence of
a link

2. Nodes with various positions relative to the center have different impor-
tance to the link

To do so, we use a function call:

drnl_node_labeling(edge_index, src, dst, num_nodes)

that is part of repository example/seal_link_pred.py in [18]. We only
have to provide the edges of the graph, the number of nodes it has, and the
source and target nodes that are part of the target link.

The last part of data preparation is extracting the edge features. We could
not perform this step earlier as it is dependent mainly on node labeling from
the previous step. The original implementations of SEAL, either in [9] or [18]
do not implement the use of the edge features, so we incorporate them into
this preparation pipeline and add them to the feature vectors of nodes so that
the training phase could stay intact.

For each node, the function groups its neighbors – nodes connected to it
– by their node labels and performs an aggregation – in our case, their mean
value. In this way, the output size of extracted edge features for one node
is the input number of features multiplied by distinct values of node labels. If
the node does not have neighbors labeled with all of the distinct node label
values, an artificial row of zeros is added so that aggregation can be computed
because the output for all nodes needs to be of the same length.

We illustrate these inner workings with an example of the whole process.
In figure 4.5 we can see two of the inputs of this function – a graph of the
household with link 1-4 we want to predict (left) and a graph of transactional
features that we want to extract (right). The graph of transactional features

27



4. Analysis and implementation

x y feature_1 feature_2
1 2 100 200
1 3 300 400
1 4 100 200
2 4 700 400
3 4 500 200

Table 4.4: Transactional features

is provided as a table 4.4. Other important input to this function is the
node labeling from previous step and in this example it can be represented
as a dictionary node_labeling = {1: 1, 2: 0, 3: 0, 4: 1}. Where keys
of the dictionary are nodes and values are their labels. From these inputs the
function then produces extracted edge features like in table 4.5. The naming
of feature columns denotes the name of feature – feature_1, feature_2 in
this case – with additional information, by which label they were grouped.
For example, the name feature_1_0 is the feature_1 grouped by nodes with
label 0.

We then append extracted features to the node features. This section is the
most time-consuming part of the whole pipeline. Therefore, after completing
this preprocessing, we serialize the datasets into files, so we can skip this
part while experimenting with the model. This section concludes the data
preparation for modeling.

(a) Household graph (b) Transaction graph

Figure 4.5: Inputs to edge feature extraction

4.4 Modeling
The example repository example/seal_link_pred.py in [18] also provides
a modeling part that we can apply in our use case.
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node feature_1_0 feature_1_1 feature_2_0 feature_2_1
1 100+300

2 = 200 100
1 = 100 200+400

2 = 300 200
1 = 200

2 0 100+700
2 = 400 0 200+400

2 = 300
3 0 300+500

2 = 400 0 400+200
2 = 300

4 500+700
2 = 600 100

1 = 100 200+400
2 = 300 200

1 = 200

Table 4.5: Extracted edge features

Figure 4.6: The overall structure of DGCNN [2]

It consists of using Deep Graph Convolutional Neural Network (DGCNN)
[2] from the same co-author as the SEAL framework [9]. As stated in the
[2], their architecture achieved highly competitive performance with state-of-
the-art graph kernels and other GNN methods using only graph convolutional
layers and their novel SortPooling layer followed by a traditional neural net-
work as the classifier.

We adopted the architecture implemented in example/seal_link_pred.py
which can be represented by figure 4.6 from the original paper. This architec-
ture was also used in the SEAL framework [9], which we described in section
3.4.1.

This architecture has only two input parameters – the number of hidden
channels and the number of layers. For our experiments, we kept the default
values of these parameters – 32 hidden channels and 3 layers. First, the input
goes through the graph convolutional layers – in our case, 4 of them. The
number of these layers is deducted from the input parameter num_layers.
We explained the main idea behind these in 3.3.1. The algorithm then con-
tinues with a novel SortPooling layer. “The main function of the SortPooling
layer is to sort the feature descriptors, each of which represents a vertex, in
a consistent order before feeding them into traditional 1-D convolutional and
dense layers.” [2] Vertices in the graph are sorted by their structural role
within the graph. This ordering is consistent. “Meaning that vertices in two
different graphs will be assigned similar relative positions if they have similar
structural roles in their respective graph.”[2]

In [2], they also state another essential property of this layer, besides the
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sorting vertex features in a consistent order. The SortPooling layer also unifies
the sizes of the output tensors.

These layers are then followed by two traditional 1-D convolutional lay-
ers with parameters shown in code example 4.3. They are separated by the
MaxPooling layer. We experimented with adding more convolutional layers
followed by MaxPooling, but no improvement was discovered. Finally, it is all
passed to the Multi-layer Perceptron (MLP) with one hidden layer that per-
forms the binary classification.

In our experiments, we work with only a sub-sample of the available house-
holds – about one-twentieth. We found only minor improvements after trying
to add more data, so we prefer to save training time and resource consumption.

4.5 Evaluation

In the training of the neural network – and to be able to compare their per-
formance with each other - we use the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) metric. This metric tells us how much the
model is capable of distinguishing between our two classes. However, the most
important property from the business customer’s point of view is a low level
of false positives. This is the crucial metric for the algorithm by which it
will be decided whether it will be adopted into the deployment phase. The
training phase went through 50 epochs, and we trained ten models to report
the average performance with a standard deviation.

The ability of the classifier not to label as positive a sample that is, in
fact, negative is measured by precision metric. This is calculated as tp

tp+fp ,
where tp is the number of true positives and fp the number of false positives.
We also report the recall score, which is the ability of the classifier to find all
the positive samples. This is computed as tp

tp+fn , where tp is – again – the
number of true positives and fn the number of false negatives. We also decided
to report precision and recall scores for each household size separately. The
household size, in this case, means the hypothetical size of the family unit that
would occur if the sample was predicted positive. For example, a household
of size 4 means that we are trying to predict if a client is a part of a household
with only three individuals now.

In the table 4.6 we provide an evaluation of our neural network perfor-
mance metrics. By looking mainly at precision, we see that the household of
size 3 – we predict that some single individual household belongs to a house-
hold of size 2 – is performing the best. This household size is the case we
expect the most in the evaluation phase, where the ground truth is unavail-
able. We still provide precision and recall for other sizes of output households.
However, we do not expect to extract many relationships between a single in-
dividual household and households of size four and more.
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Household of size 3 Household of size 4 Household size 5 Household of size 5+ All households
AUC-ROC – – – – 0.8477 ± 0.0052
Precision 98.53 ± 0.15 90.14 ± 2.24 76.71 ± 4.21 64.81 ± 6.17 85.94 ± 2.133
Recall 37.82 ± 0.06 49.07 ± 3.73 45.89 ± 1.41 44.79 ± 7.75 43.23 ± 1.8

Table 4.6: Averaged results

If we could obtain data from Czech Statistical Office about the addresses
(in our case, locations), we would be able to use them to cross-examine our
algorithm performance much better. This data could also be used to clean
the training data, which we think would also help.

4.6 Deployment
We think the scores reported in the previous section look promising, and we
would like to deploy this model to production. Deployment would enable the
customers – consumers of this data – to work with regularly enhanced data
and target a bigger audience.

As much as we wanted to make this chapter an end-to-end walk-through
of this business use case, we are now still in the phase of deployment. Even if
it might seem that after successful development and promising results, the de-
ployment should not take long, the complexity of deployment to the operations
of the biggest bank in the country is overwhelming.

However, we do not think that a structural change in a household occurs
very often. This model does not need to work in real-time. We think that the
outputs could be computed monthly or even quarterly. The outputs must be
thoroughly monitored. A particular household should not change in time very
often. In the next chapter, we provide a scheme into which the model will be
deployed.
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data = []

# go through subghraphs with the same location key
for name, group in tqdm(df.groupby('loc')):

G = nx.Graph()
G.add_edges_from([(r1, r2) for r1, r2

in zip(group.x.values, group.y.values)])

# separate detected households at the location key
# and filter isolated nodes
graphs = [G.subgraph(c) for c

in nx.connected_components(G) if len(c) > 1]

# add missing edges
H = nx.Graph()
for graph in graphs:

G_nodes = graph.nodes()
graph_edges_to_add = []
if len(G_nodes) > 2:

for i in G_nodes:
for j in G_nodes:

if i!=j:
graph_edges_to_add.append([i,j])

graph_copy = nx.Graph(graph)
graph_copy.add_edges_from(graph_edges_to_add)

# add label of existing edge - 1
existing_edges = list(nx.to_edgelist(graph_copy))
H.add_edges_from(existing_edges)
existing_edges = [[e[0], e[1], 1] for e in existing_edges]
data.append(existing_edges)

# add negative samples lebeled as 0
non_existing_edges = [[e[0], e[1], 0] for e in nx.non_edges(H)]
data.append(non_existing_edges)

Code example 4.1: Preprocessing steps 1, 2 and 3
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4.6. Deployment

def generate_embeddings(self, nx_G):
for edge in nx_G.edges():

nx_G[edge[0]][edge[1]]['weight'] = 1

G = Graph(nx_G, is_directed=False, p=1, q=1)
G.preprocess_transition_probs()
walks = G.simulate_walks(3, 30)
walks = [list(map(str, walk)) for walk in walks]
if len(walks) == 0:

return torch.FloatTensor([0])

model = Word2Vec(walks, vector_size=64, window=10,
min_count=0, sg=1, workers=10, epochs=1)

my_emb = []
for node in sorted(list(nx_G.nodes())):

my_emb.append(model.wv[str(node)])

my_emb = np.array(my_emb)
return torch.FloatTensor(my_emb)

Code example 4.2: Generating the embedding

DGCNN(
(convs): ModuleList(

(0): GCNConv(131, 32)
(1): GCNConv(32, 32)
(2): GCNConv(32, 32)
(3): GCNConv(32, 1)

)
(conv1): Conv1d(1, 16, kernel_size=(97,), stride=(97,))
(maxpool1d): MaxPool1d(kernel_size=2, stride=2, padding=0,

dilation=1, ceil_mode=False)
(conv2): Conv1d(16, 32, kernel_size=(5,), stride=(1,))
(mlp): MLP(32, 128, 1)

)

Code example 4.3: DGCNN architecture
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Chapter 5
Reconstruction of the network

In this chapter, we would like to introduce the process of reconstruction of
the network utilizing the neural network algorithm we produced in chapter 4.
In section 4.3 we explained how the training data are prepared and later fed
into the neural network. Now we want to use this trained network to predict
samples where we do not know the actual label. The preprocessing pipeline
for reconstruction is the same as for training data, and we cannot skip any
step. One detail is to use already processed mappings for string-like features
so that we can represent them as numbers.

Figure 5.1: Example reconstruction
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5. Reconstruction of the network

In figure 5.1 we provide an example reconstruction of the example input
from figure 4.3. We try to predict all dashed edges at locations 100 and 200.
The order of prediction is the key here. The reconstruction is done locally,
meaning we do not try to predict links when the clients do not share the same
location key. Then we try to predict the connection of a single household
to all other households separately. In the case of location_key = 100, we
would first predict all dashed links between nodes 1, 2, 3, and 4. If any of
these links are predicted as positive, we consider node 4 part of this household.
However, links between nodes 5, 6, 7, and 4 must also be evaluated. If any
of the predicted edges were positive – we would have a collision. In the cases
like this, where a single individual household could be a part of more than one
household at the same location, we assign the single household – node 4 – to
the household where the predicted linkage was stronger.

The reconstruction is the most time-consuming part of the whole pipeline.
The scheme of this process can be summarized as follows:

1. Get all households at location

2. Obtain all households of size > 1

3. Obtain all households of size = 1

4. Generate samples to be predicted for a combination of a household of
size > 1 and a household of size = 1

5. Go through generated samples with all the preprocessing steps

6. Predict all generated samples

7. If any of them is predicted positively – assign a household of size = 1
as part of the household of size > 1

8. If there are more combinations of the households of size > 1 and house-
holds of size = 1, go back to step 4.

9. Solve collisions of households of size = 1 being assigned to more than
one household of size > 1

10. Continue to the next location

The main bottleneck of this scheme is in step 5 – applying all the prepro-
cessing steps separately for one batch of data. We think it can be solved by
enhancing this process with metadata and serialization. It would enable the
separation of preprocessing and scoring phases.

With this pipeline, we could broaden the detected households and lower
the number of households with a single individual. In table 4.1 we provided
the original counts for households respectively to their size. In table 5.1 we

36



# representatives # new households
3 119 014
4 14 557
5 1 792

6 and more 255
Total new households 135 618

Table 5.1: Newly identified households

# representatives # original households # w projection of new households % change
1 2 052 979 1 917 361 −7.1%
2 635 905 516 891 −23%
3 200 366 304 823 +52.13%
4 77 949 90 714 +16.38%
5 16 529 18 066 +9.3%

6 and more 5363 5618 +4.75%
Total households 2 989 091 2 853 473 −4.75%

Table 5.2: Identified households before and after applying the algorithm

provide a count of newly identified households and their size. In table 5.2
we project these counts into a total count of all households before and after
applying our algorithm.

We see that the total number of households decreased after projecting the
newly identified households. That is an expected outcome as we are merging
households of size 1 with others of a size greater or equal than 2. The decline
is equal to the number of newly identified households. We also see that most
newly identified households are of size 3. This sample size was where the
model achieved the highest precision in results 4.6.
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Chapter 6
Discussion

In this chapter, we want to dedicate a few more sentences to the outcome of
this algorithm.

The programming of the neural network started with a baseline. Within
the baseline, we used (almost) the same preprocessing and neural network
as we used in the final part. We omitted just one step – the edge features
3.4.1.4. Without their existence, the neural network, which works just fine
with the academic datasets like Power or USAir [20] did not work with our
data – the model was overfitting to the size of the input household. If there
were more positive samples with the same household size than negative, the
network predicted all links within this household size as positive and vice
versa.

We think the results we provide in table 4.6 are reliable, mainly for the
assignment to the household of size 2, which is the primary use case as bigger
households are not that common. However, the recall score is not that high,
and we are still, for sure, missing some linkage.

6.1 Impact

This thesis has a significant impact on our business users. Many households
consisting of a single client that we detected with the previous technique – that
was helpful for training data – are now assigned to some other households at
the exact location. The consumers of this output will now be able to target
a broader audience of clients. They have more information about households,
which we could not provide before. Now, we can understand the needs of our
customers better.

The information will be beneficial for both the clients and the institu-
tion. Application ranges from customer care and personalized services to loan
applications and their acceptance or rejection.
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6. Discussion

6.2 Positives
Of course, the most significant positive of this algorithm is that we were able to
extract new information – about a part of our clients – that we were missing.

We also consider the fact that we were able to deliver an end-to-end ma-
chine learning solution – if we omit the deployment – of a complex problem
within the existing infrastructure of the bank without any significant problems
as a big plus.

The solution can also serve as a template to work on similar cases in
the future, where we can model some other types of relationships from the
introductory chapter 2.

6.3 Negatives
We know our solution is not perfect, so we can also pinpoint some of its
negatives. The main problem is the computational time spent in the data
preprocessing part 4.3, used not only in training but also in evaluation. We
consider it a problem mainly in the evaluation part, where we use the scheme
mentioned in chapter 5. This scheme could be enhanced by metadata and
serialization that would enable separating preprocessing and scoring phases.

The next problem that might occur is the acceptance and deployment
of this algorithm. Using neural networks in the banking environment is not
considered a standard yet. There is not much we can do other than make
sure that the results of our experiments are right and evangelize about the
use of neural networks, as complex graph-like data like those we used could
be processed very hardly, or even impossibly, with any other machine learning
algorithm.

6.4 Limitations and bias
In the data preparation 4.3 section, we only choose subgraphs – households
– of size two or more. This filtration is fitted precisely to the use case of
predicting if some single household at the exact location is part of another
existing household. We simulated this with our preprocessing steps to keep
this data out of the training pipeline and only show it to the model in the
evaluation phase.

However, the model has not seen a training sample where a linkage between
two single-person households would be predicted. It is mainly because we do
not have such data where we are hundred percent sure if the link exists or not
between these two single-individual households.

This lack of training data does not mean that the model cannot predict
such cases, but we currently do not have a way to measure the performance
in this case. A possible way would be to sample only those locations where
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6.4. Limitations and bias

we detected more than one single-person household, and we have more infor-
mation about the location – e.g., it is a detached house that is not separated
into flats.
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Conclusion

The theoretical goal of this thesis was to understand the specifics of trans-
actional banking data and their utilization in the process of social network
reconstruction. We could not use this data in their standard tabular form,
so we had to find a way of aggregating them into the features that were used
in the practical part of this thesis.

After introducing the transactional data, we talked about the ways of
linkage prediction and geometric deep learning. We used this knowledge in
the practical part, where we introduced an end-to-end framework to predict
a linkage of two clients that share a household. To solve this task, we used the
SEAL framework [9] which we extended with the ability to use edge features.
Adding these features helped us boost the SEAL framework’s predictive power
and get over 0.84 AUC value with our test out-of-sample dataset.

The last part of this thesis and its practical part is dedicated to evaluating
samples we do not have the ground truth labels – network reconstruction. We
left households of size 1 out of the training dataset. The idea was then to
predict their linkage to already existent households of size greater or equal to
2. We were able to identify over 135 000 of these new households that arose
from the merging.

The most common merge we found was between the household of size 1
and the household of size 2, which means we identified a new household of size
3. According to the results on the test dataset, this type of merge performed
with over 98% precision score, which is the ability of our classifier not to
score a sample that is negative as positive. The low level of false positives
is the key criterion for our business partners, who would eventually, after
the deployment, consume this data. We think we met this criterion and can
proceed to the deployment of this model.

A discussion follows the practical part. We talk about the impact of this
model on business and its positives and negatives. We also state the limitations
and biases we think we introduced to the model.
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Appendix A
Glossary

POS Point Of Sale

CRISP-DM CRoss-Industry Standard Process for Data Mining

BFS Breadth-First Search

DFS Depth-First Search

GDL Geometric Deep Learning

GCN Graph Convolutional Networks

GAE Graph Autoencoders

SEAL learning from Subgraphs, Embeddings and Attributes for Link predic-
tion

GNN Graph Neural Network

DRNL Double-Radius Node Labeling

SNA Social Network Analysis

DGCNN Deep Graph Convolutional Neural Network

MLP Multi-Layer Perceptron

AUC Area Under Curve

TP True Positive

FP False Positive
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Appendix B
Contents of Enclosed CD

README.md.........................the file with CD contents description
src

thesis............................thesis source code in LATEX format
text..........................................................text práce

thesis.pdf.................................... the thesis ext in PDF
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